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Abstract—In recent years, there has been an explosion of
attacks directed at microservice-based platforms – a trend that
follows closely the massive shift of the digital industries towards
these environments. Management and operation of container-
based microservices is automation-heavy, leveraging on container
orchestration engines such as Kubernetes (K8s). Helm is the
package manager of choice for K8s and provides Charts, i.e.,
configuration files that define a programmatic model for applica-
tion deployments. In this paper, we propose a novel methodology
for extracting and evaluating the security model of Helm Charts.
Our proposal extracts a topological graph of the Chart, whose
nodes and edges are then characterised by security features. We
carry out risk assessments that refer to the attack tactics of
the MITRE ATT&CK framework. Furthermore, starting from
these scores, we extract the riskiest attack paths. We adopt an
experimental validation approach by analysing a dataset created
from multiple publicly accessible Helm Chart repositories. Our
methodology reveals that, in most cases, they have vulnerabilities
that can be exploited through complex attack paths.

Index Terms—Microservices, cloud computing, containerisa-
tion, orchestration, Kubernetes, Helm Charts.

I. INTRODUCTION

Today, containers are widely employed from hyperscalers
to private clouds to deploy applications and services, practi-
cally replacing traditional Virtual Machines (VMs) as the de-
facto DevOps standard due to their inherent scalability and
portability advantages [1]. Containers rhyme well with cloud-
native microservice architectures, whose operating principle
differs considerably from the more traditional monolithic
approach [2]. In production environments, the deployment and
management of containers are typically delegated to complex
automation and orchestration engines such as K8s, Docker
Swarm, or AWS Elastic Container Service (AWS ECS). Con-
sequently, this change in paradigm comes with a novel set of
challenges and an increased surface of attack [3], exemplified
by Man in the Middle (MITM) attacks targeting multi-tenant
environments [4], or the recent YoYo attack that deliberately
abuses the autoscaling of containers [5].

In this paper we focus on securing K8s deployments,
however extending our findings to other engines can follow
similar paths. While K8s natively supports some advanced
security features, including network segmentation, process iso-
lation, and a Role-Based Access Control (RBAC), in general
these policies are not activated by default and require sub-
stantial knowledge to be properly configured. Unsurprisingly,
insecure practices concerning default configuration are well
documented [3], [6], [7]. In this respect, various open source
and commercial tools help to provide additional layers of

security – however, even the most advanced solutions, such
as those recommended by the Center for Internet Security
(CIS) [8], simply consist of a list of pass/fail checks, lacking
an overall assessment of the likelihood and impact of an attack.
It is therefore not possible to correlate configuration files,
user-defined policies, to extract potential points of failure.

Properly configuring K8s deployments can be quite com-
plex. Deployments can be performed either manually via a
series of command-line inputs or, in automation-heavy envi-
ronments, via deployment files such as Helm Charts. Helm is
the package manager of choice for K8s, and Charts consist
of deployment-ready collections of YAML manifest files that
describe the model for deploying the microservice application
containers to K8s [9]. Charts can be quite complex and can
result in behemoth configuration files of up to 40𝐾+ lines of
code, virtually impossible to analyse by hand (e.g., [10]). In
addition, the same policy can be defined in multiple places
via different fields, an error-prone behaviour in collaborative
environments.

The main contribution of this paper is a multi-step method-
ology to evaluate the security and extract the risk model of a
Helm Chart deployment as detailed below:

• Step 1. A basic topological graph is extracted by pars-
ing, analysing, and correlating various components and
policies extracted from the Helm Chart.

• Step 2. Extracted data is aggregated into six main fea-
tures, inspired by CIS K8s best practices [11], [12]. An
enriched topological graph encompasses a set of nodes
and connecting edges characterised by such features.

• Step 3. From the topological graph, the risk associated
with each node and edge of the graph is evaluated
following the possible attacker tactics as defined in the
MITRE ATT&CK framework for K8s [13].

• Step 4. Finally, we use a shortest-path algorithm to roam
the risk-graph and to extract the (set of) attack path(s)
considered the most dangerous/risky on the topology.

We evaluate our methodology via an experimental approach.
We have constructed a dataset from multiple publicly ac-
cessible Helm Charts repositories. We have implemented a
working prototype of our methodology to evaluate the Charts
in the dataset. By scoring security features in accordance with
CIS benchmark recommendations, we demonstrate that most
of them are not secure by default and require substantial
modifications to reduce the overall security risks.

The remainder of this paper is structured as follows. Sect. II
addresses related work and positions our work. Sect. III



Tool Company Open-
source

CIS
guide

Custom
checks

Pen-
testing

kube-bench [16] Aqua Yes K8s
kube-hunter [17] Aqua Yes ✓
sKan [18] Alcide No K8s
Checkov [19] Bridgecrew Yes K8s
kAdvisor [20] Alcide No ✓
kubeaudit [21] Shopify Yes ✓
Polaris [22] Fairwinds Yes ✓
Docker
Bench [23]

Docker Yes Docker

TABLE I: Classification of state-of-the art tools for microser-
vice descriptor files analysis.

provides hints on how a microservice is built in K8s, outlining
the security best practices to adopt. Sect. IV details the graph
generation methodology. Sect. V presents the evaluation of
the methodology, introducing the dataset that we used, and
the analysis carried out. Finally, Sect. VI draws conclusions
and points out future work.

II. RELATED WORK

We focus our attention on the relevant literature in the fields
of K8s security and related threats and attack tactics.

A. Kubernetes security management

While simple applications may be composed of only a few
tens of components, the largest ones, such as those operated
by Netflix [14] and Uber [15], can run hundreds or thousands
of containers. Their composition leads to complex interaction
patterns that can be a source of security issues. This complex-
ity is well understood by professionals, who require a thorough
security assessment of both K8s clusters and microservice
configurations before being deployed in production.

By limiting the scope of our analysis to K8s, different
approaches exist to audit the security of such configurations.
The first category of tools retrieves configuration files and
settings and executes a set of checks based on CIS bench-
marks, related both to Docker [11] and K8s [12]. The second
category executes custom checks for best practices against
provided configuration files and settings. Finally, the third
category relies on penetration testing (pen-testing) techniques
in the K8s cluster. As a summary, Table I lists the main tools
for analysing the K8s configuration descriptors. The kube-
bench tool strictly follows all the checks listed by the K8s CIS
benchmark to discover configuration errors and authorisation
and authentication issues, while kube-hunter enhances the
effectiveness of the analysis with discovery and pen-testing
capabilities. Similarly, sKan and checkov rely on the K8s CIS
benchmark to execute a set of checks over the configuration
and user-defined policies, whereas kAdvisor, kubeaudit, and
Polaris check the conformity of K8s objects using their own
sets of checks. Finally, Docker Bench limits itself to Docker
containers and applies automated checks against common
deployment best practices.

Such tools have a number of shortcomings that reduce their
effectiveness. First, they only perform a set of checks, without

any correlation of the results. For this reason, it is often not
possible to diagnose the global impact that a misconfiguration
has on the cluster or on the running microservice. Instead, a
correlation and aggregation of information from various analy-
ses performed at different levels could allow one to reconstruct
a more coherent view of the system. Furthermore, the results
of the checks carried out are not put into perspective with the
techniques and tactics employed by real-world attackers, for
instance following some well-known attack matrices [13].

Recent works focus on K8s manifests and Helm Charts to
point out misconfigurations affecting security. [24] examines
Helm Charts to assess the quality of declarative chart artefacts,
e.g., detecting Charts with no maintainer or with a name
collision. [25] applies a qualitative analysis technique called
closed coding to spot security shortcomings of K8s manifests,
where two users rate collected commits to determine which
ones are related to security defects, e.g., looking for keywords
as ’injection’ or ’vulnerability’. However, the methodologies
developed in both articles require human intervention, and
analyse only the commit logs and not the actual content of
K8s manifests.

B. Kubernetes threat matrix
The MITRE Adversarial Tactics, Techniques and Common

Knowledge (ATT&CK) framework is an up-to-date database
of attack techniques grouped by objectives known as tactics.
The ATT&CK framework, originally generic, has been spe-
cialised for K8s, highlighting multi-stage cyber-attack patterns
and techniques that attackers can use to infiltrate and perform
damage on K8s clusters [13]. The threat matrix is made up of
ten distinct families of tactics that an attacker can combine to
reconstruct and exploit possible attack paths.

Up to our knowledge, the K8s threat matrix has been very
rarely used in the literature as a means to efficiently design
systems considering real-world attack scenarios. Authors in [3]
and [26] introduce several attack scenarios derived from the
attack life-cycle introduced in the K8s threat matrix.

C. Our contribution
With respect to related works, our methodology can be as-

similated to auditing microservice deployment descriptor files
through custom compliance checks. However, our proposal
goes far beyond the simple execution of compliance checks, as
it generates decorated graphs of the deployment, correlating
to each other and enriching the components defined in the
configuration file. Additionally, our methodology extracts the
most significant risks in the deployment and identifies the
riskiest attack paths. In this way, it also acts as a useful tool
for the decision-making process, as opposed to other solutions
that do not provide any prioritisation of the actions to be taken.
Furthermore, our methodology embeds natively the K8s threat
matrix to model the security of the deployment and detect
potential issues with accurate mapping to real-world attacks.

III. K8S DEPLOYMENT MODEL

K8s automates the management of containers and microser-
vices. However, complexity shifts from properly running ap-



plications, to properly configuring their deployment model via
descriptor files. In this section, we review the K8s architecture
outlining the security best practices to follow.

A. Kubernetes architecture

A container packs together one or more executables and
their dependencies. A K8s cluster allows containers to run
transparently across multiple (virtual, physical, on-prem, or
cloud-based) machines. Each cluster contains at least a master
node and one or more worker nodes. Masters have the task
of keeping the cluster in the desired state, scheduling the
execution of containers on worker nodes, which execute them.

K8s abstracts the configuration of the cluster and the
applications deployed on it through a resource-based model.
A minority of resources are global, e.g., nodes and cluster
roles, but most are scoped through a namespace. The main
types of resources defined in K8s include pods, deployments,
daemon sets, network policies, (cluster) roles, (cluster) role
bindings, persistent volumes, persistent volume claims, secrets,
and services.

All interactions between entities (including between ad-
ministrators, developers, and deployed containers) in the K8s
cluster go through an API server, which is the one-stop
shop for declaring and managing cluster resources, with the
server also handling authentication. Although the API server
is the interface, the K8s brain resides in etcd, a distributed
key-value store that holds all the states of the cluster (all
other components are stateless). Data, including secrets, is not
encrypted by default in etcd. Other key components for cluster
operation are the scheduler, which assigns execution pods to
worker nodes; the kubelet, which runs on each node to ensure
the proper functioning of pods programmed by the scheduler;
the kube-proxy, which ensures the routing of the traffic for
a service IP to the correct pods; and finally the Container
Network Interface (CNI), which guarantees the traffic routing
between the nodes, the application of network policies, and
possibly traffic encryption1.

B. Security best practices

As with any system, container engines and orchestrators
may have vulnerabilities. Nonetheless, most of the critical
security issues are attributable, directly or indirectly, to the
exploitation of vulnerabilities and misconfigurations in user-
deployed applications. As a matter of fact, although the
abstraction layer added by K8s reduces the complexity of man-
aging software and hardware resources, it can help increase
the attack surface if set up improperly [27]. For this reason,
it is important to clarify the best practices to follow in the
management of K8s clusters and the applications deployed
on them [6]. These best practices lay the foundation for the
analyses that constitute the methodology for evaluating the
security of Helm Charts that we propose.

1It is worth noting that CNIs are not part of the core K8s components and
are enabled through external plugins.

Pod Security Policy (PSP): The PSP mechanism allows
defining security policies on pods running on the cluster. These
policies are useful to restrict the resources one can define, e.g.,
prohibiting containers from accessing the Linux namespaces of
the host, prohibiting the use of the root accounts in containers,
or controlling the Linux capabilities of pods.

Secrets management: Secrets store sensitive information
that can be accessed by running pods, such as passwords,
authentication tokens, or keys. Secrets should be accessible
only by the applications needing them. Network access to
etcd and other administrative interfaces should also be filtered
through Network Policies (NPs). Access to etcd by API
servers should be protected by mutual authentication. The local
mounting of secrets and control sockets stored on nodes should
be prohibited via a PSP.

Access to K8s services: Core K8s services, such as the
DNS and the API server, are deployed in the kube-system
namespace. By default, they are accessible from any other
namespace. Therefore, a best practice is to prevent any traffic
from other namespaces to reach kube-system via explicit NPs,
with the exception of the applications that really require access
to those services.

Access Control: The permissions granted to users and
applications should be reduced as much as possible to pre-
vent them from interacting with the cluster configuration,
in particular the API server. Service accounts handle users
with authentication based on tokens, which are automatically
mounted by default and made available in the containers.
RBAC policies control the access to APIs exposed by the
API server. Roles can be defined with (cluster) role resources
to authorise a list of paths (endpoints) and possible actions
on each path (HTTP verbs: get, list, watch, update, etc.).
Roles are assigned to service accounts, users or groups, by
the declaration of (cluster) role bindings.

IV. MODEL RECONSTRUCTION FROM MICROSERVICE
DEPLOYMENT DESCRIPTORS

The overall methodology is composed of 4 steps:

• Step 1: Parse the descriptors files and correlate various
resources to extract a basic topological graph composed
of nodes and edges;

• Step 2: Enrich the topological graph through six main
features in line with the CIS K8s best practices, namely:
1) vulnerabilities of containers, 2) pods accessibility, 3)
the security policies in places among pods, 4) access
control (RBAC) rules, 5) firewall rules, and 6) affinities
among deployed components;

• Step 3: Score the level of danger associated to the
topological graph for each attacker tactic from the K8s
threat matrix;

• Step 4: Identify the riskiest attack paths according to each
step of the attack scenarios defined at the previous step.

Fig. 1 provides an overview of the overall methodology, with
the four main steps detailed in the following.



Fig. 1: Overview of the proposed multi-step methodology. Step 1: Parsing, correlation of the components, and basic topological
graph extraction. Step 2: Graph enrichment through six analysis. Step 3: Scoring of the level of risk associated to each node
and edge of the graph (two distinct scales). Step 4: Identification of the riskiest attack paths.

Symbol Meaning
P Set of pods, deployments, daemon sets, and replica sets in 𝑆

N Set of namespaces
C Set of containers and initial containers
S𝑣 Set of services
A Set of service accounts
R Set of roles
R𝑐 Set of cluster roles
B Set of role bindings
B𝑐 Set of cluster role bindings
P𝑠 Set of pod security policies (PSP)
N𝑝 Set of network policies (Network Policy (NP))
S𝑐 Set of secrets
V Set of volumes
M Set of volume mounts
P𝑣 Set of persistent volumes
P𝑐 Set of persistent volume claims

TABLE II: Resources of the K8s model.

A. Helm Chart parsing and graph extraction

The first step has the double objective of parsing the Helm
Chart to feed a data structure holding the overall deployment
system resources and to build topological information about
how resources of a deployment are correlated together.
Let 𝑆 represent the overall deployment system, composed of
multiple resources as defined in Table II, such that:

𝑆 = {P,N , C,S𝑣,A,R,R𝑐,B,B𝑐,
P𝑠,N 𝑝,S𝑐,V,M,P𝑣,P𝑐}

We describe in Table III the notations we use in the paper.
These resources can be related together using formal con-

straints, that are expressed as follows:

• each resource 𝑟 ∈ 𝑆 belongs to a unique namespace 𝑛 ∈
N ;

• each pod (or deployment) 𝑝 ∈ P encapsulates at least
one (initial) container 𝑐 ∈ C and a volume 𝑣 ∈ V shared

Variable Description
S Resources from the overall deployment system
F Functions applied to resources of S
C′ Set of enriched containers
P′ Set of enriched pods
E′ Set of enriched edges
𝑤 Single-weighting function for nodes
𝑤′ Multi-weighting function for nodes
𝑧 Single-weighting function for edges

G({C′ ∪
P′ }, E′)

Enriched directed graph

W({C′ ∪
P′ }, E′, 𝑤, 𝑧)

Edge- and node-weighted enriched directed graph

W′ ( {C′ ∪
P′ }, E′, 𝑤, 𝑧)

Edge- and node- multi-weighted enriched directed
graph

TABLE III: Notations.

among the containers2;
• each volume 𝑣 ∈ V is associated with a volume mount
𝑚 ∈ M that specifies where to mount the volume on the
containers;

• each persistent volume claim 𝑐 ∈ P𝑐 consumes a persis-
tent volume 𝑣 ∈ P𝑣;

• each service 𝑠 ∈ S𝑣 targets at least one pod 𝑝 ∈ P;
• each (cluster) role binding 𝑏 ∈ {B ∪B𝑐} links a (cluster)

role 𝑟 ∈ {R ∪ R𝑐} to a list of subjects (users, groups, or
service account 𝑎 ∈ A);

• each PSP 𝑝 ∈ P𝑠 characterises the security context of at
least one pod 𝑝 ∈ P;

• each pod 𝑝 ∈ P is associated with at least one PSP 𝑝 ∈
P𝑠 or with a security context in its definition;

• each NP 𝑛 ∈ N 𝑝 links one pod 𝑝 ∈ P to others pods
𝑝 ∈ P, namespaces 𝑛 ∈ N , or IP blocks.

2In K8s, a pod is the encapsulation of tightly bounded containers, with
shared storage, a unique IP address, and options that control how the
container(s) should perform. A deployment provides declarative updates for
pods. We will refer as "pod" to talk about pods, deployments, daemon sets,
stateful sets, and replica sets in the remainder of the article.



By correlating all the resources of the system together,
we can build a topological graph with a coherent set of
resources. Let G({C∪P}, E) be a directed graph with vertices
representing the union of containers C = {𝑐1, 𝑐2, ..., 𝑐𝑛} and
pods P = {𝑝1, 𝑝2, ..., 𝑝𝑚} present in the K8s deployment. The
set of edges E connecting the vertices is created as follow:

• A directed edge 𝑒(𝑝, 𝑐) is created from pod 𝑝 ∈ P
towards the container 𝑐 ∈ C that it encapsulates;

• A directed edge 𝑒(𝑝1, 𝑝2) is created between each pair
of pods 𝑝1, 𝑝2 belonging to P. Considering several
configurations, including network policies, pod execution
permissions, and co-localisation of pods on the same K8s
node, pod-to-pod edges model the ability to move from
one pod to another.

Following the application of the list of
relations between all resources, each resource
𝑟 ∈ {N , C,S𝑣,A,R,R𝑐,B,B𝑐,P𝑠,N 𝑝,S𝑐,V,M,P𝑣,P𝑐}
is directly linked to a pod 𝑝 ∈ P or linked to a resource itself
linked to pod 𝑝, so that a coherent set of the aforementioned
resources may be created around a single pod.

B. Graph enrichment

The second step has the objective to enrich the previously
generated topological graph G via the analyses of the resources
stored in 𝑆.

Let G({C′∪P ′}, E ′) be an enriched directed graph with C′

the set of enriched containers and P ′ the set of enriched pods.
Each 𝑐′ ∈ C′ has a set 𝛼 of attributes derived from the graph
enrichment made from various security analyses. An enriched
container is a container along with additional information
describing it, provided from other resources related to it.
Similarly, each 𝑝′ ∈ P ′ has a set 𝛽 of attributes derived from
the graph enrichment process. An enriched pod has additional
information describing it, provided by other resources related
to it.

Let E ′ = {𝑒′1, 𝑒
′
2, ..., 𝑒

′
𝑜} with 𝑜 = |E ′ |. Each 𝑒′ ∈ E ′

has a set 𝛾 of attributes derived from the graph enrichment.
Let F = { 𝑓1, 𝑓2, ..., 𝑓𝑖} (𝑖 = |F |) be the set of functions
applied to resources of S to perform various security analyses
and compute attributes 𝛼, 𝛽, and 𝛾 of resources belonging
respectively to C′, P ′, and E ′. A non-exhaustive list of
security analysis functions may include:

• Vulnerability scan of containers: 𝑓1 : C → C′.
The number of high or critical severity vulnerabilities,
i.e., those whose Common Vulnerability Scoring System
(CVSS) score is greater than 7, associated with each
container is recorded. Image vulnerability scanning is the
process of reviewing the security state of the container im-
ages. Image vulnerability scanners retrieve the Operating
System (OS), software packages and libraries used in an
image and compare them against vulnerabilities reposito-
ries. We leverage on open source tools such as Trivy [28],
Docker Scan [29], and Snyk [30];

• Services associated with pods: 𝑓2 : {P,S𝑣} → P ′.
The services abstract the accessibility rules of pods: these
can be exposed only inside the cluster (ClusterIP), or

externally to the cluster via a static port (NodePort),
an external load balancer (LoadBalancer), or an HTTP
routing service (Ingress);

• Pod security policies and security context of containers
and pods: 𝑓3 : {C,P,P𝑠,V,M,P𝑣,P𝑐} → P ′.
This category embeds information on the pods’ and
containers’ environment, including the authorised and
prohibited Linux capabilities, the different types of autho-
rised volumes, the permissions associated with files (read-
only or write), the authorised users, e.g, root account
or not, the permission or restriction to launch privileged
containers, the authorised or unauthorised use of the
host machine’s network, the list of authorised ports, the
authorised or unauthorised use of the host Inter-Process
Communication (IPC) and Process ID (PID) namespaces,
etc.;

• Service accounts associated with pods and their per-
missions: 𝑓4 : {P,A,R,R𝑐,B,B𝑐} → {P ′, E ′}.
As defined in Sect. III-B, these permissions include a
list of endpoints and possible actions on each endpoint,
e.g., creating new pods and workloads, reading secrets,
executing other pods, etc.;

• Network policies: 𝑓5 : {P,N 𝑝} → E ′.
They define firewall rules governing the interactions be-
tween the pods, e.g., which pods can communicate with
each other, on which port and which protocol;

• Pod affinities between different pods: 𝑓6 : P → E ′.
They represent the fact that two pods must be located on
the same machine (pod-affinity), or on the contrary on
two different machines (anti pod-affinity).

C. Graph weighting and scoring

The third step has the objective of quantifying the security
level of a Helm Chart, deriving information from the enriched
graph computed at the previous step. The process of scoring
is actually related to computing weights associated with each
node and edge of the enriched graph. Two distinct scoring
systems are provided, reflecting different levels of detail.

1) Single-weight scoring system: The first scoring tech-
nique associates a single weight to each node and each edge of
the enriched graph. This aims to model the overall risk level
associated with each component, aggregating all the security
assessments into a single value.

Let W({C′∪P ′}, E ′, 𝑤, 𝑧) be an edge- and node-weighted
enriched directed graph derived from G({C′ ∪ P ′}, E ′). Let
𝑤 : {C′ ∪ P ′} → R and 𝑧 : E ′ → R be the single-weighting
functions respectively for nodes and edges of the graph. If
(𝑢, 𝑣) ∈ E ′, 𝑧(𝑢, 𝑣) ∈ [0, 1] as weights represent probabilities
and are multiplicative. For convenience, we define 𝑧(𝑢, 𝑣) = 0
if (𝑢, 𝑣) ∉ E ′.

2) Multiple-weight scoring system: The second scoring
technique is more complex, as it evaluates the components
with respect to the offensive tactics and techniques of the K8s
threat matrix [13] introduced in Sect. II-B. For each node and
edge of the enriched graph, a sub-score is assigned for each
tactic of the matrix.



Fig. 2: Multiple-weight scoring system.

Let W ′({C′ ∪ P ′}, E ′, 𝑤′, 𝑧) be an edge- and node- multi-
weighted enriched directed graph derived from G({C′ ∪
P ′}, E ′). Let 𝑤′ : {C′ ∪ P ′} → R𝑞 be the multi-weighting
function for nodes of the graph, with 𝑞 the number of tactics
of the K8s threat matrix that are evaluated, and 𝑧 : E ′ → R the
single-weighting function for edges of the graph. Especially,
𝑤′(𝑛) = {𝑤′1 (𝑛), ..., 𝑤′𝑡 (𝑛), ..., 𝑤′ 𝑗 (𝑛)} with 𝑤′𝑡 (𝑛) the multi
node-weights of node 𝑛 for tactic 𝑡. As before, let 𝑧(𝑒) be the
single edge-weight of edge 𝑒.

The weighting functions can be customised by the admin-
istrator. As an example, Fig. 2 illustrates a possible weighting
system. In this setting, nine tactics from the K8s threat matrix
are considered. The Initial Access and Execution tactics are
first employed to model the ability for an attacker to enter a
pod of the cluster and execute malicious actions. Then, several
end-goal tactics that the attacker may perpetrate on the cluster
are considered, and in particular Privilege Escalation, Defence
Evasion, Credential Access, Discovery, Impact, and Lateral
Movement to host. The ability to move to other pods is also
considered as an end-goal tactic via the Lateral Movement to
pod. The final weight for each end-goal tactic of Pod A equals
the product of the weights associated to each sub-node on the
path. For example, the final weight denoted 𝑤′𝑝𝑟_𝑒𝑠𝑐 (𝐴) of
the end-goal Privilege Escalation (𝑝𝑟_𝑒𝑠𝑐) is the product of
𝜔, 𝛽1, 𝛽2, and 𝛼2. Also, the initial weight of Pod B equals
the output weight of the Lateral Movement to pod from pod
A, so that 𝑧′(𝐴, 𝐵) = 𝑤′𝑙𝑎𝑡_𝑚𝑜𝑣 (𝐴).

D. Identification of dangerous attack paths

The fourth and final step has the objective to find a set of
one or more attack paths that are considered the most risky.
By employing the weights defined in step 3, the objective is
to find the path 𝑠 = ⟨𝑛1, 𝑛2, 𝑛3, . . . , 𝑛𝑘−1, 𝑛𝑘⟩ that maximises
the weight 𝑧(𝑛1, 𝑛2) · 𝑧(𝑛2, 𝑛3) · ... · 𝑧(𝑛𝑘−1, 𝑛𝑘). Given that edge
weights represent probabilities, the objective is to find the set
of acyclic paths with the largest aggregate score.

max
𝑝

∏
𝑒∈𝑝

𝑧(𝑒) (1)

Inverting the edge weight transforms it into a minimisation
problem, which consists of finding the shortest path by product
of edge distances. Further, by taking the logarithm of edge
distances to make summation, the final problem becomes a
shortest path problem, so that:

min
𝑝

∑︁
𝑒∈𝑝

log( 1
𝑧(𝑒) ) (2)

We employ Dijkstra’s algorithm to find the shortest path
between several nodes of our graph [31], [32].

V. EVALUATION

For evaluating our methodology, we have built a dataset of
Helm Chart configurations from multiple publicly available
repositories. The evaluation employs our methodology to
assess the adherence of the Charts in the dataset to common
K8s security best-practices. We also highlight the results
of the analysis on specific Helm Charts showing how our
methodology can help pinpointing typical misconfigurations.

A. Dataset

Helm [9], [24] is the equivalent of a package manager for
K8s and employs a packaging format called Charts. A Helm
Chart packs a set of (deployment-related) K8s resources into
a single YAML configuration file. Thus, a single Chart might
be used to deploy something simple, like a Memcached pod,
or even a full web app stack with multiple server replicas,
databases, caches, load balancers, and so on.

The dataset is built by scraping and assembling the Helm
Charts from 14 open-source repositories3, namely prometheus-
community, kube-state-metrics, renovate, artefact, hashicorp,
enix, klustair, camunda, hpe-storage, nutanix, bitnami, halk-
eye, ibm-charts, and helm-charts. In total, the collected dataset
consists of 592 official Helm Charts, totalling 1076 pods
and 1318 containers. These represent the basic targets of our
analysis. We observe that configuration files of Helm Charts

3Helm Charts from a given repository can be downloaded via the command
line helm repo add <repo-name> <repo-url>.



CIS rule # vuln. containers Proportion
Root containers (#5.2.6) 206 32.2%
Privileged containers (#5.2.1
& #5.2.5)

55 4.2%

Default Linux capabilities
(#5.2.8 & #5.2.9)

1137 86.3%

NET_RAW capability (#5.2.7) 1170 88.8%
Get list of secrets (#5.1.2) 129 9.8%
Get list of pods (#5.1.3) 183 13.9%
Creating pod (#5.1.4) 107 8.1%
Host path volumes (#5.1.4) 13 1.0%
Host network (#5.2.4) 10 0.8%

TABLE IV: Number and proportion of containers (out of 1318
in total) not complying with K8s CIS benchmark rules.

in the dataset can contain up to 43,628 lines, with an average
of 564 lines per Chart. Of course, the interesting ones are
those with the largest numbers of pods, as they have the most
complex interactions between pods and the largest numbers of
lines to analyse, which therefore require considerable effort in
the case of manual analysis.

B. Compliance with the Kubernetes CIS benchmark

The K8s CIS benchmark proposes prescriptive guidance
for establishing a secure configuration posture for K8s [11].
Among other configurations, the benchmark covers RBAC and
service accounts, PSPs, network policies and CNIs, secrets
management, extensible admission control, and general poli-
cies. We aim to assess how the Helm Charts in our dataset
comply with these sets of rules. Table IV summarises the
number of containers we identified as not compliant with the
rules of the CIS benchmark, using the parsing of K8s resources
made by our tool. We observe that for several rules a large
share of containers does not comply with them.

In fact, root containers are around a third of the total,
which is quite concerning as they greatly facilitate the job of
escalating privileges once an attacker has reached a container.
The proportion of privileged containers is also concerning.
Furthermore, in most configurations, all 14 Linux capabilities
granted by default to containers are allowed, with no restric-
tions on the most harmful ones. For example, the NET_RAW
capability allows the exchange of ICMP traffic between con-
tainers, granting as well a container the capability to craft
raw packets. Regarding RBAC and service accounts, around
10% of all containers have the capability to retrieve the list of
secrets, the list of running pods, and to create pods. Finally,
the abilities to access the host network and to mount volumes
on the host are granted in around 1% of all cases, which is
quite reasonable.

Fig. 3 shows the distribution of the number of high or
critical severity vulnerabilities (CVSS > 7.0) found per
container image present in the Helm Charts, by employing
image vulnerability scanners. The red bar on the left
represents opaque containers, i.e., container images that

Fig. 3: Distribution of the number of vulnerabilities per
container for all the container images in the Helm Charts.

cannot be analysed by image vulnerability scanners4.
Moreover, we observe that the median number of high or
critical severity vulnerabilities is centred around 100, reaching
in some cases 3000 vulnerabilities for a single container,
e.g., ’unguiculus/docker-python3-phantomjs-selenium:v1’
(3282 vulnerabilities), ’halkeye/slack-resurrect:v0.1.4’ (2265
vulnerabilities), and ’k8s.gcr.io/spark:1.5.1_v3’ (1682
vulnerabilities). Vulnerabilities of containers represent critical
entry doors that attackers can leverage to infiltrate a cluster,
and therefore should be taken into account in the analysis of
the overall cluster security.

To summarise, we observe that a large portion of the
Helm Charts in our dataset does not conform to some of
the recommendations provided by the K8s CIS benchmark.
While this is already worrying by itself, we also point out
that simple compliance does not guarantee the absence of
security problems and potentially harmful attack sequences.
In reality, the main problem lies in the non-correlation of
the different elements of the analysis into a single global
model that synthesises the information. In fact, single scans
can overlook important insights such as the most important
assets to protect, the most critical security gaps to address,
and which problems have to be resolved first. In addition,
the resilience of each configuration to various possible attack
tactics is not assessed. Therefore, our model correlating the
components, outputting graphs and deriving risky attack paths
is necessary to get an accurate vision of the overall level of
defence and risk of the configuration.

C. Connectivity among components

Hereafter, we aim to illustrate the necessity to take into
account the connectivity between components in our analysis.
A pod might be reachable by an attacker from the outside if the
service associated with it is "NodePort" or "LoadBalancer",
meaning that components located outside the cluster can
potentially reach it. Afterwards, the possibility for an attacker
to move inside the cluster, e.g., from one pod to another, and

4Typically, a container image cannot be analysed for the following reasons:
(𝑖) the image’s footprint has been minimised, (𝑖𝑖) the image has been made
from scratch, (𝑖𝑖𝑖) the base image is outdated, or (𝑖𝑣) the base image is too
recent and not yet handled by the analysis tool.



Configuration Reach. cont. Increase factor
Initially reachable containers 134 1
Considering pod execution
permissions

135 1.01

Considering the lack of net-
work policies

293 2.19

Considering pod affinities 315 2.35

TABLE V: Number of reachable containers (out of 1318
containers in total) considering various configurations.

thus to reach several pods from a single entry point, should
also be considered. This agility can be made possible by the
lack of network policies implemented, to high-privileged users
permissions enabling to execute other pods, or to pod affinities
co-locating several pods on the same node.

Table V reports the number of reachable containers, in-
cluding the numbers of initially reachable ones (due to their
service accessibility configurations) and of the ones reachable
by transitivity due to the three aforementioned techniques.
Initially, 134 out of the 1318 containers in the dataset are
potentially reachable from the outside considering only their
service accessibility. Considering pod execution permissions
enables to reach only one additional container, which means
that most high-privileged pods are well isolated. Then, 293
containers are reachable in total considering the lack of
network policies and 315 ones considering pod affinities. In
total, 315 containers are reachable considering the ability of
the attacker to move in the cluster due to all these factors,
which represent an increase factor of 2.35. Note that the ability
for an attacker to move across pods can be more accurately
weighed depending on the employed technique, e.g., the lack
of network policies between two pods would give the attacker
80% of a chance to move, while the pod execution permission
would give the attacker 100% success rate.

D. Considering K8s threat matrix tactics individually

As just mentioned, the coefficients associated with each
setting can be tuned to weigh the importance of each step
in the attack life-cycle, so that the global score equals the
weighted sum of all attributes. Table VI shows the values of
the coefficients chosen for each setting.

Fig. 4 breaks down the danger scores produced by the
scoring module, including the global score (e.g., the single-
weight score defined in Sect. IV-C1) and the multiple sub-
scores related to the K8s threat matrix tactics (as defined in
Sect. IV-C2). The large red dots picture the overall danger
level of the containers’ configuration, considering the vari-
ous security configurations related to it. By extension, the
container inherits from security configurations of the pod
that encapsulates it. The blue dots represent the number of
vulnerabilities of the containers. Numerous values around 100
actually represent the containers that could not be scanned by
state-of-the-art tools. The orange dots relate to the "Execution"
tactic, acknowledging the ability of a user to run as root
in the container or not. The green dots correspond to the
number of Linux capabilities granted to containers, ranging

Notation Description Value
𝛼1 Number of vulnerabilities 1 (per vuln.)
𝛼2 Number of Linux capabilities 5 (per cap.)
𝛽1 Accessible service 100
𝛽2 Ability to run as root 100
𝛽3 Can allow privilege escalation 100
𝛽4 Permissions (defence evasion, credential

access, discovery, impact create & delete)
10 (per
tactic)

𝛽5 Can exec other pods 100
𝛽6 Can reach the host network 100
𝛽7 Can reach host paths 100
𝛽8 Allowed types of volumes on host 10 (per vol.)
𝛾1 Network policies 0.8
𝛾2 Pod affinities 0.4
𝛾3 Pod execution capacity 1

TABLE VI: Values of coefficients chosen for each setting.

between 0 and 19. The average number equals 14, coinciding
with the capabilities granted to Docker containers by default.
The red squares relate to the "Service Accessibility" tactic,
whether the pod may be accessible from the outside or not.
The purple squares represent the "Privilege Escalation" tactic,
whether the user can escalate its privileges or not, e.g., the
field ’allow_privilege_escalation’ or ’privileged’ is present in
the PSP or the user can create bindings. The brown squares
correspond to the "Permissions" tactic, including defence eva-
sion, credential access, discovery, impact (create), and impact
(delete). Values equal to 0 are not shown in the figure because
of the logarithmic scale.

We observe that the first 150 containers have a global danger
score higher than 300, which is very concerning. Then, the
danger scores are slightly decreasing, reaching values located
between 100 and 300. Finally, a hundred containers have low
danger scores, lower than 200. The global danger score gives
a good overview of the security of a pod, but heterogeneous
reasons may hide behind high danger scores. Three illustrative
examples of pods retrieved from Helm Charts’ configurations
with rather similar high danger scores are provided hereafter:

(𝑖) The pod named "node-exporter" (score: 470) from Chart
"kube-prometheus" released by "bitnami" can access the host
machine’s network on all ports, can share the host PID, and
can mount and write on volumes on the host;

(𝑖𝑖) The pod named "pachd" (score: 411) from Chart "pachy-
derm" released by "stable" is privileged and is associated
with a service account with many permissions in the cluster,
including the abilities to get secrets and to get, delete, and
create pods;

(𝑖𝑖𝑖) The pod named "ibm-skydive-dev-analyzer" (score:
232) from Chart "ibm-skydive-dev" released by "ibm-
charts" has been granted 5 additional Linux capabil-
ities, i.e., SYS_ADMIN, SYS_RESOURCE, SYS_TIME,
NET_BROADCAST, NET_ADMIN, in addition to the 14
default ones, reaching 19 capabilities in total. A user in the
pod can potentially modify the network interface on the host
and can get a root session on the host machine.



Fig. 4: Breakdown of scores produced by the scoring module
(logarithmic scale).

E. Reconstructing complete attack paths

Threat matrix tactics considered individually can help us
identify alarming configurations in the Helm Charts, but by
themselves they do not provide sufficient visibility to the
overall risk of a given attack or threat. Indeed, refined attacks
follow complex patterns that involve multiple steps.

In the following, we employ the methodology defined in
Section IV-D to assess the number of containers vulnerable to
different tactics as end-goals. For this analysis, we distinguish
between two settings, namely initially reachable containers
and complete attack paths, defined as follows:

• Initially reachable containers: this setting does not
consider edges between pods. The weight of each of the
nodes equals the product of its service accessibility and
the score of the given K8s threat matrix tactic’s score.
The service accessibility value is Boolean, e.g., either 0
(if the service is ’ClusterIP’) or 𝛽1 (otherwise).

• Complete attack paths: this setting considers all edges
between pods, so that complete attack paths can be
reconstructed. The weight of the initial pod on the path
equals the value of its service accessibility, e.g., either 0
or 𝛽1. The weights of the edges are located between 0
and 1, and the weights of intermediate pods are set to 1.
The weight of the final pod equals the score of the given
tactic’s score for the pod.

Fig. 5 illustrates a breakdown of the global scores calculated
for each container by attack tactic. Fig. 5a plots the results
for the initially reachable containers setting, while Fig. 5b
considers the complete attack paths setting. In Fig. 5b, the
plotted values represent the maximum score among all the
possible shortest paths by destination container. The dif-
ferences between the two figures are therefore attributable
to the accounting of complete attack paths which extends
considerably the scope of an attack to a significantly larger
fraction of containers.

An extension to this model recognises the possibility for
an attacker to gain access to pods even without them being

(a) Initially reachable containers.

(b) Considering all possible paths toward the containers.

Fig. 5: Comparison between initially reachable containers and
complete attack paths (logarithmic scale).

exposed to the outside world. This is possible by exploiting
e.g., supply-chain attacks, vulnerabilities present in K8s, or
in containerisation technologies. To model this situation, a
parameter 𝜔 is introduced to represent the default accessibility
value of a pod for the attack path computation. Until now,
Service Accessibility was set to 0 when the service type was
defined as ’ClusterIP’. 𝜔 is a probability, e.g., a value of 0.1
would mean that the pod may be accessible by an attacker
with a 10% chance even if the service is ’ClusterIP’. Table VII
provides the number of containers vulnerable to the different
tactics, for 𝜔 = 0 and only initially reachable containers (e.g.,
as in Fig. 5a), 𝜔 = 0 and complete attack paths (as in Fig. 5b),
and 𝜔 > 0. Using 𝜔 > 0, we observe that far more containers
are vulnerable to the various attacker tactics. Risks are even
more prominent for the three tactics "Access to host’s network,
paths, and volumes", as respectively 72, 13, and 10 containers
may be leveraged to perform such tactics.

Fig. 6 displays three examples of output graphs produced
by our methodology and a representation of risky attack paths.
Note that only partial information about nodes is provided for
better readability. Fig. 6a outputs the graph for the "spring-
cloud-data-flow" Chart from "stable" repository, with 5 pods
and 9 containers in total. The complete attack path may be
reconstructed from the beginning. Pod D can be reached from



Tactic Example 𝜔 = 0 𝜔 = 0 with reachability 𝜔 > 0
Initial access spring-cloud-data-flow (stable); Fig. 6a 122 122 1318
Execution spring-cloud-data-flow (stable); Fig. 6a 103 252 1112
Privilege escalation - Capabilities spring-cloud-data-flow (stable); Fig. 6a 4 13 92
Privilege escalation - Run as root pachyderm (stable); Fig. 6b 112 285 1194
Permissions spring-cloud-data-flow (stable); Fig. 6a 23 43 224
Access to host network metallb (stable); Fig. 6c 0 0 72
Access to host paths metallb (stable); Fig. 6c 0 0 13
Access to host volumes metallb (stable); Fig. 6c 0 0 10

TABLE VII: Number of containers vulnerable to each K8s threat matrix tactic, for three configurations.

(a) spring-cloud-data-flow
(b) pachyderm

(c) metallb

Fig. 6: Output of our methodology, with the description of the components and the reconstruction of attack paths.

the outside through its service LoadBalancer, the opaque
container C6, and the container C7 with 20 high or critical
severity vulnerabilities (Initial Access & Execution). Given
the service account of the pod, the attacker is able to get
secrets in the cluster, to get and create pods (Credential Access,
Discovery, Impact). Due to the lack of network policies, the
attacker may freely navigate through the pods, without being
blocked by firewall rules (Lateral Movement). The illustration
on Fig. 6b from Chart "pachyderm" from "stable" repository
shows an attack path from Pod B associated with a NodePort
service and encapsulating container C2 with 16 high or critical
severity vulnerabilities (Initial Access & Execution). Moving
to Pod A accounting the lack of network policies (Lateral
Movement), the attacker can obtain higher privileges (Privilege
Escalation) and potentially avoid defence systems (Defence
evasion), create new workloads, and delete resources (Impact)
with the permissions associated with its service account on
Pod B. The illustration on Fig. 6c from Chart "metallb" from
"stable" repository shows a configuration with pod security
policies allowing high privileges, e.g., the ability to use the
host network and to mount volumes on the host machine
(Lateral Movement).

VI. CONCLUSION AND PERSPECTIVES

The emergence of cloud-native microservices architectures
and orchestration engines such as K8s comes with a whole
set of security challenges that need to be addressed. In this
paper, we present a novel methodology to analyse a K8s
Helm Chart deployment. The proposed methodology translates
Helm Charts into topological graphs, performing on it various
security analyses, outputting a security score and a set of
risky attack paths backed by the MITRE ATT&CK framework.

We evaluated our methodology via an experimental approach,
demonstrating its applicability to hundreds of Helm Charts that
contain delicate points whose developers should be aware.

Future research directions are manifold. First, our method-
ology can benefit from improved mechanisms to analyse
container vulnerabilities. Currently, we are not always able to
scan some containers which are therefore flagged as "opaque"
and risky. Furthermore, attack paths reconstruction opens up
interesting perspectives in terms of automated remediation
and prioritisation of fixes. Finally, an applied perspective is
to integrate our methodology as a step of a CI/CD security
pipeline dedicated to K8s.
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