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ABSTRACT Glioma grading before surgery is very critical for the prognosis prediction and treatment
plan making. We present a novel wavelet scattering-based radiomic method to predict noninvasively and
accurately the glioma grades. The method consists of wavelet scattering feature extraction, dimensionality
reduction, and glioma grade prediction. The dimensionality reduction was achieved using partial least
squares (PLS) regression and the glioma grade prediction using support vector machine (SVM), logistic
regression (LR) and random forest (RF). The prediction obtained on multimodal magnetic resonance images
of 285 patients withwell-labeled intratumoral and peritumoral regions showed that the area under the receiver
operating characteristic curve (AUC) of glioma grade prediction was increased up to 0.99 when considering
both intratumoral and peritumoral features in multimodal images, which represents an increase of about
13% compared to traditional radiomics. In addition, the features extracted from peritumoral regions further
increase the accuracy of glioma grading.

INDEX TERMS Wavelet scattering, radiomics, machine learning, glioma grading, peritumoral.

I. INTRODUCTION
Gliomas are the most common primary malignant tumors
of the central nervous system (CNS), which have high
incidence, recurrence, mobility and mortality rate. How to
treat the gliomas effectively is still a challenge. Generally,
gliomas can be classified into low-grade gliomas (LGG) and
high-grade gliomas (HGG) [1]. Different grades correspond
to different surgical plans and radiotherapy or chemotherapy
strategies. Therefore, accurate grading prediction plays an
important role in the treatment-decisionmaking, personalized
patient management, and prognostic evaluation. Currently,
biopsy or histopathological assessment after surgery is con-
sidered the gold standard for glioma grading [2]. However,
such grading means is invasive, time-consuming, painful
and useless for those patients not suitable for the surgery.
Therefore, developing a noninvasive strategy for precisely
grading gliomas is essential.

The associate editor coordinating the review of this manuscript and

approving it for publication was Inês Domingues .

Medical imaging, especially magnetic resonance imaging
(MRI), is a promising noninvasive tool for characterizing
gliomas. It was shown that contrast-enhanced T1-weighted
imaging (T1-CE), diffusion-weighted imaging (DWI) and
arterial spin labeling (ASL) imaging have great potential in
gliomas grading by noninvasively exploring the heterogeneity
of tumors from a microscopic view [3]–[5], for example,
with apparent diffusion coefficient (ADC) to reflect the cell
density of gliomas, with perfusion coefficients and perfusion
fraction to reveal the variation of vascular components in
gliomas. Ryu et al. proved that texture analysis of ADC
maps in DWI is useful for evaluating glioma grade [6].
Osamu et al. demonstrated that intravoxel incoherent
motion (IVIM) imaging is helpful for differentiating HGG
gliomas from LGG gliomas [7]. However, extracting infor-
mation from a single modality or simple comparison among
different modalities is not enough for accurate grading
analysis.

Recently, radiomics becomes an emerging noninvasive
method to quantitatively characterize medical images by
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extracting high-throughput image features from multiple
imaging modalities, including shapes, textures, wavelet fea-
tures, etc. [8], [9]. It has been successfully used for phe-
notypic analysis and prognosis prediction of several tumors
[10]–[12]. However, there are still few works on using
radiomics to predict glioma grades. Brynolfsson et al.
[13] demonstrated that the gray level co-occurrence matrix
(GLCM)-based texture features are useful for glioma grad-
ing and prognosis prediction. Following that, Cho et al.
showed that the combination of histogram and GLCM-based
texture features performs better in distinguishing low-grade
and high-grade gliomas [14]. To promote prediction accuracy,
the researchers investigated several feature selection methods
and classification models to get a higher prediction accuracy
[15]–[17].

Due to the excellent performance of deep convolutional
network (CNN) in image classification, some researchers
also used deep learning models to predict glioma grade.
For instance, Ge et al proposed a saliency-aware strategy to
enhance tumor regions of MRIs and used a novel feature
fusion scheme for classifying high- and low-grade gliomas
with accuracy of 89.47% [40]. They further designed a
multi-stream deep CNN architecture to improve the perfor-
mance of glioma grading with T1, T2 and FLAIR images, the
accuracy was up to 90.87% [41]. To deal with the influence of
the sample insufficiency, Ali et al attempted to use generative
adversarial networks (GANs) for data augmentation and then
used convolutional autoencoder (CAE) to classify high- and
low-grade gliomas, the accuracy was increased to 92.04%
[42]. Although deep neural networks show excellent perfor-
mance in various tasks, interpretability is still a problem to
deal with, especially for clinical applications [43]. In addi-
tion, the features learned by CNN lack the invariance [44],
especially not robust to the noise, therefore the performance
may be not stable.

Image features are themost important factors that influence
the prediction ability of radiomic methods. Traditional fea-
tures used in radiomics, such as textural and wavelet features,
are very sensitive to noise, transformations (translation and
rotation) and small deformations. For instance, if a small
region containing the same tumor is located at different
positions in the image, traditional features like textural and
wavelet features extracted from the region will be very dif-
ferent, depending on its position, which consequently influ-
ences the prediction accuracy of radiomics. Therefore, how
to extract local transformation-invariant and noise-insensitive
features to increase prediction ability of radiomics is still a
challenge.

In view of the interest of wavelet scattering for representing
invariant image features [18], [28], we propose to use wavelet
scattering radiomic features instead of traditional radiomic
features to noninvasively predict glioma grading. Wavelet
scattering features are robust both to noise due to the involved
image high-frequency averaging and to local transformations
owing to the use of the mean value of scattering feature
maps. Furthermore, most radiomics-based glioma grading

FIGURE 1. Illustration of original image (a) and the corresponding ROIs
(b). The red indicates the intratumoral region and the green the
peritumoral region.

studies focused on intratumoral regions, such as necrotic,
non-enhancing solid and enhancement core of the tumor. The
surrounding environment of the tumor remains unexplored; it
may however provide unique information for glioma grading.
All that led us to propose a novel wavelet scattering-based
radiomic method. The idea is to extract wavelet scatter-
ing features from different tumor-related regions in the
images coming from different imaging modalities, use partial
least squares (PLS) regression to reduce the number of the
extracted features, and predict glioma grades by means of
classifiers such as support vector machine (SVM), logistic
regression (LR) and random forest (RF).

II. MATERIALS AND METHODS
A. DATA DESCRIPTION
The data used in this workwas downloaded from theMICCAI
website 2017 targeting for the glioma segmentation challenge
[19]–[21], which is classified into 75 patients with LGG
(astrocytoma or oligo-astrocytoma) and 210 patients with
HGG (anaplastic astrocytoma and glioblastoma multiforme
tumors) based on histological diagnosis. All the patients
were examined with axial T1-weighted, T1-Gd enhanced
and T2-weighted images. To overcome the influence of
the motions of patients, the skull stripping was performed
firstly, followed by image registration to make sure that
the multi-contrast images are strictly matched for the same
patient [19]–[21]. The spatial resolution of the registered
images is 1 mm ×1 mm ×1 mm [22]. The regions of inter-
est (ROIs) were drawn manually by experienced radiolo-
gists, including edema, non-enhancing solid core, necrotic
core, and enhancing core. In the present work, to analyze
the influence of different tumor regions on the prediction
accuracy of glioma grade, for simplicity, we considered that
the necrotic core, non-enhancing solid core and enhancing
core consist of intratumoral region, and that the edema that
excludes intratumoral part constitutes the peritumoral region,
as illustrated in Fig. 1.

In addition to the images, the clinical properties of the
subjects can be found in the Cancer Genome Atlas (TCGA)
[23], as summarized in TABLE 1.

B. RADIOMICS BASED ON WAVELET SCATTERING
The proposed radiomic framework is composed of four
main steps: ROI extraction, feature extraction, feature selec-
tion, and glioma grade prediction. Taking into account the
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FIGURE 2. Overall workflow of glioma grade prediction based on traditional features and wavelet scattering features.

TABLE 1. Clinical features of the patients.

insufficiency of traditional features, such as sensitivity to
noise and local transformation, in the present work, we pro-
pose to use wavelet scattering features to replace traditional
features to get more meaningful features for promoting pre-
diction accuracy. The overall workflow of the prediction
model is illustrated in Fig. 2.

The first-order, shape, texture, wavelet features and
wavelet scattering (WS) features are respectively extracted
from manual segmented ROIs. The extracted traditional fea-
tures and wavelet scattering features were selected using PLS
method. After that, the selected features are fed into three
classification models (SVM, LR and RF).

Wavelet scattering is developed based on wavelet trans-
form that is devoted to analyzing images from a multiscale
point of view and extracts image features by convolving
variants of filters with image x. That is

Wx =
[
x ∗ φJ
x ∗ ψj,r

]
, (1)

where ψj,r (u) = 2−2jψ(2−jr−1u) represents the translation,
scaling and rotating of wavelet function with the scaling
factor j satisfying that 1 ≤ 2j ≤ 2J (J is the maximum
scaling index) and r = 2π l/L denoting the rotation angle
of wavelet function (L is the maximum number of rotations,
l = 0, 1 . . . L), ∗ designates convolution operator. Various
wavelet functions can be used to extract the high-frequency
information of images. Generally, the scaling function φJ is
composed of a series of Gaussian functions and is dedicated
to expressing the low-frequency information of images. It is
formulated as:

φJ (u) = 2−2Jφ(2−Ju), (2)

with φ being expressed by Gaussian function

φ(u) = e−u
2/2σ 2 . (3)

Although the wavelet function is able to restore image details,
it is only translation-invariant at the current scale of 2j due
to its localization properties [18]. In order to extend this
translation-invariant property to the biggest scale of x and
keep simultaneously the stability for deformation, the aver-
aging operation at the scale of 2J is performed by convolving
the high-frequency coefficient and the low-frequency filter,
namely x ∗ψj,r ∗φJ . However, the result of such convolution
is zero because the wavelet functionψj,r and the scaling func-
tion φJ are orthogonal. This implies that no information will
be generated by averaging directly the high-frequency coeffi-
cients. To deal with this issue, a nonlinear operation, namely
themodulus of high-frequency coefficients is achieved before
the averaging [24]. Then, the translation-invariant features
can be obtained by ∣∣x ∗ ψj,r ∣∣ ∗ φJ . (4)

From (4) we can see that the high-frequency information is
lost after the low-pass filtering. To recover the high-frequency
information, wavelet decomposition at larger scale (must be
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smaller than the biggest scale J ) is performed on the mod-
ulus of the current high-frequency coefficient, which can be
formulated as ∣∣x ∗ ψj,r ∣∣ ∗ ψj+1,r . (5)

However, as mentioned above, such high-frequency
information at the current scale is not translation-invariant.
To keep the translation-invariant coefficients, a modulo
operation followed by a low-pass filter should be performed
again: ∣∣∣∣x ∗ ψj,r ∣∣ ∗ ψj+1,r ∣∣ ∗ φJ . (6)

From (5) and (6), it can be observed that the
translation- invariants are obtained by applying wavelet trans-
form on the modulus of high-frequency coefficients followed
by an averaging operation. This process is called wavelet
scattering transform, which can be expressed as:

W̃x =
[
Sm
Um

]
. (7)

Define the wavelet scattering propagator Um as:

Um(p{λj0,r , . . . , λjm,r })

=
∣∣. . . ∣∣∣∣x ∗ ψj0,r ∣∣ ∗ ψj1,r ∣∣ . . . ∗ ψjm,r ∣∣

=
∣∣Um−1(p{λj0,r , . . . , λjm−1,r }) ∗ ψjm,r ∣∣ ,

with U0 =
∣∣x ∗ ψj0,r ∣∣ , m = 1, 2 . . . .M , (8)

where λjm,r = (j,m, r) records the scale informa-
tion jm and rotation direction r for the scattering level
m, p{λj0,r , . . . , λjm,r } represents the scattering propagation
path for the scattering level m at scale jm along the direction
r , and M is the maximum scattering layer. Accordingly,
the scattering propagator matrix U can be written as:

U =


U0 =

∣∣x ∗ ψj0,r ∣∣
U1 =

∣∣U0 ∗ ψj1,r
∣∣

...

Um =
∣∣Um−1 ∗ ψjm,r ∣∣

 . (9)

The corresponding wavelet scattering coefficient
Sm(p{λj1,r , . . . , λjm,r }) is:

Sm(p{λj1,r , . . . , λjm,r }) = Um−1(p{λj1,r , . . . , λjm,r }) ∗ φJ
(10)

The detailed expression for Sm(p{λj0,r , . . . , λjm,r }) is given
by:

S =


S0 = x ∗ φJ
S1 = U0 ∗ φJ

...

Sm = Um−1 ∗ φJ



=


S0 = x ∗ φJ

S1 =
∣∣x ∗ ψj0,r ∣∣ ∗ φJ

...

Sm =
∣∣. . . ∣∣∣∣x ∗ ψj0,r ∣∣ ∗ ψj1,r ∣∣ . . . ∗ ψjm−1,r ∣∣ ∗ φJ


(11)

FIGURE 3. Scheme of the second-order wavelet scattering network.

During the wavelet scattering decomposition, the scale of
wavelet scattering should satisfy j1 < j2 < · · · < jm < J .
According to the above wavelet scattering principle,

we extracted invariant features using the following param-
eters: the number of wavelet scattering levels is m = 2,
the wavelet decomposition scale is J = 2, and the scat-
tering direction at each scale is L = 4 which results
in r = [0, π

/
2, π, 3π

/
2]. With such parameter setting,

the scheme of the second-order scattering network was illus-
trated in Fig. 3, in which, j indicates the wavelet transform
level, m the scattering order, and the arrows the propagat-
ing paths. Along each path, there is a scattering propagator
expressed as U . The blue arrows represent the zero-order
scattering propagating paths, along which the low-frequency
image is decomposed continuously to the maximum scale.
The red arrows express the first-order scattering propagating
paths, along which the propagators are obtained by decom-
posing once the modulus of high-frequency image. The green
arrows denote the second-order scattering propagating paths;
the corresponding propagators decompose twice the mod-
ulus of high frequency image. According to the principle
of wavelet scattering, the mth-order scattering features are
obtained by convolving the m − 1th order scattering propa-
gators with scaling function φJ , marked as the black arrows
in the bottom of Fig. 3.

The final outputs constitute the scattering representation
of image x. If m = 2, we need to calculate the invariant
features S0, S1 and S2. According to (9) and (11) as well as the
constraint j0 < j1 < · · · < jm < J , the propagation operator
U0 in four directions can be formulated as:

U0 = U0(λ0,1)+ U0(λ0,2)+ U0(λ0,3)+ U0(λ0,4)

+U0(λ1,1)+ U0(λ1,2)+ U0(λ1,3)+ U0(λ1,4). (12)

with j0 = 0, 1
The resulting local invariant scattering feature S1 is

S1 = U0(λ0,1) ∗ φJ + U0(λ0,2) ∗ φJ + U0(λ0,3) ∗ φJ +

+U0(λ0,4) ∗ φJ + U0(λ1,1) ∗ φJ + U0(λ1,2) ∗ φJ
+U0(λ1,3) ∗ φJ + U0(λ1,4) ∗ φJ (13)

Similarly, the propagation operator for the scattering level 1 is

U1 =

J∑
j1=j0+1

j1∑
j0=0

4∑
r=1

U1(λj0,r , λj1,r ), (14)
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where U1(λj0,r , λj1,r ) =
∣∣∣∣x ∗ ψj0,r ∣∣ ∗ ψj1,r ∣∣. Due to the limit

j0 < j1 < J = 2, we can derive that j0 = 0, j1 = 1. As a
result,

U1 =

4∑
r=1

U1(λ0,r , λ1,r ) =
4∑

r=1

∣∣∣∣x ∗ ψ0,r
∣∣ ∗ ψ1,r

∣∣. (15)

The corresponding wavelet scattering features are given by

S2 = U1 ∗ φJ . (16)

Based on the above formulations, if we use two-level wavelet
scattering, we can get a total of 25 scattering feature maps,
and the numbers of S0, S1 and S2 are 1, 8 and 16, respectively.
If x is an image of N 2 pixels and the maximum number of

rotations is L, the overall complexity to compute the wavelet
scattering features is O(L2N 2 log(N )).

C. PREDICTION EVALUATION
The performance of the proposed wavelet scattering-based
radiomics for glioma grade prediction was evaluated in terms
of receiver operating characteristic (ROC) curve, area under
curve (AUC), sensitivity, specificity and accuracy. ROC is
obtained by plotting true positive rate (TPR) against false
positive rate (FPR) at different thresholds in a classifier. AUC
indicates the surface under the curve of ROC and specifies
the classification accuracy. The bigger the AUC, the more
accurate the classification. Sensitivity represents the correct
classification rate of positive samples while specificity repre-
sents the correct classification rate of negative samples. These
metrics allow reflecting the false positive and false negative
errors of the prediction models. Since AUC is not sensitive
to sample properties such as the unbalance of sample classes,
it is often used to evaluate the performance of the classifier
for unbalanced dataset. The proposed radiomics was also
compared with traditional radiomics.

III. EXPERIMENTAL AND RESULTS
A. EXPERIMENTAL SETUP
To fairly compare the glioma grade prediction accuracy based
on the proposed wavelet scattering features with that based
on traditional features, experiments with different imag-
ing modalities and different tumor regions were performed.
Given all the samples (285), the training set and testing set
were selected with the same ratio of HGG to LGG (3:1). That
is, 57 samples were selected as testing set and 228 samples as
training set. Since the number of HGG and LGG samples was
not equal, sample balance was also considered by weighting
the loss function of LR and SVM or the splitting criterion of
RF with the class weight. Such sample equalization method
was inspired by the work of King et al. [25] and implemented
with Scikit-learn [26].
For the traditional radiomics, a total of 505 radiomic

features were calculated for each patient with the package
of Pyradiomics [27], including 9 shape features, 18 first-
order features, and 478 textural features such as gray level
co-occurrence matrix (GLCM) features, gray level size zone

matrix (GLSZM) features, gray level run length matrix
(GLRLM) features, neighboring gray tone difference matrix
(NGTDM) features, gray level dependence matrix (GLDM)
features and multiscale wavelet features. The detailed list of
traditional features is given in Table S1 in the supplementary
file. For the wavelet scattering-based radiomics, we obtained
505 feature maps (S0 = 1, S1 = 6, S2 = 498) with scattering
direction L = 8, wavelet decomposition scale J = 6 and
scattering level m = 2. To enhance the contrast of the feature
maps and keep the local invariance, a logarithmic operation
followed by an averaging operation was performed on the
wavelet scattering feature maps, which results in 505 wavelet
scattering features in total for each patient. The wavelet scat-
tering feature extraction was programed with Matlab 2016a
and can be found in the work of [29]. To avoid redundancy
and correlation of the large number of traditional or wavelet
scattering-based features, PLS regression was used to reduce
the feature dimension to 50 [30]. Specifically, the PLS regres-
sion parameters were learned using the training set, and then
the feature dimension of the testing set was reduced with the
well-learned PLS parameters. Finally, based on the selected
features, three typical classifiers, namely, LR [31], SVM and
RF [32], [33], were used to predict glioma grades.
Previous works showed that the performance of radiomic

prediction is not only related to image features in the intratu-
moral region, but also to features in the peritumoral regions
[34], [35]. Besides, multiple imaging modalities may provide
more detailed information for promoting prediction accuracy
[36]. To fairly evaluate the prediction performance of the
proposed wavelet scattering-based radiomics, we performed
the glioma grading on different tumor regions and using
various imaging modalities, and quantitatively compared the
proposed method with the traditional radiomics in terms of
AUC and other metrics.
Regarding the dimension reduction of multimodal image

features, the PLS model was performed firstly on the features
extracted from each single image modality to reduce the
number of features to 50. The dimension-reduced features
are then combined (concatenated) and the combined features
are finally reduced again with PLS to yield final 50 desired
features.

B. SUPERIORITY OF WAVELET SCATTERING FEATURES
To evaluate the superiority of wavelet scattering features,
we tested the local invariance of wavelet scattering features
by rotating and swapping a small block in the tumor region
and adding Rayleigh noise. Then, we extracted traditional
and wavelet scattering features from original and transformed
tumor regions. The result is shown in Fig. 4.
We observe that rotating with 180◦ one small block

(of size 11 × 11) in the tumor region results in an obvi-
ous change in traditional features, such as the cluster
prominence (CP) feature in the first-order (FO) feature set
(FO-CP), low gray level run emphasis (LGLRE) feature in
the GLRLM feature set (GLRLM-LGLRE), and small area
low gray level emphasis (SALGLE) in the GLSZM feature
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FIGURE 4. Superiority of wavelet scattering features in terms of local invariance and
noise-robustness compared to traditional features.

set (GLSZM-SALGLE). In contrast, in the case of WS fea-
tures, when selecting one feature experiencing the biggest
variation in rotation for illustration, we found that theWS fea-
tures are very robust to the rotation: there is almost no differ-
ence between the WS features extracted from original image
and those extracted from rotated image. When we swapped
two small blocks in the tumor region, traditional features,
including autocorrelation (A) feature in the GLCM feature set
(GLCM-A), large area high gray level emphasis (LAHGLE)
feature in the GLSZM feature set (GLSZM-LAHGLE), and
large dependence low gray level emphasis (LDLGLE) feature
in the GLDM feature set (GLDM-LDLGLE), experience a
big change. Such observation can also be found in the case
after adding noise, which means that traditional features
are very sensitive to noise and local variations. In contrast,
swapping small blocks or adding noise has no influence
on wavelet scattering features, as observed in the last row
of Fig. 4.

To further quantitatively compare the changes of traditional
features andwavelet scattering features before and after trans-
formations, the sum of absolute changes in feature values
was calculated. We estimated the difference in features by
calculating the sum of absolute changes of features before
and after transformation in the selected zone. For example,
for a given pixel i, defining the value of a certain radiomic
feature before transformation is Ai, and the value of which
after transformation is Bi, then the change of such feature

is defined as 1
N

N∑
i=1

abs(Bi−AiAi
). Since the transformed fea-

ture value is related to the pre-transformation feature value,
the normalization the feature value is not performed.

Rotating one block in tumor region leads to an absolute
change of 7.72 in traditional features and 0.03 in wavelet
scattering features. Swapping two blocks in tumor region

FIGURE 5. Features difference between LGG and HGG.

generates a change of 4.9 in traditional features and 0.04 in
wavelet scattering features. Adding noise results in a change
of 42.27 in traditional features and 1.35 in wavelet scattering
features.

All these results demonstrate that wavelet scattering
features outperforms traditional features in terms of local
invariance and noise robustness, which is very important for
promoting the classification accuracy.

In addition, we demonstrated further the traditional
radiomic features and WS features for LGG and HGG
in Fig. 5. We observe that WS features for LGG and HGG are
totally different, however, the difference in radiomic features
between LGG and HGG are not obvious. This illustrates that

VOLUME 8, 2020 106569
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FIGURE 6. ROC curves of different classifiers obtained with traditional features and wavelet scattering features extracted from
different ROIs of T1 images.

TABLE 2. Quantitative comparison of glioma gradings in the case of using different features extracted from different regions in T1 images.

WS features will be beneficial for classifying the LGG and
HGG.

C. QUANTITATIVE COMPARISON OF GLIOMA
GRADING ON DIFFERENT REGIONS
As illustrated in Fig. 1, the labeled ROIs include intratumoral
and peritumoral regions.We extracted traditional features and
wavelet scattering features first from intratumoral region and
then from both inratumoral and peritumoral regions. To avoid
the influence of imaging modality, in this experiment, the
single modal images, namely, T1, T1-CE, T2 and Flair were
considered separately. The ROCs of the three classifiers
with different features extracted from different regions in
T1 images are shown in Fig. 6, and the ROCs curves for other
modalities are given in Fig. S1- Fig. S3 in the supplementary
file.

In these ROC curves, the middle black curve indicates
the dividing line with an AUC of 0.5, the green curve the
ROC obtained with traditional features, and the red curve the
ROC obtained with wavelet scattering features. It can be eas-
ily observed that the glioma grading accuracy with wavelet
scattering features is much better than that with traditional
features, especially for SVM and LR classifiers. In addition,
comparing Fig. 6(a) and 6(b) shows that the image features
extracted from the peritumoral regions are helpful to promote
the glioma grading accuracy.

To further quantitatively compare the prediction perfor-
mance of glioma gradingwith different features, the accuracy,
sensitivity, specificity and AUC are given in Table 2 for
T1 modality and in Table S2-Table S4 for other single modal-
ities. Clearly, the metrics have much higher values using
wavelet scattering features than using traditional features.
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FIGURE 7. ROC curves of different classifiers obtained with traditional features and wavelet scattering features extracted from
different ROIs of multimodal images.

In the prediction with intratumoral features, compared to the
wavelet-based method, the AUC of wavelet scattering-based
prediction is increased by about 12.9%, 11.7% and 8.4% for
SVM, LR and RF, respectively. As to the prediction with
both intratumoral and peritumoral image features, the AUC
obtained with wavelet scattering-based features is increased
by about 7.8%, 12.9% and 9.1 % for SVM, LR and RF,
respectively. We observe that the features extracted from per-
itumoral regions promote the prediction accuracy, especially
for the traditional radiomics. In other words, the peritumoral
features decreased the difference in prediction accuracy
between traditional features-based and wavelet scattering
features-based methods.

D. QUANTITATIVE COMPARISON OF GLIOMA
GRADING WITH DIFFERENT MODALITIES
To investigate the glioma grading performance of traditional
features-based andwavelet scattering features-basedmethods
with multimodal images, we first extracted the image features
from different combinations of multimodal images, including
the combination of arbitrary two modalities, three modalities
and four modalities. Then, glioma grading based on these
features was performed using different classifiers. The ROC
curves for the classification of glioma grades, which were
obtained with traditional features and wavelet scattering fea-
tures extracted from different ROIs of multimodal images
(combination of T1, T1-CE, and T2 images), are illustrated
in Fig. 7. The ROC curves for the combination of the other
modalities were given in Fig. S4 - Fig. S13. We can see that
the grading accuracy based on the wavelet scattering features
extracted from themultimodal images is even higher than that
based on the traditional features, whereas this superiority is
not as evident as in the grading with single-modality images.

The corresponding quantitative results are given in Table 3,
and the metrics for the other combinations of multimodali-
ties are illustrated in the supplementary results (from Tables
S5 to S14). The features extracted from multimodal images
indeed increase the glioma grading accuracy, AUC and sen-
sitivity, but the AUC difference between traditional features
and wavelet scattering features is not so obvious. Never-
theless, the specificity and sensitivity obtained with wavelet
scattering features are much higher than those obtained with
traditional features, which demonstrates that the proposed
method decreases simultaneously false positive and false
negative errors in glioma grading.

E. COMPARISON WITH DEEP LEARNING-BASED
METHODS
Besides the comparison with the traditional radiomic fea-
tures, to further validate the superiority of our methods,
we compared our methods with the radiomics performed by
others and some deep learning-based models in terms of
accuracy, sensitivity, specificity, and AUC. For the fair com-
parison, we use the same dataset that comes from MICCAI
BraTS 2017.

Table 4 shows comparison results. It is clearly observed
that, comparing the radiomics, the accuracy, sensitivity,
specificity, and accuracy are all increased a lot. With respect
to the deep learning-based method, the prediction accuracy is
also increased. This verified that the transformation-invariant
property of WS features can help to promote prediction accu-
racy of the glioma grading.

IV. DISCUSSION
The proposed glioma grade prediction method is based on
local invariant features extracted from wavelet scattering
network instead of traditional features. The experiments on
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TABLE 3. Quantitative comparison of glioma gradings in the case of using different features extracted from both intratumoral and peritumoral regions of
multimodal images.

TABLE 4. State-of-the-art methods vs the proposed scheme.

different tumor regions with different imaging modalities
showed that the proposed method reaches an AUC of 0.90 at
least, which demonstrates its effectiveness and superiority.

Traditional radiomic methods used handcrafted features
to train classification models. Such features include shapes,
textural, wavelet and statistical information, which are sus-
ceptible to image intensity variation and image deformation.
As a result, the prediction accuracy based on these features
is influenced. To cope with such problem and in view of
the interest of wavelet scattering transform for the extraction
of invariant image features, we replaced traditional radiomic
features by wavelet-scattering radiomic features to predict
glioma grades. The experimental results showed that the
use of those invariant features allows us to better represent
image properties and thus distinguishmore effectively glioma
grades. This can be reflected in the samples clustering results,
as shown in Fig. 8, which was obtained using the Consen-
sus Cluster Plus package in bioinformatics analysis software
under R language [37], [38].

The consensus matrix M is usually used to reflect the
quality and robustness of clustering. The horizontal or ver-
tical axis of M represents the sample index. If we have N
samples, the size of M is N × N . The value of each matrix
element Mij is between 0 and 1, representing the probability
that the sample i and sample j are clustered into the same
class during multiple clustering tests. In our case, the blue
color indicates the probability value of 1 and the white color
the probability value of 0. The cleaner the consensus matrix,
the better the clustering results. Considering the distribution
of datasets used in this work, with 75 patients presenting
LGG and 210 patients presenting HGG, the ratio of positive
(high-grade) to negative (low-grade) samples is about 3:1,

FIGURE 8. Consensus clustering for traditional features and wavelet
scattering features extracted from different ROIs in both single modal and
multiple modal images.

therefore the ratio of the corresponding clusters should be
also about 3:1.

When using single modality T1-weighted images
(Fig. 8(a)), the ratio of cluster 1 to cluster 2 grouped with
wavelet scattering features is about 3:1, whereas the ratio
obtained with traditional features is about 3:2. In the case

106572 VOLUME 8, 2020



Q. Chen et al.: Glioma Grade Prediction Using Wavelet Scattering-Based Radiomics

of intratumor features, the clustering accuracy of traditional
radiomics for LGG and HGG is respectively 50.2% and
50.5%, and that of wavelet scattering-based radiomics for
LGG and HGG is respectively 50.0% and 67.7%. In the
case of both intra- and peri-tumoral features, the clustering
accuracy of traditional radiomics for LGG and HGG is
respectively 45.0% and 67.1%, and that of wavelet scat-
tering radiomics for LGG and HGG is respectively 67.5%
and 71.1%. All that clearly explains why wavelet scattering
features are superior to traditional features.

In the case of multimodal image features (Fig. 8(b)), when
using traditional features, prediction accuracy increases. This
is reflected by both the ratio of two clusters (closer to
3:1 knowing that the ratio of HGG to LGG is 3:1) and
the clustering accuracy. Indeed, with intratumoral features,
the clustering accuracy for LGG and HGG is respectively
70.0% and 72.7%.With both intra- and peri-tumoral features,
the clustering accuracy for LGG and HGG is respectively
75.1% and 80.8%. Always in the case of multimodal image
features, when using wavelet scattering features, the cluster-
ing consensus maps with multimodal image features become
much clearer, and the clustering accuracy for LGG and HGG
passes respectively from 75.1% to 90.02% and from 80.8%
to 95.6%, when using both intra- and peri-tumoral features.

All these results explain why the features extracted from
wavelet scattering have correctly represented data distribu-
tion and are more appropriate for glioma grading, and why
the prediction accuracy based on wavelet scattering features
is higher than that based on traditional features. They also
explain why taking into account peritumoral regions makes
consensus matrix maps much cleaner and consequently pre-
diction more accurate.

As to the influence of imaging modalities, we observed
that the prediction with T1-enhanced mages was the best
if considering only single modality. The combination of
T1-enhanced and T2-weighted images was the best if two
modalities were used, and the combination of T1-enhanced,
T2- and T1-weighted images was the best if three modali-
ties were required. Comparing Tables II and III show that
the number of modalities used in the predictions does not
influence greatly the wavelet scattering-based radiomics but
impacts more the traditional radiomics, which implies that
with the wavelet scattering-based radiomics, we are able to
grade glioma accurately just with one single modality. This
is beneficial for reducing acquisition time.

Although the AUC, sensitivity and specificity obtained
with the proposed method are greatly increased, there are still
several limitations in the present work. Firstly, the dataset
used is a public open source dataset, and the training cohort
and testing cohort come from the same group. In the future,
it would be interesting to test with different cohorts to fur-
ther evaluate the proposed method. Moreover, the radiomic
prediction being performed on segmented ROIs, the quality
of segmentation can influence the subsequent prediction.
To deal with this issue and in light of the promising deep
learning models [45], we may combine deep learning models

and wavelet scattering to achieve glioma grading without the
requirement for image segmentation.

V. CONCLUSIONS
We have proposed a novel wavelet scattering-based radiomic
method to predict noninvasively and accurately glioma grades
before surgery. The method is based on the use of local
invariant features extracted fromwavelet scattering transform
instead of traditional features as used in existing radiomic
methods. The results showed that the high-dimensional image
features extracted from wavelet scattering-based radiomics
improve greatly the accuracy of glioma grading. Furthermore,
peritumoral features are beneficial for glioma grading. All
that suggests the potential use of the proposed method for
computer-aided glioma diagnosis.
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