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Abstract 22 

Purpose: Intravoxel incoherent motion (IVIM) magnetic resonance imaging is a potential non-invasive 23 

technique for the diagnosis of brain tumors. However, perfusion-related parameter mapping is a 24 

persistent problem. The purpose of this paper is to investigate the IVIM parameter mapping of brain 25 

tumors using Bayesian fitting and low b-values. 26 

Methods: Bayesian shrinkage prior (BSP) fitting method and different low b-value distributions were 27 

used to estimate IVIM parameters (diffusion D, pseudo-diffusion D*, perfusion fraction F). The results 28 

were compared to those obtained by least-squares (LSQ) on both simulated and in vivo brain data. 29 

Relative error (RE) and reproducibility were used to evaluate the results. The differences of IVIM 30 

parameters between brain tumor and normal regions were compared and used to assess the 31 

performance of Bayesian fitting in the IVIM application of brain tumor. 32 

Results: In tumor regions, the value of D* tended to be decreased when the number of low b-values 33 

was insufficient, especially with LSQ. BSP required less low b-values than LSQ for the correct 34 

estimation of perfusion parameters of brain tumors. The IVIM parameter maps of brain tumors yielded 35 

by BSP had smaller variability, lower RE and higher reproducibility with respect to those obtained by 36 

LSQ. Obvious differences were observed between tumor and normal regions in parameters D (p<0.05) 37 

and F (p<0.001), especially F. BSP generated fewer outliers than LSQ, and distinguished better tumors 38 

from normal regions in parameter F. 39 

Conclusions: IVIM parameters clearly allow brain tumors to be differentiated from normal regions. 40 

Bayesian fitting yields robust IVIM parameter mapping with fewer outliers and requires less low 41 

b-values than LSQ for the parameter estimation. 42 

Keywords: IVIM; Bayesian shrinkage prior; low b-values; least squares; brain tumor; perfusion. 43 

1. Introduction 44 

Intravoxel incoherent motion (IVIM) magnetic resonance imaging technique, initially introduced 45 

by Le Bihan et al.
1
, aims to separate water molecule diffusion (D) component and microvascular 46 

perfusion or pseudo-diffusion (D*) component in the diffusion-weighted (DW) signals of tissues. By 47 

simplicity, in what follows, “perfusion” and “pseudo-diffusion” will be used interchangeably. 48 

Perfusion-related information (pseudo-diffusion D*, perfusion fraction F) was shown to be able to 49 
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diagnose brain tumors, such as tumor grading 
2–5

 and differentiation of recurrent tumors from 50 

post-treatment effects.
6, 7

 51 

However, reliable estimation of perfusion-related parameters is a persistent problem.
4, 8–12

 The 52 

most common approach to obtaining IVIM parameter maps is the nonlinear least squares (LSQ) 53 

method based on the Levenberg-Marquardt algorithm or similar ones.
7, 13–17

The LSQ method consists 54 

in estimating the parameters by solving a regression problem, namely by minimizing the residual 55 

between actual and fitted DW signals. Because of the nonlinear structure of IVIM model, one can only 56 

obtain the solution of the objective function in an approximate way. To cope with this problem, many 57 

researchers approximated the nonlinear DW signal attenuation by a log-linear model and only diffusion 58 

D was taken as the decay rate parameter.
13, 18

 However, such modified model does not take into account 59 

the independent characterization of diffusion and perfusion components.
18

 60 

To improve the robustness of LSQ fitting, an alternative approach, called the segmented least 61 

squares fitting,
7, 13–16

 is used. The method assumes that the impact of D* on DW signals can be 62 

neglected at high b-values (> 200 s/mm
2
). It consists of first fitting the diffusion parameter D (and S0 63 

that is used to estimate F) using a mono-exponential model, then calculating the perfusion fraction F 64 

with the fitted S0 signal, and finally estimating the pseudo-diffusion parameter D* using nonlinear least 65 

squares fitting. However, estimating the parameters using such approach causes bias errors due to the 66 

assumption on the influence of D* at high b-values. 67 

All the limitations mentioned above are due to LSQ fitting itself. More recently, Bayesian 68 

methods have been proposed to solve the regression problem in a probabilistic manner. Bayesian 69 

methods estimate IVIM parameters by maximizing a posterior probability of IVIM parameters given 70 

the observed signal. 
18–21

Freiman et al. obtained the improved IVIM parameter mapping using Bayesian 71 

spatial homogeneity prior (FBM).
18

 Orton et al. tried to reduce the outlying estimation by using 72 

Bayesian Gaussian shrinkage prior (BSP).
19

 However, solving the regression problem using the 73 

Bayesian methods also has some limitations, such as the dependence on tissue heterogeneity. So far, 74 

Bayesian methods were mainly applied to organs such as liver
18, 19

 and heart.
20

 75 

Meanwhile, b-value being an imaging parameter that reflects the measurement sensitivity to 76 

diffusion related to the strength and duration of diffusion gradients, the estimation of D* is often 77 

affected by the number of low b-values (b< 50 s/mm
2
), especially for organs having high 78 

pseudo-diffusion coefficients, such as liver 
22–25

 and kidney.
26

 It is generally recognized that brain is a 79 
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low-perfusion tissue. However, previously reported studies showed that hyper perfusion was found in 80 

brain tumor regions, in terms of F 
2, 3, 5, 10, 11, 27, 28

 and D*. 
4
 Therefore, further study of the effect of low 81 

b-values on the perfusion-related parameters of brain tumors appears interesting and necessary. 82 

The present work aims to investigate the IVIM parameter mapping of brain tumors using Bayesian 83 

fitting and low b-values. To this end, BSP fitting method and different low b-value distributions were 84 

used to estimate IVIM parameters (D, D* and F). The results were compared to those obtained by LSQ 85 

fitting on both simulated and in vivo data. 86 

2. Materials and Methods 87 

2.1. Simulation 88 

In order to evaluate the joint effect of low b-values and Bayesian fitting on IVIM parameter 89 

estimation, we used a bi-exponential model with noise 
19

 to simulate IVIM signals, 90 

 
*

0 ( (1 ) )n nb D b D

n nS S Fe F e  
    ,                       (1) 91 

where nS  is the signal measured at the b-value bn, 0S  the signal with no diffusion weighting, F the 92 

perfusion flow fraction, D* the pseudo-diffusion coefficient, D the diffusion coefficient, and 
n  the 93 

additive noise. 94 

In the simulation, to investigate the effect of low b-values, various b-value configurations with 95 

different number of low b-values (0<b<50 s/mm2) were used: with four low b-values (0, 10, 20, 30, 40, 96 

50, 70, 100, 200, 400, 600, 800, 1000 s/mm2), with three low b-values (0, 20, 30, 40, 50, 70, 100, 200, 97 

400, 600, 800, 1000 s/mm2), with two low b-values (0, 30, 40, 50, 70, 100, 200, 400, 600, 800, 1000 98 

s/mm2), with 1 low b-value (0, 40, 50, 70, 100, 200, 400, 600, 800, 1000 s/mm2), and without low 99 

b-value (0, 50, 70, 100, 200, 400, 600, 800, 1000 s/mm2). Considering the influence of noise, Gaussian 100 

noise was added to signals with four different signal-to-noise ratios (SNRs): 20, 40, 60, and 80. The 101 

SNR was calculated as the ratio of mean signal intensity to standard deviation of noise intensity on b0 102 

image.14, 29Meanwhile, since noise models may impact the performance of fitting methods, Rician noise 103 

model was also considered by adding complex Gaussian noise to each signal and calculating the 104 

magnitude. The different SNRs were: 2, 10, 20, and 80. For the simulations, the tumor regions of in vivo 105 

brain images were selected and the corresponding IVIM parameters at each voxel of the tumor region 106 
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were estimated by LSQ method. The so obtained parameters D*, D and F were then used as the 107 

ground-truth for the simulation. Considering that low b-values for different perfusion regions have 108 

different effects on parameter estimation, two different sets of data with different mean pseudo-diffusion 109 

coefficients (high/low, 45.8/6.9 x 10-3 mm2/s) were simulated. 110 

Using Eq. (1) and the simulation parameters mentioned above, realistic DW images were 111 

simulated and subsequent IVIM parameters were estimated from the simulated DW images with 112 

Gaussian noise using LSQ and BSP fitting methods respectively. After that, a quantitative analysis is 113 

performed by comparing the estimated IVIM parameters and the ground-truth. Furthermore, the 114 

parameter estimation performance of BSP method with different noise models and different number of 115 

low b-values was evaluated on simulated DW images with Rician noise. 116 

On the other hand, since the performance of LSQ or BSP may be affected by the heterogeneity of 117 

IVIM parameters in ROI, LSQ and BSP were investigated on heterogeneous regions. To do this, a ROI of 118 

a healthy brain was first selected. Then, if IVIM parameter maps calculated using LSQ on the ROI were 119 

heterogeneous, the estimated parameters at each voxel of the ROI were used as the ground-truth for the 120 

simulation. Rician noise was considered by adding complex Gaussian noise to each signal and 121 

calculating the magnitude,13, 30 for different SNRs (20, 40, 60, 80). Finally, BSP and LSQ were 122 

performed on the ROI using different number of low b-values. 123 

Finally, investigations on homogeneous regions were also performed. The IVIM parameters for the 124 

simulation were set according to previous studies on brain4: D (high/low)=2.69/0.71 x 10-3 mm2/s, D* 125 

(high/low)=49/5.81 x 10-3 mm2/s, F (high/low)=0.18/0.1. The simulated region was an 80 x 80 matrix 126 

containing eight (corresponding to eight combinations because there are three IVIM parameters, each of 127 

them has two values high and low) rectangular subregions of equal size. In each subregion (rectangle), 128 

the IVIM parameter value was set as a constant (high or low). The parameter value of the intermediate 129 

regions outside the eight subregions was set to the average of high and low values. In this way, different 130 

homogeneous regions were obtained (Fig. 6). Rician noise was added to signals with different SNRs: 20, 131 

40, 60 and 80. After that, BSP and LSQ were performed on these homogenous regions using different 132 

number of low b-values. 133 

2.2. DW image acquisitions 134 
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The present work was approved by the local Ethics Committee. Informed consent was obtained 135 

from each patient. DWI data of eight (four tumor and four normal) human brains were acquired with 136 

3.0 Tesla MRI scanner (GE Discovery MR750). The acquisition protocol is as follows: echo planar 137 

imaging (EPI) sequence; 256x256 mm field of view; 128x128 matrix; 5 mm slice thickness; 138 

TE/TR=77/2800 ms; b-values are 0, 10, 20, 30, 40, 50, 70, 100, 200,400, 600, 800 and 1000 s/mm2; 139 

diffusion gradient was in three orthogonal directions and trace-weighting was applied. Four tumor 140 

ROIs and the corresponding four normal ROIs from different subjects were selected for the analysis. 141 

To reduce the influence of noise, DW scanning of the same brain was repeated 2 times and the scans 142 

were then averaged to improve the SNR 29, 31. The SNRs of in vivo brains at the highest b-value ranged 143 

from 25.41 to 38.78, and the averaged SNR is 34.74. The SNR was calculated as the ratio of the mean 144 

signal of b1000 image (the highest b-value) to the standard deviation of noise. The noise was estimated 145 

from background region that did not present contaminations by ghosting or flow artifacts.32 146 

In order to study the effect of low b-values, different number of low b-values were used in the 147 

fitting process, which are the same as those used in the simulation described above. 148 

2.3. Estimation of IVIM parameters. 149 

2.3.1. Least Squares Fitting 150 

The LSQ method implemented in the present study is the commonly used one in practical 151 

applications. It consists in estimating the IVIM parameters by minimizing the difference between 152 

predicted and original signals: 153 

 ' 2

0

min ( )
N

n n

n

S S


 ,                               (2) 154 

where 
nS is the original signal, and '

nS  the predicted signal fitted by LSQ. 155 

In the present work, considering that the brain is a low-perfusion tissue, the segmented LSQ method 156 

may lead to bias error; we therefore used the traditional LSQ method to evaluate the parameters in a 157 

whole process. The initial values of D and F for LSQ estimation were chosen according to the results 158 

given by the segmented LSQ, and D* was set as the common value (D*=20 x 10
-3

 mm
2
/s) of brain 159 

according to previous studies.
4
 160 
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In order to improve the robustness of fitting, constraints on IVIM parameters were used as in 
19

: 161 

0.0005 ≤F ≤0.9995; 0.0045 ≤D ≤18 (x 10
-3

 mm
2
/s); 0.034 ≤ D* ≤1000 (x 10

-3
 mm

2
/s). 162 

2.3.2. Bayesian Shrinkage Prior Inference 163 

The BSP method is based on using Gaussian shrinkage prior. The fitting process aims to 164 

maximize a joint posterior probability and is realized by using a Markov chain Monte Carlo (MCMC) 165 

method. The Bayesian modeling process is described as follows.
19

 166 

Using the IVIM model of Eq. (1), the data Gaussian likelihood reads: 167 

* 2 2 /2 2

0 02
1

1
( | , , , , ) (2 ) exp ( )

2

N
N

s s n n

ns

p S F D D S S S g 






 
   

 
 ,               (3) 168 

where 1 2[ , ]T

NS S S S  ,
*

(1 )n nb D b D

ng Fe F e
 

   , 
2

s  is the variance of the error term 
n  in Eq. 169 

(1) with Gaussian distribution, and N is the number of b-values. 170 

In this model, the parameters 0S  and 
2

s  were marginalized out, as described by Orton et al., 171 

and the marginalized Gaussian likelihood can be written as: 172 

* 2 /2( | , , ) [ ( ) / ( )]T T T Np S F D D S S S g g g   .                    (4) 173 

where g=[g1 g2﹒﹒﹒gn]
T is a vector containing the expected signal gn at the nth b-value. 174 

The shrinkage prior is assumed to be a multivariate Gauss distribution and can be represented as: 175 

1/2 11
( | , ) | 2 | exp( ( ) ( ))

2

T

i i ip                 ,                  (5) 176 

where ( , , *)f d d   is a vector including the transformed IVIM parameters: ln( ) ln(1 )f F F    , 177 

lnd D  and * *lnd D . *( , , )f d d     is a vector containing the mean values of the transformed 178 

parameter in ROI,   is the corresponding covariance matrix, and i denotes the current pixel. 179 

Given the observed data, the posterior probability of IVIM parameters estimated at each pixel can 180 

be expressed as: 181 

 
1: 1:

1

( , , | ) ( | ) ( | , )
M

M M i i i

i

p S p S p     


   ,                  (6) 182 

where 1: 1 2,[ , , ]M M     , 1: 1 2,[ , , ]M MS S S S  , and M  is the number of pixels. 183 

The iterative fitting process was realized by MCMC algorithm as illustrated in Fig. 1. 184 
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 185 

Fig. 1  Flowchart of BSP fitting. 186 

In addition, the additive noise 
n  in Eq. (1) is often assumed to be Gaussian due to the fact that 187 

noise in MRI is nearly governed by Gaussian distribution when SNR>2.33 Rician distribution noise is 188 

however considered when magnitude data is used and SNR is low.21, 33 The likelihood function based on 189 

Rician noise can be expressed as: 190 

'

* 2 2 ' 2

0 02 2 2

( )1
( | , , , , ) exp ( ( ) ) ( )

2

n n n

s n n

s s s

S S S b
p S F D D S S S b I

  

 
   

 
            (7) 191 
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where Sn is the measured signal at bn, 
' ( )nS b  the expected signal at bn and 

2

s  the variance of 
n  192 

with Rician distribution. I0 is the modified zeroth-order Bessel function of the first kind.33 193 

When larger b-values are used (b>1000 s/mm2), Rician noise is likely to be evident due to the low 194 

SNR.32 However, Rician distribution tends toward Gaussian distribution at higher SNRs.32, 33 Since, as 195 

mentioned above, temporal averaging was performed in the present study to improve the SNR of in vivo 196 

data and the averaged SNR at the highest b-value (b=1000 s/mm2) was 34.74, that guarantees Gaussian 197 

characteristic of the noise. With the Rician model, the marginalized Gaussian likelihood in Eq. (4) is no 198 

longer valid. Instead, 
2

s  should be estimated (estimated from background noise) and S0 should also 199 

be estimated during the subsequent parameter estimation process. 200 

2.4. Quantitative Evaluation 201 

The effect of Bayesian fitting and low b-values on IVIM parameter mapping was evaluated using 202 

several criteria. For simulation results, relative error (RE) for IVIM parameters was calculated at each 203 

voxel as follow: 204 

 i:n

( )
RE 100

i i

i

G P

G


  ,                                (8) 205 

where 
iG  is the ground-truth,

iP  is the predicted IVIM parameters, and i represents the thi  pixel. 206 

The mean values of the parameters estimated with different number of low b-values in the tumor 207 

ROI were compared in both simulations and in vivo experiments. Bland-Altman analysis was performed 208 

to evaluate the intra-subject reproducibility of two consecutive brain scans. The differences in IVIM 209 

parameters between brain tumor and normal ROIs were compared. Finally, statistical significance of 210 

differences in parameters between brain tumor and normal ROIs and RE between the fitting methods 211 

was tested using two-sample t-test and the fitting methods were implemented in Matlab. 212 

The average fitting time for LSQ and BSP is 3 x 10-2 s/ voxel and 4 x 10-1 s/voxel, respectively. 213 

All the calculations were performed on a laptop (Inter(R) Core(TM) i7-5500U CPU, 2.40GHz). 214 

3. Results 215 

3.1. Simulated images 216 
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Two simulations with different pseudo-diffusion coefficients and Gaussian noise were performed 217 

with different b-value configurations. To show visually the difference between estimated parameters and 218 

ground-truth, in Fig. 2 are given the RE maps. Obviously, in the high-perfusion region (Fig. 2(a)), the 219 

REs generated by BSP are lower than those produced by LSQ for the three IVIM parameters (p<0.001). 220 

When reducing the number of low b-values, the RE of D* increases, especially with the use of LSQ. 221 

However, the estimation of D or F is insensitive to the number of low b-values. The REs in low-perfusion 222 

regions are shown in Fig. 2(b). Similarly to Fig. 2(a), BSP results in lower error than LSQ, but the 223 

influence of low b-values on D* estimation was reduced. 224 

 225 
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Fig. 2. Relative errors (REs) of the estimated IVIM parameters on simulation data with Gaussian noise. (a) REs 226 

in high-perfusion region (b) REs in low-perfusion region. The coordinates of each point represent the RE of each 227 

voxel obtained using the two fitting methods. 228 

To further analyze the influence of low b-values on the estimation of IVIM parameters, we 229 

summarize in Fig. 3 the mean values of each parameter obtained by both BSP and LSQ under different 230 

low b-values configurations. As observed, in both high-perfusion region (1
st
 row) and low-perfusion 231 

region (2
nd

 row), the mean of D* decreases when reducing the number of low b-values, especially in 232 

high-perfusion region. The estimated D* by BSP is closer to the ground-truth, compared to that by LSQ. 233 

The estimation of D or F was not affected by low b-values. 234 

 235 

Fig. 3 Mean of IVIM parameters on simulation data with Gaussian noise. The first row represents the 236 

estimated results in high-perfusion regions, and the second row the results in low-perfusion regions. 237 

To assess the impact of noise model on IVIM parameter estimation when using BSP method, two 238 

variants of BSP method with two noise models, namely BSP (Gaussian noise model) and BSP-Rician 239 

(Rician noise model) were compared. The results are given in Fig. 4. In both high perfusion region (Fig. 240 

4(a)) and low perfusion region (Fig. 4(b)). Similar results are observed for the two BSP methods with 241 

the two noise models. Although at the low SNR (SNR=2), the RE generated by BSP-Ricain is slightly 242 

smaller than that produced by BSP, the results remain very close. 243 
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 244 

Fig. 4. Relative errors (REs) of the estimated IVIM parameters on simulation data with Rician noise. (a) REs in 245 

high-perfusion region. (b) REs in low-perfusion region. The coordinates of each point represent the REs of each 246 

voxel obtained using the two fitting methods, BSP and BSP-Rican, respectively. 247 

The fitting results using different SNRs or different number of low b-values in heterogeneous 248 

regions are compared in Figs. 5. In Fig. 5(b), all the parameter maps were obtained using 4 low 249 

b-values. When the SNR was decreased, the parameter maps generated by the two fitting methods were 250 

heavily corrupted by noise, especially in perfusion-related parameter maps. BSP however generated 251 

smoother D* and F maps than LSQ (red-boxed parameter maps), but induced at the same time 252 

information missing. When SNR is higher, the dependence on low b-values of BSP was also lower than 253 

that of LSQ in the heterogeneous region, as can be seen in Fig. 5(c). Indeed, when there is no low 254 

b-value, D* maps estimated from LSQ or BSP are far away from ground truth (in particular loss of 255 
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higher D* values). When passing from 4 low b-values to 1 low b-value, D* map estimated from LSQ 256 

becomes sparser and loses higher D* values while for BSP, the D* maps change little and are slightly 257 

smoothed. In all cases, D map and F map vary little with the number of low b-values. 258 

 259 

 260 

Fig. 5. Parameter maps of simulation data in heterogeneous region. (a) B0 image marked with ROI of a 261 

healthy brain and the corresponding ground-truth parameter maps. (b) Parameter maps generated by LSQ and BSP 262 

using 4 low b-values. (c) An example of parameter maps at SNR 60 and with different number of low b-values. 263 

For (b) and (c), the first two columns represent D, the middle two columns D* and the last two columns F. The 264 

red-boxed parameter maps show the situation where details are greatly smoothed out when using BSP. 265 

The fitting results in homogeneous regions are shown in Fig. 6. Similar results to those in 266 

heterogeneous region were found. BSP generated cleaner parameter maps than LSQ. With the 267 

decreasing of SNR, D* and F maps of both methods become more and more noisy, the rectangles tend 268 
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to disappear, and the values of some rectangles are altered (Fig. 6(a)). In contrast, D maps change 269 

relatively little although they also become somewhat noisier with the decreasing of SNR. The 270 

comparison of the effect of the number of low b-values on D* estimation was shown in Fig. 6(b). For 271 

both LSQ and BSP, the estimated D* in the subregion with high pseudo-diffusion coefficient (red 272 

rectangles) moves away from the ground-truth as the number of low b-values decreased, which is not 273 

the case for the blue and green areas (having relatively low pseudo-diffusion coefficient) that change 274 

little. Nevertheless, although noisier, the shape of the areas remains unchanged. 275 

 276 

 277 

Fig. 6. Parameter maps of simulation data in homogenous regions. (a) Parameter maps generated by LSQ and 278 

BSP using 4 low b-values. (b) D* maps at SNR 60 and with different number of low b-values. On the top row are 279 

given three ground-truth parameter maps, each of them contains 8 rectangles. In each parameter map of (a) and (b), 280 

different colors represent different homogenous areas. For example, in D* map, the red rectangles represent the 281 

region with high D*, the blue rectangles the region with low D*, and the green areas the region with D* whose 282 

value is the average of high and low parameter values. 283 
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3.2. In vivo images 284 

The brain DW images marked with the tumor ROI of a meningioma are given in Fig. 7(a). The 285 

IVIM parameter maps of tumor ROI are shown in Fig. 7(b). BSP generates clearer parameter maps 286 

than LSQ. Results similar to simulation results are observed with respect to the effect of low b-values 287 

on parameter estimation. The estimation of D or F map of tumor region is insensitive to low b-values in 288 

comparison with D* map of tumor region. The estimated D* decreases with the reduction of the 289 

number of low b-values. The histograms of the obtained parameters are given in Fig. 7(c). The 290 

parameter distributions in the tumor region generated by BSP are more uniform than those by LSQ, 291 

which is reflected by the narrower IVIM parameter distribution of BSP with respect to LSQ. More 292 

outliers at the boundary of the constraints were generated by LSQ. 293 

 294 

Fig. 7. (a) DW image marked with tumor ROI. (b) IVIM parameter maps of tumor ROI. The first two lines of 295 

(b) represent the parameter D, the middle two rows D*, and the last two rows F. (c) histograms of parameters in (b) 296 

in the case of using 4 low b-values. 297 

Bland-Altman analysis was performed to evaluate the intra-subject reproducibility of consecutive 298 

brain scans. The results on the tumor ROI in Fig. 7 are plotted in Fig. 8, where the mean biases (mean 299 

difference in the estimated parameter between two scans) are as follows. Mean bias in D: (LSQ, 300 
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BSP)=(+0.02 x10
−3

 mm
2
/s, +0.01 x10

−3
 mm

2
/s). Mean bias in F: (LSQ, BSP)=(+0.001, +0.001). Mean 301 

bias in D*: (LSQ, BSP)=(+14.60 x10
−3

 mm
2
/s, 10.32 x10

−3
 mm

2
/s). The Bland-Altman repeatability 302 

coefficients (calculated as the half-length of the interval of the 95% confidence interval or limits of 303 

agreement) are the following. Repeatability coefficients for D: (LSQ, BSP)=(0.42 x10
−3

 mm
2
/s, 0.15 304 

x10
−3

 mm
2
/s). Repeatability coefficients for F: (LSQ, BSP)=(0.26, 0.08). Repeatability coefficients for 305 

D*: (LSQ, BSP)=(203.55 x10
−3

 mm
2
/s, 67.48 x10

−3
 mm

2
/s). Table 1 summarizes the details of the 306 

Bland-Altman analysis results over all the tumor ROIs. The mean values of bias over four brain tumor 307 

ROIs are the following. Mean bias in D: (LSQ, BSP)=(0.05 x10
−3

 mm
2
/s, 0.03 x10

−3
 mm

2
/s). Mean 308 

bias in F: (LSQ, BSP)=(0.03, 0.03). Mean bias in D*: (LSQ, BSP)=(10.88 x10
−3

 mm
2
/s, 3.26 x10

−3
 309 

mm
2
/s). The mean values of Bland-Altman repeatability coefficients are as follows. Mean repeatability 310 

coefficients for D: (LSQ, BSP)=(0.92 x10
−3

 mm
2
/s, , 0.36 x10

−3
 mm

2
/s). Mean repeatability 311 

coefficients for F: (LSQ, BSP)=(0.59, 0.24). Mean repeatability coefficients for D*: (LSQ, 312 

BSP)=(365.56 x10
−3

 mm
2
/s, 27.18 x10

−3
 mm

2
/s). BSP exhibits better reproducibility with lower mean 313 

bias, narrower interval of limits of agreement and smaller mean Bland-Altman repeatability coefficient, 314 

compared to LSQ for all three IVIM parameters. 315 

 316 

Fig. 8. Bland-Altman analysis for the tumor in Fig. 7. The plots show intra-subject reproducibility in the brain 317 

tumor region of two consecutive scans for both LSQ and BSP. The solid lines (red or blue) represent the mean 318 

difference in the estimated parameter between two scans, and the two paired dash (red or blue) lines represent the 319 

limits of agreement (95% confidence interval). Note that the blue BSP points are more tightly clustered, thus 320 

showing higher reproducibility and fewer outliers. 321 
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Table 1 Bland-Altman results with bias and limits of agreement (95% confidence interval) for in 322 

vivo brain tumor ROIs. 323 

Subject 
D (×10

−3
 mm

2
/s) D* (×10

−3
 mm

2
/s) F 

LSQ BSP LSQ BSP LSQ BSP 

Mean bias 

1 0.02 0.01 14.60 10.32 0.001 0.001 

2 -0.08 -0.06 -18 0.33 0.069 0.093 

3 0.03 0.03 5.80 0.62 -0.01 -0.02 

4 -0.08 -0.02 -5.11 1.78 0.04 -0.03 

Mean
a
  0.05 0.03 10.88 3.26 0.03 0.03 

P value
c 

0.24 0.30 0.23 0.58 0.45 0.48 

Limits of agreement 

1 
0.43 0.16 218.15 77.80 0.26 0.08 

-0.40 -0.14 -188.95 -57.16 -0.26 -0.07 

2 
0.94 0.15 515.89 10.14 0.76 0.31 

-1.10 -0.27 -551.88 -9.48 -0.63 -0.13 

3 
0.97 0.30 297.86 2.70 0.73 0.24 

-0.91 -0.23 -286.24 -1.47 -0.75 -0.30 

4 
1.22 0.89 427.65 31.11 0.72 0.35 

-1.39 -0.94 -437.87 -27.55 -0.64 -0.42 

Mean
b 

0.92 0.36 365.56 27.18 0.59 0.24 

“a”: Mean value of bias across the four brain tumor ROIs. “b”: Mean value of 324 

Bland-Altman repeatability coefficients across the four brain tumor ROIs. The Bland-Altman 325 

repeatability coefficient was calculated as the half-length of the interval of the limits of 326 

agreement. “c”: P values calculated by t-test to assess the significant difference of bias from zero.  327 

To further quantitatively analyze the effect of low b-values on parameter estimation, Fig. 9 plots 328 

the means and standard deviations of the parameters obtained over all the brain tumor ROIs. We 329 

observe similar results to the simulations. The estimation of D* was affected by the number of low 330 

b-values and especially for LSQ method. In contrast, the estimation of D or F was insensitive to low 331 

b-values. 332 
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 333 

Fig. 9. The means and standard deviations of IVIM parameters of in vivo brains across all the tumor ROIs. 334 

The error bar indicates the standard deviation. 335 

The differences in IVIM parameters between tumor and normal brain regions are given in Fig. 10 336 

and Fig. 11. The comparison of parameter maps between the tumor in Fig. 7 and its corresponding 337 

normal region is shown in Fig. 10. All the parameter maps of the tumor region are clearly different 338 

from those of the normal region. It is visually easier to distinguish tumor from normal region in the 339 

results of BSP than in the results of LSQ, due to fewer outliers in the former. More details of IVIM 340 

parameter comparison between tumor and normal regions over all the subjects are summarized in Fig. 341 

11. Obvious differences are observed between tumor and normal regions in parameters D (p<0.05) and 342 

F (especially F, p<0.001). BSP generated fewer outliers with respect to LSQ and distinguished better 343 

tumor from normal regions in parameter F. 344 
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 345 

Fig. 10. Comparison of IVM parameter maps between the tumor in Fig. 7 and the corresponding normal region. 346 

 347 

Fig. 11. Box-and-whisker plots summarizing results for all the tumor and normal ROIs. 348 

4. Discussion 349 

We have investigated IVIM parameter mapping of brain tumors using different low b-value 350 

configurations and fitting methods. It is generally recognized that perfusion information is very 351 

important in the application of IVIM to brain tumors. For example, the higher the tumor stage, the 352 
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higher the perfusion fraction. Poor accuracy of perfusion-related parameter estimation in previous 353 

studies is likely due to the deficiency of nonlinear least squares in solving the regression problem. LSQ 354 

aims by essence to obtain IVIM parameters by minimizing the residual between model and fitted 355 

signals. The more accurate the estimated parameter, the smaller the residual should be, but not vice 356 

versa. This is because different parameters of IVIM model play different role in signal attenuation. 357 

Pseudo-diffusion coefficient D* is much greater than diffusion coefficient D. As a result, the 358 

contribution of perfusion component to the signal is weaker than that of diffusion component, due to 359 

the exponential IVIM model. That explains why in practice estimating accurately the weak contribution 360 

of D* is difficult and any estimation bias of D* will inevitably affect the estimation of the other 361 

perfusion-related parameter F. The RE map in simulations shows the superiority of Bayesian method: 362 

all the parameters obtained by BSP are closer to the ground-truth than those by LSQ, especially for the 363 

perfusion-related parameters. This is because BSP solves the regression problem in terms of probability, 364 

namely, it outputs the parameter by calculating the maximum posterior probability of signals instead of 365 

minimizing signal residual, thus the effect of the weak contribution of D* to signals on parameter 366 

estimation is reduced. 367 

To get more stable fitting results, the constraint on the range of parameter values was imposed in 368 

LSQ. We however observed an increase of the number of pixels undergoing outlying estimations at the 369 

boundary of the constraint. Since the uncertainty of LSQ parameter estimation is determined by the 370 

curvature of cost function of the minimization problem, this approach becomes inappropriate if the 371 

estimate is on a constraining boundary 
19

. In contrast, BSP is strong enough to shrink outliers to the 372 

means of ROI, as shown in the in vivo experiment. Consequently, the histogram of IVIM parameters 373 

obtained by BSP is narrower than that obtained by LSQ due to the reduction of outlying estimations. 374 

That explains why BSP generated more uniform parameter maps compared to LSQ. Since BSP 375 

generated fewer outliers in parameter estimation, it differentiated better between brain tumor and 376 

normal regions. 377 

However, whatever it was a heterogeneous region or a homogeneous region, when SNR was 378 

relatively low, BSP decreased and such decreasing was reflected by the disappearance of geometrical 379 

structures and appearance of quasi-homogeneous areas, though BSP generated fewer outliers with 380 

respect to LSQ. The latter however preserved better original heterogeneous parameter characteristics 381 

for high SNR and generated random noise-like parameter maps when SNR was low. This is 382 
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particularly obvious in D* and F parameter maps for lower SNRs. That can be explained as follows. 383 

When SNR decreased, the choice of prior on parameter estimation was critical.
21

 If the prior is far from 384 

the ground-truth of IVIM parameter distribution, the estimation of IVIM parameters will become 385 

inaccurate, which will be reflected for instance by the disappearance of information in the estimated 386 

parameter maps. 387 

The obtained results showed that, besides fitting methods, low b-values also played a very 388 

important role in the parameter mapping of brain tumors. When low b-values were not used in IVIM 389 

parameter estimation, the pseudo-diffusion coefficient D* of tumor tended to be underestimated. Similar 390 

finding was reported by Cohen et al. also in human livers. The difference is that liver is an organ that has 391 

relatively high pseudo-diffusion coefficients, and that, as a result, when low b-value acquisitions are 392 

absent, the contribution of perfusion component to the signal is near to zero. In this case, different values 393 

of D* may generate close signal residuals, thus yielding underestimated D*. However, 394 

previously-reported studies only considered the LSQ method and the impact of low b-values on D* 395 

estimation in low-perfusion tissue was not addressed. The results in the present work clearly showed that 396 

the estimation of D* by LSQ or BSP was dependent on low b-values, even in the low-perfusion region. 397 

Moreover, when using BSP, four low b-values were necessary for high-perfusion regions and three low 398 

b-values were in contrast enough for low-perfusion regions. When using LSQ, at least four low b-values 399 

were necessary for low-perfusion regions; in other cases, such as high-perfusion regions, even with four 400 

low b-values, D* was underestimated. Hence, LSQ is more susceptible to low b-value than BSP, which 401 

was also verified in in vivo experiments. 402 

Although BSP presents better performance than LSQ for parameter estimation, it requires more 403 

CPU execution time. This may become non-negligible if the amount of data is large. 404 

Note that, with respect to the previous investigation about the effect of low b-values on parameter 405 

estimation,
34

 which was focused on the human thigh having relatively higher pseudo-diffusion 406 

coefficients, the present work emphasized the accurate IVIM parameter estimation using Bayesian fitting 407 

and reduced number of low b-values for the human brain, which is considered as the low-perfusion tissue. 408 

The results showed that the number of low b-values is also very important for IVIM applications on 409 

low-perfusion tissue, and that Bayesian fitting allows clearly differentiating brain tumors from normal 410 

regions. Moreover, BSP requires less low b-values than LSQ, which also means shorter acquisition time. 411 
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Finally, the assumption on noise model should be taken into account in the use of the BSP method. 412 

In the present study, similar results were obtained when using BSP (Gaussian noise model) and 413 

BSP-Rician (Rician noise model) at higher SNRs. This is likely because Rician distribution tends 414 

toward Gaussian distribution at higher SNRs.
32, 33

 When SNR is low, Rician distribution is closer to the 415 

actual noise model and the BSP-Rician model was more suitable for parameter estimation. 416 

5. Conclusions 417 

IVIM parameters allow clearly brain tumors to be differentiated from normal regions. Bayesian 418 

fitting yields robust IVIM parameter mapping with fewer outliers. Both BSP and LSQ fittings require 419 

enough number of low b-values for the accurate estimation of perfusion parameters of brain tumors, but 420 

BSP requires less low b-values than LSQ, which also represents shorter acquisition time. 421 
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 527 

Figure Captions 528 

Fig. 2  Flowchart of BSP fitting. 529 

 530 

Fig. 2. Relative errors (REs) of the estimated IVIM parameters on simulation data with Gaussian noise. 531 

(a) REs in high-perfusion region (b) REs in low-perfusion region. The coordinates of each point 532 

represent the RE of each voxel obtained using the two fitting methods. 533 

 534 

Fig. 3 Mean of IVIM parameters on simulation data with Gaussian noise. The first row represents the 535 

estimated results in high-perfusion regions, and the second row the results in low-perfusion regions. 536 

 537 

Fig. 4. Relative errors (REs) of the estimated IVIM parameters on simulation data with Rician noise. (a) 538 

REs in high-perfusion region. (b) REs in low-perfusion region. The coordinates of each point represent 539 

the REs of each voxel obtained using the two fitting methods, BSP and BSP-Rican, respectively. 540 

 541 
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Fig. 5. Parameter maps of simulation data in heterogeneous region. (a) B0 image marked with ROI of a 542 

healthy brain and the corresponding ground-truth parameter maps. (b) Parameter maps generated by LSQ 543 

and BSP using 4 low b-values. (c) An example of parameter maps at SNR 60 and with different number 544 

of low b-values. For (b) and (c), the first two columns represent D, the middle two columns D* and the 545 

last two columns F. The red-boxed parameter maps show the situation where details are greatly smoothed 546 

out when using BSP. 547 

 548 

Fig. 6. Parameter maps of simulation data in homogenous regions. (a) Parameter maps generated by LSQ 549 

and BSP using 4 low b-values. (b) D* maps at SNR 60 and with different number of low b-values. On the 550 

top row are given three ground-truth parameter maps, each of them contains 8 rectangles. In each 551 

parameter map of (a) and (b), different colors represent different homogenous areas. For example, in D* 552 

map, the red rectangles represent the region with high D*, the blue rectangles the region with low D*, 553 

and the green areas the region with D* whose value is the average of high and low parameter values. 554 

 555 

Fig. 7. (a) DW image marked with tumor ROI. (b) IVIM parameter maps of tumor ROI. The first two 556 

lines of (b) represent the parameter D, the middle two rows D*, and the last two rows F. (c) histograms of 557 

parameters in (b) in the case of using 4 low b-values. 558 

 559 

Fig. 8. Bland-Altman analysis for the tumor in Fig. 7. The plots show intra-subject reproducibility in the 560 

brain tumor region of two consecutive scans for both LSQ and BSP. The solid lines (red or blue) 561 

represent the mean difference in the estimated parameter between two scans, and the two paired dash (red 562 

or blue) lines represent the limits of agreement (95% confidence interval). Note that the blue BSP points 563 

are more tightly clustered, thus showing higher reproducibility and fewer outliers. 564 

 565 

Fig. 9. The means and standard deviations of IVIM parameters of in vivo brains across all the tumor 566 

ROIs. The error bar indicates the standard deviation. 567 

 568 

Fig. 10. Comparison of IVM parameter maps between the tumor in Fig. 7 and the corresponding 569 

normal region. 570 

 571 

Fig. 11. Box-and-whisker plots summarizing results for all the tumor and normal ROIs. 572 

 573 


