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Abstract

Due to the ubiquity of spiking neurons in neuronal processes, various simple

spiking neuron models have been proposed as an alternative to conductance-based

models (a.k.a. Hodgkin–Huxley type models), known to be computationally ex-

pensive and difficult to treat mathematically. However, to the best of our knowl-

edge, there is no equivalent in the literature of a simple and lightweight model for

describing the voltage behavior of non-spiking neurons, which also are ubiquitous

in a large variety of nervous tissues in both vertebrate and invertebrate species,

and play a central role in information processing. This paper proposes a sim-

ple model that reproduces the experimental qualitative behavior of known types

of non-spiking neurons. The proposed model, which differs fundamentally from

classic simple spiking models unable to characterize non-spiking dynamics due

to their intrinsic structure, is derived from the bifurcation study of conductance-

based models of non-spiking neurons. Since such neurons display a high sensitivity

to noise, the model aims at capturing the experimental distribution of single neu-

ron responses rather than perfectly replicating a single given experimental voltage
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trace. We show that such a model: (i) can be used as a building block for realis-

tic simulations of large non-spiking neuronal networks, and (ii) is endowed with

generalization capabilities, granted by design.

Keywords: Neuron model; non-spiking neurons; bifurcation; Caenorhabditis

elegans ; retina.

1 Introduction

Conductance-based models (CBMs), based on the Hodgkin–Huxley formalism postulated in

the 1950s (Hodgkin & Huxley, 1952), are an accurate biophysical representation of the neuron

in which every individual parameter and state variable have an established electrophysiologi-

cal meaning. Accordingly, such models have become one of the most powerful computational

approaches for understanding ‘low-level’ functions of neural systems (O’Leary et al., 2015).

For instance, a CBM can describe the effect of specific conductance variations on hippocam-

pal rythms (Aussel et al., 2018; Giovannini et al., 2017) or predict important dendritic effects

on neuronal processing (Poirazi & Papoutsi, 2020). On the downside, however, such models

are computationally expensive so that one can only simulate a handful of neurons in real

time (Izhikevich, 2004). Additionally, the insights obtained from a mathematical analysis

perspective are quite limited as these are high-dimensional systems, difficult to treat math-

ematically. Therefore, to study ‘higher-level’ functions of neural systems, independent of

‘low-level’ details—be it at the level of dendrite, neuron or neural circuit (Marín et al., 2020;

Shiau & Buhry, 2019)—various simple and computationally efficient models of spiking neu-

rons have then been proposed. Some examples are the FitzHugh–Nagumo (FitzHugh, 1961),

Hindmarsh–Rose (Rose & Hindmarsh, 1989), Izhikevich (Izhikevich, 2003) or various flavors

of integrate-and-fire models (Górski et al., 2021; Izhikevich, 2001; Latham et al., 2000; Smith

et al., 2000).
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Spiking neurons are often considered as the major information processing unit of the

nervous system. Nonetheless, a large variety of nervous tissues in both vertebrate and inver-

tebrate species have revealed that a number of sensory, inter- and motor neurons function

without eliciting spikes. While spiking neurons compress continuous inputs into digital sig-

nals for transmitting information via action potentials, non-spiking neurons do not elicit

action potentials and modulate analog signals through graded potential responses (Lockery

et al., 2009). Some examples are the invertebrate and vertebrate retinal neurons (Field &

Chichilnisky, 2007), interneurons in insects and crustaceans (Roberts & Bush, 1981), mo-

torneurons of the Ascaris worm (Davis & Stretton, 1989), or most of the C. elegans neurons

(Goodman et al., 1998). Importantly, they have been found in sensorimotor and central pat-

tern generator circuits, proven to be central in neuronal integration (Roberts & Bush, 1981)

and shown to provide a determining mechanism for the control of motor behavior (Burrows

et al., 1988; Laurent & Burrows, 1989a; Laurent & Burrows, 1989b).

The omnipresence and the importance of non-spiking neurons in numerous neuronal pro-

cesses justify the need for a simple model capable of characterizing their behavior. To that

end, Kuramochi and Doi (2017) proposed a simple model that describes the intracellular

calcium dynamics of a non-spiking C. elegans neuron. With respect to voltage dynamics,

classic simple spiking models are unfortunately unable to produce adequate non-spiking dy-

namics due to the topology of their phase space. In this paper, we present a simple suitable

model derived from the bifurcation study of non-spiking conductance-based models, exten-

sively used to characterize such behaviors (Kamiyama et al., 2009; Kourennyi et al., 2004;

Naudin et al., 2020; Naudin et al., 2022; Nicoletti et al., 2019; Publio et al., 2006), which is

able to qualitatively reproduce the two standard voltage dynamics of non-spiking neurons:

near-linear and bistable. The near-linear behavior is defined by a smooth depolarization

or hyperpolarization from the resting potential, while the bistable one is characterized by

nonlinear transitions between the resting potential and a depolarized potential.

In order to analyze the viability and accuracy of the approach in a realistic setting,
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the proposed model is used in the modeling of three non-spiking neurons of the nematode

Caenorhabditis elegans (C. elegans), a well-known model organism in neuroscience (Brenner,

1974; Izquierdo, 2019; Sarma et al., 2018), that predominantly transmit information through

non-spiking signals (Goodman et al., 1998). In particular, we focus on the modeling of

the RIM, AIY and AFD neurons which represent, to date, the three possible forms of non-

spiking neuronal responses of C. elegans (Figure 1). More specifically, RIM and AIY neurons

display a near-linear behavior (Figure 1.A). While AIY is more sensitive to hyperpolarization

than depolarization inputs with a transition point around −30 mV, RIM is depolarized or

hyperpolarized in a smooth manner due to the lack of large sustained currents. Finally, AFD

exhibits a bistable behavior with large sustained currents restricting its membrane potential

to two plateaus around −80 mV and −15 mV over a range of current injections (Figure 1.B).

Finally, we compare the computational efficiency of the proposed model with respect to

conductance-based models developed in Naudin et al. (2020) for the same RIM, AIY and

AFD neurons, as well as many additional neuron models. In particular, we show that the

computational efficiency of the proposed model is of the same order of magnitude as the

integrate-and-fire and Izhikevich models that are the most computational efficient neuron

models to date (Izhikevich, 2003).

2 Proposed model

The goal of a neuronal model is to be able to reproduce the electrophysiological behavior

of the neuron. To that end, it is crucial to capture its right underlying bifurcation struc-

ture (Izhikevich, 2007): the bifurcation structure describes the qualitative changes that the

neuron undergoes when parameter values change. Classic simple spiking models, such as

the FitzHugh–Nagumo (FitzHugh, 1961), Hindmarsh–Rose (Rose & Hindmarsh, 1989), or

Izhikevich (Izhikevich, 2003) ones are specifically built on the basis of the bifurcation structure

of spiking neurons. These display Andronov–Hopf bifurcations or saddle-node bifurcations
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A B

Figure 1: In-vivo recordings of three different non-spiking neurons of C. elegans which rep-

resent, to date, the three forms of possible non-spiking neuronal responses of the nematode.

(Top) Example of the evolution of membrane potential for a series of current injections, in

the space of 5 seconds, starting from −15 pA and increasing to 35 pA by 5 pA increments.

(Middle) Example of the evolution of the total ion currents of the different neurons when

their membrane potentials are clamped at a fixed value, in spans of 0.5 seconds, from −100

mV and increasing to 50 mV by 10 mV increments. (Bottom) I-V relationships obtained from

averaged voltage-clamp recordings (RIM: n = 3; AIY: n = 7; AFD: n = 3). Peak currents

are measured by the absolute maximum amplitude of currents within the first 100 ms of

each voltage step onset, while steady-state currents are measured by the averaged currents

of the last 50 ms of each voltage step. (A) Near-linear neuron behavior with monotonic

steady-state current. (B) Bistable neuron behavior with a N-shaped steady-state current.

The figure has been reproduced from Naudin et al. (2022) with the consent of the authors.
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responsible for spikes, and are therefore inherently unable to correctly characterize the dy-

namics of non-spiking neurons. Moreover, for the sake of completeness, we have tested the

leaky integrate-and-fire model designed with a threshold high enough to avoid the triggering

of spikes, as in Strohmer et al. (2021). This model is also unable to correctly characterize

non-spiking dynamics (Figure S1). Such a result is expected because of the linear model em-

ployed, since the neuron dynamics are non-linear. Then, this section presents a simple model

specifically derived from bifurcation studies of conductance-based models of non-spiking neu-

rons (Naudin et al., 2021; Naudin et al., 2022) that is capable of reproducing their qualitative

dynamics.

Conductance-based models (CBMs). In CBMs, the dynamics of the membrane poten-

tial V is described by a general equation of the form

C
dV

dt
= −

∑
ion

Iion + I (1)

where C is the membrane capacitance,
∑

ion Iion is the total current flowing accross the cell

membrane, and I is an applied current. The currents Iion take the form

Iion = gionm
a
ionh

b
ion(V − Eion)

where m (h) denotes the probability for an activation (inactivation) gate to be in the open

state; a and b are the number of activation and inactivation gates, respectively; gion is the

maximal conductance associated with ion; and Eion is the reversal potential.

Bifurcation dynamics of non-spiking CBMs. In non-spiking CBMs (Kourennyi et al.,

2004; Naudin et al., 2021; Naudin et al., 2020; Nicoletti et al., 2019), the steady-state current

curve I∞ determines the number of equilibra of the system and their values, as well as the

bifurcations of the resting state along with the values to which they occur. It takes the
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general form

I∞(V ) =
∑
ion

Iion∞(V ) where Iion∞(V ) = gionm
a
ion∞(V )hb

ion∞(V )(V − Eion) (2)

with

x∞(V ) =
1

1 + exp

(
V x
1/2 − V

kx

) , x ∈ {m,h} .

where V x
1/2 and kx are constant parameters.

Any stationary point of gating variables x ∈ {m,h} must satisfy x∗ = x∞(V∗). Replacing

this into the first equation on V , fixed points V∗ of such models satisfy the equation

I∞(V∗) = I. (3)

In other words, equilibria V∗ correspond to the intersection between the steady-state curve

I∞ and a horizontal line I = c where c is a constant. There are two standard steady-state

curves I∞, monotonic and cubic (Figure 2), each involving fundamentally different neuro-

computational properties for non-spiking neurons:

• As shown in Figure 2.A, CBMs with a monotonic steady-state current only have one

equilibrium for any value of I. This unique equilibrium is stable for non-spiking CBMs

(see Naudin et al. (2021) for rigorous mathematical proofs). Thus, non-spiking neurons

with such a steady-state current display a near-linear behavior characterized by smooth

depolarizations or hyperpolarizations from the resting potential, such as the RIM and

AIY neurons (Figure 1.A).

• As shown in Figure 2.B, a N-shaped curve leads to a saddle-node bifurcation. When

I = c2, there are 3 equilibria, noted V c2
1∗ , V c2

2∗ and V c2
3∗ . Increasing I results in coales-

cence of two equilibria (the stable V c2
1∗ with the unstable V c2

2∗ ). The value I = c3, at

which the equilibria coalesce, is called the bifurcation value. For this value of I, there
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exist 2 equilibria. For any value of I > c3, the system has only one equilibrium (e.g.

I = c4 or I = c5), that is stable (Naudin et al., 2021). In summary, when the parameter

I increases, a stable and an unstable equilibrium approach, coalesce, and then annihi-

late each other. Non-spiking neurons with an N-shaped steady-state current display a

bistable behavior characterized by a voltage jump between the resting potential and a

depolarized potential of higher voltage, such as the AFD neuron (Figure 1.B).

Based on previous properties, it can be stated that the steady-state current determines

the bifurcation structure of non-spiking neurons and the equilibrium values of their graded

responses to particular stimuli.

The proposed model. Let V represent the membrane potential of a neuron. We propose

the following 1-D model of the general form

τ
dV

dt
= −f(V ) + I (4)

with f a cubic function which reads as

f(V ) = aV 3 + bV 2 + cV + d. (5)

The function f plays the same role in the dynamics of the model (4) as the steady-state

current I∞ in conductance-based models (1). Indeed, fixed points V∗ of model (4) satisfy

f(V∗) = I

so that the shape of f determines the neuro-computational features of the non-spiking model:

a monotonic shape involves a near-linear behavior of the model, while an N-shape implies

a bistable one with the occurrence of two saddle-node bifurcations. Therefore, the model

proposes a simple cubic expression (5) thats plays the same role as the complex steady-state
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Figure 2: Two typical shapes of the steady-state current V → I∞(V ), in red. Intersections

of I∞ and horizontal line I = c (with c constant) correspond to equilibria of the system.

We denote stable equilibria as filled circles  , unstable equilibria as open circles # and

saddle-node equilibria as G#. (A) (Top) Monotonic steady-state current. V ci
∗ , i = 1, . . . , 4,

correspond to equilibria for a current injection I = ci, respectively. (Bottom) The resulting

near-linear voltage dynamics with the four equilibria V ci
∗ showed in (Top). (B) (Top) N-

shaped steady-state current. The number of equilibria of the system depends on the value

of I. (Bottom) The resulting bistable voltage dynamics with four equilibria V ci
∗ showed in

(Top).

current expression (2) of conductance-based models. Parameters a, b, c and d are dimen-

sionless and are estimated in order to fit the experimental steady-state current. Parameter

τ describes the constant time for which V reaches its equilibrium value V∗. This parameter
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can be either hand-tuned or estimated from experimental voltage.

Parameter estimation. Parameters a, b, c and d have been estimated from the 16 points

of the steady-state current using differential evolution algorithm (DE) (Storn & Price, 1997).

DE is an effective method in the case of parameter estimation of neuronal models (Buhry

et al., 2011; Buhry et al., 2012; Naudin et al., 2020), and superior to other optimization

methods such as genetic algorithms, simulated annealing and particle swarm optimization in

terms of convergence speed, simulation time, and minimization of the cost function (Buhry et

al., 2011; Buhry et al., 2008). Moreover, the root-mean-square error normalized to standard

deviation (STD) is used as estimator of the model quality (Naudin et al., 2022). Finally,

parameter τ is set to the value determined in Naudin et al. (2020) and Naudin et al. (2022),

estimated to fit experimental voltage traces; however, it can be directly hand-tuned.

Experimental variability. For a single target neuron, repetitions of the same external

stimulation result in variable electrical responses (Marder & Taylor, 2011) due to multiple

sources of intrinsic and extrinsic noise (Destexhe & Rudolph-Lilith, 2012; Faisal et al., 2008).

This is why numerous works (Druckmann et al., 2007; Gouwens et al., 2018; Markram et al.,

2015) capture the experimental distribution of spiking neuron responses as a more accurate

means to describe the neuronal behavior than perfectly replicate a single given experimental

voltage trace. This approach seems to be even more suited to non-spiking neurons, which

are known to be more sensitive to noise than spiking neurons (Sarpeshkar, 1998). As the

steady-state current determines the bifurcation structure of non-spiking neurons and the

equilibrium values of their graded responses to particular stimuli, parameters a, b, c and d

of the function f defined in equation (5) are estimated to fit the mean of the experimental

steady-state current (Figure 1). In this way, the proposed model captures the trial-to-trial

variability of a single non-spiking neuron.
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Fundamental differences from simple spiking neuron models and its non-spiking

variants. The steady-state current forms the backbone of the dynamics of non-spiking

neurons by determining: (i) all bifurcations of the resting state and the values at which

they occur, and (ii) the equilibrium values of their graded responses to particular stimuli.

This is not the case for the spiking neurons for which the steady-state current provides only

information about possible bifurcations of the resting state. Indeed, when the equilibrium

loses stability, characteristic of Andronov–Hopf bifurcations responsible for spikes, cannot be

inferred from the steady-state current (Izhikevich, 2007). This is why the existing classic

simple spiking models were not derived directly from the steady-state current. This explains

why these models are inadequate to produce acceptable non-spiking dynamics. Thus, the

building of the proposed non-spiking model differs fundamentally from that of existing simple

spiking models.

3 Results

This section presents the results of the optimization procedure for the three neurons under

study and shows how, despite the simplicity of the model, it is able to reproduce bistable and

near-linear behaviors with high accuracy. Then, we compare the computational efficiency of

the proposed model with respect to conductance-based models developed in Naudin et al.

(2020) for the same RIM, AIY and AFD neurons, and many additional types of neuron

models. Finally, we implement a canonical example of a non-spiking network of two coupled

neurons to demonstrate the ability of the proposed model to explain ‘high-level’ phenomena

occurring in non-spiking nervous tissues.

3.1 Results of the optimization procedure

In order to fit the mean of the experimental steady-state current of RIM, AIY and AFD

(Figure 1), parameters a, b, c and d of equation (5) are estimated using DE. The parameter
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values τ are obtained from Naudin et al. (2020) and Naudin et al. (2022) in which they are

determined to fit experimental voltage traces. The parameter values are shown in Table 1.

Neuron
Parameters

a b c d τ (10−1 s)

RIM 0.000024 0.0036 0.31 7.22 0.042
AIY 0.000044 0.0093 0.773 20.38 0.04
AFD 0.00033 0.048 2.31 38.99 0.06

Table 1: Parameter values of the model (4) for the different neurons. Results for the param-
eters a, b, c and d are obtained using differential evolution. The parameter τ is expressed in
ds (10−1 s) and is obtained from Naudin et al. (2020), Naudin et al. (2022).

Bistable behavior – AFD. Figure 3 shows the dynamics of the proposed model for the

AFD neuron. A high fitting quality of the N-shaped experimental steady-state current mean

is obtained (Figure 3.A). Moreover, Figure 3.B shows that the proposed model displays an

underlying bifurcation structure specific to non-spiking bistable neurons (Izhikevich, 2007;

Naudin et al., 2021; Naudin et al., 2022), with the occurence of two saddle-node bifurcations.

In particular, the voltage jump occurs at I ≈ 3.1 pA, exactly as in the CBM relative to

AFD neuron published in Naudin et al. (2022). Therefore, the model reproduces the es-

sential features of the AFD neuron, making it adequate for the description of its bistable

behavior. Finally, Figure 3.C compares one example of experimental responses of the AFD

neuron with the respective dynamics of the model representing the mean of the AFD neuron

responses. The large sustained currents of the model (Figure S2), similar to the experimental

ones, restrict its membrane potential to two voltages around −80 mV and −15 mV as the

experimental neuron behavior. Although the model slightly diverges from the experimental

voltage traces, it preserves the main qualitative features of the AFD neuron dynamics.

Near-linear behavior – RIM and AIY. Figure 4 shows the dynamics of the proposed

model for the RIM and AIY neurons. As in the case of AFD, Figure 4.A (left) illustrates

that the model for both neurons fits well with the experimental mean of the steady-state
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Figure 3: Optimization results for the AFD bistable neuron. (A) Mean of the experimen-

tal steady-state current (represented by green circles) with respective error bars, and the

estimated steady-state current (represented by blue crosses) given by the equation (5) with

parameter values displayed in Table 1. (B) Bifurcation diagram. The bifurcation structure

is typical of bistable non-spiking neurons (Naudin et al., 2021) with the occurence of two

saddle-node bifurcations (at I ≈ 2.625 pA and I ≈ 3.124 pA). (C) Example of experimental

responses in AFD (represented in green), and the respective dynamics of the proposed model

(represented in blue) representing the variability of the AFD neuron responses. The series of

current injections start at −15 pA and increase to 35 pA by increments of 5 pA.

current. In particular, the monotonic shape of the steady-state current is well captured by the

model. The resulting function I 7→ V∗(I) is monotonic increasing (Figure 4.A, right), which

is typical of non-spiking neurons with a near-linear behavior (Naudin et al., 2021; Naudin et

al., 2022). More specifically, the model displays a unique equilibrium point V∗, that is stable

and increases as I does (Figure 4.A, right), which is consistent with the near-linear behavior
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of the experimental data. Finally, Figure 4.B compares one example of the RIM and AIY

experimental neuron responses with the dynamics of their respective models representing

the mean of their neuronal responses. We can observe that the membrane potential of

the AIY model is more sensitive to hyperpolarization than depolarization inputs with a

transition point around −30 mV, which is in agreement with the experimental membrane

potential behavior of AIY. Moreover, although the simple RIM model does not capture the

transient peak in the outward current during voltage clamp (Figure S2), it exhibits a lack of

large sustained currents similar to the experimental ones. This allows it to be depolarized

or hyperpolarized in a smooth manner under current clamp, as its experimental voltage

dynamics.

3.2 Computational efficiency.

Model simulation. To evaluate the computational efficiency of the model simulation, we

compare the number of floating point operations (FLOPs), such as addition, multiplication

or division, required to simulate 1ms (FLOPMS) of different neuron models. Note that the

values of FLOPMS are related to the simulation time and not to the running time, which

may vary widely across programming languages and CPU architectures. The simulation of

the proposed model only takes 13 floating point operations to simulate the span of 1 ms in

the neuron. These results are of the same order of magnitude as the integrate-and-fire and

Izhikevich models that are the most computational efficient neuron models to date (Izhike-

vich, 2004). In order to establish comparisons, the CBMs relative to RIM, AIY and AFD

neurons (see Appendix A) published in Naudin et al. (2020) have a computational efficiency

similar to the Hodgkin–Huxley model which requires about 1200 FLOPMS (Izhikevich, 2004).

That shows the large superiority of the proposed model when compared to the CBMs pro-

posed in Naudin et al. (2020) in terms of computational efficiency.
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Figure 4: Optimization results for the RIM and AIY near-linear neurons. (A) (Left) Mean

of the experimental steady-state current (represented by green circles) with respective er-

ror bars, and the estimated steady-state current (represented by blue crosses) given by the

equation (5) with parameter values displayed in Table 1. (Right) Function I 7→ V∗(I) for all

I ∈ [−15 pA; 35 pA]. In both cases, the function is monotonic increasing, meaning that V∗

increases as I does which is consistent with the experimental behavior displayed in Figure

1. (B) (Left) Example of experimental responses in RIM and AIY, represented in green.

(Right) Respective dynamics of the proposed model, represented in blue, representing the

mean of their neuronal responses. The series of current injections start from −15 pA and

increase to 35 pA by 5 pA increments.
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Model optimization. As discussed in Section 2, the steady-state current determines the

bifurcation structure of non-spiking neurons as well as the equilibrium values of their graded

responses. In this way, all parameters of the proposed model are directly estimated from

steady-state current data. On the contrary, the same procedure cannot be applied to esti-

mate the parameters of a CBM as the parametrization space is larger and requires voltage

trace data (see, e.g., Appendix A). The consequence is that the optimization process of the

proposed model is computationally much more efficient than that of a CBM: while a cost-

function call in the proposed model requires evaluation of around 16 points (number of points

of the steady-state current, see Figure 1), a CBM requires to evaluate, as in Naudin et al.

(2020), around 137500 points per function call (11 voltage traces × 12500 points per trace).

In practical terms, this means that estimating all the parameters of a CBM using DE is in the

order of some days of computing (Naudin et al., 2020), while estimating all the parameters

of the proposed model in this paper took only a few seconds. It is outside the scope of this

paper to establish a quantitative computational comparison between the optimization times

in both models, as that would require to replicate the experiments in a controlled compu-

tational environment. However, we can safely conclude that the optimization process of the

proposed model is computationally more efficient than that of a CBM in several orders of

magnitude.

Model building. Another advantage of the proposed model is that it requires less bio-

physical information for its conception than a CBM. In particular, a CBM imposes a de-

tailed modeling of the different ion channels present in the cell membrane, for which it is

necessary to have contrasted biological data obtained in the laboratory. Such data are of-

ten very time-consuming and hard to obtain experimentally, as reported for the C. elegans

neurons (Goodman et al., 2012) due to their small size and the difficulty of dissecting a

one-millimeter-long worm. That is not the case of the proposed model as it relies only on

the steady-state current data and not on the biophysical information of the ion channels.
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3.3 Generalization capability of the proposed model

A good neuronal model should be able to predict the neuronal activity based on data that

were not used for parameter tuning (Gerstner & Naud, 2009). Indeed, capturing the neuron

behavior for some inputs may not be sufficient to predict acceptable responses to different

novel stimuli not used during the models’ building (Druckmann, 2014; Druckmann et al.,

2011; Naudin et al., 2022). A way to endow a neuron model with generalization capabilities

is to reproduce the bifurcation structure of the neuron (Izhikevich, 2007; Naudin et al., 2022).

We stated in Section 2 that the steady-state current determines the bifurcation structure of

non-spiking neurons and the equilibrium values of their graded responses to particular stimuli.

Since the parameters of the proposed model are determined from the fitting of the steady-state

current, the model will acquire the generalization capability directly from the optimization

process. While this is granted in the proposed model by design, it is usually not the case in

CBM where capturing the bifurcation structure is not the primary objective. Figure S3 shows

a representative example of the deterioration of the steady-state current of a non-spiking

CBM, as well as its dramatic implication on the neuron dynamics and its generalization

capability. Naudin et al. (2022) propose in the case of non-spiking neurons to capture it by

considering the steady-state current as an additional objective to be reproduced, in addition

to fitting the membrane potential evolution. Such a multi-objective approach is successful

but takes a very long time (about ten days). Therefore, the optimization and building process

of the proposed model are efficient in the sense that it endows the models with generalization

capabilities without requiring additional procedures with a high computational cost.

3.4 Implementation of a canonical non-spiking neuronal network

This section aims to demonstrate the capability of the proposed model to explain ‘high-level’

experimental phenomena occurring in non-spiking nervous tissues. To that end, we implement

a canonical non-spiking neural network of two coupled neurons through an excitatory synapse.

This network represents a bistable sensory neuron (such as AFD) that propagates electrical
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signals to a postsynaptic near-linear neuron (such as RIM). The synaptic transmission is

considered graded as it is the case in non-spiking nervous tissues, such as in the vertebrate

retina (Tsukamoto et al., 2001), the Ascaris (Davis & Stretton, 1989) and C. elegans (Lindsay

et al., 2011) worms. Following Wicks et al. (1996), the mathematical expression of the

network is given by


τ1
dV1

dt
= −a1V

3
1 − b1V

2
1 − c1V1 − d1 + I

τ2
dV2

dt
= −a2V

3
2 − b2V

2
2 − c2V2 − d2 − gsyng∞(V1)(V2 − 0)

where V1 represents the membrane potential of the presynaptic bistable sensory neuron,

V2 the membrane potential of the postsynaptic near-linear neuron, I the external sensory

input current, gsyn the maximal postsynaptic membrane conductance for the synapse, and

V 7→ g∞(V ) a sigmoid function relating presynaptic and postsynaptic membrane potential.

Its expression reads as

g∞(V ) =
1

1 + exp

(
V − Vrest

Vslope

)
with Vrest the presynaptic resting potential, and Vslope is the slope factor of the sigmoid

function g∞. In the following, we set Vslope = 15 mV, gsyn = 0.6 nS and Vrest = −76 mV

(Wicks et al., 1996).

The purpose is to monitor the dynamics of the RIM neuron when it receives inputs from a

bistable neuron. To that end, the AFD sensory neuron is stimulated with a series of current

injections starting from −15 pA and increasing to 35 pA by 5 pA increments. As can be seen

in Figure 5, the near-linear RIM neuron (Figure 5.A) becomes bistable under the effect of the

coupling with the bistable AFD neuron (Figure 5.B, left). Transitions between down-states

and up-states are apparent in the bimodal distribution of the membrane potential (Figure

5.B, right). Thus, it can be concluded that the connectivity of a neuron affects strongly the

nature of its behavior: for instance, a near-linear neuron can become bistable when coupled
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with another bistable neuron. Among others, this can explain the discrepancy between the

near-linear electrophysiological behavior of the RIM neuron (Figure 1.A) and its bistable

calcium dynamics when exposed to odor stimuli (Gordus et al., 2015). Furthermore, these

results illustrate the importance of the synaptic dynamics in conferring distinct up- and

down-states to non-spiking neurons. Whole-brain calcium imaging of neuronal activity in C.

elegans reveals that several dozens of non-spiking neurons have collective activity with such

correlated up- and down-states (Prevedel et al., 2014; Schrödel et al., 2013). The results

presented in this paper suggest that the proposed model may be used to gain insights into

synaptic dynamics in these network states.
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Figure 5: Voltage dynamics of the RIM neuron. (A) Evolution of the near-linear membrane

potential of the RIM neuron for a series of injection currents I, from −15 pA to 35 pA by 5 pA

increments. (B) (Left) Evolution of voltages of the RIM neuron when its presynaptic AFD

bistable neuron is stimulated by current steps, from −15 pA to 35 pA by 5 pA increments.

AFD and RIM are coupled through an excitatory synapse. Synaptic parameters: gsyn =

0.6 nS (Wicks et al., 1996) and Vslope = 15 mV. (Right) Corresponding histogram of the

membrane potential calculated from 50 ds (5000 ms) of simulation.
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4 Discussion

Various computationally efficient and simple spiking models have been proposed in the lit-

erature as an alternative to Hodgkin–Huxley type models. Such models have been valuable

to gain insight into ‘higher-level’ functions of neural systems. Unfortunately, these simple

models have a bifurcation structure that differs fundamentally from that of non-spiking neu-

rons. This makes them inadequate for producing acceptable non-spiking dynamics, which

are also ubiquitous in neuronal processes. To the best of our knowledge, this paper is a first

attempt to develop a simple model specifically built on the basis of the bifurcation structure

of non-spiking neurons. This model was then shown to have a high computational efficiency,

to be able to accurately capture the individual experimental qualitative behavior of known

types of non-spikings neurons, to generalize neuronal responses, and to explain and reproduce

‘high-level’ experimental phenomena in non-spiking networks. This section aims at discussing

both the biological and the modeling implications of such a model from two perspectives:

the modeling of the C. elegans neuronal network and retinal networks.

Implications to the modeling of the C. elegans neuronal network. The C. elegans

nervous system is only composed of 302 neurons and about 7000 synaptic connections, and

its connectome has been fully mapped (White et al., 1986). Despite this relative simplicity,

the nematode shares many features with the complex human nervous system using similar

neurotransmitters, ion channels and developmental genes, as well as similar neuronal prin-

ciples to produce behavior (Chalasani et al., 2007; P. Liu et al., 2020). For these reasons,

it has become the ideal candidate to be modeled to investigate how behavior emerges from

underlying physiological processes (Costalago-Meruelo et al., 2018; Izquierdo, 2019; Lanza et

al., 2021; Olivares et al., 2019; Szigeti et al., 2014). However, as pointed out by Sarma et al.

(2018), such modeling studies do not take into account the specificity of C. elegans neuronal

dynamics. Building models adapted to the nematode neuron dynamics is a key remaining

component to make C. elegans nervous system modeling adequate for biological research
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(Sarma et al., 2018). The simple and computationally efficient model proposed in this paper,

capable of reproducing the known neuronal diversity of C. elegans neurons, could serve as a

building block to study ‘higher-level’ functions of the C. elegans neuronal activity, such as

determining the nature (excitatory or inhibitory) and strength of its synaptic connections.

Indeed, such information is not revealed by the connectome (Kopell et al., 2014) and is of cru-

cial importance to understand the flow of information within the nematode’s nervous system

(Bargmann & Marder, 2013). Some computational works (Costalago-Meruelo et al., 2018;

Lanza et al., 2021; Olivares et al., 2019; Portegys, 2015; Wicks et al., 1996) estimate the

synaptic polarity using an evolutionary approach in which the algorithm determines both

the nature and the strength of connections to obtain observable, realistic worm behavior.

However, the networks studied are composed of neuron models that are not representative

of the C. elegans neuron dynamics. For instance, Portegys (2015), Costalago-Meruelo et al.

(2018) and Lanza et al. (2021) consider a homogeneous spiking model for the entire network

although the C. elegans neurons are highly heterogeneous and contain non-spiking neurons

(Goodman et al., 1998). Therefore, even if the macroscopic behavior of C. elegans is suc-

cessfully reproduced, the results on the synaptic polarity and their strength may not be

biologically adequate. We suggest that the proposed model could provide a simple and effi-

cient way to build models adapted to the C. elegans neuronal dynamics in order to make C.

elegans modeling studies adequate for biological research.

Implications to the modeling of the retinal network. Due to the common origins

of the retina and the brain, it is suggested that the neuronal activity in the retina and

the brain correlates, so that changes in the retina may indicate structural and functional

changes in the brain. Many authors then consider “the retina as a window to the brain”

(London et al., 2013). This is why the modeling of the retinal network could be a valuable

tool to investigate various neuronal phenomena. Interestingly, the neuronal characteristics

of the retina are similar to those of C. elegans in several aspects. First, the worm olfactory

system and the retinal visual system of vertebrates follow the same general principles to
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process sensory information (Chalasani et al., 2007). Second, the retina neurons release

neurotransmitter in a graded and tonic manner (Tsukamoto et al., 2001; Werblin & Dowling,

1969) as the C. elegans (Lindsay et al., 2011). Third, non-spiking neurons are also ubiquitous

in the retina.

The retinal circuit is composed of several major classes of neurons: rod and cone photore-

ceptors, and horizontal, bipolar, amacrine and retinal ganglion cells (RCGs). Only RCGs and

some amacrine cells trigger action potentials, while the other cells transmit visual informa-

tion using graded potentials. More specifically, the cone (Kourennyi et al., 2004), horizontal

(Aoyama et al., 2000) and bipolar cells (Schilardi & Kleinlogel, 2021; Usui et al., 1996) exhibit

a bistable behavior (such as the C. elegans AFD neuron considered in this paper), while the

rod (Kourennyi et al., 2004) and amacrine cells display a near-linear one (such as RIM and

AIY). These neurons number in the tens of millions (Field & Chichilnisky, 2007). Moreover,

each major retinal cell class consists of multiple cell types distinguished by variable response

properties (Field & Chichilnisky, 2007). From a general point of view, this neuron-to-neuron

variability has been shown to play a paramount role in network performance (Berry Ii et al.,

2019; Lengler et al., 2013; Padmanabhan & Urban, 2010; Shamir & Sompolinsky, 2006).

This demonstrates the importance of generating many models to capture every individual

neuron behavior within the biological population, rather than using a unique model for the

entire population (Marder & Taylor, 2011). Based on the fitting of the steady-state current

that takes only a few seconds, the proposed model makes possible the generation of multiple

models to capture the substantial neuron-to-neuron variability of retinal cells.
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A Appendix: Conductance-based models of the RIM,

AIY and AFD neurons

In previous works (Naudin et al., 2020; Naudin et al., 2022), we determined the most suitable

conductance-based models to the electrophysiology of the RIM, AIY and AFD neurons based

on current biological research and a series of in-silico experiments.

Neuron models. For the RIM and AFD neurons, the ICa,p + IKir + IK,t + IL-model was

obtained which reads as



CV̇ = −gCamCa(V − ECa)− gKirhKir∞(V )(V − EK)− gKmKhK(V − EK)

−gL(V − EL) + I

˙mCa =
mCa∞(V )−mCa

τmCa

, mCa∞(V ) =

(
1 + exp

(
V mCa

1/2 − V

kmCa

))−1

ṁK =
mK∞(V )−mK

τmK

, mK∞(V ) =

(
1 + exp

(
V mK

1/2 − V

kmK

))−1

˙hK =
hK∞(V )− hK

τhK

, hK∞(V ) =

(
1 + exp

(
V hK

1/2 − V

khK

))−1

(6)

whereas for the AIY neuron, the ICa,t + IKir + IK,p + IL-model was selected taking the form



CV̇ = −gCamCahCa(V − ECa)− gKirhKir∞(V )(V − EK)− gKmK(V − EK)

−gL(V − EL) + I

˙mCa =
mCa∞(V )−mCa

τmCa

, mCa∞(V ) =

(
1 + exp

(
V mCa

1/2 − V

kmCa

))−1

˙hCa =
hCa∞(V )− hCa

τhCa

, hCa∞(V ) =

(
1 + exp

(
V hCa

1/2 − V

khCa

))−1

ṁK =
mK∞(V )−mK

τmK

, mK∞(V ) =

(
1 + exp

(
V mK

1/2 − V

kmK

))−1

(7)
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Expression of the steady-state currents. The steady-state current relative to the sys-

tem of equations (6) takes the form

I∞(VH) = gCamCa∞(VH)(VH − ECa) + gKirhKir∞(VH)(VH − EK)

+ gKmK∞(VH)hK∞(VH)(VH − EK) + gL(VH − EL)

whereas for the system of equations (7), it is defined as

I∞(VH) = gCamCa∞(VH)hCa∞(VH)(VH − ECa) + gKirhKir∞(VH)(VH − EK)

+ gKmK∞(VH)(VH − EK) + gL(VH − EL)
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B Appendix: Supplementary figures
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Figure S1: (Left) Examples of experimental membrane potentials of RIM, AIY and AFD

neurons induced by a series of current steps starting from −15 pA and increasing to 35 pA

in 5 pA increments (Q. Liu et al., 2018). (Right) Membrane potentials of the best solution

of the leaky integrate-and-fire model designed with a threshold high enough to avoid the

triggering of spikes, as in Strohmer et al. (2021). The solutions are obtained from the fitting

of experimental voltage traces in (Left) using differential evolution algorithm. The series of

current injections is the same than in (Left).
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Figure S2: (Left) Examples of experimental whole-cell current traces of RIM, AIY and AFD

neurons induced by a series of voltage steps starting from −100 mV and increasing to 50 mV

in 10 mV increments (Q. Liu et al., 2018). (Right) Whole-cell current traces of the simple

proposed model induced by the same voltage step protocol.
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