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UNLIMITED LISTS OF QUADRATIC INTEGERS OF GIVEN NORM

APPLICATION TO SOME ARITHMETIC PROPERTIES

GEORGES GRAS

Abstract. We use the polynomials ms(t) = t2 − 4s, s ∈ {−1, 1}, in an elementary
process giving unlimited lists of fundamental units of norm s, of real quadratic fields,
with ascending order of the discriminants. As t grows from 1 to an upper bound B, for
each first occurrence of a square-free integerM ≥ 2, in the factorizationms(t) =: Mr2,

the unit 1

2

(
t + r

√
M

)
is the fundamental unit of norm s of Q(

√
M), even if r > 1

(Theorem 4.2). Using msν (t) = t2 − 4sν, ν ≥ 2, the algorithm gives unlimited lists
of fundamental integers of norm sν (Theorem 4.6). We deduce, for any prime p > 2,
unlimited lists of non p-rational quadratic fields (Theorems 6.3, 6.4, 6.5) and lists of
degree p − 1 imaginary fields with non-trivial p-class group (Theorems 7.1, 7.2). All
PARI programs are given.
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1. Introduction and main results

1.1. Definition of the “F.O.P. ” algorithm. For the convenience of the reader, we
give, at once, an outline of this process which has an interest especially under the use of
PARI programs [P].

Definition 1.1. We call “First Occurrence Process” (F.O.P. ) the following algorithm,
defined on a large interval [1,B] of integers. As t grows from t = 1 up to t = B, we
compute some arithmetic invariant F (t); for instance, a pair of invariants described as
a PARI list, as the following illustration with square-free integers M(t) and units η(t) of

Q(
√
M(t)):

F(t) 7→ L(t) = List
([
M(t), η(t)

]
,

provided with a natural order on the pairs L(t), then put it in a PARI list LM:

Listput(LM, vector(2, c, L[c])) 7→List([L(1), L(2), . . . , L(t), . . . , L(B)])

=List([ [M(1), η(1)], . . . , [M(t), η(t)], . . . , [M(B), η(B)] ]);

after that, we apply the PARI instruction VM = vecsort(LM, 1, 8) which builds the list:

VM = List([L1, L2, . . . , Lj, . . . , LN]), N ≤ B,

such that Lj = L(tj) = [ [M(tj), η(tj)] ] is the first occurrence (regarding the selected order,
for instance that on the M’s) of the invariant found by the algorithm and which removes
the subsequent duplicate entries.

Removing the duplicate entries is the key of the principle since in general they are
unbounded in number as B → ∞ and do not give the suitable information

Since the length N of the list VM is unknown by nature, one must write LM as a vector
and put instead: VM = vecsort(vector(B, c, LM[c]), 1, 8); thus, N = #VM makes sense and
one can (for possible testing) select elements and components as X = VM[k][2], etc. If N
is not needed, then VM = vecsort(LM, 1, 8) works well.

For instance, the list LM of objects F (t) = (M(t), ε(t)), 1 ≤ t ≤ B = 10:

LM = List([ [5, ε5], [2, ε2], [5, ε
′
5], [7, ε7], [5, ε

′′
5 ], [3, ε3], [2, ε

′
2], [5, ε

′′′
5 ], [6, ε6], [7, ε

′
7] ]),

with the natural order on the first components M , leads to the list:

VM = List([[2, ε2], [3, ε3], [5, ε5], [6, ε6], [7, ε7]]).

1.2. Quadratic integers. Let K =: Q(
√
M), M ∈ Z≥2 square-free, be a real quadratic

field and let ZK be its ring of integers.

Recall that M ≥ 2, square-free, is called the “Kummer radical” of K, contrary to any
“radical” m = Mr2 giving the same field K.

There are two ways of writing for an element α ∈ ZK . The first one is to use the

integral basis {1,
√
M} (resp.

{
1, 1+

√
M

2

}
) when M 6≡ 1 (mod 4) (resp. M ≡ 1 (mod 4)).

The second one is to write α = 1
2 (u + v

√
M), in which case u, v ∈ Z are necessarily of

same parity; but u, v may be odd only when M ≡ 1 (mod 4). We denote by TK/Q and
NK/Q, or simply T and N, the trace and norm maps in K/Q, so that T(α) = u and

N(α) = 1
4 (u

2 −Mv2) in the second writing for α.

Then the norm equation in u, v ∈ Z (not necessarily with co-prime numbers u, v):

u2 −Mv2 = 4sν, s ∈ {−1, 1}, ν ∈ Z≥1,

for M square-free, has the property that u, v are necessarily of same parity and may be
odd only when M ≡ 1 (mod 4); then:

z :=
1

2

(
u+ v

√
M

)
∈ ZK , T(z) = u & N(z) = sν.

Finally, we will write quadratic integers α, with positive coefficients on the basis
{1,

√
M}; this defines a unique representative modulo the sign and the conjugation. Put:

Z+
K :=

{
α =

1

2

(
u+ v

√
M

)
, u, v ∈ Z≥1, u ≡ v (mod 2)

}
.

Note that these α’s are not in Z, nor in Z·
√
M ; indeed, we have the trivial solutions

N(q) = q2 (α = q ∈ Z≥1, s = 1, ν = q2, Mv2 = 0, u = q) or N(v
√
M) = −Mv2, v ∈ Z≥1,

s = −1, ν = −Mv2, u = 0), which are not given by the F.O.P. algorithm for simplicity.
These viewpoints will be more convenient for our purpose and these conventions will be
implicit in all the sequel.
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Since norm equations may have several solutions, we will use the following definition:

Definition 1.2. Let M ∈ Z≥2 be a square-free integer and let s ∈ {−1, 1}, ν ∈ Z≥1. We
call fundamental solution (if there are any) of the norm equation u2 −Mv2 = 4sν, with

u, v ∈ Z≥1, the corresponding integer α := 1
2 (u+ v

√
M) ∈ Z+

K of minimal trace u.

1.3. Quadratic polynomial units. It is classical that the continued fraction expansion
of

√
m, for a positive square-free integer m, gives, under some limitations, the funda-

mental solution, in integers u, v ∈ Z≥1, of the norm equation u2 − mv2 = 4s, whence
the fundamental unit εm := 1

2 (u + v
√
m) of Q(

√
m). A similar context of “polynomial

continued fraction expansion” does exist and gives polynomial solutions (u(t), v(t)), of
u(t)2−m(t)v(t)2 = 4s, for suitable m(t) ∈ Z[t] (see, e.g., [McL, McLZ, Nat, Ram, SaAb]).

This gives the quadratic polynomial units E(t) := 1
2

(
u(t) + v(t)

√
m(t)

)
.

We will base our study on the following polynomialsm(t) that have interesting universal
properties (a first use of this is due to Yokoi [Yo, Theorem 1]).

Definition 1.3. Consider the square-free polynomials msν(t) = t2 − 4sν ∈ Z[t], where

s ∈ {−1, 1}, ν ∈ Z≥1. The continued fraction expansion of
√
t2 − 4sν leads to the integers

Asν(t) := 1
2

(
t +

√
t2 − 4sν

)
, of norm sν and trace t, in a quadratic extension of Q(t).

When ν = 1, one obtains the units Es(t) :=
1
2

(
t+

√
t2 − 4s

)
, of norm s and trace t.

The continued fraction expansion, with polynomials, gives the fundamental solution
of the norm equation (cf. details in [McL]), but must not be confused with that using
evaluations of the polynomials; for instance, for t0 = 7, m1(t0) = 72 − 4 = 45 is not

square-free and E1(7) = 1
2 (7 +

√
45) = 1

2 (7 + 3
√
5) is indeed the fundamental solution

of u2 − 45v2 = 4, but not the fundamental unit ε5 of Q(
√
45) = Q(

√
5), since one gets

E1(7) = ε65.

1.4. Main algorithmic results. We will prove that the families of polynomialsmsν(t) =
t2 − 4sν, s ∈ {−1, 1}, ν ∈ Z≥1, are universal to find all square-free integers M for which
there exists a privileged solution α ∈ Z+

K to N(α) = sν; moreover, the solution obtained
is the fundamental one, in the meaning of Definition 1.2 saying that α is of minimal trace
t ≥ 1. This is obtained by means of an extremely simple algorithmic process (described
§ 1.1) and allows to get unbounded lists of quadratic fields, given by means of their
Kummer radical, and having specific properties.

The typical results, admitting several variations, are given by the following excerpt of
statements using quadratic polynomial expressions m(t) deduced from some msν(t):

Theorem 1.4. Let B be an arbitrary large upper bound. As the integer t grows from 1
up to B, for each first occurrence of a square-free integer M ≥ 2, in the factorizations
m(t) =: Mr2, we have the following properties for K := Q(

√
M):

a) Consider the polynomials m(t) = t2 − 4sν, s ∈ {−1, 1}, ν ∈ Z≥2:

(i) m(t) = t2 − 4s.

The unit 1
2 (t+ r

√
M) is the fundamental unit of norm s of K (Theorem 4.2).

(ii) m(t) = t2 − 4sν.

The integer Asν(t) = 1
2 (t + r

√
M) is the fundamental integer in Z+

K of norm sν in the
meaning of Definition 1.2 (Theorem 4.6).

b) Let p be an odd prime number and consider the following polynomials.

(i) m(t) ∈
{
p4t2 ± 1, p4t2 ± 2, p4t2 ± 4, 4p4t2 ± 2, 9p4t2 ± 6, 9p4t2 ± 12, . . .

}
.

The field K is non p-rational apart from few explicit cases (Theorem 6.3).

(ii) m(t) = 34t2 − 4s.

The field F3,M := Q(
√
−3M) has a class number divisible by 3, except possibly when the

unit 1
2

(
9t + r

√
M

)
is a third power of a unit (Theorem 7.1). Up to B = 105, all the

3-class groups are non-trivial, apart from few explicit cases.

(iii) m(t) = p4t2 − 4s, p ≥ 5.

The imaginary cyclic extension Fp,M := Q
(
(ζp − ζ−1

p )
√
M

)
, of degree p − 1, has a class

number divisible by p, except possibly when the unit 1
2

(
p2t + r

√
M)

)
is a p-th power of

unit (Theorem 7.2).
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For p = 5, the quartic cyclic field F5,M is defined by the polynomial P = x4+5Mx2+5M2

and up to B = 500, all the 5-class groups are non-trivial, except for M = 29.

Moreover, this principle gives lists of solutions by means of Kummer radicals (or dis-
criminants) of a regularly increasing order of magnitude, these lists being unbounded as
B → ∞. See, for instance Proposition 3.1 for lists of Kummer radicals M , then Section
2 for lists of arithmetic invariants (class groups, p-ramified torsion groups, logarithmic
class groups of K), and Theorems 6.4, 6.5, giving unlimited lists of units, local (but non
global) pth powers, whence lists of non-p-rational quadratic fields.

All the lists have, at least, O(B) distinct elements, but most often B− o(B), and even
B distinct elements in some situations.

So, we intend to analyze these results in a computational point of view by means of
a new strategy to obtain arbitrary large list of fundamental units, or of other quadratic
integers, even when radicals msν(t) =: M(t)r(t)2, t ∈ Z≥1, are not square-free (i.e.,
r(t) > 1). By comparison, it is well known that many polynomials, in the literature, give
subfamilies of integers (especially fundamental units) found by means of the msν ’s with
assuming that the radical msν(t) are square-free.

Remark 1.5. It is accepted and often proven that the integers t2 − 4sν are square-free
with a non-zero density and an uniform repartition (see, e.g., [FrIw], [Rud]); so an easy
heuristic is that the last M = MB of the list VM is equivalent to B2. This generalizes
to the F.O.P. algorithm applied to polynomials of the form ant

n + an−1t
n−1 + · · · + a0,

n ≥ 1, an ∈ Z≥1, and gives the equivalent MB ∼ anB
n as B → ∞.

The main fact is that the F.O.P. algorithm will give fundamental solutions of norm
equations u2 − Mv2 = 4sν (see Section 4), whatever the order of magnitude of r; for
small values of M , r may be large, even if r(t) tends to 1 as M(t) tends to its maximal
value, equivalent to B2, as t → ∞. Otherwise, without the F.O.P. principle, one must
assume msν(t) square-free in the applications, as it is often done in the literature.

2. First examples of application of the F.O.P. algorithm

2.1. Kummer radicals and discriminants given by ms(t). Recall that, for t ∈ Z≥1,
we put ms(t) = M(t)r(t)2, M(t) square-free.

2.1.1. Kummer radicals. The following program gives, as t grows from 1 up to B, the
Kummer radical M and the integer r obtained from the factorizations of m′

1(t) = t2 − 1,
under the form Mr2; then we put them in a list LM and the F.O.P. algorithm gives the
pairs C = core(mt, 1) = [M, r], in the increasing order of the radicals M and removes the
duplicate entries:
MAIN PROGRAM GIVING KUMMER RADICALS

{B=10^6;LM=List;for(t=1,B,mt=t^2-1;C=core(mt,1);L=List(C);

listput(LM,vector(2,c,L[c])));M=vecsort(vector(B,c,LM[c]),1,8);

print(M);print("#M = ",#M)}

[M,r]=

[0,1],

[2,2],[3,1],[5,4],[6,2],[7,3],[10,6],[11,3],[13,180],[14,4],[15,1],[17,8],[19,39],[21,12],

[22,42],[23,5],[26,10],[29,1820],[30,2],[31,273],[33,4],[34,6],[35,1],[37,12],[38,6],

[39,4],[41,320],[42,2],[43,531],[46,3588],[47,7],[51,7],[53,9100],[55,12],[57,20],

[58,2574],[59,69],[62,8],[65,16],[66,8],[67,5967],[69,936],[70,30],[71,413],[74,430],

(...)

[999980000099,1],[999984000063,1],[999988000035,1],[999992000015,1]

#M = 999225

Remark 2.1. Some radicals are not found. Of course they will appear for B larger
according to Proposition 3.1. For instance, the Kummer radical M = 94 depends on the
fundamental unit ε94 = 2143295 + 221064

√
94 of norm 1; so, using m′

1(t), the minimal

solution is t = 2143295. For the Kummer radical M = 193, ε193 = 1764132+126985
√
193

is of norm −1 and m′
−1(1764132) = 193 × 1269852. So t2 − 1 = 193r2 has the minimal

solution t = 6224323426849 corresponding to ε2193.

2.1.2. Discriminants. If one needs the discriminants of the quadratic fields in the ascend-
ing order, it suffices to replace the Kummer radical M = core(mt) by quaddisc(core(mt))

giving the discriminant D of Q(
√
M). We use m′

1(t) and m′
−1(t) together to get various

M modulo 4 (thus the size of the list [D] is 2 ∗B); this yields the following program and
results with outputs [D]:
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MAIN PROGRAM GIVING DISCRIMINANTS

{B=10^6;LD=List;for(t=1,B,L=List([quaddisc(core(t^2-1))]);

listput(LD,vector(1,c,L[c]));L=List([quaddisc(core(t^2+1))]);

listput(LD,vector(1,c,L[c])));D=vecsort(vector(2*B,c,LD[c]),1,8);

print(D);print("#D = ",#D)}

[D]=

[[0],

[5],[8],[12],[13],[17],[21],[24],[28],[29],[33],[37],[40],[41],[44],[53],[56],[57],[60],

[61],[65],[69],[73],[76],[77],[85],[88],[89],[92],[93],[97],[101],[104],[105],[113],[120],

[124],[129],[136],[137],[140],[141],[145],[149],[152],[156],[161],[165],[168],[172],

[173],[177],[184],[185],[188],[197],[201],[204],[205],[209],[213],[220],[221],[229],

(...)

[3999960000104],[3999968000060],[3999976000040],[3999992000008]

#D = 1998451

This possibility is valid for all programs of the paper; we will classify the Kummer
radicals, instead of discriminants, because radicals are more related to norm equations,
but any kind of output can be done easily.

2.2. Application to minimal class numbers. One may use this classification of Kum-
mer radicals and compute orders h of some invariants, then apply the F.O.P. principle,
with the instruction VM = vecsort(vector(B, c, LM[c]), 2, 8) to the outputs [M, h], to get
successive possible class numbers h in ascending order (we use here m1(t) = t2 − 4):
MAIN PROGRAM GIVING SUCCESSIVE CLASS NUMBERS

{B=10^5;LM=List;for(t=3,B,M=core(t^2-4);

h=quadclassunit(quaddisc(M))[1];L=List([M,h]);

listput(LM,vector(2,c,L[c])));

VM=vecsort(vector(B-2,c,LM[c]),2,8);

print(VM);print("#VM = ",#VM)}

[M,h]=

[5,1],[15,2],[2021,3],[195,4],[4757,5],[3021,6],[11021,7],[399,8],[27221,9],[7221,10],

[95477,11],[1599,12],[145157,13],[15621,14],[50621,15],[4899,16],[267101,17],[11663,18],

(...)

[2427532899,7296],[2448270399,7356],[2340624399,7384],[1592808099,7424],[1745568399,7456],

[2443324899,7600],[2479044099,7680],[2251502499,7840],[1718102499,7968],[2381439999,8040],

[2077536399,8328],[1981140099,8384]

#VM = 2712

One may compare using polynomials ms(t) to obtain radicals, then for instance class
numbers h, with the classical PARI computation:

{B=10^6;LM=List;N=0;for(M=2,B,if(core(M)!=M,next);

N=N+1;h=quadclassunit(quaddisc(M))[1];

L=List([M,h]);listput(LM,vector(2,c,L[c])));

VM=vecsort(vector(N,c,LM[c]),2,8);

print(VM);print("#VM = ",#VM)}

[M,h]=

[[2,1],[10,2],[79,3],[82,4],[401,5],[235,6],[577,7],[226,8],[1129,9],[1111,10],[1297,11],

[730,12],[4759,13],[1534,14],[9871,15],[2305,16],[7054,17],[4954,18],[15409,19],

(...)

[78745,60],[68179,62],[57601,63],[71290,64],[87271,66],[53362,68],[56011,70],[45511,72],

[38026,74],[93619,76],[94546,80],[77779,84],[90001,87],[56170,88],[99226,94],[50626,96]]

#VM = 73

The lists are not comparable but are equal for “B = ∞.”

2.3. Application to minimal orders of p-ramified torsion groups. Let TK be the
torsion group of the Galois group of the maximal abelian p-ramified (i.e., unramified

outside p and ∞) pro-p-extension of Q(
√
M). The following program, for any p ≥ 3,

gives the results by ascending order (outputs [M, h = pa,T = pb], where h is the order of
the p-class group and T that of TK):

MAIN PROGRAM GIVING SUCCESSIVE ORDERS OF p-TORSION GROUPS

{B=10^5;p=3;e=18;LM=List;for(t=2,B,M=core(t^2-1);

K=bnfinit(x^2-M,1);wh=valuation(K.no,p);Kt=bnrinit(K,p^e);

CKt=Kt.cyc;wt=valuation(Kt.no/CKt[1],p);L=List([M,p^wh,p^wt]);

listput(LM,vector(3,c,L[c])));VM=vecsort(vector(B-1,c,LM[c]),3,8);

print(VM);print("#VM = ",#VM)}

[M,#h_p,#T_p]=

[[3,1,1],[15,1,3],[42,1,9],[105,1,27],[1599,3,81],[1095,1,243],[23066,9,729],

[1196835,3,2187],[298662,9,6561],[12629139,27,19683],[6052830,9,59049],

[747366243,243,177147]]

#VM = 12
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2.4. Application to minimal orders of logarithmic class groups. For the definition

of the logarithmic class group T̃p governing Greenberg’s conjecture [Gre1], see [Jau3,
Jau4], and for its computation, see [BeJa] which gives the structure as abelian group.
The following program, for p = 3, gives the results by ascending orders (all the structures
are cyclic in this interval):

MAIN PROGRAM GIVING SUCCESSIVE CLASSLOG NUMBERS

{B=10^5;LM=List;for(t=3,B,M1=core(t^2-4);M2=core(t^2+4);

K1=bnfinit(x^2-M1);Clog= bnflog(K1,3)[1];C=1;for(j=1,#Clog,

C=C*Clog[j]);L=List([M1,Clog,C]);listput(LM,vector(3,c,L[c]));

K2=bnfinit(x^2-M2);Clog= bnflog(K2,3)[1];C=1;for(j=1,#Clog,

C=C*Clog[j]);L=List([M2,Clog,C]);listput(LM,vector(3,c,L[c])));

VM=vecsort(vector(2*(B-2),c,LM[c]),3,8);

print(VM);print("#VM = ",#VM)}

[M,Clog,#Clog]=

[[5,[],1],[257,[3],3],[2917,[9],9],[26245,[27],27],[577601,[81],81],[236197,[243],243],

[19131877,[729],729],[172186885,[2187],2187],[1549681957,[6561],6561]]

#VM = 9

3. Units Es(t) vs fundamental units εM(t)

3.1. Polynomials ms(t) = t2−4s and units Es(t). This subsection deals with the case
ν = 1 about the search of quadratic units (see also [Yo, Theorem 1]). The polynomials

ms(t) ∈ Z[t] define, for t ∈ Z≥1, the parametrized units Es(t) = 1
2 (t +

√
t2 − 4s) of

norm s in K := Q(
√
M), where M is the maximal square-free divisor of t2 − 4s. But

M is unpredictable and gives rise to the following discussion depending on the norm
S := N(εM ) of the fundamental unit εM =: 1

2 (a + b
√
M) of K and of the integral basis

of ZK :

(i) If s = 1, E1(t) =
1
2 (t +

√
t2 − 4) is of norm 1; so, if S = 1, then E1(t) ∈ 〈εM 〉, but

if S = −1, necessarily E1(t) ∈ 〈ε2M 〉.
If s = −1, E−1(t) =

1
2 (t+

√
t2 + 4) is of norm −1; so, necessarily the Kummer radical

M is such that S = −1.

(ii) If t is odd, Es(t) is written with half-integer coefficients, t2 − 4s ≡ 1 (mod 4),

giving M ≡ 1 (mod 4) and ZK = Z
[
1+

√
M

2

]
; so εM can not be with integer coefficients

(a and b are necessarily odd).

If t is even, M may be arbitrary as well as εM .

We can summarize these constraints by means of the following Table:

(3.1)

t2 − 4s S = N(ε
M

) Es(t) ∈ ε
M

= 1

2
(a+ b

√
M)

t2 − 4, t even 1 (resp. −1) 〈ε
M

〉 (resp. 〈ε2
M

〉) a, b odd or even

t2 − 4, t odd 1 (resp. −1) 〈ε
M

〉 (resp. 〈ε2
M

〉) a, b odd

t2 + 4, t even −1 〈ε
M

〉 a, b odd or even

t2 + 4, t odd −1 〈ε
M

〉 a, b odd

Recall that the F.O.P. algorithm consists, after choosing the upper bound B, in es-
tablishing the list of first occurrences, as t increases from 1 up to B, of any square-free
integer M ≥ 2, in the factorization ms(t) = M(t)r(t)2 (whence M = M(t0) for some t0
and M 6= M(t) for all t < t0), and to consider the unit:

Es(t) :=
1
2

(
t+

√
t2 − 4s

)
= 1

2

(
t+ r(t)

√
M(t)

)
, of norm s.

The F.O.P. is necessary since, if t1 > t0 gives the same Kummer radicalM , Es(t0) = εn0

M

and Es(t1) = εn1

M with n1 > n0.

We shall prove (Theorem 4.2) that, under the F.O.P. algorithm, one always obtains the
minimal possible power n ∈ {1, 2} in the writing Es(t) = εnM , whence n = 2 if and only
if s = 1 and S = −1, which means that Es(t) is always the fundamental unit of norm s.

The following result shows that any square-free integer M ≥ 2 may be obtained for B
large enough.

Proposition 3.1. Consider the polynomial m1(t) = t2 − 4. For any square-free integer
M ≥ 2, there exists t ≥ 1 such that m1(t) = Mr2.
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Proof. The corresponding equation t2 − 4 = Mr2 becomes of the form t2 − Mr2 = 4.

Depending on the writing in Z[
√
M ] (M ≡ 2, 3 (mod 4)) or Z

[
1+

√
M

2

]
(M ≡ 1 (mod 4)),

of the powers εnM = 1
2 (t+r

√
M), n ≥ 1, of the fundamental unit εM , this selects infinitely

many t ∈ Z≥1. �

Remark 3.2. One may use, instead, the polynomial m′
1(t) = t2 − 1 since for any funda-

mental unit of the form εM = 1
2 (a+b

√
M), a, b odd, then ε3M ∈ Z[

√
M ], but some radicals

are then obtained with larger values of t; for instance, m1(5) = 21 and m′
1(55) = 21 · 122

corresponding to 55 + 12
√
21 =

(
1
2 (5 +

√
21)

)2
.

Since for t = 2t′, t2+4s = 4(t′2− s) gives the same Kummer radical as t′2− s, in some
cases we shall use m′

s(t) := t2 − s and especially m′
1(t) := t2 − 1 which is “universal” for

giving all Kummer radicals.

With the polynomials m−1(t) = t2 + 4 or m′
−1(t) = t2 + 1 a solution does exist if and

only if N(εM ) = −1 and one obtains odd powers of εM .

3.2. Checking of the exponent n in Es(t) = εnM(t). The following program determines

the expression of Es(t) as power of the fundamental unit of K; it will find that there is no
counterexample to the relation Es(t) ∈ {εM(t), ε

2
M(t)}, depending on S, from Table (3.1);

this will be proved later (Theorem 4.2). So these programs are only for verification, once
for all, because they unnecessarily need much more execution time.

Since Es(t) is written in 1
2Z[

√
M ] and εM on the usual Z-basis of ZK denoted {1,w} by

PARI (from the instruction quadunit), we write Es(t) on the PARI basis {1, quadgen(D)},
where D = quaddisc(M) is the discriminant.

One must specify B and s, the program takes into account the first value 2+ s of t
since t = 1, 2 are not suitable when s = 1; then the test n > (3 + s)/2 allows the cases
n = 1 or 2 when s = 1. The output of counterexamples is given by the (empty) list Vn:

3.2.1. Case s = 1, m(t) = t2 − 4 (expected exponents n ∈ {1, 2}).
{B=10^6;s=1;LM=List;LN=List;for(t=2+s,B,

mt=t^2-4*s;C=core(mt,1);M=C[1];r=C[2];res=Mod(M,4);

D=quaddisc(M);w=quadgen(D);Y=quadunit(D);

if(res!=1,Z=1/2*(t+r*w));if(res==1,Z=(t-r)/2+r*w);

z=1;n=0;while(Z!=z,z=z*Y;n=n+1);L=List([M,n]);

listput(LM,vector(2,c,L[c])));

VM=vecsort(vector(B-(1+s),c,LM[c]),1,8);

print(VM);print("#VM = ",#VM);

for(k=1,#VM,n=VM[k][2];if(n>(3+s)/2,Ln=VM[k];

listput(LN,vector(2,c,Ln[c]))));Vn=vecsort(LN,1,8);

print("exceptional powers : ",Vn)}

[M,n]=

[2,2],[3,1],[5,2],[6,1],[7,1],[10,2],[11,1],[13,2],[14,1],[15,1],[17,2],[19,1],[21,1],

[22,1],[23,1],[26,2],[29,2],[30,1],[31,1],[33,1],[34,1],[35,1],[37,2],[38,1],[39,1],

[41,2],[42,1],[43,1],[46,1],[47,1],[51,1],[53,2],[55,1],[57,1],[58,2],[59,1],[61,2],

[62,1],[65,2],[66,1],[67,1],[69,1],[70,1],[71,1],[74,2],[77,1],[78,1],[79,1],[82,2],

(...)

[999982000077,1],[999986000045,1],[999990000021,1],[999997999997,1]

#VM = 998893

exceptional powers:List([])

3.2.2. Case s = −1, m(t) = t2 + 4 (expected exponents n = 1).

[M,n]=

[2,1],[5,1],[10,1],[13,1],[17,1],[26,1],[29,1],[37,1],[41,1],[53,1],[58,1],[61,1],

[65,1],[73,1],[74,1],[82,1],[85,1],[89,1],[97,1],[101,1],[106,1],[109,1],[113,1],

[122,1],[130,1],[137,1],[145,1],[149,1],[157,1],[170,1],[173,1],[181,1],[185,1],

[197,1],[202,1],[218,1],[226,1],[229,1],[233,1],[257,1],[265,1],[269,1],[274,1],

(...)

[999986000053,1],[999990000029,1],[999994000013,1],[999998000005,1]

#VM = 999874

exceptional powers:List([])

3.3. Remarks on the use of the F.O.P. algorithm. (i) For a matter of space, the
programs do not print the units Es(t) in the outputs, but it may be deduced easily. To
obtain a more complete data, it suffices to replace the instructions:

L = List([M, n]), listput(LM, vector(2, c, L[c])), listput(LN, vector(2, c, Ln[c]))
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by the following ones (but any information can be put in L; the sole condition being to
put M as first component):

L = List([M, n, t]), listput(LM, vector(3, c, L[c])), listput(LN, vector(3, c, Ln[c]))

or simply:

L = List([M, t]), listput(LM, vector(2, c, L[c])), listput(LN, vector(2, c, Ln[c]))

giving the parameter t whence the trace, then the whole integer of Q(
√
M); for instance

for m−1(t) = t2 + 4 and the general program with outputs [M, n, t]:

[M,n,t]=

[2,1,2],[5,1,1],[10,1,6],[13,1,3],[17,1,8],[26,1,10],[29,1,5],[37,1,12],[41,1,64],

[53,1,7],[58,1,198],[61,1,39],[65,1,16],[73,1,2136],[74,1,86],[82,1,18],[85,1,9],

[89,1,1000],[97,1,11208],[101,1,20],[106,1,8010],[109,1,261],[113,1,1552],

[122,1,22],[130,1,114],[137,1,3488],...

For instance for the data [41, 1, 64], one has t = 64 giving t2 + 4 = 4100, whence the

fundamental unit E−1(64) = ε41 = 1
2 (64 + 10

√
41). Another interesting fact is the case

of [137, 1, 3488] giving a large fundamental unit at the beginning of the list.

(ii) The programs of § 3.2, computing n, may be used with changing ms(t) into other
polynomials as those given Section 5, or by any T := f(t) with the data mt = T2 ± 4 and

Z = (T+ r ∗ w)/2 as the following about units Es(T ) =
1
2 (T + r

√
M).

(a) T = t2 (traces are squares); all are fundamental units (B = 104, outputs [M, n]):

{B=10^4;s=1;LN=List;LM=List;for(t=2+s,B,T=t^2;

mt=T^2-4*s;C=core(mt,1);M=C[1];r=C[2];res=Mod(M,4);

D=quaddisc(M);w=quadgen(D);Y=quadunit(D);

if(res!=1,Z=1/2*(T+r*w));if(res==1,Z=(T-r)/2+r*w);

z=1;n=0;while(Z!=z,z=z*Y;n=n+1);L=List([M,n]);

listput(LM,vector(2,c,L[c])));

VM=vecsort(vector(B-(1+s),c,LM[c]),1,8);

print(VM);print("#VM = ",#VM);

for(k=1,#VM,n=VM[k][2];

if(n!=1,Ln=VM[k];listput(LN,vector(2,c,Ln[c]))));

Vn=vecsort(LN,1,8);print("exceptional powers : ",Vn)}

[M,n]=

[7,1],[51,1],[69,1],[77,1],[187,1],[287,1],[323,1],[723,1],[1023,1],[1067,1],[1077,1],

[2397,1],[3053,1],[3173,1],[5183,1],[6347,1],[6557,1],[9799,1],[14189,1],[14637,1],

[15117,1],[16383,1],[26243,1],[29127,1],[31093,1],[39999,1],[43637,1],[47103,1],

[47213,1],[50621,1],[71111,1],[71283,1],[83517,1],[99763,1],[102613,1],[114243,1],

(...)

[9956072546774637,1],[9964048570846557,1],[9988005398920077,1],[9996000599959997,1]

#VM = 9998

exceptional powers : List([])

(b) T = prime(t) (traces are prime), s = −1 (B = 104, outputs [M,T = prime(t), n]);

there is only the exception [5, 11, 5] obtained as ε55 = 1
2 (5 + 11

√
5):

[M,T=prime(t),n]

[5,11,5],[29,5,1],[53,7,1],[149,61,1],[173,13,1],[293,17,1],[317,89,1],[365,19,1],

[533,23,1],[773,139,1],[797,367,1],[821,16189,1],[965,31,1],[1373,37,1],[1493,2357,1],

[1685,41,1],[1781,211,1],[1853,43,1],[1997,9161,1],[2213,47,1],[2285,239,1],[2309,17539,1],

[2477,647,1],[2813,53,1],[3485,59,1],[3533,2437,1],[3653,1511,1],

(..)

[10965650093,104717,1],[10966906733,104723,1],[10968163445,104729,1]

#VM = 9995

exceptional powers:List([[5,11,5]])

(iii) When several polynomials mi(t), 1 ≤ i ≤ N , are considered together (to get more
Kummer radicals solutions of the problem), there is in general commutativity of the two
sequences in for(t = 1,B, for(i = 1,N,mt = · · · )) and for(i = 1,N, for(t = 1,B,mt = · · · )).
But we will always use the first one.

4. Application of the F.O.P. algorithm to norm equations

We will speak of solving a norm equation in K = Q(
√
M), for the search of integers

α ∈ Z+
K such that N(α) = sν, for s ∈ {−1, 1} and ν ∈ Z≥1 given (i.e., α = 1

2

(
u+ v

√
M

)
,

u, v ∈ Z≥1). If the set of solutions is non-empty we will define the notion of fundamental
solution; we will see that this definition is common to units (ν = 1) and non-units.
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We explain, in Theorem 4.6, under what conditions such a fundamental solution for
ν > 1 does exist, in which case it is necessarily unique and found by means of the F.O.P. ,
algorithm using m−1(t) or m1(t) (depending in particular on S).

Note that the resulting PARI programs only use very elementary instructions and never
the arithmetic ones defining K (as bnfinit,K.fu, bnfisintnorm, ...); whence the rapidity even
for large upper bounds B.

4.1. Main property of the trace map for units. In the case ν = 1, let S = N(εM );

we will see that α defines the generator of the group of units of norm s of Q(
√
M) when

it exists (whence εM if s = S or ε2M if S = −1 and s = 1).

Theorem 4.1. Let M ≥ 2 be a square-free integer. Let ε = 1
2 (a + b

√
M) > 1 be a unit

of K := Q(
√
M) (non-necessarily fundamental). Then T(εn) defines a strictly increasing

sequence of integers for n ≥ 1. 1

Proof. Set ε = 1
2 (a− b

√
M) for the conjugate of ε and let s = εε = ±1 be the norm of ε;

then the trace of εn is Tn := εn + εn = εn +
sn

εn
. Thus, we have:

Tn+1

Tn
=

εn+1 +
sn+1

εn+1

εn +
sn

εn

=
ε2(n+1) + sn+1

εn+1
× εn

ε2n + sn
=

ε2(n+1) + sn+1

ε2n+1 + snε
.

To prove the increasing, consider ε2n+1 + snε and ε2(n+1) + sn+1, which are positive
for all n since ε > 1; then:

(4.1)
∆n(ε) := ε2(n+1) + sn+1 − (ε2n+1 + snε) = ε2(n+1) − ε2n+1 + sn+1 − snε

= ε2n+1(ε− 1)− sn(ε− s).

(i) Case s = 1. Then ∆n(ε) = (ε− 1)(ε2n+1 − 1) is positive.

(ii) Case s = −1. Then ∆n(ε) = ε2(n+1) − ε2n+1 − (−1)n(ε+1). If n is odd, the result
is obvious; so, it remains to look at the expression for n = 2k, k ≥ 1:

(4.2) ∆2k(ε) = ε4k+2 − ε4k+1 − ε− 1.

Let f(x) := x4k+2 − x4k+1 − x− 1; then f ′(x) = (4k + 2)x4k+1 − (4k + 1)x4k − 1 and
f ′′(x) = (4k + 1)x4k−1[(4k + 2)x − 4k] ≥ 0 for all x ≥ 1. Thus f ′(x) is increasing for all
x ≥ 1 and since f ′(1) = 0, f(x) is an increasing map for all x ≥ 1; so, for k ≥ 1 fixed,
∆2k(ε) is increasing regarding ε.

Since the smallest unit ε > 1 with positive coefficients is ε0 := 1+
√
5

2 ≈ 1.6180... we

have to look, from (4.2), at the map F (z) := ε4z+2
0 − ε4z+1

0 − ε0 − 1, for z ≥ 1, to check
if there exists an unfavorable value of k; so:

F ′(z) := 4 log(ε0)ε
4z+2
0 − 4 log(ε0)ε

4z+1
0 = 4 log(ε0)ε

4z+1
0 (ε0 − 1) > 0.

Since F (1) ≈ 4.2360 > 0, one gets ∆n(ε) > 0 in the case s = −1, n even. �

4.2. Unlimited lists of fundamental units of norm s, s ∈ {−1, 1}. We have the
main following result.

Theorem 4.2. Let B ≫ 0 be given. Let ms(t) = t2 − 4s, s ∈ {−1, 1} fixed. Then, as
t grows from 1 up to B, for each first occurrence of a square-free integer M ≥ 2 in the
factorization ms(t) = Mr2, the unit Es(t) =

1
2 (t+r

√
M) is the fundamental unit of norm

s of Q(
√
M) (according to the Table (3.1) in § 3.1, we have Es(t) = εM if s = −1 or if

s = S = 1, then Es(t) = ε2M if s = 1 and S = −1).

Proof. Let M0 ≥ 2 be a given square-free integer. Consider the first occurrence t = t0
giving ms(t0) = M0r(t0)

2 if it exists (existence always fulfilled for s = 1 by Proposi-

tion 3.1); whence M0 = M(t0). Suppose that Es(t0) =
1
2

(
t0 + r(t0)

√
M(t0)

)
is not the

fundamental unit of norm s, εn0

M(t0)
(n0 ∈ {1, 2}) but a non-trivial power (εn0

M(t0)
)n, n > 1.

Put εn0

M(t0)
=: 1

2 (a+b
√
M(t0)); from Table (3.1), n0 ∈ {1, 2} is such that N(εn0

M(t0)
) = s

(recall that if s = 1 and S = −1, n0 = 2, if S = s = 1, n0 = 1; if s = −1, necessarily
S = −1 and n0 = 1, otherwise there were no occurrence of M0 for s = −1 and S = 1).

1The property holds from n = 0 (T(1) = 2), except for M = 5 (T(ε
M

) = 1, T(ε2
M

) = 3) and M = 2

(T(ε
M

) = 2, T(ε2
M

) = 6)).
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Then, Theorem 4.1 on the traces implies 0 < a < t0. We have:

a2 −M(t0)b
2 = 4s and ms(a) = a2 − 4s =: M(a)r(a)2;

but these relations imply M(t0)b
2 = M(a)r(a)2, whence M(a) = M(t0) = M0. That is

to say, the pair
(
t0, M0)

)
compared to

(
a, M(a) = M0)

)
, was not the first occurrence of

M0 (absurd). �

Corollary 4.3. Let t ∈ Z≥1 and let E1(t) =
1
2

(
t +

√
t2 − 4

)
of norm 1. Then E1(t) is

a square of a unit of norm −1, if and only if there exists t′ ∈ Z≥1 such that t = t′2 + 2;

thus E1(t) =
(
1
2 (t

′ +
√
t′2 + 4)

)2
= (E−1(t

′))2. So, the F.O.P. algorithm, with m1(t) =:

M(t)r(t)2, gives the list of [M(t), t] for which 1
2

(
t+

√
t2 − 4

)
= ε2M (resp. εM) if t−2 = t′2

(resp. if not).

Corollary 4.4. Let M ≥ 2 be a given square-free integer and consider the two lists given
by the F.O.P. algorithm, for m−1 and m1, respectively. Then, assuming B large enough,
M appears in the two lists if and only if S = −1. Then t′2 + 4 = Mr′2 for t′ minimal
gives the fundamental unit εM = 1

2 (t
′ + r′

√
M) and t2 − 4 = Mr2, for t minimal, gives

ε2M ; whence t = t′2 + 2 and r = r′t′.

For s = −1, hence m−1(t) = t2 + 4, t ∈ [1,B], we know, from Theorem 4.2, that the

F.O.P. algorithm gives always the fundamental unit εM of Q(
√
M) whatever its writing

in Z[
√
M ] or in Z

[
1+

√
M

2

]
.

For s = 1 one obtains ε2M if and only if S = −1. So we can skip checking and use
the following simpler program with larger upper bound B = 107; the outputs are the
Kummer radicals [M] in the ascending order (specify B and s):

MAIN PROGRAM FOR FUNDAMENTAL UNITS OF NORM s

{B=10^7;s=-1;LM=List;for(t=2+s,B,mt=t^2-4*s;

M=core(mt);L=List([M]);listput(LM,vector(1,c,L[c])));

VM=vecsort(vector(B-(1+s),c,LM[c]),1,8);

print(VM);print("#VM = ",#VM)}

s=-1

[M]=

[2],[5],[10],[13],[17],[26],[29],[37],[41],[53],[58],[61],[65],[73],[74],[82],[85],

[89],[97],[101],[106],[109],[113],[122],[130],[137],[145],[149],[157],[170],[173],

[181],[185],[193],[197],[202],[218],[226],[229],[233],[257],[265],[269],[274],[277],

[281],[290],[293],[298],[314],[317],[346],[349],[353],[362],[365],[370],[373],[389],

(...)

[99999860000053],[99999900000029],[99999940000013],[99999980000005]]

#VM = 9999742

s=1

[M]=

[2],[3],[5],[6],[7],[10],[11],[13],[14],[15],[17],[19],[21],[22],[23],[26],[29],[30],

[31],[33],[34],[35],[37],[38],[39],[41],[42],[43],[46],[47],[51],[53],[55],[57],[58],

[59],[61],[62],[65],[66],[67],[69],[70],[71],[73],[74],[77],[78],[79],[82],[83],[85],

[86],[87],[89],[91],[93],[94],[95],[101],[102],[103],[105],[107],[109],[110],[111],

(...)

[99999820000077],[99999860000045],[99999900000021],[99999979999997]

#VM = 9996610

The same program with outputs of the form [M, r, t] for s = 1 gives many examples of
squares of fundamental units. For instance, the data [29, 5, 27] defines the unit E1(27) =
1
2 (27+5

√
29) and since 27−2 = 52, then t′ = 5, r′ = 1 and E1(27) =

(
1
2 (5+

√
29)

)2
= ε229.

Some Kummer radicals giving units εM of norm −1 do not appear up to B = 107,
e.g., M ∈ {241, 313, 337, 394, . . .}; but all the Kummer radicals M , such that S = −1,
ultimately appear as B increases. So, as B → ∞, any unit is obtained, which suggests the
existence of natural densities in the framework of the F.O.P. algorithm. More precisely, in
the list LM (i.e., before using VM = vecsort(vector(B, c, LM[c]), 1, 8)), any Kummer radical
M does appear in the list as many times as the trace of εnM (n odd) is less than B, which
gives for instance (B = 103):

[M]=

[5],[2],[13],[5],[29],[10],[53],[17],[85],[26],[5],[37],[173],[2],[229],[65],[293],[82],

[365],[101],[445],[122],[533],[145],[629],[170],[733],[197],[5],[226],[965],[257],

[1093],[290],[1229],[13],
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This fact with Corollaries 4.3, 4.4 may suggest some analytic computations of densities
(see a forthcoming paper [Gra10] for more details). For this purpose, we give an estimation
of the gap #LM− #VM = B− #VM.

Theorem 4.5. Consider the F.O.P. algorithm for units, in the interval [1,B] and s ∈
{−1, 1}. Let ∆ be the gap between B and the number of results. Then, as B → ∞:

(i) For the polynomial m−1(t) = t2 + 4, ∆ ∼ B
1

3 ,

(ii) For the polynomial m1(t) = t2 − 4, ∆ ∼ B
1

2 ,

Proof. (i) In the list LM of Kummer radicals giving units of norm −1, we know, from
Theorem 4.2, that one obtain first the fundamental unit ε0 := εM0

from the relation

t20 +4 = M0r
2
0 , then its odd powers ε2n+1

M0
for n ∈ [1, nmax] corresponding to some tn such

that t2n + 4 = M0r
2
n and tn ≤ tmax defined by the equivalence:

1

2

(
tmax + rmax

√
M0

)
∼

(
1

2

(
t0 + r0

√
M0

))2nmax+1

in an obvious meaning. Thus, the “maximal unit” is equivalent to B giving

nmax ∼ 1

2

[
logB

log t0
− 1

]
.

So, we have to estimate the sums
∑

t∈[1,b]
1

2

[
logB

log t
− 1

]
, where log(b) ∼ 1

3
log(B).

Of course there will be repetitions in the sum, but a more precise estimation is not
necessary and we obtain an upper bound:

∆ ∼
∑

t∈[1,b]

1

2

[ logB
log t

− 1
]
∼ logb

∑

t∈[1,b]

1

log t
∼ logb · b

logb
∼ b = B

1

3 .

(ii) In the case of norm 1, the list LM is relative to the fundamental units of norm
1 with all its powers (some are the squares of the fundamental units of norm −1); the
reasoning is the same, replacing 1

3 by 1
2 . �

4.3. Unlimited lists of fundamental integers of norm sν, ν ≥ 2. The F.O.P. algo-
rithm always give lists of results, but contrary to units, some norms sν do not exist in a
given field K; in other words, the F.O.P. only give suitable Kummer radicals since sν is
given. Recall the well known:

Theorem 4.6. Let s ∈ {−1, 1} and ν ∈ Z≥2 be given.

(i) A fundamental solution of the norm equation u2 − Mv2 = 4sν (Definition 1.2)
does exist if and only if there exists an integer principal ideal a of absolute norm ν with
a generator α ∈ Z+

K whose norm is of sign s.

Under the existence of a = (α), with N(α) = s′ν, a representative α ∈ Z+
K , modulo

〈εM 〉, does exist whatever s as soon as S = −1; if S = 1, a fundamental solution α ∈ Z+
K

does exist if and only if s′ = s.

(ii) When the above conditions are fulfilled, the fundamental solution corresponding to
the ideal a is unique (in the meaning that two generators of a in Z+

K , having same trace,
are equal) and found by the F.O.P. algorithm.

Proof. (i) If a = (α), of absolute norm ν, with α = 1
2 (u + v

√
M) ∈ Z+

K , one obtains

u2 −Mv2 = 4sν for a suitable s ∈ {−1, 1} giving a solution with t = u; then msν(t) =
t2 − 4sν = M(t)r2, whence M = M(u) and r = v.

Reciprocally, assume that the corresponding equation (in unknowns t ≥ 1, s = ±1)
t2 − 4sν = Mr2, M ≥ 2 square-free, has a solution, whence t2 − Mr2 = 4sν. Set
α := 1

2 (t + r
√
M) ∈ Z+

K ; then one obtains the principal ideal a = (α)ZK of absolute
norm ν.

(ii) Assume that α, β are two generators of a in Z+
K with common trace t ≥ 1. Put

β = α · εnM , n ∈ Z, n 6= 0. Then:

T(β) = α · εnM + ασ · εnσM =
α2 · ε2n

M
+ sSn ν

α · εn
M

, T(α) =
α2 + s ν

α
;

thus T(β) = T(α) is equivalent to α2 · ε2nM + sSn ν = α2 · εnM + s νεnM , whence to:

α2 · εnM (εnM − 1) = (εnM − Sn)s ν.
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The case Sn = −1 is not possible since N(β) = N(α) = N(εnM ) = Sn; so, Sn = 1, in
which case, one gets α2 · εnM = s ν = s α1+σ, thus ασ = α · εnM and β = ασ, but in that
case, β /∈ Z+

K (absurd). Whence the unicity. �

Remark 4.7. Consider the above case where α and β are two generators of a in Z+
K

with common trace t ≥ 1 and norm sν. Thus, we have seen that β = ασ = α · εnM . The
ideal a = (α) is then invariant by G := Gal(K/Q), so it is of the form a = (q)×∏

p|D pep ,

where q ∈ Z, D is the discriminant of K, p2 = pZK and ep ∈ {0, 1}. In other words, we
have to determine the principal ideals, products of distinct ramified prime ideals. This is
done in details in [Gra10, §§ 2.1, 2.2]

For instance, let M = 15 and sν = −6. One has the fundamental solution α = 3 +
√
15

of norm −6, with the trace t = 6; then ασ = 3 −
√
15 = α · (−4 +

√
15) = α · (−ε−1

M );

similarly, for sν = 10, one has the fundamental solution α = 5 +
√
15 of norm 10, with

trace t = 10 and the relation ασ = 5−
√
15 = α · (4−

√
15) = α · (εσM ). These fundamental

solutions are indeed given by the F.O.P. algorithm by means of the data [M, t]:
s.Nu=-6

[M,t]=

[1,1],[6,24],[7,2],[10,4],[15,6],...

s.Nu=10

[M,t]=

[-39,1],[-31,3],[-15,5],[-6,4],[-1,2],[1,7],[6,8],[10,20],[15,10],...

Depending on the choice of the polynomials m−1(t) or m1(t), consider for instance,
the F.O.P. algorithm applied to M = 13 (for which S = −1), ν = 3, gives with m−1(t)

the solution [M = 13, t = 1] whence α = 1
2 (1 +

√
13) of norm −3; with m1(t) it gives

[M = 13, t = 5], α = 1
2 (5 +

√
13) of norm 3; the traces 1 and 5 are minimal for each case.

We then compute that 1
2 (5 +

√
13) = 1

2 (1−
√
13)(−ε13).

But with M = 7 (for which S = 1), the F.O.P. algorithm with m−1(t) and ν = 3 gives
[M = 7, t = 4] but nothing with m1(t).

Remark 4.8. A possible case is when there exist several principal integer ideals a of
absolute norm νZ (for instance when ν = q1q2 is the product of two distinct primes
and if there exist two prime ideals q1, q2, of degree 1, over q1, q2, respectively, such that
a := q1q2 and a′ := q1q

σ
2 are principal). Let a =: (α) and a′ =: (α′) of absolute norm ν.

We can assume that, in each set of generators, α and α′ have minimal trace u and u′, and
necessarily we have, for instance, u′ > u; since the ideals a are finite in number, there
exists an “absolute” minimal trace u defining the unique fundamental solution which is
that found by the suitable F.O.P. algorithm.

For instance, let s = −1, ν = 15; the F.O.P. algorithm gives the solution [19, 4], whence

α = 2 +
√
19 of norm −15. In K = Q(

√
19) we have prime ideals q3 = (4 +

√
19) | 3,

q5 = (9 + 2
√
19) | 5. Then we obtain the fundamental solution with a = qσ3 q5, while

q3 q5 = (74 + 17
√
19). The fundamental unit is εM = 170 + 39

√
19 of norm S = 1

and one computes some products ±αεnM giving a minimal trace with n = −1 and the

non-fundamental solution 17 + 4
√
19.

If ν =
∏

q|ν q
nq , where q denotes distinct prime numbers, there exist integer ideals a of

absolute norm νZ if and only if, for each inert q | ν then nq is even. In the F.O.P. algorithm
this will select particular Kummer radicals M for which each q | ν, such that nq is

odd, ramifies or splits in K = Q(
√
M); this is equivalent to q | D (the discriminant of

K = Q(
√
M)) or to ρq :=

(
M
q

)
= 1 in terms of quadratic residue symbols; if so, we then

have ideal solutions N(a) = νZ.

Let’s write, with obvious notations a =
∏

q,q=0
qnq

∏
q, ρq=−1

q2n
′

q

∏
q, ρq=1

qn
′

qqn
′′

q σ. Then the

equation becomes N(a′) = ν′Z for another integral ideal a′ and another ν′ | ν, where a′

is an integer ideal “without any rational integer factor”. Thus, N(α′) = sν′ is equivalent
to a′ = α′ZK . This depends on relations in the class group of K and gives obstructions
for some Kummer radicals M . Once a solution a′ principal exists (non unique) we can
apply Theorem 4.6.

4.3.1. Program for lists of quadratic integers of norm ν ≥ 2. The program for units
can be modified by choosing an integer ν ≥ 2, a sign s ∈ {−1, 1} and the polynomial
msν(t) = t2 − 4sν (outputs [M(t), t]):
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MAIN PROGRAM FOR FUNDAMENTAL INTEGERS OF NORM s.nu

{B=10^6;s=1;nu=2;LM=List;for(t=1,B,mt=t^2-4*s*nu;M=core(mt);L=List([M,t]);

listput(LM,vector(2,c,L[c])));VM=vecsort(vector(B,c,LM[c]),1,8);

print(VM);print("#VM = ",#VM)}

(i) s = 1, ν = 2.

[M,t]=

[-7,1],[-1,2],[1,3],

[2,4],[7,6],[14,8],[17,5],[23,10],[31,78],[34,12],[41,7],[46,312],[47,14],[62,16],[71,118],

[73,9],[79,18],[89,217],[94,2928],[97,69],[103,954],[113,11],[119,22],[127,4350],[137,199],

[142,24],[151,83142],[158,176],[161,13],[167,26],[191,5998],[193,56445],[194,28],

[199,255078],[206,488],[217,15],[223,30],[233,6121],[238,216],

(...)

[999986000041,999993],[999990000017,999995],[999994000001,999997],[999997999993,999999]

#VM = 999909

(ii) s = −1, ν = 3.

[M,t]=

[1, 2],

[3,6],[7,4],[13,1],[19,8],[21,3],[31,22],[37,5],[39,12],[43,26],[57,30],[61,7],[67,16],

[73,34],[91,38],[93,9],[97,1694],[103,20],[109,73],[111,42],[127,586],[129,318],

[133,11],[139,448],[151,172],[157,50],[163,1864],[181,13],[183,54],[193,379486],

[199,28],[201,1758],[211,58],[217,766],[237,15],[241,62],[247,220],[259,32],[271,428],

(...)

[999986000061,999993],[999990000037,999995],[999994000021,999997],[999998000013,999999]

#VM = 999866

Consider the output [93, 9] (M = 3·31, t = 9, r = 1); then α = A−3(9) =
1
2 (9+

√
3 · 31)

of norm −3 with ramified prime 3; it is indeed the minimal solution since the equation
reduces to 3x′2 + 4 = 31y2 with minimal x′ = 3, then minimal trace x = 9.

For the output [193, 379486], α = A−3(379486) =
1
2 (379486+27316

√
193) of norm −3;

this is the minimal solution despite of a large trace, but ε193 = 1
2 (1764132+126985

√
193)

is very large and cannot intervene to decrease the size.

(iii) s = 1, ν = 15.

[M,t]=

[-59,1],[-51,3],[-35,5],[-14,2],[-11,4],[-6,6],[1,8],

[10,10],[21,9],[34,14],[61,11],[66,18],[85,20],[106,22],[109,13],[129,24],[154,26],

[165,15],[181,28],[201,312],[210,30],[229,17],[241,32],[265,1400],[274,34],[301,19],

[309,36],[346,38],[349,131],[354,414],[381,21],[385,40],[394,278],[409,41216],[421,3919],

(...)

[999982000021,999991],[999985999989,999993],[999993999949,999997],[999997999941,999999]

#VM = 999815

s=-1 nu=15

[M,t]=

[1,2],

[6,6],[10,10],[15,30],[19,4],[31,8],[34,22],[46,26],[51,12],[61,1],[69,3],[79,16],[85,5],

[94,38],[106,82],[109,7],[114,42],[115,20],[139,94],[141,9],[151,98],[159,24],[166,206],

[181,11],[186,54],[190,110],[199,536],[211,28],[214,58],[229,13],[241,52658],[249,126],

[265,130],[271,32],[274,1258],[285,15],[310,70],[331,7714],[334,146],[339,36],

(...)

[999986000109,999993],[999990000085,999995],[999994000069,999997],[999998000061,999999]

#VM = 999782

For instance, [85, 5] illustrates Theorem 4.6 with the solution α = 1
2 (5 +

√
85) of norm

−15, with (α)ZK = q3q5, where 3 splits in K and 5 is ramified; one verifies that the ideals
q3 and q5 are non-principal, but their product is of course principal. For this, one obtains
the following PARI/GP verifications:

k=bnfinit(x^2-85)

k.clgp=[2,[2],[[3,1;0,1]]]

idealfactor(k,3)=[[3,[0,2]~,1,1,[-1,-1]~]1],[[3,[2,2]~,1,1,[0,-1]~]1]

idealfactor(k,5)=[[5,[1,2]~,2,1,[1,2]~]2]

bnfisprincipal(k,[3,[2,2]~,1,1,[0,-1]~])=[[1]~,[1,0]~]

bnfisprincipal(k,[5,[1,2]~,2,1,[1,2]~])=[[1]~,[1,1/3]~]

A=idealmul(k,[3,[2,2]~,1,1,[0,-1]~],[5,[1,2]~,2,1,[1,2]~])

bnfisprincipal(k,A)=[[0]~,[2,-1]~]

nfbasis(x^2-85)=[1,1/2*x-1/2]

The data [[0], [2,−1]] gives the principality with generator [2,−1] denoting (because of

the integral basis {1, 12x− 1
2} used by PARI), 2−

[
1
2

√
85− 1

2

]
= 1

2 (5−
√
85) = ασ .

(iv) s = −1, ν = 9× 25.
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[M,t]=

[1,16],

[2,30],[5,15],[10,10],[13,20],[17,120],[26,6],[29,12],[34,18],[37,5],[41,24],[53,105],

[58,70],[61,25],[65,240],[73,80],[74,42],[82,270],[85,35],[89,48],[97,1280],[101,3],

[106,54],[109,9],[113,23280],[122,330],[130,110],[137,52320],[145,360],[146,66],

[149,21],[157,55],[170,390],[173,195],[178,130],[181,27],[185,2040],

(...)

[999966001189,999983],[999978001021,999989],[999982000981,999991],[999994000909,999997]

#VM = 999448

The case [37, 5] may be interpreted as follows: m−1(5) = 52+4 ·9 ·25 = 52 ·37, whence
A−1(5) =

1
2 (5+5

√
37) = 5 · 12 (1+

√
37) =: 5B, where B := 1

2 (1+
√
37) is of norm −9 and

5 is indeed inert in K. Thus 1
2 (1 +

√
37)ZK is the square of a prime ideal q3 over 3. The

field K is principal and we compute that q3 = 1
2 (5±

√
37)ZK , q23 = 1

2 (31± 5
√
37)ZK . So,

BZK = 1
2 (1 +

√
37)ZK = 1

2 (31 + 5
√
37)ZK or 1

2 (31− 5
√
37)ZK . We have ε37 = 6 +

√
37

and we obtain that B = 1
2 (31 − 5

√
37) · ε37, showing that α = 5 · 1

2 (1 +
√
37) is the

fundamental solution of the equation N(α) = 32 · 52 with minimal trace 5.

For larger integers ν, fundamental solutions are obtained easily, as shown by the fol-
lowing example with the prime ν = 1009:

(v) s = −1, ν = 1009.

[M,t]=

[2,14],[5,13],[10,102],[29,100],[37,21],[41,8],[58,42],[74,58],[101,305],[109,1617],

[113,656],[137,2504],[157,108],[173,17],[185,1168],[197,259],[202,35958],[205,33],

[209,4192],[218,854],[241,380808],[253,681],[269,620],[290,158],[313,384],[314,2090],

[317,1316],[337,6792],[341,67],[353,16496],[370,1422],[394,86742],

(...)

[999986004085,999993],[999990004061,999995],[999994004045,999997],[999998004037,999999]

#VM = 999664

We finish with a highly composed number ν, not obvious for a calculation by hand:

(vi) s = 1, ν = 2× 3× 5× 7.

[M,t]=

[-839,1],[-831,3],[-815,5],[-791,7],[-759,9],[-719,11],[-671,13],[-615,15],[-551,17],

[-479,19],[-399,21],[-311,23],[-215,25],[-209,2],[-206,4],[-201,6],[-194,8],[-185,10],

[-174,12],[-161,14],[-146,16],[-129,18],[-111,27],[-110,20],[-89,22],[-66,24],[-41,26],

[-14,28],[1,29],[15,30],[46,32],[79,34],[114,36],[151,38],[190,40],[226,332],[231,42],

[249,33],[274,44],[319,46],[366,48],[385,35],[415,50],[466,52],[511,2758],[519,54],

[526,872],[574,56],[609,273],[610,4100],[631,58],[679,574],[681,39],[690,60],[721,511],

[751,62],[814,64],[834,636],[865,1265],[879,66],[919,2486],[946,68],[991,30158],[1009,43],

(...)

[999985999209,999993],[999989999185,999995],[999993999169,999997],[999997999161,999999]

#VM = 999715

We have not dropped the negative radicals meaning, for instance with M = −839, that
a solution of the norm equation does exist in Q(

√
−839) with α = 1

2 (1+
√
−839), or with

M = −14 giving α = 14 +
√
−14.

5. Universality of the polynomials msν

Let’s begin with the following obvious result making a link with polynomials msν .

Lemma 5.1. Let M ≥ 2 be a square-free integer and K = Q(
√
M); then, any α ∈ Z+

K is
characterized by its trace a ∈ Z and its norm sν, s ∈ {−1, 1}, ν ∈ Z≥1; from these data,

α = 1
2 (a+ b

√
M) where b is given by msν(a) =: Mb2.

Proof. From the equation α2−aα+sν = 0, we get α = 1
2 (a+

√
a2 − 4sν), where necessarily

a2 − 4sν =: Mb2 (unicity of the Kummer radical) giving b > 0 from the knowledge of a
and sν. �

5.1. Mc Laughlin’s polynomials. Consider some polynomials that one finds in the
literature; for instance that of Mc Laughlin [McL] obtained from “polynomial continued
fraction expansion”, giving formal units, and defined as follows.

Let m ≥ 2 be a given square-free integer and let Em = u + v
√
m, u, v ∈ Z≥1, be

the fundamental solution of the norm equation (or Pell–Fermat equation) u2 −mv2 = 1
(thus, Em = εn0

m , n0 ∈ {1, 2, 3, 6}). For such m,u, v, each of the data below leads to the
fundamental polynomial solution of the norm equation U(t)2 −m(t)V (t)2 = 1 (see [McL,
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Theorems 1–5]), giving the parametrized units EM(t) = U(t) + V (t)r
√

M(t), of norm 1

of Q(
√
M(t)), where m(t) =: M(t)r(t)2, M(t) square-free.

The five polynomials m(t) are:





mcl1(t) = v2t2 + 2ut+m,

U(t) = v2t+ u, V (t) = v;

mcl2(t) = (u− 1)2
(
v2t2 + 2t

)
+m,

U(t) = (u− 1)
(
v4t2 + 2v2t

)
+ u, V (t) = v3t+ v;

mcl3(t) = (u+ 1)2
(
v2t2 + 2t

)
+m,

U(t) = (u+ 1)
(
v4t2 + 2v2t

)
+ u, V (t) = v3t+ v;

mcl4(t) = (u+ 1)2v2t2 + 2(u2 − 1)t +m,

U(t) =
(u+ 1)2

u− 1
v4t2 + 2(u+ 1)v2t+ u, V (t) =

u+ 1

u− 1
v3t+ v;

mcl5(t) = (u− 1)2
(
v6t4 + 4v4t3 + 6v2t2

)
+ 2(u− 1)(2u − 1)t +m,

U(t) = (u− 1)
(
v6t3 + 3v4t2 + 3v2t

)
+ u, V (t) = v3t+ v.

Note that for mcl1(t) one may also use a unit Em = u + v
√
m of norm −1 since

U(t)2 −mcl1(t)V (t)2 = u2 −mv2, which is not possible for the other polynomials.

We may enlarge the previous list with cases where the coefficients of Em may be half-
integers defining more general units (as ε5, ε13 of norm −1 in the case of mcl1(t), then as
ε21 of norm 1 for the other mcl(t)). This will give Em = εm or ε2m.

So we have the following transformation of the mcl(t), U(t), V (t), that we explain with
mcl1(t). The polynomial mcl1(t) fulfills the condition U(t)2 −mcl1(t)V (t)2 = u2 −mv2,
which is the norm of Em = u + v

√
m; so we can use any square-free integer m ≡ 1

(mod 4) such that Em = 1
2

(
u + v

√
m
)
, u, v ∈ Z≥1 odd, and we obtain the formal unit

EM(t) = 1
2

(
U(t) + V (t)

√
mcl1(t)

)
under the condition t even to get U(t), V (t) ∈ Z≥1.

This gives the polynomials mcl6(t) = v2t2+2ut+m and the coefficients U(t) = 1
2 (v

2t+u),

V (t) = 1
2v of a new unit, with mcl6(t) = M(t)r(t)2, for all t ≥ 0,.

For the other mcl(t) one applies the maps t 7→ 2t, t 7→ 4t, depending on the degrees;

so we obtain the following list, where the resulting unit is EM(t) = U(t) + V (t)
√

m(t), of

norm ±1, under the conditions m ≡ 1 (mod 4) and εm = 1
2 (u+ v

√
m), u, v odd:






mcl6(t) = v2t2 + 2ut +m,

U(t) =
1

2
(v2t+ u), V (t) =

1

2
v;

mcl7(t) = (u− 2)2
(
v2t2 + 2t

)
+m,

U(t) =
1

2

(
(u− 2)(v4t2 + 2v2t) + u

)
, V (t) =

1

2

(
v3t+ v

)
;

mcl8(t) = (u+ 2)2
(
v2t2 + 2t

)
+m,

U(t) =
1

2

(
(u+ 2)(v4t2 + 2v2t) + u

)
, V (t) =

1

2

(
v3t+ v

)
;

mcl9(t) = (u+ 2)2v2t2 + 2(u2 − 4)t +m,

U(t) =
1

2

( (u+ 2)2

u− 2
v4t2 + 2(u+ 2)v2t+ u

)
, V (t) =

1

2

(u+ 2

u− 2
v3t+ v

)
;

mcl10(t) = (u− 2)2
(
v6t4 + 4v4t3 + 6v2t2

)
+ 4(u− 2)(u− 1)t +m,

U(t) =
1

2

(
(u− 2)(v6t3 + 3v4t2 + 3v2t) + u

)
, V (t) =

1

2

(
v3t+ v

)
.

5.2. Application to finding units. In fact, these numerous families of parametrized
units are nothing but the units Es(T ) =

1
2 (T +

√
T 2 − 4s) when the parameter T = U(t)

is a given polynomial expression. This explain that the properties of the units Es(T )
are similar to that of the two universal units Es(t), for t ∈ Z≥1, but, a priori, the
F.O.P. algorithm does not give fundamental units when T (t) is not a degree 1 monic
polynomial; nevertheless it seems that the algorithm gives most often fundamental units,
at least for all t ≫ 0.

We give the following example, using for instance the Mc Laughlin polynomial mcl10(t)

with m = 301, u = 22745, v = 1311, corresponding to, εm = 1
2 (22745 + 1311

√
301) of

norm 1 (program of Section 3); this will give enormous units EM(t) =: εnM(t). The output

is of the form [M(t), r(t), n]. Then there is no exception to EM(t) = εM(t) (i.e., n = 1);

moreover, one sees many cases of non-square-free integers mcl10(t):
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Mc LAUGHLIN UNITS

{B=10^3;LN=List;LM=List;u=22745;v=1311;for(t=1,B,

mt=(u-2)^2*(v^6*t^4+4*v^4*t^3+6*v^2*t^2)+4*(u-2)*(u-1)*t+301;

ut=1/2*((u-2)*(v^6*t^3+3*v^4*t^2+3*v^2*t)+u);vt=1/2*(v^3*t+v);

C=core(mt,1);M=C[1];r=C[2];D=quaddisc(M);w=quadgen(D);

Y=quadunit(D);res=Mod(M,4);

if(res!=1,Z=ut+r*vt*w);if(res==1,Z=ut-r*vt+2*r*vt*w);

z=1;n=0;while(Z!=z,z=z*Y;n=n+1);L=List([M,r,n]);

listput(LM,vector(3,c,L[c])));VM=vecsort(vector(B,c,LM[c]),1,8);

print(VM);print("#VM = ",#VM);

for(k=1,#VM,n=VM[k][3];if(n>1,Ln=VM[k];

listput(LN,vector(3,c,Ln[c]))));Vn=vecsort(LN,1,8);

print("exceptional powers:",Vn)}

[M,r,n]=

[656527122296918386395032242,2,1],[1594671238615711306590405613,63245,1],

[6538031892707128354912512481,1400,1],[8374054846220987469202089646,14,1],

[13294653599300065679245260247,4,1],[17461037237177260272395675419,140,1],

[28515629817043220531451663970,7672,1],[42017686932862256394245096245,1,1],

(...)

[2626102383534535069268098426753041168301,1,1]

#VM = 1000

exceptional powers : List([])

Using the Remark 1.5, with B = 103 and m(t) of degree 4, with leading coefficient:

a4B
4 = (22745− 2)2 · 13116 · 1012 = 2626102377422775499879732689000000000000,

one gets:

log(2626102383534535069268098426753041168301)/ log(a4B
4) ≈ 1.000000000025...

6. Non p-rationality of quadratic fields

6.1. Recalls about p-rationality. Let p ≥ 2 be a prime number. The definition of
p-rationality of a number field lies in the framework of abelian p-ramification theory. The
references we give in this article are limited to cover the subject and concern essentially
recent papers; so the reader may look at the historical of the abelian p-ramification
theory that we have given in [Gra5, Appendix], for accurate attributions, from Šafarevič’s
pioneering results, about the numerous approaches (class field theory, Galois cohomology,
pro-p-group theory, infinitesimal theory); then use its references concerning developments
of this theory (from our Crelle’s papers 1982–1983, Jaulent’s infinitesimals [Jau1] (1984),
Jaulent’s thesis [Jau2] (1986), Nguyen Quang Do’s article [Ng] (1986), Movahhedi’s thesis
[Mov] (1988) and subsequent papers); all prerequisites and developments are available in
our book [Gra1] (2005).

Definition 6.1. A number field K is said to be p-rational if K fulfills the Leopoldt conjec-
ture at p and if the torsion group TK of the Galois group of the maximal abelian p-ramified
(i.e., unramified outside p and ∞) pro-p-extension of K is trivial.

We will use the fact that, for totally real fields K, we have the formula:

(6.1) #TK = #C
′
K · #RK · #WK ,

where C ′
K is a subgroup of the p-class group CK and where WK depends on local and global

p-roots of unity; for K = Q(
√
M) and p > 2, C ′

K = CK and WK = 1 except if p = 3 and

M ≡ −3 (mod 9), in which case WK ≃ Z/3Z. For p = 2, C ′
K = CK except if K(

√
2)/K

is unramified (i.e., if M = 2M1, M1 ≡ 1 (mod 4)). Then RK is the “normalized p-adic
regulator” of K (general definition for any number field in [Gra4, Proposition 5.2]). For

K = Q(
√
M) and p 6= 2, #RK ∼ 1

p logp(εM ); for p = 2, #RK ∼ 1
2d

log2(εM ), where

d ∈ {1, 2} is the number of prime ideals above 2.

So #TK is divisible by the order of RK , which gives a sufficient condition for the non-
p-rationality of K. Since CK = WK = 1 for p ≫ 0, the p-rationality only depends on RK

in almost all cases.

Proposition 6.2. ([Gra6, Proposition 5.1]) Let K = Q(
√
m) be a real quadratic field of

fundamental unit εm. Let p > 2 be a prime number with residue degree f ∈ {1, 2}.
(i) For p ≥ 3 unramified in K, vp(#RK) = vp(ε

pf−1
m − 1)− 1.

(ii) For p > 3 ramified in K, vp(#RK) = 1
2 (vp(ε

p−1 − 1)− 1), where p2 = (p).
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(iii) For p = 3 ramified in K, v3(#RK) = 1
2 (vp(ε

6 − 1) − 2 − δ), where p2 = (3) and
δ = 1 (resp. δ = 3) if m 6≡ −3 (mod 9) (resp. m ≡ −3 (mod 9)).

A sufficient condition for the non-triviality of RK that encompasses all cases (since the

decomposition of p in Q(
√
M(t)) is unpredictable in the F.O.P. algorithm) is logp(εm) ≡ 0

(mod p2); this implies that εm is a local pth power at p. It suffices to force the parameter t

to be such that a suitable prime-to-p power of Es(t) =
1
2

(
t+ r(t)

√
M(t)

)
is congruent to

1 modulo p2. So, exceptions may arrive only when Es(t) is a global pth power.

6.2. Remarks about p-rationality and non-p-rationality. In some sense, the p-
rationality of K comes down to saying that the p-arithmetic of K is as simple as possible
and that, on the contrary, the non p-rationality is the standard context, at least for some
p for K fixed and very common when K varies in some families, for p fixed.

a) In general, most papers intend to find p-rational fields, a main purpose being to
prove the existence of families of p-rational quadratic fields (see, e.g., [AsBo, Ben, BGKK,
BeMo, Bou, BaRa, By, Gra2, Gra6, Kop, MaRo1, MaRo2, CLS]); for this there are
three frameworks that may exist in general, but, to simplify, we restrict ourselves to real
quadratic fields:

(i) The quadratic field K is fixed and it is conjectured that there exist only finitely
many primes p > 2 for which K is non p-rational, which is equivalent to the existence of
finitely many p for which 1

p logp(εK) ≡ 0 (mod p).

(ii) The prime p > 2 is fixed and it is proved/conjectured that there exist infinitely
many p-rational quadratic field K, which is equivalent to the existence of infinitely many
K’s for which the p-class group is trivial and such that 1

p logp(εK) is a p-adic unit; this

aspect is more difficult because of the p-class group.

(iii) One constructs some families of fields K(p) indexed by p prime. These examples
of quadratic fields often make use of Lemma 5.1 to get interesting radicals and units.

For instance we have considered in [Gra6, § 5.3] (as many authors), the polynomials

t2p2ρ + s for p-adic properties of the unit E = t2p2ρ + s+ tpρ
√
t2p2ρ + 2s of norm 1.

Taking “ρ = 1
2 , t = 1”, one gets the unit E = p+ s+

√
p(p+ 2s) considered in [Ben]

where it is proved that for p > 3, the fields Q(
√
p(p+ 2)) are p-rational since the p-class

group is trivial (for analytic reasons) and the unit p+1+
√
p(p+ 2) is not a local p-power.

Note that 4p(p+ 2s) = m1(2p+ 2s), since N(E) = 1 for all s.

Similarly, in [BeMo], is considered the bi-quadratic fields Q(
√
p(p+ 2),

√
p(p− 2)),

containing the quadratic field Q(
√
p2 − 4) giving the unit 1

2 (p+
√

p2 − 4) still associated
to m1(p); the p-rationality comes from the control of the p-class group since the p-adic
regulators are obviously p-adic units.

Finally, in [Kop], is considered the tri-quadratic fields Q(
√
p(p+ 2),

√
p(p− 2),

√
−1)

which are proven to be p-rational for infinitely many primes p; but these fields are imag-
inary, so that one has to control the p-class group by means of non-trivial analytic argu-
ments.

The p-rational fields allow many existence theorems and conjectures (as the Green-
berg’s conjecture [Gre2] on Galois representations with open images, yielding to many
subsequent papers as [AsBo, Ben, BeMo, Bou, BaRa, GrJa, Jau2, Kop]); they give re-
sults in the pro-p-group Galois theory [MaRo1]. Algorithmic aspects of p-rationality may
be found in [Gra3, Gra5, PiVa] and in [BeJa] for the logarithmic class group having strong
connexions with TK in connection with another Greenberg conjecture [Gre1] (Iwasawa’s
invariants λ = µ = 0 for totally real fields); for explicit characterizations in terms of p-
ramification theory, see [Jau4, Gra8], Greenberg’s conjecture being obvious when TK = 1.

b) We observe with the following program that the polynomials:

ms(p+ 1) = (p+ 1)2 − 4s and ms(2p+ 2) = 4(p+ 1)2 − 4s

always give p-rational quadratic fields, apart from very rare exceptions (only four ones

up to 106) due to the fact that the units Es(p + 1) = 1
2

(
p + 1 +

√
(p+ 1)2 − 4s

)
and

Es(2p + 2) = p + 1 +
√
(p+ 1)2 − s may be a local p-power as studied in [Gra2] in a

probabilistic point of view (except in the case of E1(2p + 2) = 1 + p +
√
p2 + 2p ≡ 1

(mod p), with p2 = (p), thus never local pth power):
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{nu=8;L=List([-4,-1,1,4]);for(j=1,4,d=L[j];

print("m(p)=(p+1)^2-(",d,")");forprime(p=3,10^6,

M=core((p+1)^2-d);K=bnfinit(x^2-M);

wh=valuation(K.no,p);Kmod=bnrinit(K,p^nu);

CKmod=Kmod.cyc;val=0;d=#CKmod;

for(k=1,d-1,Cl=CKmod[d-k+1];

w=valuation(Cl,p);if(w>0,val=val+w));if(val>0,

print("p=",p," M=",M," v_p(#(p-class group))=",wh,

" v_p(#(p-torsion group))=",val))))}

m(p)=(p+1)^2+4, p=13 M=2 v_p(#(p-class group))=0

v_p(#(p-torsion group))=1

m(p)=(p+1)^2+1, p=11 M=145 v_p(#(p-class group))=0

v_p(#(p-torsion group))=2

p=16651 M=277289105 v_p(#(p-class group))=0

v_p(#(p-torsion group))=1

m(p)=(p+1)^2-1, p=3 M=15 v_p(#(p-class group))=0

v_p(#(p-torsion group))=1

m(p)=(p+1)^2-4

The case of p = 3, M = 15 does not come from the regulator, nor from the class group,
but from the factor #WK = 3 since 15 ≡ −3 (mod 9); but this case must be considered
as a trivial case of non-p-rationality.

c) For real quadratic fields, the 2-rational fields are characterized via a specific genus
theory and are exactly the subfields of the form Q(

√
m) for m = 2, m = ℓ, m = 2ℓ, where

ℓ is a prime number congruent to ±3 (mod 8) (see proof and history in [Gra3, Examples
IV.3.5.1]). So we shall not consider the case p = 2 since the non-2-rational quadratic
fields may be easily deduced, as well as fields with non-trivial 2-class group.

d) Nevertheless, these torsion groups TK are “essentially” the Tate–Šafarevič groups
(see their cohomological interpretations in [Ng]):

III2K := Ker
[
H2(GK,Sp

,Fp) →
⊕

p∈Sp

H2(GKp
,Fp)

]
,

where Sp is the set of p-places of K, GK,Sp
the Galois group of the maximal Sp-ramified

pro-p-extension of K and GKp
the local analogue over Kp; so their non-triviality has an

important arithmetic meaning about the arithmetic complexity of the number fields (see
for instance computational approach of this context in [Gra7] for the pro-cyclic extension
of Q and the analysis of the Greenberg’s conjecture [Gre1] in [Gra8]). When the set of
places S does not contain Sp, few things are known about GK,S ; see for instance Maire’s
survey [Mai] and its bibliography, then [Gra5, Section 3] for numerical computations.

In other words, the non-p-rationality (equivalent, for p > 2, to III2K 6= 0) is an ob-
struction to a local-global principle and is probably more mysterious than p-rationality.
Indeed, in an unsophisticated context, it is the question of the number of primes p such

that the Fermat quotient
2p−1 − 1

p
is divisible by p, for which only two solutions are known;

then non-p-rationality is the same problem applied to algebraic numbers, as units εM ;
this aspect is extensively developed in [Gra2] for arbitrary Galois number fields).

6.3. Families of local p-th power units – Computation of TK. We shall force the
non triviality of RK to obtain the non-p-rationality of K.

6.3.1. Definitions of local p-th power units. Taking polynomials stemming from suitable
polynomials ms we can state:

Theorem 6.3. Let p > 2 be a prime number and let s ∈ {−1, 1}.
(a) Let a ∈ Z≥1 and δ ∈ {1, 2}. We consider T := 2δ−1(ap4t2 − δs) and m1(T ) giving

rise to the unit E1(T ) =
1
2

(
T+

√
T 2 − 4

)
= 1

δ

(
ap4t2−δs+p2t

√
a2p4t2 − 2δas

)
, of norm 1

and local pth power at p.

The cases (a, δ) ∈ {(1, 1), (1, 2), (2, 1), (3, 1), (3, 2), (4, 1), (5, 1), (5, 2)} give distinct units.

(b) Consider T := t0 + p2t and ms(T ) = T 2 − 4s and the units of norm s:

Es(T ) =
1

2

(
T +

√
T 2 − 4s

)
;

they are, for all t, local pth power at p for suitable t0 depending on p and s, as follows:

(i) For t0 = 0, the units Es(T ) = Es(p
2t) are local pth powers at p.
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(ii) For p 6≡ 5 (mod 8), there exist s ∈ {−1, 1} and t0 ∈ Z≥1 solution of the congru-
ence t20 ≡ 2s (mod p2) such that the units Es(T ) are local pth powers at p.

(iii) We get the data (p = 3, s = −1, t0 ∈ {4, 5}), (p = 7, s = 1, t0 ∈ {10, 39}),
(p = 11, s = −1, t0 ∈ {19, 102}), (p = 17, s = −1, t0 ∈ {24, 265}; s = 1, t0 ∈ {45, 244}).

As t grows from 1 up to B, for each first occurrence of a square-free integer M ≥ 2
in the factorization m(t) = a2p4t2 − 2δas = M(t)r(t)2 (case (a)), or the factorization

m(t) = (t0 + p2t)2 − 4s = M(t)r(t)2 (case (b)), the quadratic fields Q(
√
M(t)), are non

p-rational, apart possibly when 1
δ

(
ap4t2 − δs + p2t r(t)

√
M(t)

)
∈ 〈εpM(t)〉 (case (a)), or

1

2

(
t0 + p2t+

√
(t0 + p2t)2 − 4s

)
∈ 〈εpM(t)〉 (case (b)).

Proof. The case (a) is obvious. Since the case (b) (i) is also obvious, assume t0 6≡ 0
(mod p2). We have:

(
Es(T )

)2 ≡ 1

2

(
T 2 − 2s+ T

√
T 2 − 4s

)
(mod p2),

whence
(
Es(T )

)2 ≡ t0
2

√
T 2 − 4s (mod p2) under the condition t20 ≡ 2s (mod p2). So,

Es(T )
4 ≡ 1

4 t
2
0(t

2
0 − 4s) ≡ −1 (mod p2), whence the result. One computes that t20 ≡ 2s

(mod p2) has solutions for (p− 1)(p+1) ≡ 0 (mod 16) when s = 1 and (p− 1)(p+5) ≡ 0
(mod 16) when s = −1. �

For instance, in case (a) we shall use m(t) = p4t2 − s, m(t) = p4t2 − 2s, m(t) =
p4t2 − 4s, m(t) = 9p4t2 − 6s, m(t) = 9p4t2− 12s, m(t) = 4p4t2 − 2s, m(t) = 25p4t2 − 10s,
m(t) = 25p4t2 − 20s. The case (b) has the advantage that the traces of the units are in
O(t) instead of O(t2) for case (a).

Since in many computations we are testing if some unit Es(T ) is a global pth power,
we state the following result which will be extremely useful in practice because it means
that the exceptional cases are present only at the beginning of the F.O.P. list:

Theorem 6.4. Let T be of the form T = cth + c0, c ≥ 1, h ≥ 1, c0 ∈ Z fixed and set
T 2 − 4s = M(t)r(t)2 when t runs through Z≥1. For B ≫ 0, the maximal bound Mpow

B

of the square-free integers M(t), obtained by the F.O.P. algorithm, for which Es(T ) :=
1
2

(
T +

√
T 2 − 4s

)
may be a pth power in 〈εM(t)〉 (whence the field Q(

√
M(t)) being p-

rational by exception), is of the order of (c2B2h)
1

p as B → ∞.

Proof. Put εM = 1
2 (a + b

√
M) as usual; then we can write εM ∼ b

√
M and Es(T ) ∼ T

so that T and (b
√
M)p are equivalent as M and B tend to infinity; taking the most

unfavorable case b = 1, we conclude that Mpow
B

≪ (c2B2h)2/p in general. �

For instance T = t0 + p2t, of the case (b) of Theorem 6.3, gives a bound Mpow
B

, of

possible exceptional Kummer radicals, of the order of (p4B2)1/p. This implies that when
B → ∞, the density of Kummer radicals M such that Es(T ) is not a global pth power
is equal to 1. With B = 106, often used in the programs, the bound Mpow

B
tends to 1

quickly as p increases. In practice, for almost all primes p, the F.O.P. lists are without
any exception (only the case p = 3 gives larger bounds, as Mpow

106 ≈ 43267 for the above

example; but it remains around 106 − 43267 = 956733 certified solutions M).

6.3.2. Program of computation of TK . In case a) of Theorem 6.3, we give the program
using together the 16 parametrized radicals and we print short excerpts. The parameter
e must be large enough such that pe annihilates TK ; any prime number p > 2 may be
illustrated (here we take p = 3, 5, 7). A part of the program is that given in [Gra3] for
any number field. For convenience, we replace a data of the form [7784110, List([9])], in

the outputs, by [7784110, [9]] giving a 3-group TK of Q(
√
7784110) isomorphic to Z/9Z.

{B=10^4;p=3;Lm=List([List([1,-4]),List([1,-2]),

List([1,-1]),List([1,1]),List([1,2]),List([1,4]),

List([4,-2]),List([4,2]),List([9,-6]),List([9,6]),

List([9,-12]),List([9,12]),List([25,-10]),

List([25,10]),List([25,-20]),List([25,20])]);

e=8;p4=p^4;Ln=List;LM=List;

for(t=1,B,for(ell=1,16,a=Lm[ell][1];b=Lm[ell][2];

mt=a*t^2*p4+b;M=core(mt);K=bnfinit(x^2-M,1);

Kmod=bnrinit(K,p^e);CKmod=Kmod.cyc;

Tn=List;d=#CKmod;for(k=1,d-1,

Cl=CKmod[d-k+1];w=valuation(Cl,p);
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if(w>0,listinsert(Tn,p^w,1)));L=List([M,Tn]);

listput(LM,vector(2,c,L[c]))));

VM=vecsort(vector(16*B,c,LM[c]),1,8);

print(VM);print("#VM = ",#VM);

for(k=1,#VM,T=VM[k];if(T[2]==List([]),

listput(Ln,vector(1,c,T[c]))));Vn=vecsort(Ln,1,8);

print("exceptions:",Vn)}

p=3

[M,Tn]=

[[2,[]],[3,[]],[5,[]],[6,[3]],[7,[]],[10,[]],[11,[]],[13,[]],[14,[]],[15,[3]],[21,[]],

[23,[]],[29,[9]],[33,[3]],[34,[]],[35,[]],[37,[]],[38,[]],[42,[9]],[53,[]],[55,[]],

[58,[3]],[61,[]],[62,[3]],[69,[3]],[74,[9]],[77,[3]],[78,[3]],[79,[9]],[82,[3]],

[83,[3]],[85,[3]],[87,[3]],[93,[3]],[103,[3]],[106,[3]],[109,[3]],[110,[]],[115,[]],

[122,[81]],[141,[9]],[142,[3]],[143,[]],[145,[]],[146,[]],[151,[3]],[159,[3]],[173,[3]],

(...)

[202378518245,[3]],[202419008110,[27,3]],[202459502005,[27,9]],[202459502015,[81]],

[202459502035,[81]],[202459502045,[81,3]],[202499999990,[3]],[202500000010,[3]]]

#VM = 139954

exceptions:List([[2],[3],[5],[7],[10],[11],[13],[14],[21],[23],[34],[35],[37],[38],[53],

[55],[61],[110],[115],[143],[145],[146],[205],[215],[221],[226],[227],[230],[437],[439],

[442],[445],[577],[890],[902],[905],[910],[1085],[1087],[1093],[1517],[1762],[1766],

[2605],[3595],[3605],[5605],[5615],[5645],[11005]])

p=5

[M,Tn]=

[[2,[]],[3,[]],[5,[]],[6,[]],[21,[]],[23,[]],[26,[]],[29,[]],[38,[5]],[39,[5]],[51,[5]],

[62,[25]],[69,[5]],[89,[25]],[102,[]],[107,[5]],[114,[5]],[127,[5]],[134,[5]],[161,[5]],

[183,[5]],[186,[5]],[213,[]],[219,[]],[231,[]],[237,[]],[278,[5]],[287,[5]],[295,[25]],

[326,[5]],[382,[5]],[422,[5]],[434,[25]],[453,[5]],[467,[5]],[501,[5]],[509,[5]],

[514,[25]],[519,[5]],[574,[5]],[581,[5]],[606,[125]],[623,[5]],[626,[5]],[627,[5]],

[629,[5]],[645,[5]],[662,[5]],[674,[5]],[761,[5]],

(...)

[1561562640635,[125]],[1561562640645,[25]],[1561875062510,[25]],[1562187515605,[625]],

[1562187515615,[125]],[1562187515635,[25]],[1562187515645,[625]],[1562500000010,[15625]]]

#VM = 139982

exceptions:List([[2],[3],[5],[6],[21],[23],[26],[29],[102],[213],[219],[231],[237]])

p=7

[M,Tn]=

[[6,[7]],[37,[7]],[74,[7]],[101,[7]],[123,[7]],[145,[49]],[149,[7]],[206,[7]],[214,[7]],

[215,[7]],[219,[7]],[267,[7]],[505,[7]],[554,[7]],[570,[7]],[629,[7]],[663,[7]],[741,[7]],

[817,[49]],[834,[49]],[887,[49]],[894,[7]],[1067,[7]],[1373,[49]],[1446,[7]],[1517,[7]],

[1590,[7]],[1893,[7]],[2085,[7]],[2162,[7]],[2302,[49]],[2355,[7]],[2397,[7]],[2399,[7]],

[2402,[7]],[2405,[7]],[2498,[7]],[2567,[7]],[2615,[7]],[2679,[7]],[2742,[7]],[2778,[7]],

(...)

[5998899040235,[49]],[6000099240090,[7]],[6000099240110,[7]],[6001299560005,[7]],

[6001299560015,[7]],[6001299560035,[7]],[6001299560045,[7]],[6002499999990,[7]]]

#VM = 139991

exceptions:List([])

For p = 11 and 13 no exception is found for B = 104.

The case b) of Theorem 6.3 gives an analogous program and will be also illustrated in
the Section 7 about p-class groups, especially for the case p = 3. The results are similar
and give, in almost cases, non-trivial p-adic regulators RK , hence non-p-rational fields K:

p-RATIONALITY

{B=10^4;p=3;e=8;p4=p^4;Ln=List;LM=List;

for(t=1,B,forstep(s=-1,1,2,mt=p4*t^2-4*s;M=core(mt);

K=bnfinit(x^2-M,1);Kmod=bnrinit(K,p^e);

CKmod=Kmod.cyc;Tn=List;d=#CKmod;

for(k=1,d-1,Cl=CKmod[d-k+1];w=valuation(Cl,p);

if(w>0,listinsert(Tn,p^w,1)));L=List([M,Tn]);

listput(LM,vector(2,c,L[c]))));

VM=vecsort(vector(2*B,c,LM[c]),1,8);

print(VM);print("#VM = ",#VM);

for(k=1,#VM,T=VM[k];if(T[2]==List([]),

listput(Ln,vector(1,c,T[c]))));Vn=vecsort(Ln,1,8);

print("exceptions:",Vn)}

p=3

[M,Tn]=

[[2,[]],[5,[]],[10,[]],[13,[]],[14,[]],[29,[9]],[35,[]],[37,[]],[58,[3]],[61,[]],[62,[3]],

[74,[9]],[77,[3]],[82,[3]],[85,[3]],[106,[3]],[109,[3]],[110,[]],[122,[81]],[143,[]],
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[145,[]],[173,[3]],[181,[3]],[182,[9]],[202,[3]],[221,[]],[226,[]],[229,[3]],[257,[27]],

[287,[3]],[323,[3]],[359,[9]],[397,[3]],[401,[3]],[410,[27]],[437,[]],[442,[]],[445,[]],

[506,[9]],[515,[3]],[518,[3]],[533,[3]],[626,[3]],[635,[3]],[674,[9]],[730,[27]],

(...)

[8078953685,[81]],[8078953693,[9]],[8082189805,[3,3]],[8085426557,[9]],

[8085426565,[9]],[8088663965,[9]],[8091902021,[3]],[8095140733,[3]],

[8098380077,[27,3]],[8098380085,[27]]

#VM = 19990

exceptions:List([[2],[5],[10],[13],[14],[35],[37],[61],[110],[143],[145],[221],[226],

[437],[442],[445],[1085],[1093],[1517]])

p=5

[M,Tn]=

[[6,[]],[21,[]],[26,[]],[29,[]],[39,[5]],[51,[5]],[69,[5]],[89,[25]],[114,[5]],[161,[5]],

[326,[5]],[434,[25]],[501,[5]],[509,[5]],[514,[25]],[574,[5]],[581,[5]],[626,[5]],

[629,[5]],[674,[5]],[761,[5]],[789,[5]],[791,[5]],[874,[5]],[1086,[5]],[1111,[5,5]],

[1191,[5]],[1351,[5]],[1406,[5]],[1641,[625]],[1761,[5]],[1851,[5]],[1914,[5]],

(...)

[62412530621,[5]],[62412530629,[5]],[62437515621,[25]],[62437515629,[125]],

[62462505621,[5]],[62462505629,[5]],[62487500621,[5]],[62487500629,[5]]]

#VM = 19996

exceptions:List([[6], [21], [26], [29]])

p=7

[M,Tn]=

[[6,[7]],[37,[7]],[101,[7]],[145,[49]],[149,[7]],[206,[7]],[215,[7]],[554,[7]],[570,[7]],

[629,[7]],[663,[7]],[741,[7]],[817,[49]],[894,[7]],[1067,[7]],[1373,[49]],[1517,[7]],

[1893,[7]],[2085,[7]],[2162,[7]],[2302,[49]],[2355,[7]],[2397,[7]],[2402,[7]],[2405,[7]],

[2498,[7]],[2567,[7]],[2679,[7]],[2742,[7]],[2845,[7]],[2915,[49]],[3162,[7]],[3477,[7]],

(...)

[239668014477,[7]], [239668014485,[7]],[239763977645,[343]],[239763977653,[7]],

[239859960029,[7]],[239955961613,[7]],[240051982397,[7]],[240051982405,[7]]]

#VM = 19998

exceptions:List([])

6.4. Infiniteness of non p-rational real quadratic fields. All these experiments raise
the question of the infiniteness, for any given prime p ≥ 22, of non p-rational real quadratic
fields when the non p-rationality is due to RK ≡ 0 (mod p) (i.e., log(εM ) ≡ 0 (mod p2)).
The case p = 2 being trivial because of genus theory for 2-class groups, we suppose p > 2.
However, it is easy to prove this fact for p = 2 by means of the regulators.

6.4.1. Explicit families of units. We will built parametrized Kummer radicals and units,
in the corresponding fields, which are not pth power of a unit; the method relies on the
choice of suitable values of the parameter trace t. This will imply the infiniteness of degree
p− 1 imaginary cyclic fields of the Section 7 having non trivial p-class group.

Theorem 6.5. (i) Let q ≡ 1 (mod p) be prime, let c /∈ F×p
q and tq ∈ Z≥1 such that

tq ≡ c2 + s

2cp2
(mod q). Then, whatever the bound B, the F.O.P. algorithm applied to the

polynomial m(tq+qx) = p4(tq+qx)2−s, x ∈ Z≥0, gives lists of distinct Kummer radicals

M , in the ascending order, such that Q(
√
M) is non-p-rational.

(ii) For any given prime p > 2 there exist infinitely many real quadratic fields K such
that RK ≡ 0 (mod p), whence infinitely many non p-rational real quadratic fields.

Proof. (i) Criterion of non pth power. Consider m(t) = p4t2 − s and the unit Es(2p
2t) =

p2t +
√
p4t2 − s of norm s and local pth power at p. Choose a prime q ≡ 1 (mod p)

and let c ∈ Z>1 be non pth power modulo q (whence (q − 1)
(
1 − 1

p

)
possibilities). Let

t ≡ c2 + s

2cp2
(mod q); then:

N(Es(2p
2t)− c) = N(p2t− c+

√
p4t2 − s)

= (p2t− c)2 − p4t2 + s = c2 + s− 2cp2t ≡ 0 (mod q).

Such value of t defines the field Q(
√
M(t)), via p4t2 − s = M(t)r(t)2, and whatever its

residue field at q (Fq or Fq2), we get Es(2p
2t) ≡ c (mod q), for some q | qZ; since in the

inert case, #F×
q2 = (q − 1)(q + 1), with q + 1 6≡ 0 (mod p), c is still non pth power, and

Es(2p
2t) is not a local pth power modulo q, hence not a global pth power.
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(ii) Infiniteness. Now, for simplicity to prove the infiniteness, we restrict ourselves to
the case m(t) = p4t2 − 1 (the case m(t) = p4t2 + 1 may be considered with a similar
reasoning in Z[

√
−1] instead of Z). Let ℓ be a prime number arbitrary large and consider

the congruence:

p2(tq + qx) ≡ 1 (mod ℓ);

it is equivalent to x = x0 + yℓ, y ∈ Z≥0, where x0 is a residue modulo ℓ of the constant
1− tqp

2

qp2
; so, we have p2(tq + qx0)− 1 = λℓn, n ≥ 1, ℓ ∤ λ. Computing these m(t)’s, with

t = tq + (x0 + yℓ)q, gives:

p4(tq + q(x0 + yℓ))2 − 1 = [p2(tq + q(x0 + yℓ))− 1] · [p2(tq + q(x0 + yℓ)) + 1] ≡ 0 (mod ℓ);

the right factor is prime to ℓ; the left one is of the form λℓn + qyp2ℓ, and whatever n,
it is possible to choose y such that the ℓ-valuation of λℓn−1 + qyp2 is zero. So, for such
integers t, we have the factorization m(t) = ℓM ′r2, where M ′ ≥ 1 is square-free and M ′r2

prime to ℓ, which defines M := ℓM ′ arbitrary large.

This proves that in the F.O.P. algorithm, when B → ∞, one can find arbitrary large
Kummer radicals M(tq +(x0+ yℓ)q) such that the corresponding unit E1(tq +(x0+ yℓ)q)
is a local pth power modulo p, but not a global p-th power. �

The main property of the F.O.P. algorithm is that the Kummer radicals obtained are
distinct and listed in the ascending order; without the F.O.P. process, all the integers
t = tq +(x0+ yℓ)q giving the same M give E1(tq +(x0+ yℓ)q) = εnM with n 6≡ 0 (mod p).

6.4.2. Unlimited lists of non-p-rational real quadratic fields. Take p = 3, q = 7, c ∈
{2, 3, 4, 5}. With m(t) = 81t2 − 1, then tq ∈ {2, 5}; with m(t) = 81t2 +1, then tq ∈ {3, 4}
and t = tq + 7x, x ≥ 0. The F.O.P. list is without any exception, giving non 3-rational

quadratic fields Q(
√
M) (in the first case, p = 3 is inert and in the second one, p = 3

splits. We give the corresponding list using together the four possibilities:

NON p-RATIONAL REAL QUADRATIC FIELDS I

{B=10^6;p=3;Lm=List([List([-1,3]),List([-1,4]),

List([1,2]),List([1,5])]);Ln=List;LM=List;

for(t=1,B,for(ell=1,4,s=Lm[ell][1];tq=Lm[ell][2];

M=core(81*(tq+7*t)^2-s);L=List([M]);

listput(LM,vector(1,c,L[c]))));

VM=vecsort(vector(4*B,c,LM[c]),1,8);

print(VM);print("#VM = ",#VM)}

[M]=

[58],[74],[106],[113],[137],[359],[386],[401],[410],[494],[515],[610],[674],[743],[806],

[842],[877],[1009],[1010],[1157],[1367],[1430],[1901],[1934],[2006],[2153],[2255],

[2522],[2678],[2822],[2986],[3014],[5266],[5513],[6626],[6707],[6722],[6890],[7310],

[7610],[7858],[7919],[8101],[8465],[8555],[8738],[8761],[9410],[9634],[9998],[11183],

[11195],[11237],[11447],[11509],[11537],[11663],[11890],[11965],[13427],[13645],

[14795],[16895],[16913],[17266],[18530],[19223],[19826],[20066],[20735],[21023],

[21317],[21389],[22730],[23066],[23102],[23410],[23626],[23783],[23963],

(...)

[248061933000323],[248063067000323],[248063350500730],[248063634001297]

#VM = 4000000

In case of doubt about the results, one may use the same program with the computation
of #TK ; but the execution time is much larger and it is not possible to take a largeB since
the computations need the instructions K = bnfinit(x2 −M) and Kmod = bnrinit(K, pe) of
class field theory package (the list below contains 42 outputs up to M = 23963, while the
first one contains 80 Kummer radicals):

NON p-RATIONAL REAL QUADRATIC FIELDS II

{B=10^3;p=3;Lm=List([List([-1,3]),List([-1,4]),

List([1,2]),List([1,5])]);e=8;p4=p^4;Ln=List;LM=List;

for(t=1,B,for(ell=1,4,s=Lm[ell][1];t0=Lm[ell][2];

M=core(81*(t0+7*t)^2-s);K=bnfinit(x^2-M);

Kmod=bnrinit(K,p^e);CKmod=Kmod.cyc;

Tn=List;d=#CKmod;for(k=1,d-1,

Cl=CKmod[d-k+1];w=valuation(Cl,p);

if(w>0,listinsert(Tn,p^w,1)));L=List([M,Tn]);

listput(LM,vector(2,c,L[c]))));

VM=vecsort(vector(4*B,c,LM[c]),1,8);

print(VM);print("#VM = ",#VM);

for(k=1,#VM,T=VM[k];if(T[2]==List([]),
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listput(Ln,vector(1,c,T[c]))));Vn=vecsort(Ln,1,8);

print("exceptions:",Vn)}

[M,Tn]=

[[58,[3]],[74,[9]],[106,[3]],[359,[9]],[401,[3]],[410,[27]],[515,[3]],[674,[9]],[842,[9]],

[1009,[9]],[1157,[3]],[1367,[9]],[1430,[9]],[1934,[3]],[2255,[3]],[2678,[9]],[2822,[9]],

[3014,[3]],[5513,[9]],[6722,[27]],[6890,[3]],[7310,[3,3]],[7858,[9]],[7919,[3]],[8101,[3]],

[8465,[27]],[8555,[27]],[8738,[3]],[8761,[81]],[9410,[9]],[9634,[27,3]],[9998,[9,3]],

(...)

[3955403663,[27]],[3956535802,[3]],[3957668101,[27,3]],[3965598730,[3]],

[3966732323,[9,3]],[3971268323,[81]],[3972402730,[3]],[3973537297,[27]]]

#VM = 4000

exceptions : List([])

7. Application to p-class groups of some imaginary cyclic fields

Considering, now, the case b) of Theorem 6.3 for p > 2, we use the polynomialms(T ) =
T 2 − 4s, with T = t0 + p2t, and the unit of norm s:

Es(T ) =
1

2

(
T +

√
T 2 − 4s

)
,

for suitable s and t0 such that Es(T ) be a local pth power at p, which is in particular
the case for all p > 2 and all s when t0 = 0. For t0 6= 0, we get the particular data when
the equation t20 ≡ 2s (mod p2) has solutions (which is equivalent to p 6≡ 5 (mod 8)):
(p = 3, s ∈ {−1, 1}, t0 = 0), (p = 3, s = −1, t0 ∈ {4, 5}), (p = 7, s = 1, t0 ∈ {10, 39}),
(p = 11, s = −1, t0 ∈ {19, 102}), (p = 17, s = −1, t0 ∈ {24, 265}; s = 1, t0 ∈ {45, 244}).
For p = 2, a “mirror field” may be taken in Q(

√
−1,

√
M) (see, e.g., [Gra9] for some

results linking 2-class groups and norms of units).

The programs are testing that Es(T ) is not the pth power in 〈εM 〉.

7.1. Imaginary quadratic fields with non-trivial 3-class group. From the above,
we obtain, as consequence, the following selection of illustrations (see Theorem 6.5 claim-
ing that the F.O.P. lists are unbounded as B → ∞):

Theorem 7.1. Let t0 ∈ {0, 4, 5} and m(t) := (t0 + 9t)2 + 4 if t0 6= 0, or m(t) := (t0 +
9t)2±4 if t0 = 0. As t grows from 1 up to B, each first occurrence of a square-free integer
M ≥ 2 in the factorization m(t) =: Mr2, the quadratic field F3,M := Q(

√
−3M) has a

class number divisible by 3, except possibly when the unit Es(t0+9t) := 1
2 (t0+9t+ r

√
M)

is a third power in 〈εM 〉.
The F.O.P. algorithm applied to the subset of parameters t = 2 + 7x or t = 5 + 7x,
x ∈ Z≥0 with m(t) = 81t2 − 1, always gives non-trivial 3-class groups. Same results with
t = ±3 + 7x with m(t) = 81t2 + 1.

Proof. If Es(t0+9t) is not a third power in 〈εM 〉 but a local 3th power at 3, it is 3-primary

in the meaning that if ζ3 is a primitive 3th root of unity, then K(ζ3,
3

√
Es((t0 + 9t))/K(ζ3)

is unramified (in fact 3 splits in this extension). From reflection theorem (Scholz’s The-
orem in the present case), 3 divides the class number of Q(

√
−3M), even when r > 1 in

the factorization m(t) =: Mr2. The case of t0 = 0 and s = ±1 is obvious. The second
claim comes from Theorem 6.5 (see numerical part below). �

7.1.1. Program for lists of 3-class groups of imaginary quadratic fields. Note that the
case where Es(t0 + 9t) is a third power is very rare because it happens only for very
large t0 + 9t giving a small Kummer radical M . One may verify the claim by means of
the following program, in the case s = −1 valid for all t0, where [M,Vh] gives in Vh the
3-structure of the class group of Q(

√
−3M); at the end of each output, one sees the list

of exceptions (case of third powers), where the output [M, n] means that for the Kummer
radical M = M(t), then E−1(t0 + 9t) = εnM . We may see that any excerpt for t large
enough give no exceptions:

LISTS OF 3-CLASS GROUPS OF IMAGINARY QUADRATIC FIELDS

{p=3;B=10^5;L3=List;Lh=List;Lt0=List([0,4,5]);for(t=1,B,

for(ell=1,3,t0=Lt0[ell];mt=(t0+9*t)^2+4;ut=(t0+9*t)/2;vt=1/2;

C=core(mt,1);M=C[1];r=C[2];res=Mod(M,4);D=quaddisc(M);w=quadgen(D);

Y=quadunit(D);if(res!=1,Z=ut+r*vt*w);if(res==1,Z=ut-r*vt+2*r*vt*w);

z=1;n=0;while(Z!=z,z=z*Y;n=n+1);C3=List;K=bnfinit(x^2+3*M,1);

CK=K.cyc;d=#CK;for(j=1,d,Cl=CK[d-j+1];val=valuation(Cl,3);

if(val>0,listinsert(C3,3^val,1)));L=List([M,C3,n]);

listput(Lh,vector(3,c,L[c]))));Vh=vecsort(vector(3*B,c,Lh[c]),1,8);
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print(Vh);print("#Vh = ",#Vh);

for(k=1,#Vh,LC=Vh[k][2];if(LC==List([]),Ln=List([Vh[k][1],Vh[k][3]]);

listput(L3,vector(2,c,Ln[c]))));V3=vecsort(L3,1,8);

print("exceptional powers : ",V3)}

[M,C3,n]=

[[2,[],15],[5,[],9],[10,[],3],[13,[],3],[17,[],3],[26,[],3],[29,[3],5],[37,[],3],

[41,[],3],[53,[],3],[58,[3],1],[61,[],3],[65,[],3],[74,[3],1],[82,[3],1],[85,[3],1],

[101,[],3],[106,[3],1],[109,[3],1],[113,[3],1],[122,[3],1],[137,[3],1],[145,[],3],

[149,[],3],[170,[],3],[173,[9],1],[181,[3],1],[197,[],3],[202,[3],1],[226,[],3],

[229,[3],3],[257,[3],1],[290,[],3],[293,[],3],[314,[3],1],[317,[],3],[353,[3],1],

[362,[],3],[365,[],3],[397,[3],1],[401,[3],1],[442,[],3],[445,[],3],[461,[9],1],

[485,[],3],[530,[],3],[533,[9],1],[577,[],3],[610,[3],1],[626,[3],1],[629,[],3],

[653,[3],1],[677,[],3],[730,[3],1],[733,[9],1],[754,[3],1],[773,[3],1],[785,[3],3],

[842,[3],1],[877,[3],1],[901,[],3],[962,[],3],[965,[9],1],[997,[3],1],[1009,[3],1],

(...)

[809976600173,[27],1],[809983800085,[81],1],[809991000029,[27],1],[810009000029,[9],1]]

#Vh = 299963

exceptional powers:List([[2,15],[5,9],[10,3],[13,3],[17,3],[26,3],[37,3],[41,3],[53,3],

[61,3],[65,3],[101,3],[145,3],[149,3],[170,3],[197,3],[226,3],[290,3],[293,3],[317,3],

[362,3],[365,3],[442,3],[445,3],[485,3],[530,3],[577,3],[629,3],[677,3],[901,3],[962,3],

[1093,3],[1226,3],[1370,3],[1601,3],[1853,3],[2117,3],[2305,3],[2605,3],[2813,3],

[3029,3],[3253,3],[4229,3],[5045,3],[6245,3],[6893,3],[8653,3]])

Then MB = 810016200085 and log(810016200085)/ log(81 ·1010) ≈ 1.0000007293; then

M
1

3

B
≈ 9321.76 give a good verification of the Heuristic 6.4. This also means that all

the integers M larger than 9029 leads to non-trivial 3-class groups, and they are very
numerous !

We note that some M ’s (as 29, 74, 82, 85, . . .) are in the list of exceptions despite a
non-trivial 3-class group; this is equivalent to the fact that, even if E−1(t0 + 9t) ∈ 〈ε3M 〉,
either the 3-regulator RK of K is non-trivial or its 3-class group is non-trivial.

7.1.2. Unlimited lists of non-trivial 3-class groups. To finish, let’s give the case where the
F.O.P. algorithm always gives a non-trivial 3-class group in Q(

√
−3M); we use together

the 4 parametrizations given by Theorem 7.1 (outputs [M, [3 class group]]):

NON TRIVIAL 3-CLASS GROUPS OF IMAGINARY QUADRATIC FIELDS

{p=3;B=10^4;Lh=List;Lm=List([List([-1,3]),List([-1,4]),List([1,2]),List([1,5])]);

for(t=1,B,for(ell=1,4,s=Lm[ell][1];t0=Lm[ell][2];M=core(81*(t0+7*t)^2-s);C3=List;

K=bnfinit(x^2+3*M);CK=K.cyc;d=#CK;for(j=1,d,Cl=CK[d-j+1];

val=valuation(Cl,3);if(val>0,listinsert(C3,3^val,1)));L=List([M,C3]);

listput(Lh,vector(2,c,L[c]))));Vh=vecsort(vector(4*B,c,Lh[c]),1,8);

print(Vh);print("#Vh = ",#Vh)}

[M,C3]=

[[58,[3]],[74,[3]],[106,[3]],[359,[3]],[386,[3]],[401,[3]],[410,[3]],[494,[3]],[515,[3]],

[610,[3]],[674,[3]],[842,[3]],[877,[3]],[1009,[3]],[1157,[3]],[1367,[3]],[1430,[3]],

[1901,[9,3]],[1934,[9]],[2153,[3]],[2255,[3]],[2678,[9]],[2822,[3]],[2986,[3]],[3014,[3]],

[5266,[3]],[5513,[3]],[6626,[9]],[6707,[3]],[6722,[3]],[6890,[3]],[7310,[3,3]],[7858,[27]],

[7919,[3]],[8101,[3]],[8465,[9]],[8555,[9]],[8738,[3]],[8761,[9]],[9410,[3]],[9634,[9,3]],

[9998,[3,3]],[11183,[3]],[11237,[3]],[11447,[3]],[11509,[27]],[11537,[3]],[11663,[3,3]],

[11965,[3]],[13427,[3]],[16895,[3]],[16913,[3,3]],[17266,[9]],[18530,[3]],[20066,[3]],

(...)

[396877320323,[3]],[396922680323,[9]],[396934020730,[3]],[396945361297,[3]]]

#Vh = 40000

7.2. Imaginary cyclic fields with non-trivial p-class group, p > 3. Let χ be the
even character of order 2 defining K := Q(

√
M), let p ≥ 3 and let L := K(ζp) be

the field obtained by adjunction of a primitive pth root of unity; we may assume that
K ∩ Q(ζp) = Q, otherwise M = p in the case p ≡ 1 (mod 4), case for which there is
no known examples of p-primary fundamental unit. Let ω be the p-adic Teichmüller

character (so that for all τ ∈ Gal(L/Q), ζτp = ζ
ω(τ)
p ).

Then, for any list of quadratic fields Q(
√
M) obtained by the previous F.O.P. algorithm

giving p-primary units E, the ωχ−1-component of the p-class group of L is non-trivial as
soon as E /∈ 〈εpM 〉 and gives an odd component of the whole p-class group of L.

Theorem 7.2. As t grows from 1 up to B, each first occurrence of a square-free integer
M ≥ 2 in the factorization m(t) := p4t2 − 4s =: Mr2, the degree p− 1 cyclic imaginary

subfield of Q(
√
M, ζp), distinct from Q(ζp), has a class number divisible by p, except

possibly when the unit Es(p
2t) := 1

2 [p
2t+ r

√
M)] is a p-th power in 〈εM 〉.
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7.2.1. Lists of 5-class groups of cyclic imaginary quartic fields. The following program
for p = 5 verifies the claim with the above parametrized family testing if Es(p

2t) is a
p-power in 〈εM 〉. For p = 5, the mirror field F5,M is defined by the polynomial

P = x4 + 5 ∗M ∗ x2 + 5 ∗M2,

still giving a particular faster program than the forthcoming one, valuable for any p ≥ 3:

LISTS OF 5-CLASS GROUPS OF QUARTIC FIELDS

{p=5;B=100;s=-1;Lp=List;Lh=List;p2=p^2;p4=p^4;for(t=1,B,

mt=p4*t^2-4*s;ut=p2*t/2;vt=1/2;C=core(mt,1);M=C[1];r=C[2];

res=Mod(M,4);D=quaddisc(M);w=quadgen(D);Y=quadunit(D);

if(res!=1,Z=ut+r*vt*w);if(res==1,Z=ut-r*vt+2*r*vt*w);z=1;n=0;

while(Z!=z,z=z*Y;n=n+1);P=x^4+5*M*x^2+5*M^2;K=bnfinit(P,1);

CK=K.cyc;C5=List;d=#CK;for(i=1,d,Cl=CK[d-i+1];

val=valuation(Cl,p);if(val>0,listinsert(C5,p^val,1)));L=List([M,C5]);

listput(Lh,vector(2,c,L[c])));Vh=vecsort(vector(B,c,Lh[c]),1,8);

print(Vh);print("#Vh = ",#Vh);

for(k=1,#Vh,if(Vh[k][2]==List([]),listput(Lp,Vh[k])));Vp=vecsort(Lp,1,8);

print("exceptions:",Vp)}

s=-1

[M,C5]=

[[89,[5]],[509,[5,5]],[626,[25,5]],[629,[5,5]],[761,[5]],[2501,[5]],[3554,[25]],

[5626,[5,5]],[5629,[5]],[10001,[5]],[15626,[5,5]],[15629,[25]],[22501,[5]],

[30626,[5,5]],[30629,[5]],[40001,[5]],[50626,[25,5]],[50629,[5]],[62501,[25,25]],

[75626,[5]],[75629,[5]],[90001,[5,5]],[105626,[125,25]],[105629,[5,5]],

(...)

[5175629,[125]],[5405629,[5]],[5640629,[5]],[5880629,[5]],[6125629,[5]]

#Vh = 100

exceptions:List([])

s=1

[M,C5]=

[[39,[5]],[51,[5]],[69,[5]],[114,[5]],[326,[5]],[434,[25]],[574,[5,5]],[674,[5]],[791,[5]],

[1086,[5]],[1111,[5,5]],[1406,[5]],[1761,[5]],[1914,[5,5]],[3981,[5]],[4171,[5,5]],

[5621,[5]],[8789,[5,5]],[10421,[5]],[11289,[5,5]],[13611,[5]],[14189,[5]],[15621,[25]],

[18906,[5]],[20069,[5,5]],[20501,[5,5]],[22499,[25,25]],

(...)

[4730621,[25,5]],[5405621,[5]],[5640621,[25]],[5880621,[5,5,5]],[6125621,[5]]]

#Vh = 100

exceptions:List([])

Taking B = 200 with s = −1 leads to the exceptional case [29, [ ]]. For s = 1 one gets
the exceptional case [21, [ ]].

7.2.2. General program giving the p-class group of degree p − 1 imaginary fields. The
following general program computes the defining polynomial P of the algebraic number
field Fp,M := Q

(
(ζp − ζ−1

p )
√
M

)
; it tests if the unit Es(p

2t) is the pth power in 〈εM 〉,
giving the list of exceptions. One has to choose p,B, s:

LISTS OF p-CLASS GROUPS OF DEGREE p-1 IMAGINARY FIELDS I

{p=5;B=500;s=-1;Lp=List;Lh=List;Zeta=exp(2*I*Pi/p);p2=p^2;p4=p^4;

for(t=1,B,mt=p4*t^2-4*s;ut=p2*t/2;vt=1/2;C=core(mt,1);M=C[1];r=C[2];

res=Mod(M,4);D=quaddisc(M);w=quadgen(D);Y=quadunit(D);

if(res!=1,Z=ut+r*vt*w);if(res==1,Z=ut-r*vt+2*r*vt*w);z=1;n=0;

while(Z!=z,z=z*Y;n=n+1);P=1;for(i=1,(p-1)/2,A=(Zeta^i+ Zeta^-i-2)*M;

P=(x^2-A)*P);P=round(P);k=bnfinit(P,1);Ck=k.cyc;Cp=List;d=#Ck;

for(i=1,d,Cl=Ck[d-i+1];val=valuation(Cl,p);if(val>0,listinsert(Cp,p^val,1)));

L=List([M,Cp]);listput(Lh,vector(2,c,L[c])));Vh=vecsort(vector(B,c,Lh[c]),1,8);

print(Vh);print("#Vh = ",#Vh);

for(k=1,#Vh,if(Vh[k][2]==List([]),listput(Lp,Vh[k])));Vp=vecsort(Lp,1,8);

print("exceptions:",Vp)}

s=-1

[M,Cp]=

[[29,[]],[89,[5]],[509,[5,5]],[626,[25,5]],[629,[5,5]],[761,[5]],[2501,[5]],[3554,[25]],

[5626,[5,5]],[5629,[5]],[10001,[5]],[15626,[5,5]],[15629,[25]],[19109,[5]],[22061,[5,5]],

[22501,[5]],[30626,[5,5]],[30629,[5]],[40001,[5]],[42341,[5]],[50626,[25,5]],

[50629,[5]],[62501,[25,25]],[70429,[25]],[75626,[5]],[75629,[5]],[82234,[5]],

[90001,[5,5]],[105626,[125,25]],[105629,[5,5]],[122501,[5]],[140626,[5]],[140629,[5,5]],

(...)

[147015629,[5]],[148230629,[5]],[149450629,[5]],[150675629,[5,5,5]],

[151905629,[5]],[153140629,[5]],[154380629,[5]],[155625629,[5,5]]]

#Vh = 500
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exceptions:List([[29,[])]])

s=1

[M,Cp]=

[21,[]],[39,[5]],[51,[5]],[69,[5]],[114,[5]],[326,[5]],[434,[25]],[514,[5]],[574,[5,5]],

[581,[5,5]],[674,[5]],[791,[5]],[874,[5]],[1086,[5]],[1111,[5,5]],[1191,[5]],[1351,[25]],

[1406,[5]],[1641,[5]],[1761,[5]],[1851,[5]],[1914,[5,5]],[2399,[5]],[2599,[25]],

[3251,[25]],[3981,[5]],[4171,[5,5]],[5474,[5]],[5621,[5]],[5774,[5]],[8294,[25,5]],

[8789,[5,5]],[10421,[5]],[11289,[5,5]],[13611,[5]],[14189,[5]],[15621,[25]],

(...)

[141015621,[5,5]],[142205621,[5,5]],[143400621,[25,5]],[144600621,[25,5]],

[145805621,[25]],[149450621,[5]],[150675621,[5,5]],[151905621,[5]],

[153140621,[5]],[155625621,[625,5]]

#Vh = 500

exceptions:List([[21,List([])]])

In this interval, all the 5-class groups obtained are non-trivial, except for s = −1 and
M = 29, then for s = 1 and M = 21. From Remark 1.5, we compute:

log(155625629)/ log(54 · 25 · 104) ≈ 0.99978777.

Theorem 6.4 gives possible exceptions up to M
1

5

B
= 155625629

1

5 ≈ 43.49268545.

One observes the spectacular decrease of counterexamples and the unique exception
with s = −1, obtained for t = 151, p2t = 25 ·151 = 3775, m−1(3775) = 7012× 29; whence
the PARI data:

Y = Mod(1/2 ∗ x+ 5/2, x2 − 29), Z = Mod(2646275/2 ∗ x+ 14250627/2, x2 − 29)

(for ε29 and E−1(3775), respectively). One obtains easily the relation E−1(3775) = ε1029.
The case s = 1, M = 21 is analogous.

Consider the case p = 7, s ∈ {−1, 1}; exceptionally, we give the complete lists:
p=7 B=100 s=-1

[M,Cp]=

[[37,[7]],[2402,[7]],[2405,[7]],[4706,[7]],[9605,[7]],[10357,[7]],

[11621,[49,7]],[21610,[7,7]],[21613,[7,7]],[38417,[7]],[60026,[7,7]],

[60029,[7]],[86437,[7,7]],[98345,[7]],[117653,[7]],[146077,[7]],

[153665,[7,7]],[177578,[7,7]],[194482,[7,7]],[194485,[49,7]],

[240101,[7]],[290522,[49]],[345745,[49]],[357365,[7]],[405770,[7,7]],

[405773,[49,7]],[470597,[7,7]],[540226,[7]],[540229,[7,7]],

[614657,[7,7]],[693890,[7,7]],[693893,[7]],[760733,[7,7,7]],

[866762,[7,7]],[866765,[7,7]],[960401,[7,7]],[1058842,[7]],

[1058845,[7,7]],[1162085,[49,7]],[1270130,[49,7,7]],[1270133,[7]],

[1382977,[7,7]],[1500626,[49]],[1500629,[7]],[1623077,[7]],

[1750330,[7]],[1882385,[7]],[2019242,[49]],[2019245,[7,7]],

[2160901,[7]],[2307362,[343]],[2307365,[7,7]],[2614690,[7,7]],

[2614693,[7]],[2775557,[7]],[2941226,[7]],[2941229,[49]],

[3111697,[7]],[3286970,[7]],[3286973,[7,7]],[3467045,[7]],

[3651922,[7]],[3841601,[7]],[4036082,[7]],[4036085,[49]],

[4235365,[7]],[4439453,[49]],[4648337,[49,7]],[4862026,[7,7]],

[4862029,[7]],[5080517,[7,7]],[5303810,[7]],[5303813,[7]],

[5531905,[7]],[5764802,[7,7]],[5764805,[7]],[6002501,[7]],

[6245005,[7,7]],[6744413,[49,7]],[7263029,[7]],[7800853,[7]],

[8357885,[7]],[9529573,[49,7,7]],[10144229,[7]],[10778093,[7,7]],

[11431165,[49]],[12103445,[49,7]],[12794933,[7]],[13505629,[7]],

[14235533,[7]],[14984645,[7]],[15752965,[7]],[16540493,[7]],

[17347229,[7]],[18173173,[7,7,7]],[19882685,[7]],[20766253,[7]],

[21669029,[7,7]],[22591013,[7]],[23532205,[7,7]]]

#Vh = 100

exceptions:List([])

p=7 B=100 s=1

[M,Cp]=

[[6,[7]],[741,[7,7]],[817,[7,7]],[1067,[7,7]],[1517,[49]],[2302,[49]],

[2397,[49]],[3477,[7]],[3603,[49,7]],[5402,[2401,7]],[5645,[7,7]],

[8070,[49]],[8441,[7,7]],[10421,[7]],[10842,[7,7]],[12155,[7]],

[13702,[7]],[15006,[49]],[21605,[7,7]],[27165,[7]],[35003,[7]],

[38415,[7]],[42803,[7]],[43637,[7]],[45085,[49]],[55319,[7]],

[56090,[7,7]],[63269,[7]],[64923,[7]],[68295,[7]],[70013,[7]],

[79383,[7]],[86435,[7]],[101442,[7]],[106711,[7]],[117645,[49,7]],

[144210,[49]],[153663,[7,7]],[163418,[7]],[194477,[7]],[216690,[7,7]],

[228245,[7]],[240099,[49,7]],[252255,[7,7]],[264710,[7]],

[290517,[49,7]],[308395,[7]],[345743,[7]],[437582,[7,7]],

[448453,[49,7]],[470595,[7]],[511797,[7]],[540221,[7]],
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[640533,[7,7]],[693885,[7]],[735306,[49,7]],[777923,[7]],

[821742,[7]],[866757,[7]],[928653,[49]],[1058837,[49,7]],

[1162083,[7]],[1197565,[343]],[1215506,[7,7]],[1500621,[7,7]],

[1882383,[49,7]],[1927469,[7]],[2019237,[7]],[2160899,[7]],

[2407669,[7]],[2458623,[49]],[2614685,[7,7]],[2941221,[7,7]],

[3111695,[7]],[3651917,[7]],[3841599,[7,7]],[4439445,[7]],

[4648335,[7]],[4862021,[49,49,7]],[5080515,[7]],[5303805,[7]],

[5531903,[7]],[6002499,[7]],[6244997,[7]],[6744405,[7,7]],

[7263021,[7,7]],[7800845,[7]],[8934117,[7]],[9529565,[7]],

[10144221,[7]],[11431157,[7]],[13505621,[7]],[14984637,[7]],

[16540485,[7]],[18173165,[7]],[19018317,[7]],[19882677,[7]],

[20766245,[7]],[22591005,[7]],[23532197,[7]]]

#Vh = 100

exceptions:List([])

Of course, B = 100 is insufficient to give smaller Kummer radicals, but it is only a
question of execution time and memory due to the instruction bnfinit(P, 1) for P of degree
p − 1. It is clear that the same program for the F.O.P. algorithm, without computation
of the p-class group, gives unlimited lists of degree p − 1 imaginary cyclic fields with
non-trivial p-class group, as soon as M > Mpow

B
(cf. Theorem 6.4):

LISTS OF p-CLASS GROUPS OF DEGREE p-1 IMAGINARY FIELDS II

{p=7;B=10^5;s=1;LM=List;p4=p^4;for(t=1,B,mt=p4*t^2-4*s;

M=core(mt);L=List([M]);listput(LM,vector(1,c,L[c])));

VM=vecsort(vector(B-(1+s),c,LM[c]),1,8);

print(s);print(VM)}

s=-1

[M]=

[37],[53],[74],[149],[554],[1373],[2237],[2402],[2405],[3026],[3242],[4706],[5882],

[7373],[9605],[10357],[11621],[18229],

(...)

[24006638717653],[24007599060029],[24008559421613],[24009519802405]]

s=1

[M]=

[5],[6],[101],[145],[206],[215],[570],[629],[663],[731],[741],[817],[887],[894],[1067],

[1207],[1389],[1517],[1893],[2085],[2162],

(...)

[24004718090517],[24005678394477],[24006638717645],[24008559421605]
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