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Abstract

This paper addresses the problem of designing a robust control law for uncertain switched affine systems. In order to cope
with model uncertainties, a dynamic controller is introduced. Local asymptotic stability of the closed-loop system as well
as zero steady state error on the controlled output are proven. A constructive method based on LMI conditions is given. It
delivers the control parameters and an estimation of the robust domain of attraction. The proposed strategy is applied on
a parallel interconnection of m DC/DC converters. For this system, an extensive discussion is offered on specific difficulties
about ill-conditioned matrix inequalities. Finally, by using a user-programmable Field-Programmable Gate Array (FPGA),
experimental results are provided to illustrate the effectiveness of the control.

Key words: Robust control law, switched affine systems, LMI, DC/DC converters.

1 INTRODUCTION

The study of switched systems has attracted a lot
of attention from the scientific community over the past
few years [21]. They belong to the class of hybrid systems
for which active subsystem is selected according to some
switching rule [14]. The motivation for studying such
systems comes from their practical applications for elec-
tromechanical and aerospace systems and more specifi-
cally power electronics [28]. In practice, however, there
are few applications of this type of control law in power
electronics, control synthesis based on average model us-
ing Pulse Width Modulation (PWM) is widely preferred
due to the fact that analysis and design of switched affine
systems are non-trivial tasks, from a theoretical point of
view [21,6]. The control design procedure has to take into
account complex phenomena such as limit cycles or slid-
ing modes [30]. Various approaches have been proposed
for the design of stabilizing switching rules in the litera-
ture under the assumption that the equilibrium point is
perfectly known [9,16]. However, uncertainties prevent
those results to be experimentally implemented.

Only few papers have investigated the case of un-
certain equilibrium points [15,4,3]. In [15,4], the authors

Email address: aboubacar.ndoye@insa-lyon.fr (A.
Ndoye).

focus on adaptive control where specific uncertainties
are modeled, estimated and compensated by the con-
trol law. However, this strategy is expected to be fragile
with respect to unmodeled uncertainties which prevent
practical application. The methodology proposed in [3]
for dealing with uncertainties in the model is based on
the addition of an integral action. By dealing with weak
Lyapunov function, a global stabilizing control law is de-
signed. Zero steady state error is guaranteed, under the
assumption that mismatch between the actual dynam-
ics and its model is bounded. However, the limits of this
mismatch are not explicitly defined. Besides, all of those
solutions present a common characteristic: The stability
proofs are based either on the fact that the open loop
state matrix of each subsystem is Hurwitz or on the ex-
istence of a Hurwitz convex combination of them. This
is in contrast with robust control of power converters
modeled via averaging, which is the subject of a large
number of publications, e.g. [27,20] to cite a few.

In this paper, we consider the parallel interconnec-
tion ofmDC/DC converters. This system becomes more
and more popular and offer several advantages such as
better reliability due to redundancy, improved thermal
management, etc [29,19]. As in any realistic context, not
only the numerical value of the load but also the dy-
namics of parasitic elements are unknown. Therefore, we
seek structural robustness. Unlike adaptive strategies,
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this property is offered by the robust output regulation
paradigm, which intrinsically copes with unmodeled un-
certainties [12].

Contribution of this paper is threefold. (i) Based
on some arg min switching strategy, uncertain equilib-
ria is treated with the introduction of a dynamic con-
troller. Based on the existence of an exponentially glob-
ally stabilizing continuous state feedback controller as a
reference to be emulated, local exponential stability is
proved, thereby ensuring zero steady state error. Con-
structive methods proposed here allow to avoid the ex-
istence of a Hurwitz convex combination by restricting
to local stabilization. Finally, insights on the construc-
tion of a subset included in the robust basin of attraction
are provided. (ii) A controller gains design procedure is
offered. It is formulated as a semi-definite program. A
particular attention is devoted to numerical condition-
ing of this program. To this end, the main ingredient
is the introduction of a new change of variable, which
avoids poor conditioning induced by small magnitudes
of inductances and capacitances of the converter. (iii)
Finally, the proposed strategy is validated experimen-
tally. A user-programmable Field-Programmable Gate
Array (FPGA) is used. Large computing capacity of this
device allows to cope with large switching frequency in
steady state [21].

A preliminary version of this paper was presented in
[24]. It concerns only the specific case of a buck converter
associated with a scalar uncertainty. The more general
case of (A,B,C) triple satisfying mild assumptions is
treated in this paper.

This paper is organized as follows. Section II presents
the problem formulation. Section III is devoted to the
theoretical contribution consisting in a robust control
law which guarantees local exponential stability. Section
IV reports experimental results on parallel buck convert-
ers. The paper is ended with some concluding remarks.

Notations: The identity matrix of dimension n× n
is denoted by In. 0m×n is the m × n matrix of zeros.
1m (0m) denotes a m dimensional column vector with
1 (0) entries. By B(x, cB), we denote the open ball cen-
tered on x with radius cB > 0 i.e. B(x, cB) = {y ∈ Rn :
|x− y|< cB}. IN represents the set {1, 2, ..., N}. We de-
note by Sn+ := {P = P ᵀ ∈ Rn×n : ∀x 6= 0, xᵀPx > 0}.
For a symmetric positive definite matrix P ∈ Sn+ and a
positive scalar c, we denote by E(P, x0, c) the open el-
lipsoid centered on x0 with radius c > 0 i.e. {x ∈ Rn :
(x − x0)ᵀP (x − x0) < c}. For a given set U , conv{U}
indicates the convex hull of the set and Int{U} its inte-
rior. The operator “diag{v}” builds a diagonal matrix
of a column vector v.

2 Preliminaries and problem formulation

We consider the class of uncertain continuous time
systems with switching control given by:{

ẋ(t) = A(θ)x(t) +Bu(t),

y(t) = Cx(t),
(1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rp the con-
trolled output and u(t) ∈ Rm is the control input vec-
tor which takes value in a finite set of constant vectors
U = {u1, u2, ..., uN} ⊂ Rm, where N is a strictly pos-
itive integer. The uncertain terms are gathered in the
vector θ = (θ1, θ2, ..., θnθ ) ∈ Θ and we assume that each
uncertain parameter θi belongs to a bounded and known
interval Θi := [θi, θ̄i]. The set Θ is then defined as
Θ := Θ1×Θ2× ...×Θnθ . We consider that the matrix A
depends on θ in an affine way i.e. there exist a matrix A0

and a linear map θ 7→ A1(θ) such thatA(θ) = A0+A1(θ)
for all θ ∈ Θ.

Our objective is to design a state-dependent switch-
ing law that guarantees robust regulation of the con-
trolled output y(t) to a constant reference yref . The chal-
lenge is to cancel steady state error due to parameter
uncertainties.
Let PΣ(θ, s) be the Rosenbrock matrix

PΣ(θ, s) :=

[
A(θ)− sIn B

C 0p×m

]
.

For the problem to be well posed, following two assump-
tions are made:

Assumption 1 For all θ ∈ Θ, system {A(θ), B,C,0}
is robustly invertible, i.e. (i) m = p holds and (ii) for all
θ ∈ Θ, rankPΣ(θ, s) = n + p holds for all but finitely
many s ∈ C.

Assumption 2 For all θ ∈ Θ, 0 is not an invariant
zero of the system {A(θ), B,C,0}, i.e. rankPΣ(θ, 0) =
maxs∈C rankPΣ(θ, s) holds for all θ ∈ Θ.

Define the set Ψe of controlled equilibria of (1) for which
y = yref and u(t) can take any value in Rm

Ψe(θ) = {(x∗θ, u∗θ) ∈ Rn × Rm :

A(θ)x∗θ +Bu∗θ = 0n, Cx
∗
θ = yref}. (2)

Lemma 3 Let Assumptions 1 and 2 hold. Then, for all
θ ∈ Θ and for all yref ∈ Rp, the controlled equilibria
is unique, i.e. there exists (x∗θ, u

∗
θ) such that Ψe(θ) =

{(x∗θ, u∗θ)}.

PROOF. This result trivially follows from the observa-
tion that set Ψe(θ) defined in (2) may be re-expressed
as follows:

Ψe(θ) =

{
(x∗θ, u

∗
θ) : PΣ(θ, 0)

[
x∗θ

u∗θ

]
=

[
0n

yref

]}

and the fact that Assumptions 1 and 2 imply that
PΣ(θ, 0) is invertible for all θ ∈ Θ.
Assume also that inputs associated with controlled
equilibria belongs to Int{conv(U)}:
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Assumption 4 For all θ ∈ Θ, Ψe(θ) belongs to Rn ×
Int{conv(U)}.

This last hypothesis, together with Assumptions 1 and
2, imply that Ψe(θ) = {(x∗θ, u∗θ)} is such that u∗θ ∈
Int{conv(U)}. In this paper, we seek solutions to the fol-
lowing problem:

Problem 5 Given system (1) and the set U . Assume
that Assumptions 1, 2 and 4 hold. Design nz ∈ N>0, vec-
tors ψ ∈ Rm and hz ∈ Rnz and matrices Az ∈ Rnz×nz ,
Bz ∈ Rnz×n and Γ ∈ R(n+nz)×m characterizing dynam-
ical state-feedback relay controller

ż(t) = Azz(t) +Bzx(t) + hz, (3a)

u(t) ∈ arg min
v∈U

([
xᵀ(t) zᵀ(t)

]
Γ + ψᵀ

)
v, (3b)

such that, for all θ ∈ Θ, resulting closed-loop admits a
locally exponentially stable equilibrium (x∗θ, z

∗
θ ) for which

y = yref .

Remark 6 Since controller input u(t) must belong to
finite set U , closed loop (1) with (3) is governed by a
differential equation with discontinuous right-hand side
(unless u(t) is constant). In this paper, solutions are con-
sidered in the sense of Filippov, see e.g. [11] and [8].

3 Proposed robust control law

3.1 Augmented model

In order to cancel the error induced by the parameter
uncertainties, an integral action is added in the control
scheme. State z of the controller is governed by z =∫

(y − yref) which can be recast into (3a) by selecting
nz = p. Denoting ζ := [ xz ], the augmented model reads:

ζ̇(t) = Ā(θ)ζ(t) + B̄u(t) + h, (4)

where ζ(t) ∈ R(n+p), with

Ā(θ) :=

A(θ) 0n×p

C 0p×p

 , B̄ :=

 B

0p×p

 , h :=

 0n

−yref

 . (5)

Now, note that by virtue of Lemma 3, there exists an
unique couple (x∗θ, u

∗
θ) such that Ā(θ)ζ∗θ + B̄u∗θ + h =

0n+p with ζ∗θ :=
[
x∗
θ

z∗θ

]
∈ Rn+p and z∗θ ∈ Rp. Thereafter,

we define by η the coordinates transformation:

η := ζ − ζ∗θ . (6)

3.2 Main result

Definition 7 ([2]) (A(θ), B) is quadratically stabiliz-
able via linear control if there exists K and P ∈ Sn+

such that, for all x0 and for all θ ∈ Θ, the function
x 7→ xᵀPx is strictly decreasing along trajectories of the
system ẋ(t) = A(θ)x(t) +BKx(t), x(0) = x0, i.e.

(A(θ) +BK)ᵀP + P (A(θ) +BK) ≺ 0n×n, (7)

holds for all θ ∈ Θ.

System matrix Ā(θ) depends affinely on the parame-
ter θ which belongs to a convex polytope Θ. Therefore,
Ā(θ) belongs to a convex polytope of Ns = 2nθ vertices

Ā
[i]
s := Ā(θ[i]), (i ∈ INs) where vectors θ[i], (i ∈ INs)

are vertices of Θ, see [7]:

Ā(θ) ∈ conv{Ā[1]
s , ..., Ā

[Ns]
s } :={

Ns∑
i=1

γiĀ
[i]
s : 0 6 γi 6 1,

Ns∑
i=1

γi = 1

}
. (8)

For the sequel, we will assume that:

Assumption 8 (Ā(θ), B̄) is quadratically stabilizable
via linear control.

Let us now state the main result of the paper.

Theorem 9 Assume that Assumptions 1, 2, 4 and 8
hold. Given any θn ∈ Θ. Denote (x∗θn , u

∗
θn

) the unique
element of Ψe(θn) (see Lemma 3). Define

ζ∗θn :=

[
x∗θn

0p

]
. (9)

Then, there exists P ∈ Sn+p
+ such that controller (3) with

nz = p, Az = 0p×p, Bz = C, hz = −yref , Γ = PB̄

and ψᵀ = −ζ∗ᵀθnPB̄, solves Problem 5, i.e. controller (3)
reads

ż(t) = Cx(t)− yref , z(0) = z0 ∈ Rp; (10a)

u(t) = arg min
v∈U

(ζ(t)− ζ∗θn)ᵀP

[
B

0p×p

]
v. (10b)

Besides, there exists a strictly positive scalar ε such that
ellipsoid

Ω0 := E(P, ζ∗θ , ε) ⊂ Rn+p (11)

belongs to the closed-loop domain of attraction, i.e. for all

θ ∈ Θ and for all
[
x(0)
z(0)

]
∈ Ω0, trajectory of closed-loop

(1) with (10b) converges exponentially to equilibrium of
Problem 5.

PROOF. Select θ ∈ Θ arbitrarily. Under Assumption 8,
there exists P ∈ Sn+p

+ , δ > 0 and λ > 0 such that

∂V

∂η
(η) (Ā(θ)η + B̄Kη) < −2δV (η),∀η 6= 0n+p, (12)
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is satisfied for V : η 7→ ηTPη and

K = −λ
2
B̄ᵀP. (13)

This proves that Ā(θ) + B̄K is Hurwitz.
According to Lemma 3, there exists a unique cou-

ple (x∗θ, u
∗
θ) in Ψe(θ). Those vectors allow to define the

following control law:

u(ζ) = K(ζ − ζ∗θn) + u∗θ, (14)

which, together with system (4), gives rise to a closed-
loop system described by:

ζ̇ = Ā(θ)ζ + B̄
(
K(ζ − ζ∗θn) + u∗θ

)
+ h. (15)

This equation admits an equilibrium
[ α
z∗θ

]
which is

globally attractive (and hence necessarily unique) since
(Ā(θ) + B̄K) is Hurwitz. Furthermore, this equilibrium
is such that α = x∗θ and

K(ζ∗θ − ζ∗θn) = 0m, (16)

hold. Indeed, it holds

Ā(θ)

[
α

z∗θ

]
+ B̄

(
K(

[
α

z∗θ

]
− ζ∗θn) + u∗θ

)
+ h = 0n+p,

⇔

[
A(θ) B

C 0p×p

]
α

K(

[
α

z∗θ

]
− ζ∗θn) + u∗θ

 =

[
0n

zref

]
,

⇔ (α,K(

[
α

z∗θ

]
− ζ∗θn) + u∗θ) ∈ Ψe(θ).

By virtue of Lemma 3, this ensures that

(α,K(

[
α

z∗θ

]
− ζ∗θn) + u∗θ) = (x∗θ, u

∗
θ),

so that α = x∗θ and (16) hold.
Let us now prove that, for all ζ(0) ∈ Ω0, trajectory

of closed-loop (4) with controller (10b) converges expo-

nentially to ζ∗θ =
[
x∗
θ

z∗θ

]
. To this end, define set CU (θ) as

follows:

CU (θ) :=
{
ζ : K(ζ − ζ∗θn) + u∗θ ∈ conv(U)

}
. (17)

Under Assumption 4, one has u∗θ ∈ Int{conv(U)}. This
equation is equivalent to 0m ∈ Int{conv(U) − u∗θ},
which guarantees the existence of γ > 0 such that
B(0m, γ) ⊂ Int{conv(U) − u∗θ}. Note that the func-
tion k : ζ 7→ K(ζ − ζ∗θn) is continuous, so that

reciprocal image of the open set B(0m, γ), namely
k−1(B(0m, γ)) := {ζ : k(ζ) ∈ B(0m, γ)}, is also an
open set. Clearly, this set contains ζ∗θ (since from (16)

k(ζ∗θ ) = 0m ∈ B(0m, γ)) so that for all Q ∈ Sn+p
+ there

exists c > 0 defining the ellipsoid E(Q, ζ∗θ , c) which
is contained in k−1(B(0m, γ)). Therefore, there exists
ε > 0 such that the ellipsoid Ω0 := E(P, ζ∗θ , ε), associ-
ated with P , satisfies Ω0 ⊂ k−1(B(0m, γ)) ⊂ CU (θ).
As a result, for all ζ ∈ Ω0, there exists N scalars

αj(ζ) > 0, (j ∈ IN ), with
∑N
j=1 αj(ζ) = 1 such that:

K(ζ − ζ∗θn) + u∗θ =

N∑
j=1

αj(ζ)uj . (18)

Using this relation together with (16) imply that

K(ζ − ζ∗θ ) = −u∗θ +

N∑
j=1

αj(ζ)uj , ∀ζ ∈ Ω0. (19)

Now consider (6), system (15) can be re-written as fol-
lows:

η̇ = (Ā(θ) + B̄K)η. (20)

Using (19) and the equality
∂V

∂η
(η) = 2(ζ − ζ∗θ )ᵀP , (12)

implies that

(ζ−ζ∗θ )ᵀPĀ(θ)(ζ−ζ∗θ )+(ζ−ζ∗θn)ᵀPB̄(

N∑
j=1

αj(ζ)uj−u∗θ)

+ (ζ∗θn − ζ
∗
θ )ᵀPB̄(

N∑
j=1

αj(ζ)uj − u∗θ)

< −δV (ζ − ζ∗θ ), ∀ζ ∈ Ω0 \ {ζ∗θ }, (21)

holds. By using (16) and (13), one can conclude that
(ζ∗θn − ζ

∗
θ )ᵀPB̄ = 0. Thus, (21) reads

N∑
j=1

αj(ζ)
(

(ζ − ζ∗θ )ᵀPĀ(θ)(ζ − ζ∗θ )+

(ζ−ζ∗θn)ᵀPB̄ (uj − u∗θ)
)
< −δV (ζ−ζ∗θ ), ∀ζ ∈ Ω0\{ζ∗θ }.

(22)

Since αj(ζ) > 0, (j ∈ IN ), for all ζ ∈ Ω0 \ {ζ∗θ }, there
must be at least one j ∈ IN such that:

(ζ − ζ∗θ )ᵀPĀ(θ)(ζ − ζ∗θ ) + (ζ − ζ∗θn)ᵀPB̄ (uj − u∗θ)
< −δV (ζ − ζ∗θ ) (23)

holds. As a result, controller (10b) ensures that, for all
ζ(0) ∈ Ω0 \ {ζ∗θ }, (22) and, in turn, (12) are satisfied so
that closed-loop trajectory converges exponentially to
ζ∗θ .
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Remark 10 (On Ω0) Set Ω0 defined in (11) is an in-
ner estimate of the basin of attraction. Then, a crucial
question is the following: How to exploit this estimate
since it depends on the unknown vector θ, via ζ∗θ? The
idea is to make sure that the initial condition (x(0), z(0))
belongs to Ω0, for any θ ∈ Θ. This can be achieved via
the following set, which is independent of θ:

G := ∩θ∈ΘΩ0. (24)

As a result, if the initial condition (x(0), z(0)) belongs to
G, then y(t) converges to yref . This suggests that one may
have to adapt the value of z(0) to the initial condition x(0)
of the system in order to ensure (x(0), z(0)) ∈ G. Thus,
instead of initialize the integrator at z(0) = 0, one should
rather compute z(0) in order to move (x(0), z(0)) away
from the boundaries of G. This is expected to enhance
robustness with respect to x(0).

Remark 11 Equation (10b) derives from continuous
control law (14). The latter differs from classical con-
troller

u(ζ) = Kζ, (25)

usually implemented to control (4). Indeed, following
steps of the proof of Theorem 9, following discontinuous
controller can be derived from (25):

u(t) = arg min
v∈U

(ζ(t)− ζ∗θ )TP

[
B

0p×p

]
v. (26)

Dependency of this equation w.r.t. unknown vector θ via
ζ∗θ prevents practical implementation. Interestingly, for
the same reason, (14) has no practical interest. This sur-
prising interplay between those continuous controllers
and their discontinuous counterparts can be summa-
rized as: Unimplementable continuous law (14) leads
to implementable discontinuous law (10b), whereas
implementable continuous law (25) gives rise to unim-
plementable discontinuous law (26). This discussion
suggests that Theorem 9 cannot be regarded as a direct
adaptation to the strategy developed in [16].

3.3 Computation of the controller parameter P

This subsection provides guidelines to select numeri-
cal values of the matrix P . It is well known that (12) can
be reformulated as a semidefinite programming (SDP)
so that P can be computed for a given decay rate δ. Be-
sides, matrix P , together with ε, also parametrizes ellip-
soid Ω0 included in the closed-loop basin of attraction.
Therefore, computation of P aims (i) enlarging Ω0 and,
at the same time, (ii) being compatible with the largest
possible value of δ. Those two objectives are known to be
competing. For this reason, computation of P is recast
into an optimization problem where (ii) is treated as a
constraint whereas (i) is related to the criterion to be
optimized. Specifically, size r of the ball B(ζ∗θ , r) ⊂ Ω0

is maximized for a given value of δ. This strategy adapts
the one of [16], which is inspired by the literature for
systems with bounded controls [18,17]. A technical step
toward this objective is the construction of the set:

V := ∩θ∈Θ (conv(U)− u∗θ) . (27)

as an intersection of convex polytopes (which is convex
[10, p. 8]) containing 0 in their interior (Assumption 4
ensures that u∗θ ∈ Int{conv(U)}), set V can be charac-
terized via ng ∈ N and gj ∈ Rm, (j ∈ Ing ) [5, p. 87]:

V = {v ∈ Rm : gᵀj v 6 1, (j ∈ Ing )}. (28)

Proposition 12 Consider the following SDP parametrized
by strictly positive scalars δ and ε and vectors gj ∈ Rm:

minQ∈Sn+p
+

,λ∈R>0,γ∈R>0
γ s.t.

Ā[i]
s Q+QĀ[i]ᵀ

s − λB̄B̄ᵀ ≺ −2δQ, (i ∈ INs) (29a)1
λ

2
gᵀj B̄

ᵀε

∗ εQ

 � 0, (j ∈ Ing ), (29b)

[
γIn+p In+p

∗ εQ

]
� 0. (29c)

Let (Q?, λ?, γ?) denotes numerical values of (Q,λ, γ) for
which γ is minimized. Then, P = (Q?)−1 complies with
statement of Theorem 9 and δ is a lower bound for robust
decay rate of exponential convergence (Theorem 9). Fur-
thermore, the size of Ω0 is maximized in the sense that
Ω0 contains ballB(ζ∗θ , r) whose radius satisfies r > 1/γ?.

PROOF. Condition (29a) implies the existence of K as
defined in (13) and P = Q−1 such that (12) is satisfied.
Applying the Schur complement lemma, and using (13),
condition (29b) leads to:

ε < (gᵀjKP
−1Kᵀgj)

−1, (j ∈ Ing ), (30)

vectors gj are defined as in (28). Since 0 ∈ Int{V} holds,
{ζ : K(ζ − ζ∗θn) ∈ V} is a non-empty subset which,
from (16), can be rewritten as {ζ : K(ζ − ζ∗θ ) ∈ V}
and therefore contains ζ∗θ . Recall that the minimum of
(ζ−ζ∗θ )ᵀP (ζ−ζ∗θ ) on the hyperplane {ζ : gᵀjK(ζ−ζ∗θ ) =

1} equals (gᵀjKP
−1Kᵀgj)

−1 [17]. Therefore from (30),

(16) and using the fact that Ω0 is convex, we obtain that
Ω0 ⊂

{
ζ ∈ Rn+p : K(ζ − ζ∗θn) ∈ V

}
i.e. for all ζ ∈ Ω0

and for all θ ∈ Θ we have K(ζ−ζ∗θn)+u∗θ ∈ conv(U). As
explained in the proof of Theorem 9, this proves that Ω0

is included in the robust basin of attraction. Condition
(29c) is equivalent (by Schur complement) with

(ζ − ζ∗θ )ᵀ
Q−1

ε
(ζ − ζ∗θ ) < γ(ζ − ζ∗θ )ᵀ(ζ − ζ∗θ ), ∀ζ 6= ζ∗θ ,
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which guarantees that B(ζ∗θ , 1/γ) ⊂ Ω0.

Remark 13 Note that if the LMIs (29) are satisfied for
some set of parameters (Q0, λ0, γ0) and for some given ε0,
then they are also satisfied for ε = 1 with (Q0ε0, λ0ε0, γ0).
Therefore ε = 1 can be imposed in Proposition 12 without
loss of generality.

3.4 Comparison with existing results

From the above discussion, proposed strategy some-
how implements well-know strategy of robust output
regulation consisting in (i) adding an internal model (the
integrators in this specific case) before (ii) equipping the
augmented model with a robust stabilizer, see e.g. [13].
Let us now clarify why existing results cannot be triv-
ially employed to adapt this strategy to the context of
this paper.
1) Relay controller design is often tackled in the frame-
work of switched system for which general approaches
have been proposed, see e.g. [9]. Augmented system (4)
may be rewritten as the following switched system

ζ̇(t) = Āσ(t)(θ)ζ(t) + B̄σ(t)

with Āσ(t)(θ) = Ā(θ) and B̄σ(t) ∈ B̄U + h. In this con-
text, controller design consists in defining switching law
t 7→ σ(t) which selects instantaneous value of B̄σ(t).
Even in the nominal case where θ is known, this goal
cannot be achieved via classical approaches, like e.g. [9],
thought. This is due to the fact that, by construction,
state matrix Ā(θ) is not Hurwitz since it admits 0 as
an eigenvalue, see (5). This feature makes the design
problem out of the scope of [9]. However, based on a
max-type Lyapunov function, [25] proposes a stabiliz-
ing switching law even in the case where Ā(θ) is not
Hurwitz, but no explicit design procedure is provided
and uncertainties are not taken into account.
2) Besides, alternative strategies like [16] which are
specifically devoted to relay controller and which emu-
lates the behaviour of a stabilizing continuous controller
cannot be directly applied in the robust context, see
Remark 11.

Those two obstructions were motivation for authors
of [3]. As in the present paper, they propose to add an
integral action in order to asymptotically cancel steady-
state error of the controlled output. However, proposed
design procedure requires open-loop state matrix A(θ)
to be Hurwitz for some θ ∈ Θ, which might not be the
case. Besides, if robust basin of attraction R is ensured
to be non empty, neither R nor explicit inner approx-
imation of R can be explicitly constructed. This is in
contrast with Theorem 9 and Proposition 12. Therefore,
as compared to [3], proposed control design (i) is appli-
cable to any open-loop model (not necessarily having a
Hurwitz state matrix) and (ii) provides insights on the
construction of an explicit subset of the robust domain
of attraction, see Remark 10.

Capacitor

Inductances

DC Source

DC Load
Voltage and current

sensors

Switching cells
(Transistors)

Rapid Control Prototyping

Transistors

+ Diodes

Fig. 1. Test bench

4 Experimental application : Parallel intercon-
nection of DC/DC converters

The proposed approach is now implemented on par-
allel interconnection of m DC/DC converters sharing a
single capacitor and connected to a common resistive
load R. Here, we consider the case of unidirectional buck
converter. An essential feature offered by this system is
the possibility to distribute load current. Indeed, if reg-
ulation of output voltage imposes overall current, dis-
tribution of current among converters remains free. The
most widespread strategy for dealing with this degree of
freedom is the so-called balanced current sharing which
uniformly distributes currents among converters [29].
The test bench represented on Fig. 1 for this applica-
tion is composed of three heterogeneous buck convert-
ers (m = 3) in the sense that inductors, transistors and
diodes are different. Each converter is equipped with an
identical pair of transistors with anti-parallel diodes. For
each converter, transistors are MOSFET whose refer-
ences are respectively STP315N10F7, STP30NF10 and
STP40NF10. For this application only one transistor per
converter is driven while the second is used as a diode.
The physical parameters values are E1 = E2 = E3 =
24V ,C0 = 40µF , L1 = L2 = 1.3mH, L3 = 1.43mH and
R ∈ [5, 10]Ω. Voltage has to be regulated to Vref = 12V .
Note that the design of the test bench makes the uniform
current distribution more challenging. This is to show

C0 R

Em

E1

i1(t)

im(t)

v(t)

σ(t)

buck converter 1

buck converter m

DC BUS
L1

Lm

D1

Dm

T1

Tm

u1(t)

um(t)

Fig. 2. Electrical schematic
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the effectiveness of the control law. The controller hard-
ware is Rapid Control Prototyping system dSpace Mi-
croLabBox which is composed of a Real-Time Processor
that communicates with a user-programmable FPGA
(whose clock period TF = 1.10−8s) and several (digital
and analog) inputs/outputs.

4.1 Loss free dynamical model

The electrical circuit of the system is represented on
Fig. 2. By neglecting parasitic elements and by using
Kirchoff’s laws, it can be modelled as follows:

Lk
dik(t)

dt
= −v(t) + Ekuk(t), (k ∈ Im), (31a)

C0
dv(t)

dt
= σ(t)− v(t)

R
, (31b)

where uk(t) ∈ {0, 1} is the control input associated to
k-th branch and

σ :=
∑
k∈Im

ik, (31c)

refers to the total current (see Fig. 2). Currents ik(t)
as well as voltage v(t) are measured and load R is un-
known but belongs to a bounded and known interval
[Rmin, Rmax] ⊂ R>0.

The two control objectives are: (i) regulate output
voltage v(t) to a fixed reference Vref and (ii) uniformly
distribute current over them branches. This leads to the
following definition of controlled output:

y =
[
i1 − i2 i2 − i3 ... im−1 − im v

]ᵀ
∈ Rp, (32)

where p = m (which is one of the requirements of As-
sumption 1), associated with reference yref given by:

yref :=
[
0ᵀ
m−1 Vref

]ᵀ
∈ Rm. (33)

Let us denote the state vector x = [i v]ᵀ with i :=
[i1, ..., im]ᵀ and the control vector u = [u1, ..., um]ᵀ with

u(t) ∈ U = {0, 1}m. (34a)

Define parameter vectors E := [E1, ..., Em]ᵀ,
L := [L1, ..., Lm]ᵀ and scalar θ = 1/R ∈ Θ =
[1/Rmax, 1/Rmin]. In this case, (31) adopts state space
representation (1) with:

A(θ) :=

[
0m×m −diag{L}−11m

1/C0 1ᵀ
m −θ/C0

]
, (34b)

B :=

[
diag{L}−1diag{E}

0ᵀ
m

]
, C :=

[
Γᵀ 0

0 1

]
, (34c)

where n = m+ 1 and m = p holds and Γ reads

Γ :=

[
Im−1

0ᵀ
m−1

]
−

[
0ᵀ
m−1

Im−1

]
∈ Rm×(m−1). (34d)

Remark 14 For m > 1, the matrix A(θ) defined in
(34b) admits 0 as eigenvalue therefore the example can-
not be treated using the approaches proposed in [15,4,3,9].
To the best of our knowledge, there is no solution in the
switched systems framework able to deal with this prob-
lem.

Remark 15 In [22], a robust controller for the system
considered here is designed, based on the combination of
the concepts of integral-variable-structure and multiple-
sliding-surface control. However, in comparison with this
work, gains of our controller are computed automatically
by solving an optimization problem.

Remark 16 There are many publications, generally
based on PWM approaches, dealing with controlling a
parallel dc-dc converter with different current sharing
strategies, e.g. [1,23]. With the approach proposed here,
it is possible to impose an uneven distribution of current
by modifying vector y defined in (32). However, this is
beyond the scope of this paper.

4.2 Assumptions and control objectives

Physical parameters and voltage reference are such
that following inequalities hold for all k ∈ Im

0 < Vref < Ek, Lk > 0. (34e)

Next lemma proves that previous assumptions are valid
in this context.

Lemma 17 For model (1) and (34), Assumptions 1, 2
and 4 are satisfied. Furthermore, it holds

Ψe(θ) =


θVref

m
1m

Vref

 , Vref diag{E}−11m

 . (35)

PROOF. First observe that

ker Γᵀ = span 1m. (36)

Hence,

kerPΣ(θ, 0) = ker
[
A(θ) B

]
∩ ker

[
C 0p×m

]
= (ker 1ᵀ

m × {0} × {0m})∩
(span 1m × {0} × span Im)

= {0n+m},
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holds. Since rankPΣ(θ, 0) = n+m− dim kerPΣ(θ, 0) is
valid, one gets

n+m = rankPΣ(θ, 0) ≤ max
s∈C

rankPΣ(θ, s) ≤ n+ p.

From equality m = p, this proves that Assumptions 1
and 2 are satisfied. Expression of Ψe(θ) given in (35)
follows from the definition of matrices in (34). Together
with (34e), this proves that Assumption 4 is valid.

4.3 Controller design

4.3.1 Enhancing numerical conditioning

Controller (10) is parametrized by P whose compu-
tation is performed via Proposition 12. This involves in-
equality (29a) which is typically poorly conditioned for
buck converters. This is due in general to difference of
magnitude between inductances Lk and capacitor C0,
which are involved in the definition of matrices defined
in (34b) and (34c). To enhance numerical conditioning
of optimization problem (29), following lemma provides
an alternative formulation to model (34). It consists in
changing time scale, state and input variables and is in-
spired from normalization procedure proposed in [26, p.
15] applied for the case of a single converter.

Lemma 18 Define following matrices:

T−1
x :=

[
H−1 0n−1

0ᵀ
n−1 1

]
, T−1

y :=

[
F 0m−1

0ᵀ
m−1 1

]
,

T−1
u :=

 Leq
LM

Γᵀ

Leq1
ᵀ
mdiag{L}−1

diag{E},

with:

H−1 :=

√
Leq
C0

 1

LM
Γᵀdiag{L}

1ᵀ
m

 , (38a)

F :=
1

Lm

√
Leq
C0

(Γᵀdiag{L}Γ) (ΓᵀΓ)
−1
, (38b)

1

Leq
:=

∑
k∈Im

1

Lk
, LM = max

k
Lk. (38c)

Define also change of coordinates via xa = T−1
x x, ua =

T−1
u u, ya = T−1

y y and τ =
t√

LeqC0

so that system (1)

becomes: 
dxa(τ)

dτ
= Aa(θ)xa(τ) +Baua(τ),

ya(τ) = Caxa(τ),
(39)

2 4 6 8 10

0

1

2

3
10

5

0

5

10

15

Fig. 3. Impact of the numerical conditioning form converters

where

Aa(θ) =

 0m×m

[
0m−1

−1

]
[
0ᵀ
m−1 1

]
− θ
Qc

 , Ba =

[
Im

0ᵀ
m

]
,

Ca =

Im−1
−1

mLM
ΓᵀL 0m−1

0ᵀ
m−1 0 1

 ,
(40)

with Qc :=
√

C0

Leq
. In this case, ua(t) belongs to Ua :=

T−1
u U for all t. See see Appendix A for the proof.

To illustrate conditioning enhance, the Matlab func-
tion cond which returns the 2-norm condition number
of a matrix is used: It computes the ratio of the largest
singular value of a matrix to the smallest. Large condi-
tion number indicates ill-conditioned matrix. We plot on
Fig. 3 the condition number of the original model (34)
and the normalized model (40) for different values of m.
It shows that the normalized model is much better con-
ditioned even for large values of m.

4.3.2 Control design

The control structure Following methodology pro-
posed in Section 3 and relying on the changes of variable
defined earlier and in particular the fact Ca = T−1

y CTx
holds, equality y = yref is proved to be equivalent to
Caxa = T−1

y yref . This is the motivation for considering
the following equation, in place of (10a),

dza(τ)

dτ
= Caxa(τ)− T−1

y yref . (41)

State of the resulting augmented model equals ζa :=
[ xaza ] = T−1

ζ ζ with

T−1
ζ :=

T−1
x 0

0 T−1
y

1√
LeqC0

 . (42)
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Fig. 4. Experimental results: chronograph and its zoom (de-
picted on the right) of the voltage, the current and the load
for δa = 0.22.

Normalized controller parameters The strategy
first consists in considering augmented model based on
state space (39) in Proposition 12. From physical pa-
rameters valued defined earlier and (35), u∗θ does not
depend on θ and equals to 0.5 × 13. In this case, V
equals [−0.5, 0.5]3. Alternatively, it can be characterized

as in (28) with ng = 6 and g1 =
[
2 0 0

]ᵀ
, g2 = −g1,

g3 =
[
0 2 0

]ᵀ
, g4 = −g3, g5 =

[
0 0 2

]ᵀ
and g6 = −g5.

Normalized version of this set reads: Va := {v ∈ Rm :
gᵀjav ≤ 1, (j ∈ I6)} with gja := T ᵀ

u gj . Without loss of

generality we consider ε = 1 to solve (29) (see Remark
13). Now using the normalized vectors gja , (j ∈ I6) and
choosing δa = 0.22, (29) leads to :

λ∗a = 96, γ∗a = 0.0114, det(P ∗a )−1/2 = 1.47.109, (43)

so that Theorem 9 applies and gives a solution to Prob-
lem 5 for the normalized model.
Here, due to the large dimension of Q∗a (7 × 7), only
the numerical value of det(P ∗a )−1/2 with P ∗a = (Q∗a)−1

is provided. This quantity is the volume of the inner ap-
proximation of the domain of attraction, see Proposi-
tion 12 and Theorem 9.
Denormalization In order to recover original physical
units, the actual gains values have to be ”de-normalized”
before implementation. From the change of variables de-
fined previously, this is achieved by implementing the
following relation : u = Tuua.

4.4 Experimental results

Now let us apply the proposed methodology. We fix
the initial condition x(0) to [0.24 0.24 0.24 7.2]ᵀ, z0 to
03 and we choose θn = 1/10. The latter leads to

ζ∗θn =
[
0.4 0.4 0.4 12 0ᵀ

3

]ᵀ
.

From Remark 10 and relying on the change of variables
defined earlier, one need to make sure that the following
relation holds in order to apply the proposed methodol-
ogy:

T−1
ζ ζ(0) ∈ ∩θ∈ΘE(Pa, T

−1
ζ ζ∗θ , 1). (44)

One can show that it is the case for the numerical values
obtained in (43).
The experimental results are represented on Fig. 4 for
which the initial value of the load is, first, fixed to its
nominal value equals to 10Ω. Then a load step is ap-
plied, which changes this value to 5Ω. For the two load
values, one observes that after a short transient, the de-
sired steady state is achieved: Voltage converges to Vref

and overall current is uniformly distributed. This proves
the effectiveness of our approach.

Note that exponential stability is achieved under the
assumption of possibly infinite switching frequency as
well as ideal electrical components, including the ones
required to implement the control law. Those assump-
tions are obviously not valid in practice. This induces
very fast switching and chattering around the desired
equilibrium as shown on Fig 4. Yet, magnitude of this
chattering is fully acceptable from the application point
of view, which validates relevance of the previous as-
sumptions for the control design purpose.

Remark 19 The transistors switching induce transient
phenomena on states to be measured. For this reason,
the ADC sampling needs to be triggered with the maxi-
mum switching frequency so that measurements are in-
terspersed between two switches [24]. Knowing that a
ADC measurement are available every 1.10−6s, we have
imposed a minimum time between two switches Ts =
5.10−6s. The choice of Ts ensures that the controller dy-
namics is much faster than system dynamics. These lat-
ter are set by Lj/R, j ∈ I3 whose minimum is equal to
260.10−6s.

5 CONCLUSION

A switching controller for LTI system with uncertain
equilibrium was proposed in this paper. The main contri-
bution was the design of a robust switching control law
in the case of uncertain and non Hurwitz open loop state
matrix. The proposed approach is applied on a parallel
interconnection of m DC/DC converters where a new
change of variables is presented to avoid ill-conditioned
matrix. Finally, experimental results show the effective-
ness of the method. Generalizing this approach for a
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larger class of system is the topic of future works. Other
interesting points are (i) to limit the switching frequency
at the steady state, (ii) to get rid of Assumption 1 in the
stability proofs and (iii) to provide a precise framework
for a comparison with PWM approach.

A APPENDIX: Proof of Lemma 18

From (36), we can show that H reads

H =

√
C0

Leq

[
LMΓ(Γᵀdiag{L}Γ)−1 Leqdiag{L}−11m

]
.

(A.1)
Now, notice that from the definitions of matrices (38)
and (A.1), it holds:

1ᵀ
mH =

√
C0

Leq

[
0ᵀ
m−1 1

]
, (A.2a)

H−1diag{L}−11m =

√
Leq
C0

[
0m−1

1/Leq

]
. (A.2b)

By using the change of variables xa = T−1
x x, one has:

T−1
x A(θ)Tx =

 0m×m −H−1diag{L}−11m
1
C0

1ᵀ
mH − θ

C0

 ,
(A.2)

=

√
1

LeqC0
Aa(θ),

and

T−1
x Bu =

[
H−1diag{L}−1diag{E}

0ᵀ
m

]
u

(37)
=

√
1

LeqC0
Baua.

Finally, by using the expression of τ in (37), we end up
with matrices Aa(θ) and Ba given in (40).
Let us compute expression of Ca:

Ca = T−1
y CTx =

[
FΓᵀH 0

0 1

]
(A.1)

=

[
Im−1 Z 0

0 0 1

]
,

where

Z :=
Leq
LM

Γᵀdiag{L}Wdiag{L}−11m, (A.3)

W := Γ(ΓᵀΓ)−1Γᵀ = Im −
1

m
1m×m. (A.4)

Thus, it remains to prove that

Z =
−1

mLM
ΓᵀL (A.5)

holds. Indeed, right multiplication by invertible matrix[
Γ 1m

]
of eitherW and right hand side of (A.4) gives the

same matrix
[
Γ 0m

]
. Bearing (A.4) in mind and noticing

that L−1
eq equals 1ᵀ

mdiag{L}−11m, it follows that

Z =
1

LM
Γᵀ(Leq1m −

1

m
diag{L}1m),

which immediately leads to (A.5). Note that for identical
numerical values of inductances, Z = 0m−1.
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trale de Lille, Villeneuve-dAscq, France,
in 2012. In September 2014, he joined
the Institut National des Sciences Ap-
pliquées de Lyon (INSA Lyon), Villeur-
banne, France, and the Ampere Labora-
tory, where he is currently an Associate

Professor. His research interests include control applica-
tions for power electronics systems, switching systems,
and sliding mode control.

Jean-François Trégouët received
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