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Abstract: This paper studies the effect of packet loss during the application of the weighted
gradient descent to solve a resource allocation problem with piecewise quadratic cost functions
in a multi-agent system. We define two performance metrics that measure, respectively, the
deviation from the constraint and the error on the expected cost function. We derive upper
bounds on both metrics: both bounds are proportional to the difference between the initial
cost function and the cost function evaluated at the minimizer. Then, we extend the analysis
of the constraint violation to open multi-agent systems where agents are replaced: based on a
preliminary result and simulations we show that the combination of replacements and losses
makes the constraint violation error diverge with time.
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1. INTRODUCTION

The optimal distribution of a budget among multiple en-
tities or activities is one of the most important problems
in optimization (Ibaraki and Katoh, 1988). In the case of
multi-agent systems, the objective is to find an optimal
distribution of the budget among the agents while each
agent aims to minimize a local cost function and commu-
nications are restricted by the network topology (Nedić
et al., 2018; Doan and Beck, 2021). Applications include
energy resources (Dominguez-Garcia et al., 2012), games
(Liang et al., 2017), and distributed computer systems
(Kurose and Simha, 1989). In general, algorithms assume
perfect communications and rely on a symmetric exchange
of information through the network to maintain the budget
fixed (keeping the budget fixed is indeed the constraint
of the optimization problem). One of the most important
algorithms used to solve the resource allocation problem
in a multi-agent system is the weighted gradient descent
proposed in (Xiao and Boyd, 2006), where the update
rule makes use of a matrix associated to the network that
preserves the constraint.

However, communication networks can suffer from errors
in the communications that cause the loss of information.
In this case, even if the graph associated with the com-
munication network was originally undirected, interactions
between the agents can effectively be asymmetric when the
packet loss occurs only in one direction. The symmetry of
the system being broken, relevant quantities may fail to be
preserved in many scenarios (Patterson et al., 2007; Fag-
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nani and Zampieri, 2009; Frasca and Hendrickx, 2013b).
In the case of the average estimation under packet losses,
(Frasca and Hendrickx, 2013a) derived upper bounds for
the mean square error to evaluate the deviation from the
initial average for general graph topologies. While a possi-
ble deviation of the initial average value is not necessarily
problematic in the average estimation where the main
objective is to reach consensus in most cases, for optimiza-
tion problems, similar errors can be more consequential,
since they may imply the violation of the constraint. For
example in the case of the resource allocation problem,
agents could perform unnecessary tasks or the sum of
the individual tasks may not satisfy the global demand.
Indeed, the analysis of the constraint violation in complex
scenarios has been the object of many works, specially in
the framework of online optimization, where it is assumed
that cost functions change in time (Yi et al., 2021).

Moreover, in large systems, the set of agents can change
due to arrivals, departures or replacements, giving rise to
open multi-agent systems. Since the size of the system may
change with time, it is important to define performance
metrics independent of the dimension like the variance
(Monnoyer de Galland et al., 2020) or the normalized
mean square error (Vizuete et al., 2021). In the case of
optimization in open systems, it is assumed that agents
can be replaced during the process, implying a change
of the local cost functions (Hendrickx and Rabbat, 2020;
Monnoyer de Galland et al., 2021). Due to the possible
replacements, the minimizer is time-varying and in many
scenarios the original constraint may not be preserved even
if communications do not suffer of potential losses.

In this paper, we analyze the effects of packet losses in the
performance of the weighted gradient descent algorithm



to solve the resource allocation problem. First, assuming
possible packet losses, we find conditions to guarantee
convergence of the algorithm to the minimizer at least
in expectation. Then, we derive upper bounds on the
deviation from the constraint and on the error of the
expected value of the cost function. Finally, we present
an analysis in the case of open multi-agent systems where
replacements of the agents can take place and we show, by
a preliminary result and simulations, that the constraint
error can diverge for this particular scenario. This fact
highlights the difference between closed and open multi-
agent systems with packet loss.

2. PROBLEM FORMULATION

The set of real numbers is denoted by R and the set of
non negative integers by Z≥0. For two vectors x, y ∈ Rn,
we denote the Euclidean inner product by ⟨x, y⟩ = xT y
and the Euclidean norm by ||x|| = (xTx)1/2. The vector
constituted of only ones is denoted by 1. The Hadamard or
element-wise product between two matrices A,B ∈ Rn×n

is denoted by A⊙B.

2.1 Resource Allocation Problem

The resource allocation problem in a system of n agents is
formulated as:

min
x=[x1,...,xn]∈Rn

f(x)=

n∑
i=1

fi(xi) subject to

n∑
i=1

xi=b,

(1)

where fi : R → R is the local cost function associated to
agent i and b is the budget. Following standard assump-
tions, we consider that each local cost function is con-
tinuously differentiable, β-smooth (i.e., |f ′

i(x)− f ′
i(y)| ≤

β |x− y| ,∀x, y) and α-strongly convex (i.e., fi(x)− α
2 |x|2

is convex)(see (Nesterov, 2018)). Hence, the global cost
function f : Rn → R is also β-smooth and α-strongly con-
vex and the optimal solution denoted by x∗ is unique. Fur-
thermore, the optimality condition implies that 1Tx∗ = b
and ∇f∗ = ζ1 for some ζ ∈ R where f∗ = f(x∗).

We consider that agents interact through a connected
undirected graph G = (V,E), where V = {1, . . . , n} is
the set of agents and E ⊆ V ×V is the set of edges. To the
graph G we associate an adjacency matrix A = [aij ] where
aij = 1 if (i, j) ∈ E and aij = 0 otherwise. We assume
that the graph does not have self-loops (i.e., aii = 0). The
Laplacian matrix of the graph G is defined as L = D −A
where D = diag[d1, . . . , dn] and di is the degree of agent
i (i.e., di is the ith row-sum of A). Notice that L is a
symmetric matrix that satisfies L = LT .

To solve problem (1) at each iteration we apply the
weighted gradient descent algorithm with positive step-
size h:

xt+1 = xt − hL∇f(xt), (2)

where L determines the exchange of information between
the agents according to the network topology. It is well-
known that for any initial condition x0 satisfying the
constraint 1Tx0 = b, algorithm (2) solves problem (1) with
an appropriate choice of the step-size h and guarantees
linear convergence of the cost function.

2.2 Packet Losses

In this paper, we consider that the communication network
is unreliable and some messages can be lost. Following the
approach in (Frasca and Hendrickx, 2013a) we assume
that at each time instant t ∈ Z≥0, we have a matrix

Γt =
[
γij
t

]
∈ {0, 1}n×n composed of Bernoulli random

variables γij
t independent across t, i, j with P(γij

t = 1) = p
for some p ∈ (0, 1). Under this assumption, a link aij = 1

is active if γij
t = 1 and inactive if γij

t = 0. If aij = 0, the

value of γij
t does not have any effect.

The topology of the network with possible packet losses at
each time instant is thus defined by:

At = A⊙ Γt, (3)

Lt = Dt −At, (4)

and the weighted gradient descent algorithm becomes

xt+1 = xt − hLt∇f(xt). (5)

Due to the asymmetric loss of information, the graph
topology at each time instant is directed and hence the
Laplacian matrix Lt is non-symmetric. The constraint can
be violated during an update of the states of the network
using (5) and hence, the minimizer of the problem (1) will
not be reached.

At least, the algorithm (5) must solve (1) in expectation.
Since Γt is independent in time and E [Lt] = pL, the
expected dynamics is given by:

E [xt+1] = E [xt]− hpLE [∇f(xt)] . (6)

Notice that similar to (2), the dynamics (6) preserves the
constraint in expectation since:

1TE [xt+1]=1T (E [xt]− hpLE [∇f(xt)])=1TE [xt] . (7)

However, the minimizer x∗ is not necessarily a stationary
point of (6). Indeed, assume that E [xt] = x∗, then we have

E [xt+1] = x∗ − hLE [∇f(xt)] .

Under the assumption that the local functions are β-
smooth and α-strongly convex we cannot guarantee that
E [∇f(xt)] = ∇ (f (E [xt])) = ζ1.

For this reason, we restrict the set of possible cost functions
to piecewise quadratic functions, which are β-smooth and
α-strongly convex.

Assumption 1. Each local cost function fi(xi) is con-
tinuous differentiable piecewise quadratic (i.e., there ex-
ists finitely many quadratic functions {qj}Jj=1 such that

fi(xi) ∈ {qj(xi)}Jj=1 for all xi ∈ R).

Remark that under Assumption 1, the gradient is a vector

of piecewise linear functions [∇f(x)]i =
∂f(x)
∂xi

= mijxi+cij
and we have

E [∇f(xt)] = ∇f (E [xt]) . (8)

Then, the expected dynamics (6) becomes:

E [xt+1] = E [xt]− hpL∇f (E [xt]) , (9)

which corresponds to the original weighted gradient de-
scent, thereby guaranteeing that the constraint is pre-
served at each time instant and that the minimizer is
reached such that

lim
t→∞

E [xt] = x∗ and lim
t→∞

f (E [xt]) = f∗.



However, a similar equality is not true for the expected
value of the cost function. Since the functions are convex,
by using Jensen’s inequality we obtain:

E [f(xt)] ≥ f (E [xt]) ,

and by taking the limit (whose existence will be discussed
in the next section) we get:

lim
t→∞

E [f(xt)] ≥ f∗, (10)

where the inequality is in general strict.

Performance of the gradient descent algorithm (5) in the
presence of packet losses can be characterized by the fol-
lowing two quantities: errors due to the violation of the
constraint and errors due to the deviation of the expected
cost from the ideal cost f∗. In the following sections, we
analyze these two errors by defining appropriate perfor-
mance metrics.

3. CONSTRAINT VIOLATION

Although the constraint is preserved in expectation ac-
cording to (7), this fact does not imply that the constraint
is also preserved for any particular realization of the pro-
cess. In this section we estimate the deviation from the
constraint by deriving an upper bound for the constraint
violation metric:

Jconstr := lim sup
t→∞

E
[(
1Txt − b

)2]
, (11)

where the initial condition x0 satisfies 1Tx0 = b. Notice
that (11) corresponds to the asymptotic mean square error.

Theorem 1. Consider the weighted gradient descent given
by (3), (4) and (5). Under Assumption 1, for any positive
scalar h ≤ 2

β(pλn+2−2p) , the constraint violation metric

satisfies:

Jconstr ≤
4h(1− p)

2− hβ(pλn − 2p+ 2)
(f(x0)− f∗) , (12)

where λn is the largest eigenvalue of L.

Before presenting the proof of Theorem 1, we recall a
lemma derived in (Frasca and Hendrickx, 2013a).

Lemma 1. For Lt given by (3) and (4):

E
[
LT
t Lt

]
= p2L2 + 2p(1− p)L (13)

E
[
LT
t 11

TLt

]
= 2p(1− p)L. (14)

Proof of Theorem 1. Let us denote Ht =
(
1Txt − b

)
.

For (5) we denote by {Ft}t∈Z≥0
the filtration of σ-algebras

generated by the process xt. We compute the expectation
conditioned upon the filtration generated by xt:

E
[
H2

t+1|Ft

]
= E

[(
1T (xt − hLt∇f(xt))− b

)2]
= H2

t + h2∇f(xt)
TE

[
LT
t 11

TLt

]
∇f(xt)

− hHt1
TE [Lt]∇f(xt)

= H2
t + h2∇f(xt)

TE
[
LT
t 11

TLt

]
∇f(xt),

where we have used the fact that 1TL = 0. Then, we use
(14) to obtain:

E
[
H2

t+1|Ft

]
= H2

t + 2h2p(1− p)
∣∣∣∣∣∣L1/2∇f(xt)

∣∣∣∣∣∣2 .
If we take the total expectation we get:

E
[
E
[
H2

t+1|Ft

]]
=E

[
H2

t

]
+2h2p(1−p)E

[∣∣∣∣∣∣L1/2∇f(xt)
∣∣∣∣∣∣2] .

By using a recursive argument we have that at the time
instant t:

E
[
H2

t

]
= H2

0 + 2h2p(1− p)

t−1∑
s=0

E
[∣∣∣∣∣∣L1/2∇f(xs)

∣∣∣∣∣∣2]

= 2h2p(1− p)

t−1∑
s=0

E
[∣∣∣∣∣∣L1/2∇f(xs)

∣∣∣∣∣∣2] , (15)

where we used the fact that at the initial time t = 0, the
constraint is not violated H0 = 0. Now, let us consider the
inequality corresponding to β-smooth functions:

f(xt+1) ≤ f(xt) +
β

2
||xt − xt+1||2 + ⟨∇f(xt), xt+1 − xt⟩

= f(xt) +
h2β

2
⟨∇f(xt), L

T
t Lt∇f(xt)⟩

− h⟨∇f(xt), Lt∇f(xt)⟩.
We compute the expectation given the filtration generated
by xt and we use (13) to get:

E [f(xt+1)|Ft] ≤ f(xt)− h⟨∇f(xt), pL∇f(xt)⟩

+
h2β

2
⟨∇f(xt), (p

2L2 + 2p(1− p)L)∇f(xt)⟩.

We use the upper bound ||L∇f(xt)||2 ≤ λn

∣∣∣∣L1/2∇f(xt)
∣∣∣∣2

and we obtain:

E [f(xt+1)|Ft] ≤ f(xt)

− hp

(
1− hβ(1− p)− hβpλn

2

) ∣∣∣∣∣∣L1/2∇f(xt)
∣∣∣∣∣∣2 .

We denote ξ = hp
(
1− hβ(1− p)− hβpλn

2

)
and we com-

pute the total expectation to get:

E [E [f(xt+1)|Ft]] ≤ E [f(xt)]− ξE
[∣∣∣∣∣∣L1/2∇f(xt)

∣∣∣∣∣∣2] .
(16)

Since h ≤ 2
β(pλn+2−2p) we guarantee that E [f(xt+1)] ≤

E [f(xt)] such that:

E
[∣∣∣∣∣∣L1/2∇f(xt)

∣∣∣∣∣∣2] ≤ 1

ξ
(E [f(xt)]− E [f(xt+1)]) .

If we take the sum over the time instants s we have:
t−1∑
s=0

E
[∣∣∣∣∣∣L1/2∇f(xs)

∣∣∣∣∣∣2] ≤ 1

ξ
(f(x0)− E [f(xt)]) .

Notice that since E [f(xt)] is monotonically decreasing and
E [f(xt)] ≥ f(x̄∗), where x̄∗ is the minimizer of f(x)
without constraints, the limit limt→∞ E [f(xt)] exists and
we get:

lim
t→∞

t−1∑
s=0

E
[∣∣∣∣∣∣L1/2∇f(xs)

∣∣∣∣∣∣2] ≤ 1

ξ

(
f(x0)− lim

t→∞
E [f(xt)]

)
≤ 1

ξ
(f(x0)− f∗) , (17)

where we used the fact that E [f(xt)] ≥ f (E [xt]). Finally,
by using (17) in (15), we complete the proof. 2

By inspecting the right-hand side of (12), we can make
several observations. The upper bound decreases when p
increases and

lim
p→1

Jconstr = 0, (18)

which is consistent with the fact that the constraint is
always preserved with no communication losses. In the



Fig. 1. Computation of the upper bound (12) for Jconstr
for a complete graph with n = 10, β = 1, ϵ = 0.5 and
f(x0)− f∗ = 1.

case of multiple failures, which correspond to p small,
we parametrize the step size as h = 2ϵ

β(pλn+2−2p) with

ϵ ∈ (0, 1) and using (12) we obtain:

lim
p→0

Jconstr ≤
2ϵ

β(1− ϵ)
(f(x0)− f∗) . (19)

From (19), we see that for small values of p, large values of
ϵ, corresponding to large values of the step-size, increase
the potential violation of the constraint. Figure 1 presents
the computation of the upper bound for the constraint
violation metric in a complete graph with n = 10 agents,
β = 1 and ϵ = 0.5, where we can observe the behavior of
the upper bound and the limit values determined by (18)
and (19).

4. ERROR ON THE EXPECTED COST FUNCTION

Due to the packet losses, f(xt) is a random process
whose evolution depends on the different realizations of
Lt. When the degraded version of the weighted gradient
descent algorithm (5) is executed, it is important to know
the distribution of f(xt), to evaluate the impact of the
perturbations on the performance of (5) and identify the
additional cost corresponding to the deviation from the
ideal cost f∗. From (10) we can observe that E [f(xt)] is
greater than f∗. Since the objective is to remain as close
as possible to f∗, we define the cost function metric:

Jfunct := lim sup
t→∞

E [f(xt)]− f(x∗), (20)

where the initial condition x0 satisfies 1Tx0 = b. The
metric (20) estimates the gap in the cost function due to
the packet losses during the application of the weighted
gradient descent algorithm. It is important to notice that
(20) corresponds to the limit of the so called Jensen gap
(Abramovich and Persson, 2016).

Theorem 2. Consider the weighted gradient descent given
by (3), (4) and (5). Under Assumption 1, for any positive
scalar h ≤ 2

β(pλn+2−2p) , the cost function metric satisfies:

Jfunct ≤
(
1− 2− hβ (pλn − 2p+ 2)

2− hαpλ2

)
(f(x0)− f∗) ,

(21)
where λ2 is the second smallest eigenvalue of L.

Proof. From (16), we have that the total expectation of
f(xt+1) satisfies:

E [f(xt+1)] ≤ E [f(xt)]− ξE
[∣∣∣∣∣∣L1/2∇f(xt)

∣∣∣∣∣∣2] ,
and by using Jensen’s inequality and (8) we get:

E [f(xt+1)] ≤ E [f(xt)]− ξ
∣∣∣∣∣∣E [

L1/2∇f(xt)
]∣∣∣∣∣∣2

= E [f(xt)]− ξ
∣∣∣∣∣∣L1/2∇f(E [xt])

∣∣∣∣∣∣2 .
If we take the sum over the time instants s we obtain:

E [f(xt)] ≤ f(x0)− ξ

t−1∑
s=0

∣∣∣∣∣∣L1/2∇f(E [xs])
∣∣∣∣∣∣2 ,

and the limit satisfies:

lim
t→∞

E [f(xt)] ≤ f(x0)− ξ lim
t→∞

t−1∑
s=0

∣∣∣∣∣∣L1/2∇f(E [xs])
∣∣∣∣∣∣2 .
(22)

Now, we consider the dynamics in expectation given by
(6), which satisfies the inequality of α-strongly convex
functions:

f(E [xt+1]) ≥ f(E [xt]) + ⟨∇f(E [xt]),E [xt+1]− E [xt]⟩

+
α

2
||E [xt+1]− E [xt]||2

= f(E [xt])− hp
∣∣∣∣∣∣L1/2∇f(E [xt])

∣∣∣∣∣∣2
+

h2αp2

2
||L∇f(E [xt])||2 .

Notice that due to the Min-Max Theorem, for any vector
z ∈ Rn, it holds

||Lz||2 =
∣∣∣∣∣∣L1/2L1/2z

∣∣∣∣∣∣2 ≥ λ2

∣∣∣∣∣∣L1/2z
∣∣∣∣∣∣2 , (23)

since L1/2z is orthogonal to 1. Hence we obtain:

f(E [xt+1])≥f(E [xt])−hp
(
1− hαpλ2

2

)∣∣∣∣∣∣L1/2∇f(E [xt])
∣∣∣∣∣∣2 .

We denote δ = hp
(
1− hαpλ2

2

)
, which is non-negative if

h ≤ 2
αλ2

. Since 2
β(pλn+2−2p) ≤

2
αλ2

we get:∣∣∣∣∣∣L1/2∇f(E [xt])
∣∣∣∣∣∣2 ≥ 1

δ
(f(E [xt])− f(E [xt+1])) .

If we take the sum over the time instants s we obtain:
t−1∑
s=0

∣∣∣∣∣∣L1/2∇f(E [xs])
∣∣∣∣∣∣2 ≥ 1

δ
(f(x0)− f(E [xt])) ,

and for p > 0 the limit satisfies:

lim
t→∞

t−1∑
s=0

∣∣∣∣∣∣L1/2∇f(E [xs])
∣∣∣∣∣∣2 ≥ 1

δ
(f(x0)− f∗) . (24)

We use (24) in (22) to get:

lim
t→∞

E [f(xt)] ≤ f(x0)−
ξ

δ
(f(x0)− f∗) ,

which yields

lim
t→∞

E [f(xt)]− f(x∗) ≤
(
1− ξ

δ

)
(f(x0)− f∗) . 2

To analyze the asymptotic behavior of the upper bound for
Jfunct, let us consider a step-size given by h = 2ϵ

β(pλn+2−2p)

with ϵ ∈ (0, 1). For low values of probabilities correspond-
ing to non-robust networks we have:

lim
p→0

Jfunct ≤ ϵ (f(x0)− f∗) , (25)



Fig. 2. Computations of the upper bound (21) for Jfunct
for a complete and star graph with n = 10, ϵ = 0.5,
f(x0)− f∗ = 1 and two values of κ.

which implies that small step-sizes, characterized by small
values of ϵ, reduce more the gap between the expected
value of the cost function and f∗. In the case of large
values of probabilities, we have the following asymptotic
behavior:

lim
p→1

Jfunct ≤
ϵ(1− κ−1κ−1

λ )

1− ϵκ−1κ−1
λ

(f(x0)− f∗) , (26)

where κ = β
α is the condition number of the cost functions

fi and κλ = λn

λ2
. We can observe that only for the

particular case of a complete graph with κ = 1 we obtain

lim
p→1

Jfunct = 0, (27)

which implies a certain level of conservatism in the upper
bound since (27) should hold for any choice of κ and κλ in
order to recover the behavior of a network without packet
losses. Figure 2 shows the computation of the upper bound
for Jfunct for a complete graph and a star graph with
n = 10 agents, ϵ = 0.5, f(x0) − f∗ = 1 and two values
of κ where we can appreciate the behavior of the upper
bound and the limit values defined by (25) and (26).

5. OPEN MULTI-AGENT SYSTEMS

Let us consider the open scenario when agents can be
replaced at any time step. In order to preserve the con-
straint of problem (1) at least in expectation, we shall
we consider only replacements such that the local cost
function of an agent fi can change but the state xi is kept.
More precisely, we assume that at each time instant t we
can have an update with probability pU or a replacement
with probability pR = 1 − pU . To simplify notations, we
will denote ft, the global cost function at the time instant
t. If an update occurs, the weighted gradient descent is
applied and ft+1 = ft. If a replacement occurs, a single
agent i is uniformly randomly selected and receives a new
(piecewise quadratic) cost function.

When the open system does not suffer from packet losses,
the constraint is always preserved but the global minimizer
x∗
t is time-varying since the cost functions change in time.

In this analysis, we assume that the open system also
suffers of packet losses such that the weighted gradient
descent algorithm becomes:

xt+1 = xt − hLt∇ft(xt). (28)

Similarly to the closed system we analyze the constraint
violation metric Jconstr defined in (11).

Proposition 1. Consider the weighted gradient descent
given by (3), (4) and (28). Under Assumption 1, for any
positive scalar h ≤ 2

β(pλn+2−2p) , the constraint violation

metric satisfies:

Jconstr ≥ 4pUh(1−p)
2−αh(pλ2+2−2p) lim

t→∞

t−1∑
s=0

E [fs(xs)− fs(xs+1)] .

(29)

Proof. As in the proof of Theorem 1, we use the notation
for the error Ht =

(
1⊤xt − b

)
and the natural filtration

{Ft}t∈Z≥0
. If at the moment t, an update U happens, then

from (15) we have at t+ 1:

E
[
H2

t+1|U
]
= E

[
H2

t

]
+ 2h2p(1− p)E

[∣∣∣∣∣∣L1/2∇ft(xt)
∣∣∣∣∣∣2] .
(30)

When a replacement R occurs, the constraint is not
violated at that event

E
[
H2

t+1|R
]
= E

[
H2

t

]
.

Then, the total expectation at the time instant t + 1 is
defined as:

E
[
H2

t+1

]
= pUE

[
H2

t+1|U
]
+ pRE

[
H2

t+1|R
]

= E
[
H2

t

]
+ 2pUh

2p(1− p)E
[∣∣∣∣∣∣L1/2∇ft(xt)

∣∣∣∣∣∣2] .
Using a recursive argument we obtain:

E
[
H2

t

]
= 2pUh

2p(1− p)

t−1∑
s=0

E
[∣∣∣∣∣∣L1/2∇fs(xs)

∣∣∣∣∣∣2] . (31)

Since the cost functions ft are α-strongly convex we have:

ft(xt+1) ≥ ft(xt) +
α

2
||xt − xt+1||2 + ⟨∇ft(xt), xt+1 − xt⟩

= ft(xt) +
h2α

2
⟨∇ft(xt), L

T
t Lt∇ft(xt)⟩

− h⟨∇ft(xt), Lt∇ft(xt)⟩.
We compute the expectation given the filtration generated
by xt and we use (13) to get:

E [ft(xt+1)|Ft] ≥ ft(xt)− h⟨∇ft(xt), pL∇ft(xt)⟩

+
h2α

2
⟨∇ft(xt), (p

2L2 + 2p(1− p)L)∇ft(xt)⟩.

By using (23), we have the lower bound ||L∇ft(xt)||2 ≥
λ2

∣∣∣∣L1/2∇ft(xt)
∣∣∣∣2 and we obtain:

E [ft(xt+1)|Ft] ≥ ft(xt)

− hp

(
1− hα(1− p)− hαpλ2

2

) ∣∣∣∣∣∣L1/2∇ft(xt)
∣∣∣∣∣∣2 .

We denote θ = hp
(
1− hα(1− p)− hαpλ2

2

)
and we com-

pute the total expectation to get:

E [E [ft(xt+1)|Ft]] ≥ E [ft(xt)]− θE
[∣∣∣∣∣∣L1/2∇ft(xt)

∣∣∣∣∣∣2] .
Since h ≤ 2

β(pλn+2−2p) ≤ 2
α(pλ2+2−2p) we guarantee that

E [ft(xt+1)] ≤ E [ft(xt)] and therefore

E
[∣∣∣∣∣∣L1/2∇ft(xt)

∣∣∣∣∣∣2]≥ 1

θ
(E [ft(xt)]− E [ft(xt+1)]) . (32)

By using (32) in (31) we complete the proof. 2

Unlike a closed system, we observe that due to the possible
replacements that take place in the system, in general



Fig. 3. Simulation of E
[
(1Txt − b)2

]
and of the lower

bound (29) for a complete graph under replacements
with n = 7, α = 1, β = 10, p = 0.8, pU = 0.5 by
considering 10000 realizations of the process.

E [fs(xs+1)] ̸= E [fs+1(xs+1)]. This mismatch implies that
terms are not canceled in the series in the lower bound
and the error accumulates in time, so that Jconstr grows to
infinity. This intuition is corroborated by the simulations
of E

[
(1Txt − b)2

]
for a complete graph with n = 7

agents that are shown in Figure 3. We can observe in
the plot that both the constraint violation metric and the
lower bound diverge. When p = 1, corresponding to an
ideal system without packet losses, even if replacements
happen in the system (i.e., pU > 0), Jconstr is zero since
E
[
H2

t+1|U
]
= E

[
H2

t

]
as we can see in (30). This can

also be derived from (7), since the algorithm preserves the
constraint independently of the cost functions.

6. CONCLUSION

In this paper, we analyzed the effect of packet losses in the
performance of the weighted gradient descent algorithm.
We defined two performance metrics to measure the devia-
tion from the constraint and the error of the expected cost
function and we derived an upper bound. We extended
the analysis of packet losses to open multi-agent systems
and we showed that the constraint violation metric may
diverge in such a case.

Several questions remain open as future work. First, it
would be useful to improve the upper bound for the
cost function metric since the current result suffers from
a certain level of conservatism. Second, the analysis of
open case is very preliminary, even though it has already
shown that its properties are very different from those
of the closed case. Relevant questions in this direction
include the improvement of the lower bound for the
constraint violation metric and the analysis of the cost
function metric. Finally, it would be interesting to extend
the analysis of this work to algorithms based on the
computation of the gradient of a subset of agents like
the random coordinate descent algorithm (Necoara, 2013;
Monnoyer de Galland et al., 2021).
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