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Gridded maps of wetlands 
dynamics over mid-low latitudes for 
1980–2020 based on TOPMODEL
Yi Xi  1, Shushi Peng  1 ✉, Agnès Ducharne  2, Philippe Ciais  3, Thomas Gumbricht4,5, 
Carlos Jimenez6,7, Benjamin Poulter  8, Catherine Prigent7,6, Chunjing Qiu3, Marielle Saunois3 
& Zhen Zhang  9

Dynamics of global wetlands are closely linked to biodiversity conservation, hydrology, and greenhouse 
gas emissions. However, long-term time series of global wetland products are still lacking. Using a 
diagnostic model based on the TOPography-based hydrological MODEL (TOPMODEL), this study 
produced an ensemble of 28 gridded maps of monthly global/regional wetland extents (with more 
reliable estimates at mid-low latitudes) for 1980–2020 at 0.25° × 0.25° spatial resolution, calibrated 
with a combination of four observation-based wetland data and seven gridded soil moisture reanalysis 
datasets. The gridded dynamic maps of wetlands capture the spatial distributions, seasonal cycles, 
and interannual variabilities of observed wetland extent well, and also show a good agreement with 
independent satellite-based terrestrial water storage estimates over wetland areas. The long temporal 
coverage extending beyond the era of satellite datasets, the global coverage, and the opportunity to 
provide real-time updates from ongoing soil moisture data make these products helpful for various 
applications such as analyzing the wetland-related methane emission.

Background & Summary
Wetlands are usually defined as ecosystems where saturation or inundation dominate the soil development 
and determines plant species composition1, including shallow inland water bodies, peatlands, mineral wet-
lands, seasonal and permanent floodplains and so on. In addition to supporting plant and animal species to 
maintain regional biological diversity, wetlands are very important for regional water cycles and water quality 
by regulating river flows and groundwater recharge and removing nutrients responsible for eutrophication2,3. 
Moreover, pristine natural wetlands represent large carbon stocks and permanent sinks of carbon dioxide (CO2) 
and methane (CH4) sources. In recent studies of the Global Methane Budget covering the period 2000–2017, 
natural wetlands are estimated to be the largest natural CH4 source, emitting 102–182 Tg CH4 yr−1 (27–49% of 
all natural sources) using bottom-up models and 155–200 Tg CH4 yr−1 (72–93%) using atmospheric inversions 
from 2008 to 2017 (ref. 4).

To understand the role of wetlands on global hydrological and biogeochemical cycles, an accurate esti-
mation of wetland extent and its temporal variations is required4,5. Global wetland inventories are usually static 
and only document long-term (usually maximum) wetland extent, thereby lacking information on temporal 
dynamics6–9. Besides, given the lack of accurate definition, the small spatial scale of many wetland systems, and 
inventory sampling limitations, estimates of global wetland extent have considerable discrepancies with a range 
of 2.1–29.8 Mkm2 (ref. 10). Satellite-based datasets from the visible, infrared, or microwave bands have been 
developed to characterize the spatiotemporal dynamics of wetlands11,12, but with different degrees of success  
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depending on the environments (Table 1). The optical satellite data such as the global surface water from the 
European Commission’s Joint Research Centre (hereafter JRC)13 provides a high spatial resolution (30 m) but only 
detects open water bodies without dense vegetation for 1984–2015. Microwaves, including active and passive can 
penetrate dense vegetation and clouds but are limited by small spatial coverage or low spatial resolution, respec-
tively12. Multi-sensors datasets such as the Global Inundation Extent from Multi-satellites version 2 (GIEMS-2)14 and 
the Surface WAter Microwave Product Series (SWAMPS)15 capitalize the strengths of different satellites and provide 
maximum information of surface inundated extent since the 1990s, but miss some small wetlands due to their coarse 
global 0.25° × 0.25° resolution14. Hence, mapping the long-term dynamics of wetland extent is still a challenge.

For modeling wetland areas, the simple hydrological model TOPMODEL (TOPography-based hydrological 
MODEL) developed 40 years ago16 has been widely used with different settings to delineate wetlands16–20. Owing to 
topography being the main factor determining water pathways, TOPMODEL uses a compound topographic index 
(CTI) to redistribute soil water in sub-grid elements of a larger land surface grid-cell or a catchment21. The always 
saturated or regularly saturated sub-grids can be regarded as wetlands. Global-scale CTI datasets usually have a high 
spatial resolution, for example, 30 arcsec for the HYDRO1k dataset developed by the U.S. Geological Survey and 
15 arcsec for the CTI dataset of Marthews et al. (ref. 22) which results in high computational costs to diagnose wetland 
dynamics from the distributions of CTI in each grid cell. To improve this, TOPMODEL was developed to link the 
wetland fraction to the mean water table depth (WTD) (typically available at 0.25°–1° from global land surface mod-
els)19,20,23,24. For example, Niu et al. (ref. 23) developed a parameterization to treat subsurface runoff in TOPMODEL as 
a product of an exponential function of the mean WTD at 1° × 1° resolution. Stocker et al. (ref. 20) used an asymmetric 
sigmoid function to fit the relationship between the inundated fraction and mean WTD at 1° × 1° resolution. Such 
diagnostic algorithms make the global implementation of TOPMODEL to simulate wetland dynamics more tractable.

Following the TOPMODEL-based diagnostic model from Stocker et al. (ref. 20) and Xi et al. (ref. 25), this 
study produced an ensemble of 28 sets of monthly global/regional wetland maps for 1980–2020 at 0.25° × 0.25° 
spatial resolution based on seven reanalysis soil moisture (SM) datasets and four observation-based wetland 
data. Different SM datasets provide the uncertainties of inputs of the model while different wetland data cover 
different definitions of wetlands for the convenience of different research purposes. Evaluation against the cor-
responding wetland calibration data, independent wetland datasets, and satellite-based terrestrial water storage 
estimates suggests that the well-calibrated diagnostic model can capture the spatial distributions, seasonal cycles, 
and interannual variabilities of observed wetland extent well. Our intent is for this dataset to provide opportuni-
ties for long-term wetland-related studies beyond the era of satellite-based datasets.

Methods
The conceptual flow chart of the process is provided in Fig. 1. We used seven reanalysis SM data (Table 2)  
masked with soil temperature (ST) and soil freeze/thaw status to calculate water table depth, i.e. the input of 
TOPMODEL, given the obvious disagreements between the input datasets. The diagnostic algorithms based  
on TOPMODEL were used following Stocker et al. (ref. 20) and Xi et al. (ref. 25), where the optimized parameters were 

Name and reference Period
Temporal 
resolution Spatial resolution Water body classes

Wetland area 
(Mkm2)

GLWD-3 (Lehner and 
Döll, 2004) Static — 30 arcsec (~1 km) 12 water classes (3 permanent water classes 

and 9 natural wetland classes) 10.9–12.8a

GIEMS-1 (Prigent et al.34) 1993–2007 Monthly 0.25° (~25 km) Natural and artificial inundated areas 
(excluding larger lakes) 2.1–5.9b

ESACCI land cover 
(Herold et al.36) 1992–2018 Yearly 10 arcsec (~300 m) Open water bodies 6.1

GIEMS-D15 (Fluet-
Chouinard et al.37) Static — 15 arcsec (~500 m) Inundated areas of global land surface 6.5–12.1b

JRC (Pekel et al.13) 1984–2018 Monthly ~30 m Surface water 4.5c

G2017 (Gumbricht et al.9) Static — ~232 m Tropical and subtropical (40°N–60°S) 
wetland and peatland areas 4.7

RFW (Tootchi et al.10) Static — 15 arcsec (~500 m) Regular flooded wetlands (excluding large 
permanent lakes) 12.9

SWAMPS (Jensen et al.15) 1992–2018 Monthly 0.25° (~25 km) All terrestrial water fractions 3.6–6.2b

GIEMS-2 (Prigent et al.14) 1992–2015 Monthly 0.25° (~25 km) Natural and artificial inundated areas 
(excluding large lakes) 1.6–4.6b

BAWLD (Olefeldt et al.45) Static — 0.5° (~50 km)
Five wetland types including bog, fen, 
marsh, tundra wetland, and permafrost 
bog in the northern boreal and tundra 
biomes (>55°N)

2.8–3.8

WAD2M (Zhang et al.33) 2000–2018 Monthly 0.25° (~25 km)
Surface inundation areas, including 
wetlands from under dense canopies, 
excluding lakes, rivers, ponds, and rice 
agriculture

3.1–5.6b

Table 1. Summary of global/regional wetland-related datasets from the literature. The four data sets used here 
to calibrate our model are in bold. aThe range is determined according to the uncertain wetland fraction for 
three wetland classes in GLWD-3. bThe range indicates mean annual minimum and mean annual maximum 
wetland extent. cThe range indicates long-term maximum global surface water extent.
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calibrated with long-term maximum wetland areas from four observation-based wetland datasets (Table 1). Details 
about these datasets and computational processing are shown as follows.

reanalysis soil moisture datasets. Seven long-term reanalysis SM datasets used in this study include 
NCEP-DOE (National Centers for Environmental Prediction-the Department of Energy)26, MERRA-Land 
(the Modern-Era Retrospective Analysis for Research and Applications)27, MERRA-2 (ref. 28), GLDAS-Noah 
v2.0 (the Global Land Data Assimilation System)29, GLDAS-Noah v2.1 (ref. 29), ERA5 (European Environment 

CTI data  
 (500 m×500 m )

NCEP-DOE (1980–2020)

MERRA-2 (1980–2020)

ERA5-Land (1981–2020)

GLDAS-Noah v2.1 (2000–2020)

MERRA-Land (1980–2015)

ERA5 (1980–2020)

GLDAS-Noah v2.0 (1980–2010)

Soil moisture data

Optimized parameters (v, k, q)

Soil saturation deficit 
(monthly, 0.25°×0.25°)

(0.25°×0.25°)

A TOPMODEL-based 
diagnostic model

Fit parameters (v, k, q)
(0.25°×0.25°)

RFW (long-term maximum)

Observation-based wetland 
data

WAD2M (2000–2018, monthly)

G2017 (long-term maximum)

GIEMS-2 (1992–2015, monthly)

(0.25°×0.25°)

Global wetland dynamic products
(monthly, 0.25°×0.25°)

Remove rice paddies

Global Record of Daily 
Landscape Freeze/Thaw 

Status from Kim et al. (ref. 42)

Koppen climate classification 
system

Soil temperature at 70 cm

Parameter f max

mask

Calibration
Simulation

Fig. 1 Diagram of workflow for parameter calibration and the simulation of global wetland dynamics.

Dataset Period (month) Spatial resolution Temporal resolution Soil thickness Data Access

NCEP-DOE 198001–202012 ~210 km Daily 0–0.1 m, 0.1–2 m https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.
reanalysis2.gaussian.html

MERRA-Land 198001–201512 0.5° × 0.667° Monthly 1.0–8.0 m https://goldsmr2.gesdisc.eosdis.nasa.gov/data/MERRA_
MONTHLY/MSTMNXMLD.5.2.0/

MERRA-2 198001–202012 0.5° × 0.625° Monthly 1.3–8.5 m https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2_
MONTHLY/M2TMNXLND.5.12.4/

ERA5 198001–202012 0.25° × 0.25° Monthly 0–0.07 m, 0.07–0.28 m, 
0.28–1 m, 1–2.89 m

https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels-monthly-means?tab = form

ERA5-Land 198101–202011 0.1° × 0.1° Monthly 0–0.07 m, 0.07–0.28 m, 
0.28–1 m, 1–2.89 m

https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-land-monthly-means?tab = form

GLDAS-Noah v2.0 198001–201412 0.25° × 0.25° Monthly 0–0.1 m, 0.1–0.4 m, 
0.4–1 m, 1–2 m

https://disc.sci.gsfc.nasa.gov/datasets/GLDAS_
NOAH025_M_V2.0/summary?keywords = GLDAS

GLDAS-Noah v2.1 200001–202009 0.25° × 0.25° Monthly 0–0.1 m, 0.1–0.4 m, 
0.4–1 m, 1–2 m

https://disc.sci.gsfc.nasa.gov/datasets/GLDAS_
NOAH025_M_V2.1/summary?keywords = GLDAS

Table 2. Key characteristics of seven global soil moisture reanalysis data used in this study.
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Agency)30,31, and ERA5-Land30,31. Key characteristics of the seven SM data are listed in Table 2. The datasets differ 
by their spatial and temporal resolutions, the time-period they cover, as well as the definition of the soil layers. 
More details are provided for each dataset below.

•	 NCEP-DOE
NCEP-DOE is an updated version of the National Centers for Environmental Prediction/National Center 
for Atmospheric Research (NCEP/NCAR) Reanalysis 1 project, which uses a state-of-the-art analysis/fore-
cast system to perform data assimilation with past data from 1948 to the present32. NCEP-DOE features the 
newer physics and observed SM forcing and also eliminates several previous errors, such as oceanic albedo 
and snowmelt term during the entire period, and snow cover analysis error from 1974 to 1994 (ref. 26). With 
a spatial resolution of about 210 km, there are two vertical soil layers in NCEP-DOE for both SM and ST: 
0–0.1 and 0.1–2 m.

•	 MERRA-Land and MERRA-2
MERRA-Land soil moisture is generated by driving the Goddard Earth Observing System model version 
5.7.2 (GEOS-5.7.2) with meteorological forcing from the MERRA reanalysis product27. The precipitation 
forcing in MERRA-Land merges MERRA precipitation with a gauge-based data product from the National 
Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center, and the Catchment land 
surface model used in MERRA-Land is updated to the “Fortuna-2.5” version27. MERRA-2 intends to replace 
the original MERRA reanalysis and ingests important new data types28. The Catchment model in MERRA-2 
has been updated with rainfall interception and snow model parameters of MERRA-Land, and the precipi-
tation correction is a refined version of MERRA-Land. For MERRA-Land and MERRA-2, there is only one 
layer for SM from the surface to the bedrock, with “depth-to-rock” depending on local conditions. ST is 
computed on six vertical soil layers: 0–0.10, 0.10–0.29, 0.29–0.68, 0.68–1.44, 1.44–2.95, and 2.95–12.95 m.

•	 ERA5 and ERA5-Land
ERA5 is the fifth generation ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis 
of global climate and weather, replacing ERA-Interim30,31. Based on a decade of developments in model 
dynamics and data assimilation, there is a significantly enhanced horizontal resolution (31 km), temporal 
resolution (hourly) and uncertainty estimation. ERA5 covers 1979–2020 and continues to be updated in 
near-real-time. ERA5-Land is produced with a finer horizontal resolution of 9 km by running the land 
component of the ERA5 climate reanalysis but without data assimilation. By March of 2021, the ERA5-Land 
outputs are only available since 1981. SM and ST are computed on four vertical soil layers (0–0.07, 0.07–
0.28, 0.28–1, and 1–2.89 m) for both ERA5 and ERA5-Land.

•	 GLDAS-Noah v2.0 and GLDAS-Noah v2.1
GLDAS is a global, moderate-resolution (0.25° × 0.25°) offline terrestrial modeling system developed by 
NASA Goddard Space Flight Center (GSFC) and the NOAA National Centers for Environmental Predic-
tion29, thus similar to ERA5. To produce optimal fields of land surface variables in near-real-time, it incor-
porates satellite- and ground-based observations. GLDAS-Noah drives the Noah land surface model and 
has two components: one forced with the Princeton meteorological forcing data (i.e. GLDAS-Noah v2.0) 
and the other forced with a combination of model and observation (i.e. GLDAS-Noah v2.1). GLDAS-Noah 
v2.0 covers the period 1948–2014, while GLDAS-Noah v2.1 is available from 2000 to the present. There are 
four vertical layers in the Noah land surface model for both ST and SM: 0–0.1, 0.1–0.4, 0.4–1, and 1–2 m.

Observation-based wetland/flooded area data. In terms of large uncertainties in current wetland 
datasets (Table 1) we selected four widely used and available satellite/satellite-based wetland/flooded area data 
including GIEMS-2 (ref. 14), RFW (the Regularly Flooded Wetland map)10, WAD2M (a global dataset of Wetland 
Area and Dynamics for Methane Modeling)33, and G2017 (the pantropical wetland extent from an expert system 
model)9 for parameter calibration. Among them, GIEMS-2 and WAD2M include monthly wetland dynamics, 
while RFW and G2017 are static. The comparison of the four wetland datasets is shown in Supplementary Fig. 1; 
details on each data are provided below.

•	 GIEMS-2
The GIEMS-1 is the first global estimate of monthly inundated areas, derived from passive microwave 
land surface emissivity34. With a 0.25° × 0.25° resolution, GIEMS-1 documents a mean annual maximum 
inundated area of 9.5 Mkm2 for 1993–2007 (including open water, wetlands, and rice paddies, but excluding 
large lakes), which shows good agreement with existing independent, static inventories as well as regional 
high-resolution synthetic aperture radar observations34. Based on similar retrieval principles with GIEMS-1, 
GIEMS-2 is developed to less depend on ancillary data with an updated microwave emissivity, and correct a 
known overestimation over low vegetated areas from GIEMS-1 (ref. 14). The period is extended  
to 1992–2015 for GIEMS-2 and can be updated with the availability of observations. Globally, the mean annu-
al maximum and long-term maximum inundated extent after removing the rice paddies using the Monthly 
Irrigated and Rainfed Crop Areas dataset (MIRCA2000)35 for the period 1992–2015 are 6.7 and 10.9 million 
km2 (hereafter Mkm2; sum of mean annual maximum or long-term maximum inundated extent for each grid 
cell) respectively. The rice paddies are removed here as they are not natural wetlands and cannot be simulated 
with TOPMODEL.

https://doi.org/10.1038/s41597-022-01460-w
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•	 RFW
RFW is a static, high-resolution map (15 arc-sec) of regularly flooded wetlands, developed by overlapping 
flooded areas (permanent wetlands and flooded vegetation classes) for 2008–2012 from the ESA-CCI land 
cover map36, mean annual maximum inundated areas (including wetlands, rivers, small lakes, and irrigated 
rice) for 1993–2004 from GIEMS-D15 global inundation extent (downscaled using GIEMS-1)37, and long-
term maximum surface water areas for 1984–2015 from JRC global surface water bodies product13. The 
large permanent lakes and reservoirs are distinguished using the HydroLAKES database38. Globally, RFW 
covers 9.7% of the land surface area (~13.0 Mkm2) including wetlands, river channels, deltas, and flooded 
lake margins, but excluding large lakes10. Due to the mean annual maximum or long-term maximum inun-
dation/surface water extent for 1984–2016 from the three wetland data is used, we treated RFW as the long-
term maximum wetland extent in this study. Besides, given that GIEMS-D15 includes artificial rice paddies, 
we removed them with MIRCA2000 from RFW (~11.9 Mkm2 after removing rice paddies).

•	 WAD2M
WAD2M dataset used in this study is an improved version of the SWAMPS v3.2 from Jensen et al. (ref. 15), 
covering the years 2000 to 2018. With a spatial resolution of 25 km × 25 km, this data was used as input 
wetland area data of phase 2 of the Global Methane Budget33. Given that the initial SWAMPS failed to detect 
wetlands lacking surface inundation and to differentiate between lakes, wetlands, and other surface water 
bodies, Zhang et al. (ref. 33) modified it using a series of independent static wetland distribution data7,9,39–41 
in an attempt to include missing wetlands under dense canopies. Besides, they removed inland waters 
(lakes, rivers, and ponds) and rice agriculture with JRC and MIRCA2000, respectively. Globally, the mean 
annual maximum and long-term maximum wetland extent for the period 2000–2018 estimated by WAD2M 
are 8.1 Mkm2 and 13.2 Mkm2 (sum of mean annual maximum or long-term maximum inundated extent for 
each grid cell) respectively.

•	 G2017
G2017 (ref. 9) is a static, pantropical wetland and peatland extent map (covering 60°S–40°N) at 
232 m × 232 m resolution, derived from a hybrid expert model system. With three biophysical indices relat-
ed to wetland and peat formation (long-term water supply exceeding atmospheric water demand, annually 
or seasonally waterlogged soils, and geomorphological position where water is supplied and retained), 
G2017 identifies not only permanently and seasonally wetland areas, but also soil wetness and topographic 
conditions that favor waterlogging in the absence of flooding for the end of the 20th century. Given the broad 
coverage of different types of wetlands, we also treated this map as long-term maximum wetland areas. This 
‘pantropical’ data (60°S to 40°N) offers the advantage to include non-flooded wetland areas that are missed 
in satellite-based wetland products. However, note that not all detected wetlands or peatlands in G2017 have 
been observed. Rice agriculture was also removed with MIRCA2000 from G2017. The resulting wetland and 
peatland area for 60°S–40°N is 4.0 Mkm2.

The TOPMODEL-based diagnostic model. TOPMODEL as improved by Stocker et al. (ref. 20) and Xi 
et al. (ref. 25) was used to calculate the inundated fraction from WTD at grid-scale in this study. Based on the 
assumptions that the local hydraulic gradient is approximated by the local topographic slope and the water table 
variations can be assimilated to a succession of steady states with uniform recharge, the classical TOPMODEL 
establishes an analytical relationship between the soil moisture deficit and the distributions of local topographic 
index within a catchment. At grid-scale, the analytical relationship can be represented as:

Γ Γ− = − −CTI CTI M( ) (1)i x i x

where CTI indicates the topographic index, defined as the log of the ratio of contributing area to the local slope. 
We used the CTI data at 500 m × 500 m resolution from Marthews et al. (ref. 22), where lakes, reservoirs, moun-
tain glaciers, and ice caps are removed using the Global Lakes and Wetlands Database7. The CTIx indicates the 
average of CTIi of all sub-grids (index i) within the grid cell x. M indicates a tunable parameter that describes the 
exponential decrease of soil transmissivity with depth21. Γi is the water table of the pixel i and Γx  is the mean 
water table of the grid x. When Γi is at the soil surface (i.e. Γi = 0), the threshold CTI *x  above which all pixels are 
flooded for the grid x is derived:

CTI CTI M (2)*x x xΓ= + ⋅

The wetlands area is defined as the flooded areas (i.e. Γ ≤ 0), the flooded fraction in the grid x (fx) being the 
percentage of pixels with CTIi larger than a threshold CTI *x :

f
A

A1 *
x

x
i i∑=

with

=





≥
<

A
A if CTI CTI

if CTI CTI0 (3)
*

*
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i i x

i x
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To reduce the computational costs from the high-resolution CTI data for predicting long time series of wet-
land area, we used the asymmetric sigmoid function from Stocker et al. (ref. 20) to fit the “empirical” relationship 
Ψ� between �f  and Γ:

v e( ) (1 ) (4)x x x
k q v( ) 1/

x x x xΓψ = + ⋅ Γ− − −

where vx, kx, qx are three parameters of the function. Given a value of parameter M, the three parameters can 
be derived with a sequence of Γx spanning a plausible range of values (−1 m to 2 m) and corresponding fx from 
the initial TOPMODEL approach (Eq. (3)). Thus, the wetlands in our study are defined as the flooded area 
simulated by TOPMODEL. As for the range of parameter M, Stocker et al. (ref. 20) used a global uniform value 
for M (M = 8) after testing simulated wetland fraction for a range of M (7, 8, 9). Nevertheless, given that distinct 
topography, soil types, and other intrinsic characteristics in different regions, we considered M as a tunable, spa-
tially heterogeneous, and grid-specific parameter, with a range of 1–15 following Xi et al. (ref. 25). Thus, for each 
grid cell x there are 15 choices for M, and then 15 sets of (vx, kx, qx). The optimized parameter combination of 
(vx, kx, qx) is determined by selecting minimum root-mean-square-error (RMSE) between simulated inundated 
fractions and observations:

=
∑ −=RMSE

O P
n

( )
(5)

i
n

i i1
2

where Oi and Pi are observed and simulated wetland fraction, respectively. n represents the time-series length for 
wetland extent. For simulations calibrated with RFW and G2017, the RMSE was computed with the long-term 
maximum (hereafter called MAX) monthly wetland area because the two data sets are static and only record 
the MAX wetland extent. While for simulations calibrated with GIEMS-2 and WAD2M which include temporal 
variations of wetland area, we calibrated the parameters with all months, mean seasonal cycle, yearly maximum, 
and MAX wetland area, but only showed the optimal simulations calibrated with MAX wetland area in this 
work to keep consistency with RFW and G2017. Besides, to provide more choices for users, we combined all 
of the four wetland datasets (i.e. the union of long-term maximum wetland extent) to generate a new wetland 
map (hereafter called MAX_all), and then used the MAX_all to calibrate the parameters to produce seven sets 
of global wetland extent products with seven soil moisture datasets. The simulations calibrated with yearly max-
imum wetland area from GIEMS-2 and WAD2M and long-term maximum wetland area from MAX_all are also 
provided in our resulting products.

Finally, to avoid unrealistically high wetland fraction output from the function, the simulated maximum 
wetland fraction fx is constrained by the observed MAX wetland area with a parameter f x

max (Eq. (6)), which is 
different from Stocker et al. (ref. 20). The determination of f x

max is analyzed in the supplemental material in detail 
(Supplementary Text 1). Once the value of (vx, kx, qx) are determined, the wetland fraction fx can be directly 
derived from the monthly water table Γx according to Eqs. (4) and (6).

f min f( ( ) , ) (6)x x x x
maxΨ Γ=

Calculation of water table depth. Water table depth is not computed by land surface models, given their 
coarse soil vertical discretization. We thus used the saturation deficit of soil moisture (θSD) as a surrogate of water 
table depth, θSD being defined as an index consisting of saturated volumetric water content and the “actual” soil 
depth modified by soil freeze/thaw status:

∑θ θ
θ

= − ⋅
∆

=
z

z
(7)

SD l l
l

l
l

S
10

0

Subscript l represents the lth soil layer, l0 is the number of layers above the first frozen soil layer counted from 
the top (l = 1 at the soil surface), θl is the monthly volumetric water content in the lth soil layer (m3 m−3), ∆zl is 
the thickness of the lth soil layer (m), θS is the saturated volumetric water content (in m3 m−3 units, uniform over 
depth).

As formulated in Eq. (7), zl0
 is the thickness of all soil layers (or depth to bedrock) when there is no frozen 

soil layer. If there exists at least one frozen layer, zl0
 is set to the depth of the uppermost frozen soil layer. We 

excluded the frozen soil layers here given that some important wetland processes such as methane production 
and transport are insignificant when the soils are frozen. In high latitudes, the presence of frozen soil layers may 
lead to an overestimation of the wetland fraction due to relatively large θSD values even if there is little liquid soil 
water above the uppermost frozen soil layer. Hence, we used monthly soil temperature (ST) at 70 cm, the Global 
Record of Daily Landscape Freeze/Thaw Status data42, and the Köppen climate classification system43 to refine 
the frozen mask. When the monthly mean ST at 70 cm is below 0 °C, or soil freezing days are more than 5 in a 
month, or the grid is classified as the Hot desert (BWh) in the Köppen climate classification system, the wetland 
fraction for the grid is set to zero. However, it should be noted that the algorithm using the ST at 70 cm could 
omit some unfrozen soil layers above 70 cm, which could lead to bias in estimation of methane emissions from 
these unfrozen layers. We provided the global wetland maps in our resulting products, but the potential uncer-
tainties in wetland estimation due to the omitted unfrozen layers should be considered, particularly at high 
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latitudes. We used seven reanalysis SM products to compute θSD to provide the uncertainty in SM input (Table 2). 
All data are re-interpolated to 0.25° × 0.25° resolution.

Evaluation against wetland calibration data and independent satellite products. Although we 
calibrated parameters of the TOPMODEL-based diagnostic model with the observation-based wetland data, to 
what extent the simulations can reproduce the spatial patterns and temporal dynamics of the calibration wetland 
data must be evaluated. For spatial patterns, we calculated the RMSE of wetland area between our simulations and 
corresponding wetland calibration data following Eq. (5), and evaluated the spatial patterns of simulated wetland 
extent in two wetland hotspots including Amazon basin and Western Siberia lowlands with three independent 
global/regional water products. For Amazon basin, we used the global surface water dataset from JRC13 (optical 
satellite images) and the wetland map produced using mosaics of Japanese Earth Resources Satellite (JERS-1) 
L-band SAR imagery from Hess et al. (ref. 44, hereafter H2015). For West Siberian lowlands, we used JRC and the 
Boreal–Arctic Wetland and Lake Dataset (BAWLD, only covers the north of ~55°N) produced using an expert 
assessment and extrapolated using random forest modelling from climate, topography, soils, permafrost con-
ditions, vegetation, wetlands, and surface water extents and dynamics45. For temporal dynamics, since we only 
used the static wetland area (long-term maximum) from all of the four observation-based wetland products to 
calibrate parameters, the simulated temporal dynamics can be evaluated with the two dynamic wetland products 
(GIEMS-2 and WAD2M). Besides, we also used the terrestrial water storage (TWS) from the Gravity Recovery 
and Climate Experiment (GRACE), which retrieves relative change in TWS from the monthly anomalies of the 
Earth’s gravity field for 2003–2016 measured by the twin GRACE satellites46,47 to evaluate the simulated temporal 
dynamics.

Data records
The global wetland dynamics dataset (GWDD)48 produced in this study consists of 28 sets of monthly global/
regional wetland extent products derived from seven reanalysis soil moisture data and calibrated with four 
observation-based wetland products, and can be available at https://doi.org/10.5281/zenodo.4571667. The spa-
tial resolution for the dataset is 0.25° × 0.25°. The temporal coverage of each product is determined by the input 
soil moisture data in Table 2. These data are stored in NetCDF format with one file per year, defined by three 
dimensions (lon, lat, and time, indicating longitude, latitude, and month respectively) and a variable (fwet, i.e. 
wetland fraction).

Naming convention:
fwet_[name of wetland data for calibration]_max_[name of soil moisture data]_reso025_[yyyy].nc ([yyyy] 

indicates year)
Variable: fwet = wetland fraction [0–1]

Fig. 2 Spatial patterns of wetland extent from the median of our ensemble of simulations. The median 
simulation was derived using the SM from MERRA-Land and calibrated with RFW wetland map. Four wetland 
hotspots including Hudson Bay lowlands, Amazon basin, Congo basin, and West Siberian lowlands are 
highlighted and the 0.25° × 0.25° grids with a <1% wetland fraction from RFW are masked out. The right subset 
shows zonal wetland area distributions from the median, minimum, maximum wetland area from our ensemble 
of simulations and four observation-based wetland datasets. Note for all global results, we only used simulations 
calibrated with GIEMS-2, RFW, and WAD2M, because the lack of coverage in north of 40°N for G2017.
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technical Validation
The evaluation of spatial distribution, seasonal cycle, and interannual variability of wetland extent from the 
resulting products against corresponding observation-based wetland data and other independent products are 
shown in the following subsections.

Spatial distribution of wetland extent. Figure 2 shows the spatial distribution of MAX (long-term max-
imum) wetland extent from the median of our ensemble of simulations. Globally, the simulated wetland hot-
spots (wetland fraction >20%) are concentrated in northeastern North America, West Siberian lowlands, South 
Asia, and Amazon basin. The simulated latitudinal distributions of MAX wetland area reveal the largest peak at 
50°N–70°N, and another near the equator. Compared with observation-based wetland products, our ensemble of 
simulations can reproduce the spatial patterns of observation-based wetland extent (Supplementary Fig. 1) well in 
most regions with a <3% root-mean-square-error (RMSE) of MAX wetland extent between our ensemble mem-
bers and corresponding wetland calibration data (Fig. 3 and Supplementary Fig. 2), suggesting the effectiveness of 

Fig. 3 Evaluation of the simulated wetland extent against observations at grid scale. Spatial patterns of root-
mean-square-error (RMSE) of long-term maximum wetland extent between observed wetland data and 
simulations from four soil moisture data including NCEP-DOE, MERRA-2, ERA5, and GLDAS-Noah v2.0, 
with the parameters calibrated with GIEMS-2 and WAD2M (denoted as SGIEMS-2 and SWAD2M) respectively. The 
0.25° × 0.25° grids with a <1% wetland fraction from RFW are masked out for all maps.
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the global implementation of TOPMODEL to simulate wetland dynamics. In some parts of wetland hotspots such 
as Hudson Bay lowlands and West Siberian lowlands, however, the RMSE is found to be more than 9%, which 
could be related to the limitation of the SM-based hydrological model in representing wetlands with lateral flow 
and overland flow contributing water (Supplementary Text 2) and wetlands with frozen soils in the high latitudes 
(Methods).

Regionally, the comparison of simulated wetland extent with the corresponding wetland calibration data 
and independent global/regional wetland datasets (JRC, H2015, and BAWLD) suggests that our simulations 
can reproduce the spatial patterns of long-term maximum wetland fraction from the corresponding wetland 
calibration data in the two wetland hot spots (Amazon basin and West Siberian lowlands), and also show a 
good consistency with the independent observation-based wetland products (Figs. 4 and 5). However, there 
are substantial disagreements among simulations calibrated with different observation-based wetland data. By 
comparing the spatial distributions of wetland extent from simulations using different SM data and different 
wetland calibration data, we found that the differences in grid-cell wetland fraction among our ensemble of sim-
ulations mainly result from the different calibration wetland data (Supplementary Figs. 3 and 4). For example, 
the simulations based on the same SM data (MERRA-2) but calibrated with different wetland products show a 
>10% standard deviation (SD) of wetland fraction in most wetland hotspots, against a <3% SD for simulations 
with the same wetland data (RFW) but different SM data (Supplementary Fig. 5). Hence, hereafter we only show 
the results from one out of the same reanalysis family (NCEP, MERRA, GLDAS-Noah, or ECWMF) for different 
calibration wetland observations (simulations calibrated with GIEMS-2, RFW, WAD2M, and G2017 are denoted 
by SGIEMS-2, SRFW, SWAD2M, and SG2017, respectively). Meanwhile, this reminds users of choosing the products they 
need based on the wetland definition in different wetland calibration data.

Seasonal cycle of wetland extent. Regarding temporal dynamics of simulated wetland extent, we first 
present the mean seasonal cycle of wetland area at global scale and for three latitudinal zones (60°S–30°N, 
30°N–50°N, and 50°N–90°N) from 1980 to 2020 using four SM data (Fig. 6). Following the sigmoid function 
established by Stocker et al. (ref. 20), with a given M, the seasonal and interannual variabilities in wetland fraction 
within a grid are determined by the input SM. Hence, the wetland area at global scale and for the three latitudinal 

Fig. 4 Evaluation of the simulated wetland extent against the corresponding wetland calibration data and 
independent regional wetland maps for Amazon basin. All simulations showed here (a–d) are produced based 
on soil moisture from MERRA-2. The wetland map from JRC (i) represents the maximum surface water extent 
for 1984–2015 from the global surface water dataset from JRC. The wetland map from H2015 (j) represents 
wetlands during the period 1995–1996 for the high-water season from Hess et al. (ref. 44).
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zones shows similar seasonal patterns with SM across all simulations, with a larger seasonal wetland extent in 
Northern Hemisphere summer and autumn. Regionally, the two northern latitudinal zones (30°N–50°N and 
50°N–90°N) dominate the mean seasonal variation of global wetland area, while the region south of 30°N shows 
a small seasonal variation despite its coverage of 50% of global wetland extents (Table 3) across all ensemble 
members.

The observation-based wetland data with temporal dynamics show similar seasonal patterns with our 
ensemble of simulations, but with a higher estimate (~0.5 Mkm2) in some months across three latitudinal zones 
(Fig. 6). Please note that the temporal dynamics of wetland area from wetland calibration data and our simula-
tions are comparable because the results shown in Fig. 6 are calibrated with the MAX wetland area (that is, only 
at one epoch), but not constrained by the temporal variations of observed wetland data. The biased estimation in 
some months is mainly attributed to that the optimized parameter M in TOPMODEL is relaxed in “non-MAX” 
months to match the observed MAX wetland fraction in terms of the notable underestimation of observed 
MAX wetland extent in most wetland hotspots (Figs. 2–3; Supplementary Figs. 6–7). When calibrated with 
wetland extent with temporal dynamics, the simulated absolute wetland area is closer to WAD2M and GIEMS-2 

Fig. 5 Evaluation of the simulated wetland extent against the corresponding wetland calibration data and 
independent regional wetland maps for West Siberian lowlands. All simulations showed here (a–d) are 
produced based on soil moisture from MERRA-2. The wetland map from JRC (i) represents the maximum 
surface water extent for 1984–2015 from the global surface water dataset from JRC. The wetland map from 
BAWLD represents wetlands including bog, fen, marsh, and tundra wetland from BAWLD (only covers the 
north of 55°N).
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(Supplementary Figs. 8–9). To satisfy the need for the more accurate absolute value of monthly wetland extent 
for SGIEMS-2 and SWAD2M, we provided additional simulations calibrated with yearly maximum wetland area in 
our resulting products. Moreover, we also compared the simulated and observed month of annual maximum 
wetland extent at grid scale. Throughout the globe, our ensemble of simulations can reproduce spatial patterns 
of the observed month of annual maximum wetland extent basically (Supplementary Fig. 10–11).

interannual variability of wetland extent. Interannual variability (IAV) of wetland area during the 
period 1980–2020 at global scale and three latitude zones (60°S–30°N, 30°N–50°N, and 50°N–90°N) is displayed 
in Fig. 7 from GIEMS-2, WAD2M, and our ensemble of simulations. Despite the substantial disagreements in 
input SM data and wetland observation data, the IAV of global wetland area shows a good agreement between 
different ensemble members, with a significantly positive correlation across ~60% of simulations (R = 0.32–0.99, 
p < 0.05). Owing to a discrepant IAV of wetland area since 2008, however, simulated wetland area using SM 
from GLDAS-Noah v2.1, ERA5, and ERA5-Land show a weak positive correlation with the other four SM data. 
Influenced by different wetland observations, the IAV of global wetland area across simulations calibrated with 
different observation data show some discrepancies, with a SD of 0.07–0.11 Mkm2, 0.06–0.11 Mkm2, and 0.08–
0.15 Mkm2 for SGIEMS-2, SRFW, and SWAD2M respectively. Regionally, the simulated IAV of global wetland area is 
mainly contributed by regions south of 30 ° N (54–84%, 51–90%, 61–88% for SGIEMS-2, SRFW, and SWAD2M) and 
boreal regions (29–38%, 36–48%, 31–47% for SGIEMS-2, SRFW, and SWAD2M).

Even though the parameters were calibrated with observed wetland extent without temporal variations 
(MAX), the IAV in global wetland area from most simulations shows significantly positive correlations with 

Fig. 6 Evaluation of the simulated seasonal cycle of wetland extent against wetland calibration data. Mean 
seasonal cycle of wetland area from wetland calibration data and simulations based on SM from NCEP-DOE, 
MERRA-2, ERA5, and GLDAS-Noah v2.0 for global and three latitudinal bands (60° S–30°N, 30°N–50°N, and 
50°N–90°N) from 1980 to 2020, with the parameters calibrated with GIEMS-2, RFW, WAD2M, and G2017 
(denoted as SGIEMS-2, SRFW, SWAD2M, and SG2017), respectively. Note that for GLDAS-Noah v2.0, the time period 
only covers 1980–2014.
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observed wetland area from both GIEMS-2 (R = 0.19–0.79, p < 0.05; Table 4) and WAD2M (R = 0.50–0.70, 
p < 0.05). This indicates that our variant of TOPMODEL can capture the observed IAV of wetland area well 
(Fig. 7). Among the seven SM data, simulations from ERA5 (R = 0.79, p < 0.05) and ERA5-Land (R = 0.77, 
p < 0.05) reproduce the best IAV in GIEMS-2 wetland area while simulations from MERRA-Land (R = 0.70, 
p < 0.05) and MERRA-2 (R = 0.66, p < 0.05) are more consistent with WAD2M (Table 4). Regionally, almost 
all simulations show significantly positive correlations with observed IAV of wetland area in temperate regions 
(R = 0.36–0.90 and 0.26–0.54 for GIEMS-2 and WAD2M, p < 0.1) and boreal regions (R = 0.59–0.88 and 0.55–
0.86 for GIEMS-2 and WAD2M, p < 0.05). In regions south of 30 ° N, the simulated IAV of wetland area based 
on SM from ERA5 and ERA5-Land is significantly correlated with GIEMS-2 (R = 0.60–0.63, p < 0.05), while 
WAD2M has insignificant or even negative correlations with all simulations (Table 4). More detailed compar-
ison can be found in Supplementary Text 3 and Supplementary Table 1. The positive correlations between our 
simulations with GIEMS-2 or WAD2M can also be found at basin scale (Fig. 8). At grid scale, our simulated SD 
of global wetland area is close to GIEMS-2, but shows an obvious overestimation (~0.04 Mkm2, ~70%) relative 
to WAD2M owing to the very small interannual variations across most regions for WAD2M (Supplementary 
Figs. 12–13).

In addition to the observed wetland data, we also evaluated the interannual variabilities of simulated mean 
annual wetland extent against the terrestrial water storage (TWS) for 2003–2016 from GRACE satellites46,47. 
As shown in Fig. 9 and Supplementary Fig. 14, different ensemble members consistently show a positive cor-
relation with the TWS anomaly (the median of R = 0.19–0.33) across 70–80% wetland grids (wetland fraction 
>1% at 0.25° × 0.25° spatial resolution), especially in global wetland hotspots such as West Siberian lowlands, 

Simulations Soil moisture data

Global 60° S–30°N 30°N–50°N 50°N–90°N

Area SD Area SD Area SD Area SD

SGIEMS-2

NCEP-DOE 3.3 0.10 1.9 0.09 0.7 0.02 0.9 0.07

MERRA-Land 4.3 0.15 2.2 0.11 0.9 0.03 1.3 0.07

MERRA-2 4.1 0.14 2.0 0.11 0.9 0.03 1.4 0.07

ERA5 4.3 0.10 2.2 0.07 0.9 0.04 1.3 0.04

ERA5-Land 4.5 0.10 2.3 0.08 0.9 0.04 1.4 0.04

GLDAS-Noahv2.0 4.8 0.09 2.5 0.06 1.0 0.03 1.4 0.05

GLDAS-Noahv2.1 4.7 0.13 2.5 0.11 1.0 0.03 1.4 0.05

SRFW

NCEP-DOE 3.4 0.11 1.7 0.06 0.6 0.03 1.2 0.08

MERRA-Land 4.6 0.15 2.2 0.10 0.9 0.03 1.6 0.09

MERRA-2 4.4 0.16 2.0 0.10 0.8 0.03 1.7 0.09

ERA5 4.3 0.09 2.1 0.06 0.8 0.04 1.5 0.05

ERA5-Land 4.5 0.09 2.1 0.07 0.8 0.03 1.7 0.04

GLDAS-Noahv2.0 4.9 0.08 2.3 0.05 0.9 0.03 1.7 0.05

GLDAS-Noahv2.1 4.7 0.13 2.3 0.10 0.9 0.02 1.6 0.06

SWAD2M

NCEP-DOE 4.0 0.16 1.9 0.08 0.7 0.07 1.6 0.11

MERRA-Land 5.3 0.19 2.1 0.11 1.2 0.04 2.2 0.11

MERRA-2 5.1 0.17 1.8 0.10 1.2 0.04 2.3 0.11

ERA5 5.3 0.12 2.3 0.07 1.1 0.05 2.2 0.06

ERA5-Land 5.6 0.15 2.3 0.09 1.1 0.06 2.4 0.05

GLDAS-Noahv2.0 5.6 0.11 2.3 0.06 1.2 0.03 2.4 0.07

GLDAS-Noahv2.1 5.3 0.17 2.2 0.14 1.1 0.04 2.2 0.08

SG2017

NCEP-DOE — — 1.6 0.07 — — — —

MERRA-Land — — 1.7 0.09 — — — —

MERRA-2 — — 1.5 0.09 — — — —

ERA5 — — 1.8 0.06 — — — —

ERA5-Land — — 1.8 0.07 — — — —

GLDAS-Noahv2.0 — — 1.8 0.04 — — — —

GLDAS-Noahv2.1 — — 1.8 0.09 — — — —

Table 3. Estimations of mean annual maximum wetland extent and standard deviation (in Mkm2 units) 
for global and three latitude zones from simulations based on seven soil moisture data, with the parameters 
calibrated against GIEMS-2, RFW, SWAMPS, and G2017 (denoted as SGIEMS-2, SRFW, SSWAMPS, and SG2017) 
respectively. Note that the global and regional wetland area shown here are computed as mean annual 
maximum of global/regional total wetland extent, which is smaller than that computed at grid scale in the 
Methods section. Besides, SG2017 only cover 60°S–40°N.
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Fig. 7 Evaluation of the simulated interannual variabilities of wetland extent against wetland calibration 
data. Interannual variability in wetland area from wetland calibration data and simulations based on SM from 
NCEP-DOE, MERRA-2, ERA5, and GLDAS-Noah v2.0 for global and three latitudinal bands (60° S–30°N, 
30°N–50°N, and 50°N–90°N) for the period 1980–2020, with the parameters calibrated with GIEMS-2, RFW, 
WAD2M, and G2017 (denoted as SGIEMS-2, SRFW, SWAD2M, and SG2017), respectively. For GLDAS-Noah v2.0, the 
time period only covers 1980–2014.

Simulations Soil moisture data

Correlation coefficient

Global 60°S–30°N 30°N–50°N 50°N–90°N

SGIEMS-2 (1992–2014)

NCEP-DOE 0.31 0.21 0.36* 0.59**

MERRA-Land 0.19 −0.13 0.65** 0.67**

MERRA-2 0.24 −0.02 0.53** 0.66**

ERA5 0.79** 0.63** 0.90** 0.88**

ERA5-Land 0.77** 0.60** 0.87** 0.86**

GLDAS-Noahv2.0 0.49** 0.17 0.73** 0.75**

GLDAS-Noahv2.1 0.65** 0.42 0.72** 0.71**

SWAD2M (2000–2014)

NCEP-DOE 0.60** −0.20 0.39 0.58**

MERRA-Land 0.70** −0.05 0.51* 0.75**

MERRA-2 0.66** −0.08 0.45* 0.55**

ERA5 0.50* −0.38 0.46* 0.86**

ERA5-Land 0.52** −0.41 0.54** 0.80**

GLDAS-Noahv2.0 0.65** −0.04 0.52** 0.69**

GLDAS-Noahv2.1 0.60** −0.01 0.26 0.78**

Table 4. Correlations of wetland area between GIEMS-2 or SWAMPS and the corresponding simulations for 
global and three latitude zones. *p < 0.1, **p < 0.05.
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North America, and South America. Disagreements of temporal variations between wetland extent and TWS 
are mainly found in some arid regions such as Africa and Central Asia, where have few wetlands. This implies 
the IAV of the simulated wetland extent from these reanalysis data can present a very good agreement with the 
TWS from GRACE.

Usage Notes
We provide 28 sets of monthly global/regional wetland extent products but users can choose the group of sim-
ulations they want based on the wetland definitions of different wetland calibration data. Among seven SM 
inputs, the optimal simulation is suggested to be the one using SM which reproduces the interannual variability 
of observation-based wetland data best. Due to the omitted unfrozen soil layers from our algorithm for water 
table depth, we note the potential uncertainties in wetland simulation over high latitudes. Moreover, to satisfy 
the need for the more accurate absolute value of monthly wetland extent for SGIEMS-2 and SWAD2M, we provided 
additional simulations calibrated with yearly maximum wetland area. To provide more choice for users, we also 
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Fig. 8 Evaluation of the simulated interannual variabilities of wetland extent against wetland calibration data 
at basin scale. Interannual variability in wetland area from GIEMS-2, WAD2M, and simulations based on SM 
from NCEP-DOE, MERRA-2, ERA5, and GLDAS-Noah v2.0 for Hudson Bay lowlands, Amazon basin, Congo 
basin, and West Siberian lowlands for the period 1980–2020, with the parameters calibrated with GIEMS-2 and 
WAD2M (denoted as SGIEMS-2 and SWAD2M), respectively. The spatial locations of the four wetland hotspots are 
shown in Fig. 1. For GLDAS-Noah v2.0, the time period only covers 1980–2014.
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Fig. 9 Evaluation of the simulated wetland extent against terrestrial water storage (TWS) from GRACE. Spatial 
distributions of correlations between TWS from GRACE and wetland fraction from GIEMS-2, WAD2M, and 
simulations based on four soil moisture data including NCEP-DOE, MERRA-2, ERA5, and GLDAS-Noah v2.0 
for 2003–2016, with the parameters calibrated with GIEMS-2 and WAD2M (denoted as SGIEMS-2 and SWAD2M) 
respectively. The 0.25° × 0.25° grids with a <1% wetland fraction from RFW are masked out for all maps. The 
black hatching indicates the correlations are statistically significant (p < 0.05).
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provided additional simulations calibrated with the union of long-term maximum wetland extent (MAX_all) 
in our resulting products.

Code availability
Computer codes to fit the parameters of the TOPMODEL-based diagnostic model are publicly available on 
GitHub (https://github.com/yixixy/Wetland_simulation_by_TOPMODEL)49.
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