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PONTRYAGIN PRINCIPLE AND ENVELOPE THEOREM

JOEL BLOT, HASAN YILMAZ

ABSTRACT. We provide an improvement of the maximum principle of Pontrya-
gin of the Optimal Control problems. We establish differentiability properties
of the value function of problems of Optimal Control with assumptions as
low as possible. Notably, we lighten the assumptions by using Gateaux and
Hadamard differentials.

Mathematical Subject Classification 2010: 49K15, 90C31, 49J50.
Key Words: Pontryagin maximum principle, piecewise continuous functions, En-
velope Theorem.

1. INTRODUCTION

The paper provides envelope theorems for parameterized problems of Optimal
Control (problem of Bolza) as

Maximize fo o>t z(t),u(t), m)dt + ¢°(x(T), )
subject to € PCl([O T] Q),u e NPC°([0,T],U)
(B, ) vt € [0,T], do(t) = f(t, x(t), u(t), ), 2(0) = &
Vze{l,...,m}, g'(x(T),m) >0
Vjie{l,....q}, W (x(T),m)=0.

For all parameter m, Vx| is the value of the problem of (B, ).

We establish properties of the value function [ — Vx]] in terms of Gateaux vari-
ation, Gateaux differentiability and Fréchet continuous differentiability.

We try to establish such results using assumptions as low as possible.

Envelope theorems for static optimization and Calculus of Variations in [4] where
references on economic motivations are cited.

To realize that we start by establishing new Pontryagin principles for the problems
of Bolza and Mayer without parameter which improve the results of [3] by lighten-
ing the assumptions. Moreover, we provide new qualification conditions which are
very useful to treat the question of the envelope theorems.

Notice that we provide conditions on the Gateaux differentials to obtain conditions
of Lipschitz, we provide a new result on the differentiability of nonlinear function-
als. Moreover, we don’t do assumptions on the regularity of the multipliers and
the adjoint function with respect to the parameter (as it is often the case in the
literature).

We summarize the content of this paper as follows.

In Section 2, we establish the Pontryagin principles for the Optimal Control. In a
first subsection, we state the Pontryagin principle for the problem of Bolza, and we
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provide new qualification conditions. In a second subsection, we state the Pontrya-
gin principle for the problem of Mayer, and we give qualification conditions. In a
third subsection, we prove the results on the problem of Mayer; in order to do that
we use a new multiplier rules which is an improvement of a multiplier rules in [2].
In the last subsection, in order to prove the Pontryagin principle of the problem of
Bolza, we transform the problem of Bolza into a problem of Mayer.

In Section 3, we establish envelope theorems for parameterized problems of Optimal
Control. In a first subsection, we state envelope theorems. In a second subsection,
we prove the first envelope theorem; in order to do that we provide new results on
the differentiability of nonlinear integral functionals and we use the new Pontryagin
principles and qualification conditions for the problems of Bolza without parameter.
In a third subsection, by using the first envelope theorem, we prove that the value
function is Gateaux differentiable at a point. In the last subsection, we prove the
last envelope theorem by using the second envelope theorem.

2. STATEMENTS OF THE PONTRYAGIN PRINCIPLES

2.1. Pontryagin principle for the problem of Bolza. F is a real Banach space,
Q is a non-empty subset of E, U is a Hausdorff topological space, f : [0, T]|xQxU —
E, fOr0T]xQxU =R, g°: Q=R (O0<a<m)and ¥ : Q =R (1 <B<q)
are functions when (m, ¢) € N, x N, where N, = N\ {0}.

When X is a Hausdorff topological space, PCY([0,T], X) denotes the space of the
piecewise continuous functions from [0, T] into X.

As in [3], we specify that € PC°([0,T], X) when z is continuous on [0, 7] or when
there exists a subdivision of [0,T], 0 =79 < 71 < ... < T, < Tg41 = T such that x
is continuous at ¢ when ¢ ¢ {7; : 0 < i < k + 1} and the right-hand limit a(r;+)
exists in X and when i € {0, ..., k} and the left hand limit z(7;—) exists in X when
te{l, .., k+1}.

We define NPC%([0,7],X) as the set of the x € PCY([0,T], X) which are right-
continuous on [0,7[ and left-continuous at T. An element of NPC%([0,T7], X) is
called a normalized piecewise continuous function, cf. [3].

When X is a real normed vector space, £ is a non-empty open subset of X and Y’
is a Hausdorff space. A mapping g: [0,7] x O — Y is piecewise continuous with a
parameter on [0, T] x O when there exists a subdivision of [0, 7], 0 =7 < 71 < ... <
T < Tk+1 = T such that for all ¢ € {0, ..., k—1}, g is continuous on [7;, 7;41[X O, g is
continuous on [7y, 7r4+1] X O, and for all i € {1, ..., k}, forall z € O, s lim g(t,2)

Ti—,2—X

exists in Y. The space of all the piecewise continuous with a parameter is denoted
by PCPY([0,T] x 9,Y).

When X is included into a real normed vector space, PC*([0,T], X) denotes the
space of the piecewise continuously differentiable functions from [0, 7] into X. We
specify that z € PC'([0,7T],X) when x is continuously differentiable on [0,7] or
when z is continuous on [0, 7] and there exists a subdivision , 0 =79 < 71 < ... <
T < Tr4+1 = T such that x is continuously differentiable at tif ¢ ¢ {r; : 0 < < k+1}
the right derivative o/ (7;) = 2/(7;4) exists when i € {0, ..., k}, the left derivative
xh (1) = o' (1;—) exists when 7 € {1,..,k + 1}, cf. [3].
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As in [3], we consider the extended derivative of x € PC*([0,T], X) as follows:

2'(t) if tel0,T)\{r:i€{0,....,k+1}}
de(t) .=« axh(t) if t=m,ie€{0,..,k} (2.1)
o (t) if t=T.

Note that if z € PC'([0,T],X) then dv € NPC%([0,T],X). Moreover, d is a
continuous linear operator from PC*([0,7], X) into NPC%([0,77], X).
When X is included in a Banach space, the following relation holds:

for all s <t in [0,T], z(t) — x(s) = /t dx(r)dr

where the integral is taken in the sense of Riemann as exposed in [5]. We refer to
[3] for the details about these function spaces.
When X is a real normed vector space, £ is a non-empty open subset of X, x € O,
v € X, and Y is a real normed vector space. When f: © — Y is a mapping.
When it exists D5f(z;v) denotes the right-directional derivative (also called the
right Gateaux variation) of § at = in the direction v cf. [] (Subsection 2.1). When
it exists Dgf(x) (respectively Dpf(x), respectively Dpf(x)) denotes the Gateaux
(respectively Hadamard, respectively Fréchet) differential of § at x.
Moreover, when X is a finite product of n real normed spaces, X := H?:1 X,
if i € {1,...,n}, Dg.f(x) (respectively Dy ;f(x), respectively Dp ;f(z)) denotes
the partial Gateaux (respectively Hadamard, respectively Fréchet) differential of
f at x with respect to the ¢ — th vector variable. If 1 < 43 < i9 < i3 < n,
D (i1 iz,i5)f(z) denotes the Hadamard diffential of the mapping [(x;,,Xi,,Xi,) +
F@Ly ey Ky s ooy Kigy ooy Xigy oovy Ty )| b the point (z,, 4y, Tiy)-

We formulate the problem of Bolza:

Maximize = [y FO(ta(t), u(t))dt + g°(x(T))
subject to =z E PCl([O T] Q),u E NPCO 2([0,T],U)
(B) vt € [0, T], da(t) = f(t,x(t), (f)) 2(0) = &

Va € {1,...,m}, g*(x(T)) >
vBe{l,...q}, h(w(T)) 0

Generally the controlled dynamical system is present in (B) is formulated as fol-
lows: 2/(t) = f(t,x(t),u(t)) when 2/(t) exists in [3], we explain why the present
formulation is equivalent.

If fO =0, (B) is called a problem of Mayer and it is denoted by (M).

When (x,u) is an admissible process for (B) or (M), we consider the following
condition of qualification, for ¢ € {0,1}.

If (ca)ica<m € R.l,__i+m, (dg)1<p<q € RY satisfy
(QC, 1) (Va € {1,....,m}, cag®(x(T)) = 0),and
DY X caDag? (@(T)) + >"h-1 dsDch?(x(T)) = 0, then

(Va € {i,....,m}, co =0) and (V8 € {1,...,q}, dg =0).

When i = 0, this condition is due to Michel [10].
Now we formulate the assumptions for our theorems. Let (2, 1) be an admissible
process of (B) or (M).

Conditions on the integrand of the criterion.
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(A1) £ € Co%0,T] x Q x U,R), for all (t,&,¢) € [0,T] x Q x U, Dg2f°(t,&,¢)
exists, for all (¢,) € [0,T] x U, Dpa2f°(t,x0(t),() exists and [(¢,¢) —
DF,2fO(t7x0(t)7<)] € CO([OvT] X U7 E*)

(A12) For all non-empty compact K C , for all non-empty compact M C U,
SUD(.¢.¢)efo,7] x i x M [ Da2f (8, €, Q)| < 4oc.

where C° means the continuity and E* denotes the topological dual space of E.

Conditions on the vector field.

(Avl) f € C%0,T) x Q x U, E), for all (t,£,¢) € [0,T] x Q x U, Dgaf(t,&,C)
exists, for all (¢,¢) € [0,T] x U, Dpaf(t,zo(t),() exists and [(¢,() —
Draf(twot). Q)] € CO([0.T] x U, L(E, E)).

(Av2) For all non-empty compact K C £, for all non-empty compact M C U,
SUP(1.¢,c)efo,7]x & x M |1 P2 f (£, €, Q)| < +o0,

where L£(F, E) denotes the space of bounded linear mappings from E into F.

Conditions on terminal constraints functions and on terminal part of the

criterion.

(AT1) For all @ € {0,...,m}, g* is Hadamard differentiable at xo(T).
(AT2) For all B € {1,...,q}, h? is continuous on a neighborhood of z¢(7T) and
Hadamard differentiable at xo(T).

(A11) and (A12) are an improvement of condition (A3) of [3], (Avl) and (Av2)
are an improvement of condition (A4) of [3], (AT1) is an improvement of condition
(A1) of [B], and (AT2) is an improvement of condition (A2) of [3].

The Hamiltonian of (B) is the function Hp : [0,T] x Q2 x U x E* x R — R defined
by Ha(t€,C,p,A) i= AO(E €,C) +p- F(8,€,C) when (1,€,C,p, ) € [0,T] x @ x U x
E* x R.

Theorem 2.1. (Pontryagin Principle for the problem of Bolza)

When (xo,uo) s a solution of (B), under (A11), (A12), (Av1), (Av2), (AT1) and
(AT2), there exist multipliers (Aa)o<a<m € R'™™, (ug)1<p<q € R? and an adjoint
function p € PCY([0,T], E*) which satisfy the following conditions.

(NN) ((Aa)o<a<m, (1g)1<p<q) is non zero.
(Si) For all a € {0,...,m}, Ay > 0.

i)
(S¢) For all a € {1,....,m}, Aag®(zo(T)) = 0.
(TC) Za 0 AaDrg(xo(T)) + 32f_y psDrh? (w0(T)) = p(T).
(AE B) ( ) = _DF2HB(t LL‘Q(t) ’U,O( ) ( ) )\0) fO’l“ all t € [O,T]
(MP.B) For allt €[0,T], for all { € U,

Hp(t,o(t), uo(t), p(t), Ao) = HB(t o (t), ¢, p(t), Ao).-
(CH.B) Hp := [t Hp(t,xo(t), uo(t), p(t), Mo)] € C°([0,T],R),

(NN) means non nullity, (Si) means sign, (S¢) means slackness, (TC) means transver-
sality condition, (AE.B) means adjoint equation, (MP.B) means maximum principle
and (CH.B) means continuity of the Hamiltonian.

Corollary 2.2. In the setting and under the assumptions of Theorem [Z1], if, in
addition, we assume that, for all (t,£,¢) € [0,T] x Q x U, the partial derivatives
with respect to the first variable 0y f°(t, &, ¢) and 0y f(t, €, C) exist and 01 f° and Oy f
are continuous on [0,T] x Q x U, then Hg € PC*([0,T],R) and, for all t € [0,T],
dHp(t) = 01Hp(t, xo(t),uo(t), p(t), Ao).-

‘We introduce other conditions.
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(Av3) U is a subset of real normed vector space Y, there exists £ € [0, 7] s.t. U is a
neighborhood of ug(#) in Y, Da s f(t, z0(t), uo(f)) exists and it is surjective
and
(LI) U is a subset of a real normed vector space Y s.t. U is a neighborhood of
uo(T) inY, Dgsf(T,xo(T),uo(T)) exists and
(Dug®*(zo(T)) © Da s f(T,2o(T), uo(T)))1<a<m,
(DrhP(20(T)) o D s f(T,20(T),u0(T)))1<p<q) is linearly free.

Corollary 2.3. In the setting and under the assumptions of Theorem [21, the
following assertions hold.

(i) Under (QC, 1) for (z,u) = (x0,uo), we have for allt € [0,T], (Ao, p(t)) # 0.

(ii) Under (QC, 1) for (x,u) = (xg,up) and (Av3), we can choose \g = 1.
(iii) Under (LI), we can choose \g = 1.
(iv) Under (LI), if, in addition, we assume that D 3f°(T, xo(T), uo(T)) exists,

then (()\a)ogagm, (Hﬁ)lgﬁgq;p) € RM™ xR XPCl([O, T], E*) with A\g = 1,

which satisfies the conclusions of Theorem [21], are unique.

2.2. Pontryagin principles for the problem of Mayer. The Hamiltonian of
(M) is the function Hps : [0,T] x Q x U x E* — R defined by Hp(¢,€,¢,p) ==
p- f(t,&,¢) when (¢,&,(,p) €[0,T] x Q x U x E*.

Theorem 2.4. (Pontryagin Principle for the problem of Mayer)
When (zg, uo) is a solution of (M), under (Av1), (Av2), (AT1) and (AT2), there
exist multipliers (A\a)o<a<m € R™™, (ug)i<p<q € RY and an adjoint function
p € PCY([0,T], E*) which satisfy the following conditions.
(NN) (Ao (8 )i<sq) i non zero.
(Si) For all a € {0,...,m}, Ay > 0.
(S€) For all o € {1,...,m}, Aag®(zo(T)) = 0.
(1C) 0 doDaa (5T + X3y psDih (o1 = (1)
(AEM) dp(t) = —DpaHp (t, 20(t), uo(t), p(t)) for all t €10,T].
(MP.M) For all t € [0,T], for all ¢ € U,
Ha(t,20(t), uo(t), p(t)) > HM(tvxo(t)=C7p(t))'
(CHM) Hy = [t — HM(t, ,To(t), UQ(t),p(t))] S CO([O, T],R)

Corollary 2.5. In the setting and under the assumptions of Theorem if in
addition we assume that, for all (t,£,() € [0,T] x Q x U, the partial deriva-
tives with respect to the first variable 01 f(t,€,() exist and O1f are continuous
on [0,T] x Q x U, then Hyy € PCY([0,T],R) and, for all t € [0,T], dHp(t) =
O Hp (t, 20(t), uo(t), p(t)).

Corollary 2.6. In the setting and under the assumptions of Theorem the
following assertions hold.

(i) Under (QC, 1) for (z,u) = (z0,uo), we have for allt € [0,T], (Ao, p(t)) # 0.
(ii) Under (QC, 0) for (xz,u) = (x0,uo), we have for all t € [0,T], p(t) # 0.
(i) Under (QC, 1) for (z,u) = (zo,uo) and (AV3), we can choose \g = 1.
(iv) Under (LI), the (Aa)o<a<m, (1g)1<p<q,p) € R x R? x PC*((0,T], E*)

with Ao = 1, which satisfies the conclusions of Theorem[2.4), are unique.

2.3. Proofs of results for the problem of Mayer. We consider
S = ((t;,vi))1<i<n where t; € [0,T] satisfying 0 < t; <ty < ... <ty < T, where
v; € U and where N € N,. We denote by S the set of such S.
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When S € S and a = (ay,...,an) € RY, we define the following objects: J(i) =
J(,S) = {j € {1,...,i — 1} : t; = t;}, bj(a) = bi(a,S) := 01if J(i) = 0 and
bi(a) = bi(a,S5) = ZjeJ(i) aj if J(i) # 0.

We also define I;(a) = I;(a, S) := [t; + bi(a), t; + bi(a) + a;].

We define 6(S) = min{ t,11 —¢; i€ {1,...N—1}, t; < t;y1} and

lally = Y, [as |= 2375 ai < 6(S).

When a € By, (0,6(5)) NRY, we have I;(a) C [0,T] and I;(a) N I;(a) = ) when
i # 7 and we can define the needlelike variation of wug:

Vi if tEIi(a),lgiSN

ua(t) - ua(t’ S) = { ’U,O(t) if te [O,T] \ UlgiSNIi(a). (22)

It is easy to verify that
U = uq(-,S) € NPC%([0,T],U). (2.3)

We associate to the control function wu, the non extendable solution z, of the
Cauchy problem on [0, T].

dra(t) = f(t 2a(t), ua(t), 2a(0) = &o- (2.4)

In the sequel of this subsection, we arbitrarily fix a list S = ((;,v;))1<i<n in S.

Lemma 2.7. Let X be a metric space, Y be a non empty set, Z be a real normed
vector space and ¢ : X XY — Z be a mapping. We assume that: for all non-empty
compact subset K of X, we have sup(, ,\exxy |#(z,y)|| < +oo.

Then, for all non-empty compact subset K of X, there exists p > 0 s.t.

SUP (z,9)eV (K,p) XY ”d’(xvy)H < +00,
where V(K,p) :={z € X : d(z,K) := infrex d(z, k) < p}.

Proof. We proceed by contradiction, we assume that there exists a non-empty com-
pact subset K C X s.t. Ve > 0,Vy € Ry 3(2®7,y%7) € V(K,e) xX Y,

l[o(z=, y= )| > -

Therefore taking & = %, v = n with n € Ny, we obtain Vn € N,,3(z,,yn) €
V(K L) X Y, [[9(2n,ya) | > .

Hence, for all n € N, Ju, € K s.t. d(zp, un) = d(z,, K) < L.

Since K is a compact, there exists ¥ : N, — N, strictly increasing and z € K s.t.

ngrfoo Uy(n) = 2. Hence, we have also ngrfoo Typ(n) = 2-

Since Ko := {Zy(n) : n € Ny} U {z} is compact, there exists 70 € Ry s.t., Vn € N,
(24 (n)s Yum) Il < 8UD G ey 1902, W) < 70 < Fo00.

Besides, we have also for all n € Ny, ¥(n) < ||¢(2y(n), Yp(n)) || < 70, and since
nll)rfoow(n) = 400, we obtain the contradiction +oo < vy < 4o00. O
Lemma 2.8. Let X and Z be two real normed vector spaces, Y be a non-empty
set, G be a non-empty open subset of X, and ¢ : G XY — Z be a mapping. We
assume that the two following conditions are fulfilled.

(a) Y(z,y) € G XY, Dg1¢(z,y) exists.
(b) VK C G, K non-empty compact set, sup(, ,)crxy |1Da,19(,y)|| < +oo.

For each non-empty compact subset K C G, there exist n > 0, k > 0 s.t. for all
x € K, for all z1,x2 € B(z,n), forally €Y, ||¢(x1,y) — ¢(x2,y)|| < K|z — 2]
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Proof. Let K C G, K non-empty and compact. From Lemma 27 there exists
p> 08t Ki=supy, evik,pxy [1Da16(x,y)l| < +oo.

We set n := §. Let x € K and x1,22 € B(x,7). Since the balls are convex,
we have [x1,22] C B(x,n) C V(K,p). Using the mean value inequality ([II,
Subsection 2.2.3, p. 143), we obtain, for all y € Y, ||¢(z1,y) — ¢(x2,y)] <

SUP¢e(r, o] |1DG10(8, y)lll21 — 22| < wllzr — o 0

Remark 2.9. Note that we don’t use a condition of continuity on ¢ in Lemmal[2.7,
we replace it by a condition of boundedness on the compact subsets. It is similar in
LemmalZ8 of Dg 16 instead of ¢. These lemmas permit us to replace the condition
of partial differentiable continuity in (A3) and (A4) of [3] by the conditions (A12)
and (Av2).

Lemma 2.10. Let X and Y be metric spaces and ¢ € C°([0,T] x X,Y). The
Nemytskii operator Ny : PC°([0,T],X) — PC°([0,T],Y), defined by

Ny(z) := [t — ¢(t, 2(t))] when z € PC°([0,T), X), is well defined and continuous.
Moreover, Ny(NPC%([0,T], X)) C NPC%([0,T],Y).

Proof. Let z € PCY([0,T], X); we set w(t) := ¢(t, z(t)) when t € [0,T]. Since ¢ is
continuous, we have, for all ¢ € [0, T[, w(t+) = ¢(t, z(t+)) and, for all ¢ €]0,T7,
w(t—) = ¢(t, z(t—)). Since the set of discontinuity points of z, discont(z), is finite,
discont(w) is necessarily finite, and so w € PC°([0,7],Y).

We denote by G(z) the graphic of 2. Since z € PC°([0,7T],X), cl(G(z)) is com-
pact and then, we can use the Heine-Schwartz lemma ([I1] p. 355, note (**)) and
assert that : Ve > 0, Jo. > 0, V(t,s) € [0,T], V€ € X, |t — s| +d(z(t),&) < 0. =
d(p(t, z(t)), ¢(s,&)) < . Hence, we have:

Ve >0, 30, > 0, Vt € [0, 7], V€ € X, d(z(¢),€) < 0. = d(d(t, 2(t)), d(t, ) < e.

Let ¢ > 0; if 21 € PCY[0,7),X) satisfies supy<,<p d(2(t),2z1(t)) < 0, then
supg<;<r d(G(t, 2(1)), d(t, 21 (1)) < e.

The continuity of Ny at z is proven. Therefore, Ny is well defined and continuous.
Moreover, when z € NPC%([0,T], X), since z is right-continous on [0, 7' and ¢ is
continuous, we have also Ny(z) € NPC%([0,T],Y). O

Lemma 2.11. Let 0 = s < 51 < ... < 8y < Sny1 = T, and, for all i €
{0,..,n}, h; € PC°([0,T),E). We consider h : [0,T] — E defined by h(t) =
Zogignfl 1[51’-,Si+1[(t)hi(t) + 1[Sn,T] (t)hn (t) when t € [O7T]

We have h € PC°([0,T), E).

Proof. Note that discont(h)C {s; : 0 < i < n+ 1} U Jy<;<, discont(h;), hence
discont(h) is finite. When ¢ € [0, T[, we have h(t+) = > ;c0_; Lss s, [ () Dy (E+)
+ 1[5n,T] (t+)hn(t+) anda when ¢ G]Oa T]v h(t_) - 20<i<n—1 1[51,8i+1[(t_)hi(t_) +
1(s, 71(t—)hy(t—). We have proven that h € PC°([0,T], E). 0

Now, we consider the linearization of the evolution equation

dy(t) = DF,2f(t7 ,To(t),’u,o(t)) : y(t) (25)

We denote by R(-,-) the resolvent of [ZF). We know that, for all (¢,s) € [0,T]?,
R(t,-) € PCY([0,T), £(E, E)) and R(-,s) € PC'([0,T], L(E, E)).
For all a € By.|,(0,6(S)) NRY, we also consider the following Cauchy problem on
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an inhomogeneous ODE:

dza(t) = D f(t 20(t), w0 t)) - 2at) + F(ts20(8), 1a(8)) — F(t,20(), 10 (1))
z(0) = 0.
(2.6)
We denote by z, the non extendable solution of (Z8]). Since (Z6]) is an inhomoge-
neous linear ODE, z, is defined on all over [0, T.

Lemma 2.12. We consider the linear mapping £ : RN — E, defined by

L£a:= Zfil a;R(T,t;) - [f(ti, xo(t;),vi) — f(ti, xo(t;), uo(t;))] when

a=(ai,....,an) € RN. There exists o1 : B).,(0,6(S))NRY — E s.t. HI% 01(a) =0
a—

and, for all a € §|\~|\1(075(S)) N Rf, 2a(T) = 20(T) + £ - a+ ||al|101(a).

Proof. For all a € B).,(0,6(5)) NRY, the second member of 0) is A,, defined
by A,(t) :=0 when t ¢ UlgiSN I;(a) and A, (t) := f(t,zo(t),v;) — f(t,x0(t), up(t))
when t € [;(a) (1 < i < N). Using Lemma [ZT0 and XTI} we see that A, €
PCY([0,T], E). Since R(t,-) is continuous, R(t,-) - A, € PC°([0,T], E), hence it is
Riemann integrable.
Using the formula of the Variation of Constants, we can write z,(t) = z,(0) +
fot R(t,s) - Ay(s)ds. Note that zp = 0 since the second member of (28] is zero and
the initial value is zero.
Hence, we have for all a € B).,(0,6(S)) NRY, 24(T) — 20(T) — £ - a

PR S0y BT, 5) - Dg(s)ds — SN aiR(T ) - Aa(ty)

= ZZ\; f[i(a) (R(T,s) - Aa(s) = R(T' t;) - Ag(ti))ds.
We set, for all i € {1,..., N}, ¢;(a) :=0if a; =0 and

1 [titbitas
¢ila) = —/ [R(T,s)-A(s,a) — R(T\, t;) - A(t;)]ds. (2.7)
i Jti+b;
if a; # 0. Hence, we obtain the following relation
2(T) =z20(T)+L-a+ Y aidia). (2.8)
1<i<N

We introduce the mappings, v; : [0,1] x (B, (0,6(S)) NRY) — E, (1 <i < N),
defined by

Y;(0,a) == R(T,t; + b; + 9ai) . Aa(ti + b; + fa;, a) — R(T,t;) - Au(ts)- (2.9)

Note that ;(-,a) € PC°([0,1], ) and so it is Riemann integrable and using a
change of variable, we obtain ¢;(a fo i(0,a)dd (1 <i < N).
Since zp and R(T), -) are contlnuous since ug is right-continuous, we have hrr%) xo(ti+

b; + 0a;) = xo(t;), hmuo(t +b; + 0a;) = uo(t;), hmR(T t; + b; + 0a;) = R(T, t;),
and then we obtam IH% ¥;(0,a) =0 for all 6 € [O 1] and also
a—r

lim [+43(6, a)]| = 0 for all 6 € [0, 1] (2.10)
a—

Since A, € PC°([0,T], E) and since a is not present in the formula of A,, we see
that:

Jer € Ry, Va € B, (0,6(5) NRY, vt € [0,T7], [|Aa(t)]| < c1. (2.11)



PONTRYAGIN PRINCIPLE AND ENVELOPE THEOREM 9

Consequently, we obtain, for all 6 € [0,1] and for all a € B, (0,6(5)) NRY,
19:(6,0) <2 sup [R(T, s)lll Aa(s)]l < 2T )l|ocr- (2.12)

Since [|[¢;(+,a)|| € PC°([0,T],R), it is Riemann integrable and also Borel integrable
on [0,1], and since the constants are Riemann integrable on [0, 1], with ([ZI0) and
[I2) we can use the theorem of the Dominated Convergence of Lebesgue to obtain

.ol 1. . -
il_r% Jo 1i(6,a)||ld6 = [, il_r)r(l)||wi(6‘,a)||d9 = 0. Since, for all @ € By.|,(0,0(S)) N
Rf, | (a)|| < fol |l (6, a)||d0, we obtain lir% |l #i(a)|| =0, i.e. HI% ¢i(a) = 0.
a— a—
Setting, for all @ € RY N B).,(0,6(5)), o1(a) := 0 when a = 0 and g;(a) :=
W Zf\]:l a;¢;(a) when a # 0, we see that 111% o1(a) = 0, and we have proven the
a—

lemma. O

Lemma 2.13. There exists k € Ry, for all a € Bj.,(0,6(S)) NRY, we have
T
Jo 17 2o(t), ua(t)) = £t 20(t), uo(t))dt < Ellal]y-

Proof. We set k := ¢, provided by @II). Let a € RY N B, (0,6(S5)); using the
Chasles relation we have

I3 1tz (8) ua(6) — Ft,z0(8) uo (1)t = J; | 8alt)
A 0l € e 5= Kl
O

The discontinuity points of ug are denoted by 7; (0 < j < k+ 1). We consider
the set M = (Ug<;<y, cl(uo([Ti; Ti+1])) U {v; 1 1 <@ < N} which is compact as a
finite union of compacts.

Lemma 2.14. There exist L € Ry, and r € Ry, such that, Vt € [0,T], V&, & €
B(zo(t),r), Y¢ € M, we have || f(t,€,¢) — f(t.&, Ol < LIIE — &l
Proof. We set K := x(([0,7]) which is compact and non-empty. Using (Av1)

and (Av2) we can apply Lemma to the mapping ¢(&, (¢,()) = f(¢,&,¢), with
=[0,T] x M, to obtain the result. O

Setting 71 := re” T we consider the set X := B(xg,r1) C C°([0,T],Q) C
C°([0,T], E). This last vector space is endowed with the norm of Bielecki |||, :=
SUpc(o,7] (e~ Lt|p(t)|) for which it is a Banach space cf. ([7], p.56). When a €

Bj.,(0,6(5)) NRY, we consider the operator ®, : X — C°([0,T], E) defined by

D, (z) = [t — & —l—/o f(s,2(8),uq(s))ds]. (2.13)
This operator was used in [3].

Lemma 2.15. The following assertions hold.
(i) There exists o € Ry, s.t. for all a € RY, |jal|y < ro = @,(X) C X.
(i) For all a € By, (0,72) NRY, for all z,z € X,
[Pa(@) — Ra(2)]ly < (1 — e HT)[lz — 2[ls. _
(ili) Forallz € X, the mapping [a — ®q(x)] is continuous from By, (0,72)NRY
mto X.
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Proof. Using Lemma instead of Lemma 4.1 in [3] and Lemma 214 instead of
Lemma 4.2, the proof of (i) is similar to the proof of Lemma 4.3 of [3], the proof
of (ii) is similar to the proof of Lemma 4.4 of [3] and the proof of (iii) is similar to
the proof of Lemma 4.5 of [3] O

Lemma 2.16. The following assertions hold.
(i) For all a € Bj.,(0,r2) NRY, there exists a solution z, of the Cauchy
problem (27)) which is defined on [0,T] all over.
(ii) The mapping [a — x4], from Bj.,(0,r2) NRY into X, is continuous.
(iii) There emists kv € Ry, such that, Ya € By.,(0,r2) NRY, vt € [0,T],
x(t, a) = zo(®)[| < Fallally-
Proof. For (i) and (ii), the proof is similar to the proof of the Proposition 4.1 in [3],
the only difference is to use of Lemma 2.5 of the present paper instead of Lemmas
4.3, 4.4, 4.5 of [3].
For (iii), we set k1 = ke . Let a € B, (0,r2) NRY. Since z, is a fixed point of
®, and a:o is a fixed point of @y, for all t € [0, T] we have
xq(t)—z §0+f0 8,2a(8), uq(s))ds—E— fo s,20(s), uo(s))ds, which implies
[l a (t ) —ao(0)] < Jy 1f (s, @a(s),uals)) = f(s,x0(s), uo(s))| ds
< Jo 17(5,a(5), uals)) = (5, 20(s), wa(s)) [ ds +

Jull£(s,20(s), ua(s)) — f(s,20(s), uo(s))||ds.
Using Lemma and 2141 we have

t
[za(t) = 2ol < [y (Lllza(s) = zo(s)l)ds + Kl alls.
Consequently, using the lemma of Gronwall ([8], p.24), we obtain,

Vit € [0, T, [|za(t) — 2o (t)|| < k||a||1ef0T Lds = 1 |lal|1, and so (iii) is proven. O
Lemma 2.17. There exists o0 : B).,(0,72) NRY — E s.t. HI% o(a) = 0 and s.t.
a—

for alla € B).,(0,72) NRY, 24(T) = 20(T) + £-a+ |al10(a), where £ is provided
by Lemma 212

Proof. We arbitrarily fix a € B, (0,72) N RY, and we introduce, Vi € [0, T7,

Ya(t) = (@a(t) = 2a(t)) = (0 (t) — 20(t)) = za(t) = 2a(t) — wo(t)- (2.14)
and
Ya(t) := dya(t) — Dp2f (t, xo(t), uo(t)) - Ya(t). (2.15)
Doing a straightforward calculation, we obtain dy,(t) = f(t, x4 (t), ua(t)) —
Drpaf(t,zo(t),uo(t)) - zo(t) — f(t, z0(t), ua(t)), and consequently Vt € [0, T,
Ya(t) := [t 2a(t), ua(t)) = f (8 20(t), ua(t)) = Draf(t, 2o (t), uo(t)) - (za(t) - 90(02@1)(2)-
For all £ € [0, 7], we define e (£) := 0 if o (t) = z0(t), and '
1) = T (F(1 2 (), 0a() — £ 30(8), wa(t)) — Do f(t0(t), uat))
(o (t) — 20(t))) if o (t) # x0(t). We also define €2(t) = Dpof(t, zo(t), ua(t)) —
Dpaf(t,zo(t), uo(t)).
Doing a straightforward calculation we obtain
Ya(t) = llza(t) — o (t)lleq(t) +€5(t) - (walt) — z0(t)). (2.17)

Now, we study the properties of e}. Let a € By, (0,72) NRY. Let to € [0,7]
s.t. xa(to) = xo(tp). Since x, and xo are continuous, there exists v > 0 s.t.
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xa(t) # xo(t) when t €ltg — v,to + v[. Using the continuity of z, and xg, the
piecewise continuity of u, and wug, the continuity of f, Lemma and (Avl),
we obtain that el (to+) and €l (tg—) exit in E. When x,(tg) # xo(to), from the
existence of Dp o f(t,x0(t), uq(t)) we have

Ve >0, e >0,V € E,||€ — 20(t)]| <00 =
1 (£, ua(t)) — f(t, 20 (1), ua(t)) (2.18)
—Dpaf(t,xo(t), ua(t)) - (€ = zo(t)) < €€ —zo(D)]-

Since thi? (xa(t) — z0(t)) = xa(to) — xo(to) = 0, when we fix € > 0, there exists

beo > 08t to <t <tog+bea = ||za(t) — 20(t)|| < Vea = ||f(t,2a(t), ua(t)) —
ft,2o(t), ua(t)) = Draf(t, 2o(t), ua(t)) - (wa(t) —o(t))]| < €llza(t) —o(t)]| thanks
to [ZIX). Therefore |el(t)|| < € if 24(t) # 2o(t) or if 2,(t) = 2¢(t). Hence, we have
proven that ||el(to+)| = 0. Similarly, we obtain ||l (¢o—)|| = 0. Consequently, we
have proven

leall € Reg([0,T],R) (2.19)

where Reg([0,T],R) denotes the space of the regulated functions from [0, T] into R
cf. [5] (Chapter 7, Section 6). Hence, ||el|| is Riemann integrable on [0, 7] and also
Borel integrable on [0, T7.

From (Av2), we know that Ly := supe s [|[Dr2f(t,z0(t),¢)|| < +oo, and using
Lemma T4 we obtain: ||el(t)|| < max{0, L} + L; =: Ly, and so we have

3Ly € Rys, Ya € By, (0,72) NRY, Wt € [0,T7, ||lek(t)]| < Lo. (2.20)

We introduce the mapping © : Q2 x [0,T] x U — E defined by

O(&,1,¢) == eamy (F (£:€.Q) = f(t,20(8), {) = D f(t, 20(t), ) - (€ —20(t))) when
& # xo(t) and ©(&,t,¢) = 0 when & = zo(t). We fix (¢,{) € [0,T] xU. From (Av1l),
for all € > 0, there exists 9 > 0 s.t. || —2o(t)[| < e = [|f(,€,C) — f(t,20(t),C) —
Draf(t,20(t),¢) - (€ = 2o(t))]| < €ll§ — zo(#)[| which implies

Y(t,¢) €[0,T] x U, . hm(t)e(g,t,g) =0. (2.21)

We fix ¢ € [0,T], for all a € B|.j;,(0,72) NRY, we have

||€1]§t7@)|| = [[0(za(t), t,ua(t))[| = ||1[o tu[(0)O(@a(t), t,uo(t))+
Ei:l 1li(a) (t)@( ( ) ) + Zz 1 t +bi(a)+ai7ti+l+bi+1(a)[(t)g(xa(t)7 L, U‘O(t))
+1[tN+bN(a)+aN 7)()© (za(t), ( ))||

< (N +D)|[0(@a(t), t,uo(0) | + iy [O(@a(t), t,v:)|

and using (Z.21I)), we obtain
vt € [0,T], lim |lek(t)|| = 0. (2.22)
a—0

From 219), (Z20) and [222)), since the constants are Lebesgue integrable, using
the Dominated Convergence Theorem of Lebesgue we obtain

T T
lim/ ||g;(t)||dt=/ lim [l (8)]| dt = 0. (2.23)
a—0 0 0 a—0

Using (Av1) and Lemma 210, we see that 2 is a difference of two piecewise con-
tinuous functions on [0, 7], and consequently we have

for all a € By, (0,72) NRY, |2 € PC°([0,T],R) (2.24)
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hence ||e2]| is Riemann integrable and Lebesgue integrable on [0,7]. Besides, we

have also fOT lez(®)lldt <31 cicn ftt :bb "% (2Ly)dt = 2L |al|1, and so we obtain

53%/0 lle2(t)||dt = 0. (2.25)
From @I7), @23) and @25), we have [va(t)| < [lza(t) — zo(t)|lllex(t, a)ll +

lea(t, a)flza(t) = zo(B)l] < igllalll(lleé(t)ll + lez @)l
= Jo_a@®lldt < kallalli(fy llea®)lldt+ fy 2 ()]

and (223]), we have
1 T
lim —/ [va(t)]|dt | = 0. (2.26)
a»o<||a|| !

From (2I5) and the formula of the Variation of Constants, we obtain y,(T) =
fOT R(T, s) - va(s)ds. We introduce w(a) := 0 when a = 0 and

)= ||3T|| fOT R(T, s) - va(s)ds when a # 0; hence we have y,(T) = ||a||1w=(a).
Since R(T), ) is piecewise continuous, it is bounded. We set q := supg< <7 || R(T’ 5)|-
We have ||@(a)]] < q. ”a” fo [[7a(s)||ds when a # 0, and using (2:26), we obtain
iii% lw(a)|| =0, ie. ilg})w( a) = 0. Using [2I4) and Lemma T2, we obtain that

2a(T) = 20(T) + 24(T) + yo(T) = 2o(T) + £ - a + ||a|l1(01(a) + w(a)). Setting
o(a) := p1(a) + w(a) we have HI% o(a) =0, and the lemma is proven. O
a—

)
dt). Consequently, using (2.23))

Lemma 2.18. Let S = ((t;,vi))1<i<n € S. There exist (A\3)o<a<m € R™*™ and
(,ug)1<g<q € R? which satisfy the following conditions.

(a) (A )0<a<m and (uﬁ)1<3<q are not simulteanous equal to zero.

(b) Va € {0,...,m}, A >0.

(c) Va € {1,...,m}, )\S g% (zo(T)) = 0.

(d) Vi € {1, e N}, p(t)[F(tis0l(t), v2) — f(ti@o(ts), uo(t:))] < 0, where
p(t) = (Za 0 e Drg*(xo(T)) + by p3 Duh®(xo(T)))R(T,t), R(t, s)
being defined just before Lemma 212

Proof. Using Lemma [ZT7] the Proposition 4.2 of [3] ensures the existence of r3 €
]0,72] and a function & € C°(B|.|, (0,73), ) which is Fréchet differentiable at a = 0
and which satisfies, for all a € B, (0,r3) NRY, Z(a) = 24(T), and Dpz(0) = £-a.
Since (g, up) is a solution of (M), a = 0 is a solution of the following finite-
dimensional optimization problem

Maximize ¢°(Z(a))
subject to a € B(0,73)
Fh) = Va e {1...m}, g%(i(a)) > 0
V8 € {1,..q}, hﬁ(f( ) =0
Vie{1,..N}, bfa>0

where (bf)1<i<n is the dual basis of the canonical basis of RN,

Since T is Fréchet differentiable at 0, by using (AT1) and (AT2), we have, g% o &
when a € {0,...,m} and h” o & when 3 € {1, ...,q} are Hadamard differentiable at
0. Moreover, since & € C°(B).,(0,73),Q), by using (A12), for all 8 € {1,...,q},
hP o % is continuous on a neighborhood of 0. Hence we can use the Multiplier rule
of [12] (Theorem 2.2) to obtain our result. O
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With respect to Lemma 5.1 of [3], in Lemma 28] the Hadamard differentiability
replaces the Fréchet differentiability.
To finish the proof of Theorem 24, we exactly proceed as in Subsection 5.2 of [3].
We just recall the schedule of the reasoning. For all S € S, we consider K(S)
which is the set of the ((Aa)o<a<m. (15)1<p<q) € R'T™T% which satisfy the conclu-
sions (a,b,c,d) of Lemma ZI8and » o<, [Aal + X1 <5<, sl = 1. £(0,1) being
the unit sphere of R ™%4 K(S) is a non-empty closed subset of 3(0,1). Since
¥(0,1), (K(S))ses possesses the finite intersection property ([9], p.31) and con-
sequently we have ((geq K(S) # 0. An element of this intersection is convenient
for the conclusions (NN), (Si), (S¢), (AE.M) and (MP.M) of Theorem 241 The
conclusions (CH.M) is proven by Lemma 5.2 of [3].
The proof of Corollary 28 is similar to the proof of Part (IT) of Theorem 2.2 in [3]
which is given in Subsection 5.3 in [3].
To prove assertion (i) of Corollary 2.6 we proceed by contradiction, we assume the
existence of s € [0,T] s.t. (Ao, p(s)) = (0,0). Since p(s) = 0, we have p(T") = 0 since
(AE.M) is linear homogeneous, and, from (TC), we have Y. Ao Dpg*(xo(T)) +
> b pusDerhP (2o(T)) = 0. Hence using (TC), (Si), (S¢), (QC, 1) implies that
(Va e {1,....,m}, Ao =0) and (VB € {1, ...,q}, ug = 0). Moreover, since A\g = 0, we
obtain a contradiction with (NN).
The proof of assertion (ii) of Corollary [Z8] is similar to the proof of Part (III) of
Theorem 2.2 in [3].
To prove assertion (iii) of Corollary G we proceed by contradiction; we assume
that \g = 0. Since D¢ 3f (£, x0(t), uo(t)) exists, Dg 3Hr(t, 2o(f), uo(t), p()) exists
and D 3 H (L, 20(f), uo(f), p(t)) = p(t) o Da 3 f (L, xo(£), uo(f)). Therefore, by using
(MP.M), we have p(f) o D sf (L, zo(t),uo(f)) = 0, and since Dg sf(t, zo(t), uo(f))
is surjective, we have p(f) = 0, hence (Ao, p(f)) = 0 that is a contradiction with
the assertion (i). We have proven that g # 0, and it suffices to divide all the
multipliers and p by A\g to obtain the assertion (iii).
To prove the assertion (iv) of Corollary 2.6, we begin to prove that Ao # 0. To do
that, we proceed by contradiction, we assume that Ao = 0.
Since D¢ 3 f (T, xo(T), uo(T)) exists, DasHu (T, x0(T), uo(T), p(T)) exists and we
have DG73HM (T, LL‘Q(T), () (T),p(T)) = p(T) (@) Dg)3f(T, Zo (T), UQ(T))
From (MP.M), we obtain p(T") o D¢ 3 f(T, zo(T'), uo(T")) = 0.
From (TC), we obtain: 3" | \aDug*(20(T)) o Dg 3 f (T, 20(T), uo(T))
50, 119 Drh® (o(T))o D (T, 20(T), uo(T)) = p(T)oDas s f (T, 30(T), uo(T)) =
0, and by using (LI), we obtain ((Aa)i<a<m, (pg)1<s<q) = 0, which is a contra-
diction with (NN). Hence, we have proven that A\ # 0. Dividing Aa, pg, p by Ao,
we normalize all these terms, and we have A\g = 1. To prove the uniqueness, let
(A)o<a<ms (Hp)1<p<q,p") € RMT™H9 5 PCY([0,T], E*) which satisfy the conclu-
sions of the Theorem 2] are verified with A} = 1.
From (MP.M), we have, p'(T') o Dg 3f(T,x0(T),uo(T)) = 0, therefore, we have
(p(T) —p"(T)) o D 5 f (T, 20(T), uo(T)) = 0 and from (TC), we obtain > - (Ao —
) Drg*(z0(T)) 0 Da s f(T, xo(T), uo(T))
S0 (g~ wh) D (a0(T)) © Dy T, 20(T), uo(T)) = 0. Hence, using (L1),
(Aa)o<asm = (Ay)o<a<m and (pg)i<p<qg = (wj)i1<p<q, and consequently, using
(TC) we obtain p(T') = p*(T). Using the uniqueness of the solution of a Cauchy
problem on (AE.M), we obtain p = p'. Corollary 2.6 is proven.
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2.4. Proof of the results of the problem of Bolza. As in [3], we transform the
problem of Bolza into a problem of Mayer to deduce Theorem 2.1lfrom Theorem 2.4
That is why, we introduce an additional state variable denoted by o. We set X :=
(0,€) € R x Q as a new state variable; we set F(¢, (0,€),¢) := (f°(t,€,0), f(t,£,0))
as the new vectorfield; we set G°(0,&) := o + ¢%(£), G*(0,€) := g*(&) when « €
{1,...,m}, and we set H?(c,¢) := h#(€) when 8 € {1,...,¢}. We formulate the new
following problem of Mayer:

Maximize G°(X(T))
subject to X € PCY([0,T],R x Q),u € NPC%([0,T],U)
(MB) (_l:{(t) = F(tvf(t)v u(t))v %(O) =(0,&o)
Va € {1,...m}, G¥X(T))>0
VB e{l,..,q}, HP(X(T))=0.

Proceeding as in the section 6 of [3], the proofs of Theorem 2] of Corollary
and of assertion (i) of Corollary 23 are similar to the proof of Theorem [ZT] Part
(I), Part (II), and Part (III) of [3].

Proof of assertion (ii) of Corollary 23

First we want to prove that Ay # 0. To do that, we proceed by contradiction, we
assume that Ao = 0. Using (MP.B), we obtain p(f) o D sf(f,x0(t), uo(f)) = 0.
Since Dgsf(t,z0(t), uo(f)) is onto, we have necessarily p(f) = 0. Since we have
assumed (QC,1), (Ao, p(t)) = (0,0) provides a contradiction after assertion (i) of
Corollary 2.3l Hence we have proven that A\g # 0. To conclude it sufficies to divide
A0y ooy Ay [, ey g and p by Ag.

Proof of assertion (iii) of Corollary [Z3]

First we want to prove that \g # 0. To do that, we proceed by contradiction, we
assume that A\g = 0. Using (MP.B), we obtain p(T") o D¢ 3f (T, xo(T'), uo(T)) = 0.
That is why, using (TC), we obtain >_." | AaDug*(z0(T))o D3 f (T, z0(T), uo(T))
+ b1 gD (xo(T)) 0 Dg 3 f (T, xo(T), uo(T)) = p(T) 0 Da 3 f (T, 2o(T), uo(T))
= 0. From (LI), we obtain (Va € {1,...,m}, Ao = 0) and (V8 € {1,...,q}, pg = 0);
hence we have ((Aa)o<a<m, (1g)1<p<q) = (0,0); which contradicts (NN). We have
proven that Ao # 0. We conclude as in the proof of (ii).

Proof of assertion (iv) of Corollary 23]

From assertion (iii), we know that there exists (Aa)o<a<m, (18)1<s<q) With Ag = 1,
and p which satisfy the conclusions of Theorem 211

Let ((Ah)o<a<m, (15)1<p<q) With A\§ = 1, and p" which satisfy the conclusions of
Theorem 2711

Using (MP.B), we have p'(T')o D¢ 3 f (T, xo(T), uo(T)) + D3 f* (T, wo(T), uo(T)) =
0 and p(T) o Dg 3f(T,zo(T),uo(T)) + Dasf(T,x0(T),uo(T)) = 0. Using twice
(TC), we obtain > | (Ao — AL)Drg®*(xo(T)) o Da s f (T, zo(T), uo(T))

+ b (s — ,u%,)DHh'B(xO(T)) o Dgsf(T,x0(T),uo(T)) = 0. The linear inde-
pendence provided by (LI) implies (Vo € {1,...m}, Ao — AL = 0) and (V3 €
{17 "'7Q}7 Hp = M%% =0).

Consequently, we have ((Aa)o<asm, (18)1<p<q) = (Ag)o<a<m, (1j)1<p<q). Using
twice (TC), we obtain p(T) = p'(T). Using (AE.B) and the uniqueness of the
solution of a Cauchy problem, we obtain p = p'. We have proven the uniqueness.
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3. ENVELOPE THEOREMS

X is a Banach space, Y and Z are real normed spaces, {2 is a non-empty open
subset of X, and U is a non-empty open subset of Y, f0: [0, 7] x Q x U x Z — R,
F0TIxOxUXxZ—>Xg:OxZ—-RO<i<m)andh :QxZ =R
(1 < j < q) are mappings. Let & € Q, for all # € Z, we consider the following
problem of Bolza.

Maximize [ fO(t,x(t), u(t), m)dt + ¢°(x(T), )
subject to x € PC([0,T],Q),u € NPC%([0,T],U)
(Bvﬂ) vt e [OvT]v (_lx(t) - f(tvx(t)vu(t)vﬂ—)v CL‘(O) =&o
vie{l,..,m}, ¢'(z(T),m) >0
Vi€ {l,...,q}, W (x(T),x)=0.
The Hamiltonian of Pontryagin of this problem of Bolza is H, : [0,T] x  x U x
X* x R — R, defined by H,(t,&,(,p,\) == p- f(t,&,¢,7) + MOt € ¢, m) when
tel0,7,£€Q,¢eU,pe X* and A € R. For each m € Z, we denote by V[r] the
value of (B, ).

3.1. Main results. We fix my € Z and we consider the following list of conditions.
Conditions on the solutions.

(SO) There exists an open neighborhood P of 7y in Z s.t., V& € P, there exists
(z[r], u[x]) € PC([0,T7],82) x NPC%([0,T],U), a solution of (B, ). There
exists 0 € Z s.t. DEalmo; 6m] and Dfu[mo; o] exist.

Conditions on the integrand of the criterion.

(IC1) f° € C%0,T] x Q x U x P,R), and, V(t,&,¢,m) € [0,T] x Q@ x U x P,
D af°(t, &, ¢, m) exists. Moreover, for all T € P, for all non-empty compact
K st. K CQxU,supyeceorxx |1Paz2f & ¢ m)| < +oo.

(IC2) For all ¢t € [0,T], Dy (2,34 f°(t, x[mo](t), u[mo](£), mo) exists. Moreover, for
all T € P, Dy 3f°(T, z[x](T), u[r](T), ) exists, and the function
(1 Dy sfOT, z[x)(T),u[n](T),n)] € CO(P,Y*).

(IC3) There exists k € L1(([0,T],B([0,T7])), my;Ry), there exists p > 0 s.t.,
vt € [07 T]a V(glv G, 7T1)7 (§2a Gz, 7T2) € B||||1 ((I[WO](t)a u[TrO](t)v 7T0), p)v
[FO(t &, Guom) = fO(t &2, Gy m2) | < K(1)](61, Crom) — (€2, Cos m2) -

(IC4) For all (t,¢,m) € [0,T] x U x P, Dpof°(t,z[r](t),{,n) exists and, V7 € P,
[(t,¢) = DpafO(t, x[n](t), ¢, m)] € CO([0,T] x U, X™),

where B([0,T1]) is the Borel tribe on [0,7] and m; is the canonical Borel measure
on [0,T].

Notice that (IC1) concerns the continuity and the partial Gateaux differentia-
bility; (IC2) concerns the Hadamard differentiability, (IC3) concerns a partial
Lipschitz condition, and (IC4) concerns the partial Fréchet differentiability. if,
xr € C%P,C°[0,77,Q)) and, for all t € [0,T], fO(t,-,-,-) is Fréchet differentiable
on Qx U x P, and if D, (2.3.4)f is continuous on [0, T] x @ x U x P then (IC1)-(IC4)
are fulfilled. In our approach we want to weaken the conditions on f°.
Conditions on the vector field.

(V1) For all 7 € P,[(t,&£,¢) — f(t,&¢m)] € C°0,T] x Q x U, X), and,
for all (¢,&,¢,m) € [0,T] x Q x U x P, Dgaf(t,& ¢, m) exists. More-
over, for all # € P, for all non-empty compact K s.t. K C Q x U,

SUP(¢,¢,¢)€[0,T)x K ”DG,Q.f(tagv Ca 7-‘-)” < +00.
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(V2) Forallt € [0,T], Dy 2,34 f(t, x[mo](t), ulmo](t), m0) exist and, for all 7 € P,
Dy sf(T,z[x|(T),u[r](T),n) exists.
(V3) For all (t,(,m) € [0,T] x U x P, Dpaf(t,z[n](t),(,7) exists and, V7 € P,
[(t,¢) = Draf(t,z[r](t), ¢, m)] € CO(0, T] x U, L(X, X)).
We can do a comment on (V1)-(V3) which is similar to the comment on (IC1)-(I1C4)
which is given just after (IC4).
Conditions on the terminal constraints functions and the terminal func-
tion of the criterion.
(CT1) Forallp € {g": 0 <i <m}U{h : 1 < j < q}, Dud(z[mo)(T), m) exists
and, Vi € P, Dy 1¢(x[n](T), ) exists.
(CT2) Forallme P, forall j € {1,...,q}, h?(-,m) is continuous on a neighborhood
of z[x](T).
Conditions on the terminal constraints functions, the terminal function
of the criterion and the vector field.
(CVT1) (Daag'(z[mo](T), mo) © D s f (T, x[mo](T), u[mo](T), mo),
Dy (x[mo](T), o) © Da s f (T x[mo](T'), u[mo](T'), m0))1<i<m, 1<j<q 18 lin-
early free.
(CVT2) Forall g € {g':0<i<m}U{h/:1<j<gq},
[m— Dg1¢(x[n|(T), 7)o Dy sf(T,z[x|(T),u[r](T), )] belongs to
Co(P,Y™).
Conditions on the control space
(ESP) There exists (+|-) an inner product on Y* s.t. (-|-) € CO((Y*, || - [[y+)?, R).

Theorem 3.1. Under (SO), (IC1), (IC2), (IC3), (IC4), (V1), (V2), (V3), (CT1),
(CT2), (CVT1), (CVT2) and (ESP), DSV [mo; 0] exists and

DLV mo; 6n) = DH_rgg_O(x[wO](T), 7o) - 0 + >ory Ni[mo] D 2gt (xmo)(T), mo) - 0

+ 3251 wilmo] D oh? (x[mo)(T), mo) - o

+ Jiory DrafO (¢, xlmo] (£), ulmo] (), m0) - 5 dwma (1)

+f[0,T] p[ﬂo](t) 'DH74f(t, LL‘[FQ](f), U[FQ](t), 7T0) 0T dm1 (t), where ()\1 [Wo])ogigm, with
Xo[mo]l =1, (u5[mo])1<j<q (respectively plmo]) are the unique respectively multipliers
(respectively the unique adjoint function) of the Pontryagin Theorem applied to the
solution (x[mo], u[mo]) of (B, mo).

In order to provide a result on the Gateaux differentiability of V' at my, we introduce
the following strengthened conditions.
(SO-bis) For all §7 € Z, D5x[mo; 67 and DEu[mo; o] exists.
(V4) There exists ¢ € £1(([0,T], B([0,T])), my; Ry) s.t.
vt € [0, T, [|Da.af(t, x[mo] (), ulmo] (t), mo)|| < ().

Corollary 3.2. Under the assumptions of Theorem[3 1], assuming in addition (SO-
bis) and (V4), V is Gateauz differentiable at mo and the formula of DV [mo| is given
by the formula of Theorem [Tl

In order to provide a result on the continuously Fréchet differentiability of V', we
introduce the following strengthened conditions
(SO-ter) The functions [7 — x[r]] and |7 — u[r]] are continuous at my and, for all
7 € P, for all 67 € Z, Dfx[m; 67) and Dfu[m; o7 exist.
(IC5) For all m € P, for all t € [0,T], Dy (2,3.4)f°(t, x[x](t), u[r](t),r) and, for
allt € [0,T], [7r — DH)(274)f0(t,x[w](t),u[ﬂ'](t),ﬂ')] € CO%P, (X x Z2)%).
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(IC6) Forallme€ P, [t — Dy 4f0( ,x[w](t), ulr](t), m)] belongs to
£0((0, 71, B(0, 7)), (2", B(Z").
(V5) Forallw e P, forallt e [ T, Dy (2,3,4) f (t, z[7](t), u[r](t), ) exist and for
all t € [0,T], [ = D (2,0) f (t, 2[m](t), ulm](t), m)] € CO(P, L(X x Z, X)).
(V6) Forall m € P, [t — DH 4f(t, x[m](t), u[r](t), )] belongs to
£2(([o,T], B([O 1)), (L(Z,X),B(L(Z,X))) and there exists
ce El(([ T],B([0, 7)), my;Ry) s.t. ¥Vt € [0,T], V& € P,
1Dt o (1 o)1), wl)(2), m)]| < o).
(CT3) Forall p € {¢° : 0 < i <m}U{h :1 < j<gq}, forall T e P, ¢
is Hadamard differentiable at (x[x](T), ) and, |1 — Dyo(z[x](T),7)] €
CO(P, (X x Z)%).
L£° denotes the space of all measurable functions.

Corollary 3.3. Under the assumptions of Corollary[33, if, in addition (SO-ter),
(1C5), (IC6), (V5), (V6) and (CT3) are fulfilled, then V is continuously Fréchet
differentiable on 20 which is an open neighborhood of 71'0 and for all m € 20, for all
om € Z, DpVn] - 6 = Dp2g”(x[r)(T), m) - o7 + 3024 Ni[7]Dp2g’ (([w](T), ) - o
+ Z;I»:l wi[m| Dy oh? (x[r)(T), w) - om

+ f[07T] Dy afO(t, z[x](t), ul[r](t), 7) - §m dmy(t)

+ f[O,T] p[ﬂ'] (f) 'DH)4f(t, ,T[T(] (f), U[F](t),ﬂ) SO dm1 (t), where ()\Z [TF])OSiSm, with
Xo[m] = 1, (p[m])i<j<q (respectively p[r]) are the unique respectively multipliers
(respectively the unique adjoint function) of the Pontryagin Theorem applied to the
solution (x[r],u[r]) of (B, m).

3.2. Proof of Theorem [B.Il We begin to establish a generalization of Lemma
5.2 in [4].

Lemma 3.4. Let E be a real normed vector space, G be a mon-empty open subset
of E, §:[0,T] x G — R be a function and ro € NPC%([0,T],G). We consider the
following conditions:
(i) € PCPY([0,T] x G,R).
(ii) There exists p1 > 0 and there exists ¢ € L*(([0,T],B([0,T])), m1;R) s.t.,
vt € [0, 7], Yatr, s € Blro(t), p1), [F(t, 1) — f(t ua)| < C(0)]ft — o
(iii) For allt € [0,T), Dy of(t,x0(t)) exists.
We consider the functional F: NPC0 ([O T] G) — R defined by,
for ally € NPC%([0,T],G fo ))dt. The following assertions hold.
(a) NPC'%([O,T],G) is open in NPC'%([O,T], E).
(b) Under (i)-(ii), I is well defined and Lipschitzean on By (xo,p1)-
(c) Under (i)-(iii), F is Hadamard differentiable at ro and
for allh € NPCY%([0,T), E),
[t — Duaof(t,xo(t)) - b(t)] € L£X(([0,T],B([0,T])),m1;R) and for all h €
NPCY([0,T),E), DgF(x) b = f[o,T] D 2f(t,vo(t)) - b(t) dmy(t).

Proof. (a) Let r € NPC%([0,T],G); we have the closure cl(¢([0,T])) C G. If
(Ti)o<i<nt1 is the list of discontinuity points of ¢, when i € {0,...,n}, we define
L [Ti7Ti+1] -G by setting }i(t) = }(t) ift e [TiaTi—i-l[ and xi(Ti-l-l) = x(Ti-l-l_)-
Hence, we have r; € C°([7;, 7i41], G), and then y;([7i, 7;+1]) is compact and more-
over we have cl(r([0,77)) := Uy<i<n &i([7, Tit1]) which is compact as a finite union
of compacts. o
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Using the continuity of the function [u — d(u, E \ G) := inf{|lu —v| : v € E'\ G}],
the closedness of E'\ G and the Optimization theorem of Weierstrass setting o :=
inf{d(u, E\ G) : u € cl(z([0,T]))}, we have o > 0, and then we easily verify that
By (xt,5) € NPC}([0,T], G); and so (a) is proven.

(b) When ¢ € NPC%([0,T]), we see that [t — f(t,x(t))] is regulated and con-
sequently, it is Riemann integrable on [0,7] cf. ([B], p. 168) hence F\(r) is well
defined. (ii) implies that F"is Lipschitzean on By (r, p1); and so (b) is proven.
(c) Let h € NPCY%([0,T],E), h # 0. We set 0" := \hll\ao min{p, §} > 0. Let
(en)neN 6]07 HO[N s.t. nllgloo en -

Since the Hadamard differentiability implies the Gateaux differentiability, from (iii),
for all ¢ € [0,T], we have Dy of (t,x0(t)) - h(t) = D of(t,r0(t)) - b(t) = Er}rl U, (1).

where W,,(t) := g-((t, xo(t) + 0ah(t)) — (£, x0(1))).

Since [t — §(t,z0(t) + 0,b(¢))] and [t — f(t,r0(t))] are regulated, they are uniform
(therefore pointwise) limits of sequences of step functions, hence they are Borel
functions, and then ¥, is a Borel function as a pointwise limit of a sequence of
Borel functions. Hence [t — D 2f(t,10(t)) - h(t)] is a Borel functions. Using (ii), we
see that that || U, ()| < {(t)]|b]|eo for all ¢ € [0, T] and for all n € N. Since (|||l €
L£Y(([0,77,B([0,T])), m1; Ry) we can use the Dominated Convergence Theorem of
Lebesgue to assert that [t — Dy of(t,x0(t))-h(t)] € L1(([0,T], B([0,7])), m1; R) and
also that

Sy Drnaf(t6o(t)) - B(O)dma(t) = T fio o Wa(t)dma(t) = Tim 2(F(eo +

n—-+o0o
0nh) — F(x0)); hence D5 F(ro;h) exists and we have

DF (xoih) = o D 2f(t, x0(t)) - b(t)dm (£). (3.1)
Using the linearity of the integral and of the Hadamard differential, we obtain that
D F(xo;-) is linear, and since |DEF (xo,h)| < [|¢]| 216/ for all
h € NPCY%([0,T],E), we obtain that D F(xo;-) is continuous and consequently
F' is Gateaux differentiable at ro. Under (a), since F' is Lipschitzean on a ball
centered at 1o, using ([6], p.259), we obtain that Dy F(ro) exists and the formula
of Dy F(xo) - b is given by DL F(xo;h) and BI). O

1t step: existence of DV (m). We consider E:= X xY x Z, G :=Qx U x P
which is open in FE, § : [0,7] x G — R the function defined by f(¢, (¢, {, 7)) =
o>t &, ¢m), xln](t) = (x[w](t),u[w](t),w) and when ¢ € NPCY([0,T],G), we con-
sider the function F'(x fo ))dt as in Lemma [34 We want to use Lemma
B4 with ro = r[mo] 6 NPCO([O T] G). From (IC1), (IC2) and (IC3), the as-
sumptions (i)-(iii) of Lemma [B4] are fulfilled, therefore we obtain that, for all
ve NPCY([0,T],X xY x Z),

[t = Dir,(2,3.4)f°(t, x[mo] (£), ulmo] (), m0) - v(t)] € L1(([0,T], B([0, T]))vml;Rgé )
and F is Hadamard differentiable at [mo]. Next, since (SO), D/x[mo; 6] exists and
for all t € [0,T], D&x[mo; 67(t) := (Dgx[wo;&r]( ), D&ulmo; ]( ), 07).

From (SO), we have also for all 7 € P, V[r] = F(x[r]) + ¢°(z[r](T), ). There-
fore, using ([6], (4.2.5) p.263), we have D5V [mq; 67| = DHF(;[WQ]) Dfxlmo; 67) +
Dyg(x[m](T), mo) - (D&almo; 67)(T), o).
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25! step: a first formulation of D}V (). Using the formula of Lemma [34 for
F with ro = [mo] and the partial differentials in the previous formula, we obtain

DLV mo; 6m)

= Jio.;) Du2f(t; almo)(t), ulmo] (), mo) - D[mo; o] (1) dm (1)

+f[0,T] Dy s fO(t, z[mo](t), u[mo](t), mo) - DEulmo; 6 (t) dmy (t) (3.3)
 Jogy DiafO 2lmo) (1) o] (6, mo) - S iy 1

+Du19°(@[m0](T), m0) - D& a[mo; 07|(T) + Dpr2g® ([mo] (T), mo) - 7.

At this time, we see that the second and last terms of (33 are present in the
formula of Theorem Bl We ought to transform the other terms.

35! step: the existence of multipliers and the adjoint function of the
Pontryagin Theorem. Thanks to (CVT1) and (CVT2), by using Lemma 4.1 in
[], there exists @, an open neighborhood of 7, @ C P, s.t.

Vr € Q, (Duag'([)(T),m) o Dy s f(T, z[x|(T), u[x](T), 7)) 1<i<m,
(,D?’vlh] (133[7;](7”), ) © Da s f (T, x[w|(T), uln](T), 7))1<j<q) (3.4)
is linearly free.

F(4.6,C.m), g () = g€, m) (0= i < m), h(E) = W(E,m)(1 < < q), we see that
(B, ) is a special case of the problem of (B) of Section 2 of this paper. For all m € @,
note that (SO) implies that (z[n], u[r]) is a solution of (B, ), (IC1) and (IC4) imply
that (Ar1l) is fulfilled, (IC1) implies that (A12) is fulfilled, (V1) and (V3) imply that
(Av1) is fulfilled, (V1) implies that (Av2) is fulfilled, (CT1) implies that (AT1) is
fulfilled, (CT2) implies that (AT2) is fulfilled, (CT2) implies that (AT2) is fulfilled.
Hence, the assumptions of Theorem 2] are fulfilled. Moreover, note that ([3.4]) and
(V2) implies that (LI) is fulfilled, and using (IC2), the assumptions of Corollary
23, (iv), hold.
Hence, we obtain the existence and the uniqueness of ((A;[7])o<i<m, (4i[7])1<i<q;
p[r]) € RFE x RY x PC([0,T], X*) with A\o[r] = 1 s.t. the following conditions
are fulfilled.
(Si) For all m € Q, for all ¢ € {0, ...,m}, \j[n] > 0.
(S¢) For all T € Q, for all i € {1,...,m}, \i[n]g*(z[r](T), 7) = 0.
(TC) Forall m € Q,
Diag”(wlm) (T),m) + 0, il| Diaag (o) (7). )
330, gl i () (T) ) = pl)(T).
(AE) For all 7 € Q, for all t € [0, T}, dp[r](t)
— ~p[r](6) © Do f(tyalm)(8), ulm)(t), 7) — D fO(E, (1), ul] (1), ).
(MP) For all € Q, for all t € [0, 7], for all ¢ € U,
Ho (8, o{)(2), ulr] (1), pl)(£), 1) > Ho(t, 2[](2), G, pla](£), ).
4t step: the transformation of the partial differentials of f° with respect
to the state variable and the control variable. For all t € [0,T], for all real
normed space Qj, we consider the evaluation operator evy : NPC%([0,71,9) —
) defined by ev? () = @(t) when ¢ € NPCO([O,T],Q)). Note that ev? €
L(NPC?([0,7],9),9). We can rewrite the evolution equation of (B,7) in the
following form,
Vr e PVt €0,T), (evif odoz)[nr] = f(t,-,-,-)o(evy (x )[] evy (u)[],idz)[x]. Using
([6], p.253), we obtain D (ev;* od o x)[my; 67| = Dy (evi® o d)(x([mo]) - D&a[mo; om)
= (ev{f od) - DEx[mo; 67 = evX (d(Dfx[mo, 07])

)

3
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= d(D{x[mg; 67])(t) i.e. we have the following inversion of the two notions of dif-
ferentiation d and DE.

D¢ (da(t))[mo; 6n] = d(Dalmo; om])(¢). (3-5)

From (V2), we also have DE(f(t,-,-,) o (ev;* ()[-],ev} (u ) |, idz))[mo; o]

= Dp 2,3,4)f (t, x[mo](t), ulmo](t), mo ) (D GI[?TO om)(t), D% Gulmo; om](t), 6m). There-
fore, we have, for all ¢ € (0,7, d[D{x[mo; 67](t)

= Dy (2,34 f (t, [mo] (1), ulmo] (t), m0) - (D& lmo; 67](t), D& ulmo; ox](t), o).

From (MP), (V2) and (IC2), we have, for all ¢ € [0, T,

plmol (8) 0 Drgs (1, 2l (1), ulmol (8),0) + D (¢, o] (1), ulmol (8),0) = 0.
Consequently, for all ¢ € [0,T], we have

o~

))WO) (D lmo; 67)(t), D ulmo; om](t))

DH 2,3 f°(t, CU[WO]() ufmo](
d[p[ ol](t) - D&amo; o]

(t
[ 0l(t) - D f (t, [mo] (), ulmo] (), mo) - D [mo; om] (1) —
plmol(t) - D f(t, x[mol (1), ulmo](t), m0) - D&ulmo; 67 (t)
= —d[p[m ]](t) Dfalmo; 67)(t) — plmo)(t) - Dy (2,3,4) f (£, x[mo] (), ulmo] (), mo)-
(D& [mo; 67)(t), Dulmo; m](t), 6m)
+p [ 0]() Dy af(t, x[mo](t), u[mo](t), mo) - 0
= —d[p[mol|(t) - Dga[mo; om](t) — plmo] () - d[Dcﬂc[Wo;&T]](f)Jr
plmol(t) - D af(t, x[mol(t), u[mo](t), m0) - O7r.

Therefore, we have

D V[mo; o] =

Jio.rp —dlplmo]](t) - Déalmo; 67)(t) — plmo(¢) - d[DGlmo; o)) (t) dma ()

+ Jio.m Plmol(t) - D af (¢, x[mo] (t), ulmo] (t), o) - O dm (t) (3.6)
+ Joo.r Draf(t, z[mo) (t), u[mo] (t), m0) - O dmy (2)

+Dp190(2[mo](T), m0) - Déxlmo; 07)(T) + Dir,ago(xlmo)(T), mo) - o

We consider the function ¢ : [0,7] — R defined by, for all ¢ € [0,T], ¥ (t) =
plrol(t) - DEalmos o) (1)

Since ¢ € PC'([0,T], X*) and D}x[my; dn] € PC*([0,T], X), we have

¢ € PC'([0,T],R) and, for all ¢ € [0, T], we have dp|mo](t)- D{,x[mo; 6] (t)+p[mo] (t)-
d[Dxlmo; o]](t). Le. dip(t) = dpmo](t)-Déa[mo; om](t)+p[mo](t)-d[Dfx[mo; dm]] (1)
Since ¢ € PC*([0,T],R), we have, for all t € [0,T], ¥(T) — 1(0) = fOT dip(t)dt
Moreover, we have Dz [mo; d7](0) = 0.

Therefore — [\ dip(t)dt = —(T') +(0) = —plmo)(T) - Da[mo; o7)(T).
Therefore, we obtain

D&V [mo; 0m] = —plmo)(T) - D&lmo; 67)(T)

+f[07T]p[7T0](t)'DH4f(t z[mol(t), u[mol(t), mo) - 07 dmy (2)

+ Joury Ditaf (. almol (8), ulmo) (8), wo) - o7 dim (1) (3.7)
+Dp19° (x[mo](T), m0) - Dégﬁ[ﬂo or|(T)

+Dp 29" (x[mo](T), m0) -
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5" step: the transformation of the first and the second to last terms of
@B.1). From (TC), we obtain

DEV mo; o] = = 321y Milmol D1 g (x[mo)(T), mo) - Dae[mo; 67)(T)

— >4y wjlmo] Db (2[mo)(T), mo) - Dac[mo; ) (T)

+ Jio.7 o] (t) - Daaf (¢, x[mo] (t), u[mo](¢), mo) - O dmy (¢) (3.8)
+ f[O,T] DH74f0(t, ,T[Td’o](t), ’U,[Tl’o](t), 7T0) . 67‘1’ dm1 (t)

+Dp 2g°(z[mo](T), mo) - o

Besides, by using (MP) and (V2), we have, for all 7 € Q,
PIr)(T) o Dy f (T, 2{x)(T), ulw)(T), m) + Dir.s fT, x[)(T), u[x)(T), ) = 0. Con-
sequently, by using (TC), we have

¥ € @, Sy Ml Dir g (e [x] (), m) © Dy f (T, afx)(T), ulr)(T), m)

+ 20y 43w} Da 9 ) (7), 7) © D (T, 2l (T), ul](T), 7) 59)
= "Dy 10" (al](T). ) o Dy o (T alw](T), ufx] (T), ) '
—Dy s fOT, x[x)(T), u[r)(T), ).

In the following lemma, we etablish the continuity of the multipliers with respect
to .

Lemma 3.5. For all i € {1,...,m}, \; € C°(Q,R,), and, for all j € {1,..., q},
4 € COQ.R).

Proof. First, for all m € Q, we set Fr := span{e;[n] : 1
F = U,c (F x {m}) where for all i € {1,...,m}, e;[n] =
Dyt f (T a) (T), ulm)(T), ) and for all j € {1, -..q},
em+;(m] = Dgah? (z[r](T),n) o Dy sf (T, z[x)(T),u[r)(T),n). For all (x,7) € F,
we denote by X, (z,7) the a-th coordinate of x in the basis (¢;[7])1<j<m+q-

From (IC2), (V2), (CVT2), (ESP) and ([&4), by using Lemma 4.3 in [4], with
E=Y*W=Z W = Q, we obtain that, Va € {1,...,m + ¢}, X, is continuous on
Uco(Fe x {r}).

Consequently, since ([B.9), we have, for all 7 € @,

xl] := — Dy 19 (al](T). ) 0 Dy (T, xf|(T). ulm|(T), 7) —

Dy sf*(T, 2[x|(T), u[x](T), 7) € Fr.

Hence, we have for all i € {1,...,m}, \; =x; o (x,idg) € C*(Q,R), and

for all j € {1,...,q}, uj = Xm1j o (x,idg) € C°(Q,R). O

Let i € {1, ..., m}; if \;[mg] > 0, using Lemma B there exists a neighborhood
N of mp in @ s.t., for all # € N, N\;[w] > 0. Consequently, by using (S¢), we
obtain that, for all 7 € N, ¢'(z[r](T), 7) = 0. From (SO) and (CT1), we have
Dy 19'(x[mo)(T), m0) - D& a[mo; 7)(T) + D 2gt (x[mo](T), mo) -0 = 0. Hence we have
Xilmo] D 2g* (2[m0] (T'), mo) - 67 = =Ni[mo] D1 ([mo)(T), m0) - Dé[mo; 67)(T).

Moreover, if \;[mo] = 0, then we also have \;[mo]| Dy 29" (x[mo](T), 7o) - o7
= —\i[mo] D19 (z[mo)(T), m0) - D&almo; d7)(T). Hence, we obtain

Vie{l,..., m}, {\i[Tro]DHggi(I[ﬂ'()](T),7T0) -om }
= —\i[mo] D 19" (x[mo](T), 7o) - Dga:[ﬂ'o; or|(T).

Let j € {1, ..., ¢}; remark that for all 7 € Q, b/ (x[x](T), ) = 0.
From (SO) and (CT1), we have

(3.10)



22 J. BLOT, H. YILMAZ

Dy h3(x[mo)(T), m0)- Db almo; 67 (T)+ D oh? (z[mo](T), mo) - 0w = 0. Consequently,
we obtain

/J,j[ﬂ'o]DH)ghj(JJ[Wo](T),7T0) = —/J,j[ﬂ'o]DHth(JJ[WQ](T),7T0) . Dé$[7T0,67T](T)

(3.11)
From [B.8), (B8I0) and BII]), we have
D¢ Vmo; 67 = D 2g” (x[mo] (T), mo) - 57T+Zfi1 Ailmo] D 29" (x[mo] (T'), mo) - o
+ 2251 pilmo] D 2h? (x[mo|(T), o) - 6
b DOt Aol 8, ol () ) - o7 d 1)
+ f[O,T] p[ﬂ-O](t) ’ DH,4f(t7 .I[?To](t), [WO](t)a ) om dmy (t)

3.3. Proof of Corollary 3.2l For all 67 € Z, from (SO-bis), Dfx[mo;d7] and
Dfu[mo; o] exist.
Consequently, the assumptions of Theorem [3.1] are fulfilled for every direction d7 €
Z.
Therefore, using Theorem B.1], we have
Yorm € Z,
DLV [mg; om] = DH1290($[ o](T), mo) - 07
+2im1 Ailmo] D 2g (x[mo)(T), mo) - o 319
+ 30 pylmo] Dir oh? (@mo] (T), mo) - (312)
T Drtaf (sl (1), o) (£), mo) - o dimy (1)
+ f[O,T] p(ﬂ'o)(t) . DH)4f(t, ,T[Td’o](t), ’U,[Tl’o](t), 7T0) 0T dm1 (t)
Moreover, we have
vt € [0, T, || Dr(2,3,0).f° (¢ 2[mo] (£), ulmo] (1), 7o) || < (#). (3.13)
Since (B13]), using the linearity property of the Borel integral, we have
[67‘1’ — f[O,T] DHAfO(t, ,T[ﬂ'o](t),u[ﬂ'o](t),ﬂo) o7 dm1 (t)] c Z*.
Besides, from (V4), we have for all ¢ € [0, T],
[plmo](t) © Draf (¢, x[mo](£), ulmo](t), mo)|

< lplmol ) D .af (&, z[mo](£), ulmo] (£), mo)[| < [lplmo] locc(t)-
Consequently, using the linearity property of the Borel integral, we have

[0 — f[O,T] plmo|(t) - D af (t, x[mo](t), u[mo](t), mo) - 67 dmy(t)] € Z*. Therefore, we
have [67 +— D V[mo; 0] € Z*. Therefore V is Gateaux-differentiable at 7.

3.4. Proof of Corollary Note that, by using (SO-ter), the function ¢ : P —
NPCY([0,T],Q x U x P), defined by, for all 7 € P, for all t € [0,T], x[r](t) =
(x[7](t), u[7](t), ) is continuous at 7.

Therefore, we have

IF > 0 s.t. Vr € B(mo,T), ||z[7] — t[mo]llee < (3.14)

P
5
We set a := min{7, £}. Note that, we also have

v € B(mo, a), ¥t € [0,T], By, (¢[x](t), a) € By, (e[mo] (£), p)- (3.15)
From (IC3), by using ([BI5]), we have

vV e B(ﬂ—07 a)7Vt S [OuT]a V(flaClﬂTl)a (527<277T2) S B|\|\1(2(7T)(t)7 U.), } (3 16)
|f0(ta§17C177Tl) - fo(t7§27c27ﬂ—2)| S K/(t)H(é-l?Cl?ﬂ—l) - (527<277T2)||1' '
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We set 20 := B(m,a)NQ C P. Let m € 2. Note that 20 is an open neighborhood
of m in @ and, for all T € 2, (z[7], u[7]) is a solution of (B,7), consequently (SO)
is fulfilled w9 = 7.

mo is not present in the conditions (IC1), (IC4), (V1), (V3), (CT2) and (CVT2),
that is why using our assumptions this conditions are already verified.

Using our additional assumptions, the conditions (SO-bis), (IC2), (IC3), (V2), (V4)
and (CT1) are fulfilled with 7o = 7.

Besides, the assertions ([B.I6]) implies that (IC3) is fulfilled with 7o = =, and the
assertion (34]) imples that (CVT1) with mp = n. Hence, for all 7 € 20, the
assumptions of Corollary are fulfilled with w9 = 7w Therefore, we can use the
Theorem [BI] and we obtain that V' is Gateaux differentiable for every m € 20 and

Vr e ,Vor € Z
DgVin] - dm = DH)Q‘_QO z[x|(T),7) - 6 + >0y Ni[7| Dy og' (x[n)(T), x) - o
+ 229 i (7) Do b (x[7|(T), ) - om0
+ f[O,T] Dy o fO(t, z[x](t), u[r](t), 7) - §m dmy(t)
+ Joor PII(t) - D af (¢, 2[x](t), ulr](t), 7) - o7 dma (2).
(3.17)
Besides, by using (310) and (IC5), we have

Vr € B(mg,a), Vt € [0,T], ||DH7(21374)f0(t,x[w](t),u[w](t),7T)|| < k(). (3.18)

For all i € {2,4}, for all t € [0, T], 7 € 20, we set

fo(t, ) = D f (¢ 2] (8), ulm](8), 7) and (¢, 7) = Dy of*(t, ela] (8), ulw] (), 7). In
the following lemma, we prove that the adjoint function are continous with respect
to the parameter 7.

Lemma 3.6. [ — p[n]] € C°(20, (PC*([0,T], X*), | - ||o0))-
Proof. From (TC), (CT3) and Lemma B35, we have

[r = pln](T)] € C%(Q, X*). (3.19)
Let @ € 2. We consider the functions ¢q : [0,7] x 20 — R, defined by (¢,7) €
[0,T] x 20, p1(t,7) == ||[f2(t, 7) — F2(t, 7|, and Y : [0, T] x 2 — R, defined by, for
all (t,m) € [0,T] x 0, @9(t,m) == ||f5(t, ) — §3(¢,7)||. Note that using (IC4) and
Lemma 210, we have for all 7 € 20, ¢{(-,m) € NPCY([0,T],R). Besides, using
[BI8), we have for all T € 23, for all t € [0, 7], ¢9(¢,7) < 2r(t). Next, using (IC5),
we have, for all ¢ € [0, 7], lim (¢, 7) = (¢, #) = 0.

T—> T
Therefore, using the Dominated Convergence Theorem of Lebesgue, the functional
Y+ W — R, defined by, for all 7 € 20, ¥{(r) := fOT ©0(t, ) dt, is continuous at &
ie.
lim $9(x) = 93(#) = 0. (3.20)
T—>T
Using (V3) and Lemma 210, we have, for all 7 € 20, 1 (-, 7) € NPC9([0,T],R).
From (V6) we have ,Vr € 20, Vt € [0,T], 1(t,7) < 2¢(t).
Besides, using (V5), we have, for all t € [0,T], lim ¢ (¢, 7) = @1 (t,7) = 0.
T—>T

Consequently, using the Dominated Convergence Theorem of Lebesgue, the func-
tional ¢ : 20 — R, defined by, for all = € 20, ¢ (7) := fOT 1(t, ) dt, is continuous
at 7 i.e.

lim Y1(m) = (7)) = 0. (3.21)



24 J. BLOT, H. YILMAZ

For all 7 € 20, for all ¢ € [0, T], we have the following inequalities:

Iplr](6) = pFI@)] = [p[F)(T) + frl=plr](s) © fals, m) = §3(s,7)] ds—
(PIFN(T) + Jy[=pl)(s) o a5 7) — 305, 7))
< lpl=i(T) = pEID) + J; lIplrl(s) © fa(s, m) — p[F](s) o fo(s, %)l ds
+ J 1730, m) — 8(s, %)l ds
< lIplw)(T) = plF)(T)I + f,” Iplr](s) 0 Fa(s, ) — pl](s) © fals, )+
PIRI(S) 0 fals,m) = pl)(s) o fals, D)l ds + fy [73(s,m) — 73(s,7)ds
< plx)(T) = pIE(T)I + - [Iple](s) = plE))T2(s, 7l ds
+ [, Ip[El ()l F2(5, ™) = fa(s, 7)l| ds + ¢ ()
< p[)(T) = plFN D) + [y 1 Ipl7](s) = plE](8)] e(5) dmi(s) + [Ip[A] locthn (7)
+1(m).
Since [s = [[p[r](s)—p[](s)[I] € C°((0, 7], R) and ¢ € L1(([0, T, B([0, T1)), m1; Ry),
by using the lemma of Gronwall ([I], p.183), we have, for all ¢ € [0, 7],
[p[ml(t) = plA] (O < [llp[x](T) = p[AN(T)| + lIpl#]llccthr () +
D)) exp(fp (5) dimy (5)).

Therefore, we have

Ipla]=pllloo < [IPIr/(T)=plA) ()l +[Ip[A]ll o1 (1) +47 ()] exp(/[o . c(s) dm(s)).
’ (3.22)

Hence, using (319), (320) and 2], we have T}l_r;lr Ilp[7] — p[*]]]eo = 0.

Consequently, we have [ — p[r]] € CO(23, (PCH([0,T], X*), [ - [|0))- O

Next, we consider the function Wy : QJ — Z*, defined by, for all # € 29, for all
or € Z,

Uy(rr) - o7 := o Dy o fOt, x[7](t), u[x](t), 7) - 67 dmy(t).
Lemma 3.7. ¥y € CY(20, Z).

Proof. Let # € 20. We consider the fonction ¢9 : [0,7] x 20 — R defined by

(pg(t,ﬂ) = ||f2(t,7T) - fg(tvﬁ—)n

Using (IC6), we have, for all 7 € 23, ©5(-,m) € L£°(([0,T7], B([0,T])), (R, B(R))).

Next, using [BI8)), we have, V& € 23, Vt € [0,T], p3(t, ) < 2k(t). Besides, from

(IC5), we have, for all ¢ € [0,7], lim ©3(t,m) = ¢5(¢t,7) = 0. Hence, using the
T—r T

Dominated Convergence Theorem of Lebesgue, the functional 3 : 20 — R, defined
by, ¥9(n) = f[o T ©9(t, m) dmy (t) is continuous at 7 i.e.

lim () = ¥i(7) = 0. (3.23)

For all € 20, we have ||Ua(m) — o (7)|| < 99 (7r).
Conseqently, using (3.:23)), we have lim ||Wo(7)—To(7)|| = 0. Hence, we have proven
T—>T

the lemma. O

Now, we consider, the function U3 : Q0 — Z*, defined by, for all 7 € 2, for all
ome Z, Us(m) - o := f[o,T]p[W](t) - Dy af(t,x[r](t), u[r](t), 7) - o dmy(t).

Lemma 3.8. U3 € C°(20, 7).
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Proof. Let # € 20. We consider the function ¢y : [0,7] x 2 — R, defined by
pa(t,m) = [Tt m) — falt, 7).

From (V6), we have, for all 7 € 20, @ao(-,m) € L°(([0,77],B([0,T1)), (R, B(R))).
Moreover, using (V6), we also have, V& € 20, Vt € [0, T, 2(t, m) < 2¢(t). Besides,
from (V5), we have, for all ¢t € [0,T], lim @o(t, 7) = p2(t, 7) = 0. Hence, using the
Dominated Convergence Theorem of igl;resgue the functional ¥9 : 20 — R, defined
by m € 20, Po(7) := f[O,T] ©a(t, ) dmy(t), is continuous at 7 i.e.

Tim ¢y(m) = tha(7) = 0. (3.24)

For all 7 € 20, we have ||p[x](t) o fo(t, ) — p[7](t) o f4(t, 7)||

= [[p[m](t) © fa(t, 7) — pl](t) o fa(t, 7) + p[F](£) o fa(t, ™) — p[7]() © falt, 7)
< |lpl] = plalllooc(t) + [Ip[#] [ oo p2(t, 7).

Consequently, we obtain

T

W (m) — 3(7)|| < |[p[x] —p[ﬂlloo/ c(t) dmy () + |p[7][ oo (7).

)

Consequently, using Lemma and ([B24)), we obtain lim ||[W3(r) — ¥3(7)|| = 0.
T—> T

Therefore, we have proven this lemma.

From (BI7), remark that

Ve 20, .
DeVir] = Duago(z[n](T), 7) + 3202, Ni[7] D29 (x[x)(T), 7)
+ 22521 1 [T Db (x[7)(T), 7) + Wa(7) + Ws(n).

Consequently, using (CT3) and Lemmas B8 B.7 and B8 we obtain that, DgV €
C°(20, Z*). Therefore, using Corollary 2, p. 144 in [I], we obtain that V is Fréchet
differentiable on 20 and DpVr] = DgVr] for all ©# € 20, and therefore DpV €
C'(23, 7).
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