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PONTRYAGIN PRINCIPLE AND ENVELOPE THEOREM

JOËL BLOT, HASAN YILMAZ

Abstract. We provide an improvement of the maximum principle of Pontrya-
gin of the Optimal Control problems. We establish differentiability properties
of the value function of problems of Optimal Control with assumptions as
low as possible. Notably, we lighten the assumptions by using Gâteaux and
Hadamard differentials.

Mathematical Subject Classification 2010: 49K15, 90C31, 49J50.
Key Words: Pontryagin maximum principle, piecewise continuous functions, En-
velope Theorem.

1. Introduction

The paper provides envelope theorems for parameterized problems of Optimal
Control (problem of Bolza) as

(B, π)










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


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Maximize
∫ T

0
f0(t, x(t), u(t), π)dt + g0(x(T ), π)

subject to x ∈ PC1([0, T ],Ω), u ∈ NPC0([0, T ], U)
∀t ∈ [0, T ], dx(t) = f(t, x(t), u(t), π), x(0) = ξ0
∀i ∈ {1, ...,m}, gi(x(T ), π) ≥ 0
∀j ∈ {1, ..., q}, hj(x(T ), π) = 0.

For all parameter π, V [π] is the value of the problem of (B, π).
We establish properties of the value function [π 7→ V [π]] in terms of Gâteaux vari-
ation, Gâteaux differentiability and Fréchet continuous differentiability.
We try to establish such results using assumptions as low as possible.
Envelope theorems for static optimization and Calculus of Variations in [4] where
references on economic motivations are cited.
To realize that we start by establishing new Pontryagin principles for the problems
of Bolza and Mayer without parameter which improve the results of [3] by lighten-
ing the assumptions. Moreover, we provide new qualification conditions which are
very useful to treat the question of the envelope theorems.
Notice that we provide conditions on the Gâteaux differentials to obtain conditions
of Lipschitz, we provide a new result on the differentiability of nonlinear function-
als. Moreover, we don’t do assumptions on the regularity of the multipliers and
the adjoint function with respect to the parameter (as it is often the case in the
literature).
We summarize the content of this paper as follows.
In Section 2, we establish the Pontryagin principles for the Optimal Control. In a
first subsection, we state the Pontryagin principle for the problem of Bolza, and we
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provide new qualification conditions. In a second subsection, we state the Pontrya-
gin principle for the problem of Mayer, and we give qualification conditions. In a
third subsection, we prove the results on the problem of Mayer; in order to do that
we use a new multiplier rules which is an improvement of a multiplier rules in [2].
In the last subsection, in order to prove the Pontryagin principle of the problem of
Bolza, we transform the problem of Bolza into a problem of Mayer.
In Section 3, we establish envelope theorems for parameterized problems of Optimal
Control. In a first subsection, we state envelope theorems. In a second subsection,
we prove the first envelope theorem; in order to do that we provide new results on
the differentiability of nonlinear integral functionals and we use the new Pontryagin
principles and qualification conditions for the problems of Bolza without parameter.
In a third subsection, by using the first envelope theorem, we prove that the value
function is Gâteaux differentiable at a point. In the last subsection, we prove the
last envelope theorem by using the second envelope theorem.

2. Statements of the Pontryagin Principles

2.1. Pontryagin principle for the problem of Bolza. E is a real Banach space,
Ω is a non-empty subset of E, U is a Hausdorff topological space, f : [0, T ]×Ω×U →
E, f0 : [0, T ]× Ω× U → R, gα : Ω → R (0 ≤ α ≤ m) and hβ : Ω → R (1 ≤ β ≤ q)
are functions when (m, q) ∈ N∗ × N∗ where N∗ = N \ {0}.
When X is a Hausdorff topological space, PC0([0, T ], X) denotes the space of the
piecewise continuous functions from [0, T ] into X .
As in [3], we specify that x ∈ PC0([0, T ], X) when x is continuous on [0, T ] or when
there exists a subdivision of [0, T ], 0 = τ0 < τ1 < ... < τk < τk+1 = T such that x
is continuous at t when t /∈ {τi : 0 ≤ i ≤ k + 1} and the right-hand limit x(τi+)
exists in X and when i ∈ {0, ..., k} and the left hand limit x(τi−) exists in X when
i ∈ {1, ..., k + 1}.
We define NPC0

R([0, T ], X) as the set of the x ∈ PC0([0, T ], X) which are right-
continuous on [0, T [ and left-continuous at T . An element of NPC0

R([0, T ], X) is
called a normalized piecewise continuous function, cf. [3].
When X is a real normed vector space, O is a non-empty open subset of X and Y
is a Hausdorff space. A mapping g : [0, T ]×O → Y is piecewise continuous with a
parameter on [0, T ]×O when there exists a subdivision of [0, T ], 0 = τ0 < τ1 < ... <
τk < τk+1 = T such that for all i ∈ {0, ..., k−1}, g is continuous on [τi, τi+1[×O, g is
continuous on [τk, τk+1]×O, and for all i ∈ {1, ..., k}, for all x ∈ O, lim

t→τi−,z→x
g(t, z)

exists in Y . The space of all the piecewise continuous with a parameter is denoted
by PCP 0([0, T ]×O, Y ).
When X is included into a real normed vector space, PC1([0, T ], X) denotes the
space of the piecewise continuously differentiable functions from [0, T ] into X . We
specify that x ∈ PC1([0, T ], X) when x is continuously differentiable on [0, T ] or
when x is continuous on [0, T ] and there exists a subdivision , 0 = τ0 < τ1 < ... <
τk < τk+1 = T such that x is continuously differentiable at t if t /∈ {τi : 0 ≤ i ≤ k+1}
the right derivative x′R(τi) = x′(τi+) exists when i ∈ {0, ..., k}, the left derivative
x′L(τi) = x′(τi−) exists when i ∈ {1, .., k + 1}, cf. [3].
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As in [3], we consider the extended derivative of x ∈ PC1([0, T ], X) as follows:

dx(t) :=







x′(t) if t ∈ [0, T ] \ {τi : i ∈ {0, ..., k + 1}}
x′R(t) if t = τi, i ∈ {0, ..., k}
x′L(t) if t = T.

(2.1)

Note that if x ∈ PC1([0, T ], X) then dx ∈ NPC0
R([0, T ], X). Moreover, d is a

continuous linear operator from PC1([0, T ], X) into NPC0
R([0, T ], X).

When X is included in a Banach space, the following relation holds:

for all s < t in [0, T ], x(t) − x(s) =

∫ t

s

dx(r)dr

where the integral is taken in the sense of Riemann as exposed in [5]. We refer to
[3] for the details about these function spaces.
When X is a real normed vector space, O is a non-empty open subset of X , x ∈ O,
v ∈ X , and Y is a real normed vector space. When f : O → Y is a mapping.
When it exists D+

Gf(x; v) denotes the right-directional derivative (also called the
right Gâteaux variation) of f at x in the direction v cf. [4] (Subsection 2.1). When
it exists DGf(x) (respectively DH f(x), respectively DF f(x)) denotes the Gâteaux
(respectively Hadamard, respectively Fréchet) differential of f at x.
Moreover, when X is a finite product of n real normed spaces, X :=

∏n

i=1Xi,
if i ∈ {1, ..., n}, DG,if(x) (respectively DH,if(x), respectively DF,if(x)) denotes
the partial Gâteaux (respectively Hadamard, respectively Fréchet) differential of
f at x with respect to the i − th vector variable. If 1 ≤ i1 ≤ i2 ≤ i3 ≤ n,
DH,(i1,i2,i3)f(x) denotes the Hadamard diffential of the mapping [(xi1 ,xi2 ,xi3) 7→
f(x1, ...,xi1 , ...,xi2 , ...,xi3 , ..., xn)] at the point (xi1 , xi2 , xi3).

We formulate the problem of Bolza:

(B)























Maximize J(x, u) :=
∫ T

0 f0(t, x(t), u(t))dt + g0(x(T ))
subject to x ∈ PC1([0, T ],Ω), u ∈ NPC0

R([0, T ], U)
∀t ∈ [0, T ], dx(t) = f(t, x(t), u(t)), x(0) = ξ0
∀α ∈ {1, ...,m}, gα(x(T )) ≥ 0
∀β ∈ {1, ..., q}, hβ(x(T )) = 0.

Generally the controlled dynamical system is present in (B) is formulated as fol-
lows: x′(t) = f(t, x(t), u(t)) when x′(t) exists in [3], we explain why the present
formulation is equivalent.
If f0 = 0, (B) is called a problem of Mayer and it is denoted by (M).
When (x, u) is an admissible process for (B) or (M), we consider the following
condition of qualification, for i ∈ {0, 1}.

(QC, i)















If (cα)i≤α≤m ∈ R
1−i+m
+ , (dβ)1≤β≤q ∈ Rq satisfy

(∀α ∈ {1, ...,m}, cαgα(x(T )) = 0), and
∑m

α=i cαDGg
α(x(T )) +

∑q

β=1 dβDGh
β(x(T )) = 0, then

(∀α ∈ {i, ...,m}, cα = 0) and (∀β ∈ {1, ..., q}, dβ = 0).

When i = 0, this condition is due to Michel [10].
Now we formulate the assumptions for our theorems. Let (x0, u0) be an admissible
process of (B) or (M).

Conditions on the integrand of the criterion.
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(Ai1) f0 ∈ C0([0, T ]× Ω× U,R), for all (t, ξ, ζ) ∈ [0, T ]× Ω × U , DG,2f
0(t, ξ, ζ)

exists, for all (t, ζ) ∈ [0, T ] × U , DF,2f
0(t, x0(t), ζ) exists and [(t, ζ) 7→

DF,2f
0(t, x0(t), ζ)] ∈ C0([0, T ]× U,E∗).

(Ai2) For all non-empty compact K ⊂ Ω, for all non-empty compact M ⊂ U ,
sup(t,ξ,ζ)∈[0,T ]×K×M ‖DG,2f

0(t, ξ, ζ)‖ < +∞.

where C0 means the continuity and E∗ denotes the topological dual space of E.

Conditions on the vector field.

(Av1) f ∈ C0([0, T ] × Ω × U,E), for all (t, ξ, ζ) ∈ [0, T ] × Ω × U , DG,2f(t, ξ, ζ)
exists, for all (t, ζ) ∈ [0, T ] × U , DF,2f(t, x0(t), ζ) exists and [(t, ζ) 7→
DF,2f(t, x0(t), ζ)] ∈ C0([0, T ]× U,L(E,E)).

(Av2) For all non-empty compact K ⊂ Ω, for all non-empty compact M ⊂ U ,
sup(t,ξ,ζ)∈[0,T ]×K×M ‖DG,2f(t, ξ, ζ)‖ < +∞,

where L(E,E) denotes the space of bounded linear mappings from E into E.
Conditions on terminal constraints functions and on terminal part of the
criterion.

(At1) For all α ∈ {0, ...,m}, gα is Hadamard differentiable at x0(T ).
(At2) For all β ∈ {1, ..., q}, hβ is continuous on a neighborhood of x0(T ) and

Hadamard differentiable at x0(T ).

(Ai1) and (Ai2) are an improvement of condition (A3) of [3], (Av1) and (Av2)
are an improvement of condition (A4) of [3], (At1) is an improvement of condition
(A1) of [3], and (At2) is an improvement of condition (A2) of [3].
The Hamiltonian of (B) is the function HB : [0, T ]× Ω× U × E∗ × R → R defined
by HB(t, ξ, ζ, p, λ) := λf0(t, ξ, ζ)+ p · f(t, ξ, ζ) when (t, ξ, ζ, p, λ) ∈ [0, T ]×Ω×U ×
E∗ × R.

Theorem 2.1. (Pontryagin Principle for the problem of Bolza)
When (x0, u0) is a solution of (B), under (Ai1), (Ai2), (Av1), (Av2), (At1) and
(At2), there exist multipliers (λα)0≤α≤m ∈ R

1+m, (µβ)1≤β≤q ∈ R
q and an adjoint

function p ∈ PC1([0, T ], E∗) which satisfy the following conditions.

(NN) ((λα)0≤α≤m, (µβ)1≤β≤q) is non zero.
(Si) For all α ∈ {0, ...,m}, λα ≥ 0.
(Sℓ) For all α ∈ {1, ...,m}, λαgα(x0(T )) = 0.
(TC)

∑m

α=0 λαDHg
α(x0(T )) +

∑q

β=1 µβDHh
β(x0(T )) = p(T ).

(AE.B) dp(t) = −DF,2HB(t, x0(t), u0(t), p(t), λ0) for all t ∈ [0, T ].
(MP.B) For all t ∈ [0, T ], for all ζ ∈ U ,

HB(t, x0(t), u0(t), p(t), λ0) ≥ HB(t, x0(t), ζ, p(t), λ0).
(CH.B) H̄B := [t 7→ HB(t, x0(t), u0(t), p(t), λ0)] ∈ C0([0, T ],R),

(NN) means non nullity, (Si) means sign, (Sℓ) means slackness, (TC) means transver-
sality condition, (AE.B) means adjoint equation, (MP.B) means maximum principle
and (CH.B) means continuity of the Hamiltonian.

Corollary 2.2. In the setting and under the assumptions of Theorem 2.1, if, in
addition, we assume that, for all (t, ξ, ζ) ∈ [0, T ] × Ω × U , the partial derivatives
with respect to the first variable ∂1f

0(t, ξ, ζ) and ∂1f(t, ξ, ζ) exist and ∂1f
0 and ∂1f

are continuous on [0, T ]× Ω× U , then H̄B ∈ PC1([0, T ],R) and, for all t ∈ [0, T ],
dH̄B(t) = ∂1HB(t, x0(t), u0(t), p(t), λ0).

We introduce other conditions.
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(Av3) U is a subset of real normed vector space Y , there exists t̂ ∈ [0, T ] s.t. U is a
neighborhood of u0(t̂) in Y , DG,3f(t̂, x0(t̂), u0(t̂)) exists and it is surjective

and

(LI) U is a subset of a real normed vector space Y s.t. U is a neighborhood of
u0(T ) in Y , DG,3f(T, x0(T ), u0(T )) exists and
((DHg

α(x0(T )) ◦DG,3f(T, x0(T ), u0(T )))1≤α≤m,
(DHh

β(x0(T )) ◦DG,3f(T, x0(T ), u0(T )))1≤β≤q) is linearly free.

Corollary 2.3. In the setting and under the assumptions of Theorem 2.1, the
following assertions hold.

(i) Under (QC, 1) for (x, u) = (x0, u0), we have for all t ∈ [0, T ], (λ0, p(t)) 6= 0.
(ii) Under (QC, 1) for (x, u) = (x0, u0) and (Av3), we can choose λ0 = 1.
(iii) Under (LI), we can choose λ0 = 1.
(iv) Under (LI), if, in addition, we assume that DG,3f

0(T, x0(T ), u0(T )) exists,
then ((λα)0≤α≤m, (µβ)1≤β≤q, p) ∈ R1+m×Rq×PC1([0, T ], E∗) with λ0 = 1,
which satisfies the conclusions of Theorem 2.1, are unique.

2.2. Pontryagin principles for the problem of Mayer. The Hamiltonian of
(M) is the function HM : [0, T ] × Ω × U × E∗ → R defined by HM (t, ξ, ζ, p) :=
p · f(t, ξ, ζ) when (t, ξ, ζ, p) ∈ [0, T ]× Ω× U × E∗.

Theorem 2.4. (Pontryagin Principle for the problem of Mayer)
When (x0, u0) is a solution of (M), under (Av1), (Av2), (At1) and (At2), there
exist multipliers (λα)0≤α≤m ∈ R1+m, (µβ)1≤β≤q ∈ Rq and an adjoint function
p ∈ PC1([0, T ], E∗) which satisfy the following conditions.

(NN) ((λα)0≤α≤m, (µβ)1≤β≤q) is non zero.
(Si) For all α ∈ {0, ...,m}, λα ≥ 0.
(Sℓ) For all α ∈ {1, ...,m}, λαgα(x0(T )) = 0.
(TC)

∑m

α=0 λαDHg
α(x0(T )) +

∑q

β=1 µβDHh
β(x0(T )) = p(T ).

(AE.M) dp(t) = −DF,2HM (t, x0(t), u0(t), p(t)) for all t ∈ [0, T ].
(MP.M) For all t ∈ [0, T ], for all ζ ∈ U ,

HM (t, x0(t), u0(t), p(t)) ≥ HM (t, x0(t), ζ, p(t)).
(CH.M) H̄M := [t 7→ HM (t, x0(t), u0(t), p(t))] ∈ C0([0, T ],R).

Corollary 2.5. In the setting and under the assumptions of Theorem 2.4, if in
addition we assume that, for all (t, ξ, ζ) ∈ [0, T ] × Ω × U , the partial deriva-
tives with respect to the first variable ∂1f(t, ξ, ζ) exist and ∂1f are continuous
on [0, T ] × Ω × U , then H̄M ∈ PC1([0, T ],R) and, for all t ∈ [0, T ], dH̄M (t) =
∂1HM (t, x0(t), u0(t), p(t)).

Corollary 2.6. In the setting and under the assumptions of Theorem 2.4, the
following assertions hold.

(i) Under (QC, 1) for (x, u) = (x0, u0), we have for all t ∈ [0, T ], (λ0, p(t)) 6= 0.
(ii) Under (QC, 0) for (x, u) = (x0, u0), we have for all t ∈ [0, T ], p(t) 6= 0.
(iii) Under (QC, 1) for (x, u) = (x0, u0) and (Av3), we can choose λ0 = 1.
(iv) Under (LI), the ((λα)0≤α≤m, (µβ)1≤β≤q, p) ∈ R1+m×Rq ×PC1([0, T ], E∗)

with λ0 = 1, which satisfies the conclusions of Theorem 2.4, are unique.

2.3. Proofs of results for the problem of Mayer. We consider
S := ((ti, vi))1≤i≤N where ti ∈ [0, T ] satisfying 0 < t1 ≤ t2 ≤ ... ≤ tN < T , where
vi ∈ U and where N ∈ N∗. We denote by S the set of such S.
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When S ∈ S and a = (a1, ..., aN ) ∈ RN+ , we define the following objects: J(i) =
J(i, S) := {j ∈ {1, ..., i − 1} : tj = ti}, bi(a) = bi(a, S) := 0 if J(i) = ∅ and
bi(a) = bi(a, S) =

∑

j∈J(i) aj if J(i) 6= ∅.

We also define Ii(a) = Ii(a, S) := [ti + bi(a), ti + bi(a) + ai[.
We define δ(S) = min{ ti+1 − ti : i ∈ {1, ..., N − 1}, ti < ti+1} and

‖a‖1 =
∑N

i=1 | ai |=
∑N

i=1 ai ≤ δ(S).

When a ∈ B‖·‖1
(0, δ(S)) ∩ R

N
+ , we have Ii(a) ⊂ [0, T ] and Ii(a) ∩ Ij(a) = ∅ when

i 6= j and we can define the needlelike variation of u0:

ua(t) = ua(t, S) :=

{

vi if t ∈ Ii(a), 1 ≤ i ≤ N
u0(t) if t ∈ [0, T ] \ ∪1≤i≤N Ii(a).

(2.2)

It is easy to verify that

ua = ua(·, S) ∈ NPC0
R([0, T ], U). (2.3)

We associate to the control function ua the non extendable solution xa of the
Cauchy problem on [0, T ].

dxa(t) = f(t, xa(t), ua(t)), xa(0) = ξ0. (2.4)

In the sequel of this subsection, we arbitrarily fix a list S = ((ti, vi))1≤i≤N in S.

Lemma 2.7. Let X be a metric space, Y be a non empty set, Z be a real normed
vector space and φ : X×Y → Z be a mapping. We assume that: for all non-empty
compact subset K of X, we have sup(x,y)∈K×Y ‖φ(x, y)‖ < +∞.
Then, for all non-empty compact subset K of X, there exists ρ > 0 s.t.
sup(x,y)∈V (K,ρ)×Y ‖φ(x, y)‖ < +∞,

where V (K, ρ) := {z ∈ X : d(z,K) := infk∈K d(z, k) < ρ}.

Proof. We proceed by contradiction, we assume that there exists a non-empty com-
pact subset K ⊂ X s.t. ∀ε > 0, ∀γ ∈ R+∃(x

ε,γ , yε,γ) ∈ V (K, ε)× Y,
‖φ(xε,γ , yε,γ)‖ > γ.
Therefore taking ε = 1

n
, γ = n with n ∈ N∗, we obtain ∀n ∈ N∗, ∃(xn, yn) ∈

V (K, 1
n
)× Y, ‖φ(xn, yn)‖ > n.

Hence, for all n ∈ N∗, ∃un ∈ K s.t. d(xn, un) = d(xn,K) < 1
n
.

Since K is a compact, there exists ψ : N∗ → N∗ strictly increasing and z ∈ K s.t.
lim

n→+∞
uψ(n) = z. Hence, we have also lim

n→+∞
xψ(n) = z.

Since K0 := {xψ(n) : n ∈ N∗} ∪ {z} is compact, there exists γ0 ∈ R+ s.t., ∀n ∈ N∗,
‖φ(xψ(n), yψ(n))‖ ≤ sup(x,y)∈K0×Y ‖φ(x, y)‖ ≤ γ0 < +∞.

Besides, we have also for all n ∈ N∗, ψ(n) < ‖φ(xψ(n), yψ(n))‖ ≤ γ0, and since
lim

n→+∞
ψ(n) = +∞, we obtain the contradiction +∞ ≤ γ0 < +∞. �

Lemma 2.8. Let X and Z be two real normed vector spaces, Y be a non-empty
set, G be a non-empty open subset of X, and φ : G × Y → Z be a mapping. We
assume that the two following conditions are fulfilled.

(a) ∀(x, y) ∈ G× Y , DG,1φ(x, y) exists.
(b) ∀K ⊂ G, K non-empty compact set, sup(x,y)∈K×Y ‖DG,1φ(x, y)‖ < +∞.

For each non-empty compact subset K ⊂ G, there exist η > 0, κ > 0 s.t. for all
x ∈ K, for all x1, x2 ∈ B(x, η), for all y ∈ Y , ‖φ(x1, y)− φ(x2, y)‖ ≤ κ‖x1 − x2‖.
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Proof. Let K ⊂ G, K non-empty and compact. From Lemma 2.7, there exists
ρ > 0 s.t. κ := sup(x,y)∈V (K,ρ)×Y ‖DG,1φ(x, y)‖ < +∞.

We set η := ρ
2 . Let x ∈ K and x1, x2 ∈ B(x, η). Since the balls are convex,

we have [x1, x2] ⊂ B(x, η) ⊂ V (K, ρ). Using the mean value inequality ([1],
Subsection 2.2.3, p. 143), we obtain, for all y ∈ Y , ‖φ(x1, y) − φ(x2, y)‖ ≤
supξ∈[x1,x2] ‖DG,1φ(ξ, y)‖‖x1 − x2‖ ≤ κ‖x1 − x2‖. �

Remark 2.9. Note that we don’t use a condition of continuity on φ in Lemma 2.7,
we replace it by a condition of boundedness on the compact subsets. It is similar in
Lemma 2.8 of DG,1φ instead of φ. These lemmas permit us to replace the condition
of partial differentiable continuity in (A3) and (A4) of [3] by the conditions (Ai2)
and (Av2).

Lemma 2.10. Let X and Y be metric spaces and φ ∈ C0([0, T ] × X,Y ). The
Nemytskii operator Nφ : PC0([0, T ], X) → PC0([0, T ], Y ), defined by
Nφ(z) := [t 7→ φ(t, z(t))] when z ∈ PC0([0, T ], X), is well defined and continuous.
Moreover, Nφ(NPC

0
R([0, T ], X)) ⊂ NPC0

R([0, T ], Y ).

Proof. Let z ∈ PC0([0, T ], X); we set w(t) := φ(t, z(t)) when t ∈ [0, T ]. Since φ is
continuous, we have, for all t ∈ [0, T [, w(t+) = φ(t, z(t+)) and, for all t ∈ ]0, T ],
w(t−) = φ(t, z(t−)). Since the set of discontinuity points of z, discont(z), is finite,
discont(w) is necessarily finite, and so w ∈ PC0([0, T ], Y ).
We denote by G(z) the graphic of z. Since z ∈ PC0([0, T ], X), cl(G(z)) is com-
pact and then, we can use the Heine-Schwartz lemma ([11] p. 355, note (**)) and
assert that : ∀ε > 0, ∃dε > 0, ∀(t, s) ∈ [0, T ], ∀ξ ∈ X, |t − s| + d(z(t), ξ) ≤ dε ⇒
d(φ(t, z(t)), φ(s, ξ)) ≤ ε. Hence, we have:
∀ε > 0, ∃dε > 0, ∀t ∈ [0, T ], ∀ξ ∈ X, d(z(t), ξ) ≤ dε ⇒ d(φ(t, z(t)), φ(t, ξ)) ≤ ε.
Let ε > 0; if z1 ∈ PC0([0, T ], X) satisfies sup0≤t≤T d(z(t), z1(t)) ≤ dε, then
sup0≤t≤T d(φ(t, z(t)), φ(t, z1(t))) ≤ ε.
The continuity of Nφ at z is proven. Therefore, Nφ is well defined and continuous.
Moreover, when z ∈ NPC0

R([0, T ], X), since z is right-continous on [0, T [ and φ is
continuous, we have also Nφ(z) ∈ NPC0

R([0, T ], Y ). �

Lemma 2.11. Let 0 = s0 < s1 < ... < sn < sn+1 = T , and, for all i ∈
{0, ..., n}, hi ∈ PC0([0, T ], E). We consider h : [0, T ] → E defined by h(t) =
∑

0≤i≤n−1 1[si,si+1[(t)hi(t) + 1[sn,T ](t)hn(t) when t ∈ [0, T ].

We have h ∈ PC0([0, T ], E).

Proof. Note that discont(h)⊂ {si : 0 ≤ i ≤ n + 1} ∪
⋃

0≤i≤n discont(hi), hence

discont(h) is finite. When t ∈ [0, T [, we have h(t+) =
∑

0≤i≤n−1 1[si,si+1[(t+)hi(t+)

+ 1[sn,T ](t+)hn(t+) and, when t ∈ ]0, T ], h(t−) =
∑

0≤i≤n−1 1[si,si+1[(t−)hi(t−) +

1[sn,T ](t−)hn(t−). We have proven that h ∈ PC0([0, T ], E). �

Now, we consider the linearization of the evolution equation

dy(t) = DF,2f(t, x0(t), u0(t)) · y(t). (2.5)

We denote by R(·, ·) the resolvent of (2.5). We know that, for all (t, s) ∈ [0, T ]2,
R(t, ·) ∈ PC1([0, T ],L(E,E)) and R(·, s) ∈ PC1([0, T ],L(E,E)).
For all a ∈ B‖·‖1

(0, δ(S)) ∩ R
N
+ , we also consider the following Cauchy problem on
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an inhomogeneous ODE:

dza(t) = DF,2f(t, x0(t), u0(t)) · za(t) + f(t, x0(t), ua(t))− f(t, x0(t), u0(t))
z(0) = 0.

}

(2.6)
We denote by za the non extendable solution of (2.6). Since (2.6) is an inhomoge-
neous linear ODE, za is defined on all over [0, T ].

Lemma 2.12. We consider the linear mapping L : RN → E, defined by

L · a :=
∑N

i=1 aiR(T, ti) · [f(ti, x0(ti), vi)− f(ti, x0(ti), u0(ti))] when

a = (a1, ..., aN) ∈ RN . There exists ̺1 : B‖·‖1
(0, δ(S))∩RN+ → E s.t. lim

a→0
̺1(a) = 0

and, for all a ∈ B‖·‖1
(0, δ(S)) ∩ RN+ , za(T ) = z0(T ) + L · a+ ‖a‖1̺1(a).

Proof. For all a ∈ B‖·‖1
(0, δ(S)) ∩ RN+ , the second member of (2.6) is ∆a, defined

by ∆a(t) := 0 when t /∈
⋃

1≤i≤N Ii(a) and ∆a(t) := f(t, x0(t), vi)− f(t, x0(t), u0(t))
when t ∈ Ii(a) (1 ≤ i ≤ N). Using Lemma 2.10 and 2.11, we see that ∆a ∈
PC0([0, T ], E). Since R(t, ·) is continuous, R(t, ·) ·∆a ∈ PC0([0, T ], E), hence it is
Riemann integrable.
Using the formula of the Variation of Constants, we can write za(t) = za(0) +
∫ t

0
R(t, s) ·∆a(s)ds. Note that z0 = 0 since the second member of (2.6) is zero and

the initial value is zero.
Hence, we have for all a ∈ B‖·‖1

(0, δ(S)) ∩ RN+ , za(T )− z0(T )− L · a

=
∑N

i=1

∫

Ii(a)
R(T, s) ·∆a(s)ds−

∑N

i=1 aiR(T, ti) ·∆a(ti)

=
∑N

i=1

∫

Ii(a)
(R(T, s) ·∆a(s)−R(T, ti) ·∆a(ti))ds.

We set, for all i ∈ {1, ..., N}, φi(a) := 0 if ai = 0 and

φi(a) :=
1

ai

∫ ti+bi+ai

ti+bi

[R(T, s) ·∆(s, a)−R(T, ti) ·∆(ti)]ds. (2.7)

if ai 6= 0. Hence, we obtain the following relation

za(T ) = z0(T ) + L · a+
∑

1≤i≤N

aiφi(a). (2.8)

We introduce the mappings, ψi : [0, 1]× (B‖·‖1
(0, δ(S)) ∩ RN+ ) → E, (1 ≤ i ≤ N),

defined by

ψi(θ, a) := R(T, ti + bi + θai) ·∆a(ti + bi + θai, a)−R(T, ti) ·∆a(ti). (2.9)

Note that ψi(·, a) ∈ PC0([0, 1], E) and so it is Riemann integrable and using a

change of variable, we obtain φi(a) :=
∫ 1

0
ψi(θ, a)dθ (1 ≤ i ≤ N).

Since x0 and R(T, ·) are continuous, since u0 is right-continuous, we have lim
a→0

x0(ti+

bi + θai) = x0(ti), lim
a→0

u0(ti + bi + θai) = u0(ti), lim
a→0

R(T, ti + bi + θai) = R(T, ti),

and then we obtain lim
a→0

ψi(θ, a) = 0 for all θ ∈ [0, 1] and also

lim
a→0

‖ψi(θ, a)‖ = 0 for all θ ∈ [0, 1]. (2.10)

Since ∆a ∈ PC0([0, T ], E) and since a is not present in the formula of ∆a, we see
that:

∃c1 ∈ R+, ∀a ∈ B‖·‖1
(0, δ(S)) ∩ R

N
+ , ∀t ∈ [0, T ], ‖∆a(t)‖ ≤ c1. (2.11)
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Consequently, we obtain, for all θ ∈ [0, 1] and for all a ∈ B‖·‖1
(0, δ(S)) ∩ RN+ ,

‖ψi(θ, a)‖ ≤ 2 sup
0≤s≤T

‖R(T, s)‖‖∆a(s)‖ ≤ 2‖R(T, ·)‖∞c1. (2.12)

Since ‖ψi(·, a)‖ ∈ PC0([0, T ],R), it is Riemann integrable and also Borel integrable
on [0, 1], and since the constants are Riemann integrable on [0, 1], with (2.10) and
(2.12) we can use the theorem of the Dominated Convergence of Lebesgue to obtain

lim
a→0

∫ 1

0 ‖ψi(θ, a)‖dθ =
∫ 1

0 lim
a→0

‖ψi(θ, a)‖dθ = 0. Since, for all a ∈ B‖·‖1
(0, δ(S)) ∩

RN+ , ‖φi(a)‖ ≤
∫ 1

0
‖ψi(θ, a)‖dθ, we obtain lim

a→0
‖φi(a)‖ = 0, i.e. lim

a→0
φi(a) = 0.

Setting, for all a ∈ RN+ ∩ B‖·‖1
(0, δ(S)), ̺1(a) := 0 when a = 0 and ̺1(a) :=

1
‖a‖1

∑N
i=1 aiφi(a) when a 6= 0, we see that lim

a→0
̺1(a) = 0, and we have proven the

lemma. �

Lemma 2.13. There exists k ∈ R+∗, for all a ∈ B‖·‖1
(0, δ(S)) ∩ RN+ , we have

∫ T

0 ‖f(t, x0(t), ua(t))− f(t, x0(t), u0(t))‖dt ≤ k‖a‖1.

Proof. We set k := c1 provided by (2.11). Let a ∈ RN+ ∩ B‖·‖1
(0, δ(S)); using the

Chasles relation we have
∫ T

0 ‖f(t, x0(t), ua(t))− f(t, x0(t), u0(t))‖dt =
∫ T

0 ‖∆a(t)‖dt

=
∑N

i=1

∫ ti+bi+ai
ti+bi

‖∆a(t)‖dt ≤ c1
∑N

i=1 ai = k‖a‖1.

�

The discontinuity points of u0 are denoted by τj (0 ≤ j ≤ k + 1). We consider
the set M := (

⋃

0≤i≤k cl(u0([τi, τi+1])) ∪ {vi : 1 ≤ i ≤ N} which is compact as a
finite union of compacts.

Lemma 2.14. There exist L ∈ R+∗ and r ∈ R+∗ such that, ∀t ∈ [0, T ], ∀ξ, ξ1 ∈
B(x0(t), r), ∀ζ ∈M , we have ‖f(t, ξ, ζ)− f(t, ξ1, ζ)‖ ≤ L‖ξ − ξ1‖.

Proof. We set K := x0([0, T ]) which is compact and non-empty. Using (Av1)
and (Av2) we can apply Lemma 2.8 to the mapping φ(ξ, (t, ζ)) := f(t, ξ, ζ), with
Y := [0, T ]×M , to obtain the result. �

Setting r1 := re−L·T , we consider the set X := B(x0, r1) ⊂ C0([0, T ],Ω) ⊂
C0([0, T ], E). This last vector space is endowed with the norm of Bielecki ‖ϕ‖b :=
supt∈[0,T ](e

−Lt‖ϕ(t)‖) for which it is a Banach space cf. ([7], p.56). When a ∈

B‖·‖1
(0, δ(S)) ∩ RN+ , we consider the operator Φa : X → C0([0, T ], E) defined by

Φa(x) := [t 7→ ξ0 +

∫ t

0

f(s, x(s), ua(s))ds]. (2.13)

This operator was used in [3].

Lemma 2.15. The following assertions hold.

(i) There exists r2 ∈ R+∗ s.t. for all a ∈ RN+ , ‖a‖1 ≤ r2 ⇒ Φa(X ) ⊂ X .

(ii) For all a ∈ B‖·‖1
(0, r2) ∩ RN+ , for all x, z ∈ X ,

‖Φa(x)− Φa(z)‖b ≤ (1− e−L·T )‖x− z‖b.
(iii) For all x ∈ X , the mapping [a 7→ Φa(x)] is continuous from B‖·‖1

(0, r2)∩RN+
into X .
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Proof. Using Lemma 2.13 instead of Lemma 4.1 in [3] and Lemma 2.14 instead of
Lemma 4.2, the proof of (i) is similar to the proof of Lemma 4.3 of [3], the proof
of (ii) is similar to the proof of Lemma 4.4 of [3] and the proof of (iii) is similar to
the proof of Lemma 4.5 of [3] �

Lemma 2.16. The following assertions hold.

(i) For all a ∈ B‖·‖1
(0, r2) ∩ RN+ , there exists a solution xa of the Cauchy

problem (2.4) which is defined on [0, T ] all over.
(ii) The mapping [a 7→ xa], from B‖·‖1

(0, r2) ∩ RN+ into X , is continuous.

(iii) There exists k1 ∈ R+∗ such that, ∀a ∈ B‖·‖1
(0, r2) ∩ RN+ , ∀t ∈ [0, T ],

‖x(t, a)− x0(t)‖ ≤ k1‖a‖1.

Proof. For (i) and (ii), the proof is similar to the proof of the Proposition 4.1 in [3],
the only difference is to use of Lemma 2.15 of the present paper instead of Lemmas
4.3, 4.4, 4.5 of [3].
For (iii), we set k1 = keL·T . Let a ∈ B‖·‖1

(0, r2) ∩RN+ . Since xa is a fixed point of
Φa and x0 is a fixed point of Φ0, for all t ∈ [0, T ], we have

xa(t)−x0(t) = ξ0+
∫ t

0 f(s, xa(s), ua(s))ds−ξ0−
∫ t

0 f(s, x0(s), u0(s))ds, which implies

‖xa(t)− x0(t)‖ ≤
∫ t

0 ‖f(s, xa(s), ua(s))− f(s, x0(s), u0(s))‖ds

≤
∫ t

0 ‖f(s, xa(s), ua(s))− f(s, x0(s), ua(s))‖ds+
∫ t

0 ‖f(s, x0(s), ua(s))− f(s, x0(s), u0(s))‖ds.
Using Lemma 2.13 and 2.14, we have

‖xa(t)− x0(t)‖ ≤
∫ t

0 (L‖xa(s)− x0(s)‖)ds+ k‖a‖1.
Consequently, using the lemma of Gronwall ([8], p.24), we obtain,

∀t ∈ [0, T ], ‖xa(t)− x0(t)‖ ≤ k‖a‖1e
∫

T

0
Lds = k1‖a‖1, and so (iii) is proven. �

Lemma 2.17. There exists ̺ : B‖·‖1
(0, r2) ∩ RN+ → E s.t. lim

a→0
̺(a) = 0 and s.t.

for all a ∈ B‖·‖1
(0, r2)∩RN+ , xa(T ) = x0(T )+L ·a+ ‖a‖1̺(a), where L is provided

by Lemma 2.12.

Proof. We arbitrarily fix a ∈ B‖·‖1
(0, r2) ∩ RN+ , and we introduce, ∀t ∈ [0, T ],

ya(t) = (xa(t)− za(t))− (x0(t)− z0(t)) = xa(t)− za(t)− x0(t). (2.14)

and

γa(t) := dya(t)−DF,2f(t, x0(t), u0(t)) · ya(t). (2.15)

Doing a straightforward calculation, we obtain dya(t) = f(t, xa(t), ua(t))−
DF,2f(t, x0(t), u0(t)) · za(t)− f(t, x0(t), ua(t)), and consequently ∀t ∈ [0, T ],

γa(t) := f(t, xa(t), ua(t))− f(t, x0(t), ua(t))−DF,2f(t, x0(t), u0(t)) · (xa(t)−x0(t)).
(2.16)

For all t ∈ [0, T ], we define ε1a(t) := 0 if xa(t) = x0(t), and
ε1a(t) := 1

‖xa(t)−x0(t)‖
(f(t, xa(t), ua(t)) − f(t, x0(t), ua(t)) − DF,2f(t, x0(t), ua(t)) ·

(xa(t) − x0(t))) if xa(t) 6= x0(t). We also define ε2a(t) = DF,2f(t, x0(t), ua(t)) −
DF,2f(t, x0(t), u0(t)).
Doing a straightforward calculation we obtain

γa(t) = ‖xa(t)− x0(t)‖ε
1
a(t) + ε2a(t) · (xa(t)− x0(t)). (2.17)

Now, we study the properties of ε1a. Let a ∈ B‖·‖1
(0, r2) ∩ RN+ . Let t0 ∈ [0, T ]

s.t. xa(t0) = x0(t0). Since xa and x0 are continuous, there exists ν > 0 s.t.
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xa(t) 6= x0(t) when t ∈ ]t0 − ν, t0 + ν[. Using the continuity of xa and x0, the
piecewise continuity of ua and u0, the continuity of f , Lemma 2.10 and (Av1),
we obtain that ε1a(t0+) and ε1a(t0−) exit in E. When xa(t0) 6= x0(t0), from the
existence of DF,2f(t, x0(t), ua(t)) we have

∀ǫ > 0, ∃dǫ,a > 0, ∀ξ ∈ E, ‖ξ − x0(t)‖ ≤ dǫ,a ⇒
‖f(t, ξ, ua(t))− f(t, x0(t), ua(t))
−DF,2f(t, x0(t), ua(t)) · (ξ − x0(t))‖ ≤ ǫ‖ξ − x0(t)‖.







(2.18)

Since lim
t→t0

(xa(t) − x0(t)) = xa(t0) − x0(t0) = 0, when we fix ǫ > 0, there exists

bǫ,a > 0 s.t. t0 < t < t0 + bǫ,a ⇒ ‖xa(t) − x0(t)‖ ≤ dǫ,a ⇒ ‖f(t, xa(t), ua(t)) −
f(t, x0(t), ua(t))−DF,2f(t, x0(t), ua(t)) · (xa(t)− x0(t))‖ ≤ ǫ‖xa(t)− x0(t)‖ thanks
to (2.18). Therefore ‖ε1a(t)‖ ≤ ǫ if xa(t) 6= x0(t) or if xa(t) = x0(t). Hence, we have
proven that ‖ε1a(t0+)‖ = 0. Similarly, we obtain ‖ε1a(t0−)‖ = 0. Consequently, we
have proven

‖ε1a‖ ∈ Reg([0, T ],R) (2.19)

where Reg([0, T ],R) denotes the space of the regulated functions from [0, T ] into R

cf. [5] (Chapter 7, Section 6). Hence, ‖ε1a‖ is Riemann integrable on [0, T ] and also
Borel integrable on [0, T ].
From (Av2), we know that L1 := supζ∈M ‖DF,2f(t, x0(t), ζ)‖ < +∞, and using

Lemma 2.14, we obtain: ‖ε1a(t)‖ ≤ max{0, L}+ L1 =: L2, and so we have

∃L2 ∈ R+∗, ∀a ∈ B‖·‖1
(0, r2) ∩ R

N
+ , ∀t ∈ [0, T ], ‖ε1a(t)‖ ≤ L2. (2.20)

We introduce the mapping Θ : Ω× [0, T ]× U → E defined by
Θ(ξ, t, ζ) := 1

‖ξ−x0(t)‖
(f(t, ξ, ζ)− f(t, x0(t), ζ)−DF,2f(t, x0(t), ζ) · (ξ−x0(t))) when

ξ 6= x0(t) and Θ(ξ, t, ζ) = 0 when ξ = x0(t). We fix (t, ζ) ∈ [0, T ]×U . From (Av1),
for all ǫ > 0, there exists dǫ > 0 s.t. ‖ξ − x0(t)‖ ≤ dǫ ⇒ ‖f(t, ξ, ζ)− f(t, x0(t), ζ)−
DF,2f(t, x0(t), ζ) · (ξ − x0(t))‖ ≤ ǫ‖ξ − x0(t)‖ which implies

∀(t, ζ) ∈ [0, T ]× U, lim
ξ→x0(t)

Θ(ξ, t, ζ) = 0. (2.21)

We fix t ∈ [0, T ], for all a ∈ B‖·‖1
(0, r2) ∩ RN+ , we have

‖ε1(t, a)‖ = ‖Θ(xa(t), t, ua(t))‖ = ‖1[0,t1[(t)Θ(xa(t), t, u0(t))+
∑N

i=1 1Ii(a)(t)Θ(xa(t), t, vi) +
∑N−1
i=1 1[ti+bi(a)+ai,ti+1+bi+1(a)[(t)Θ(xa(t), t, u0(t))

+1[tN+bN (a)+aN ,T ](t)Θ(xa(t), t, u0(t))‖.

≤ (N + 1)‖Θ(xa(t), t, u0(t))‖ +
∑N

i=1 ‖Θ(xa(t), t, vi)‖

and using (2.21), we obtain

∀t ∈ [0, T ], lim
a→0

‖ε1a(t)‖ = 0. (2.22)

From (2.19), (2.20) and (2.22), since the constants are Lebesgue integrable, using
the Dominated Convergence Theorem of Lebesgue we obtain

lim
a→0

∫ T

0

‖ε1a(t)‖ dt =

∫ T

0

lim
a→0

‖ε1a(t)‖ dt = 0. (2.23)

Using (Av1) and Lemma 2.10, we see that ε2a is a difference of two piecewise con-
tinuous functions on [0, T ], and consequently we have

for all a ∈ B‖·‖1
(0, r2) ∩R

N
+ , ‖ε

2
a‖ ∈ PC0([0, T ],R) (2.24)
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hence ‖ε2a‖ is Riemann integrable and Lebesgue integrable on [0, T ]. Besides, we

have also
∫ T

0 ‖ε2a(t)‖dt ≤
∑

1≤i≤N

∫ ti+bi+ai
ti+bi

(2L1)dt = 2L1‖a‖1, and so we obtain

lim
a→0

∫ T

0

‖ε2a(t)‖dt = 0. (2.25)

From (2.17), (2.23) and (2.25), we have ‖γa(t)‖ ≤ ‖xa(t) − x0(t)‖‖ε1(t, a)‖ +
‖ε2(t, a)‖‖xa(t)− x0(t)‖ ≤ k1‖a‖1(‖ε1a(t)‖+ ‖ε2a(t)‖)

⇒
∫ T

0
‖γa(t)‖dt ≤ k1‖a‖1(

∫ T

0
‖ε1a(t)‖dt+

∫ T

0
‖ε2a(t)‖dt). Consequently, using (2.23)

and (2.25), we have

lim
a→0

(

1

‖a‖

∫ T

0

‖γa(t)‖dt

)

= 0. (2.26)

From (2.15) and the formula of the Variation of Constants, we obtain ya(T ) =
∫ T

0
R(T, s) · γa(s)ds. We introduce ̟(a) := 0 when a = 0 and

̟(a) := 1
‖a‖

∫ T

0
R(T, s) · γa(s)ds when a 6= 0; hence we have ya(T ) = ‖a‖1̟(a).

SinceR(T, ·) is piecewise continuous, it is bounded. We set q := sup0≤s≤T ‖R(T, s)‖.

We have ‖̟(a)‖ ≤ q. 1
‖a‖

∫ T

0
‖γa(s)‖ds when a 6= 0, and using (2.26), we obtain

lim
a→0

‖̟(a)‖ = 0, i.e. lim
a→0

̟(a) = 0. Using (2.14) and Lemma 2.12, we obtain that

xa(T ) = x0(T ) + za(T ) + ya(T ) = x0(T ) + L · a + ‖a‖1(̺1(a) + ̟(a)). Setting
̺(a) := ̺1(a) +̟(a) we have lim

a→0
̺(a) = 0, and the lemma is proven. �

Lemma 2.18. Let S = ((ti, vi))1≤i≤N ∈ S. There exist (λSα)0≤α≤m ∈ R1+m and
(µSβ )1≤β≤q ∈ Rq which satisfy the following conditions.

(a) (λSα)0≤α≤m and (µSβ )1≤β≤q are not simulteanous equal to zero.

(b) ∀α ∈ {0, ...,m}, λSα ≥ 0.
(c) ∀α ∈ {1, ...,m}, λSαg

α(x0(T )) = 0.
(d) ∀i ∈ {1, ..., N}, p(ti)[f(ti, x0(ti), vi)− f(ti, x0(ti), u0(ti))] ≤ 0, where

p(t) := (
∑m

α=0 λ
S
αDHg

α(x0(T )) +
∑q

β=1 µ
S
βDHh

β(x0(T )))R(T, t), R(t, s)
being defined just before Lemma 2.12.

Proof. Using Lemma 2.17, the Proposition 4.2 of [3] ensures the existence of r3 ∈
]0, r2] and a function x̃ ∈ C0(B‖·‖1

(0, r3),Ω) which is Fréchet differentiable at a = 0

and which satisfies, for all a ∈ B‖·‖1
(0, r3)∩RN+ , x̃(a) = xa(T ), and DF x̃(0) = L ·a.

Since (x0, u0) is a solution of (M), a = 0 is a solution of the following finite-
dimensional optimization problem

(F1
S) :=























Maximize g0(x̃(a))
subject to a ∈ B(0, r3)

∀α ∈ {1, ...,m}, gα(x̃(a)) ≥ 0
∀β ∈ {1, ..., q}, hβ(x̃(a)) = 0
∀i ∈ {1, ..., N}, b∗i a ≥ 0

where (b∗i )1≤i≤N is the dual basis of the canonical basis of RN .
Since x̃ is Fréchet differentiable at 0, by using (At1) and (At2), we have, gα ◦ x̃
when α ∈ {0, ...,m} and hβ ◦ x̃ when β ∈ {1, ..., q} are Hadamard differentiable at
0. Moreover, since x̃ ∈ C0(B‖·‖1

(0, r3),Ω), by using (At2), for all β ∈ {1, ..., q},

hβ ◦ x̃ is continuous on a neighborhood of 0. Hence we can use the Multiplier rule
of [12] (Theorem 2.2) to obtain our result. �
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With respect to Lemma 5.1 of [3], in Lemma 2.18, the Hadamard differentiability
replaces the Fréchet differentiability.
To finish the proof of Theorem 2.4, we exactly proceed as in Subsection 5.2 of [3].
We just recall the schedule of the reasoning. For all S ∈ S, we consider K(S)
which is the set of the ((λα)0≤α≤m, (µβ)1≤β≤q) ∈ R

1+m+q which satisfy the conclu-
sions (a,b,c,d) of Lemma 2.18 and

∑

0≤α≤m |λα|+
∑

1≤β≤q |µβ | = 1. Σ(0, 1) being

the unit sphere of R1+m+q, K(S) is a non-empty closed subset of Σ(0, 1). Since
Σ(0, 1), (K(S))S∈S possesses the finite intersection property ([9], p.31) and con-
sequently we have

⋂

S∈S
K(S) 6= ∅. An element of this intersection is convenient

for the conclusions (NN), (Si), (Sℓ), (AE.M) and (MP.M) of Theorem 2.4. The
conclusions (CH.M) is proven by Lemma 5.2 of [3].
The proof of Corollary 2.5 is similar to the proof of Part (II) of Theorem 2.2 in [3]
which is given in Subsection 5.3 in [3].
To prove assertion (i) of Corollary 2.6, we proceed by contradiction, we assume the
existence of s ∈ [0, T ] s.t. (λ0, p(s)) = (0, 0). Since p(s) = 0, we have p(T ) = 0 since
(AE.M) is linear homogeneous, and, from (TC), we have

∑m

α=1 λαDHg
α(x0(T )) +

∑q

β=1 µβDHh
β(x0(T )) = 0. Hence using (TC), (Si), (Sℓ), (QC, 1) implies that

(∀α ∈ {1, ...,m}, λα = 0) and (∀β ∈ {1, ..., q}, µβ = 0). Moreover, since λ0 = 0, we
obtain a contradiction with (NN).
The proof of assertion (ii) of Corollary 2.6 is similar to the proof of Part (III) of
Theorem 2.2 in [3].
To prove assertion (iii) of Corollary 2.6, we proceed by contradiction; we assume
that λ0 = 0. Since DG,3f(t̂, x0(t̂), u0(t̂)) exists, DG,3HM (t̂, x0(t̂), u0(t̂), p(t̂)) exists

and DG,3HM (t̂, x0(t̂), u0(t̂), p(t̂)) = p(t̂)◦DG,3f(t̂, x0(t̂), u0(t̂)). Therefore, by using

(MP.M), we have p(t̂) ◦ DG,3f(t̂, x0(t̂), u0(t̂)) = 0, and since DG,3f(t̂, x0(t̂), u0(t̂))

is surjective, we have p(t̂) = 0, hence (λ0, p(t̂)) = 0 that is a contradiction with
the assertion (i). We have proven that λ0 6= 0, and it suffices to divide all the
multipliers and p by λ0 to obtain the assertion (iii).
To prove the assertion (iv) of Corollary 2.6, we begin to prove that λ0 6= 0. To do
that, we proceed by contradiction, we assume that λ0 = 0.
Since DG,3f(T, x0(T ), u0(T )) exists, DG,3HM (T, x0(T ), u0(T ), p(T )) exists and we
have DG,3HM (T, x0(T ), u0(T ), p(T )) = p(T ) ◦DG,3f(T, x0(T ), u0(T )).
From (MP.M), we obtain p(T ) ◦DG,3f(T, x0(T ), u0(T )) = 0.
From (TC), we obtain:

∑m
α=1 λαDHg

α(x0(T )) ◦DG,3f(T, x0(T ), u0(T ))

+
∑q

β=1 µβDHh
β(x0(T ))◦DG,3f(T, x0(T ), u0(T )) = p(T )◦DG,3f(T, x0(T ), u0(T )) =

0, and by using (LI), we obtain ((λα)1≤α≤m, (µβ)1≤β≤q) = 0, which is a contra-
diction with (NN). Hence, we have proven that λ0 6= 0. Dividing λα, µβ , p by λ0,
we normalize all these terms, and we have λ0 = 1. To prove the uniqueness, let
((λ1α)0≤α≤m, (µ

1
β)1≤β≤q, p

1) ∈ R1+m+q × PC1([0, T ], E∗) which satisfy the conclu-

sions of the Theorem 2.4 are verified with λ10 = 1.
From (MP.M), we have, p1(T ) ◦ DG,3f(T, x0(T ), u0(T )) = 0, therefore, we have
(p(T )−p1(T ))◦DG,3f(T, x0(T ), u0(T )) = 0 and from (TC), we obtain

∑m

α=1(λα−
λ1α)DHg

α(x0(T )) ◦DG,3f(T, x0(T ), u0(T ))
+
∑q

β=1(µβ − µ1
β)DHh

β(x0(T )) ◦ DG,3f(T, x0(T ), u0(T )) = 0. Hence, using (LI),

(λα)0≤α≤m = (λ1α)0≤α≤m and (µβ)1≤β≤q = (µ1
β)1≤β≤q, and consequently, using

(TC) we obtain p(T ) = p1(T ). Using the uniqueness of the solution of a Cauchy
problem on (AE.M), we obtain p = p1. Corollary 2.6 is proven.
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2.4. Proof of the results of the problem of Bolza. As in [3], we transform the
problem of Bolza into a problem of Mayer to deduce Theorem 2.1 from Theorem 2.4.
That is why, we introduce an additional state variable denoted by σ. We set X :=
(σ, ξ) ∈ R×Ω as a new state variable; we set F (t, (σ, ξ), ζ) := (f0(t, ξ, ζ), f(t, ξ, ζ))
as the new vectorfield; we set G0(σ, ξ) := σ + g0(ξ), Gα(σ, ξ) := gα(ξ) when α ∈
{1, ...,m}, and we set Hβ(σ, ξ) := hβ(ξ) when β ∈ {1, ..., q}. We formulate the new
following problem of Mayer:

(MB)























Maximize G0(X(T ))
subject to X ∈ PC1([0, T ],R× Ω), u ∈ NPC0

R([0, T ], U)
dX(t) = F (t,X(t), u(t)), X(0) = (0, ξ0)
∀α ∈ {1, ...,m}, Gα(X(T )) ≥ 0
∀β ∈ {1, ..., q}, Hβ(X(T )) = 0.

Proceeding as in the section 6 of [3], the proofs of Theorem 2.1, of Corollary 2.2
and of assertion (i) of Corollary 2.3 are similar to the proof of Theorem 2.1, Part
(I), Part (II), and Part (III) of [3].
Proof of assertion (ii) of Corollary 2.3.

First we want to prove that λ0 6= 0. To do that, we proceed by contradiction, we
assume that λ0 = 0. Using (MP.B), we obtain p(t̂) ◦ DG,3f(t̂, x0(t̂), u0(t̂)) = 0.

Since DG,3f(t̂, x0(t̂), u0(t̂)) is onto, we have necessarily p(t̂) = 0. Since we have

assumed (QC,1), (λ0, p(t̂)) = (0, 0) provides a contradiction after assertion (i) of
Corollary 2.3. Hence we have proven that λ0 6= 0. To conclude it sufficies to divide
λ0, ..., λm, µ1, ..., µq and p by λ0.
Proof of assertion (iii) of Corollary 2.3.

First we want to prove that λ0 6= 0. To do that, we proceed by contradiction, we
assume that λ0 = 0. Using (MP.B), we obtain p(T ) ◦DG,3f(T, x0(T ), u0(T )) = 0.
That is why, using (TC), we obtain

∑m

α=1 λαDHg
α(x0(T ))◦DG,3f(T, x0(T ), u0(T ))

+
∑q

β=1 µβDHh
β(x0(T ))◦DG,3f(T, x0(T ), u0(T )) = p(T )◦DG,3f(T, x0(T ), u0(T ))

= 0. From (LI), we obtain (∀α ∈ {1, ...,m}, λα = 0) and (∀β ∈ {1, ..., q}, µβ = 0);
hence we have ((λα)0≤α≤m, (µβ)1≤β≤q) = (0, 0); which contradicts (NN). We have
proven that λ0 6= 0. We conclude as in the proof of (ii).
Proof of assertion (iv) of Corollary 2.3.

From assertion (iii), we know that there exists ((λα)0≤α≤m, (µβ)1≤β≤q) with λ0 = 1,
and p which satisfy the conclusions of Theorem 2.1.
Let ((λ1α)0≤α≤m, (µ

1
β)1≤β≤q) with λ10 = 1, and p1 which satisfy the conclusions of

Theorem 2.1.
Using (MP.B), we have p1(T )◦DG,3f(T, x0(T ), u0(T ))+DG,3f

0(T, x0(T ), u0(T )) =
0 and p(T ) ◦ DG,3f(T, x0(T ), u0(T )) + DG,3f

0(T, x0(T ), u0(T )) = 0. Using twice
(TC), we obtain

∑m

α=1(λα − λ1α)DHg
α(x0(T )) ◦DG,3f(T, x0(T ), u0(T ))

+
∑q

β=1(µβ − µ1
β)DHh

β(x0(T )) ◦ DG,3f(T, x0(T ), u0(T )) = 0. The linear inde-

pendence provided by (LI) implies (∀α ∈ {1, ...,m}, λα − λ1α = 0) and (∀β ∈
{1, ..., q}, µβ − µ1

β = 0).

Consequently, we have ((λα)0≤α≤m, (µβ)1≤β≤q) = ((λ1α)0≤α≤m, (µ
1
β)1≤β≤q). Using

twice (TC), we obtain p(T ) = p1(T ). Using (AE.B) and the uniqueness of the
solution of a Cauchy problem, we obtain p = p1. We have proven the uniqueness.
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3. Envelope theorems

X is a Banach space, Y and Z are real normed spaces, Ω is a non-empty open
subset of X , and U is a non-empty open subset of Y , f0 : [0, T ]×Ω×U × Z → R,
f : [0, T ] × Ω × U × Z → X gi : Ω × Z → R (0 ≤ i ≤ m) and hj : Ω × Z → R

(1 ≤ j ≤ q) are mappings. Let ξ0 ∈ Ω, for all π ∈ Z, we consider the following
problem of Bolza.

(B, π)























Maximize
∫ T

0 f0(t, x(t), u(t), π)dt + g0(x(T ), π)
subject to x ∈ PC1([0, T ],Ω), u ∈ NPC0

R([0, T ], U)
∀t ∈ [0, T ], dx(t) = f(t, x(t), u(t), π), x(0) = ξ0
∀i ∈ {1, ...,m}, gi(x(T ), π) ≥ 0
∀j ∈ {1, ..., q}, hj(x(T ), π) = 0.

The Hamiltonian of Pontryagin of this problem of Bolza is Hπ : [0, T ] × Ω × U ×
X∗ × R → R, defined by Hπ(t, ξ, ζ, p, λ) := p · f(t, ξ, ζ, π) + λf0(t, ξ, ζ, π) when
t ∈ [0, T ], ξ ∈ Ω, ζ ∈ U , p ∈ X∗ and λ ∈ R. For each π ∈ Z, we denote by V [π] the
value of (B, π).

3.1. Main results. We fix π0 ∈ Z and we consider the following list of conditions.
Conditions on the solutions.

(SO) There exists an open neighborhood P of π0 in Z s.t., ∀π ∈ P, there exists
(x[π], u[π]) ∈ PC1([0, T ],Ω)×NPC0

R([0, T ], U), a solution of (B, π). There
exists δπ ∈ Z s.t. D+

Gx[π0; δπ] and D
+
Gu[π0; δπ] exist.

Conditions on the integrand of the criterion.

(IC1) f0 ∈ C0([0, T ] × Ω × U × P,R), and, ∀(t, ξ, ζ, π) ∈ [0, T ] × Ω × U × P ,
DG,2f

0(t, ξ, ζ, π) exists. Moreover, for all π ∈ P , for all non-empty compact
K s.t. K ⊂ Ω× U , sup(t,ξ,ζ)∈[0,T ]×K ‖DG,2f

0(t, ξ, ζ, π)‖ < +∞.

(IC2) For all t ∈ [0, T ], DH,(2,3,4)f
0(t, x[π0](t), u[π0](t), π0) exists. Moreover, for

all π ∈ P , DH,3f
0(T, x[π](T ), u[π](T ), π) exists, and the function

[π 7→ DH,3f
0(T, x[π](T ), u[π](T ), π)] ∈ C0(P, Y ∗).

(IC3) There exists κ ∈ L1(([0, T ],B([0, T ])),m1;R+), there exists ρ > 0 s.t.,
∀t ∈ [0, T ], ∀(ξ1, ζ1, π1), (ξ2, ζ2, π2) ∈ B‖·‖1

((x[π0](t), u[π0](t), π0), ρ),

|f0(t, ξ1, ζ1, π1)− f0(t, ξ2, ζ2, π2)| ≤ κ(t)‖(ξ1, ζ1, π1)− (ξ2, ζ2, π2)‖.
(IC4) For all (t, ζ, π) ∈ [0, T ]× U × P , DF,2f

0(t, x[π](t), ζ, π) exists and, ∀π ∈ P,
[(t, ζ) 7→ DF,2f

0(t, x[π](t), ζ, π)] ∈ C0([0, T ]× U,X∗),

where B([0, T ]) is the Borel tribe on [0, T ] and m1 is the canonical Borel measure
on [0, T ].
Notice that (IC1) concerns the continuity and the partial Gâteaux differentia-
bility; (IC2) concerns the Hadamard differentiability, (IC3) concerns a partial
Lipschitz condition, and (IC4) concerns the partial Fréchet differentiability. if,
x ∈ C0(P,C0([0, T ],Ω)) and, for all t ∈ [0, T ], f0(t, ·, ·, ·) is Fréchet differentiable
on Ω×U×P , and if DF,(2,3,4)f

0 is continuous on [0, T ]×Ω×U×P then (IC1)-(IC4)

are fulfilled. In our approach we want to weaken the conditions on f0.
Conditions on the vector field.

(V1) For all π ∈ P, [(t, ξ, ζ) 7→ f(t, ξ, ζ, π)] ∈ C0([0, T ] × Ω × U,X), and,
for all (t, ξ, ζ, π) ∈ [0, T ] × Ω × U × P , DG,2f(t, ξ, ζ, π) exists. More-
over, for all π ∈ P , for all non-empty compact K s.t. K ⊂ Ω × U ,
sup(t,ξ,ζ)∈[0,T ]×K ‖DG,2f(t, ξ, ζ, π)‖ < +∞.
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(V2) For all t ∈ [0, T ], DH,(2,3,4)f(t, x[π0](t), u[π0](t), π0) exist and, for all π ∈ P ,
DH,3f(T, x[π](T ), u[π](T ), π) exists.

(V3) For all (t, ζ, π) ∈ [0, T ]× U × P , DF,2f(t, x[π](t), ζ, π) exists and, ∀π ∈ P,
[(t, ζ) 7→ DF,2f(t, x[π](t), ζ, π)] ∈ C0([0, T ]× U,L(X,X)).

We can do a comment on (V1)-(V3) which is similar to the comment on (IC1)-(IC4)
which is given just after (IC4).
Conditions on the terminal constraints functions and the terminal func-
tion of the criterion.

(CT1) For all φ ∈ {gi : 0 ≤ i ≤ m} ∪ {hj : 1 ≤ j ≤ q}, DHφ(x[π0](T ), π0) exists
and, ∀π ∈ P, DH,1φ(x[π](T ), π) exists.

(CT2) For all π ∈ P , for all j ∈ {1, ..., q}, hj(·, π) is continuous on a neighborhood
of x[π](T ).

Conditions on the terminal constraints functions, the terminal function
of the criterion and the vector field.

(CVT1) (DH,1g
i(x[π0](T ), π0) ◦DH,3f(T, x[π0](T ), u[π0](T ), π0),

DH,1h
j(x[π0](T ), π0) ◦DH,3f(T, x[π0](T ), u[π0](T ), π0))1≤i≤m, 1≤j≤q is lin-

early free.
(CVT2) For all φ ∈ {gi : 0 ≤ i ≤ m} ∪ {hj : 1 ≤ j ≤ q},

[π 7→ DH,1φ(x[π](T ), π) ◦DH,3f(T, x[π](T ), u[π](T ), π)] belongs to
C0(P, Y ∗).

Conditions on the control space

(ESP) There exists (·|·) an inner product on Y ∗ s.t. (·|·) ∈ C0((Y ∗, ‖ · ‖Y ∗)2,R).

Theorem 3.1. Under (SO), (IC1), (IC2), (IC3), (IC4), (V1), (V2), (V3), (CT1),
(CT2), (CVT1), (CVT2) and (ESP), D+

GV [π0; δπ] exists and

D+
GV [π0; δπ] = DH,2g

0(x[π0](T ), π0) · δπ +
∑m

i=1 λi[π0]DH,2g
i(x[π0](T ), π0) · δπ

+
∑q

j=1 µj [π0]DH,2h
j(x[π0](T ), π0) · δπ

+
∫

[0,T ]DH,4f
0(t, x[π0](t), u[π0](t), π0) · δπ dm1(t)

+
∫

[0,T ]
p[π0](t)·DH,4f(t, x[π0](t), u[π0](t), π0)·δπ dm1(t), where (λi[π0])0≤i≤m, with

λ0[π0] = 1, (µj [π0])1≤j≤q (respectively p[π0]) are the unique respectively multipliers
(respectively the unique adjoint function) of the Pontryagin Theorem applied to the
solution (x[π0], u[π0]) of (B, π0).

In order to provide a result on the Gâteaux differentiability of V at π0, we introduce
the following strengthened conditions.

(SO-bis) For all δπ ∈ Z, D+
Gx[π0; δπ] and D

+
Gu[π0; δπ] exists.

(V4) There exists c ∈ L1(([0, T ],B([0, T ])),m1;R+) s.t.
∀t ∈ [0, T ], ‖DH,4f(t, x[π0](t), u[π0](t), π0)‖ ≤ c(t).

Corollary 3.2. Under the assumptions of Theorem 3.1, assuming in addition (SO-
bis) and (V4), V is Gâteaux differentiable at π0 and the formula of DGV [π0] is given
by the formula of Theorem 3.1.

In order to provide a result on the continuously Fréchet differentiability of V , we
introduce the following strengthened conditions

(SO-ter) The functions [π 7→ x[π]] and [π 7→ u[π]] are continuous at π0 and, for all
π ∈ P , for all δπ ∈ Z, D+

Gx[π; δπ] and D
+
Gu[π; δπ] exist.

(IC5) For all π ∈ P , for all t ∈ [0, T ], DH,(2,3,4)f
0(t, x[π](t), u[π](t), π) and, for

all t ∈ [0, T ], [π 7→ DH,(2,4)f
0(t, x[π](t), u[π](t), π)] ∈ C0(P, (X × Z)∗).
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(IC6) For all π ∈ P , [t 7→ DH,4f
0(t, x[π](t), u[π](t), π)] belongs to

L0(([0, T ],B([0, T ])), (Z∗,B(Z∗))).
(V5) For all π ∈ P , for all t ∈ [0, T ], DH,(2,3,4)f(t, x[π](t), u[π](t), π) exist and for

all t ∈ [0, T ], [π 7→ DH,(2,4)f(t, x[π](t), u[π](t), π)] ∈ C0(P,L(X × Z,X)).
(V6) For all π ∈ P , [t 7→ DH,4f(t, x[π](t), u[π](t), π)] belongs to

L0(([0, T ],B([0, T ])), (L(Z,X),B(L(Z,X))) and there exists
c ∈ L1(([0, T ],B([0, T ])),m1;R+) s.t. ∀t ∈ [0, T ], ∀π ∈ P,
‖DH,(2,4)f(t, x[π](t), u[π](t), π)‖ ≤ c(t).

(CT3) For all φ ∈ {gi : 0 ≤ i ≤ m} ∪ {hj : 1 ≤ j ≤ q}, for all π ∈ P , φ
is Hadamard differentiable at (x[π](T ), π) and, [π 7→ DHφ(x[π](T ), π)] ∈
C0(P, (X × Z)∗).

L0 denotes the space of all measurable functions.

Corollary 3.3. Under the assumptions of Corollary 3.2, if, in addition (SO-ter),
(IC5), (IC6), (V5), (V6) and (CT3) are fulfilled, then V is continuously Fréchet
differentiable on W which is an open neighborhood of π0 and for all π ∈ W, for all
δπ ∈ Z, DFV [π] · δπ = DH,2g

0(x[π](T ), π) · δπ +
∑m

i=1 λi[π]DH,2g
i(x[π](T ), π) · δπ

+
∑q

j=1 µj [π]DH,2h
j(x[π](T ), π) · δπ

+
∫

[0,T ]DH,4f
0(t, x[π](t), u[π](t), π) · δπ dm1(t)

+
∫

[0,T ]
p[π](t) ·DH,4f(t, x[π](t), u[π](t), π) · δπ dm1(t), where (λi[π])0≤i≤m, with

λ0[π] = 1, (µj [π])1≤j≤q (respectively p[π]) are the unique respectively multipliers
(respectively the unique adjoint function) of the Pontryagin Theorem applied to the
solution (x[π], u[π]) of (B, π).

3.2. Proof of Theorem 3.1. We begin to establish a generalization of Lemma
5.2 in [4].

Lemma 3.4. Let E be a real normed vector space, G be a non-empty open subset
of E, f : [0, T ]×G→ R be a function and x0 ∈ NPC0

R([0, T ], G). We consider the
following conditions:

(i) f ∈ PCP 0([0, T ]×G,R).
(ii) There exists ρ1 > 0 and there exists ζ ∈ L1(([0, T ],B([0, T ])),m1;R+) s.t.,

∀t ∈ [0, T ], ∀u1, u2 ∈ B(x0(t), ρ1), |f(t, u1)− f(t, u2)| ≤ ζ(t)‖u1 − u2‖.
(iii) For all t ∈ [0, T ], DH,2f(t, x0(t)) exists.

We consider the functional F : NPC0
R([0, T ], G) → R defined by,

for all x ∈ NPC0
R([0, T ], G), F (x) :=

∫ T

0
f(t, x(t)) dt. The following assertions hold.

(a) NPC0
R([0, T ], G) is open in NPC0

R([0, T ], E).
(b) Under (i)-(ii), F is well defined and Lipschitzean on B‖·‖∞

(x0, ρ1).
(c) Under (i)-(iii), F is Hadamard differentiable at x0 and

for all h ∈ NPC0
R([0, T ], E),

[t 7→ DH,2f(t, x0(t)) · h(t)] ∈ L1(([0, T ],B([0, T ])),m1;R) and for all h ∈
NPC0

R([0, T ], E), DHF (x0) · h =
∫

[0,T ]
DH,2f(t, x0(t)) · h(t) dm1(t).

Proof. (a) Let x ∈ NPC0
R([0, T ], G); we have the closure cl(x([0, T ])) ⊂ G. If

(τi)0≤i≤n+1 is the list of discontinuity points of x, when i ∈ {0, ..., n}, we define
xi : [τi, τi+1] → G by setting xi(t) := x(t) if t ∈ [τi, τi+1[ and xi(τi+1) := x(τi+1−).
Hence, we have xi ∈ C0([τi, τi+1], G), and then xi([τi, τi+1]) is compact and more-
over we have cl(x([0, T ])) :=

⋃

0≤i≤n xi([τi, τi+1]) which is compact as a finite union
of compacts.
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Using the continuity of the function [u 7→ d(u,E \G) := inf{‖u− v‖ : v ∈ E \G}],
the closedness of E \G and the Optimization theorem of Weierstrass setting α :=
inf{d(u,E \ G) : u ∈ cl(x([0, T ]))}, we have α > 0, and then we easily verify that
B‖·‖∞

(x, α2 ) ⊂ NPC0
R([0, T ], G); and so (a) is proven.

(b) When x ∈ NPC0
R([0, T ]), we see that [t 7→ f(t, x(t))] is regulated and con-

sequently, it is Riemann integrable on [0, T ] cf. ([5], p. 168) hence F (x) is well
defined. (ii) implies that F is Lipschitzean on B‖·‖∞

(x, ρ1); and so (b) is proven.

(c) Let h ∈ NPC0
R([0, T ], E), h 6= 0. We set θ0 := 1

‖h‖∞

min{ρ, α2 } > 0. Let

(θn)n∈N ∈ ]0, θ0[N s.t. lim
n→+∞

θn = 0.

Since the Hadamard differentiability implies the Gâteaux differentiability, from (iii),
for all t ∈ [0, T ], we have DH,2f(t, x0(t)) · h(t) = DG,2f(t, x0(t)) · h(t) = lim

n→+∞
Ψn(t).

where Ψn(t) :=
1
θn
(f(t, x0(t) + θnh(t)) − f(t, x0(t))).

Since [t 7→ f(t, x0(t) + θnh(t))] and [t 7→ f(t, x0(t))] are regulated, they are uniform
(therefore pointwise) limits of sequences of step functions, hence they are Borel
functions, and then Ψn is a Borel function as a pointwise limit of a sequence of
Borel functions. Hence [t 7→ DH,2f(t, x0(t)) ·h(t)] is a Borel functions. Using (ii), we
see that that ‖Ψn(t)‖ ≤ ζ(t)‖h‖∞ for all t ∈ [0, T ] and for all n ∈ N. Since ζ‖h‖∞ ∈
L1(([0, T ],B([0, T ])),m1;R+) we can use the Dominated Convergence Theorem of
Lebesgue to assert that [t 7→ DH,2f(t, x0(t)) ·h(t)] ∈ L1(([0, T ],B([0, T ])),m1;R) and
also that
∫

[0,T ]
DH,2f(t, x0(t)) · h(t)dm1(t) = lim

n→+∞

∫

[0,T ]
Ψn(t)dm1(t) = lim

n→+∞

1
θn
(F (x0 +

θnh)− F (x0)); hence D
+
GF (x0; h) exists and we have

D+
GF (x0; h) =

∫

[0,T ]

DH,2f(t, x0(t)) · h(t)dm1(t). (3.1)

Using the linearity of the integral and of the Hadamard differential, we obtain that
D+
GF (x0; ·) is linear, and since |D+

GF (x0, h)| ≤ ‖ζ‖L1‖h‖∞ for all

h ∈ NPC0
R([0, T ], E), we obtain that D+

GF (x0; ·) is continuous and consequently
F is Gâteaux differentiable at x0. Under (a), since F is Lipschitzean on a ball
centered at x0, using ([6], p.259), we obtain that DHF (x0) exists and the formula
of DHF (x0) · h is given by D+

GF (x0; h) and (3.1). �

1st step: existence of D+
GV (π0). We consider E := X × Y ×Z, G := Ω×U × P

which is open in E, f : [0, T ] × G → R the function defined by f(t, (ξ, ζ, π)) :=
f0(t, ξ, ζ, π), x[π](t) = (x[π](t), u[π](t), π) and when x ∈ NPC0([0, T ], G), we con-

sider the function F (x) :=
∫ T

0
f(t, x(t))dt as in Lemma 3.4. We want to use Lemma

3.4 with x0 = x[π0] ∈ NPC0([0, T ], G). From (IC1), (IC2) and (IC3), the as-
sumptions (i)-(iii) of Lemma 3.4 are fulfilled, therefore we obtain that, for all
v ∈ NPC0

d([0, T ], X × Y × Z),

[t 7→ DH,(2,3,4)f
0(t, x[π0](t), u[π0](t), π0) · v(t)] ∈ L1(([0, T ],B([0, T ])),m1;R),

(3.2)
and F is Hadamard differentiable at x[π0]. Next, since (SO), D+

Gx[π0; δπ] exists and

for all t ∈ [0, T ], D+
Gx[π0; δπ](t) := (D+

Gx[π0; δπ](t), D
+
Gu[π0; δπ](t), δπ).

From (SO), we have also for all π ∈ P , V [π] = F (x[π]) + g0(x[π](T ), π). There-
fore, using ([6], (4.2.5) p.263), we have D+

GV [π0; δπ] = DHF (x[π0]) ·D
+
Gx[π0; δπ] +

DHg
0(x[π0](T ), π0) · (D

+
Gx[π0; δπ](T ), δπ).
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2st step: a first formulation of D+
GV (π0). Using the formula of Lemma 3.4 for

F with x0 = x[π0] and the partial differentials in the previous formula, we obtain

D+
GV [π0; δπ]

=
∫

[0,T ]DH,2f
0(t, x[π0](t), u[π0](t), π0) ·D

+
Gx[π0; δπ](t) dm1(t)

+
∫

[0,T ]
DH,3f

0(t, x[π0](t), u[π0](t), π0) ·D
+
Gu[π0; δπ](t) dm1(t)

+
∫

[0,T ]DH,4f
0(t, x[π0](t), u[π0](t), π0) · δπ dm1(t)

+DH,1g
0(x[π0](T ), π0) ·D

+
Gx[π0; δπ](T ) +DH,2g

0(x[π0](T ), π0) · δπ.



























(3.3)

At this time, we see that the second and last terms of (3.3) are present in the
formula of Theorem 3.1. We ought to transform the other terms.
3st step: the existence of multipliers and the adjoint function of the
Pontryagin Theorem. Thanks to (CVT1) and (CVT2), by using Lemma 4.1 in
[4], there exists Q, an open neighborhood of π0, Q ⊂ P , s.t.

∀π ∈ Q, ((DH,1g
i(x[π](T ), π) ◦DH,3f(T, x[π](T ), u[π](T ), π))1≤i≤m,

(DH,1h
j(x[π](T ), π) ◦DH,3f(T, x[π](T ), u[π](T ), π))1≤j≤q)

is linearly free.







(3.4)

Setting, ∀(π, t, ξ, ζ) ∈ Q × [0, T ] × Ω × U , f0
π(t, ξ, ζ) = f0(t, ξ, ζ, π), fπ(t, ξ, ζ) =

f(t, ξ, ζ, π), giπ(ξ) := gi(ξ, π) (0 ≤ i ≤ m), hjπ(ξ) := hj(ξ, π)(1 ≤ j ≤ q), we see that
(B, π) is a special case of the problem of (B) of Section 2 of this paper. For all π ∈ Q,
note that (SO) implies that (x[π], u[π]) is a solution of (B, π), (IC1) and (IC4) imply
that (Ai1) is fulfilled, (IC1) implies that (Ai2) is fulfilled, (V1) and (V3) imply that
(Av1) is fulfilled, (V1) implies that (Av2) is fulfilled, (CT1) implies that (At1) is
fulfilled, (CT2) implies that (At2) is fulfilled, (CT2) implies that (At2) is fulfilled.
Hence, the assumptions of Theorem 2.1 are fulfilled. Moreover, note that (3.4) and
(V2) implies that (LI) is fulfilled, and using (IC2), the assumptions of Corollary
2.3, (iv), hold.
Hence, we obtain the existence and the uniqueness of ((λi[π])0≤i≤m, (µj [π])1≤j≤q ,
p[π]) ∈ R

k+1 × R
l × PC1([0, T ], X∗) with λ0[π] = 1 s.t. the following conditions

are fulfilled.

(Si) For all π ∈ Q, for all i ∈ {0, ...,m}, λi[π] ≥ 0.
(Sℓ) For all π ∈ Q, for all i ∈ {1, ...,m}, λi[π]gi(x[π](T ), π) = 0.
(TC) For all π ∈ Q,

DH,1g
0(x[π](T ), π) +

∑m
i=1 λi[π]DH,1g

i(x[π](T ), π)
+
∑q

j=1 µj [π]DH,1h
j(x[π](T ), π) = p[π](T ).

(AE) For all π ∈ Q, for all t ∈ [0, T ], dp[π](t)
= −p[π](t) ◦DF,2f(t, x[π](t), u[π](t), π) −DF,2f

0(t, x[π](t), u[π](t), π).
(MP) For all π ∈ Q, for all t ∈ [0, T ], for all ζ ∈ U ,

Hπ(t, x[π](t), u[π](t), p[π](t), 1) ≥ Hπ(t, x[π](t), ζ, p[π](t), 1).

4th step: the transformation of the partial differentials of f0 with respect
to the state variable and the control variable. For all t ∈ [0, T ], for all real

normed space Y, we consider the evaluation operator evYt : NPC0
R([0, T ],Y) →

Y defined by evYt (ϕ) := ϕ(t) when ϕ ∈ NPC0
R([0, T ],Y). Note that evYt ∈

L(NPC0([0, T ],Y),Y). We can rewrite the evolution equation of (B, π) in the
following form,
∀π ∈ P, ∀t ∈ [0, T ], (evXt ◦d◦x)[π] = f(t, ·, ·, ·)◦(evXt (x)[·], evYt (u)[·], idZ)[π]. Using
([6], p.253), we obtain D+

G(ev
X
t ◦ d ◦ x)[π0; δπ] = DH(evXt ◦ d)(x([π0]) ·D

+
Gx[π0; δπ]

= (evXt ◦ d) ·D+
Gx[π0; δπ] = evXt (d(D+

Gx[π0, δπ])
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= d(D+
Gx[π0; δπ])(t) i.e. we have the following inversion of the two notions of dif-

ferentiation d and D+
G.

D+
G(dx(t))[π0; δπ] = d(D+

Gx[π0; δπ])(t). (3.5)

From (V2), we also have D+
G(f(t, ·, ·, ·) ◦ (ev

X
t (x)[·], evYt (u)[·], idZ))[π0; δπ]

= DH,(2,3,4)f(t, x[π0](t), u[π0](t), π0) · (D
+
Gx[π0; δπ](t), D

+
Gu[π0; δπ](t), δπ). There-

fore, we have, for all t ∈ [0, T ], d[D+
Gx[π0; δπ](t)

= DH,(2,3,4)f(t, x[π0](t), u[π0](t), π0) · (D
+
Gx[π0; δπ](t), D

+
Gu[π0; δπ](t), δπ).

From (MP), (V2) and (IC2), we have, for all t ∈ [0, T ],
p[π0](t) ◦DH,3f(t, x[π0](t), u[π0](t), π0) +DH,3f

0(t, x[π0](t), u[π0](t), π0) = 0.
Consequently, for all t ∈ [0, T ], we have

DH,(2,3)f
0(t, x[π0](t), u[π0](t), π0) · (D

+
Gx[π0; δπ](t), D

+
Gu[π0; δπ](t))

= −d[p[π0]](t) ·D
+
Gx[π0; δπ](t)−

p[π0](t) ·DH,2f(t, x[π0](t), u[π0](t), π0) ·D
+
Gx[π0; δπ](t)−

p[π0](t) ·DH,3f(t, x[π0](t), u[π0](t), π0) ·D
+
Gu[π0; δπ](t)

= −d[p[π0]](t) ·D
+
Gx[π0; δπ](t) − p[π0)(t) ·DH,(2,3,4)f(t, x[π0](t), u[π0](t), π0)·

(D+
Gx[π0; δπ](t), D

+
Gu[π0; δπ](t), δπ)

+p[π0](t) ·DH,4f(t, x[π0](t), u[π0](t), π0) · δπ
= −d[p[π0]](t) ·D

+
Gx[π0; δπ](t) − p[π0](t) · d[D

+
Gx[π0; δπ]](t)+

p[π0](t) ·DH,4f(t, x[π0](t), u[π0](t), π0) · δπ.

Therefore, we have

D+
GV [π0; δπ] =

∫

[0,T ]
−d[p[π0]](t) ·D

+
Gx[π0; δπ](t)− p[π0](t) · d[D

+
Gx[π0; δπ]](t) dm1(t)

+
∫

[0,T ]
p[π0](t) ·DH,4f(t, x[π0](t), u[π0](t), π0) · δπ dm1(t)

+
∫

[0,T ]DH,4f
0(t, x[π0](t), u[π0](t), π0) · δπ dm1(t)

+DH,1g0(x[π0](T ), π0) ·D
+
Gx[π0; δπ](T ) +DH,2g0(x[π0](T ), π0) · δπ.



























(3.6)

We consider the function ψ : [0, T ] → R defined by, for all t ∈ [0, T ], ψ(t) =
p[π0](t) ·D

+
Gx[π0; δπ](t).

Since ψ ∈ PC1([0, T ], X∗) and D+
Gx[π0; δπ] ∈ PC1([0, T ], X), we have

ψ ∈ PC1([0, T ],R) and, for all t ∈ [0, T ], we have dp[π0](t)·D
+
Gx[π0; δπ](t)+p[π0](t)·

d[D+
Gx[π0; δπ]](t). i.e. dψ(t) = dp[π0](t)·D

+
Gx[π0; δπ](t)+p[π0](t)·d[D

+
Gx[π0; δπ]](t).

Since ψ ∈ PC1([0, T ],R), we have, for all t ∈ [0, T ], ψ(T )− ψ(0) =
∫ T

0
dψ(t)dt.

Moreover, we have D+
Gx[π0; δπ](0) = 0.

Therefore −
∫ T

0
dψ(t)dt = −ψ(T ) + ψ(0) = −p[π0](T ) ·D

+
Gx[π0; δπ](T ).

Therefore, we obtain

D+
GV [π0; δπ] = −p[π0](T ) ·D

+
Gx[π0; δπ](T )

+
∫

[0,T ] p[π0](t) ·DH,4f(t, x[π0](t), u[π0](t), π0) · δπ dm1(t)

+
∫

[0,T ]DH,4f
0(t, x[π0](t), u[π0](t), π0) · δπ dm1(t)

+DH,1g
0(x[π0](T ), π0) ·D

+
Gx[π0; δπ](T )

+DH,2g
0(x[π0](T ), π0) · δπ.























(3.7)
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5th step: the transformation of the first and the second to last terms of
(3.7). From (TC), we obtain

D+
GV [π0; δπ] = −

∑m

i=1 λi[π0]DH,1g
i(x[π0](T ), π0) ·D

+
Gx[π0; δπ](T )

−
∑q

j=1 µj [π0]DH,1h
j(x[π0](T ), π0) ·D

+
Gx[π0; δπ](T )

+
∫

[0,T ] p[π0](t) ·DH,4f(t, x[π0](t), u[π0](t), π0) · δπ dm1(t)

+
∫

[0,T ]DH,4f
0(t, x[π0](t), u[π0](t), π0) · δπ dm1(t)

+DH,2g
0(x[π0](T ), π0) · δπ.























(3.8)

Besides, by using (MP) and (V2), we have, for all π ∈ Q,
p[π](T ) ◦DH,3f(T, x[π](T ), u[π](T ), π) +DH,3f

0(T, x[π](T ), u[π](T ), π) = 0. Con-
sequently, by using (TC), we have

∀π ∈ Q,
∑m

i=1 λi[π]DH,1g
i(x[π](T ), π) ◦DH,3f(T, x[π](T ), u[π](T ), π)

+
∑q

j=1 µj [π]DH,1h
j(x[π](T ), π) ◦DH,3f(T, x[π](T ), u[π](T ), π)

= −DH,1g
0(x[π](T ), π) ◦DH,3f(T, x[π](T ), u[π](T ), π)

−DH,3f
0(T, x[π](T ), u[π](T ), π).















(3.9)

In the following lemma, we etablish the continuity of the multipliers with respect
to π.

Lemma 3.5. For all i ∈ {1, ..., m}, λi ∈ C0(Q,R+), and, for all j ∈ {1, ..., q},
µj ∈ C0(Q,R).

Proof. First, for all π ∈ Q, we set Fπ := span{ei[π] : 1 ≤ i ≤ m + q} and
F :=

⋃

π∈Q(Fπ × {π}) where for all i ∈ {1, ...,m}, ei[π] = DH,1g
i(x[π](T ), π) ◦

DH,3f(T, x[π](T ), u[π](T ), π) and for all j ∈ {1, ..., q},
em+j[π] = DH,1h

j(x[π](T ), π) ◦ DH,3f(T, x[π](T ), u[π](T ), π). For all (x, π) ∈ F ,
we denote by xα(x, π) the α-th coordinate of x in the basis (ej [π])1≤j≤m+q .
From (IC2), (V2), (CVT2), (ESP) and (3.4), by using Lemma 4.3 in [4], with
E = Y ∗,W = Z,W = Q, we obtain that, ∀α ∈ {1, ...,m+ q}, xα is continuous on
⋃

π∈Q(Fπ × {π}).

Consequently, since (3.9), we have, for all π ∈ Q,
x[π] := −DH,1g

0(x[π](T ), π) ◦DH,3f(T, x[π](T ), u[π](T ), π)−
DH,3f

0(T, x[π](T ), u[π](T ), π) ∈ Fπ.
Hence, we have for all i ∈ {1, ...,m}, λi = xi ◦ (x, idQ) ∈ C0(Q,R), and
for all j ∈ {1, ..., q}, µj = xm+j ◦ (x, idQ) ∈ C0(Q,R). �

Let i ∈ {1, ..., m}; if λi[π0] > 0, using Lemma 3.5, there exists a neighborhood
N of π0 in Q s.t., for all π ∈ N , λi[π] > 0. Consequently, by using (Sℓ), we
obtain that, for all π ∈ N, gi(x[π](T ), π) = 0. From (SO) and (CT1), we have
DH,1g

i(x[π0](T ), π0)·D
+
Gx[π0; δπ](T )+DH,2g

i(x[π0](T ), π0)·δπ = 0. Hence we have

λi[π0]DH,2g
i(x[π0](T ), π0) · δπ = −λi[π0]DH,1g

i(x[π0](T ), π0) ·D
+
Gx[π0; δπ](T ).

Moreover, if λi[π0] = 0, then we also have λi[π0]DH,2g
i(x[π0](T ), π0) · δπ

= −λi[π0]DH,1g
i(x[π0](T ), π0) ·D

+
Gx[π0; δπ](T ). Hence, we obtain

∀i ∈ {1, ..., m}, λi[π0]DH,2g
i(x[π0](T ), π0) · δπ

= −λi[π0]DH,1g
i(x[π0](T ), π0) ·D

+
Gx[π0; δπ](T ).

}

(3.10)

Let j ∈ {1, ..., q}; remark that for all π ∈ Q, hj(x[π](T ), π) = 0.
From (SO) and (CT1), we have
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DH,1h
j(x[π0](T ), π0)·D

+
Gx[π0; δπ](T )+DH,2h

j(x[π0](T ), π0)·δπ = 0. Consequently,
we obtain

µj [π0]DH,2h
j(x[π0](T ), π0) · δπ = −µj [π0]DH,1h

j(x[π0](T ), π0) ·D
+
Gx[π0; δπ](T ).

(3.11)
From (3.8), (3.10) and (3.11), we have

D+
GV [π0; δπ] = DH,2g

0(x[π0](T ), π0) · δπ +
∑m

i=1 λi[π0]DH,2g
i(x[π0](T ), π0) · δπ

+
∑q

j=1 µj [π0]DH,2h
j(x[π0](T ), π0) · δπ

+
∫

[0,T ]DH,4f
0(t, x[π0](t), u[π0](t), π0) · δπ dm1(t)

+
∫

[0,T ] p[π0](t) ·DH,4f(t, x[π0](t), u[π0](t), π0) · δπ dm1(t).

3.3. Proof of Corollary 3.2. For all δπ ∈ Z, from (SO-bis), D+
Gx[π0; δπ] and

D+
Gu[π0; δπ] exist.

Consequently, the assumptions of Theorem 3.1 are fulfilled for every direction δπ ∈
Z.
Therefore, using Theorem 3.1, we have

∀δπ ∈ Z,
D+
GV [π0; δπ] = DH,2g

0(x[π0](T ), π0) · δπ
+
∑m

i=1 λi[π0]DH,2g
i(x[π0](T ), π0) · δπ

+
∑q

j=1 µj [π0]DH,2h
j(x[π0](T ), π0) · δπ

+
∫

[0,T ]DH,4f
0(t, x[π0](t), u[π0](t), π0) · δπ dm1(t)

+
∫

[0,T ]
p(π0)(t) ·DH,4f(t, x[π0](t), u[π0](t), π0) · δπ dm1(t).































(3.12)

Moreover, we have

∀t ∈ [0, T ], ‖DH,(2,3,4)f
0(t, x[π0](t), u[π0](t), π0)‖ ≤ κ(t). (3.13)

Since (3.13), using the linearity property of the Borel integral, we have
[δπ 7→

∫

[0,T ]
DH,4f

0(t, x[π0](t), u[π0](t), π0) · δπ dm1(t)] ∈ Z∗.

Besides, from (V4), we have for all t ∈ [0, T ],
‖p[π0](t) ◦DH,4f(t, x[π0](t), u[π0](t), π0)‖
≤ ‖p[π0](t)‖‖DH,4f(t, x[π0](t), u[π0](t), π0)‖ ≤ ‖p[π0]‖∞c(t).
Consequently, using the linearity property of the Borel integral, we have
[δπ 7→

∫

[0,T ]
p[π0](t) ·DH,4f(t, x[π0](t), u[π0](t), π0) · δπ dm1(t)] ∈ Z∗. Therefore, we

have [δπ 7→ D+
GV [π0; δπ]] ∈ Z∗. Therefore V is Gâteaux-differentiable at π0.

3.4. Proof of Corollary 3.3. Note that, by using (SO-ter), the function x : P →
NPC0

d([0, T ],Ω × U × P ), defined by, for all π ∈ P , for all t ∈ [0, T ], x[π](t) =
(x[π](t), u[π](t), π) is continuous at π0.
Therefore, we have

∃r > 0 s.t. ∀π ∈ B(π0, r), ‖x[π]− x[π0]‖∞ <
ρ

2
. (3.14)

We set a := min{r, ρ2}. Note that, we also have

∀π ∈ B(π0, a), ∀t ∈ [0, T ], B‖·‖1
(x[π](t), a) ⊂ B‖·‖1

(x[π0](t), ρ). (3.15)

From (IC3), by using (3.15), we have

∀π ∈ B(π0, a), ∀t ∈ [0, T ], ∀(ξ1, ζ1, π1), (ξ2, ζ2, π2) ∈ B‖·‖1
(z(π)(t), a),

|f0(t, ξ1, ζ1, π1)− f0(t, ξ2, ζ2, π2)| ≤ κ(t)‖(ξ1, ζ1, π1)− (ξ2, ζ2, π2)‖1.

}

(3.16)
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We set W := B(π0, a)∩Q ⊂ P . Let π ∈ W. Note that W is an open neighborhood
of π in Q and, for all π ∈ W, (x[π], u[π]) is a solution of (B, π), consequently (SO)
is fulfilled π0 = π.
π0 is not present in the conditions (IC1), (IC4), (V1), (V3), (CT2) and (CVT2),
that is why using our assumptions this conditions are already verified.
Using our additional assumptions, the conditions (SO-bis), (IC2), (IC3), (V2), (V4)
and (CT1) are fulfilled with π0 = π.
Besides, the assertions (3.16) implies that (IC3) is fulfilled with π0 = π, and the
assertion (3.4) imples that (CVT1) with π0 = π. Hence, for all π ∈ W, the
assumptions of Corollary 3.2 are fulfilled with π0 = π Therefore, we can use the
Theorem 3.1 and we obtain that V is Gâteaux differentiable for every π ∈ W and

∀π ∈ W, ∀δπ ∈ Z
DGV [π] · δπ = DH,2g

0(x[π](T ), π) · δπ +
∑m

i=1 λi[π]DH,2g
i(x[π](T ), π) · δπ

+
∑q

j=1 µj(π)DH,2h
j(x[π](T ), π) · δπ

+
∫

[0,T ]
DH,4f

0(t, x[π](t), u[π](t), π) · δπ dm1(t)

+
∫

[0,T ] p[π](t) ·DH,4f(t, x[π](t), u[π](t), π) · δπ dm1(t).























(3.17)
Besides, by using (3.16) and (IC5), we have

∀π ∈ B(π0, a), ∀t ∈ [0, T ], ‖DH,(2,3,4)f
0(t, x[π](t), u[π](t), π)‖ ≤ κ(t). (3.18)

For all i ∈ {2, 4}, for all t ∈ [0, T ], π ∈ W, we set
fi(t, π) = DH,if(t, x[π](t), u[π](t), π) and f0i (t, π) = DH,if

0(t, x[π](t), u[π](t), π). In
the following lemma, we prove that the adjoint function are continous with respect
to the parameter π.

Lemma 3.6. [π 7→ p[π]] ∈ C0(W, (PC1([0, T ], X∗), ‖ · ‖∞)).

Proof. From (TC), (CT3) and Lemma 3.5, we have

[π 7→ p[π](T )] ∈ C0(Q,X∗). (3.19)

Let π̂ ∈ W. We consider the functions ϕ1 : [0, T ] × W → R, defined by (t, π) ∈
[0, T ]×W, ϕ1(t, π) := ‖f2(t, π)− f2(t, π̂)‖, and ϕ

0
1 : [0, T ]×W → R, defined by, for

all (t, π) ∈ [0, T ]× W, ϕ0
1(t, π) := ‖f02(t, π) − f02(t, π̂)‖. Note that using (IC4) and

Lemma 2.10, we have for all π ∈ W, ϕ0
1(·, π) ∈ NPC0

d([0, T ],R). Besides, using
(3.18), we have for all π ∈ W, for all t ∈ [0, T ], ϕ0

1(t, π) ≤ 2κ(t). Next, using (IC5),
we have, for all t ∈ [0, T ], lim

π→π̂
ϕ0
1(t, π) = ϕ0

1(t, π̂) = 0.

Therefore, using the Dominated Convergence Theorem of Lebesgue, the functional

ψ0
1 : W → R, defined by, for all π ∈ W, ψ0

1(π) :=
∫ T

0
ϕ0
1(t, π) dt, is continuous at π̂

i.e.

lim
π→π̂

ψ0
1(π) = ψ0

1(π̂) = 0. (3.20)

Using (V3) and Lemma 2.10, we have, for all π ∈ W, ϕ1(·, π) ∈ NPC0
d([0, T ],R).

From (V6) we have ,∀π ∈ W, ∀t ∈ [0, T ], ϕ1(t, π) ≤ 2c(t).
Besides, using (V5), we have, for all t ∈ [0, T ], lim

π→π̂
ϕ1(t, π) = ϕ1(t, π̂) = 0.

Consequently, using the Dominated Convergence Theorem of Lebesgue, the func-

tional ψ1 : W → R, defined by, for all π ∈ W, ψ1(π) :=
∫ T

0
ϕ1(t, π) dt, is continuous

at π̂ i.e.

lim
π→π̂

ψ1(π) = ψ1(π̂) = 0. (3.21)
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For all π ∈ W, for all t ∈ [0, T ], we have the following inequalities:

‖p[π](t)− p[π̂](t)‖ = ‖p[π](T ) +
∫ t

T
[−p[π](s) ◦ f2(s, π)− f02(s, π)] ds−

(p[π̂](T ) +
∫ t

T
[−p[π̂](s) ◦ f2(s, π̂)− f02(s, π̂)]ds)‖

≤ ‖p[π](T )− p[π̂](T )‖+
∫ T

t
‖p[π](s) ◦ f2(s, π)− p[π̂](s) ◦ f2(s, π̂)‖ ds

+
∫ T

t
‖f02(s, π) − f02(s, π̂)‖ds

≤ ‖p[π](T )− p[π̂](T )‖+
∫ T

t
‖p[π](s) ◦ f2(s, π)− p[π̂](s) ◦ f2(s, π)+

p[π̂](s) ◦ f2(s, π)− p[π̂](s) ◦ f2(s, π̂)‖ ds+
∫ T

t
‖f02(s, π)− f02(s, π̂)‖ds

≤ ‖p[π](T )− p[π̂](T )‖+
∫ T

t
‖p[π](s)− p[π̂](s)‖‖f2(s, π)‖ ds

+
∫ T

t
‖p[π̂](s)‖‖f2(s, π)− f2(s, π̂)‖ ds+ ψ0

1(π)
≤ ‖p[π](T )− p[π̂](T )‖+

∫

[t,T ]
‖p[π](s)− p[π̂](s)‖ c(s) dm1(s) + ‖p[π̂]‖∞ψ1(π)

+ψ0
1(π).

Since [s 7→ ‖p[π](s)−p[π̂](s)‖] ∈ C0([0, T ],R) and c ∈ L1(([0, T ],B([0, T ])),m1;R+),
by using the lemma of Gronwall ([1], p.183), we have, for all t ∈ [0, T ],
‖p[π](t)− p[π̂](t)‖ ≤ [‖p[π](T )− p[π̂](T )‖+ ‖p[π̂]‖∞ψ1(π) +
ψ0
1(π)] exp(

∫

[t,T ]
c(s) dm1(s)).

Therefore, we have

‖p[π]−p[π̂]‖∞ ≤ [‖p[π](T )−p[π̂](T )‖+‖p[π̂]‖∞ψ1(π)+ψ
0
1(π)] exp(

∫

[0,T ]

c(s) dm1(s)).

(3.22)
Hence, using (3.19), (3.20) and (3.21), we have lim

π→π̂
‖p[π]− p[π̂]‖∞ = 0.

Consequently, we have [π 7→ p[π]] ∈ C0(W, (PC1([0, T ], X∗), ‖ · ‖∞)). �

Next, we consider the function Ψ2 : W → Z∗, defined by, for all π ∈ W, for all
δπ ∈ Z,

Ψ2(π) · δπ :=

∫

[0,T ]

DH,4f
0(t, x[π](t), u[π](t), π) · δπ dm1(t).

Lemma 3.7. Ψ2 ∈ C0(W, Z∗).

Proof. Let π̂ ∈ W. We consider the fonction ϕ0
2 : [0, T ] × W → R defined by

ϕ0
2(t, π) := ‖f04(t, π)− f04(t, π̂)‖.

Using (IC6), we have, for all π ∈ W, ϕ0
2(·, π) ∈ L0(([0, T ],B([0, T ])), (R,B(R))).

Next, using (3.18), we have, ∀π ∈ W, ∀t ∈ [0, T ], ϕ0
2(t, π) ≤ 2κ(t). Besides, from

(IC5), we have, for all t ∈ [0, T ], lim
π→π̂

ϕ0
2(t, π) = ϕ0

2(t, π̂) = 0. Hence, using the

Dominated Convergence Theorem of Lebesgue, the functional ψ0
2 : W → R, defined

by, ψ0
2(π) :=

∫

[0,T ]
ϕ0
2(t, π) dm1(t) is continuous at π̂ i.e.

lim
π→π̂

ψ0
2(π) = ψ0

2(π̂) = 0. (3.23)

For all π ∈ W, we have ‖Ψ2(π) −Ψ2(π̂)‖ ≤ ψ0
2(π).

Conseqently, using (3.23), we have lim
π→π̂

‖Ψ2(π)−Ψ2(π̂)‖ = 0. Hence, we have proven

the lemma. �

Now, we consider, the function Ψ3 : W → Z∗, defined by, for all π ∈ W, for all
δπ ∈ Z, Ψ3(π) · δπ :=

∫

[0,T ]
p[π](t) ·DH,4f(t, x[π](t), u[π](t), π) · δπ dm1(t).

Lemma 3.8. Ψ3 ∈ C0(W, Z∗).
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Proof. Let π̂ ∈ W. We consider the function ϕ2 : [0, T ] × W → R, defined by
ϕ2(t, π) := ‖f4(t, π)− f4(t, π̂)‖.
From (V6), we have, for all π ∈ W, ϕ2(·, π) ∈ L0(([0, T ],B([0, T ])), (R,B(R))).
Moreover, using (V6), we also have, ∀π ∈ W, ∀t ∈ [0, T ], ϕ2(t, π) ≤ 2c(t). Besides,
from (V5), we have, for all t ∈ [0, T ], lim

π→π̂
ϕ2(t, π) = ϕ2(t, π̂) = 0. Hence, using the

Dominated Convergence Theorem of Lebesgue the functional ψ2 : W → R, defined
by π ∈ W, ψ2(π) :=

∫

[0,T ] ϕ2(t, π) dm1(t), is continuous at π̂ i.e.

lim
π→π̂

ψ2(π) = ψ2(π̂) = 0. (3.24)

For all π ∈ W, we have ‖p[π](t) ◦ f4(t, π)− p[π̂](t) ◦ f4(t, π̂)‖
= ‖p[π](t) ◦ f4(t, π)− p[π̂](t) ◦ f4(t, π) + p[π̂](t) ◦ f4(t, π)− p[π̂](t) ◦ f4(t, π̂)‖
≤ ‖p[π]− p[π̂]‖∞c(t) + ‖p[π̂]‖∞ϕ2(t, π).
Consequently, we obtain

‖Ψ3(π)−Ψ3(π̂)‖ ≤ ‖p[π]− p[π̂]‖∞

∫

[0,T ]

c(t) dm1(t) + ‖p[π̂]‖∞ψ2(π).

Consequently, using Lemma 3.6 and (3.24), we obtain lim
π→π̂

‖Ψ3(π) − Ψ3(π̂)‖ = 0.

Therefore, we have proven this lemma. �

From (3.17), remark that

∀π ∈ W,
DGV [π] = DH,2g0(x[π](T ), π) +

∑m
i=1 λi[π]DH,2g

i(x[π](T ), π)
+
∑q

j=1 µj [π]DH,2h
j(x[π](T ), π) + Ψ2(π) + Ψ3(π).







Consequently, using (CT3) and Lemmas 3.5, 3.7 and 3.8, we obtain that, DGV ∈
C0(W, Z∗). Therefore, using Corollary 2, p. 144 in [1], we obtain that V is Fréchet
differentiable on W and DFV [π] = DGV [π] for all π ∈ W, and therefore DFV ∈
C0(W, Z∗).
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letin de Mathématiques Économiques, No14, Mars 1977.
[11] L. Schwartz, Cours d’analyse; tome 1, Hermann, Paris, 1967.
[12] H. Yilmaz, A generalization of multiplier rules for infinite-dimensional optimization prob-

lems, Optimization, 70(8), 1825-1835, 2021.



26 J. BLOT, H. YILMAZ
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Université Paris 1 Panthéon-Sorbonne, centre P.M.F.,

90 rue de Tolbiac, 75634 Paris cedex 13, France.

Email address: yilmaz.research@gmail.com


	1. Introduction
	2. Statements of the Pontryagin Principles
	2.1. Pontryagin principle for the problem of Bolza
	2.2. Pontryagin principles for the problem of Mayer
	2.3. Proofs of results for the problem of Mayer
	2.4. Proof of the results of the problem of Bolza

	3. Envelope theorems
	3.1. Main results
	3.2. Proof of Theorem 3.1
	3.3. Proof of Corollary 3.2
	3.4. Proof of Corollary 3.3

	References

