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ABSTRACT

Studying brain-injured patients is important for investigating
structure–function relationships using neuroimaging tech-
niques. Voxel-based lesion-symptom mapping (VLSM) has
increasingly been advocated as a relevant approach to detect
structure–function associations in neuroimaging studies. The
VLSM method involves mapping the relationship between
brain injuries and behavioral performance on a voxel-by-
voxel basis. This means that the statistical relationship be-
tween damage and behavior (across patients) is computed
separately for each voxel. However, one could expect voxels
characterizing group differences to be localized into spa-
tially consistent regions rather than randomly distributed
over the brain. Thus, in this paper, we propose to depart
from conventional models to characterize and exploit this
spatial consistency. More precisely, we derive a Bayesian
model that explicitly accounts for spatial correlations be-
tween neighboring voxels using a Markov random field. Our
results highlight that the proposed approach outperforms the
conventional ones. Besides, it has the great advantage of
possibly reducing the number of patients and identifying new
language areas, which are two crucial insights in the targeted
medical context.

Index Terms— Bayesian inference, Markov random
field, stroke, LAST test.

1. INTRODUCTION

Voxel-based lesion-symptom mapping (VLSM) [1] aims at
identifying the brain areas that are involved in some specific
functions such as the language considered hereafter. Lan-
guage pathology is a common and serious complication after
stroke. According to epidemiological studies, nearly 25-30%
of stroke patients develop such a defect. Lesion-based anal-
ysis has been mostly investigated under the same statistical
framework: null hypothesis significance testing (NHST). The
latter classically allows one to choose between two compet-
ing statistical hypotheses: H0 (referred to as the null hypoth-
esis) and H1 (the alternative one). When specifically used
in lesion-based analysis, NHST is conducted voxel-by-voxel

and the voxels demonstrating significant difference are con-
sidered as being involved in language disorders.

In this paper, we follow a significantly different approach.
Based on language screening test (LAST) scores and lesions
maps from stroke patients, we directly estimate the language
areas, without resorting to any hypothesis testing. Instead,
the mapping of these brain regions of interest is formulated
as an estimation problem which is solved within a Bayesian
framework. Besides, this framework has the great advantage
of offering the possibility to exploit spatial consistency of the
regions within the brain by equipping the Bayesian model
with a Markov random field (MRF). Instanced as an Ising
potential, this prior allows to spatially regularize the map-
ping, departing from a more conventional spatially indepen-
dent voxel-by-voxel analysis. It is particularly suitable when
the number of patients is reduced to reduce uncertainty.

The sequel of this paper is organized as follows. The
VLSM approach is reviewed in Section 2. Section 3 intro-
duces the proposed Bayesian estimation model. The Gibbs
sampler that generates samples asymptotically distributed ac-
cording to the posterior distribution of the proposed model is
derived in Section 4. The clinical data, their processing, the
competing statistical tests and the numerical results are de-
scribed in Section 5. Section 6 concludes this paper.

2. PROBLEM STATEMENT

Given a cohorte of N subjects, let yn denote a score rep-
resenting the task performance reached by the nth subject
(n = 1, . . . , N ). In this paper, since we are mainly interested
in locating the brain regions involved in the language, this
score is considered as the outcome of the language screening
test (LAST) [2]. Thus we denote by y = [y1, . . . , yN ] the ob-
served LAST scores from the N subjects. In the LAST test,
there are two subscores, namely an expression score (with a
maximum of 8 points) and a receptive score (with a maximum
of 7 points). The two subscores are summed and the corre-
sponding total (with a maximum of 15) is considered as the
observed score. When it is less than 15, the patient is consid-
ered as symptomatic (i.e., aphasic) while he/she is considered



as asymptomatic when the score reaches the maximum, i.e.,
for all n = 1, . . . , N ,

yn ∈
{

{0, . . . , 14} , if individual ♯n is symptomatic;
{15} , if individual ♯n is asymptomatic.

Within a lesion-based study, the lesions are assumed to be
(manually or automatically) delineated for each subject to
produce binary lesion maps which are co-registered to a
common stereotaxic space. These maps are gathered in the
N × J-matrix Z = [z1, . . . , zJ ] with zj = [z1,j , . . . , zN,j ]

T

(where J is the total number of voxels) such that

zn,j =

{
1, if voxel ♯j in patient ♯n is lesioned;
0, if voxel ♯j in patient ♯n is non-lesioned.

Given these two sets of observations y and Z, one aims
at identifying the voxels composing the language areas1.
In most of the lesion-based studies, a statistical analysis is
conducted following NHST. For each voxel, patients are par-
titioned into two groups according the state of this voxel (i.e.,
lesioned vs. non-lesioned). Based on this partioning, two
sets of scores can be defined according to group membership.
More precisely, we denote

yj
1 = {yn, n : zn,j = 1} and yj

2 = {yn, n : zn,j = 0}

the sets of scores obtained by patients whose jth voxel is le-
sioned and non-lesioned, respectively, with

nj
1 =

N∑
n=1

1(zn,j = 1) and nj
2 =

N∑
n=1

1(zn,j = 0)

their respective cardinalities. In lesion-symptom mapping,
one is interested in whether these two groups are significantly
different. In other words, for each voxel j ∈ {1, . . . , J},
given the sets of samples yj

1
iid∼ F1 and yj

2
iid∼ F2 with F1 and

F2 unknown, one wants to decide between the two competing
hypotheses

Hj
0 : F1 = F2 versus Hj

1 : F1 ̸= F2.

The significant voxels, i.e, such that Hj
0 is rejected, are con-

sidered as those belonging to language areas. In the medical
literature, this two-sample problem is usually addressed via
Student t-tests [1]. However, this strategy generally faces to
two limitations that may question its reliability. First, the nor-
mality assumption does not always hold. Second, due to the
fact that the number of subjects with lesions at a given voxel is
often small, the central limit theorem does not apply. One al-
ternative is to resort to nonparametric tests that do not rely on
asymptotic results. For instance, such an approach has been
adopted in [3] where a Bayesian nonparametric framework

1Hereafter, we refer to “language areas" the brain areas involved in lan-
guage disorder.

was derived. However, all aforementioned methods rely on
a voxel-wise analysis, i.e., by analyzing each voxel indepen-
dently of its neighbours. The aim of this work is to propose a
more realistic spatial model that includes spatial interactions
among neighbouring voxels. To this aim, the lesion-symptom
mapping task is formulated as a statistical estimation prob-
lem, rather than a testing procedure. The language areas are
located from stroke patients directly from the data. The next
section describes the proposed Bayesian estimation method.

3. BAYESIAN ESTIMATION MODEL

Contrary to the statistical test-based procedure described
above, locating the language areas is formulated as an infer-
ence task. It consists in estimating a set ω = [ω1, . . . , ωJ ]

T

of unobserved binary variables such that, for all j = 1, . . . , J ,

ωj =

{
1, if voxel ♯j belongs to language areas;
0, otherwise.

In what follows, J1 ⊂ {1, . . . , J} denotes the set of indexes
of voxels belonging to language areas with J1 = card {J1}.
Conversely, J2 ⊂ {1, . . . , J} denotes the set of indexes of
voxels not belonging to language areas with J2 = card {J2}
with J1 + J2 = J . These labels are estimated within a
Bayesian framework, whose key ingredients are introduced
below.

Likelihood – In the LAST test, any patient with a total out-
come less than 15 is considered as symptomatic. Thus, to sim-
plify the analysis, we propose to threshold the overall score
by introducing a set ȳ = [ȳ1, . . . , ȳN ] of diagnosis variables
such that, for all n = 1, . . . , N ,

ȳn =

{
1, if individual ♯n is symptomatic
0 if individual ♯n is asymptomatic.

In what follows, N1 (resp. N2) will denote the number of
symptomatic (resp. asymptomatic) patients, (N1+N2 = N ).
Then, the elements zn,j of the matrix Z defining the binary
lesion maps are assumed to be independent and identically
distributed according to Bernoulli distributions

zn,j |ωj = 0 ∼ Ber(θ) (1)
zn,j |ωj = 1, ȳn = 1 ∼ Ber(θ1) (2)
zn,j |ωj = 1, ȳn = 0 ∼ Ber(θ0) (3)

In (1), θ denotes the probability, across subjects, that a voxel
outside the language area is lesioned. In (2) and (3), θ1 and θ0
denote the lesion probability in the language area for symp-
tomatic and asymptomatic patients, respectively. The set of
unknown parameters is Ψ = {ω, θ, θ0, θ1}. We now endow
them with prior distributions.



Prior modelling – We assume that the parameters ω, θ, θ0
and θ1 are a priori independent. The lesion probabilities are
assigned Beta distributions

θ ∼ Beta(a, b) (4)
θ0 ∼ Beta(a0, b0) (5)
θ1 ∼ Beta(a1, b1). (6)

Regarding the parameter of interest ω, it is quite legitimate
to consider that the components ωj and ωk (j ̸= k) are not
independent but there are some spatial correlations between
neighboring voxels. To model this correlation, we consider
an Ising model with hyperparameter β

P
[
ωj = k|ω\j

]
∝ exp

 ∑
j′∈V(j)

βδ(k − ωj′)

 , k ∈ {0, 1}

where ω\j is the vector ω whose jth element has been re-
moved, V(j) denotes the set of indexes of neighboring voxels
of the jth voxel and δ is the Kronecker symbol. The corre-
sponding prior for ω can be written as

P [ω|β] = Z(β)−1 exp

 J∑
j=1

∑
j′∈V(j)

βδ(ωj − ωj′)

 . (7)

The amount of spatial correlation is controlled by the Ising
field parameter β. This latter determines the level of spatial
homogeneity between neighboring voxels. A value close to
zero would imply that neighboring voxels are independent.
In this work, its value will be assumed to be fixed and ajusted
beforehand. Its estimation can be conducted following the
strategies in [4–6].

4. GIBBS SAMPLER

By using the Bayes rule, the posterior distribution can be ex-
pressed as follows

π(Ψ|Z, ȳ) ∝ f(Z|ω, ȳ, θ, θ0, θ1)π(θ, θ0, θ1,ω)

∝ f(Z|ω, ȳ, θ, θ0, θ1)π(θ)π(θ0)π(θ1)π(ω)

where the likelihood f(z|ω, ȳ, θ, θ0, θ1) has been defined in
(1), (2) and (3), and the prior distributions π(θ), π(θ0), π(θ1)
and π(ω|β) in (4), (5), (6), and (7). It leads to

π(Ψ|Z, ȳ) ∝
N∏

n=1

∏
j∈J2

θznj (1− θ)1−znj

N1∏
n=1

∏
j∈J1

θ
znj

1 (1− θ1)
1−znj

N2∏
n=1

∏
j∈J1

θ
znj

0 (1− θ0)
1−znjθa−1(1− θ)b−1θa0−1

0 (1− θ0)
b0−1

θa1−1
1 (1− θ1)

b1−1 exp

β

J∑
j=1

∑
j′∈V(j)

δ(ωj − ωj′)

 .

Since computing the Bayesian estimates associated to this
posterior distribution is not straightforward, we propose to
generate samples asymptotically distributed according to
this posterior using a Gibbs sampler. It consists in drawing
samples according to the full conditional of each parameter
successively. These steps are detailed below.

Sampling according to π(θ|ω,Z) – The posterior probabil-
ity of having a lesioned voxel outside the language area is

π(θ|ω,Z) ∝ θa−1(1− θ)b−1
N∏

n=1

∏
j∈J2

θznj (1− θ)1−znj

∝ θa+(
∑N

n=1

∑
j∈J2

znj)−1(1− θ)b+NJ2−(
∑N

n=1

∑
j∈J2

znj)−1.

This conditional is recognisable as a Beta distribution with pa-
rameters a+

∑N
n=1

∑
j∈J2

znj and b+NJ2−
∑N

n=1

∑
j∈J2

znj .

Sampling according to π(θ1|ω,Z) – The posterior proba-
bility of having a lesioned voxel in language areas of symp-
tomatic subjects is

π(θ1|ω,Z) ∝ θα−1
1 (1− θ1)

b1−1
N1∏
n=1

∏
j∈J1

θ
znj

1 (1− θ1)
1−znj

∝ θ
a1+

(∑N1
n=1

∑
j∈J1

znj

)
−1

1 (1− θ1)
b1+N1J1−

(∑N1
n=1

∑
j∈J1

znj

)
−1

.

This is also recognisable as a Beta distribution with parame-
ters a1+

∑N1

n=1

∑
j∈J1

znj and b1+N1J1−
∑N1

n=1

∑
j∈J1

znj .

Sampling according to π(θ0|ω,Z) – The posterior probabil-
ity of having a lesioned voxel in language areas of asymp-
tomatic subjects is

π(θ0| . . . ) ∝ θa0−1
0 (1− θ0)

b0−1
N2∏
n=1

∏
j∈J1

θ
znj

0 (1− θ0)
1−znj

∝ θ
a0+

(∑N2
n=1

∑
j∈J1

znj

)
−1

0 (1− θ0)
b0+N2J1−

(∑N2
n=1

∑
j∈J1

znj

)
−1

.

This conditional is again a Beta distribution with parameters
a0 +

∑N2

n=1

∑
j∈J1

znj and b0 +N2J1 −
∑N2

n=1

∑
j∈J1

znj .

Sampling according to π(ω|θ, θ0, θ1,y,Z) – The vector ω
can be updated coordinate-by-coordinate using Gibbs moves.
For each voxel j ∈ {1, 2, . . . , J}, ωj is a binary variable
whose conditional distribution is defined by the probability

P
[
ωj = 1|ω\j , zj , ȳ

]
=

p1
p1 + p0

where, for k ∈ {0, 1},

pk = P
[
ωj = k|ω\j

]
f(zj |ωj = k, ȳ)

with

P
[
ωj = k|ω\j

]
∝ exp

β
∑

j′∈V(j)

δ(k − ωj′)





f(zj |ωj = 0, θ, ȳ) =

N∏
n=1

θznj (1− θ)1−znj

= θ
∑N

n=1 znj (1− θ)N−
∑N

n=1 znj ,

f(zj |ωj = 1, θ0, θ1, ȳ) =
∏

{n:ȳn=1}

θ
znj

1 (1− θ1)
1−znj

+
∏

{n:ȳn=0}

θ
znj

0 (1− θ0)
1−znj .

Note that the posterior distribution of ω also defines a MRF.
We next provide the numerical results demonstrating the

suitability of the proposed approach to VLSM studies.

5. EXPERIMENTS

Data and image processing – The analyzed data were col-
lected from N = 58 participants (47 men, 11 women) who
had suffered a single left-hemispheric stroke in the acute
phase (< 7 days) and admitted at the Neurology Department
of the Orléans Hospital in France. All patients, regardless of
the arterial distribution of their stroke, were included. The
mean age ± standard deviation is 66.1 ± 13.4 years. The
range is 19-91 years. The patients were evaluated with the
LAST test to provide the threshold score vector ȳ. MRI
was carried out and we used the diffusion-weighted imaging
(DWI) and the fluid-attenuated inversion-recovery (FLAIR)
sequences. The lesions were drawn directly on each pa-
tient’s DWI or Flair digital MRI image (choosing the best
contrasted one) using OSIRIX software. DWI or FLAIR
images were yoked to the T1 images so that the extent of
the lesion could be verified on these image sequences. Then,
we obtain a mask for each patient. MRI images were reg-
istered into MNI space (standard template of the Montreal
Neurological Institute) using the standard nonlinear spatial
normalization procedure from Statistical Parametric Mapping
(SPM12) (Wellcome Trust Centre for Neuroimaging) run-
ning under Matlab 2017a. We re-aligned and co-registered
3D images with a 5-th Degree B-Spline interpolation method
in SPM12 and then averaged them. Masks were re-sliced and
normalized to the native space of the averaged 3D images
with trilinear interpolation by voxels of 1mm3. We finally
obtain the matrix Z gathering the N binary maps locating the
lesioned and non-lesioned voxels.

Compared methods – We aim at assessing the performance
of the proposed Bayesian estimation method in contrast to
some competing methods. The proposed model is compared
to some frequentist tests: the t-test used in the original VLSM
of [1], two common frequentist nonparametric procedures,
namely the Kolmogorov-Smirnov and the Mann-Whitney
tests, and the Bayesian nonparametric test proposed in [3].
The total number of analysed voxels in the competitive meth-
ods is V = 7.109.137.

The original VLSM technique has been implemented us-
ing the nonparametric mapping (NPM) software, distributed
as part of the MRIcron toolset. In VLSM, t-tests are per-
formed in each voxel. It is usual to confine tests to voxels
in which there are at least five patients with a lesion and five
patients without a lesion; this is the approach we have taken
in the current study for all frequentist tests. The significance
level is 5%. As for the BNP test, the procedure described
in [3] has been applied.

Regarding the proposed estimation model we consider in
this preliminary study a 2D MRF model. The 2D MRF are
considered for single slices of size 181×227. A 4-pixel neigh-
bourhood structure is considered for the MRF prior model.
The hyperparameter β is set to 2.2. This value has been cho-
sen by testing several values of β on synthetic data (results not
shown here due to lack of space) and choosing the one that
minimizes the mean squared error. Future work will study the
estimation of β jointly with the other unknown parameters of
the model. The other hyperparameters have been chosen as
follows in agreement with the expected values by the neurol-
ogists: a = b = a0 = b0 = a1 = b1 = 10−3; θ = 0.15,
θ1 = 0.75, θ0 = 0.02. The Gibbs sampler has been run
using 1000 iterations including 500 iterations of burn-in pe-
riod. We obtain the following posterior mean estimates using
MCMC post burn-in samples: θ̂ = 0.0072, θ̂0 = 0.0012 and
θ̂1 = 0.1543. A trivial choice for the point estimate ω̂ of
the map ω would be the posterior mean. However as men-
tioned in [7], for many types of images, particularly binary
images, the use of posterior means does not provide sensible
solutions. Other possibilities are available, such as the maxi-
mum a posteriori (MAP) estimators or the marginal posterior
modes (MPM) considered in this work. The jth component
of the MPM vector ω̂MPM is the modal value of the posterior
marginal. It can be computed as

ω̂MPM
j =

{
1 if P(ωj = 1|θ, θ0, θ1,y,Z) > 1/2

0 if P(ωj = 1|θ, θ0, θ1,y,Z) ≤ 1/2

Given M samples {ω(1)
j , . . . , ω

(M)
j } produced by the Gibbs

sampler, this MPM can be approximated as

ω̂MPM
j =

{
1 if card{ω(m)

j |ω̂(m)
j = 1} ≥ M/2

0 otherwise.

Numerical Results – As in [3], we first investigated the re-
sults obtained using the total number of patients, n = 58.
Results not shown here reveal that all competing methods lo-
cated more or less the classical language regions known as
Broca’s and Wernicke’s areas. The former is involved mostly
in the production of speech, while receptive speech has tra-
ditionally been associated with the latter. Second, since our
goal was to reduce the number of patients involved in VLSM
studies, we tried smaller sample sizes for which the uncer-
tainty would be higher. The most remarkable results are the



Fig. 1. Five panels of images corresponding to: t-test (row 1),
Mann-Whitney (row 2), Kolmogorov-Smirnov (row 3), BNP-PT
(row 4) and the proposed estimation method (row 5).

ones with the sample size of n = 34, shown in Fig. 1 for
the five compared methods. In this figure, each row depicts
the language areas in red identified by a given method. The
columns correspond to different views of the brain. The fre-
quentist tests fail in recovering the whole Wernicke’s area
(t-test and Mann-Whitney) and Broca’s and Wernicke’s ar-
eas (Kolmogorov). The known language areas are located
in the left hemisphere of the brain (at the right hand side
in images of Fig. 1), from the anterior part (Broca) to the
posterior one (Wernicke). The newly proposed estimation
method not only recovers these two regions, but also recovers
the supramarginal gyrus, a third language region that is less
well-known than Broca and Wernicke’s areas. This result is
promising given the small sample size.

6. CONCLUSION

Voxel-based lesion-symptom mapping (VLSM) is an impor-
tant method for basic and translational human neuroscience
research. In VLSM studies, an association between deficit

severity and lesion status is tested in each voxel, producing a
statistical map of the strength of relationship between lesion
status and deficit. However, this map is the result of indi-
vidual tests across hundreds of thousands of voxels. Further-
more, one of the main limitations of classical VLSM studies
is that they require a great number of patients. In this paper, a
spatially coherent Bayesian estimation method was proposed
to address the problem of recovering the language brain ar-
eas in stroke patients. Spatial correlation was introduced into
the model by a Markov random field that promoted depen-
dence between neighboring pixels. The method was success-
fully applied to real data and the results showed that the pro-
posed technique outperformed state-of-the-art methods when
the sample size is reduced. Moreover it also allowed a less
well-known language area to be identified. However, the ob-
tained results depend on the regularization coefficient β. In
this work, this parameter has been fixed a priori based on
simulation studies. Estimating this parameter is an interest-
ing problem that will be investigated in future work.
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