
HAL Id: hal-03704664
https://hal.science/hal-03704664

Submitted on 16 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource- and Power-Efficient High-Performance Object
Detection Inference Acceleration Using FPGA

Solomon Negussie Tesema, El-Bay Bourennane

To cite this version:
Solomon Negussie Tesema, El-Bay Bourennane. Resource- and Power-Efficient High-Performance Ob-
ject Detection Inference Acceleration Using FPGA. Electronics, 2022, 11 (12), pp.1827. �10.3390/elec-
tronics11121827�. �hal-03704664�

https://hal.science/hal-03704664
https://hal.archives-ouvertes.fr

Citation: Tesema, S.N.; Bourennane,

E.-B. Resource- and Power-Efficient

High-Performance Object Detection

Inference Acceleration Using FPGA.

Electronics 2022, 11, 1827. https://

doi.org/10.3390/electronics11121827

Academic Editor: Konstantinos

Masselos

Received: 12 May 2022

Accepted: 4 June 2022

Published: 8 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Resource- and Power-Efficient High-Performance Object
Detection Inference Acceleration Using FPGA
Solomon Negussie Tesema * and El-Bay Bourennane

Laboratory ImViA, University of Burgundy, 21000 Dijon, France; ebourenn@u-bourgogne.fr
* Correspondence: solomon-negussie_tesema@etu.u-bourgogne.fr

Abstract: The success of deep convolutional neural networks in solving age-old computer vision
challenges, particularly object detection, came with high requirements in terms of computation
capability, energy consumption, and a lack of real-time processing capability. However, FPGA-based
inference accelerations have recently been receiving more attention from academia and industry due
to their high energy efficiency and flexible programmability. This paper presents resource-efficient yet
high-performance object detection inference acceleration with detailed implementation and design
choices. We tested our object detection acceleration by implementing YOLOv2 on two FPGA boards
and achieved up to 184 GOPS with limited resource utilization.

Keywords: hardware acceleration; object detection; FPGA; deep learning; YOLOv2; CNN

1. Introduction

Object detection is one of the most critical areas of computer vision due to its vast
applications in surveillance and security, medical imaging, media and entertainment, and
transport automation, to name a few. Though it has been an old and challenging quest
for researchers and academia to perfect object detection performance, it is only in recent
years that significant progress has been made due to the success of convolutional neural
networks in image classification [1]. The current trend in object detection relies on the use
of very deep image classification convolutional neural network(s) (CNNs) repurposed to
perform detection tasks [2–5]. However, the challenge with deep CNN-based detectors is
the intensive computation these require in the order of multiple GOPs, which can only be
rendered by utilizing high-performance computers and GPUs that consume high energy
and resources. On the other hand, most applications require real-time inference capability
with a constrained power source for real-time decision-making. Thus, low energy and
resource-constrained small electronics such as embedded systems have benefited little from
the leap in the accuracy of object detectors as the achievement also required more advanced
machines or clusters of machines [6].

Nonetheless, recently field-programmable gate arrays (FPGAs) and application-specific
integrated circuits (ASICs) are gaining increased attention as energy-efficient and real-time
time alternatives [6–9]. Although FPGAs and ASICs hardly reach the same or increased
throughput as GPUs, they consume less energy. On the other hand, compared to FPGAs,
the high cost and long development period of ASICs also make them unfavorable as it is
challenging to keep them up with the rapid changes of deep CNNs. As a result, FPGA-
based deep CNN inference accelerations are becoming a center of focus for lightweight and
real-time deep CNNs for embedded systems.

Despite FPGA-based machine learning implementations generally gaining traction,
the progress is slow and marked by disjoined and irregular individual efforts, unlike
the software world where there is a broad community base and frameworks. Recent
hardware acceleration implementations exhaustively but inefficiently consume onboard
resources, such as DSPs, BRAMs, and logic cells, sometimes beyond what is recommended

Electronics 2022, 11, 1827. https://doi.org/10.3390/electronics11121827 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11121827
https://doi.org/10.3390/electronics11121827
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5763-902X
https://doi.org/10.3390/electronics11121827
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11121827?type=check_update&version=2

Electronics 2022, 11, 1827 2 of 24

by development boards. Such implementations lead to high power consumption and are
costly in terms of energy. On the other hand, extreme data quantization, typically one to
three-bit quantization, has been tried to accelerate CNN on FPGA. However, although such
quantization quickly achieves more than real-time speed, their accuracy loss is significant.
This paper, however, presents a detailed end-to-end hardware acceleration implementation
while maintaining high performance and speed and—at the same time—highly efficient
resource utilization. Although we demonstrate our accelerator design based on the well-
known YOLOv2 detector, our object detection implementation is easily customizable to
different YOLO-like one-stage accelerators. The source code will be made publicly available
on GitHub.

2. Related Works

Increasing accuracy performance has been at the center of computer vision chal-
lenges for a long time. In this quest for increased accuracy, object detection networks, or
CNN-based networks in general, have become very deep, complex, heavy, resource-wise
expensive, and energy inefficient. Top state-of-the-art object detection networks are based
on deep CNN networks and have tens or hundreds of layers and over 50 million parame-
ters [3,10]. Moreover, at the core of these heavy models is a convolution operation taking
the most resource and computation time, reportedly over 90% [11] models’ execution time.
On the other hand, many real-world problems of computer vision demand real-time and
lightweight detectors that fit on an embedded system. As a result, FPGA’s support for high
parallelism and CNN’s suitability for such high parallelism elevates the prospect of FPGA
becoming the leading hardware solution for accelerating computer vision applications.
Unfortunately, most top-performing object detectors are too big to fit into most FPGA’s
on-chip memory, making it difficult or impossible to fully exploit the parallelism support
in FPGA and the convolution process.

Over the years, many authors have proposed and tried different alternatives for
accelerating CNN-based networks, particularly the convolution layer. An extensive review
of hardware acceleration methods from multiple points of view can be read from the review
works of [12,13]. Some optimization methods include replacing the standard convolution
algorithm altogether with faster algorithms such as fast Fourier transform (FFT) [14,15] or
Winograd [16,17]. Other methods based on the transformation of convolution computation
include performing convolution as matrix multiplication [18].

However, most optimization methods nowadays focus on bettering the standard con-
volution by exploiting its parallelism capability via common loop optimization techniques
such as loop unrolling, pipelining, and interchanges [19]. In addition to loop optimization
concepts such as maximizing data reuse, employing double-buffering to minimize memory
access bottleneck or streamlined dataflows are integral parts of modern hardware accel-
eration designs [20]. Algorithms such as roofline modeling [19] have been used to pick
optimum design parameters such as tile size and unroll factors and exploring design spaces.

Furthermore, recent works have also considered data quantization, model pruning,
and compression—a core first step of deep CNN implementations on FPGAs as lighter
models tend to be faster and inexpensive in terms of resources. These approaches include
quantizing the trained weights and biases to smaller precisions (bits), as small as one-bit
quantization [6]. Although such quantizations are highly hardware efficient or fast, they are
also prone to severe accuracy loss. Another related optimization mechanism is to exploit
the sparsity of trained networks weights [21].

In summary, current hardware-acceleration implementations utilize one or more of the
above techniques for maximum throughput, efficient resource utilization, and low-power
consumption while maintaining the smallest possible drop in accuracy. However, these
objectives largely contradict one another, and researchers end up with designs that are
inefficient in terms of their accuracy, resource use and power efficiency. However, in this
article, we give an in-depth explanation of our design and implementation of an object
detection accelerator with the objective of fair resource utilization while preserving the

Electronics 2022, 11, 1827 3 of 24

highest possible accuracy and detection speed. After all, object detection should be fast
and accurate, not only fast or accurate.

3. Background
3.1. Overview of Object Detection Models

Two deep CNN-based approaches dominate modern generic object detection imple-
mentations: two-stage [5,22] and one-stage object detectors [2–4]. As the names imply,
two-stage object detectors perform detection in two core stages; the first stage proposes the
regions and the second stage classifies and scores each proposed region by object class and
location. One-stage detectors, however, complete both the localization and classification
in one forward pass using one unified deep CNN network. Due to one-stage detectors’
unified single-network approach, they are relatively less complex, lightweight, and faster
although they can be somewhat though not significantly less accurate. As a result, many
hardware acceleration implementations of object detection networks concentrate on these
network types [23]. One well-known and widely implemented object detection network is
YOLO [2], particularly YOLO versions 2 and 3, or YOLOv2 [24] and YOLOv3 [10] as they
are commonly known, respectively. As a result, we also target one-stage object detector
YOLO, particularly YOLOv2, as the basis for our hardware-accelerated object detection
design and implementation.

Commonly, an object detection model is a repurposed image classification network
obtained after removing the output layer of a classifier and adding a few more convolution
layers tailored toward detection. For example, YOLOv2 repurposes a classification network
called Darknet-19, a network with 19 convolutional layers—hence the name Darknet-19—
into a unified object detection network with a few extra layers, as shown in Figure 1 or in
greater detail in Table 1. YOLOv2 has 31 layers, excluding the batch normalization and
activation layers. The 31 layers comprise 23 convolutional layers, 5 max-pooling layers,
1 concatenation layer, 1 route layer, and 1 space-to-depth reorganization layer. Moreover,
there is an associated batch normalization and the Leaky Relu activation layer following
each convolutional layer, except the final detection head, where the activation is linear.

We will then briefly summarize the working principle of YOLO-based object detectors.
YOLO generally perceives an input image as divided into S× S grids of equal sizes, and
each grid cell predicts at least a K object class, confidence score, and bounding box param-
eters. K is the number of pre-prepared anchor boxes generated from training sets using
K-means clustering. In post-processing, the predictions are filtered out using objectness
confidence thresholding and non-max suppression mechanisms.

Recent versions of YOLO such as YOLOv3 and YOLOv4 and their derivatives such
as MultiGridDet [25] have multiscale output and are better at handling the detection of
varying scales of objects while also very deep and unfortunately heavy for small-scale
FPGAs and other embedded systems. There have been various efforts to reduce the size
of YOLO while harvesting the benefit of the progressive increase in the network’s depth
and complexity with no or minimal accuracy loss. Some of these modifications include
removing some convolutional layer(s) or batch normalization layers from the original
implementation [26], reshaping the output layer [25,27] or converting the one-hot encoding
into binary encoding [28]. Following this section, we briefly summarize some of the core
layers of YOLOv2-based object detection networks.

Electronics 2022, 11, 1827 4 of 24

Figure 1. YOLOv2 object detection model layers and their corresponding tensor shapes. ConvBNL
stands for convolution followed by batch normalization and Leaky Relu activation layers. Numbers
0–31 show the YOLOv2 layers. For a detailed understanding of each layer’s parameter size, refer to
Table 1.

Table 1. YOLOv2 layers and their input and output sizes presented in detail.

Layer Layer Type Filters Size/Stride Input Size Output Size

D
ar

kn
et

-1
9

B
ac

kb
on

e

0 ConvBNL 32 3× 3/1 416× 416× 3 416× 416× 32
1 Max Pool 2× 2/2 416× 416× 32 208× 208× 32
2 ConvBNL 64 3× 3/1 208× 208× 32 208× 208× 64
3 Max Pool 2× 2/2 208× 208× 64 104× 104× 64
4 ConvBNL 128 3× 3/1 104× 104× 64 104× 104× 128
5 ConvBNL 64 1× 1/1 104× 104× 128 104× 104× 64
6 ConvBNL 128 3× 3/1 104× 104× 64 104× 104× 128
7 Max Pool 2× 2/2 104× 104× 128 52× 52× 128
8 ConvBNL 256 3× 3/1 52× 52× 128 52× 52× 256
9 ConvBNL 128 1× 1/1 52× 52× 256 52× 52× 128
10 ConvBNL 256 3× 3/1 52× 52× 128 52× 52× 256
11 Max Pool 2× 2/2 52× 52× 256 26× 26× 256
12 ConvBNL 512 3× 3/1 26× 26× 256 26× 26× 512
13 ConvBNL 256 1× 1/1 26× 26× 512 26× 26× 256
14 ConvBNL 512 3× 3/1 26× 26× 256 26× 26× 512
15 ConvBNL 256 1× 1/1 26× 26× 512 26× 26× 256
16 ConvBNL 512 3× 3/1 26× 26× 256 26× 26× 512
17 Max Pool 2× 2/2 26× 26× 512 13× 13× 512
18 ConvBNL 1024 3× 3/1 13× 13× 512 13× 13× 1024
19 ConvBNL 512 1× 1/1 13× 13× 1024 13× 13× 512
20 ConvBNL 1024 3× 3/1 13× 13× 512 13× 13× 1024
21 ConvBNL 512 1× 1/1 13× 13× 1024 13× 13× 512
22 ConvBNL 1024 3× 3/1 13× 13× 512 13× 13× 1024
23 ConvBNL 1024 3× 3/1 13× 13× 1024 13× 13× 1024

D
et

ec
ti

on
H

ea
d

24 ConvBNL 1024 3× 3/1 13× 13× 1024 13× 13× 1024
25 Route 16 26× 26× 512
26 ConvBNL 64 1× 1/1 26× 26× 512 26× 26× 64
27 Reorg /2 26× 26× 64 13× 13× 256
28 Concat 24 and 27 13× 13× 1280
29 ConvBNL 1024 1× 1/1 13× 13× 1280 13× 13× 1024
30 ConvBNL 425 1× 1/1 13× 13× 1024 13× 13× 425
31 Detection-head (output post-processing)

Electronics 2022, 11, 1827 5 of 24

3.2. Convolution Layer

The convolution layer is the core and computation-intensive part of CNN-based
networks, reportedly taking over 90% of the network’s execution time [11]. Consider
Figure 2 showing a particular convolutional layer with an input feature map (IFM) tensor
of shape X = Ni f × Nix × Niy, weight kernel of shape W = No f × Ni f × Nkx × Nky and an
output feature map (OFM) of shape O = No f × Nox × Noy. The subscripts o f , ox, oy stand
for the output feature map depth, row (height), and column (width) of the output feature
map. Similarly, subscripts i f , ix, iy serve the same purpose but for the input feature map.
We will stick to these notations throughout the paper for consistency.

Figure 2. Feature maps and weight tensors representation of a particular convolution layer. Although
not indicated in the figure, usually convolution layers have also learned bias (B) parameters of size
equal to the number of output channels, that is No f . That is one bias value per output channel.

Convolution is thus a process of repeated multiply and accumulate operations of a
pre-trained weight kernel of shape Ni f × Nkx × Nky against an input feature map or an
input image of a shape Ni f × Nix × Niy by striding the weight kernel across the surface
of the input with a stride of size S. This process is repeated No f times—once for each of
the No f different kernels yielding an output of size No f × Nox × Noy. The Equation (1)
mathematically describes this convolution process.

O[m][x][y] =
K−1

∑
i=0

K−1

∑
j=0

N−1

∑
n=0

(X[n][xi][yi]× W[m][n][i][j]) + B[m] (1)

where

xi = x× S + i

yi = y× S + j

K = Nkx = Nky, N = Ni f

m ∈ {0, No f }, x ∈ {0, Nox}, & y ∈ {0, Noy}

Electronics 2022, 11, 1827 6 of 24

Equation (1) assumes that the width and height of the weight kernels to be equal as
is the case with YOLOv2 and almost all modern CNN-based networks. The relationship
between the input and output feature map width and height is also determined using
Equations (2) and (3). The P in the equation stands for the zero-padding of the input feature
map so that the resulting output feature map will have either a ‘valid’ or ‘same’ shape.
Valid is for when the input is not padded, meaning that P = 0 and the output will have a
slightly shorter width and height compared to the input feature map, whereas in the ’same’
convolution, the output and input will have the same width and height and hence P is
different from zero.

Nox =
Nix + 2P− Nkx

S
+ 1 (2)

Noy =
Niy + 2P− Nky

S
+ 1 (3)

The pseudocode in Listing 1 demonstrates that the unoptimized convolution will
have six nested loops for a single-input image or input feature map. From this, we can
understand that there are No f × Ni f × Nox × Noy × Nkx × Nky total multiply–accumulate
(MAC) operations for every convolution layer. The X, W, B and the O in the pseudocode
stands for IFM, weight, bias and OFM, respectively.

Listing 1: Unoptimized standard convolution pseudocode for batch-size = 1.
1 for (m=0; m<Nof;m++){
2 for (y=0; y<Noy;y+=S){
3 for (x=0; x<Nox;x+=S){
4 for (n=0; n<Nif;n++){
5 for (ky=0; ky <Nky;ky++){
6 for (kx=0; kx <Nkx;kx++){
7 O[m][x][y]+= X[ni][S*x+kx][S*y+ky] * W[m][n][kx][ky];
8 }
9 }

10 }
11 O[m][x][y] += B[m];
12 }
13 }
14 }

3.3. Pooling Layer

Another common layer type in a modern object detection CNN network is a pooling
layer. A pooling layer reduces the preceding layer’s spatial dimensions and facilitates
the prospect of a deeper network. Moreover, it also increases the network’s translation
invariance by omitting pixels from a feature map through either maximum or average
pooling. It also minimizes, to a lesser extent, network overfitting to the training dataset. It
is worth noting that the pooling layer has no trainable parameter. Accordingly, more recent
state-of-the-art models utilize alternative layers such as up-sampling and down-sampling
to enable learned pooling. The pooling layer, particularly the max-pooling layer, has three
nested loops as depicted in pseudocode Listing 2. — Solomon: I believe the english is
correct and the meaning after and before the change are the same.

Listing 2: Original max-pooling pseudocode.
1 for (no=0; no <Nof;no++)
2 for (y=0; y<Noy;y+=S)
3 for (x=0; x<Nox;x+=S)
4 O[no][x][y]=Max(X[n0][x:x+S][y:y+S])

Electronics 2022, 11, 1827 7 of 24

3.4. Depth-to-Space or Space-to-Depth Reorganization Layer

The other layer type in YOLOv2 is a reorganization layer, known in the TensorFlow
framework as the space-to-depth or depth-to-space layer. These reorganization processes
reshuffle the previous layer’s feature maps into either channel-wise deeper feature maps,
shown in Figure 3, or spatially wider feature maps, shown in Figure 4. Reorganization
is commonly performed for the facilitation of the concatenation of two or more layers of
different shapes. In our case, layer 27 of YOLOv2 is a space-to-depth reorganization of
layer 26 with a block-size of B = 2× 2 (seen Figure 1 or Table 1). The following layer, layer
28, concatenates the output of layers 24 and 27. Note that, in the reorganization layer, there
are no learned or learnable parameters (or hyperparameters).

Figure 3. Space-to-Depth.

Figure 4. Depth-to-Space.

3.5. Batch Normalization Layer

The batch normalization layer is inter-layer data normalization, which differs from
input normalization during pre-processing, to accelerate object detection training con-
vergence by minimizing internal variance among layers. This usually comes after the
convolution layer, just before the non-linear activation layer. In short, batch normalization
involves four mathematical steps: (1) calculating the mean of an output of the convolu-
tion layer Equation (4); (2) calculating the variance of an output of the convolution layer,
Equation (5); (3) normalizing the convolution output so that its mean and variance become

Electronics 2022, 11, 1827 8 of 24

0 and 1, respectively, Equation (6); and finally (4) scaling and shifting the normalized data
using learned hyperparameters γ and β, Equation (7). The value after the fourth step will
be input to the next layer, which is going to be Leaky Relu in the YOLOv2 object detector.

µB ←
1
m

m

∑
i=1

xi (4)

σ2
B ←

1
m

m

∑
i=1

(xi − µB)
2 (5)

x̂i ←
xi − µB√

σ2
B + ε

(6)

yi ← γx̂i + β ≡ BNγ,β(xi) (7)

3.6. Leaky Relu Activation Layer

In YOLOv2, the Leaky Relu activation function given by Equation (8) is used for the
non-linear transformation of the feature map pixels yielded from the preceding layer—in
our case, the batch normalization layer.

y =

{
x, if x ≥ 0
αx, otherwise, where α ∈ [0, 1]

(8)

4. The Proposed Hardware Acceleration of Object Detection Inference
4.1. General Overview

We propose a hardware–software coprocessing dual system where the computation-
intensive layers, namely all convolution, max-pooling, and activation layers, are offloaded
to an FPGA (Programmable Logic or PL) to benefit from FPGA’s parallelism capabilities.
In contrast, layers that are non-computation oriented, such as the reorg and route layers,
are processed by a processor onboard our test system (processor system or PS), typically an
ARM processor. Moreover, the PS supervises the overall control of the detection network’s
end-to-end flow, including the pre- and post-processing stages.

Figure 5 shows the overall architecture of our proposed object detection accelerator.
As seen from the figure, a pre-trained YOLOv2 weight, bias and input-images are stored
on a DDR memory of the host system which also contains the processor and the software
accelerated portions of our object detection network. All contents of the DDR memory
are 16-bit quantized. An AXI-DMA interface connects the host systems’ PS and DDR
memory with the PL side’s custom accelerator, where the heavy-duty arithmetic of the
convolution, max-pooling and Leaky Relu are executed. In general, the core features of our
hardware-accelerated object detection inference includes:

• A highly hardware resource-efficient and optimized convolution and max-pool pro-
cessors based on standard optimization techniques such as loop tiling, unrolling and
convolution loop reordering;

• Per-layer dynamic 16-bit data quantization of the weight, bias, IFM and OFM;
• Double buffering-based memory read, computation and writeback for smooth convo-

lution acceleration, one that avoids memory access from becoming its bottleneck.

We shall then discuss these features of our design choice one by one in detail.

Electronics 2022, 11, 1827 9 of 24

Figure 5. Overall architecture of the proposed HW/SW co-design of the inference acceleration
system.

4.2. Loop Tiling

As discussed in earlier sections, current state-of-the-art object detectors are deep
and have millions of trainable parameters and tens or hundreds of megabytes. As a
result, breaking the inputs and outputs into FPGA-manageable chunks of blocks is an
inevitable part of the hardware-accelerated implementation of these state-of-the-art models.
Recall how Figure 2 shows a particular convolutional layer with an input tensor of shape
X = Ni f × Nix × Niy, weight kernel of shape W = No f × Ni f × Nkx × Nky and an output
feature map (OFM) of shape O = No f × Nox × Noy. To better illustrate loop tiling, we
return to our earlier Figure 2; however, this time, we include the loop tiling information, as
seen in Figure 6, with the white-shaded regions indicating the tile sizes.

The two following equations give the relationship between the input and output tiles’
width and height:

Tix = (Tox − 1)S + Nkx (9)

Tiy = (Toy − 1)S + Nky (10)

Some prior works relied on custom-built algorithms such as roofline modeling to
determine the optimum tile size parameters. Instead, we opt for a simplistic but intuitive
strategy or criterion to specify the appropriate tile sizes that guarantee data reuse and opti-
mized resource utilization. Our simplistic yet intuitive strategy is based on the following
assumptions or criteria:

1. For the efficient utilization of the scarce on-chip memory of the FPGA (that is, the
BRAM or block random access memory), the max-pooling and convolution layers
shall use the same memory blocks for buffering. This is possible since the two layers
never happen simultaneously but one after another. Thus, we enforce resource-sharing
among the two core processing elements.

2. The bigger the data that we can fit on the on-chip memory through burst transfer is,
the better it is to avoid frequent external memory access because external memory
access is relatively slow compared to the actual computation.

3. Determining the buffer sizes should not be solely based on the layers with the biggest
width, height and/or depth. Instead, tile sizes should be a common divisor of all
or most layers so as not to assign excessively-big buffers for most of layers, thereby
wasting on-chip memory and energy or excessively small buffers, increasing external
memory transaction frequencies.

Electronics 2022, 11, 1827 10 of 24

Figure 6. Convolution layer with loop tiling of the input, output and weight ‘pixels’ or ‘feature maps’.

In YOLOv2, the convolution stride (S) equals one, whereas the max-pooling stride is
two. Based on our strategy of using shared buffers for max-pooling and convolution and
the fact that max-pooling requires a buffer size almost twice that required by convolution
for the same output tile of size To f × Tox × Toy, we base our tile size selection based on the
demands of max-pooling layers. By substituting the value of S = 2, we can then rewrite
Equations (9) and (10) as follows:

Tix = (Tox − 1)× 2 + 2 = 2× Tox (11)

Tiy = (Toy − 1)× 2 + 2 = 2× Toy (12)

Table 2 shows the tensor shapes, corresponding tile sizes and the number of external
memory read- or write-access iterations. The number of BRAMs (on-chip buffers) required
for each tile is calculated as:

Number o f BRAM per Tile =
Tile Size× Data Width

Size o f One BRAM
(13)

However, depending on the convolution loop arrangement and array partitioning, the
actual required BRAM would be larger than what we obtain by Equation (13). Moreover,
as seen from the overall architecture in Figure 5, each tile has an associated line buffer for
burst transfer, adding up the total BRAM utilization of the hardware solution.

Finally, according to first of the aforementioned criteria, the input and output tile
buffer sizes (only the width and height, Tix and Tiy for input tile, and Tox and Toy for output
tile) are determined based on the max-pooling layer and Equations (11) and (12). However,
Ti f and To f ’s choices require considering the implemented custom convolution accelerator
and available resources, such as the DSPs and logic cells and the aforementioned criteria.
We analyzed the YOLOv2 layers for setting Ti f and observed that Nix’s minimum and
maximum values are 3 and 1280, corresponding to the input and layer 29, respectively.
Similarly, the minimum and maximum values of No f are 32 and 1024, respectively. Al-
though we would like to assign as big a buffer as possible for the tiles according to the
second of the aforementioned criteria, we should also respect condition 3, i.e., assigning
a suitable buffer for all the layers of YOLOv2. Accordingly, we selected Ti f = 4, which
is neither excessively larger than the minimum nor excessively small, causing frequent
memory access. However, To f can be set to 32 or more based on the available BRAM

Electronics 2022, 11, 1827 11 of 24

and DSP, considering we designed a convolution processor with Ti f × To f simultaneous
MACs (explained under Section 4.5). The final tile size choices of our implementation are
discussed in Results and Discussions section, Section 5.

Table 2. Loop tile sizes and memory read–write access iterations to or from the tile buffers.

Tensors Original Shape Tile Sizes (Shapes) Number of External Memory Access (Either to Read from or Write
to DDR Memory)

IFM Ni f × Nix × Niy Ti f × Tix × Tiy d
No f

To f
e × d

Ni f

Ti f
e × dNox

Tox
e × d

Noy

Toy
e

OFM No f × Nox × Noy To f × Tox × Toy d
No f

To f
e × dNox

Tox
e × d

Noy

Toy
e

Weights No f × Ni f × Nkx ×
Nky

To f × Ti f × Tkx × Tky d
No f

To f
e × d

Ni f

Ti f
e

Biases No f To f d
No f

To f
e

4.3. Double Buffering

To further increase the throughput of our hardware accelerator, we use the concept
of double buffering, also called ping-pong buffering. Double buffering helps to overlap
memory read, compute, and writeback operations, solving the memory access bottleneck.
It also requires twice as much memory as implementation without double buffering, re-
sulting in high resource consumption. We implement double-buffering using an approach
similar to that in [19]. We implement a two-stage ping-pong: one for reading input tiles
(weight and input feature maps) and another for writing back the final convolution results.
As seen in Figure 7, during the first iteration of the innermost loop, the input feature map
and weight tiles are brought to their corresponding buffers (IFM_buffer0, Weight_buffer0).
In the next iteration, while the convolution processor simultaneously performs a convolu-
tion operation on the earlier inputs, the next batch of inputs are loaded onto the second
set of corresponding buffers (IFM_buffer1, Weight_buffer1). The convolution results are
kept on either OFM_buffer0 or OFM_buffer1 until the innermost loop is completed. The
Algorithm 1 shows the ping-pong process more precisely and briefly. Two Boolean vari-
ables (pingpong_ifm, pingpong_ofm) control the double buffering sequencing, while the
input read, compute and output writeback stages are controlled by loop iteration checks,

omitted from the pseudocode for brevity. In general, there are dNi f
Ti f
e+ 1 input tile reads for

each output tile writeback and in total there are dNo f
To f
e+ 1 writebacks.

Figure 7. Illustration of double-buffering sequencing.

Electronics 2022, 11, 1827 12 of 24

Algorithm 1: Illustration of our double-buffering implementation
/* 1. ping-pong write-back or double buffering the output write-back */

1 for (tor = 0; tor < Nox; tor+ = Tox) {
2 for (toc = 0; toc < Noy; toc+ = Toy) {
3 for (to f = 0; to f < (No f + To f); to f+ = To f) {
4 pingpong_ofm=false;
5 for (to f = 0; to f < (No f + To f); to f+ = To f) {
6 compute_flag = (to f < No f) ? true: false;
7 write_flag = to f > 0 ? true: false;
8 if (pingpong_ofm) then
9 compute_conv(ifm, weight, bias, ofm_buffer1,

10 ifm_buffer0, ifm_buffer1, weight_buffer0,
11 weight_buffer1,tof1, compute_flag, ...);
12 writeback_convoutput(ofm_buffer0,ofm, write_flag, ...);
13 pingpong_ofm=false;

14 else
15 compute_conv(ifm, weight, bias, ofm_buffer0,
16 ifm_buffer0, ifm_buffer1, weight_buffer0,
17 weight_buffer1, compute_flag, ...);
18 writeback_convoutput(ofm_buffer1, ofm, write_flag, ...);
19 pingpong_ofm=true;

/* the following sequence is inside compute_conv function */

/* 2. ping-pong tile reads and convolution computation or double buffering of input

read */

20 pingpong_ifm = false;
21 load_bias(bias, bias_buffer, ...);
22 for (tin = 0; tin < Ni f + Ti f ; tin+ = Ti f) {
23 if (pingpong_ifm) then
24 load_convinputtile(ifm, ifm_buffer1,..., tin < Ni f);
25 load_weight(weight,weight_buffer1,..., tin < Ni f);
26 conv_tile(ifm_buffer0, ofm_buffer, weight_buffer0, bias_buffer, ...,tin > 0);
27 pingpong_ifm=false;

28 else
29 load_convinputtile(ifm,ifm_buffer0,...,tin < Ni f);
30 load_weight(weight,weight_buffer0,...,tin < Ni f);
31 conv_tile(ifm_buffer1, ofm_buffer, weight_buffer1, bias_buffer,..., tin > 0);
32 pingpong_ifm=true;

4.4. Data Quantization and Weight Reorganization

As state-of-the-art object detections model sizes steadily increase to achieve increased
performance, the network becomes slower and more resource-demanding. Consequently,
the model quantization of trained weights and biases has become an integral part of
hardware acceleration implementation. As discussed in our Related Works section, extreme
quantizations yield a high-speed model. However, the accuracy loss is usually not worth the
speed gain for most real-world application areas of computer vision since a detector should
be not only fast, but fast as well as accurate. As a result, instead of extreme quantization,
we opted for the 16-bit quantization of the trained weights, biases, and input feature maps.

Quantization converts the trained network parameters from the de facto 32-bit floating-
point precision into an m− bit fixed-point precision binary string. The quantized model
will be lighter in size and hence faster. To mathematically describe the quantization process,

Electronics 2022, 11, 1827 13 of 24

let us consider W f loat32 as the 32-bit (also called single) precision IEEE 754 standard number,
and its 16-bit quantized equivalent as Wquant16. To quantize W f loat32 into Wquant16, we first
need to determine an integer Q, such that the integer part of W f loat32 could be represented
byn ≥ (m−Q) bits, and in our case m is 16 since we target 16-bit quantization. For example,
if W f loat32 = 3.24, the integer part is +3, a small number that can be represented by n = 2
bits. However, considering the potential of W f loat32 as negative, we leave at least three bits
for the portion before the decimal point. This leaves our Q to be 13. Once the Q value is
determined, the quantized Wquant16 is calculated as:

Wquant16 = bW f loat32 × 2Qc (14)

In our example, substituting the Q value gives Wquant16 = 3.24× 213 = 26542. Using
Equation (15), one can reverse the quantized value back into floating precision though a
slight difference is expected due to rounding. In fact, the quantization error can also be
calculated using the Equation (16).

W
′
f loat32 = bWquant16 × 2−Qc (15)

error =|W ′
f loat32 −W f loat32 | (16)

Similarly to the above explanation, we implemented the weight, input, and output
feature map and bias quantization using 16-bit per-layer dynamic quantization. For ex-
ample, the 16-bit dynamic weight quantization is presented in the pseudocode listing
of Algorithm 2. Furthermore, after quantizing, we reorganized the weight tensor from
its original 4D shape of No f × Ni f × Nkx × Nky, as shown in Figure 2, to a 3D shape
Nkxy × No f × Ni f , as seen in Figure 8. Nkxy is the product of the width and height of the
kernel, that is Nkx × Nky = Nkxy. Hereafter, in our hardware accelerator design, we refer to
the weight tensor in this 3D shape rather than its original 4D shape. The quantized weight
tensor is saved in the DDR memory in the order of tiles that the convolution processor
expects so that a continuous high-speed burst transfer is made to the on-chip buffer.

Figure 8. Weight 4D–3D reorganization. The colors are only to show a sample of the corresponding
pixels’ positions before and after the reorganization of the weight tensor.

Electronics 2022, 11, 1827 14 of 24

Algorithm 2: Per-layer 16-bit dynamic quantization of weight
Input: W f loat32
Output: Wquantized, WeightQ
/* Iterate through all N layers of the network. */

1 for (n = 0; n < N; n ++) {
/* for all convolution layer */

2 if (layerIsConvLayer) then
3 read(w f loat32, W f loat32, n ∗ f loat32);
4 minValue← 0x7FFF ; // 16-bit 2’s complement maximum range

5 maxValue← 0x8000; // 16-bit 2’s complement minimum range

/* within a layer search the minimum and maximum weight entry! */

6 for (k = 0; k < (No f × Ni f × Nkx × Nky); k ++) {
7 if (minValue > w f loat32[k]) then
8 minValue← w f loat32[k];

9 else if (maxValue < w f loat32[k]) then
10 maxValue← w f loat32[k];

/* Search the quantization Q value for the layer. */

11 for (i = 16; i > 0; i−−) {
12 if (minValue > 0x8000 ∗ 2−i and maxValue < 0x7FFF ∗ 2−i) then
13 Q← i;
14 break;

15 else
/* min and max values are not in the range of 16-bit, very unlikely.

However, one can truncate the numbers to within the range. */

/* tile by tile read, reorganize, quantize and save the quantized weight

parameters, and its corresponding Q value. */

16 open(Wquantized, ’w’);
17 for (no f = 0; no f < No f ; no f+ = To f) {
18 for (ni f = 0; ni f < Ni f ; ni f+ = Ti f) {
19 wbu f ← w f loat32[no f : no f + To f][ni f : ni f + Ti f];
20 for (tk = 0; tk < Nkx × Nky; tk ++) {
21 for (to f = 0; to f < To f ; to f ++) {
22 for (ti f = 0; ti f < Ti f ; ti f ++) {
23 Wbu fquantized[tk× To f × Ti f + to f × To f + ti f]←

short(wbu f [tk][to f][ti f]× 2Q);

24 write(Wquantized, Wbu fquantized, short);// Write a tile

25 write(WeightQ, Q, short);

4.5. Convolution Processor

The convolution layer is the most resource-demanding and computation-intensive part
of the object detector CNN network. As shown in Listing 1, the unoptimized convolution
has six nested loops, even though they must not always be in the same sequence. We
use standard loop tiling, unrolling, and interchange to design an optimized hardware-
accelerated version of the convolution. Convolution in fixed-point precision is no longer
only an MAC (multiply and accumulate); instead, it is multiply, right shift, and accumulate.
Thus, we like to refer to it as MSA operations, not MAC. The amount of right shift is
calculated from the Q values of the input quantization QX , weight quantization QW , and
an intermediate value QI . We will explain this better with a diagrammatic depiction.
Figure 9 shows the smallest processing element (PE) unit of our fixed-point convolution

Electronics 2022, 11, 1827 15 of 24

implementation. In the figure, two 16-bit numbers with different Q, that is, QX for the
input pixel and QW for the weight ’pixel’ pass through the multiplier followed by the
right-shift operator and then the accumulator. Had it been a floating-point precision,
the decimal point would have been placed at QXW of the resulting product. However,
since this is a fixed-point precision operation, we replace the decimal point with a two’s
power division or right-shift. Right shift with Q = QXW would completely discard the
fractional points from the result of the product. Instead, we perform a right-shift operation
using Q = QIXW = QXW − QI . The best QI for 16-bit quantization is QI = 15 since this
value leaves the maximum room for the decimal parts without completely discarding the
fractional value. One might refer to this as an intermediate or partial sum quantization.
Note that we also perform an output quantization after Leaky Relu to convert the 32-bit
partial sum back to 16-bit and write back the result of the output quantization to the DDR
memory through a pipelined burst-transfer.

Figure 9. Convolution processing element and its working procedure.

In general, our convolution processor has To f × Ti f fully unrolled multipliers followed
by fully unrolled To f × Ti f right-shift operation and To f × Ti f partial adder trees fully
unrolled in the To f dimension and pipelined with the smallest possible initiation interval
(II = 1) in Ti f dimensions. The overall architecture of the designed convolution processor is
shown in Figure 10.

Figure 10. Convolution processor architecture.

Given the overall design of the convolution processor, the next target was to determine
the optimum sequence of the nested loops of convolution. An optimum design for the
convolution loops needs to minimize the number of partial sum store and read operations,
utilize fewer logic cells, and take full advantage of the redundant onboard resources
of the FPGA and DSPs for parallelism, all while being energy efficient. To this point,
we tested many possible arrangements of the convolution nested loops, and we finally

Electronics 2022, 11, 1827 16 of 24

came down to two contending choices given the limited resources of our development
boards. These two competing implementations of the convolution compute function, also
briefly mentioned under the double buffering section (see Algorithm 1), are given by
Listings 3 and 4. In the first version, we obtain the lowest partial sum read and write.
However, the convolution kernels are not fixed for all convolution layers. Instead, they
alternate between 1× 1 and 3× 3 in YOLOv2. As a result, placing the loops labeled _nki and
_nkj in the middle of the nested loops increases the iteration control hardware, consumes
more logic cells and increases latency. We compared it against the second version given by
Listing 4 and found that Listing 3 is three times slower. Our final optimized convolution
accelerator was thus chosen to be the one mentioned in Listing 4.

To summarize some of the core features of our convolution accelerator, we mention
the following key points:

• Per block (tile), the convolution compute latency is given by the Equation (17) below:

(Nkx × Nky × Tox × Toy + C)× 1
Fclk

(17)

C stands for the ’constant’ referring to the number of cycles needed to perform the
fully unrolled inner operations commented 1–4 in the pseudocode Listing 4 and loop
iterations control logic. In our implementation, C is equal to either 13 or 21 based on
the kernel types, 1× 1 or 3× 3, respectively. Fclk stands for clock frequency.

• The total compute latency for a convolution layer is calculated as:

d
No f

To f
e × dNox

Tox
e × d

Noy

Toy
e × d

Ni f

Ti f
e × (Nkx × Nky × Tox × Toy + C)× 1

Fclk
(18)

• The total number of multiply, shift and accumulate operations per convolution layer
is calculated as:

3× d
No f

To f
e × dNox

Tox
e × d

Noy

Toy
e × d

Ni f

Ti f
e × (Nkx × Nky × Tox × Toy × To f × Ti f) (19)

Listing 3: Version 1: Optimized convolution pseudocode on input and weight tile.
1 int32_t lineinput[Tif];
2 int32_t pmul[Tif];
3 int32_t rshift[Tif];
4 int32_t psum[Tof];
5 int32_t pstore[Tof];
6 _trconv:for(tr = 0;tr < min(Tox ,Nox);tr++){
7 _tcconv:for(tc = 0;tc < min(Toy ,Noy);tc++){
8 //1. clear
9 _pmulclear:for(tm = 0;tm <Tof;tm++){

10 #pragma HLS unroll // PIPELINE II=1
11 psum[tm]=0;
12 }
13 //2. compute multiply , shift and accumulate
14 _nkiconv:for(i =0;i < Nkx; i++){
15 _nkjconv:for(j = 0;j < Nky; j++){
16 tix = tr*Kstride + i;
17 tiy = tc*Kstride + j;
18 tkxy = i*Ksize + j;
19 _tnminiInput:for(tn = 0;tn <Tn;tn++){
20 #pragma HLS unroll
21 lineinput[tn]= X[tn][tix][tiy];
22 }
23 _tmconv:for(tm = 0;tm < Tof;tm++){
24 #pragma HLS unroll
25 _tnconv1:for(tn = 0;tn <Tif;tn++){
26 #pragma HLS unroll
27 pmul[tn]= W[tkxy][tm][tn]* lineinput[tn];

Electronics 2022, 11, 1827 17 of 24

28 }
29 _tnconv2:for(tn = 0;tn <Tif;tn++){
30 #pragma HLS unroll
31 rshift[tn]= pmul[tn]>>Qixw;
32 }
33 _tnconv3:for(tn = 0;tn <Tif;tn++){
34 #pragma HLS unroll
35 psum[tm]+= rshift[tn];
36 }
37 }
38 }
39 }
40 //3. update
41 _psupdate:for(tm = 0;tm <Tof;tm++){
42 #pragma HLS unroll
43 if(n==0){
44 pstore[tm] = B[tm] + (psum[tm]);
45 }
46 else{
47 pstore[tm] = O[tm][tr][tc]+ (psum[tm]);
48 }
49 }
50 //4. store
51 _psstore:for(tm = 0;tm <Tof;tm++){
52 #pragma HLS unroll
53 O[tm][tr][tc]= pstore[tm];
54 }
55 }
56 }

Listing 4: Version 2: Optimized convolution pseudocode on input and weight tile.
1 int32_t mul[Tif];
2 int32_t rshift[Tif];
3 int32_t psum[Tof];
4 int32_t pstore[Tm];
5 _nkiconv:for(i =0;i < Nkx; i++){
6 _nkjconv:for(j = 0;j < Nky; j++){
7 _trconv:for(tr = 0;tr < min(Tox ,Nox);tr++){
8 _tcconv:for(tc = 0;tc < min(Toy ,Noy);tc++){
9 //1. clear partial sum

10 _pmulclear:for(tm = 0;tm <Tof;tm++){
11 #pragma HLS unroll
12 msa[tm]=0;
13 }
14 //2. compute multiply , shift and accumulate
15 _tmconv:for(tm = 0;tm < Tof;tm++){
16 #pragma HLS unroll
17 //2.1 multiply
18 _tnmultiply:for(tn = 0;tn <Tif;tn++){
19 #pragma HLS unroll
20 mul[tn]= W[i*Nkx+j][tm][tn]*
21 X[tn][tr*S + i][tc*S + j];
22 }
23 //2.2 right -shift for decimal point consideration
24 _tnshift:for(tn = 0;tn <Tif;tn++){
25 #pragma HLS unroll
26 rshift[tn]= mul[tn]>>Qixw;
27 }
28 //2.3 accumulate to partial sum
29 _tnaccumulate:for(tn = 0;tn <Tif;tn++){
30 #pragma HLS unroll
31 psum[tm]+= rshift[tn];
32 }
33 }
34 //3. update stored partial sum
35 _pupdate:for(tm = 0;tm <Tof;tm++){
36 #pragma HLS unroll
37 if(i ==0 && j==0 && n==0){

Electronics 2022, 11, 1827 18 of 24

38 pstore[tm] = B[tm] + (psum[tm]);
39 }
40 else{
41 pstore[tm] = O[tm][tr][tc]+ (psum[tm]);
42 }
43 }
44 //4. store partial sum
45 _pstore:for(tm = 0;tm <Tof;tm++){
46 #pragma HLS unroll
47 O[tm][tr][tc]= pstore[tm];
48 }
49 }
50 }
51 }
52 }

4.6. Max-Pooling Processor

As explained earlier, YOLOv2 has five 2 × 2 max pool layers with a stride of S = 2, each
following a Leaky Relu activation layer. Although max-pooling does not have an intensive
computation complexity, it could benefit from FPGA’s parallelism since it works on the
individual ’pixels’ of the input feature maps. Likewise, we designed a pipelined max-pool
accelerator with three selectors and comparators, as seen in Figure 11. The input tile size
for max-pool has the same depth as the convolution’s input feature map depth, which is
Ti f . The pseudocode for the hardware-accelerated max-pool on an input tile is given in
Listing 5.

Figure 11. Max-pool processor.

Listing 5: Optimized max-pool processor for 2 × 2 kernel stride.
1 int16_t tmp[Tif];
2 int16_t tmp1 , tmp2 ,tmp3 , tmp4 , max1 ,max2;
3 _toxmax:for(_tox = 0;_tox < min(Tox ,Nox);_tox ++){
4 _toymax:for(_toy = 0;_toy < min(Toy ,Noy);_toy ++){
5 _tofmax:for(_tof = 0; _tof < min(Tif ,N_{if}); _tof ++){
6 #pragma HLS PIPELINE II=1
7 tmp1=X[_tof][_tox*S][_toy*S];
8 tmp2=X[_tof][_tox*S][_toy*S+1];
9 max1 = (tmp1 > tmp2) ? tmp1 : tmp2;

10

11 tmp3=X[_tof][_tox*S+1][_toy*S];
12 tmp4=X[_tof][_tox*S+1][_toy*S+1];
13 max2 = (tmp3 > tmp4) ? tmp3 : tmp4;
14

15 tmp[_tof] = max1 > max2 ? max1 : max2;
16

17 }
18 maxstore:for(_tof = 0; _tof < min(Tif ,Nif); _tof ++){
19 #pragma HLS PIPELINE II=1
20 O[_tof][_tox][_toy] = tmp[_tof];
21 }
22 }
23 }

Electronics 2022, 11, 1827 19 of 24

4.7. Leaky Relu Hardware Processor

In YOLOv2, following every convolution layer comes a Leaky Relu activation, except
for the last convolution layer, which is linear activation. The floating-point equivalent of
Leaky Relu was discussed earlier and described using Equation (8). In the equation, the
constant α is set to 0.1 for YOLOv2, and since we are working on 16-bit fixed precision,
we convert the multiplying α = 0.1 into 16-bit fixed-point quantized binary string using
Q = 15. The quantized α is equivalent to base ten 32768 or hex 0xCCC. In general, the
hardware equivalent of Leaky Relu is implemented using the following expression:

1 tmp_out[i]= (tmp_in[i] < 0) ? (tmp_in[i]*0 xccc) >>15 : tmp_in[i];

where tmp_in is a pixel from the output buffer, and tmp_out is the ’pixel’ after passing
through a Leaky Relu processor. The overall architecture can be seen in Figure 5 for clarity.

5. Results and Discussions

Although we mainly discussed the FPGA implementation of object detection using
YOLOv2, our implementation can be easily configured for other types of similar networks
such as DenseYOLO and DDGNet, which are even more lightweight and accurate. We
implemented the proposed hardware accelerator using C++, Vitis HLS 2021.1, and Vivado
2021.1. The convolution, max pooling, and Leaky Relu layers are implemented as FPGA
accelerated functions. In contrast, the remaining space-to-depth reorganization, concatena-
tion, and route layers, including the input and output pre-processing and post-processing,
are performed on the ARM processor onboard our test boards. Following every convolution
layer, the batch normalization layer computations were already included in generating the
quantized weights and biases, avoiding the need to construct a hardware-equivalent one.

We targeted two Xilinx boards, namely ZYNQ-7000 SoC, specifically Z-7020CGL484-1
and ZCU102 development boards from ZYNQ UltraScale+ MPSoC for the implementation
of YOLOv2-based object detection inference. As seen in Table 3, the Z-7020CGL484-1 has
minimal resources compared to ZCU102. Since double buffering requires twice as many
on-chip buffers than an implementation without double-buffering, we had to use different
tile sizes for the two boards.

Table 3. Available resources onboard ZYNQ-7020 and ZCU102.

Boards Z-7020CGL484-1 ZCU102-XCZU9EG-2FFVB1156E

Flip flops (FF) 106,400 548,160
LUT 53,200 274,080
BRAM_18Kb 280 1824
DSP 220 2520

Table 4 shows our tile-size design choices and implementation clock frequencies for the
two boards. The table also shows the total resources consumed by our hardware accelerator.
Both implementations required resources well under the range of the design guidelines
of the boards, proving efficient implementation. We also achieved a clock frequency
of 150 MHz and 300 MHz for ZYNQ-7020 and ZCU-102, respectively. By combining
Equations (18) and (19), we calculated an overall throughput (giga operations per second
(GOP/S)) of 51.06 GOP/S and 184.06 GOP/S for ZYNQ7020 and ZCU102, respectively.
Another helpful metric called DSP efficiency, as coined by [23,29], measures how efficiently
the DSPs in the convolution accelerator are utilized. These define DSP efficiency as a ratio
of effective operation or the actual operation that the layer requires over the actual number
of operations that the implemented convolution processor performed. According to this
definition, our tile size choices and accelerator loop arrangement, the DSP efficiency is 100%
for both boards, except for the first and last YOLOv2 layers. Such a high DSP efficiency is
partly because of the uniformity of YOLOv2’s layers.

Electronics 2022, 11, 1827 20 of 24

Table 4. Design parameter choices and performance measures.

Boards ZYNQ 7020 ZCU102

Tile sizes

To f 32 64
Ti f 4 4
Tox 26 52
Toy 26 52
Tix 52 104
Tiy 52 104

Resource utilization

FF 22,239 (20.9%) 34,076 (6%)
LUT 28,333 (53.2%) 97,971 (35%)

BRAM (18 Kb) 170 (60.7%) 1008 (55%)
DSP 180 (81.8%) 291 (11%)

Clock (MHz) 150 300
GOP 44.36 44.96
GOPS 51.06 184.06
Power (Watt) 2.78 5.376

Furthermore, we also analyzed the per layer execution latency of YOLOv2 layers for
the two boards, as shown in Figure 12 for the two implementations. For ZYNQ-7020, the
total execution time for end-to-end YOLOv2 object detection inference processing takes
0.868 s. In contrast, the ZCU102 only takes 0.244 s for a single 416× 416 RGB image of
the COCO object detection dataset. From the figure, layer 29 of YOLOv2 is the slowest,
taking up to 26 and 104 ms on ZCU102 and ZYNQ-7020, respectively. On a personal
laptop computer of Intel(R) Core i7-7700HQ CPU @ 2.80GHz 16GB RAM Ubuntu 20.04, our
YOLOv2 inference takes a maximum of 7 s to infer all bounding boxes and object classes
on a single-core single-thread CPU for a single batch of image from COCO dataset with
size 416 × 416. Thus, our FPGA implementation accelerates YOLOv2 inference by up to
28.68 and 8.06 times for ZCU102 and ZYNQ-7020, respectively, compared to the software
version on the personal laptop. All this consumes 2.78 watt for ZYNQ-7020 and 5.376 watt
on ZCU102, evidencing how our implementation is much more efficient than the other
implementations we compared it with.

5
.1

9

2
5

.3
6

1
0

.3
8

1
2

.6
8

1
0

.3
8

1
.1

5 1
0

.3
8

6
.3

4

1
0

.3
8

1
.1

5 1
0

.3
8

3
.1

7 1
0

.3
8

1
.1

5 1
0

.3
8

1
.1

5 1
0

.3
8

1
.5

8 1
0

.3
8

1
.1

5 1
0

.3
8

1
.1

5 1
0

.3
8 2
0

.7
6

2
0

.7
6

0
.2

9

2
5

.9
6

1
.0

11
0

.3
9

5
0

.7
9

4
1

.5
5

2
5

.3
8

4
1

.5
5

4
.6

2

4
1

.5
5

1
2

.6
9

4
1

.5
5

4
.6

2

4
1

.5
5

6
.3

5

4
1

.5
5

4
.6

2

4
1

.5
5

4
.6

2

4
1

.5
5

3
.1

7

4
1

.5
5

4
.6

2

4
1

.5
5

4
.6

2

4
1

.5
5

8
3

.1
1

8
3

.1
1

1
.1

5

1
0

3
.8

9

4
.0

4

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 6 2 9 3 0

YOLOV2 PER-LAYER INFERENCE DELAY

Latency on ZCU102 @300MHz Latency on ZYNQ7020 @150MHz

Figure 12. Per-layer latency of YOLOv2 inference on ZYNQ 7020 and ZCU102.

We compared our YOLOv2 object detection inference implementation with other
closely related works, and Table 5 summarizes the comparison using different metrics or
criteria. Although there are many FPGA-based inference accelerations, the main reasons
we picked these sample references to compare against our work are that (1) these works

Electronics 2022, 11, 1827 21 of 24

are recent; (2) all are one-stage object detection inference accelerations (4) based on YOLO
versions and 1 based on SSD); and (3) all are abundantly cited prior works with close
resemblance to our approach. As the table shows, our implementation maintains the most
resource and power-efficient performance while still having a commendable GOP/S at a
frequency as high as 300 MHz and higher DSP efficiency. Moreover, though some entries
in the table never reported their accuracy performance, our implementation of YOLOv2
inference on the Pascal VOC 2007 dataset at a resolution of 416 × 416 yielded an mAP of
76.21%, a little below the baseline 32-bit floating precision’s 76.8% mAP of the original
YOLOv2. The 16-bit quantization of the data and the fixed-point arithmetic of our custom
convolution processor explained by Figure 9 played a significant role in increasing the
mean average precision of our accelerator.

In general, we obtained an efficient hardware-acceleration design scheme that pre-
serves the scarce and precious resources of an FPGA while yielding higher performance at
low-energy consumption. We used a shared double-buffered on-chip buffer to conserve
memory and avoid memory access becoming a bottleneck to our hardware convolution
accelerator. Compared to [23] consuming 100 Watt energy and approximately fifteen times
more DSPs than our implementation, we achieve a commendable 0.244 s in execution
latency of YOLOv2 at a mere 5.376 Watt and 291 DSPs utilized. Given the fact that we
used a 16-bit fixed-point precision, there is a reasonable prospect for our implementation to
achieve real-time acceleration by changing our quantization strategy to an 8-bit or mixed
precision as well as save more resources and power while still managing to maintain the
minimum possible loss in detection accuracy.

Table 5. Comparison of our implementation against other prior works using several metrics.

[30] [31] [32] [33] [23] This Work This Work

Device Virtex-7
VC707 ZCU102 Zedboard Intel Arria 10 Intel Stratix

10 ZYNQ -7020 ZCU102

Models Sim-YOLOv2 YOLOv2 YOLOv3 tiny YOLOv2 SSD300 YOLOv2 YOLOv2
Design tool OpenCL Vivado HLS Vivado HLS OpenCL RTL Vitis HLS Vitis HLS

Design
scheme HW HW/SW HW/SW HW/SW HW/SW HW/SW HW/SW

Precision
(bits) 1–6 16 16 8–16 8–16 16 16

Frequency
(MHz) 200 300 100 200 300 150 300

FF Utilization 115 K (18.9%) 90,589 46.7 K 523.7 K - 22.2 K
(20.9%) 34,076 (6%)

LUT
Utilization

155.2 K
(51.1%) 95136 25.9 K 360 K 532 K 28.3 K

(53.2%) 97,971 (35%)

DSP
Utilization 272 (9.7%) 609 160 410 4363 180 (81.8%) 291(11%)

BRAM(18Kb)
utilizations 1144 (55.5%) 491 185 1366 * 3844 * 170 (60.7 %) 1008 (55%)

Throughput
(GOP/S) 1877 102.5 464.7 740 2178 51.06 184.06

Power 18.29 11.8 3.36 27.2 100 2.78 5.376
Latency (ms) - 288 532 - 29.11 868 244

Accuracy
(mAP) 64.16 - - 73.6 76.94 76.21 76.21

Input image
size 416× 416 416× 416 - 416× 416 300× 300 416× 416 416× 416

* Intel FPGA with BRAM 20 Kb.

Finally, Figure 13 shows the sample output of our hardware accelerator performing
impeccably well with high accuracy as good as the full 32-bit floating-point precision
implemented on our laptop.

Electronics 2022, 11, 1827 22 of 24

Figure 13. Sample YOLOv2 inference output of our hardware accelerator.

6. Conclusions

This paper implemented the YOLOv2 inference accelerator on two Xilinx development
boards with varying available resources and achieved a resource- and power-efficient
accelerator. Our best-performing implementation achieved a commendable throughput
of 184 GOP/S and 0.244 s inference time per image using 16-bit fixed point dynamic
quantization and consuming only 5.376 watts. In future work, we intend to test different
quantization strategies without compromising accuracy and energy efficiency so that our
implementation achieves real-time inference.

Author Contributions: Conceptualization, S.N.T. and E.-B.B.; methodology, S.N.T.; software, S.N.T.;
validation, S.N.T. and E.-B.B.; formal analysis, S.N.T.; investigation, S.N.T.; resources, S.N.T.; data
curation, S.N.T.; writing—original draft preparation, S.N.T.; writing—review and editing, S.N.T.;
visualization, S.N.T.; supervision, E.-B.B.; project administration, E.-B.B.; funding acquisition, E.-B.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received funding from Ethiopian Ministry of Science and Higher Education
(MOSHE) and French Government for promotion of higher education and research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
2. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
3. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
4. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision; Springer: New York, NY, USA, 2016; pp. 21–37.
5. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings

of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.
6. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks.

In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 525–542.

http://doi.org/10.1145/3065386

Electronics 2022, 11, 1827 23 of 24

7. Nakahara, H.; Yonekawa, H.; Fujii, T.; Sato, S. A lightweight YOLOv2: A binarized CNN with a parallel support vector regression
for an FPGA. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, 25–27 February 2018; pp. 31–40.

8. Suleiman, A.; Sze, V. Energy-efficient HOG-based object detection at 1080HD 60 fps with multi-scale support. In Proceedings of
the 2014 IEEE Workshop on Signal Processing Systems (SiPS), Belfast, UK, 20–22 October 2014; pp. 1–6.

9. IJzerman, J.; Viitanen, T.; Jääskeläinen, P.; Kultala, H.; Lehtonen, L.; Peemen, M.; Corporaal, H.; Takala, J. AivoTTA: An energy
efficient programmable accelerator for CNN-based object recognition. In Proceedings of the 18th International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation, Pythagorion, Greece, 15–19 July 2018; pp. 28–37.

10. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
11. Cong, J.; Xiao, B. Minimizing computation in convolutional neural networks. In Proceedings of the International Conference on

Artificial Neural Networks, Hamburg, Germany, 15–19 September 2014; pp. 281–290.
12. Abdelouahab, K.; Pelcat, M.; Serot, J.; Berry, F. Accelerating CNN inference on FPGAs: A survey. arXiv 2018, arXiv:1806.01683.
13. Zeng, K.; Ma, Q.; Wu, J.W.; Chen, Z.; Shen, T.; Yan, C. FPGA-based accelerator for object detection: A comprehensive survey.

J. Supercomput. 2022, 1–41. [CrossRef]
14. Zhang, C.; Prasanna, V. Frequency domain acceleration of convolutional neural networks on CPU-FPGA shared memory system.

In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA,
22–24 February 2017; pp. 35–44.

15. Zeng, H.; Chen, R.; Zhang, C.; Prasanna, V. A framework for generating high throughput CNN implementations on FPGAs.
In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA,
25–27 February 2018; pp. 117–126.

16. Bao, C.; Xie, T.; Feng, W.; Chang, L.; Yu, C. A power-efficient optimizing framework FPGA accelerator based on winograd for
YOLO. IEEE Access 2020, 8, 94307–94317. [CrossRef]

17. Aydonat, U.; O’Connell, S.; Capalija, D.; Ling, A.C.; Chiu, G.R. An OpenCLTM Deep Learning Accelerator on Arria 10. CoRR 2017.
[CrossRef]

18. Wai, Y.J.; bin Mohd Yussof, Z.; bin Salim, S.I.; Chuan, L.K. Fixed Point Implementation of Tiny-Yolo-v2 using OpenCL on FPGA.
Int. J. Adv. Comput. Sci. Appl. 2018, 9, 506–512. [CrossRef]

19. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing fpga-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, 22–24 February 2015; pp. 161–170.

20. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.S. Optimizing loop operation and dataflow in FPGA acceleration of deep convolutional neural
networks. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, 22–24 February 2017; pp. 45–54.

21. Wang, Z.; Xu, K.; Wu, S.; Liu, L.; Liu, L.; Wang, D. Sparse-YOLO: Hardware/software co-design of an FPGA accelerator for
YOLOv2. IEEE Access 2020, 8, 116569–116585. [CrossRef]

22. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

23. Ma, Y.; Zheng, T.; Cao, Y.; Vrudhula, S.; Seo, J.s. Algorithm-hardware co-design of single shot detector for fast object detection on
FPGAs. In Proceedings of the 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, CA,
USA, 5–8 November 2018; pp. 1–8.

24. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

25. Tesema, S.N.; Bourennane, E.B. Multi-Grid Redundant Bounding Box Annotation for Accurate Object Detection. In Proceedings
of the 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing,
Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/-
CyberSciTech), Calgary, AB, Canada, 25–28 October 2021; pp. 145–152.

26. Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers.
In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018;
pp. 2503–2510.

27. Tesema, S.N.; Bourennane, E.B. DenseYOLO: Yet Faster, Lighter and More Accurate YOLO. In Proceedings of the 2020 11th IEEE
Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 4–7
November 2020; pp. 0534–0539.

28. Tesema, S.N.; Bourennane, E.B. Towards General Purpose Object Detection: Deep Dense Grid Based Object Detection. In Proceed-
ings of the 2020 14th International Conference on Innovations in Information Technology (IIT), Al Ain, United Arab Emirates,
17–18 November 2020; pp. 227–232.

29. Wei, X.; Yu, C.H.; Zhang, P.; Chen, Y.; Wang, Y.; Hu, H.; Liang, Y.; Cong, J. Automated systolic array architecture synthesis for
high throughput CNN inference on FPGAs. In Proceedings of the 54th Annual Design Automation Conference 2017, Austin, TX,
USA, 18–22 June 2017; pp. 1–6.

http://doi.org/10.1007/s11227-022-04415-5
http://doi.org/10.1109/ACCESS.2020.2995330
http://doi.org/10.1145/3020078.3021738
http://doi.org/10.14569/IJACSA.2018.091062
http://doi.org/10.1109/ACCESS.2020.3004198

Electronics 2022, 11, 1827 24 of 24

30. Nguyen, D.T.; Nguyen, T.N.; Kim, H.; Lee, H.J. A high-throughput and power-efficient FPGA implementation of YOLO CNN for
object detection. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1861–1873. [CrossRef]

31. Zhang, S.; Cao, J.; Zhang, Q.; Zhang, Q.; Zhang, Y.; Wang, Y. An fpga-based reconfigurable cnn accelerator for yolo. In Proceedings
of the 2020 IEEE 3rd International Conference on Electronics Technology (ICET), Chengdu, China, 8–12 May 2020; pp. 74–78.

32. Yu, Z.; Bouganis, C.S. A parameterisable FPGA-tailored architecture for YOLOv3-tiny. In International Symposium on Applied
Reconfigurable Computing; Springer: Cham, Switzerland, 2020; pp. 330–344.

33. Li, S.; Luo, Y.; Sun, K.; Yadav, N.; Choi, K.K. A novel FPGA accelerator design for real-time and ultra-low power deep convolutional
neural networks compared with titan X GPU. IEEE Access 2020, 8, 105455–105471. [CrossRef]

http://doi.org/10.1109/TVLSI.2019.2905242
http://doi.org/10.1109/ACCESS.2020.3000009

	Introduction
	Related Works
	Background
	Overview of Object Detection Models
	Convolution Layer
	Pooling Layer
	Depth-to-Space or Space-to-Depth Reorganization Layer
	Batch Normalization Layer
	Leaky Relu Activation Layer

	The Proposed Hardware Acceleration of Object Detection Inference
	General Overview
	Loop Tiling
	Double Buffering
	Data Quantization and Weight Reorganization
	Convolution Processor
	Max-Pooling Processor
	Leaky Relu Hardware Processor

	Results and Discussions
	Conclusions
	References

