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Abstract
In this study, a new measurement method to quantify 129I at low level by ICP-MS/MS (Agilent 8900) was developed. 

This new method is based on a new measurement medium and mass-shift mode. The developed measurement 
medium is composed of 0.1% NH4OH, 10 g L-1 ascorbic acid and 3% Tween® 20 which considerably decrease the 

memory effect and increase the sensitivity. Different reactional gas were compared on on-mass and mass-shift 
modes and finally, O2 was selected on mass-shift mode. The mass-shift mode with O2 allows having the most 
quantitative iodine oxidation rate while eliminating isobaric and polyatomic interferences. Isobaric interference due 
to 129Xe+ is eliminated following a charge transfer in the reaction/collision cell and polyatomic interferences are 
eliminated with the second quadrupole. This new measurement method improves the limit of detection of 129I to 
11 mBq L-1, without chemical treatment.

Introduction
Iodine is an extremely volatile halogen (it sublimates at room temperature) naturally occurring under various organic 
or inorganic forms e.g. CH3I, I2, I-, IO3-, CH2I2... This element can exist in the environment with different oxidation 
states1 : -I, 0, +I, +V and +VII. These physico-chemical characteristics complicate its reliable quantification. Among 
the 37 iodine isotopes, 127I is the only stable one and 129I is the naturally occurring radioactive isotope with the 
longest half-life (16.1 x 106 y)2.
129I is a beta, X and gamma emitter, it is therefore often measured by gamma or X-ray spectrometry3-5. Gamma and 

X-rays emission energies and intensities are however low (e.g. 39.6 KeV (7.5%) for gamma ray and 29.5 KeV (20.4%) 
and 29.8 KeV (37.7%) for X-rays. These properties induce high limits of detection (0.1 - 0.2 Bq L-1). As a consequence, 
the isotopic ratio 129I/127I, which is useful for dating or tracing purposes but is very low in environmental samples, is 

below the detection limit with radiometric technics.
Indeed, in environmental samples, the natural isotopic ratio 129i/127i is near 10-11 and can reach 10-3 close to Nuclear 

Fuel Reprocessing Plant (NFRP); e.g. La Hague (France) and Sellafield (UK). To be able to accurately measure all the 
range of this isotopic ratio, a lower 129I limit of detection is needed6,7.

To improve the limit of detection and quantify the isotopic ratio, neutron activation analysis (NAA) has been used 
by converting 129I to short-lived 131I which is measured by gamma spectrometry. The work published by Fan et al. 
allows reaching a limit of detection for 10-10 for 129|/127| after an appropriate chemical treatment8.
Accelerator Mass Spectroscopy (AMS) is a very efficient technique to measure iodine 129 and 129|/127| and has been 
the subject of various studies 9,1°. In fact, AMS allows reaching low limits of detection11,12 (e.g. 0.05 p.Bq L-1 and 10-14 
for 129I and 129I/127I, respectively). However, due to the acquisition and functioning costs, there are only 110 AMS in 
the world and according to Kutschera 13, only 22 allow 129I measurement.

Several recent works have shown that ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) and more 
specifically ICP-MS/MS is an excellent and affordable alternative to AMS for the measurement quantification of 129I 
and the isotopic ratio 129|/127| 7,14,15 with a limit of detection of ~100 mBq L-1 and 10-6, respectively, without chemical 

treatment. This quantification is however a real challenge due to the extreme volatility of iodine which could 
decrease sensitivity and induce memory effects. To minimize iodine volatility, the analysis medium by ICP-MS is 
often NH4OH or TMAH 16,17.
The major interference at m/z 129 is due to the isobar 129Xe+ which is present as impurity in the plasma Ar gas.
129I+ has also polyatomic interferences e.g. 89Y40Ar+, 115In14N+, 113InO+, 113Cd16O+, 97Mo16O2+,127IH2+ and 127ID+ 18-20.

mailto:azza.habibi@irsn.fr


1

2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Journal of Analytical Atomic Spectrometry Page 4of28

The aim of this work is to présent a new methodology allowing to decrease the limit of détection of 129I and then of 
the isotopic ratio 129l/127l when the measurement is performed by ICP-MS/MS.

Experimental
Reagents

Ascorbic acid, oxalic acid, hydroxylammonium chloride and Nal solutions are prepared from analytical-grade powder 

provided by VWR chemicals. Potassium iodate and iodide for laboratory use are from Chem-lab analytical. Analytical 
grade 20% (v/v) NH4OH and biology grade Triton® X-100 are from BDH Prolabo®. 25% (v/v) tetramethylammonium 

hydroxide (TMAH) electronic grade is provided by Alfa Aesar.

Tween® 20, Tween® 80, Tergitol™ and Brij™ C20 are from fisher scientific, Acros Organics™.

Mono-elemental solution (e.g. Mo, In, Cd, Y and Te) are obtained from SCP science and certificated to be at 995 ± 4 
pg ml-1; 1000 ± 4 pg ml-1; 1004 ± 6 pg ml-1; 1004 ± 4 pg ml-1 and 996 ± 6pg L"1 respectively.

All dilutions are done with ultrapure water (18.2 QM cm, Merck Millipore).
For this study, two certificated 129l standard, I129ELSB30 and I129ELSB200KBQ, are supplied by ORANO LEA 
(Tricastin, France).
He, N2O, O2 and CO2 analytical grade gases are from Air Products.

Water samples

For the method development, water solutions containing 0.01 pg L-1 to 100 pg L-1 of Nal were prepared.
To verify the accuracy of the method, Milli-Q water (for synthetic samples) and natural river water samples collected 
in France, not originally containing any 129l detectable traces, were spiked with I129ELSB30 129l standard. Water 
samples were previously filtered with 0.45 pm syringe filter. The final activity concentration ranged from 0.02 Bq L- 
1 to 10 Bq L-1.

Instrument

129l and 127l are measured using the Agilent 8900 ICP-QQQ in MS/MS mode (Agilent Technologies, Tokyo, Japan). 

The experimental parameters are listed in table 1.

Table 1 - Experimental parameters of the ICP-MS/MS

RF power 1520 W
RF matching 2.30 V

Sampling depth 5.3 mm
Nebulizer gas flow rate 1.05 L min-1

Solution uptake rate 1.2 mL min-1

Spray chamber temperature 0°C

Extraction lens 1; 2 -29.3 V; -205.5 V
Deflect 8 to 13 V

Energy discrimination -8 to -4 V
Axial acceleration 0 V

Plate bias -110 to -50 V
Octupole bias -25 to -20 V
Cell entrance -75 to -5 V

Cell exit -135 to -120 V

For all batches, monitored m/z are 126, 127, 129, 130, 142, 143, 145 and 146. For each sample injection, 5 replicates are 
done, with 300 sweeps replicates with 1 point per peak. Daily tuning is realized with a 127l 100 pg L-1 solution. Energy 
discrimination, defect and plate bias has the most important effect on the sensitivity.
When MS/MS mode is used, octopole bias, cell entrance and cell exit are the most impactor parameters on sensitivity. O2, 
CO2 and N2O gas were introduced through the 4th gas inlet line.
Rinsing solution after each sample is 0.1% (v/v) NH4OH.

Results and discussion
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Measurement medium

Due to its extreme volatility and its complex redox properties, the nature of iodine measurement medium is 
essential. Indeed, in alkaline and reducing media and according to equations (1) and (2), formation of volatile iodine 
species (e.g. I2 and HI) is avoided and iodide species is predominant.

HI + OH- I- + H2O (eq.1)

I2 + Red <-ï 2I- + Ox (eq.2)
Red = Reducing agent; Ox = Oxidizing agent
In environmental water samples, Iodide and iodate could be present21. Fig.1 shows ICP-MS signal intensity variation 
during single quadrupole measurement of iodine solution at 100 pg L-1 prepared with KI and KIO3 in NH4OH at 

different pH.
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Fig. 1 ICP-MS signal intensity (cps) variation for 100 pg L*1 of 127I in NH4OH solutions ranging from pH 7 to 14.

On-mass measurement mode. Error bars are estimated at 10%.

Obtained results show that 127I signal intensity variation is within the error bars regardless of the pH and the iodine 

form (I- or IO3-) (Fig.1). 0.1% NH4OH (pH = 12) is selected for practical preparation reasons for the following tests and 
for rinses between samples.

The memory effect is very impacting when analysing iodine by ICP-MS. This disadvantage is due to the extreme 
volatility of iodine that accumulates an adsorbs on the ICP-MS introduction system. To minimize this impact during 
ICP-MS iodine measurement, the use of a non-ionic surfactant could be efficient since it allows avoiding losses due 
to adsorption to the introduction system of the ICP-MS.
Fig.2 presents the variation of signal intensity of 127I when measuring 100 pg L-1 of 127I in 0.1% (v/v) NH4OH containing 

different non-ionic surfactants e.g. Tergitol™ 15-S-9, Triton® X-100, Brij™ C20, Tween® 20 and Tween® 80, with 
concentrations ranging from 0.5% (v/v) to 3% (v/v). The viscosity of these surfactants make it difficult to handle 
concentrations higherthan 3%.22-24.

Fig. 2 - mI 100 pg L-1 ICP-MS signal intensity (cps) in 0.1% (v/v) NH4OH using different surfactants: Tergitol™ 15-S-9,

Triton® X-100, Brij™ C20, Tween® 20 and Tween® 80 . On-mass measurement mode. Error bars represent 10%.
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Results presented in fig.2 show that 127I signal intensity is proportional to surfactants concentration. A content of 

3% is then retained since it allows a signal gain of 2.5. The ICP-MS sensitivity gap is within the error bars regardless 
of the surfactant.
Tween™ 20 is not hazardous and less viscous than the others with the lowest CMC (Critical Micelle Concentration) 
of 60 ppm. This surfactant is then used for the rest of the study.

Moreover, a reducing agent can prevent iodine's oxidization and the formation of I2 (eq. 2). Four reducing agents 
with standard potentials below that of the couple I2/I" (0.54 V) were then compared25-27: ascorbic acid (0.13 V), 
oxalic acid (-0.47 V), sodium sulphide (-0.93 V) and hydroxylammonium chloride (-1.05 V). Solutions of 0.1% (v/v) of 
NH4OH containing 3% (v/v) of Tween 20, 100 pg L-1 of NaI and a reducing agent were prepared. In order to prevent 
the ICP-MS introduction system clogging, reducing agents concentrations did not exceed 10 g L-1. These solutions 
were also compared to TMAH 1% (v/v), often used as measurement media to analyse iodine by ICP-MS19-28-29. In 
order to evaluate the memory effect, measurements are followed by four 0.1% (v/v) NH4OH rinses with a duration 
of 5 min each (fig.3). 127I signal is monitored after each rinse.

Rinses

Fig. 3 - 127I signal evolution when using reducing agents with tween® 20 or TMAH - On-mass measurement mode.

Memory effect is clearly visible in fig.3. After introduction of 100 pg L-1 of NaI, the residual signal could reach 35000 
cps and would have a significant impact on quantification. It decreases with 0.1% (v/v) NH4OH rinses. The addition 

of a reducing agent to the measurement medium reduces the memory effect. According to results presented in fig. 
3, the most efficient reducing agent is ascorbic acid with a concentration of 10 g L-1 since it minimizes the memory 

effect to only 0.15% of the initial signal.

The various tests carried out in this study and illustrated in Fig. 1, 2 and 3 permitted to select an optimal 
measurement medium (OM) composed of 0.1% of NH4OH (v/v), 3% (v/v) of Tween 20 and 10 g L-1of ascorbic acid. 

This measurement medium allows minimizing memory and matrix effect which increase the sensitivity. It was 
compared to TMAH 1% (v/v) and 2% (v/v), (fig.4).
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Fig. 4 - ICP-MS signal intensity at m/z 127 for 100 pg L-1 in TMAH and in the optimal medium. 

On-mass measurement mode. Error bar represents 10%.

According to results presented in
the fig. 4, the signal obtained at m/z 127 when analysing 100 pg. L-1 of Nal in the newly developed medium is more 
than 2 times higher than the signal obtained when iodine is in 2% (v/v) TMAH. Signal intensity at m/z 129 in blanks 
of these 3 media were then compared at m/z 129 for TMAH 1%, TMAH 2% and OM respectively.

Figure 5 - Signal intensity at m/z 129 for Blanks of 3 media. On-mass measurement mode. 

Error bar represents 10%.

According to fig. 5, signal intensity for these 3 media at m/z 129 is the same within the error bars.
These results permit to confirm the efficiency of the newly developed measurement medium since the signal/noise 
is the highest.

129Xe+ isobaric interférence

129Xe+, the major 129l+ interference is present as an impurity in the argon gas. Its removal is then not possible with a 
chemical treatment prior to measurement. 129Xe+ content is variable from one gas tank to another and xenon 

abundance shows a bias with the natural expected value. An accurate afterward correction by calculation is then 
complicated. In order to eliminate this interference, all published works use oxygen with flow rates between 20% 
and 60% in on-mass mode to perform a charge transfer as shown in fig. 6 (eq.3).

Xe+ + O2 Xe + O2+ (eq.3)

129l+ + O2 -> 129IO+ + O (eq.4)

In these conditions, signal due to 129Xe+ is greatly reduced19,20,29 but not completely eliminated. Furthermore, 
although iodine oxidation by O2 (eq. 4) is not thermodynamically favourable (AHr = 2.08 eV)15, this chemical reaction 
takes place inside the collision/reaction cell (fig. 6) and therefore directly affect thesensitivity of iodine. The fraction 

of iodine that is oxidized in these conditions has never been reported.
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Fig. 6- a) On-mass mode for 129I détermination with 129Xe+ interférence élimination by charge transfer 
b) Mass-shift mode for 129I determination with oxidizing gas

In order to improve iodine limit of detection and obtain the highest signal/noise (S/N), oxidized iodine fraction has 

to be minimized in on-mass mode by using a less oxidizing gas such as CO2. In fact, according to Tanner et al., CO2 
is a less oxidizing gas than O2 since its O-atom affinity is stronger30. The use of CO2 to quantify iodine in on-mass 
mode is then supposed to improve iodine detection recovery while reducingxenon signal following a charge transfer 
in the collision/reaction cell.

In this study, iodine detection in mass-shift mode was also investigated in order to improve the limit of detection. 
Besides O2, a more oxidizing gas e.g. N2O was then used30. This alternative could allow decreasing the limit of 
detection since 129I will be detected at m/z 145 (129I16O+). At m/z 145, signal due to 129Xe+ will be negligible since the 
oxidation of xenon is not favourable.
Solutions containing 100 p.g. L-1 of stable iodine in OM were measured by ICP-MS/MS in on mass and mass-shift 
modes, using several gases (O2, N2O and CO2) at different flow rates (0% to 30%) and with two different nebulizers 
(e.g. MicroFlow inert PFA and glass concentric nebulizers). Obtained signal at m/z 143 (127116O+) are presented in 
fig-7.

Fig. 7 - Signal intensity at m/z 127 on on-mass mode and m/z 143 on mass-shift mode with O2, N2O and CO2 in OM for 100 |ig L-1 

of 127I solution: (a) MicroMist micro-uptake glass concentric nebulizer and (b) MicroFlow inert PFA. Error bars represent 10%.
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Results show that over 15% of initially detected iodine 127 is oxidized at O2 flow rate of 8% comparing to oxygen 
free measurements. Counts at m/z 145 induced by xenon were also monitored and, as expected, the signal was less 

than 20. To improve the sensitivity, a MicroFlow inert PFA was used and allowed a sensitivity gain of approximately 
10% (fig.7). The signal stability is extremely satisfactory with an RSD always lower than 5%.
APEX-O introduction system, a desolvating module was considered to improve the sensitivity. However, the principle 
of this module based on the heat of the sample, is not compatible with physicochemical characteristics of iodine 
(e.g. extreme volatility)31.

As expected, fig.7 shows that iodine is less oxidized with CO2 than with O2. The sensitivity is however similar when 
using a MicroFlow inert PFA nebulizer or a MicroMist micro-uptake glass concentric nebulizer. Using CO2 could be 
an alternative to avoid iodine's oxidation and then improve the limit of detection when the measurement is 
performed in on-mass mode.
Despite N2O being a more oxidizing gas than O230, counts at m/z 143 when using this gas are lower than those 

obtained with O2 probably due to the size of N2O and to the loss of a fraction of iodine by collision.
To improve ions focalization, helium gas was used with concentrations between 0.5% and 10%. Obtained results 
with and without addition of He are similar. The following tests were then carried out without addition of helium. 
To determine the best mode and gas combination, limits of detection were calculated for flows providing the highest 
signal/noise and presented in fig.8.

Fig. 8 - Obtained limits of detection with different gas and modes with a microFlow

inert PFA nebulizer in OM.

According to figure 8, the lower limit of detection (LOD) for iodine 129 is obtained with mass-shift mode with oxygen 
and a PFA nebulizer. This configuration allows having the best signal/noise ratio (S/N). Moreover, since only 15% of 
127I on mass-shift mode are detected, concentration that can be measured before the detector saturation are higher 
than on on-mass mode. Consequently, the obtained 129i/127i could be lower than that obtained on on-mass mode by 
several orders of magnitude. To obtain the best limit of detection, integration time was optimized to 1 s and LOD 
was then estimated to 11 mBq.L-1 without chemical treatment. The limit of quantification (LOQ) of 129I was estimated 
to 25 mBq L-1.

Polyatomic interférence of IOH2+ and IOD+ and abundance sensitivity

Polyatomic interferences32 at m/z 145 due to 127I16O1H2+ and 127I16O2D+ could be formed during the measurement process in 
mass-shift mode. To evaluate this interference, solutions ranging from 1 |ig L-1 to 1 g L-1 of 127I were prepared in OM and 

measured by ICP-MS.

Table 2 - 127I16O1H2+ and 127I16O2D+ influence at m/z 145 in mass-shift mode

127I Concentration (mg L-1) CPS at m/z 143 CPS at m/z 145

10-3 21513 62
10-2 211480 56
10-1 2262501 51

1 17575881 50

10 184781576 81
102 1524546033 296
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0.5 x 103 5934641511 489
103 9988338422 617

Mass-shift ICP-MS/MS measurement of these solutions highlighted that for 127I concentrations < 10 mg L-1 , counts at m/z 145 
are near the background.
However, when concentration are > 10 mg L-1, 127I16O1H2+ and 127I16O2D+ interferences and the abundance sensitivity 

are clearly observable. This concentration is higher than that observed in environmental samples.
For an accurate determination of 129I/127I, the contribution of 127I at m/z 145 is corrected by measuring a solution containing 

127I and using the ratio 127IOH2V127IO+.

Other polyatomic interferences

The other polyatomic interferences at m/z 129 are due to 89Y40Ar+, 115In14N+, 113InO+, 113Cd16O+, 97Mo16O2+, 127IH2+ 
and 127ID+.

In the environment, yttrium, molybdenum, indium and cadmium are present at concentrations ranging from 
1 ng L-1 to 200 mg L-1 33-35. When 129I measurement is performed by ICP-MS/MS in mass-shift mode, the first filter 
is set at m/z 129 and the second filter is set at m/z 145. This configuration is more consistent than on-mass mode 
measurement since it allows the elimination of the polyatomic interferents according to fig.9.

Fig. 9 - Interferences behaviour for Q1 -> m/z 129 and Q2 -> m/z 145 with O2 in the collision/reaction cell 

and detection on mass-shift measurement mode.

This statement was experimentally verified by measuring solutions containing 1 pg L-1 to 100 mg L-1 of interferents 
on mass-shift mode with oxygen. Monitored m/z were 105, 113, 129, 131 and 145.
As expected, none of these elements disturb the 129I measurement in mass-shift mode since no signal is detected 
above the background at m/z 145.

Quantification of 127I

In this study, 129I quantification in environmental samples is based on the isotopic dilution method where 127I will be 
used as internal standard. In order to do this, 127I has to be previously quantified.
In literature, 127I is often quantified using external calibration corrected by Sb, Te, Re or Cs as internal standard17,36,37. 
We chose to use 126Te because its m/z and ionization energy (9.01 eV) are close to iodine's (10.45 eV). The linearity 
of the pulse and analogue detection is demonstrated by measuring standards up to 1 mg L-1 and having correlation 

coefficient higher than 0.999 for several calibration curves.
127I limits of detection and quantification in mass-shift mode when monitored m/z are 142 (126Te16O+) and 143 
(127I16O+) were estimated to be 0.15 pg L-1 and 0.4 pg L-1 respectively.
To verify the accuracy of the 127I quantification method, several solutions were prepared in water with different 
concentrations. Three different tests were realized with I-, IO3- and a mix of I- + IO3- (50/50) in the newly developed
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medium. Expected and measured concentrations are then compared. Table 3 shows calculated Bias (eq. 7) and 
standardized deviation (SD) (eq. 8).

,w3
• Measured f + I03

Expected concentration
SEEEEB

-.......... Uncertainty K
15 pg L1

30 pg L 1

$............ 2 ......
............i............. !\

3 [XgL

\............ i ---------- 1
-L..........-d .......K.

3.5 |ig L1

Figure 10 - 127I quantification in synthetic samples in mass-shift mode in OM. Error bars represents calculated uncertainties

According to results presented in Fig. 10, measured concentrations are in good agreement with the expected values 
whether iodine is under I" or IO3- form for a large range of concentrations.

Quantification of 129I

In order to confirm the applicability of the method, synthetic solutions and river water samples free from 129I are 
spiked with 127I and 129I which are quantified following the procedure described above. The obtained results are 

presented in table 2.

Bias (%) = |
[127/]mes - [127/]

[127/] 1 x 100 (7)

_ |[127/]mes — [127/]t/i| (8)
^JUz[127I]mes + f/"[127/]tfi (8)

[127I]th = Expected 127I concentration (pg L"1)
[127I]mes = Mesured 127I concentration (pgL-1)
U2[127I]th = Uncertainty associated to theorical 127I concentration 
U2[127I]mes = Uncertainty associated to measured 127I concentration

Table 2 - 129I quantification in spiked synthetic and river water samples

Sample
Theoretical

activity 
(Bq L-1); k=2

Measured activity 
(Bq L-1); k=2

Bias (%) SD

River
water (1)

0.020 ± 0.002 0.022 ±0.019 10 0.002
0.070 ± 0.007 0.070 ± 0.014 < 1 < 0.001

0.200 ± 0.020 0.220 ±0.020 10 0.021
0.500 ± 0.050 0.476 ± 0.015 5 0.025

River
water (2)

0.020 ± 0.002 0.020 ±0.019 < 1 < 0.001

0.080 ± 0.008 0.072 ± 0.053 10 0.005

Synthetic
samples

0.200 ± 0.020 0.208 ±0.020 4 0.008

0.500 ± 0.050 0.564 ± 0.015 13 0.065
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1.000 ± 0.100 1.013 ±0.040 1 0.009

10.000 ± 1.000 10.457 ± 0.020 5 0.167

According to results obtained when analyzing synthetic and natural river water samples, measured activities are in 
perfect agreement with the expected activities. These good performances are characterized by bias (eq.7) lower 
than 15% and standardized deviation (eq.8) lower than 2 even for activities close to 129I LOQ (25 mBq L-1).

Isotopic ratio détermination
Spiked water samples with 129I/127I ratios ranging from 3.0 x 10-8 to 3.8 x 10-9 were prepared from I129ELSB200KBQ 
(Orano Lea) and analyzed using the newly developed method. This determination of 129I/127I were achieved after 
127IOH2+ correction. Moreover, correction of mass-discrimination effects was done using an isotopic certified 
tellurium solution using 120Te16O/126Te16O on mass-shift mode.

1.0 x 10 7

3.0x10®

'j

ClY~l4—
O

4

ï {
7.Sx 10'®

T ï T 6.2 x 105

ro
i t

u
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1.0 x 10-5

• Average value —Uncertainty

Figure 11 - Isotopic ratio 129i/127i determination in ICP-MS/MS on mass-shift mode in OM.

According to the fig. 11, the measured 129|/127| ratios were consistent with the theoretical values within the analytical 
error. Under this condition, the minimal 129|/127| was determined at 3.8 x 10-9, an isotopic ratio never reached 
before15

Conclusion
In this study, ICP-MS measurement medium of iodine was studied and adapted to iodine's volatility. The memory 
and matrix effects were then minimized and the sensitivity was improved by a factor greater than 2. For the first 
time, 129I is measured in mass-shift mode which allows a more consistent quantification by removing 129Xe+ 

interference efficiently.
Moreover, the polyatomic interferences were also completely suppressed.
The 129I quantification was based on the isotopic dilution technique using 127I as internal standard. The previous 
determination of 127I concentration is based on external calibration corrected with 126Te as internal standard.
This new developed quantification method allows reaching 129I limit of detection of 11 mBq L-1. This detection limit 
is 10 times lower than the published one with ICP-MS/MS on on-mass measurement mode with O2. Moreover, since 
only 15% of 1271 on mass-shift mode are detected, concentration that can be measured before the detector 
saturation are higher than on on-mass mode. Consequently, the reached 129|/127| with this new method is of 3.8 x 
10-9. This ratio is lower than that obtained on literature on on-mass mode.

Finally, this method was successfully applied to spiked environmental water samples.
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