An attack of the Conjecture of Lehmer by the dynamical zeta function of the β-shift, and the modulo p problem

J.-L. VERGER-GAUGRY

LAMA,
Univ. Savoie Mont Blanc, CNRS
I.M. Bordeaux

3 juin 2022

Contents

(1) Introduction : Weil height h and Mahler measure M
(2) Small Mahler measures - Conjecture of Lehmer
(3) The Dynamical zeta function $\zeta_{\beta}(z)$ of the β-shift as β tends to 1
4. Lenticular minoration of the Mahler measure
(5) Universal minorant
6. Search for very small Mahler measures from \mathscr{B}; Modulo p Problem ; Hypergeometric functions over \mathbb{Q}

Definition : Weil height : let $\alpha \in \overline{\mathbb{Q}}^{*}, P_{\alpha}(X)=a_{0}\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right) \ldots\left(X-\alpha_{n}\right)$ $=a_{0} X^{n}+a_{1} X^{n-1}+\ldots+a_{n-1} X+a_{n} \in \mathbb{Z}[X], a_{0} a_{n} \neq 0$, its minimal polynomial. The (abs. log.) Weil height of α is

$$
h(\alpha)=\frac{1}{n} \log \left(\left|a_{0}\right| \prod_{i=1}^{n} \max \left\{1,\left|\alpha_{i}\right|\right\}\right)
$$

Prop : $h(p / q)=\log \max (|p|,|q|),(p, q)=1, \quad h(1)=0$, $h(\alpha) \geq 0$ for all $\alpha \in \overline{\mathbb{Q}}^{*}$, $h\left(\alpha^{r}\right)=|r| h(\alpha)$, for $r \in \mathbb{Z}, \alpha \in \overline{\mathbb{Q}}^{*}, \quad h(1 / \alpha)=h(\alpha)$, $h(\sigma(\alpha))=h(\alpha)$, for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.

Definition : Mahler measure : for

$$
\begin{gathered}
P(X)=a_{0}\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right) \ldots\left(X-\alpha_{n}\right)= \\
a_{0} X^{n}+a_{1} X^{n-1}+\ldots+a_{n-1} X+a_{n} \in \mathbb{Z}[X], \quad a_{0} a_{n} \neq 0
\end{gathered}
$$

then

$$
\mathrm{M}(P):=\left|a_{0}\right| \prod_{i,\left|\alpha_{i}\right| \geq 1}\left|\alpha_{i}\right| .
$$

multiplicativity : $P=P_{1} \times P_{2} \times \ldots \times P_{m}, \Rightarrow \mathrm{M}(P)=\mathrm{M}\left(P_{1}\right) \ldots \mathrm{M}\left(P_{m}\right)$.
ex. : $P=\Phi_{1} \times \ldots \times \Phi_{r} \times R$ with R irr. pol., Φ_{j} cyclot. $\Longrightarrow \mathrm{M}(P)=\mathrm{M}(R)$.
α alg. number, deg $\alpha=n, P_{\alpha}$ his minimal polynomial, $\mathrm{M}(\alpha):=\mathrm{M}\left(P_{\alpha}\right)$. Absolute logarithmic, Weil height of α :

$$
h(\alpha):=\frac{\log \mathrm{M}(\alpha)}{d}
$$

facts : $\mathrm{M}(\alpha)=\mathrm{M}\left(\alpha^{-1}\right)$,
$\mathrm{M}(\alpha)=\alpha$ if $\alpha \in \mathrm{S}$ (= set of Pisot numbers ; $\left|\alpha_{i}\right|<1$),
$\mathrm{M}(\alpha)=\alpha$ if $\alpha \in \mathrm{T}$ (= set of Salem numbers; $\left|\alpha_{i}\right|<1$ with at least one
$\left|\alpha_{j}\right|=1$),
$\mathrm{M}(\alpha)=1$ if α is a root of unity.

Kronecker's Theorem(1857) : Let α be a nonzero algebraic integer. Then $\mathrm{M}(\alpha)=1$ iff α is a root of unity.
practice in Arithm. Geo. :
$\mathrm{M}(\alpha)$ calculated \rightarrow useful to calculate $h(\alpha)$,
height $h=$ sum of local contributions \rightarrow useful to prove Theorems.

Adler Marcus (1979) (topological entropy and equivalence of dynamical systems), Perron-Frobenius theory) :

$$
\begin{aligned}
& \{\mathrm{M}(\alpha) \mid \alpha \text { alg. number }\} \subset \mathbb{P}_{\text {Perron }} \\
& \quad\{\mathrm{M}(P) \mid P \in \mathbb{Z}[X]\} \subset \mathbb{P}_{\text {Perron }}
\end{aligned}
$$

Two strict inclusions (Dubickas 2004, Boyd 1981).
Definition : $\alpha \in \mathbb{P}_{\text {Perron }}$ if $\alpha=1$ or if $\alpha>1$ is a real algebraic integer, for which the conjugates $\alpha^{(i)}$ satisfy $\left|\alpha^{(i)}\right|<\alpha$ (i.e. dominant root >1).

Contents

(1) Introduction : Weil height h and Mahler measure M
(2) Small Mahler measures - Conjecture of Lehmer
(3) The Dynamical zeta function $\zeta_{\beta}(z)$ of the β-shift as β tends to 1
4. Lenticular minoration of the Mahler measure
(5) Universal minorant
(6) Search for very small Mahler measures from \mathscr{B}; Modulo p Problem ; Hypergeometric functions over \mathbb{Q}

Northcott's Theorem : for all $B \geq 0, d \geq 1$,

$$
\#\{\alpha \in \overline{\mathbb{Q}} \mid h(\alpha) \leq B,[\mathbb{Q}(\alpha): \mathbb{Q}] \leq d\}<+\infty .
$$

in Dio. Geom. : bound on "degree" + bound on " h " gives finiteness property (Mordell eff., etc).

Conjecture of Lehmer : there exists $c>0$ such that

$$
\mathrm{M}(\alpha) \geq 1+c
$$

for any algebraic number $\alpha \neq 0$ which is not a root of unity,
i.e. the interval $(1,1+c) \cap \mathbb{P}_{\text {Perron }}$ is deprived of any value of Mahler measure of any algebraic number.
$->$ values : discontinuity at 1 (meaning, sense, of c ?).

Lehmer's problem (1933)

in the exhaustive search for large prime numbers : if ε is a positive quantity, to find a polynomial of the form

$$
f(x)=x^{r}+a_{1} x^{r-1}+\ldots+a_{r}
$$

where the $a_{i} s$ are integers, such that the absolute value of the product of those roots of f which lie outside the unit circle, lies between 1 and $1+\varepsilon \ldots$ Whether or not the problem has a solution for $\varepsilon<0.176$ we do not know.

Lehmer's strategy : P_{α} with small M : useful to obtain large prime numbers p, in the Pierce numbers of α. Iwasawa theory : large powers of primes. Einsiedler, Everest and Ward : study of the density of such ps.

Lehmer's Problem is a limit problem + restrictions :

$$
\mathrm{M}(P):=\left|a_{0}\right| \prod_{i,\left|\alpha_{i}\right| \geq 1}\left|\alpha_{i}\right| \quad \Longrightarrow \quad \mathrm{M}(P):=\left|a_{0}\right| \geq\left|a_{0}\right| .
$$

Let $\alpha \in \overline{\mathbb{Q}}, P=P_{\alpha}$:

* if $\alpha \in \overline{\mathbb{Q}} \backslash \mathscr{O}_{\overline{\mathbb{Q}}}$, then $\left|a_{0}\right| \geq 2 \quad \Longrightarrow \quad \mathrm{M}(P) \geq 2$,
* if α is an algebraic integer which is not reciprocal $\left(P_{\alpha} \neq P_{\alpha}^{*}\right.$ with

$$
\left.P_{\alpha}^{*}(X)=X^{\operatorname{deg} P_{\alpha}} P_{\alpha}(1 / X) \quad\right),
$$

Smyth's Theorem ' $71 \Longrightarrow \mathrm{M}\left(P_{\alpha}\right) \geq \Theta=1.32 \ldots$ (= smallest Pisot number, $X^{3}-X-1$ mini. pol.).

* restriction to real reciprocal algebraic integers is sufficient : if $\alpha \in \mathscr{O}_{\overline{\mathbb{Q}}}$, which is reciprocal ($P_{\alpha}=P_{\alpha}^{*}$), consider its house

$$
\max \left\{\left|\alpha_{i}\right|\right\}=:|\boldsymbol{\alpha}| \in \mathscr{O}_{\overline{\mathbb{Q}}}
$$

which is real, ≥ 1.

Attack (context) : $\beta>1$ real reciprocal algebraic integer,

$$
1<\beta \leq|\beta| \leq \mathrm{M}(\beta) .
$$

β tends to 1^{+},
β tends to 1^{+}.
? minimum of $\beta \rightarrow \mathrm{M}(\beta)$, of $\mid \beta \rightarrow \mathrm{M}(\mid \bar{\beta})$.
assumption : existence of a real reciprocal algebraic integer $\beta>1$ having : $\mathrm{M}(\beta)<1.176280 \ldots$ Lehmer's number.

Previously : Dobrowolski's inequality ('79) : for any reciprocal algebraic integer α of degree d,

$$
\mathrm{M}(\alpha)>1+(1-\varepsilon)\left(\frac{\log \log d}{\log d}\right)^{3}, \quad d>d_{1}(\varepsilon) .
$$

(Dobrowolski, $1 / 1200$, Schinzel, $1-\varepsilon$ for $d>d_{1}$) here,
the lower bound in the rhs tends to 1 when d tends to infinity. Remarkable inequality. Not satisfying. Need to improve Dobrowolski's inequality by another method.

Contents

(1) Introduction : Weil height h and Mahler measure M
(2) Small Mahler measures-Conjecture of Lehmer
(3) The Dynamical zeta function $\zeta_{\beta}(z)$ of the β-shift as β tends to 1

- Lenticular poles
- A Dobrowolski-type inequality for the lenticular measure

4. Lenticular minoration of the Mahler measure
(5) Universal minorant
(6) Search for very small Mahler measures from \mathscr{B}; Modulo p Problem ; Hypergeometric functions over \mathbb{Q}

Why use dynamical zeta functions $\zeta_{\beta}(z)$ of the β-shift?

Because the Conjecture of Lehmer can be proved by this means for β running over

$$
\left\{\theta_{n}^{-1} ; n \geq 3\right\}, \quad \text { (seq. of Perron numbers }>1 \text { tending to } 1 \text {) }
$$

where
θ_{n} is the unique root of $-1+x+x^{n}$ in $(0,1)$.

* the information lies in the poles inside $D(0,1)$ the open unit disk, * the poles of modulus <1 form a lenticulus.
goal : extend the method to all $\beta \mathrm{s}>1$ tending to 1 .

Let $1<\beta<(1+\sqrt{5}) / 2$ be a real number.

- Consider the dynamical system :

$$
\left(X=[0,1], B, T_{\beta}, \mu\right)
$$

where

$$
T_{\beta}: x \mapsto \beta x \quad(\bmod 1)=\{\beta x\}
$$

is the β-transformation.
Invariant measure (Parry, '60) abs cont Lebesgue, pure jump, density :

$$
h_{\beta}(x)=C \sum_{n, x<T_{\beta}^{n}(1)} \frac{1}{\beta^{n+1}}
$$

unique (Rényi, '57), ergodic (Parry, '60), maximal (Hofbauer, '78)

- Later on, we will specialize $\beta>1$ to run over reciprocal algebraic integers.

The "second" analytic function uniquely associated with β :

$$
(X, B, T, \mu)=\left([0,1], T_{\beta}, h_{\beta}(x) d x\right)
$$

Theorem

Let $\beta \in\left(1, \theta_{2}^{-1}\right)$. Then, the Artin-Mazur dynamical zeta function

$$
\begin{equation*}
\zeta_{\beta}(z):=\exp \left(\sum_{n=1}^{\infty} \frac{\#\left\{x \in[0,1] \mid T_{\beta}^{n}(x)=x\right\}}{n} z^{n}\right) \tag{1}
\end{equation*}
$$

counting the number of periodic points of period dividing n, is nonzero and meromorphic in $\{z \in \mathbb{C}:|z|<1\}$, and such that $1 / \zeta_{\beta}(z)$ is holomorphic in $\{z \in \mathbb{C}:|z|<1\}$,

Theorem (Takahashi, Ito-Takahashi)

Let $\beta \in\left(1, \theta_{2}^{-1}\right)$ be a real number. Then

$$
\begin{equation*}
\zeta_{\beta}(z)=\frac{1-z^{N}}{(1-\beta z)\left(\sum_{n=0}^{\infty} T_{\beta}^{n}(1) z^{n}\right)} \tag{2}
\end{equation*}
$$

where N is the minimal positive integer such that $T_{\beta}^{N}(1)=0$; in the case where $T_{\beta}^{j}(1) \neq 0$ for all $j \geq 1$, " $z^{N \text { " }}$ has to be replaced by " 0 ".

Up to the sign, the denominator of (2) is the Parry Upper function $f_{\beta}(z)$ at β. It satisfies

$$
\begin{equation*}
\text { (i) } \quad f_{\beta}(z)=-\frac{1-z^{N}}{\zeta_{\beta}(z)} \quad \text { in the first case }, \tag{3}
\end{equation*}
$$

(ii) $f_{\beta}(z)=-\frac{1}{\zeta_{\beta}(z)} \quad$ in the second case,
and, denoting by $t_{1}, t_{2}, \ldots \in\{0,1\}$ the coefficients in

$$
\begin{equation*}
-1+t_{1} z+t_{2} z^{2}+t_{3} z^{3}+\ldots=f_{\beta}(z)=-(1-\beta z)\left(\sum_{n=0}^{\infty} T_{\beta}^{n}(1) z^{n}\right), \tag{5}
\end{equation*}
$$

$f_{\beta}(z)$ is such that $0 . t_{1} t_{2} t_{3} \ldots$ is the Rényi β-expansion of unity $d_{\beta}(1)$.
The Parry Upper function $f_{\beta}(z)$ has no zero in $\{z \in \mathbb{C}:|z| \leq 1 / \beta\}$ except $z=1 / \beta$ which is a simple zero.

The total ordering $<$ on $(1,+\infty)$ is uniquely in correspondence with the lexicographical ordering $<_{l e x}$ on the vector coefficients, i.e. on the Rényi expansions of 1 by (Parry, '60) :

In Rényi β-expansions, the correspondence $\quad \beta \leftrightarrow\left(t_{i}=t_{i}(\beta)\right) \quad$ is a bijection.

Proposition[Parry] : Let $\alpha>1$ and $\beta>1$. If the Rényi α-expansion of 1 is

$$
d_{\alpha}(1)=0 . t_{1}^{\prime} t_{2}^{\prime} t_{3}^{\prime} \ldots, \quad \text { i.e. } \quad 1=\frac{t_{1}^{\prime}}{\alpha}+\frac{t_{2}^{\prime}}{\alpha^{2}}+\frac{t_{3}^{\prime}}{\alpha^{3}}+\ldots
$$

and the Rényi β-expansion of 1 is

$$
d_{\beta}(1)=0 . t_{1} t_{2} t_{3} \ldots, \quad \text { i.e. } \quad 1=\frac{t_{1}}{\beta}+\frac{t_{2}}{\beta^{2}}+\frac{t_{3}}{\beta^{3}}+\ldots
$$

then $\alpha<\beta$ if and only if $\left(t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}, \ldots\right)<_{\text {lex }}\left(t_{1}, t_{2}, t_{3}, \ldots\right)$.

Theorem

Let $n \geq 2$. A real number $\beta \in\left(1, \frac{1+\sqrt{5}}{2}\right]$ belongs to $\left[\theta_{n+1}^{-1}, \theta_{n}^{-1}\right)$ if and only if the Rényi β-expansion of unity $\alpha_{\beta}(1)$ is of the form

$$
\begin{equation*}
d_{\beta}(1)=0.10^{n_{-1}} 10^{n_{1}} 10^{n_{2}} 10^{n_{3}} \ldots, \tag{6}
\end{equation*}
$$

with $n_{k} \geq n-1$ for all $k \geq 1$.

Pf. : Since $d_{\theta_{n+1}^{-1}}(1)=0.10^{n-1} 1$ and $d_{\theta_{n}^{-1}}(1)=0.10^{n-2} 1$, the condition $\beta \in\left[\theta_{n+1}^{-1}, \theta_{n}^{-1}\right)$ implies that the condition is sufficient.
It is also necessary : $d_{\beta}(1)$ begins as $0.10^{n-1} 1$ for all β such that $\theta_{n+1}^{-1} \leq \beta<\theta_{n}^{-1}$. For such β s we write $d_{\beta}(1)=0.10^{n-1} 1 u$ with digits in the alphabet $\mathscr{A}_{\beta}=\{0,1\}$ common to all $\beta \mathrm{s}$, that is

$$
u=1^{h_{0}} 0^{n_{1}} 1^{h_{1}} 0^{n_{2}} 1^{h_{2}} \ldots
$$

and $h_{0}, n_{1}, h_{1}, n_{2}, h_{2}, \ldots$ integers ≥ 0. The Conditions of Parry (Parry '60, ref : Frougny, Lothaire) applied to the sequence $\left(1,0^{n-1}, 1^{1+h_{0}}, 0^{n_{1}}, 1^{h_{1}}, 0^{n_{2}}, 1^{h_{3}}, \ldots\right)$, which characterizes uniquely the base of numeration β, readily implies $h_{0}=0$ and $h_{k}=1$ and $n_{k} \geq n-1$ for all $k \geq 1$.

Def. : The polynomials of the class \mathscr{B}
are all the polynomial sections of the power series $f_{\beta}(z)$ for β in the interval $(1,(1+\sqrt{5}) / 2)$. Indeed, from the above, for

$$
\beta \in\left[\theta_{n+1}^{-1}, \theta_{n}^{-1}\right)
$$

the power series $f_{\beta}(x)$ takes the form :

$$
-1+x+x^{n}+x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}}+\ldots
$$

with the distanciation conditions :

$$
m_{1}-n \geq n-1, m_{q+1}-m_{q} \geq n-1 \quad \text { for } 1 \leq q
$$

let θ_{n} be the unique root of the trinomial $G_{n}(z):=-1+z+z^{n}$ in $(0,1)$.

$$
\alpha \quad f_{\alpha}(z)
$$

$$
\theta_{n}^{-1} \quad-1+z+z^{n}
$$

$$
\theta_{n}^{-1}<\beta<\theta_{n-1}^{-1}
$$

$$
\left(-1+x+x^{n}\right)+\left(x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}}+\ldots\right)
$$

$$
\text { where } m_{1}-n \geq n-1, m_{q+1}-m_{q} \geq n-1
$$

$$
\theta_{n-1}^{-1}
$$

$$
-1+z+z^{n-1}
$$

Def. : n is called the dynamical degree of β, denoted by dyg (β).

The Parry Upper function at β

$$
\theta_{n}^{-1}<\beta<\theta_{n-1}^{-1} \quad-1+x+x^{n}+x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}}+\ldots
$$

satisfies (Conditions of admissibility of Parry) :

$$
m_{1}-n \geq n-1, m_{q+1}-m_{q} \geq n-1 \text { for } 1 \leq q
$$

[lexicographical ordering implies moderate gappiness]
its zeroes in $D(0,1)=$ eigenvalues $^{-1}$ of the transfer operators (generalized Fredholm determinants - BaladiKeller)
$=$ poles of $\zeta_{\beta}(z)$.

$$
\beta \rightarrow 1^{+} \quad \Longleftrightarrow \quad n=\operatorname{dyg}(\beta) \rightarrow \infty .
$$

Poles of $\zeta_{\beta}(z)$ in $D(0,1)$: are limits of zeroes of polynomials of the class \mathscr{B} (Hurwitz). In $D(0,1)$, the poles of $\zeta_{\beta}(z)$ are separated into two subcollections:
the lenticular poles, the non-lenticular poles.

Description of the lenticular zeroes of $f \in \mathscr{B}$:

- leave the comfort of Taylor series (including the formulation as hypergeometric functions as functions of the coefficients, as in Mellin '15),
- enter "Poincaré asymptotic expansions as a function of the dynamical degree $n=\operatorname{dyg}(\beta)$, i.e. the integer controling the lacunarity a minima.
- replace the usual degree $\operatorname{deg}(\beta)$ by the dynamical degree $\operatorname{dyg}(\beta)$.

Classification not canonical : due to the method of Rouché.

From the structure of the asymptotic expansions of the roots of G_{n} it is natural to restrict the angular sector to

$$
-\pi / 18<\arg \omega<+\pi / 18
$$

More precisely,
Theorem (VG, '17)
Let $n \geq 260$. There exists two positive constants c_{n} and $c_{A, n}, c_{A, n}<c_{n}$, such that the roots of $f \in \mathscr{B}_{n}$,

$$
f(x)-1+x+x^{n}+x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}},
$$

where $s \geq 1, m_{1}-n \geq n-1, m_{j+1}-m_{j} \geq n-1$ for $1 \leq j<s$, lying in $-\pi / 18<\arg z<+\pi / 18$ either belong to

$$
\left\{z | | | z | - 1 | < \frac { c _ { A , n } } { n } \} , \quad \text { or to } \quad \left\{z\left|||z|-1| \geq \frac{c_{n}}{n}\right\} .\right.\right.
$$

true even though n is smaller than 260 on many examples.

Definition

Let $n \geq 260$. Let $\beta>1$ be a real number such that $\operatorname{dyg}(\beta)=n$. The poles of $\zeta_{\beta}(z)$ which belong to the angular sector

$$
\begin{equation*}
\left\{z \in \mathbb{C}:|z|<1-\frac{c_{\text {lent }}}{n},|\arg z| \leq+\frac{\pi}{18}\right\} \tag{7}
\end{equation*}
$$

are called the lenticular poles of $\zeta_{\beta}(z)$.
The lenticuli of lenticular poles, relative to θ_{n}^{-1} and β respectively, are :

$$
\begin{gathered}
\mathscr{L}_{\theta_{n}^{-1}}:=\left\{\overline{z_{\lfloor n / 6\rfloor, n}}, \ldots, \overline{z_{2, n}}, \overline{z_{1, n}}, \theta_{n}, z_{1, n}, z_{2, n}, \ldots, z_{\lfloor n / 6\rfloor, n}\right\} \\
\mathscr{L}_{\beta}=\left\{\overline{\omega_{J_{n}, n}}, \ldots, \overline{\omega_{1, n}}, \beta^{-1}, \omega_{1, n}, \ldots, \omega_{J_{n}, n}\right\}
\end{gathered}
$$

Solomyaks's fractal

The lenticular roots lie on (universal) continuous curves stemming from $z=1$, including the boundary of Solomyak's fractal.

Let

$$
\mathscr{W}:=\left\{h(z)=1+\sum_{j=1}^{\infty} a_{j} z^{j} \mid a_{j} \in[0,1]\right\}
$$

be the class of power series defined on $|z|<1$ equipped with the topology of uniform convergence on compacts sets of $|z|<1$. Let $\mathscr{W}_{0,1} \subset \mathscr{W}$ denote functions whose coefficients are in $\{0,1\}$. The space \mathscr{W} is compact and convex. Let

$$
\mathscr{G}:=\{\lambda| | \lambda \mid<1, \exists h(z) \in \mathscr{W} \text { such that } h(\lambda)=0\} \quad \subset\{z| | z \mid<1\}
$$

The domain $D(0,1) \backslash \mathscr{G}$ is star-convex due to the fact that :

$$
h(z) \in \mathscr{W} \Longrightarrow h(z / r) \in \mathscr{W}, \quad \text { for any } r>1
$$

The zeroes of any $f \in \mathscr{B}$ lie in \mathscr{G} since :
$t_{i}:=\left\lfloor\beta T_{\beta}^{i-1}(1)\right\rfloor=\beta T_{\beta}^{i-1}(1)-T_{\beta}^{i}(1)$, for $i \geq 1$, implies the factorization

$$
-1+t_{1} x+t_{2} x^{2}+t_{3} x^{3}+\ldots=-(1-\beta x)\left(1+\sum_{j \geq 1} T_{\beta}^{i}(1) x^{i}\right)
$$

For every $\phi \in(0,2 \pi)$, there exists $\lambda=r e^{i \phi} \in \mathscr{G}$; the point of minimal modulus with argument ϕ is denoted $\lambda_{\phi}=\rho_{\phi} e^{i \phi} \in \mathscr{G}, \rho_{\phi}<1$.

A function $h \in \mathscr{W}$ is called ϕ-optimal if $h\left(\lambda_{\phi}\right)=0$.
Denote by \mathscr{K} the subset of $(0, \pi)$ for which there exists a ϕ-optimal function belonging to $\mathscr{W}_{0,1}$.

Denote by $\partial \mathscr{G}_{S}$ the "spike" : $\left[-1, \frac{1}{2}(1-\sqrt{5})\right]$ on the negative real axis.

Theorem (Solomyak, '94)

(i) The union $\mathscr{G} \cup \mathbb{T} \cup \partial \mathscr{G}_{S}$ is closed, symmetrical with respect to the real axis, has a cusp at $z=1$ with logarithmic tangency.
(ii) the boundary $\partial \mathscr{G}$ is a continuous curve, given by $\phi \rightarrow\left|\lambda_{\phi}\right|$ on $[0, \pi)$, taking its values in $\left[\frac{\sqrt{5}-1}{2}, 1\right)$, with $\left|\lambda_{\phi}\right|=1$ if and only if $\phi=0$. It admits a left-limit at $\pi^{-}, 1>\lim _{\phi \rightarrow \pi^{-}}\left|\lambda_{\phi}\right|>\left|\lambda_{\pi}\right|=\frac{1}{2}(-1+\sqrt{5})$, the left-discontinuity at π corresponding to the extremity of $\partial \mathscr{G}_{S}$.
(iii) at all points $\rho_{\phi} e^{i \phi} \in \mathscr{G}$ such that ϕ / π is rational in an open dense subset of $(0,2), \partial \mathscr{G}$ is non-smooth,
(iv) there exists a nonempty subset of transcendental numbers $L_{t r}$, of Hausdorff dimension zero, such that $\phi \in(0, \pi)$ and $\phi \notin \mathscr{K} \cup \pi \mathbb{Q} \cup \pi L_{t r}$ implies that the boundary curve $\partial \mathscr{G}$ has a tangent at $\rho_{\phi} e^{i \phi}$ (smooth point).

Figure: Solomyak's fractal.

Importance of the angular sector $|\arg (z)|<\pi / 18$ containing the point 1 was already guessed by :
M. LANGEVIN, Méthode de Fekete-Szegő et Problème de Lehmer, C.R. Acad. Sci. Paris Série I Math. 301 (1) (1985), 463-466.
M. LaNgevin, Minorations de la Maison et de la Mesure de Mahler de Certains Entiers Algébriques, C.R. Acad. Sci. Paris Série I Math. 303 (12) (1986), 523-526.
M. Langevin, Calculs Explicites de Constantes de Lehmer, in Groupe de travail en Théorie Analytique et Elémentaire des nombres, 1986-1987, Publ. Math. Orsay, Univ. Paris XI, Orsay 88 (1988), 52-68.
A. Dubickas and C. Smyth, The Lehmer Constant of an Annulus, J. Théorie Nombres Bordeaux 13 (2001), 413-420.
G. Rhin and C.J. Smyth, On the Absolute Mahler Measure of Polynomials Having all Zeros in a Sector, Math. Comp. 64 (1995), 295-304.
G. RHIN and Q. WU, On the Absolute Mahler Measure of Polynomials Having all Zeros in a Sector II, Math. Comp. 74 (2005), 383-388.
lenticulus $\mathscr{L}_{\theta_{n}^{-1}}$ of simple zeroes in $\arg (z) \in(-\pi / 3,+\pi / 3), n=71$ and $=12$.

Figure: Roots of $G_{71}(z), G_{12}(z)$.

b)

FIGURE: a) The 37 zeroes of $G_{37}(x)=-1+x+x^{37}$, b) The 649 zeroes of $f(x)=G_{37}(x)+x^{81}+x^{140}+x^{184}+x^{232}+x^{285}+x^{350}+x^{389}+x^{450}+x^{514}+$ $x^{550}+x^{590}+x^{649}=G_{37}(x)+x^{81}+\ldots+x^{649}$. The lenticulus of roots of f (having 3 simple zeroes) is obtained by a very slight deformation of the restriction of the lenticulus of roots of G_{37} to the angular sector $|\arg z|<\pi / 18$, off the unit circle. The other roots (nonlenticular) of f can be found in a narrow annular neighbourhood of $|z|=1$.

Figure: a) Zeroes of G_{121}, b) Zeroes of $f(x)=-1+x+x^{121}+x^{250}+x^{385}$. On the right the distribution of the roots of f is zoomed twice in the angular sector $-\pi / 18<\arg (z)<\pi / 18$. The lenticulus of roots of f has 7 zeroes.

FIGURE: The representation of the 27 zeroes of the lenticulus of $f(x)=-1+x+x^{481}+x^{985}+x^{1502}$ in the angular sector $-\pi / 18<\arg z<\pi / 18$ in two different scalings in x and y (in a) and b)). In this angular sector the other zeroes of f can be found in a thin annular neighbourhood of the unit circle. The real root $1 / \beta>0$ of f is such that β satisfies : $1.00970357 \ldots=\theta_{481}^{-1}<\beta=1.0097168 \ldots<\theta_{480}^{-1}=1.0097202 \ldots$.

FIGURE: Universal curves stemming from 1 which constitute the lenticular zero locus of all the polynomials of the class \mathscr{B}. These curves are continuous, semi-fractal. The first one above the real axis, corresponding to the zero locus of the first lenticular roots, lies in the boundary of Solomyak's fractal [?]. The lenticular roots of the previous polynomials f are represented by the respective symbols $0, \square, \diamond$. The dashed lines represent the unit circle and the top boundary of the angular sector $|\arg z|<\pi / 18$.

A Dobrowolski-type inequality for the lenticular measure

Def. : If $\theta_{n}^{-1}<\beta<\theta_{n-1}^{-1}$ for some n large enough, and

$$
\mathscr{L}_{\beta}=\left\{\overline{\omega_{J_{n}, n}}, \ldots, \overline{\omega_{1, n}}, \beta^{-1}, \omega_{1, n}, \ldots, \omega_{J_{n}, n}\right\}
$$

denotes the set of the lenticular poles of $\zeta_{\beta}(z)$, all depending upon β, then we attribute to \mathscr{L}_{β} a measure, that we call lenticular measure of β, by the expression

$$
\begin{equation*}
\mathfrak{S}_{\text {lent }}(\beta):=\prod_{\omega \in \mathscr{L}_{\beta}}|\omega|^{-1}=\beta \prod_{j=1}^{J_{n}}\left|\omega_{j, n}\right|^{-2} \tag{8}
\end{equation*}
$$

By construction, $\mathfrak{S}_{\text {lent }}(\beta) \geq 1$.
If $\beta=\theta_{n}^{-1}$, then the identification with the Mahler measure of θ_{n}^{-1} holds:

$$
\mathfrak{S}_{\text {lent }}\left(\theta_{n}^{-1}\right)=\mathrm{M}\left(\theta_{n}^{-1}\right)
$$

Denote by $a_{\max }=5.87433 \ldots$ the abscissa of the maximum of the function

$$
a \mapsto\left(1-\exp \left(\frac{-\pi}{a}\right)\right) /\left(2 \exp \left(\frac{\pi}{a}\right)-1\right)
$$

on $(0, \infty)$. Let $\kappa:=0.171573 \ldots$ be the value of its maximum, at $a=a_{\text {max }}$. From a numerical viewpoint we have : $2 \arcsin (\kappa / 2)=0.171784 \ldots$.

Denote

$$
\begin{gathered}
C:=\exp \left(\frac{-1}{\pi} \int_{0}^{2 \arcsin \left(\frac{\kappa}{2}\right)} \log \left[\frac{1+2 \sin \left(\frac{x}{2}\right)-\sqrt{1-12 \sin \left(\frac{x}{2}\right)+4\left(\sin \left(\frac{x}{2}\right)\right)^{2}}}{4}\right] d x\right) \\
=1.15411 \ldots
\end{gathered}
$$

Theorem (VG '17)
There exists an integer $\eta \geq 260$ such that the following inequality holds :

$$
\mathfrak{S}_{\text {lent }}(\beta) \geq C-C \frac{\arcsin (\kappa / 2)}{\pi} \frac{1}{\log (n)}, \quad \text { for all } n \geq \eta
$$

and any $\beta \in\left(\theta_{n}^{-1}, \theta_{n-1}^{-1}\right)$.

This theorem extends (VG'16) :

$$
\mathrm{M}\left(-1+x+x^{n}\right)=\mathrm{M}\left(\theta_{n}^{-1}\right)>\Lambda-\frac{\Lambda}{6}\left(\frac{1}{\log n}\right), \quad n \geq 2
$$

where Λ is the following constant

$$
\Lambda:=\exp \left(\frac{3 \sqrt{3}}{4 \pi} \mathrm{~L}\left(2, \chi_{3}\right)\right)=\exp \left(\frac{-1}{\pi} \int_{0}^{\pi / 3} \log \left(2 \sin \left(\frac{x}{2}\right)\right) d x\right)
$$

$$
=1.38135 \ldots,
$$

higher than $C=1.1541 \ldots$, and $L\left(s, \chi_{3}\right):=\sum_{m \geq 1} \frac{\chi_{3}(m)}{m^{s}}$ the Dirichlet L-series for the character χ_{3}, with χ_{3} the uniquely specified odd character of conductor $3\left(\chi_{3}(m)=0,1\right.$ or -1 according to whether $m \equiv 0,1$ or $2(\bmod 3)$, equivalently $\chi_{3}(m)=\left(\frac{m}{3}\right)$ the Jacobi symbol).

In 1979, Dobrowolski, using an auxiliary function, obtained the general asymptotic minoration, with $n=\operatorname{deg}(\alpha)$ the degree of the nonzero algebraic integer α, which is not a root of unity,

$$
\begin{equation*}
\mathrm{M}(\alpha)>1+(1-\varepsilon)\left(\frac{\log \log n}{\log n}\right)^{3}, \quad n>n_{0}(\varepsilon) \tag{10}
\end{equation*}
$$

with $1-\varepsilon$ replaced by $1 / 1200$ for $n \geq 2$, for an effective version of the minoration.

Contents

(1) Introduction : Weil height h and Mahler measure M
(2) Small Mahler measures - Conjecture of Lehmer
(3) The Dynamical zeta function $\zeta_{\beta}(z)$ of the β-shift as β tends to 1
4. Lenticular minoration of the Mahler measure

- Two Theorems : Factorization of the polynomials of the class \mathscr{B} and Kala-Vavra's Theorem
- Identification, rewriting trails, Galois conjugation and
convergence
(5) Universal minorant

Hyp. : existence of a reciprocal algebraic integer β in the interval $\left(\theta_{n}^{-1}, \theta_{n-1}^{-1}\right)$ for some integer n, large enough, such that

$$
\mathrm{M}(\beta)<1.176280 \ldots,
$$

if

$$
P_{\beta}(X)=\widetilde{P_{\beta}}\left(X^{r}\right) \quad \text { implies } r=1
$$

for some \mathbb{Z}-minimal integer polynomial $\widetilde{P_{\beta}}(X)$.
$\underline{\text { Proposition }: ~ f o r ~ a n y ~ l e n t i c u l a r ~ p o l e ~} \omega_{j, n}$ of $\zeta_{\beta}(z)$,

$$
f_{\beta}\left(\omega_{j, n}\right)=0 \quad \Longrightarrow \quad P_{\beta}\left(\omega_{j, n}\right)=0
$$

This identification gives the following minoration to the Mahler measure of β :

$$
\mathrm{M}(\beta)=\mathrm{M}\left(\beta^{-1}\right)=\prod_{\omega \notin \mathscr{\mathscr { L }}_{\beta},|\omega|<1}|\omega|^{-1} \times \prod_{\omega \in \mathscr{L}_{\beta}}|\omega|^{-1} \geq \prod_{\omega \in \mathscr{L}_{\beta}}|\omega|^{-1}=\mathfrak{S}_{\text {lent }}(\beta) .
$$

Pf. : rewriting trails.

Two Theorems : Factorization of the polynomials of the class \mathscr{B} and

Kala-Vávra’s Theorem

Theorem (Dutykh - VG '18)
For any $f \in \mathscr{B}_{n}, n \geq 3$, denote by

$$
f(x)=A(x) B(x) C(x)=-1+x+x^{n}+x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}},
$$

where $s \geq 1, m_{1}-n \geq n-1, m_{j+1}-m_{j} \geq n-1$ for $1 \leq j<s$, the factorization of f where A is the cyclotomic part, B the reciprocal noncyclotomic part, C the nonreciprocal part. Then
(i) the nonreciprocal part C is nontrivial, irreducible and never vanishes on the unit circle,
(ii) if $\gamma>1$ denotes the real algebraic number uniquely determined by the sequence ($n, m_{1}, m_{2}, \ldots, m_{s}$) such that $1 / \gamma$ is the unique real root of f in $\left(\theta_{n-1}, \theta_{n}\right),-C^{*}(X)$ is the minimal polynomial $P_{\gamma}(X)$ of γ, and γ is a nonreciprocal algebraic integer.

For a general complex number $\beta \in \mathbb{C},|\beta|>1$, and a finite alphabet $\mathscr{A} \subset \mathbb{C}$, we define the (β, \mathscr{A})-representations as expressions of the form

$$
\sum_{k \geq-L} a_{k} \beta^{-k}, \quad a_{k} \in \mathscr{A}
$$

for some integer $L \in \mathbb{Z}$. They are Laurent series of $1 / \beta$. We define

$$
\operatorname{Per}_{\mathscr{A}}(\beta):=\{x \in \mathbb{C} \mid x \text { has an eventually periodic }(\beta, \mathscr{A}) \text {-representation }\} .
$$

Those β s which are the real roots >1 of the polynomials of the class \mathscr{B} will be of special interest in the next section.

Theorem (Kala -Vávra '19)

Let $\beta \in \mathbb{C}$ be an algebraic number of degree $d,|\beta|>1$, and let $a_{d} x^{d}-a_{d-1} x^{d-1}-\ldots-a_{1} x-a_{0} \in \mathbb{Z}[x]$ be its minimal polynomial. Suppose that $\left|\beta^{\prime}\right| \neq 1$ for any conjugate β^{\prime} of β. Then there exists a finite alphabet $\mathscr{A} \subset \mathbb{Z}$ such that

$$
\begin{equation*}
\mathbb{Q}(\beta)=\operatorname{Per}_{\mathscr{A}}(\beta) . \tag{11}
\end{equation*}
$$

Rewriting polynomials - identification of lenticular roots as conjugates [Res. Number Theory 7 :64 (2021)]

Take $\beta \in\left(\theta_{n}^{-1}, \theta_{n-1}^{-1}\right)$ a reciprocal algebraic integer for some integer n large enough. Then

$$
f_{\beta}(z)=-1+z+z^{n}+z^{m_{1}}+z^{m_{2}}+\ldots+z^{m_{j}}+z^{m_{j+1}}+\ldots,
$$

where $m_{1}-n \geq n-1, m_{j+1}-m_{j} \geq n-1$ for $j \geq 1$, written $=-1+\sum_{i \geq 1} t_{i} z^{i}$, is a power series which is never a polynomial (Descartes's rule).

For every $s \geq 1$, let $S_{\gamma_{s}}(X):=X^{s}-\sum_{i=0}^{s-1} t_{s-i} X^{i}$ such that

$$
S_{\gamma_{s}}^{*}(X)=X^{s} S_{\gamma_{s}}(1 / X)=1-t_{1} X-t_{2} X^{2}-\ldots-t_{s-1} X^{s-1}-t_{s} X^{s}
$$

and $-S_{\gamma_{s}}^{*}(z)$ is the sth polynomial section of $f_{\beta}(z)$.
Def. : $\gamma_{s}>1$ unique zero of $S_{\gamma_{s}}(z) .: S_{\gamma_{s}}^{*}\left(\gamma_{s}^{-1}\right)=0, \lim _{s \rightarrow+\infty} \gamma_{s}^{-1}=\beta^{-1}$.

The minimal polynomial P_{β} of β is monic and reciprocal. Denote it

$$
P_{\beta}(x)=1+a_{1} x+a_{2} x^{2}+\ldots+a_{d-1} x^{d-1}+a_{d} x^{d} \quad\left(a_{d-i}=a_{i}\right)
$$

Let $H:=\max \left\{\left|a_{i}\right|: 1 \leq i \leq d-1\right\} \geq 1$ be the naïve height of P_{β}.

We have 2 "characterizers" of the same object β :

$$
P_{\beta} \text { and } f_{\beta}
$$

How to pass from one to the other ? rewriting trail and control of the alphabet in Kala-Vávra's Theorem.

We proceed in two steps:
(i) first we express $P_{\beta}\left(\gamma_{s}\right)$ as a $\left(\gamma_{s}, \mathscr{A}\right)$ - eventually periodic representation with the symmetrical alphabet
$\mathscr{A}=\{-m, \ldots, 0, \ldots,+m\} \subset \mathbb{Z}$ which does not depend upon s, with
$m=\left\lceil 2\left(\left(2^{d}-1\right) H+2^{d}\right) / 3\right\rceil$. This expression of $P_{\beta}\left(\gamma_{s}\right)$, as a Laurent series of $1 / \gamma_{s}$, is obtained using the two above Theorems,
(ii) we allow s to tend to infinity to obtain the convergence of $P_{\beta}\left(\sigma\left(\gamma_{s}\right)\right)$ to 0 which will imply $P_{\beta}(\sigma(\beta))=0$.

Starting point : $1=1$,
to which we add $0=-S_{\gamma}^{*}\left(\gamma^{-1}\right)$ in the right hand side. Then we define a rewriting trail from

$$
1=1-S_{\gamma}^{*}\left(\gamma^{-1}\right)=t_{1} \gamma^{-1}+t_{2} \gamma^{-2}+\ldots+t_{s-1} \gamma^{-(s-1)}+t_{s} \gamma^{-s}
$$

to

$$
-a_{1} \gamma^{-1}-a_{2} \gamma^{-2}+\ldots-a_{d-1} \gamma^{-(d-1)}-a_{d} \gamma^{-d}=1-P\left(\gamma^{-1}\right) .
$$

A rewriting trail will be a sequence of integer polynomials, whose role will consist in "restoring" the coefficients of $1-P\left(\gamma^{-1}\right)$ one after the other, from the left, by adding " 0 " conveniently at each step to both sides.

At the first step we add $0=\left(-a_{1}-t_{1}\right) \gamma^{-1} S_{\gamma}^{*}\left(\gamma^{-1}\right)$; and we obtain

$$
\begin{gathered}
1=-\mathbf{a}_{\mathbf{1}} \gamma^{-1} \\
+\left(-\left(-a_{1}-t_{1}\right) t_{1}+t_{2}\right) \gamma^{-2}+\left(-\left(-a_{1}-t_{1}\right) t_{2}+t_{3}\right) \gamma^{-3}+\ldots
\end{gathered}
$$

so that the height of the polynomial

$$
\left(-\left(-a_{1}-t_{1}\right) t_{1}+t_{2}\right) X^{2}+\left(-\left(-a_{1}-t_{1}\right) t_{2}+t_{3}\right) X^{3}+\ldots
$$

is $\leq H+2$.

At the second step we add $0=\left(-a_{2}-\left(-\left(-a_{1}-t_{1}\right) t_{1}+t_{2}\right)\right) \gamma^{-2} S_{\gamma}^{*}\left(\gamma^{-1}\right)$. Then we obtain

$$
\begin{gathered}
1=-\mathbf{a}_{1} \gamma^{-1}-\mathbf{a}_{2} \gamma^{-2} \\
+\left[\left(-a_{2}-\left(-\left(-a_{1}-t_{1}\right) t_{1}+t_{2}\right)\right) t_{1}+\left(-\left(-a_{1}-t_{1}\right) t_{2}+t_{3}\right)\right] \gamma^{-3}+\ldots
\end{gathered}
$$

where the height of the polynomial

$$
\left[\left(-a_{2}-\left(-\left(-a_{1}-t_{1}\right) t_{1}+t_{2}\right)\right) t_{1}+\left(-\left(-a_{1}-t_{1}\right) t_{2}+t_{3}\right)\right] X^{3}+\ldots
$$

is $\leq H+(H+2)+(H+2)=3 H+4$. Iterating this process d times we obtain

$$
1=-\mathbf{a}_{\mathbf{1}} \gamma^{-1}-\mathbf{a}_{\mathbf{2}} \gamma^{-2}-\ldots-\mathbf{a}_{\mathrm{d}} \gamma^{-d}
$$

+ polynomial remainder in γ^{-1}.
To summarize, we obtain a sequence $\left(A_{q}^{\prime}(X)\right)_{q \geq 1}$ of rewriting polynomials involved in this rewriting trail ; for $q \geq 1, A_{q}^{\prime} \in \mathbb{Z}[X]$, $\operatorname{deg}\left(A_{q}^{\prime}\right) \leq q$ and $A_{q}^{\prime}(0)=-1$. The first polynomial $A_{1}^{\prime}(X)$ is $-1+\left(-a_{1}-t_{1}\right) X$. The second polynomial $A_{2}^{\prime}(X)$ is $-1+\left(-a_{1}-t_{1}\right) X+\left(-a_{2}-\left(-\left(-a_{1}-t_{1}\right) t_{1}+t_{2}\right)\right) X^{2}$, etc.

Contents

(1) Introduction : Weil height h and Mahler measure M
(2) Small Mahler measures - Conjecture of Lehmer
(3) The Dynamical zeta function $\zeta_{\beta}(z)$ of the β-shift as β tends to 1
4. Lenticular minoration of the Mahler measure
(5) Universal minorant
6. Search for very small Mahler measures from \mathscr{B}; Modulo p Problem ; Hypergeometric functions over \mathbb{Q}

Theorem

There exists an integer $\eta \geq 260$ such that, for any nonzero real reciprocal algebraic integer β, which is $\neq \pm 1$,

$$
\mathrm{M}(\beta) \geq \theta_{\eta}^{-1}
$$

$\theta_{260}^{-1} \approx 1.01 \ldots$

Pf. : Let $\beta \neq 0$ be a reciprocal algebraic integer which is not a root of unity, such that $\operatorname{dyg}(\beta) \geq \eta$ with $\eta \geq 260$. Since $\mathrm{M}(\beta)=\mathrm{M}\left(\beta^{-1}\right)$ there are three cases to be considered:
(i) the house of β satisfies $|\beta| \geq \theta_{5}^{-1}$,
(ii) the dynamical degree of β satisfies: $6 \leq \operatorname{dyg}(\beta)<\eta$, with $\mathrm{M}(\beta)<1.176280 \ldots$,
(iii) the dynamical degree of β satisfies: $\operatorname{dyg}(\beta) \geq \eta$, with $\mathrm{M}(\beta)<1.176280 \ldots$
In the first case, $\mathrm{M}(\beta) \geq \theta_{5}^{-1}>\theta_{260}^{-1} \geq \theta_{\eta}^{-1}>1$. In the second case, $\mathrm{M}(\beta) \geq \theta_{\eta}^{-1}$. In the third case, the Dobrowolski-type inequality gives the following lower bound of the Mahler measure

$$
\begin{gathered}
\mathrm{M}(\beta) \geq C-C \frac{\arcsin (\kappa / 2)}{\pi \log (\operatorname{dyg}(\beta))} \\
\geq C-C \frac{\arcsin (\kappa / 2)}{\pi \log (\eta)} \geq C-C \frac{\arcsin (\kappa / 2)}{\pi \log (260)}, \approx 1.14 \ldots
\end{gathered}
$$

This lower bound is numerically greater than $\theta_{260}^{-1}=1.01 \ldots$, itself greater than θ_{η}^{-1}. In any case, the universal lower bound θ_{η}^{-1} of $\mathrm{M}(\beta)$ holds true.
improving the method : Rouché to "spirals"
better minorant, better constants in Dobro.-type ineq.
Possible goal : Lehmer's number is the smallest (non-trivial) possible Mahler measure of reciprocal algebraic integers.

Figure: Curves of the lenticular jth-zeroes, containing the lenticular Galois conjugates $j=1,2,3,4, n=220$)

Figure: Curve of the lenticular first-zeroes $(j=1, n=215$ to 220)

Figure: Curve of the lenticular 2nd-zeroes ($j=2, n=215$ to 220)

Contents

(1) Introduction : Weil height h and Mahler measure M
(2) Small Mahler measures - Conjecture of Lehmer
(3) The Dynamical zeta function $\zeta_{\beta}(z)$ of the β-shift as β tends to 1
4. Lenticular minoration of the Mahler measure
(5) Universal minorant

6 Search for very small Mahler measures from \mathscr{B}; Modulo p Problem; Hypergeometric functions over \mathbb{Q}

Does there exist reciprocal non-cyclotomic factors in the decomposition of $f \in \mathscr{B}$?

Recall

$$
f(x)=A(x) \times B(x) \times C(x) .
$$

Two Conjectures have appeared :
(i) the "Asymptotic Reducibility Conjecture" says that 75\% of the polynomials $f(x) \in \mathscr{B}$ are irreducible (then non-reciprocal),
(ii) the Conjecture B , which says that the factorization of any $f \in \mathscr{B}$ never contains factors which are reciprocal non-cyclotomic.

Conjecture B has been established (Dutykh VG, '22) for some infinite families of polynomials f of \mathscr{B}, using a criterium of Sawin, Shusterman and Stoll complementing some results of Schinzel.

Pb. : Factorization problem, number of factors?

Theorem

Let $f \in \mathbb{Z}[X]^{c}$. If $f=\prod_{i \in J} f_{i}^{v_{i}}$ is the decomposition of f into irreducible factors, with all $v_{i} \geq 1$, then

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} N_{p}(f)=\sum_{i \in J} v_{i}
$$

which is the number of irreducible factors in the decomposition of f.
c stands for "content=1"
p prime number
$N_{p}(f)=$ number of zeroes of f in \mathbb{F}_{p}.
Stated in 1880 by Kronecker without proof. Proof by Rosen in 2012.

Apply to class \mathscr{B} :

A subset S of the set of primes \mathbb{P} has density c if
$\lim _{x \rightarrow \infty} \frac{\text { number of } p \in S \text { with } p \leq x}{\pi(x)}=c$.
The limit is denoted by $\delta(S)$.

Theorem

Let $n \geq 3$. Let $f(x):=-1+x+x^{n}+x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}} \in \mathscr{B}$, where $s \geq 0$, $m_{1}-n \geq n-1, m_{q+1}-m_{q} \geq n-1$ for $1 \leq q<s$. The polynomial f is assumed irreducible. Denote by G the Galois group of $f(x)$ and $g:=\# G$. Then
(i) [Serre, '04-Chebotarev density Thm] the set $\mathscr{P}_{0}:=\left\{p \in \mathbb{P} \mid N_{p}(f)=0\right\}$ is infinite, has a density and its density satisfies

$$
\delta\left(\mathscr{P}_{0}\right) \geq \frac{1}{m_{s}}
$$

with strict inequality if m_{s} is not a power of a prime,
(ii) [Rosen, '12-Frobenius density Thm] the set $\mathscr{P}_{\text {max }}:=\left\{p \in \mathbb{P} \mid N_{p}(f)=\operatorname{deg}(f)\right\}$ is infinite and has density

$$
\delta\left(\mathscr{P}_{\max }\right)=\frac{1}{g} .
$$

From Beukers, Cohen, Mellit ("Finite Hypergeometric Functions") :
Cor. 1.6 : Let $f(t)=x^{3}+3 x^{2}-4 t$ with $t \in \mathbb{F}_{q}$ and $t \neq 0,1$. Let $N_{f}(t)$ be the number of zeroes of $f(x)$ in \mathbb{F}_{q}. Suppose that q is not divisible by 2 or 3 . Then

$$
N_{f}(t)=1+H_{q}(1 / 3,2 / 3 ; 1,1 / 2 \mid t)
$$

Here (context Lehmer - the curve of the lenticular poles, having infinitely many branches emitted by $z=1$ is known) $\beta>1$ is not used as a real variable, but by its coding :

$$
\beta \leftrightarrow\left(t_{i}=t_{i}(\beta)\right) .
$$

Pb. : find analogue of BCM theory: $N_{f}(t) \equiv N_{p}(f) \equiv N_{p}(\beta)$.

$$
N_{p}(\beta)=1+? ?_{p}(? ? \mid \beta) .
$$

Thank you

