An attack of the Conjecture of Lehmer by the dynamical zeta function of the β -shift, and the modulo *p* problem

J.-L. VERGER-GAUGRY

LAMA, Univ. Savoie Mont Blanc, CNRS

> I.M. Bordeaux 3 juin 2022

> > I.M. Bordeaux 3 juin 2022

Contents

Introduction : Weil height *h* and Mahler measure M

- 2 Small Mahler measures Conjecture of Lehmer
- 3 The Dynamical zeta function $\zeta_{\beta}(z)$ of the β -shift as β tends to 1
- 4 Lenticular minoration of the Mahler measure
- 5 Universal minorant
- 6 Search for very small Mahler measures from *B*; Modulo p Problem; Hypergeometric functions over Q

Definition : Weil height : let $\alpha \in \overline{\mathbb{Q}}^*$, $P_{\alpha}(X) = a_0(X - \alpha_1)(X - \alpha_2) \dots (X - \alpha_n)$ $= a_0 X^n + a_1 X^{n-1} + \dots + a_{n-1} X + a_n \in \mathbb{Z}[X]$, $a_0 a_n \neq 0$, its minimal polynomial. The (abs. log.) Weil height of α is

I.M. Bordeaux 3 juin 2022

$$h(\alpha) = \frac{1}{n} \operatorname{Log} \left(|a_0| \prod_{i=1}^n \max\{1, |\alpha_i|\} \right)$$

Prop : $h(p/q) = \operatorname{Log} \max(|p|, |q|), (p,q) = 1, \quad h(1) = 0,$
 $h(\alpha) \ge 0$ for all $\alpha \in \overline{\mathbb{Q}}^*,$
 $h(\alpha^r) = |r|h(\alpha),$ for $r \in \mathbb{Z}, \alpha \in \overline{\mathbb{Q}}^*, \quad h(1/\alpha) = h(\alpha),$
 $h(\sigma(\alpha)) = h(\alpha),$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}).$

Definition : Mahler measure : for

$$P(X) = a_0(X - \alpha_1)(X - \alpha_2) \dots (X - \alpha_n) = a_0 X^n + a_1 X^{n-1} + \dots + a_{n-1} X + a_n \in \mathbb{Z}[X], \quad a_0 a_n \neq 0$$

then

$$\mathrm{M}(\boldsymbol{\mathcal{P}}):=|\boldsymbol{a}_0|\prod_{i,|\alpha_i|\geq 1}|lpha_i|.$$

multiplicativity : $P = P_1 \times P_2 \times \ldots \times P_m$, $\Rightarrow M(P) = M(P_1) \ldots M(P_m)$.

ex. : $P = \Phi_1 \times \ldots \times \Phi_r \times R$ with R irr. pol., Φ_j cyclot. $\Longrightarrow M(P) = M(R)$.

 α alg. number, deg $\alpha = n$, P_{α} his minimal polynomial, $M(\alpha) := M(P_{\alpha})$. Absolute logarithmic, Weil height of α :

$$h(\alpha) := \frac{\mathrm{Log}\,\mathrm{M}(\alpha)}{d}$$

facts : $M(\alpha) = M(\alpha^{-1})$, $M(\alpha) = \alpha$ if $\alpha \in S$ (= set of Pisot numbers ; $|\alpha_i| < 1$), $M(\alpha) = \alpha$ if $\alpha \in T$ (= set of Salem numbers ; $|\alpha_i| < 1$ with at least one $|\alpha_j| = 1$), $M(\alpha) = 1$ if α is a root of unity.

<u>Kronecker's Theorem</u>(1857) : Let α be a nonzero algebraic integer. Then $M(\alpha) = 1$ iff α is a root of unity.

practice in Arithm. Geo. :

 $M(\alpha)$ calculated \rightarrow useful to calculate $h(\alpha)$,

height $h = \text{sum of local contributions} \rightarrow \text{useful to prove Theorems.}$

Adler Marcus (1979) (topological entropy and equivalence of dynamical systems), Perron-Frobenius theory) :

 $\{M(\alpha) \mid \alpha \text{ alg. number}\} \subset \mathbb{P}_{Perron},$ $\{M(P) \mid P \in \mathbb{Z}[X]\} \subset \mathbb{P}_{Perron}.$

Two strict inclusions (Dubickas 2004, Boyd 1981).

Definition : $\alpha \in \mathbb{P}_{Perron}$ if $\alpha = 1$ or if $\alpha > 1$ is a real algebraic integer, for which the conjugates $\alpha^{(i)}$ satisfy $|\alpha^{(i)}| < \alpha$ (i.e. dominant root > 1).

Contents

Small Mahler measures - Conjecture of Lehmer

- 3 The Dynamical zeta function $\zeta_{\beta}(z)$ of the β -shift as β tends to 1
- 4 Lenticular minoration of the Mahler measure
- 5 Universal minorant
- Search for very small Mahler measures from *B*; Modulo p Problem; Hypergeometric functions over Q

<u>Northcott's Theorem</u> : for all $B \ge 0$, $d \ge 1$,

$$\#\{\alpha \in \overline{\mathbb{Q}} \mid h(\alpha) \leq B, [\mathbb{Q}(\alpha) : \mathbb{Q}] \leq d\} < +\infty.$$

in Dio. Geom. : bound on "degree" + bound on "*h*" gives finiteness property (Mordell eff., etc).

Conjecture of Lehmer : there exists c > 0 such that

 $M(\alpha) \ge 1 + c$

for any algebraic number $\alpha \neq 0$ which is not a root of unity,

i.e. the interval $(1, 1 + c) \cap \mathbb{P}_{Perron}$ is deprived of any value of Mahler measure of any algebraic number.

I.M. Bordeaux 3 juin 2022

-> values : discontinuity at 1 (meaning, sense, of *c*?).

Lehmer's problem (1933)

in the exhaustive search for large prime numbers : if ε is a positive quantity, to find a polynomial of the form

$$f(x) = x^r + a_1 x^{r-1} + \ldots + a_r$$

where the a_is are integers, such that the absolute value of the product of those roots of f which lie outside the unit circle, lies between 1 and $1 + \varepsilon$... Whether or not the problem has a solution for $\varepsilon < 0.176$ we do not know.

Lehmer's strategy : P_{α} with small M : useful to obtain large prime numbers p, in the Pierce numbers of α . Iwasawa theory : large powers of primes. Einsiedler, Everest and Ward : study of the density of such ps. Lehmer's Problem is a limit problem + restrictions :

$$\mathrm{M}(P):=|a_0|\prod_{i,|lpha_i|\geq 1}|lpha_i| \implies \mathrm{M}(P):=|a_0|\geq |a_0|.$$

Let $\alpha \in \overline{\mathbb{Q}}, \ \textit{P} = \textit{P}_{\alpha}$:

- $* ext{ if } lpha \in \overline{\mathbb{Q}} \setminus \mathscr{O}_{\overline{\mathbb{Q}}} ext{ , then } |a_0| \geq 2 \quad \Longrightarrow \quad \operatorname{M}(P) \geq 2,$
- * if α is an algebraic integer which is not reciprocal ($P_{\alpha} \neq P_{\alpha}^{*}$ with

$$P^*_{lpha}(X) = X^{\deg P_{lpha}} P_{lpha}(1/X)$$
),

Smyth's Theorem '71 \implies M(P_{α}) $\geq \Theta = 1.32...$ (= smallest Pisot number, $X^3 - X - 1$ mini. pol.).

* restriction to real reciprocal algebraic integers is sufficient : if $\alpha \in \mathscr{O}_{\overline{\mathbb{Q}}}$, which is reciprocal $(P_{\alpha} = P_{\alpha}^{*})$, consider its house

$$\max\{|\alpha_i|\} =: \overline{\alpha} \in \mathscr{O}_{\overline{\mathbb{Q}}}$$

I.M. Bordeaux 3 juin 2022

which is real, ≥ 1 .

Attack (context) : $\beta > 1$ real reciprocal algebraic integer,

$$1 < \beta \leq |\beta| \leq M(\beta).$$

 $\begin{array}{l} \beta \mbox{ tends to } 1^+, \\ \hline \beta \mbox{ tends to } 1^+. \\ ? \mbox{ minimum of } \beta \to M(\beta), \mbox{ of } \hline \beta \mbox{ } \to M(\hline \beta \mbox{)}. \\ \mbox{ assumption : existence of a real reciprocal algebraic integer } \beta > 1 \mbox{ having : } \\ M(\beta) < 1.176280 \dots \mbox{ Lehmer's number.} \end{array}$

Previously : Dobrowolski's inequality ('79) : for any reciprocal algebraic integer α of degree d,

$$\mathrm{M}(lpha)>1+(1-arepsilon)\left(rac{\textit{LogLog }d}{\textit{Log }d}
ight)^3, \qquad d>d_1(arepsilon).$$

(Dobrowolski, 1/1200, Schinzel, $1 - \varepsilon$ for $d > d_1$) here,

the lower bound in the rhs tends to 1 when *d* tends to infinity. Remarkable inequality. Not satisfying. Need to improve Dobrowolski's inequality by another method.

Contents

Introduction : Weil height *h* and Mahler measure M

The Dynamical zeta function ζ_β(z) of the β-shift as β tends to 1
 Lenticular poles

- A Dobrowolski-type inequality for the lenticular measure
- 4 Lenticular minoration of the Mahler measure
- 5 Universal minorant

Search for very small Mahler measures from *B*; Modulo p Problem; Hypergeometric functions over Q Li.M. Bordeaux 3 juin 2022

Why use dynamical zeta functions $\zeta_{\beta}(z)$ of the β -shift?

Because the Conjecture of Lehmer can be proved by this means for $\boldsymbol{\beta}$ running over

 $\{\theta_n^{-1}; n \ge 3\},$ (seq. of Perron numbers > 1 tending to 1)

where

 θ_n is the unique root of $-1 + x + x^n$ in (0, 1).

* the information lies in the poles inside D(0,1) the open unit disk,

L.M. Bordeaux 3 juin 2022

* the poles of modulus < 1 form a **lenticulus**.

goal : extend the method to all $\beta s > 1$ tending to 1.

Let $1 < \beta < (1 + \sqrt{5})/2$ be a real number.

• Consider the dynamical system :

$$(X = [0,1], B, T_\beta, \mu)$$

where

$$T_{\beta}: x \mapsto \beta x \pmod{1} = \{\beta x\}.$$

is the β -transformation. Invariant measure (Parry, '60) abs cont Lebesgue, pure jump, density :

$$h_{\beta}(x) = C \sum_{n, x < T^n_{\beta}(1)} \frac{1}{\beta^{n+1}}$$

unique (Rényi, '57), ergodic (Parry, '60), maximal (Hofbauer, '78)

• Later on, we will specialize $\beta > 1$ to run over reciprocal algebraic integers.

The "second" analytic function uniquely associated with β :

$$(X, B, T, \mu) = ([0, 1], T_{\beta}, h_{\beta}(x)dx)$$

Theorem

Let $\beta \in (1, \theta_2^{-1})$. Then, the Artin-Mazur dynamical zeta function

$$\zeta_{\beta}(z) := \exp\Big(\sum_{n=1}^{\infty} \frac{\#\{x \in [0,1] \mid T_{\beta}^{n}(x) = x\}}{n} z^{n}\Big),$$
(1)

I.M. Bordeaux 3 juin 2022

counting the number of periodic points of period dividing n, is nonzero and meromorphic in $\{z \in \mathbb{C} : |z| < 1\}$, and such that $1/\zeta_{\beta}(z)$ is holomorphic in $\{z \in \mathbb{C} : |z| < 1\}$,

Theorem (Takahashi, Ito-Takahashi)

Let $\beta \in (1, \theta_2^{-1})$ be a real number. Then

$$\zeta_{\beta}(z) = \frac{1 - z^{N}}{(1 - \beta z) \left(\sum_{n=0}^{\infty} T_{\beta}^{n}(1) z^{n}\right)}$$

where N is the minimal positive integer such that $T_{\beta}^{N}(1) = 0$; in the case where $T_{\beta}^{j}(1) \neq 0$ for all $j \geq 1$, " z^{N} " has to be replaced by "0".

(2)

Up to the sign, the denominator of (2) is the Parry Upper function $f_{\beta}(z)$ at β . It satisfies

(*i*)
$$f_{\beta}(z) = -\frac{1-z^N}{\zeta_{\beta}(z)}$$
 in the first case, (3)

(*ii*)
$$f_{\beta}(z) = -\frac{1}{\zeta_{\beta}(z)}$$
 in the second case, (4)

and, denoting by $t_1, t_2, \ldots \in \{0, 1\}$ the coefficients in

$$-1 + t_1 z + t_2 z^2 + t_3 z^3 + \ldots = t_\beta(z) = -(1 - \beta z) \Big(\sum_{n=0}^{\infty} T_\beta^n(1) z^n \Big), \quad (5)$$

 $f_{\beta}(z)$ is such that $0.t_1t_2t_3...$ is the Rényi β -expansion of unity $d_{\beta}(1)$.

The Parry Upper function $f_{\beta}(z)$ has no zero in $\{z \in \mathbb{C} : |z| \le 1/\beta\}$ except $z = 1/\beta$ which is a simple zero.

I.M. Bordeaux 3 juin 2022

The total ordering < on $(1, +\infty)$ is uniquely in correspondence with the lexicographical ordering $<_{lex}$ on the vector coefficients, i.e. on the Rényi expansions of 1 by (Parry, '60) :

In Rényi β -expansions, the correspondence $\beta \leftrightarrow (t_i = t_i(\beta))$ is a bijection.

Proposition[Parry] : Let $\alpha > 1$ and $\beta > 1$. If the Rényi α -expansion of 1 is

$$d_{\alpha}(1) = 0.t'_{1}t'_{2}t'_{3}..., \quad i.e. \quad 1 = \frac{l_{1}}{\alpha} + \frac{l_{2}}{\alpha^{2}} + \frac{l_{3}}{\alpha^{3}} + ...$$

and the Rényi β -expansion of 1 is

$$d_{\beta}(1) = 0.t_1t_2t_3..., \quad i.e. \quad 1 = \frac{t_1}{\beta} + \frac{t_2}{\beta^2} + \frac{t_3}{\beta^3} + ...,$$

I.M. Bordeaux 3 juin 2022

then $\alpha < \beta$ if and only if $(t'_1, t'_2, t'_3, \ldots) <_{lex} (t_1, t_2, t_3, \ldots)$.

Theorem

Let $n \ge 2$. A real number $\beta \in (1, \frac{1+\sqrt{5}}{2}]$ belongs to $[\theta_{n+1}^{-1}, \theta_n^{-1})$ if and only if the Rényi β -expansion of unity $d_{\beta}(1)$ is of the form

$$d_{\beta}(1) = 0.10^{n-1} 10^{n_1} 10^{n_2} 10^{n_3} \dots,$$

(6)

I.M. Bordeaux 3 juin 202

with $n_k \ge n-1$ for all $k \ge 1$.

<u>Pf.</u>: Since $d_{\theta_{n+1}^{-1}}(1) = 0.10^{n-1}1$ and $d_{\theta_n^{-1}}(1) = 0.10^{n-2}1$, the condition $\beta \in [\theta_{n+1}^{-1}, \theta_n^{-1})$ implies that the condition is sufficient. It is also necessary : $d_{\beta}(1)$ begins as $0.10^{n-1}1$ for all β such that $\theta_{n+1}^{-1} \leq \beta < \theta_n^{-1}$. For such β s we write $d_{\beta}(1) = 0.10^{n-1}1u$ with digits in the alphabet $\mathscr{A}_{\beta} = \{0, 1\}$ common to all β s, that is

 $u = 1^{h_0} 0^{n_1} 1^{h_1} 0^{n_2} 1^{h_2} \dots$

and $h_0, n_1, h_1, n_2, h_2, ...$ integers ≥ 0 . The Conditions of Parry (Parry '60, ref : Frougny, Lothaire) applied to the sequence $(1, 0^{n-1}, 1^{1+h_0}, 0^{n_1}, 1^{h_1}, 0^{n_2}, 1^{h_3}, ...)$, which characterizes uniquely the base of numeration β , readily implies $h_0 = 0$ and $h_k = 1$ and $n_k \geq n-1$ for all $k \geq 1$.

Def. : The polynomials of the class \mathscr{B}

are all the polynomial sections of the power series $f_{\beta}(z)$ for β in the interval $(1,(1+\sqrt{5})/2)$. Indeed, from the above, for

$$\beta \in [\theta_{n+1}^{-1}, \theta_n^{-1}),$$

the power series $f_{\beta}(x)$ takes the form :

$$-1 + x + x^n + x^{m_1} + x^{m_2} + \ldots + x^{m_s} + \ldots$$

with the distanciation conditions :

$$m_1 - n \ge n - 1, m_{q+1} - m_q \ge n - 1$$
 for $1 \le q$

I.M. Bordeaux 3 juin 2022

let θ_n be the unique root of the trinomial $G_n(z) := -1 + z + z^n$ in (0,1).

Lenticular poles

$$\begin{array}{ccc} \theta_n^{-1} & -1+z+z^n \\ \theta_n^{-1} < \beta < \theta_{n-1}^{-1} & (-1+x+x^n) + (x^{m_1}+x^{m_2}+\ldots+x^{m_s}+\ldots) \\ & & & \\ & & & \\ & & & \\ \theta_{n-1}^{-1} & -1+z+z^{n-1} \end{array}$$

Def. : *n* is called the **dynamical degree of** β , denoted by dyg(β).

The **Parry Upper function** at β

$$\theta_n^{-1} < \beta < \theta_{n-1}^{-1}$$
 $-1 + x + x^n + x^{m_1} + x^{m_2} + \ldots + x^{m_s} + \ldots$

satisfies (Conditions of admissibility of Parry) : $m_1 - n \ge n - 1$, $m_{q+1} - m_q \ge n - 1$ for $1 \le q$ [lexicographical ordering implies moderate gappiness]

I.M. Bordeaux 3 juin 2022

its zeroes in D(0,1)= eigenvalues⁻¹ of the transfer operators (generalized Fredholm determinants - BaladiKeller) = poles of $\zeta_{\beta}(z)$.

$$eta o \mathsf{1}^+ \qquad \Longleftrightarrow \qquad n \,{=}\, \mathrm{dyg}(eta) \,{ o} \,\infty.$$

Lenticular poles

Poles of $\zeta_{\beta}(z)$ in D(0,1): are limits of zeroes of polynomials of the class \mathscr{B} (Hurwitz). In D(0,1), the poles of $\zeta_{\beta}(z)$ are separated into two subcollections :

the lenticular poles,

the non-lenticular poles.

Description of the lenticular zeroes of $f \in \mathscr{B}$:

- leave the comfort of Taylor series (including the formulation as hypergeometric functions as functions of the coefficients, as in Mellin '15),
- enter "Poincaré asymptotic expansions as a function of the dynamical degree n = dyg(β), i.e. the integer controling the lacunarity a minima.
- replace the usual degree deg(β) by the dynamical degree dyg(β).

Classification not canonical : due to the method of Rouché.

From the structure of the asymptotic expansions of the roots of G_n it is natural to restrict the angular sector to

$$-\pi/18 < \arg \omega < +\pi/18.$$

More precisely,

Theorem (VG, '17)

Let $n \ge 260$. There exists two positive constants c_n and $c_{A,n}$, $c_{A,n} < c_n$, such that the roots of $f \in \mathcal{B}_n$,

$$f(x) - 1 + x + x^n + x^{m_1} + x^{m_2} + \ldots + x^{m_s}$$

where $s \ge 1$, $m_1 - n \ge n - 1$, $m_{j+1} - m_j \ge n - 1$ for $1 \le j < s$, lying in $-\pi/18 < \arg z < +\pi/18$ either belong to

$$\{z \mid ||z|-1| < \frac{c_{A,n}}{n}\}, \text{ or to } \{z \mid ||z|-1| \ge \frac{c_n}{n}\}.$$

true even though *n* is smaller than 260 on many examples.

Lenticular poles

Definition

Let $n \ge 260$. Let $\beta > 1$ be a real number such that $dyg(\beta) = n$. The poles of $\zeta_{\beta}(z)$ which belong to the angular sector

$$\left\{z \in \mathbb{C} : |z| < 1 - \frac{c_{lent}}{n}, |\arg z| \le +\frac{\pi}{18}\right\}$$
(7)

I.M. Bordeaux 3 juin 2022

are called the *lenticular poles* of $\zeta_{\beta}(z)$.

The lenticuli of lenticular poles, relative to θ_n^{-1} and β respectively, are :

$$\mathscr{L}_{\theta_n^{-1}} := \{ \overline{Z_{\lfloor n/6 \rfloor, n}}, \dots, \overline{Z_{2, n}}, \overline{Z_{1, n}}, \theta_n, Z_{1, n}, Z_{2, n}, \dots, Z_{\lfloor n/6 \rfloor, n} \},$$
$$\mathscr{L}_{\beta} = \{ \overline{\omega_{J_{n, n}}}, \dots, \overline{\omega_{1, n}}, \beta^{-1}, \omega_{1, n}, \dots, \omega_{J_{n, n}} \}.$$

Lenticular poles

Solomyaks's fractal

The lenticular roots lie on (universal) continuous curves stemming from z = 1, including the boundary of Solomyak's fractal.

Let

$$\mathscr{W} := \{h(z) = 1 + \sum_{j=1}^{\infty} a_j z^j \mid a_j \in [0, 1]\}$$

be the class of power series defined on |z| < 1 equipped with the topology of uniform convergence on compacts sets of |z| < 1. Let $\mathscr{W}_{0,1} \subset \mathscr{W}$ denote functions whose coefficients are in $\{0,1\}$. The space \mathscr{W} is compact and convex. Let

 $\mathscr{G} := \{\lambda \mid |\lambda| < 1, \exists h(z) \in \mathscr{W} \text{ such that } h(\lambda) = 0\} \quad \subset \{z \mid |z| < 1\}$

The domain $D(0,1) \setminus \mathscr{G}$ is star-convex due to the fact that :

$$h(z) \in \mathscr{W} \Longrightarrow h(z/r) \in \mathscr{W}$$
, for any $r > 1$.

The zeroes of any $f \in \mathscr{B}$ lie in \mathscr{G} since : $t_i := \lfloor \beta T_{\beta}^{i-1}(1) \rfloor = \beta T_{\beta}^{i-1}(1) - T_{\beta}^i(1)$, for $i \ge 1$, implies the factorization $-1 + t_1 x + t_2 x^2 + t_3 x^3 + \ldots = -(1 - \beta x)(1 + \sum_{j \ge 1} T_{\beta}^i(1) x^i)$

For every $\phi \in (0, 2\pi)$, there exists $\lambda = re^{i\phi} \in \mathscr{G}$; the point of minimal modulus with argument ϕ is denoted $\lambda_{\phi} = \rho_{\phi} e^{i\phi} \in \mathscr{G}$, $\rho_{\phi} < 1$.

A function $h \in \mathscr{W}$ is called ϕ -optimal if $h(\lambda_{\phi}) = 0$.

Denote by \mathscr{K} the subset of $(0, \pi)$ for which there exists a ϕ -optimal function belonging to $\mathscr{W}_{0,1}$.

I.M. Bordeaux 3 juin 2022

Denote by $\partial \mathscr{G}_S$ the "spike" : $[-1, \frac{1}{2}(1-\sqrt{5})]$ on the negative real axis.

Theorem (Solomyak, '94)

(i) The union $\mathscr{G} \cup \mathbb{T} \cup \partial \mathscr{G}_S$ is closed, symmetrical with respect to the real axis, has a cusp at z = 1 with logarithmic tangency.

(ii) the boundary $\partial \mathscr{G}$ is a **continuous curve**, given by $\phi \to |\lambda_{\phi}|$ on $[0, \pi)$, taking its values in $\left[\frac{\sqrt{5}-1}{2}, 1\right)$, with $|\lambda_{\phi}| = 1$ if and only if $\phi = 0$. It admits a left-limit at π^- , $1 > \lim_{\phi \to \pi^-} |\lambda_{\phi}| > |\lambda_{\pi}| = \frac{1}{2}(-1 + \sqrt{5})$, the left-discontinuity at π corresponding to the extremity of $\partial \mathscr{G}_{S}$.

(iii) at all points $\rho_{\phi} e^{i\phi} \in \mathscr{G}$ such that ϕ/π is rational in an **open dense subset** of (0,2), $\partial \mathscr{G}$ is non-smooth,

(iv) there exists a nonempty subset of transcendental numbers L_{tr} , of Hausdorff dimension zero, such that $\phi \in (0,\pi)$ and $\phi \notin \mathcal{K} \cup \pi \mathbb{Q} \cup \pi L_{tr}$ implies that the boundary curve $\partial \mathcal{G}$ has a tangent at $\rho_{\phi} e^{i\phi}$ (smooth point).

FIGURE: Solomyak's fractal.

31 64

Importance of the angular sector $|\arg(z)| < \pi/18$ containing the point 1 was already guessed by :

M. LANGEVIN, *Méthode de Fekete-Szegő et Problème de Lehmer*, C.R. Acad. Sci. Paris Série I Math. **301** (1) (1985), 463–466.

M. LANGEVIN, *Minorations de la Maison et de la Mesure de Mahler de Certains Entiers Algébriques*, C.R. Acad. Sci. Paris Série I Math. **303** (12) (1986), 523–526.

M. LANGEVIN, *Calculs Explicites de Constantes de Lehmer*, in *Groupe de travail en Théorie Analytique et Elémentaire des nombres*, 1986–1987, Publ. Math. Orsay, Univ. Paris XI, Orsay **88** (1988), 52–68.

A. DUBICKAS and C. SMYTH, *The Lehmer Constant of an Annulus*, J. Théorie Nombres Bordeaux **13** (2001), 413–420.

G. RHIN and C.J. SMYTH, On the Absolute Mahler Measure of Polynomials Having all Zeros in a Sector, Math. Comp. 64 (1995), 295–304.
G. RHIN and Q. WU, On the Absolute Mahler Measure of Polynomials Having all Zeros in a Sector II, Math. Comp. 74 (2005), 383–388.

lenticulus $\mathscr{L}_{\theta_n^{-1}}$ of simple zeroes in $\arg(z) \in (-\pi/3, +\pi/3), n = 71$ and = 12.

FIGURE: Roots of $G_{71}(z)$, $G_{12}(z)$.

FIGURE: a) The 37 zeroes of $G_{37}(x) = -1 + x + x^{37}$, b) The 649 zeroes of $f(x) = G_{37}(x) + x^{81} + x^{140} + x^{184} + x^{232} + x^{285} + x^{350} + x^{389} + x^{450} + x^{514} + x^{550} + x^{590} + x^{649} = G_{37}(x) + x^{81} + \ldots + x^{649}$. The lenticulus of roots of *f* (having 3 simple zeroes) is obtained by a very slight deformation of the restriction of the lenticulus of roots of G_{37} to the angular sector $|\arg z| < \pi/18$, off the unit circle. The other roots (nonlenticular) of *f* can be found in a narrow annular neighbourhood of |z| = 1.

FIGURE: a) Zeroes of G_{121} , b) Zeroes of $f(x) = -1 + x + x^{121} + x^{250} + x^{385}$. On the right the distribution of the roots of f is zoomed twice in the angular sector $-\pi/18 < \arg(z) < \pi/18$. The lenticulus of roots of f has 7 zeroes.

FIGURE: The representation of the 27 zeroes of the lenticulus of $f(x) = -1 + x + x^{481} + x^{985} + x^{1502}$ in the angular sector $-\pi/18 < \arg z < \pi/18$ in two different scalings in *x* and *y* (in a) and b)). In this angular sector the other zeroes of *f* can be found in a thin annular neighbourhood of the unit circle. The real root $1/\beta > 0$ of *f* is such that β satisfies : $1.00970357... = \theta_{481}^{-1} < \beta = 1.0097168... < \theta_{480}^{-1} = 1.0097202...$

FIGURE: Universal curves stemming from 1 which constitute the lenticular zero locus of all the polynomials of the class \mathscr{B} . These curves are continuous, semi-fractal. The first one above the real axis, corresponding to the zero locus of the first lenticular roots, lies in the boundary of Solomyak's fractal [?]. The lenticular roots of the previous polynomials *f* are represented by the respective symbols o, \Box , \diamond . The dashed lines represent the unit circle and the top boundary of the angular sector $|\arg z| < \pi/18$.

1.M. Bordeaux 3 juin 2022

A Dobrowolski-type inequality for the lenticular measure

Def. : If $\theta_n^{-1} < \beta < \theta_{n-1}^{-1}$ for some *n* large enough, and

$$\mathscr{L}_{\beta} = \{\overline{\omega_{J_n,n}}, \dots, \overline{\omega_{1,n}}, \beta^{-1}, \omega_{1,n}, \dots, \omega_{J_n,n}\}$$

denotes the set of the lenticular poles of $\zeta_{\beta}(z)$, all depending upon β , then we attribute to \mathscr{L}_{β} a measure, that we call *lenticular measure* of β , by the expression

$$\mathfrak{S}_{lent}(\beta) := \prod_{\omega \in \mathscr{L}_{\beta}} |\omega|^{-1} = \beta \prod_{j=1}^{J_n} |\omega_{j,n}|^{-2}.$$
(8)

By construction, $\mathfrak{S}_{lent}(\beta) \ge 1$. If $\beta = \theta_n^{-1}$, then the identification with the Mahler measure of θ_n^{-1} holds :

$$\mathfrak{S}_{lent}(\theta_n^{-1}) = \mathrm{M}(\theta_n^{-1}).$$

I.M. Bordeaux 3 juin 2022

Denote by $a_{max} = 5.87433...$ the abscissa of the maximum of the function

$$a\mapsto (1-\exp(rac{-\pi}{a}))/(2\exp(rac{\pi}{a})-1)$$

on $(0,\infty)$. Let $\kappa := 0.171573...$ be the value of its maximum, at $a = a_{max}$. From a numerical viewpoint we have : $2 \arcsin(\kappa/2) = 0.171784...$

Denote

$$C := \exp\left(\frac{-1}{\pi} \int_{0}^{2 \arcsin\left(\frac{x}{2}\right)} \log\left[\frac{1 + 2\sin\left(\frac{x}{2}\right) - \sqrt{1 - 12\sin\left(\frac{x}{2}\right) + 4(\sin\left(\frac{x}{2}\right))^{2}}}{4}\right] dx\right)$$
$$= 1.15411....$$

I.M. Bordeaux 3 juin 2022

Theorem (VG '17)

There exists an integer $\eta \ge 260$ such that the following inequality holds :

$$\mathfrak{S}_{lent}(\beta) \ge C - C \frac{\arcsin(\kappa/2)}{\pi} \frac{1}{\log(n)}, \quad \text{for all } n \ge \eta \quad (9)$$

and any $\beta \in (\theta_n^{-1}, \theta_{n-1}^{-1})$.

L.M. Bordeaux 3 juin 2022

This theorem extends (VG'16) :

$$\mathbf{M}(-1+x+x^n) = \mathbf{M}(\theta_n^{-1}) > \Lambda - \frac{\Lambda}{6} \left(\frac{1}{\log n}\right), \qquad n \ge 2,$$

where Λ is the following constant

$$\Lambda := \exp\left(\frac{3\sqrt{3}}{4\pi}L(2,\chi_3)\right) = \exp\left(\frac{-1}{\pi}\int_0^{\pi/3} \log\left(2\sin\left(\frac{x}{2}\right)\right) dx\right)$$

= **1.38135**...,

higher than C = 1.1541..., and $L(s, \chi_3) := \sum_{m \ge 1} \frac{\chi_3(m)}{m^s}$ the Dirichlet L-series for the character χ_3 , with χ_3 the uniquely specified odd character of conductor $3 (\chi_3(m) = 0, 1 \text{ or } -1 \text{ according to whether } m \equiv 0, 1 \text{ or } 2 \pmod{3}$, equivalently $\chi_3(m) = \left(\frac{m}{3}\right)$ the Jacobi symbol).

I.M. Bordeaux 3 juin 2022

In 1979, Dobrowolski, using an auxiliary function, obtained the general asymptotic minoration, with $n = \deg(\alpha)$ the degree of the nonzero algebraic integer α , which is not a root of unity,

$$M(\alpha) > \mathbf{1} + (1 - \varepsilon) \left(\frac{\log \log n}{\log n}\right)^3, \qquad n > n_0(\varepsilon), \tag{10}$$

with $1 - \varepsilon$ replaced by 1/1200 for $n \ge 2$, for an effective version of the minoration.

Contents

Introduction : Weil height *h* and Mahler measure M

Small Mahler measures - Conjecture of Lehmer

The Dynamical zeta function $\zeta_{\beta}(z)$ of the β -shift as β tends to 1

Lenticular minoration of the Mahler measure

 Two Theorems : Factorization of the polynomials of the class *B* and Kala-Vavra's Theorem

I.M. Bordeaux 3 juin 2022

 Identification, rewriting trails, Galois conjugation and convergence

5 Universal minorant

Hyp. : existence of a reciprocal algebraic integer β in the interval $(\theta_n^{-1}, \theta_{n-1}^{-1})$ for some integer *n*, large enough, such that

 $M(\beta) < 1.176280...,$

if

$$P_{\beta}(X) = \widetilde{P_{\beta}}(X^r)$$
 implies $r = 1$,

for some \mathbb{Z} -minimal integer polynomial $\widetilde{P_{\beta}}(X)$.

Proposition : for any lenticular pole $\omega_{j,n}$ of $\zeta_{\beta}(z)$,

$$f_{\beta}(\omega_{j,n}) = 0 \implies P_{\beta}(\omega_{j,n}) = 0.$$

This identification gives the following minoration to the Mahler measure of β :

$$\mathrm{M}(\beta) = \mathrm{M}(\beta^{-1}) = \prod_{\omega \not\in \mathscr{L}_{\beta}, |\omega| < 1} |\omega|^{-1} \times \prod_{\omega \in \mathscr{L}_{\beta}} |\omega|^{-1} \geq \prod_{\omega \in \mathscr{L}_{\beta}} |\omega|^{-1} = \mathfrak{S}_{\mathit{lent}}(\beta).$$

I.M. Bordeaux 3 juin 2022

Pf. : rewriting trails.

Two Theorems : Factorization of the polynomials of the class ${\mathscr B}$ and Kala-Vávra's Theorem

Theorem (Dutykh - VG '18) For any $f \in \mathcal{B}_n$, n > 3, denote by

 $f(x) = A(x)B(x)C(x) = -1 + x + x^{n} + x^{m_{1}} + x^{m_{2}} + \ldots + x^{m_{s}},$

where $s \ge 1$, $m_1 - n \ge n - 1$, $m_{j+1} - m_j \ge n - 1$ for $1 \le j < s$, the factorization of f where A is the cyclotomic part, B the reciprocal noncyclotomic part, C the nonreciprocal part. Then

- (i) the nonreciprocal part C is nontrivial, irreducible and never vanishes on the unit circle,
- (ii) if γ > 1 denotes the real algebraic number uniquely determined by the sequence (n, m₁, m₂,..., m_s) such that 1/γ is the unique real root of f in (θ_{n-1}, θ_n), -C^{*}(X) is the minimal polynomial P_γ(X) of γ, and γ is a nonreciprocal algebraic integer.

Df · Liupagrop's tricks J.-L. Verger-Gaugry (USMB, CNRS, LAMA) k

For a general complex number $\beta \in \mathbb{C}$, $|\beta| > 1$, and a finite alphabet $\mathscr{A} \subset \mathbb{C}$, we define the (β, \mathscr{A}) -representations as expressions of the form

$$\sum_{k\geq -L}a_k\beta^{-k}, \qquad a_k\in\mathscr{A},$$

for some integer $L \in \mathbb{Z}$. They are Laurent series of $1/\beta$. We define

 $\operatorname{Per}_{\mathscr{A}}(\beta) := \{ x \in \mathbb{C} \mid x \text{ has an eventually periodic } (\beta, \mathscr{A}) - \operatorname{representation} \}.$

Those β s which are the real roots > 1 of the polynomials of the class \mathscr{B} will be of special interest in the next section.

Theorem (Kala -Vávra '19)

Let $\beta \in \mathbb{C}$ be an algebraic number of degree d, $|\beta| > 1$, and let $a_d x^d - a_{d-1} x^{d-1} - \ldots - a_1 x - a_0 \in \mathbb{Z}[x]$ be its minimal polynomial. Suppose that $|\beta'| \neq 1$ for any conjugate β' of β . Then there exists a finite alphabet $\mathscr{A} \subset \mathbb{Z}$ such that

$$\mathbb{Q}(\beta) = \operatorname{Per}_{\mathscr{A}}(\beta). \tag{11}$$

Rewriting polynomials - identification of lenticular roots as conjugates [Res. Number Theory 7 :64 (2021)]

Take $\beta \in (\theta_n^{-1}, \theta_{n-1}^{-1})$ a **reciprocal** algebraic integer for some integer *n* large enough. Then

$$f_{\beta}(z) = -1 + z + z^{n} + z^{m_{1}} + z^{m_{2}} + \ldots + z^{m_{j}} + z^{m_{j+1}} + \ldots,$$

where $m_1 - n \ge n - 1$, $m_{j+1} - m_j \ge n - 1$ for $j \ge 1$, written $= -1 + \sum_{i \ge 1} t_i z^i$, is a power series which is never a polynomial (Descartes's rule).

For every $s \ge 1$, let $S_{\gamma_s}(X) := X^s - \sum_{i=0}^{s-1} t_{s-i} X^i$ such that

$$S^*_{\gamma_s}(X) = X^s S_{\gamma_s}(1/X) = 1 - t_1 X - t_2 X^2 - \ldots - t_{s-1} X^{s-1} - t_s X^s$$

and $-S^*_{\gamma_s}(z)$ is the *s*th polynomial section of $f_{\beta}(z)$.

Def. : $\gamma_s > 1$ unique zero of $S_{\gamma_s}(z)$. : $S^*_{\gamma_s}(\gamma_s^{-1}) = 0$, $\lim_{s \to +\infty} \gamma_s^{-1} = \beta^{-1}$.

The minimal polynomial P_{β} of β is monic and reciprocal. Denote it

$$P_{\beta}(x) = 1 + a_1 x + a_2 x^2 + \ldots + a_{d-1} x^{d-1} + a_d x^d \qquad (a_{d-i} = a_i).$$

Let $H := \max\{|a_i| : 1 \le i \le d-1\} \ge 1$ be the naïve height of P_{β} .

We have 2 "characterizers" of the same object β :

$$P_{\beta}$$
 and f_{β} .

How to pass from one to the other? rewriting trail and control of the alphabet in Kala-Vávra's Theorem.

I.M. Bordeaux 3 juin 2022

We proceed in two steps :

- (i) first we express P_β(γ_s) as a (γ_s, A)- eventually periodic representation with the symmetrical alphabet
 A = {-m,...,0,...,+m} ⊂ Z which does not depend upon s, with m = [2((2^d − 1)H+2^d)/3]. This expression of P_β(γ_s), as a Laurent series of 1/γ_s, is obtained using the two above Theorems ,
- (ii) we allow *s* to tend to infinity to obtain the convergence of $P_{\beta}(\sigma(\gamma_s))$ to 0 which will imply $P_{\beta}(\sigma(\beta)) = 0$.

I.M. Bordeaux 3 juin 2022

Starting point : 1 = 1, to which we add $0 = -S_{\gamma}^*(\gamma^{-1})$ in the right hand side. Then we define a rewriting trail from

$$1 = 1 - S^*_{\gamma}(\gamma^{-1}) = t_1 \gamma^{-1} + t_2 \gamma^{-2} + \ldots + t_{s-1} \gamma^{-(s-1)} + t_s \gamma^{-s}$$

to

$$-a_1\gamma^{-1} - a_2\gamma^{-2} + \ldots - a_{d-1}\gamma^{-(d-1)} - a_d\gamma^{-d} = 1 - P(\gamma^{-1}).$$

A rewriting trail will be a sequence of integer polynomials, whose role will consist **in "restoring" the coefficients** of $1 - P(\gamma^{-1})$ one after the other, from the left, by adding "0" conveniently at each step to both sides.

At the first step we add $0 = (-a_1 - t_1)\gamma^{-1}S^*_{\gamma}(\gamma^{-1})$; and we obtain

$$1 = -\mathbf{a_1}\gamma^-$$

+
$$(-(-a_1-t_1)t_1+t_2)\gamma^{-2}+(-(-a_1-t_1)t_2+t_3)\gamma^{-3}+\dots$$

so that the height of the polynomial

$$(-(-a_1-t_1)t_1+t_2)X^2+(-(-a_1-t_1)t_2+t_3)X^3+\ldots$$

is $\leq H+2$.

At the second step we add $0 = (-a_2 - (-(-a_1 - t_1)t_1 + t_2))\gamma^{-2}S_{\gamma}^*(\gamma^{-1})$. Then we obtain

$$1 = -\mathbf{a_1}\gamma^{-1} - \mathbf{a_2}\gamma^{-2}$$

+[$(-a_2 - (-(-a_1 - t_1)t_1 + t_2))t_1 + (-(-a_1 - t_1)t_2 + t_3)]\gamma^{-3} + \dots$

where the height of the polynomial

$$[(-a_2 - (-(-a_1 - t_1)t_1 + t_2))t_1 + (-(-a_1 - t_1)t_2 + t_3)]X^3 + \dots$$

is < H + (H+2) + (H+2) = 3H + 4. Iterating this process d times we obtain

$$1 = -\mathbf{a_1}\gamma^{-1} - \mathbf{a_2}\gamma^{-2} - \dots - \mathbf{a_d}\gamma^{-d}$$

+ polynomial remainder in γ '.

To summarize, we obtain a sequence $(A'_{a}(X))_{g>1}$ of rewriting polynomials involved in this rewriting trail; for $q \ge 1$, $A'_{\alpha} \in \mathbb{Z}[X]$, $\deg(A'_{\alpha}) \leq q$ and $A'_{\alpha}(0) = -1$. The first polynomial $A'_{1}(X)$ is $-1 + (-a_1 - t_1)X$. The second polynomial $A'_2(X)$ is $-1 + (-a_1 - t_1)X + (-a_2 - (-(-a_1 - t_1)t_1 + t_2))X_2^2$, etc. I.M. Bordeaux 3 juin 2022

Contents

Introduction : Weil height *h* and Mahler measure M

- Small Mahler measures Conjecture of Lehmer
- 3 The Dynamical zeta function $\zeta_{\beta}(z)$ of the β -shift as β tends to 1
- 4 Lenticular minoration of the Mahler measure

Universal minorant

Search for very small Mahler measures from *B*; Modulo p Problem; Hypergeometric functions over Q

Theorem

There exists an integer $\eta \ge 260$ such that, for any nonzero real reciprocal algebraic integer β , which is $\neq \pm 1$,

$$M(\beta) \geq \theta_{\eta}^{-1}.$$

I.M. Bordeaux 3 juin 2022

 $heta_{260}^{-1} \approx 1.01\ldots$

Pf. : Let $\beta \neq 0$ be a reciprocal algebraic integer which is not a root of unity, such that $dyg(\beta) > \eta$ with $\eta > 260$. Since $M(\beta) = M(\beta^{-1})$ there are three cases to be considered :

- (i) the house of β satisfies $|\beta| \ge \theta_{5}^{-1}$,
- (ii) the dynamical degree of β satisfies : $6 \leq dyg(\beta) < \eta$, with $M(\beta) < 1.176280...,$
- (iii) the dynamical degree of β satisfies : dyg(β) $\geq \eta$, with $M(\beta) < 1.176280...$

In the first case, $M(\beta) \ge \theta_5^{-1} > \theta_{260}^{-1} \ge \theta_n^{-1} > 1$. In the second case, $M(\beta) \ge \theta_n^{-1}$. In the third case, the **Dobrowolski-type inequality** gives the following lower bound of the Mahler measure

$$\begin{split} \mathrm{M}(\beta) &\geq C - C \frac{\arcsin(\kappa/2)}{\pi \operatorname{Log}\left(\operatorname{dyg}(\beta)\right)} \\ &\geq C - C \frac{\arcsin(\kappa/2)}{\pi \operatorname{Log}(\eta)} \geq C - C \frac{\arcsin(\kappa/2)}{\pi \operatorname{Log}(260)}, \approx 1.14 \dots \end{split}$$

This lower bound is numerically greater than $\theta_{260}^{-1} = 1.01...$, itself greater than θ_{η}^{-1} . In any case, the universal lower bound θ_{η}^{-1} of M(β) holds true.

improving the method : Rouché to "spirals"

better minorant, better constants in Dobro.-type ineq.

Possible goal : Lehmer's number is the smallest (non-trivial) possible Mahler measure of reciprocal algebraic integers.

Universal minorant

FIGURE: Curves of the lenticular *j*th-zeroes, containing the lenticular Galois conjugates j = 1, 2, 3, 4, n = 220)

I.M. Bordeaux 3 juin 2022

FIGURE: Curve of the lenticular first-zeroes (j = 1, n = 215 to 220)

I.M. Bordeaux 3 juin 2022

64

FIGURE: Curve of the lenticular 2nd-zeroes (j = 2, n = 215 to 220)

I.M. Bordeaux 3 juin 2022

64

Contents

- Introduction : Weil height *h* and Mahler measure M
- 2 Small Mahler measures Conjecture of Lehmer
- 3 The Dynamical zeta function $\zeta_{\beta}(z)$ of the β -shift as β tends to 1
- 4 Lenticular minoration of the Mahler measure

5 Universal minorant

Search for very small Mahler measures from \mathscr{B} ; Modulo p Problem ; Hypergeometric functions over \mathbb{Q}

Does there exist reciprocal non-cyclotomic factors in the decomposition of $f \in \mathscr{B}$?

Recall

$$f(x) = A(x) \times B(x) \times C(x).$$

Two Conjectures have appeared :

- (i) the "Asymptotic Reducibility Conjecture" says that 75% of the polynomials f(x) ∈ ℬ are irreducible (then non-reciprocal),
- (ii) the Conjecture B, which says that the factorization of any $f \in \mathscr{B}$ never contains factors which are reciprocal non-cyclotomic.

Conjecture B has been established (Dutykh VG, '22) for some infinite families of polynomials f of \mathcal{B} , using a criterium of Sawin, Shusterman and Stoll complementing some results of Schinzel.

I.M. Bordeaux 3 juin 2022

Pb. : Factorization problem, number of factors?

Theorem

Let $f \in \mathbb{Z}[X]^c$. If $f = \prod_{i \in J} f_i^{v_i}$ is the decomposition of f into irreducible factors, with all $v_i \ge 1$, then

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}N_p(f)=\sum_{i\in J}v_i$$

I.M. Bordeaux 3 juin 202

which is the number of irreducible factors in the decomposition of f.

```
c stands for "content=1"

p prime number

N_p(f) = number of zeroes of f in \mathbb{F}_p.
```

Stated in 1880 by Kronecker without proof. Proof by Rosen in 2012.

Apply to class \mathscr{B} :

A subset S of the set of primes \mathbb{P} has density c if

$$\lim_{x o \infty} rac{ ext{number of } p \in S ext{ with } p \leq x}{\pi(x)} = c.$$
 The limit is denoted by $\delta(S)$.

Theorem

Let $n \ge 3$. Let $f(x) := -1 + x + x^n + x^{m_1} + x^{m_2} + \ldots + x^{m_s} \in \mathscr{B}$, where $s \ge 0$, $m_1 - n \ge n - 1$, $m_{q+1} - m_q \ge n - 1$ for $1 \le q < s$. The polynomial f is assumed irreducible. Denote by G the Galois group of f(x) and g := #G. Then

(i) [Serre, '04 - Chebotarev density Thm] the set $\mathscr{P}_0 := \{p \in \mathbb{P} \mid N_p(f) = 0\}$ is infinite, has a density and its density satisfies

$$\delta(\mathscr{P}_0) \geq \frac{1}{m_s},$$

with strict inequality if m_s is not a power of a prime,

(ii) [Rosen, '12 - Frobenius density Thm] the set $\mathscr{P}_{max} := \{ p \in \mathbb{P} \mid N_p(f) = \deg(f) \}$ is infinite and has density

$$\delta(\mathscr{P}_{max})=\frac{1}{g}.$$

From Beukers, Cohen, Mellit ("Finite Hypergeometric Functions") :

<u>Cor. 1.6</u>: Let $f(t) = x^3 + 3x^2 - 4t$ with $t \in \mathbb{F}_q$ and $t \neq 0, 1$. Let $N_f(t)$ be the number of zeroes of f(x) in \mathbb{F}_q . Suppose that q is not divisible by 2 or 3. Then

 $N_f(t) = 1 + H_q(1/3, 2/3; 1, 1/2 \mid t).$

Here (context Lehmer - the curve of the lenticular poles, having infinitely many branches emitted by z = 1 is known) $\beta > 1$ is not used as a real variable, but by its coding :

$$\beta \leftrightarrow (t_i = t_i(\beta)).$$

Pb. : find analogue of BCM theory : $N_f(t) \equiv N_p(f) \equiv N_p(\beta)$.

$$N_{\rho}(\beta) = 1 + ??_{\rho}(?? \mid \beta).$$

¹ I.M. Bordeaux 3 juin 2022

Hypergeometric functions over \mathbb{Q}

Thank you