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ABSTRACT

In this work, we propose a deep U-Net based model to tackle the challenging task of prostate cancer segmentation
by aggressiveness in MRI based on weak scribble annotations. This model extends the size constraint loss
proposed by Kervadec et al.1 in the context of multiclass detection and segmentation task. This model is of
high clinical interest as it allows training on prostate biopsy samples and avoids time-consuming full annotation
process. Performance is assessed on a private dataset (219 patients) where the full ground truth is available
as well as on the ProstateX-2 challenge database, where only biopsy results at different localisations serve as
reference. We show that we can approach the fully-supervised baseline in grading the lesions by using only 6.35%
of voxels for training. We report a lesion-wise Cohen’s kappa score of 0.29 ± 0.07 for the weak model versus
0.32± 0.05 for the baseline. We also report a kappa score (0.276± 0.037) on the ProstateX-2 challenge dataset
with our weak U-Net trained on a combination of ProstateX-2 and our dataset, which is the highest reported
value on this challenge dataset for a segmentation task to our knowledge.

Keywords: Prostate cancer, Weakly-supervised learning, Semantic segmentation, Multiparametric MRI, Deep
Learning, Gleason Score, CNN constraints

1. INTRODUCTION

Deep learning has become the state-of-the-art approach for the processing and analysis of many medical imaging
problems, including detection and segmentation tasks.2 However, the vast majority of the proposed models are
fully supervised, meaning that they require a large amount of annotated data to perform well, which is hard to
acquire due to the high expertise and time needed for the annotation. To alleviate the need for full annotation,
weakly-supervised approaches have been widely studied over the past few years.3 They consist in learning from
partial labels, such as image tags, bounding boxes or scribbles.

In this paper, we address the challenging task of segmentation and characterisation of prostate cancer (PCa)
aggressiveness in bi-parametric MRI (bp-MRI) based on scribbles. This task has only been barely addressed
and only in a fully supervised manner, for PCa detection4 or segmentation by aggressiveness.5,6 We recently
tackled this issue based on a U-Net backbone architecture combining multi-task learning and an attention model.6

Besides the time gain with weak labels, this problem is of high clinical interest as cancer aggressiveness, graded
by Gleason score (GS), is mostly determined based on biopsy samples, that characterize the lesion at a specific
location but do not allow to know the extent of the lesion. This kind of approach could also allow the inclusion
of the ProstateX-2 dataset, which is the only public database, so far, containing PCa patient MRI exams, each
associated to the centroid coordinates and the aggressiveness of its reported lesions.7
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Table 1. Lesions distribution by Gleason score (GS) in both datasets.

GS 3+3 GS 3+4 GS 4+3 GS ≥ 8 Total
Our dataset 104 126 56 52 338
ProstateX-2 36 41 20 15 112

2. MATERIALS AND METHODS

2.1 Data description

Two datasets are used in this study, both containing lesion’s aggressiveness information (by Gleason score):

• Our private dataset. The main dataset used in this study consists of a series of axial T2 weighted (T2w)
and apparent diffusion coefficient (ADC) MR images from 219 patients, acquired in clinical practice at
our partner clinical center. All patients underwent a radical prostatectomy and their exams were fully
annotated (including lesions with their associated Gleason score and prostate contours) at pixel-level based
on prostatectomy gold standard ground truth. Imaging was performed on three different scanners from
different constructors and magnetic field strength : 67 exams on a 1.5T Symphony scanner (Siemens
Medical Systems), 126 on a 3T scanner Discovery scanner (General Electric) and 26 on a 3T Ingenia
scanner (Philips Healthcare).

• ProstateX-2 train set. ProstateX-2 challenge dataset7 is composed of a training set of 99 patients with
112 lesions. These data were acquired on 3T MAGNETOM Trio and Skyra (Siemens Medical Systems)
scanners with different imaging parameters. The ground truth consists of the coordinates of each lesion’s
center based on biopsy results, with its associated Gleason score. Note that the ProstateX-2 test set was
not used since no ground truth is available and the challenge webpage is closed.

Lesions distribution according to the GS group is detailed in Table 1 for both datasets, where GS 3+3 and
GS ≥ 8 represent the less and most aggressive cancers, respectively. Input MRI exams are series of axial T2
weighted (T2w) and apparent diffusion coefficient (ADC), stacked in two channels.

Multichannel 3D input T2w and ADC images of both datasets were resampled to a 1× 1 mm2 pixel size and
automatically cropped to a 96 × 96 pixels region on the image’s center. The slice thickness was preserved and
is around 3 for our private dataset as well as for most of ProstateX-2 patients. Most of our dataset acquisitions
contain 24 slices while it is variable but around 20 slices for ProstateX-2 challenge dataset. Intensity was linearly
normalized into [0, 1] by patient and channel.

Circular scribble annotations were automatically generated on both our private and ProstateX-2 datasets, as
follows:

• Our dataset : circular scribbles with radius ≤ 4 pixels (i.e. 4 mm) were drawn by randomly sampling, on
each transverse slice of the the training dataset, one location in the prostate zone as well as one location in
each reported lesion. If no scribble with a 4 pixels radius could fit in the lesion, radius was reduced until
the scribble could meet the overlapping criterion.

• ProstateX-2 : circular scribbles with radius of 4 pixels (i.e. 4 mm) were drawn on each slice of the training
dataset. Lesion scribbles were centered at the reported ground truth lesion center. As prostate annotations
are not available, scribbles in the prostate gland were inferred from the lesion localisation as follows : the x
coordinate of the prostate scribble was chosen at 11 mm from the lesion’s center in direction to the center
of the image. For the y position, it was defined at 11 mm in direction of the center of the image if the lesion
was in the transition zone (TZ) and kept unchanged if the lesion was in the peripheral zone (PZ). Scribbles
drawn in the slice of the lesion coordinates were reported to the 2 adjacent slices, and only annotated slices
were used for training. Consistency of the obtained scribbles was checked visually.



Table 2. Ratio between the number of annotated voxels in the scribbles and in the full segmentation masks for each class
in our private dataset.

Class Prostate GS 6 GS 3+4 GS 4+3 GS ≥ 8 Total
Ratio (%) 4.92 32.77 29.36 25.85 18.36 6.35

Table 2 reports the ratio between the number of annotated voxels in the scribbles and in the full segmentation
masks for each class, corresponding to 6.35% in total. Note that even if the ratio seems high for some classes
(32.77% for GS6 for example), it still constitutes a huge time saving as the radiologist only needs to pick one
point for each lesion and the circle scribble would be generated automatically around this center with the chosen
radius.

2.2 A weak multi-class segmentation model of PCa in bp-MRI

2.2.1 Constrained loss function for weak supervision based on Kervadec et al.1

Kervadec et al. recently proposed a new loss function for partially annotated data. It combines a partial cross-
entropy (CE) term H estimated on the annotated voxels and a constraint term C, that penalizes predicted
segmentation whose size is outside a defined interval [a, b] :

H(S) + λC(VS) (1)

where λ is a positive constant weighting the two terms, VS =
∑

p∈Ω Sp with Sp the softmax probability at pixel
p in the image domain Ω, and the functions H, C are given by:

H(S) = − 1

|ΩA|
∑
p∈ΩA

log (Sp) (2) C(VS) =

 (VS − a)2, if VS < a
(VS − b)2, if VS > b
0, otherwise

(3)

with ΩA the domain of annotated pixels, a and b the lower and upper bounds of the region of interest
respectively.
In this study, we address a multi-class problem with class labels c ranging from 1 to c=6 for the background, the
overall prostate area, GS 6, GS 3+4, GS 4+3 and GS ≥ 8 lesions, respectively. To adapt to a multi-class output
with C classes and account for class imbalance, the global loss term is obtained by a weighted sum of the loss
terms (1) applied independently on each class c ̸= 1 as follows :∑

c∈{2,...,6}

wc(H(Sc) + λC(VSc
)), (4)

with wc the weight for class c.

We used this constraint at the image level with image-tag priors, following the definition in Kervadec et al.,1

that is enforcing the presence of the target class by setting a = 1 and b = |Ω| (the image domain) or the absence
of the target with parameters a = b = 0. When the target is present in the image, the predicted object will
always be smaller than the upper bound b but the lower bound a remains crucial. In addition, both bounds are
used when the target is absent of the image, making this constraint non-trivial.

2.2.2 Backbone architecture

The model used in this work is based on a standard four blocks U-Net,8 with batch normalization layers to reduce
over-fitting and leaky ReLU activations. It produces a 6-channels segmentation maps, corresponding class labels
c ranging from 1 to 6 for the background, the overall prostate area, GS 6, GS 3+4, GS 4+3 and GS ≥ 8 lesions.
This standard U-Net architecture was shown efficient for the detection and grading of PCa with bp-MRI.6



2.3 Experiments

In this study, we perform different experiments:

• we first evaluate performance of our proposed scribble based weak U-Net based on the image tags bounds
constrained loss by comparing it to the fully supervised approach based on our private fully annotated
dataset ;

• we then include the weakly annotated data from ProstateX-2 challenge and train the weak segmentation
model on both ProstateX-2 and our datasets.

Implementation details Each model was trained and validated using a 5-fold cross-validation, with 4 repli-
cates for each cross-validation experiment. Patients were distributed in the folds so as to balance as much as
possible the number of lesions per class, and the number of patients from each database (ProstateX-2 and ours)
for the hybrid training of the weakly supervised architecture. Training and evaluation were conducted on the
whole patient 3D volumes. Data augmentation was applied during the training phase to reduce overfitting.
Final lesion maps were estimated from the labeled maps outputted from the U-Net decoder branch using a
3-connectivity rule to identify the connected components. Lesions smaller than 26 voxels (ie. 78 mm3) were
removed. All networks were trained using Adam and a L2 weight regularization with γ = 10−4. The initial
learning rate was set to 10−3 with a 0.5 decay after 25 epochs without validation loss improvement. Batch size
was set to 32. Hyperparameters were tuned with random grid search. We set λ value for the constraint in Eq.
(1) to 10−5, wc = 0.22 for the cancer classes, wc = 0.12 for the prostate (c = 2) (these values were found to be the
optimal to account for class imbalance in our dataset). The fully supervised baseline was trained with the sum of
the crossentropy and Dice weighted losses. The pipeline was implemented in python with the Keras-Tensorflow
2.4 library.

2.4 Performance evaluation

Performance evaluation was conducted from the final lesion maps generated by each model using quadratic
weighted Cohen’s kappa coefficient (as proposed in the ProstateX-2 challenge) for both datasets and free-response
receiver operating characteristics (FROC) curve for our private dataset. Evaluation on our dataset was performed
as follows : if a predicted lesion intersected a ground truth lesion with at least 10% of its volume, it was counted
as a true positive. Then, to compute the FROC, we measured the percentage of detected lesion (sensitivity) as
a function of the mean number of false positive lesion detections per patient at different probability thresholds.
The Cohen kappa score was computed based on the 4-classes confusion matrix encompassing GS 6, GS 3+4, GS
4+3 and GS ≥ 8 lesion categories.

For ProstateX-2 dataset, as lesion contours are not available, we followed the evaluation method proposed by
De Vente et al.5 : for each reference lesion center (whose coordinates and GS are provided by the ProstateX-2
challenge organizers), the lesion was assigned the Gleason score corresponding to the cluster containing it, if any.
If the reference lesion center did not intersect any detected lesion, it was reported as a GS 6 lesion.

3. RESULTS

Table 3 reports segmentation performance of all considered models, namely the fully supervised U-Net model
(referred to as ’fully supervised’) trained with a weighted cross-entropy + Dice loss, a weakly supervised U-Net
trained with partial cross-entropy only (referred to as ’Partial CE’) and the proposed weakly supervised U-Net
trained with a loss term combining partial cross-entropy and image tags priors (referred to as ’Partial CE +
Tags’).

Performance achieved for these three models trained and tested on our private dataset indicate, as expected,
that the highest values of kappa coefficient of 0.324± 0.053 and sensitivity at 2FP of 0.649 ±0.033 are obtained
with the fully supervised U-Net. However, performance of the proposed weak U-Net model with partial CE +
Tags is close to the fully supervised model with kappa coefficient of 0.289± 0.072 and sensitivity at 2FP of 0.587
±0.053. According to a Wilcoxon signed-rank test, the difference is not significant with a p-value of 0.165 for



Method
Training
dataset

Performance on our dataset Performance on Px2
Kappa Sensi at 2FP Dice prostate Kappa

Fully supervised ours 0.324± 0.053 0.649± 0.033 0.799± 0.004 0.013± 0.082
Partial CE ours −0.054± 0.193 0.016± 0.008 0.081± 0.006 −0.005± 0.019
Partial CE + Tags ours 0.289± 0.072 0.618± 0.044 0.800± 0.017 0.047± 0.060
Partial CE + Tags Px2 0.134± 0.144 0.026± 0.012 0.121± 0.010 −0.002± 0.003
Partial CE + Tags ours + Px2 0.262± 0.061 0.587± 0.053 0.802± 0.005 0.276± 0.037

Table 3. Segmentation performance. The results correspond to the average metrics obtained on 4 replicates of 5-fold
cross-validation. CE : cross-entropy. Tags : Image tags bounds constraint.

the kappa metric and 0.409 for the sensitivity. The poor performance achieved with the weak model trained on
partial CE only (kappa coefficient of −0.054±0.193 and sensitivity at 2FP of 0.016 ±0.008) confirms the positive
impact of the image-tags constraint.

The highest reported performance on the ProstateX-2 dataset is achieved with the proposed weak model
trained on both datasets with the combined partial CE and image tags priors. Note that the reported kappa
score of 0.276 ± 0.037 is, as far as we know, the highest value reported in the literature so far. The proposed
constraint loss term, however, is not sufficient to enable correct training on the ProstateX-2 data only, as revealed
by the very low kappa metric of −0.002 ± 0.003. This can be explained by the small size of the ProstateX-2
train dataset (99 patients), for which only slices with a lesion were included. In addition, prostate scribbles in
the normal prostate tissue for this dataset were generated from the known lesion’s positions, as described above,
thus inducing less variability than among our private dataset which contains prostate scribbles annotations in
lesion-free prostate slices.

Concerning visual results (see Figure 1), we can see that even with weak annotations, segmentation maps are
of good quality. Segmentation of the prostate is slightly less precise on our dataset with the weak model than
with the supervised one, when trained on our dataset only, but segmentation accuracy improves when trained
on both ProstateX-2 and our datasets. One interesting result concerns generalization on ProstateX-2 dataset :
visually, the worst performing model is the supervised one. We can see that even the prostate tissue is not well
segmented. It seems that the fully-supervised model is more prone to overfitting and is likely not to consider the
prostate shape but independent pixels unlike the weakly supervised models.

4. CONCLUSIONS

Results reveal that we can approach fully-supervised performance by training a U-Net model with only 6.35% of
pixels annotation thanks to a loss term combining partial cross-entropy and a size constraint loss derived from
that of Kervadec et al.1 These results are particularly interesting considering the time gain when using scribbles
instead of pixel-level annotation. In addition, scribble ground truth is very relevant for PCa screening as most
of the databases rely on biopsy results. Such scribble-based segmentation models are likely to ease the inclusion
of data from different sources (e.g. different centers or scanners) to tackle the recurrent domain shift problem in
medical image segmentation.

In Kervadec et al.,1 the authors also proposed a higher supervision with adapted bounds for the size con-
straints, defined from the dataset statistics. This approach seemed very interesting for the lesion segmentation
task as the higher the Gleason score, the bigger the lesion. However, preliminary results did not show any im-
provement when using more precise size constraints based on the observed lesion size distribution in comparison
to the rough image tag. The size constraints are difficult to define for this problem, as some small elements of a
lesion might be present on a slice but not representing the global 3D lesion size and more than one object can
be present on the same slice, on the contrary to segmentation tasks considered in Kervadec et al.

Perspectives would be to investigate hybrid training on both fully and weakly annotated datasets and lesion
shape constraints tailored to our application.



Figure 1. Prediction for several images from validation sets. The images from the first three rows come from our dataset
while images from the two last rows come from the ProstateX-2 challenge dataset. Second column: fully supervised U-Net
trained with our dataset. Third and fourth columns: weakly supervised U-Net trained on scribble annotations of our
dataset and of both ProstateX-2 and our datasets, respectively.
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1 (UCBL), within the program “Investissements d’Avenir” operated by the French National Research Agency
(ANR). It was performed within the framework of the LABEX PRIMES (ANR-11-LABX-0063) of Université de
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