
HAL Id: hal-03704287
https://hal.science/hal-03704287v1

Submitted on 10 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ERTS 2022 proceedings
Philippe Cuenot, Marie de Roquemaurel, Kevin Delmas, Jean-Marc Gabriel,
Adrien Gauffriau, Christophe Grand, Éric Jenn, Mohamed Kaâniche, Benoît

Morgan

To cite this version:
Philippe Cuenot, Marie de Roquemaurel, Kevin Delmas, Jean-Marc Gabriel, Adrien Gauffriau, et al..
ERTS 2022 proceedings. 2022. �hal-03704287�

https://hal.science/hal-03704287v1
https://hal.archives-ouvertes.fr

Editors

Mohamed Kaaniche LAAS-CNRS - France
Philippe Cuenot Continental Automotive, IRT Saint Exupéry
Marie de Roquemaurel Airbus Defence & Space
Kevin Delmas Onera
Jean-Marc Gabriel Renault Software Labs
Adrien Gauffriau Airbus
Christophe Grand Onera
Eric Jenn Thales Avionics, IRT St Exupéry
Benôıt Morgan IRIT

1

2

Contents

Contents 3

Program Committee 7

We.1.A – GPU 9

Real-time high performance computing platform using a Jetson Xavier AGX . . . 11
PasTiS: building an NVIDIA Pascal GPU simulator for embedded AI applications 21

We.1.B – Model Driven Engineering I 31

Sizing a Drone Battery by coupling MBSE and MDAO 33
Adaptation of an auto-generated code using a model-based approach to verify func-
tional safety in real scenarios . 45

We.1.C – HW Formal Verification 53

Formal Hardware Modeling for Analyzing Safety and Security Properties 55
An Automated Framework Towards Widespread Formal Verification of Complex
Hardware Designs . 65

We.2.PO – Poster overview 77

Structural consistency of MBSE and MBSA models using Consistency Links 79
Experimenting with Dynamic Cache Allocation to Improve Linux Real-Time Be-
haviour . 85
Model-based design of high-performance computer-based architectures 89
Towards Model-Based Support for STPA as a Capella Add-On 95
PLATO N-DPU ON-BOARD SOFTWARE: AN IDEAL CANDIDATE FOR MUL-
TICORE SCHEDULING ANALYSIS . 101
Unboxing the Sand: on Deploying Safety Measures in the Programmable Logic of
COTS MPSoCs . 107
Towards a Novel UAV Position Tracking and Reporting System for Very Low Level
Airspace . 113
A cross-domain framework for Operational DesignDomain specification 119
Towards Real-time Adaptive Approximation . 123
STARTREC: Verification of a safety-critical system for autonomous vehicles 129

We.3.A – Memory Management 133

Dynamic Memory Management in Critical Embedded Software 135
Certifiable Memory Management System for Safety Critical Partitioned System . . 147
Whole-System Analysis for Memory Protection and Management 159

3

We.3.B – Model Driven Engineering II 171

Automatic Test Generation - An Industrial Feedback 173
ROS communications profiling for bus load analysis from AADL 183
STPA Analysis of Automotive Safety and Security Using Arcadia and Capella . . . 191

We.3.C – Formal Methods 201

Static Data and Control Coupling Analysis . 203
Automatic Support for Requirements Validation 213
Property Expression and Verification in an Incremental Model Development Frame-
work: a Case Study . 223

We.4.A – AI:Assurance & Testing I 231

Programming Neural Networks Inference in a Safety-Critical Simulation-based Frame-
work . 233
Leveraging Influence Functions for Dataset Exploration and Cleaning 245
Towards the certification of vision based systems: modular architecture for airport
line detection . 253

We.4.B – Simulation 265

Combining Real and Virtual Electronic Control Units in Hardware in the Loop
Applications for Passenger Cars . 267
Investigation of Scheduling Algorithms for DAG Tasks through Simulations 277
SytHIL: A System Level Hardware-in-the-Loop Framework for FPGA, SystemC
and QEMU-based Virtual Platforms . 287

We.4.C – Network 293

Checking validity of the min-plus operations involved in the analysis of a real-time
embedded network . 295
Assessing a precise gPTP simulator with IEEE802.1AS hardware measurements . . 303
Smart Management of Virtualized Network Service Chains in 5G Infrastructure . . 313

Th.1.A – AI: Assurance & Testing II 323

A testing approach for safety-critical Machine Learning systems 325
Can we reconcile safety objectives with machine learning performances? 335

Th.1.B – Security 347

Hijacking an autonomous delivery drone equipped with the ACAS-Xu system . . . 349
Practical Trust x Performance Metrics for Block Cipher Evaluation in Automotive
Environments . 359

Th.1.C – Logical Execution Time 369

A dynamic reference architecture to achieve planned determinism for automotive
applications . 371
The synchronous Logical Execution Time Paradigm 383

Th.2.A – Formal Methods & Certifification 393

A Bottom-Up Formal Verification Approach for Common Criteria Certification:
Application to JavaCard Virtual Machine . 395
Obtaining DO-178C Certification Credits by Static Program Analysis 407

Th.2.B – Assurance By Design 419

Architecture-Supported Audit Processor: Interactive, Query-Driven Assurance . . 421
Automated Generation of Requirements for the Highly Fault-Tolerant System Be-
haviour of a Distributed and Integrated Avionics Platform 431

4

Th.2.C – Space applications 441

Digital transformation in the European Space Industry 443
Impact of environment on the execution of a real-time Linux process on a multicore
platform . 453

Th.4.A – Autonomy 465

Efficient Use of Systems Theoretic Process Analysis for Automated Driving Systems 467
Software fault propagation patterns for model-based safety assessment in autonomous
cars . 477
Pave the way for connected & autonomous driving at level crossings 489

Th.4.B – Multicore 501

MASTECS Multicore Timing Analysis on an Avionics Vehicle Management Computer503
Using IA to estimate Memory Interference Impact on Avionics Software on Multi-
core Platform . 513
Modelling and analyzing multi-core COTS processors 525

Th.4.C – Assurance & Certification 537

Toward the certification of safety-related systems using ML techniques: the ACAS-
Xu experience . 539
Do safety standards need radical changes ? . 551

Th.5.A – Monitoring 561

Multilayer Monitoring for Real-Time Applications 563
Safety and Security monitoring convergence at the dawn of Open Hardware 571

Th.5.B – Process modelling 583

Towards an agile, model-based multidisciplinary process to improve operational
diagnosis in complex systems . 585

Authors index 597

5

6

Program Committee

Ahiad, Samia France VALEO
Ainhauser, Christoph Germany BMW AG
Anguenot, Yves France Aerospace Valley
Armengaud, Eric Austria Armengaud Innovate GmbH
Asselin, Eric France Collins Aerospace
Baron, Claude France LAAS-CNRS, INSA, Toulouse
Baufreton, Philippe France Safran Electronics & Defense
Belmonte, Fabien France Alstom Transport SA
Bieder, Corinne France ENAC
Boissé, Sébastien France Thales Group
Boyer, Marc France ONERA
Braband, Jens Germany Siemens AG
Carsten, Thomas Germany Siemens
Cazorla, Francisco J Spain Barcelona Supercomputing Center
Chave, Olivier France TechnicAtome
Claraz, Denis France Vitesco Technologies France SAS
Comar, Cyrille France Adacore
Cormery, Patrick France ArianeGroup
Cuenot, Philippe France Continental
Cunha, Alcino Portugal University of Minho
de Roquemaurel, Marie France Airbus Defence & Space
Delmas, Kevin France ONERA
Dreiseitel, Stefan Germany Continental Teves AG & Co. oHG
Ducoffe, Mélanie France Airbus
Erts, Admin France NONE
Faucou, Sebastien France Université de Nantes
Florent, Meurville France Valeo
Frezouls, Benoit France CNES
Fuerst, Simon Germany BMW Group
Gabriel, Jean-Marc France Renault
Gallina, Barbara Sweden Mälardalen University
Gauffriau, Adrien France Airbus
Grand, Christophe France ONERA
Guetta, Olivier France Renault
Guiochet, Jérémie France LAAS-CNRS
Habli, Ibrahim United Kingdom University of York
Hochgeschwender, Nico Luxembourg German Aerospace Center (DLR)
Jan, Mathieu France CEA LIST
Jean-Louis, Boulanger France certifer

7

Jenn, Eric France IRT Saint Exupéry
Johnson, Chris United Kingdom Queen’s University Belfast
Kaaniche, Mohamed France LAAS
Kuehne, Uwe Germany Airbus Defence and Space
Laarouchi, Youssef France EDF R&D
Lanusse, Agnes France CEA LIST
Le Calvez, Gilles France VALEO
Lecomte, Thierry France CLEARSY
Leconte, Bertrand France Airbus Operations SAS
Ledinot, Emmanuel France THALES Research & Technology
Lonn, Henrik Sweden Volvo Group
Mader, Ralph Germany Vitesco Technologies GmbH
Maillet-Contoz, Laurent France STMicroelectronics
Malenfant, Jacques France Sorbonne Université - LIP6
Mamalet, Franck France IRT Saint Exupery
Mangane, Laurent France 3AF
Mekki-Mokhtar, Amina France ANSYS
Moreno, Christophe France Thales Alenia Space
Morgan, Benôıt France IRIT
Mouy, Patricia France ANSSI
Mraidha, Chokri France CEA LIST
Nadjm-Tehrani, Simin Sweden Linköping university
Nanya, Takashi Japan The University of Tokyo
Navet, Nicolas Luxembourg University of Luxembourg
Niemetz, Michael Germany OTH Regensburg
Pagetti, Claire France ONERA
Palanque, Philippe France ICS-IRIT, University Toulouse 3
Parissis, Ioannis France Univ. Grenoble Alpes - Grenoble INP
Paulitsch, Michael Germany Intel
Pfeifer, Holger Germany fortiss GmbH
Picard, Celia France ENAC
Pinot, Frédéric France Hitachi rail STS
Pons, Philippe France Aerospace Valley
Popa, Mircea Romania Politehnica University of Timisoara
Poyet, Eric France Kalray
Prof. Dr. Mottok, Juergen Germany LaS³, OTH Regensburg
Quéré, Philippe France Stellantis
Rochange, Christine France IRIT - Université de Toulouse
Rodŕıguez, Rafael Spain GTD Sistemas de Información, S.A.
Saez, Estelle France LIEBHERR
Shagdar, Oyunchimeg France VEDECOM
Stea, Giovanni Italy University of Pisa
Terraillon, Jean-Loup Netherlands European Space Agency
Totel, Eric France Supelec
Trapp, Mario Germany Fraunhofer
Traverse, Pascal France AIRBUS
Troubitsyna, Elena Sweden KTH
Van Der Linden, Frank Netherlands Philips Healthcare
Verdier, Damien France Vitesco Technologies France SAS
Vigouroux, David France IRT Saint-Exupery
Voget, Stefan Germany Continental Automotive GmbH
Warns, Timo Germany Airbus
Wartel, Franck France AIRBUS Defence and Space
Zennou, Sarah France Airbus

8

Session We.1.A

GPU

Wednesday 1st June

11:30

–

Amphithéâtre

9

10

Real-time high performance computing using a Jetson Xavier AGX

Cyril Cetre1, 2, Florian Ferreira2, Arnaud Sevin2, Rémi Barrere1 and Damien Gratadour2, 3

1Thales Research & Technology
2LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France
3RSAA, Australian National University, Cotter Road, Weston, ACT2600, Australia

Abstract

While general purpose graphics processing units now embark tremendous amount of computing power, their use in real time

applications is still a challenge. The COSMIC platform, developed in the context of adaptive optics control for giant astronomical

telescopes is a demonstrated solution to perform real time computations using discrete GPUs while maintaining a high level of

abstraction and modularity. An implementation on embedded platforms with the goal to reach an acceptable level of time-determinism

would enable new real-time use cases in other application domains. In this regard, NVIDIA is offering a broad range of embedded

systems on chip delivering great performance and compatible with the CUDA ecosystem. However, specific hardware and software

features bring uncertainties regarding real-time performance. The approaches presented in this paper rely on COSMIC recipes to

expose part of the underlying unconventional GPU programming model to reach real-time performance. It shows how Jetson Xavier

performs on sub-millisecond complex pipelines made of several compute kernels, considering the limitations engendered by missing

CUDA features as compared to discrete devices, leveraging unified memory to work around these hurdles and enabling several

strategies for implementing real-time workflows on embedded GPU platforms.

Keywords: Real-time systems, graphics processing units, High Performance computing, embedded software, CUDA

Introduction

Real-time computing for adaptive optics

Adaptive Optics (AO) systems are used to compensate aber-
rations in real-time on optical systems. They are a core com-
ponent of extremely large telescopes for astronomy. They
aim at making partial compensation of image distortions
induced by atmospheric turbulence in real-time using a set
of computer controlled actuators, under the reflective sur-
face of so-called deformable mirrors, to observe astronomical
objects at high angular resolution and high contrast. As dis-
tortions and external constraints on AO are fluctuating on
very short time scales, AO controllers, working in closed
loop, need to infere the best actuators commands with min-
imum and stable time-to-solution (in the range of 1 ms or
less). In addition, the complexity of AO systems exacerbates
the need for a modular solution which provides the ability
to realize flexible computing pipelines.

The COSMIC [1] platform was designed to cover the re-
quirements of a wide variety of AO instruments considering
these constraints. This platform relies on off-the-shelf high
performance libraries and a modular approach, in order to
minimize implementation cost and complexity while maxi-
mizing performance and throughput of applications requir-
ing efficient GPU computations. It provides abstraction lay-
ers handling data transfers, inter-process communications
and synchronisations between computation units of a given
pipeline. Each computation of the pipeline is turned into an
independent process, allowing individual monitoring and

real-time pipeline modifications. The multi-process mecha-
nisms are thoroughly optimized to obtain the best possible
performance given the hardware configuration.

While COSMIC was originally designed for AO, its ap-
plication to other domains remains perfectly valid as it is
aiming at providing a framework for real-time computation
regardless the pipeline. Therefore, evaluating the use of its
programming methods on embedded platforms is mean-
ingful, although opening the door to new challenges. An
embedded implementation will have to ensure that perfor-
mance is preserved with scarce resources while proposing
possible solutions to overcome technical limitations. A stable
implementation on systems on chip (SoC) could prove useful
to implement simpler pipelines with specific use cases such
as smart cameras working as wavefront sensors.

Embedded systems and real-time computing

With the exponential growth of the use of deep learning
in various domains, SoC with integrated GPU (iGPU) are
becoming very popular thanks to their rather high perfor-
mance per watt. In particular, NVIDIA provides a broad
range of consumer products using custom ARM CPU and
iGPU. These SoC have many interesting features such as sup-
porting the CUDA ecosystem. This makes cross-platform
programming pretty straightforward with few differences
between SoC and discrete GPUs (dGPU) [2]. As opposed
to a dGPU, which is a separate device from the processor
with dedicated memory, one of the main features of iGPU
is to share memory with the CPU, which allows to reduce

1

2 ERTS 2022

the need for data transfers, although it opens the doors to a
number of challenges as well considering the CPU activity
may interfere negatively with the GPU computations.

In any case, achieving real-time GPU computing can be
challenging since this technology offers very few safeguards
on execution time determinism. That is why average jitter
and Maximum Measured Execution Time (MMET) must be
assessed carefully. Ensuring such features, combined with a
high throughput is a significant hurdle to overcome before
bringing GPU into time critical applications.

In addition, enabling workflows involving multiple pro-
cesses on a GPU brings uncertainties regarding the end-to-
end response time. Some functionalities like CUDA Multi
Process Service (MPS) are offered to allow kernels from dif-
ferent processes to execute concurrently. However, MPS and
some other features are not available on embedded NVIDIA
SoC, making multi-process application portability unpre-
dictable on such platforms.

Unconventional programming model for GPU

Ensuring time-to-solution repeatability with very low jitter
for a complex pipeline can be particularly tough when re-
lying on multi-process asynchronous GPU computations.
While achieving a high throughput is possible when tak-
ing into account intrinsic overheads of GPU computing,
such as memory transfers, kernel launches or synchroniza-
tions between the host and the device, reaching low perfor-
mance jitter usually requires unconventional programming
approaches, such as using persistent kernels [3] [4]. As the
name implies, these kernels are not terminated between each
iteration and just wait on the arrival of more data to be trig-
gered again. However, such technique heavily depends on
hardware features and the CUDA grid/block dimensioning
must be handled within the kernel. As a consequence, per-
sistent kernels must be redesigned when either the pipeline
or the targeted hardware changes. A proposed trade-off
between persistent kernels and traditional programming
models is the use of a combination of GPU busy wait ker-
nels and look ahead jobs scheduling, relying on the GPU
scheduler to launch new kernels while avoiding CPU/GPU
synchronization overheads [1].

This paper exposes this approach through a set of out-of-
the box use cases, comparing the discrete and embedded
behaviour in order to provide guidance about how to per-
form real-time multi-process computations with complex
applications in an embedded environment.

Focus of this paper

This paper relies on previous work done with the COSMIC
platform and extends the best practices implemented therein
to provide a suitable solution for critical real-time applica-
tions running on embedded platforms in terms of average
jitter, worst observed execution time and throughput.

Porting these recipes on Jetson Xavier AGX provides an
overview of how architectural and software differences be-
tween embedded platforms and integrated GPUs can be
worked around to achieve real-time performance.

We highlight these differences and show why it could
be a serious impediment to determinism. We also propose
workarounds using multi-thread or multi-process implemen-
tations of GPU inter-process communication through busy-
waiting.

Finally, we evaluate through benchmarking the perfor-
mance and overall behaviour obtained using different meth-
ods for efficient inter-process communication

Related Work

Using GPUs for real-time applications is not straightforward,
as it has not necessarily been designed to minimise MMET,
although modern GPUs are slowly overcoming technological
limitations with increased features and capabilities. [5, 6].

Unlike dGPUs, the CPU and the iGPU share the same
SoC DRAM on Tegra devices. As a consequence, CPU ac-
tivity may interfere negatively with GPU computation and
conversely [7]. That is why some authors have proposed to
improve determinism by protecting GPU applications from
memory throttling through custom schedulers [8, 9]. In ad-
dition, several studies are aiming to unveil closed-source
details of GPU schedulers to get a better understanding of
their behaviour. [10, 11].

On a positive note, shared DRAM implies that data trans-
fers from host to device are avoidable. In such circumstances,
pinned host memory accessed from GPU will not have copy
overheads and will be bounded by the same bandwidth
as memory allocated from device code. Combined with
CPU shared memory, it is used in this contribution as a
workaround to bypass the lack of CUDA Inter-Process Com-
munication (IPC) features. In addition, previous work has
shown that using pinned host memory on embedded sys-
tems can be a way to increase determinism by reducing
memory requirements of GPU programs [12].

Real-time multi-process computing on GPU

Inherited from a project having strong requirements for scal-
ability, maintainability and modularity [3], COSMIC was
designed as a framework able to overcome the underlying
limitations by supporting separate kernels that can run either
concurrently or sequentially, with an efficient synchroniza-
tion mechanism. However, a complex software architecture
does not necessarily scale well when GPU computations are
involved depending on the exact setting.

For instance, the default behaviour of CUDA is not suited
for real-time multi-process applications. As every process
has its own CUDA context only one context can run at the
same time on the GPU, the device has to switch constantly
between them, leading to extra jitter. In addition, running
kernels with a small number of threads will lead to poor GPU
performance as another kernel could have run concurrently.
For a single process (and single context) application, the
CUDA streams were created to overcome this issue and
enable the overlapping of kernels executions.

In the case of multi-process applications, NVIDIA has
made various tools available to improve the device manage-
ment. In this regard, the next sub-section offers an overview

CETRE et al. 3

of these CUDA features providing a good understanding of
their implication and why they are critical for real-time.

CUDA MultiProcess Service (MPS)

CUDA MPS is a binary-compatible client-server runtime
implementation of the CUDA API. MPS is especially useful
when multiple processes are making use of the GPU, in
particular when these processes underutilize GPU resources.
Its main benefits are the following :

• Kernels and memcopy operations from different pro-
cesses may overlap on the GPU.

• MPS handles only one GPU context and set of schedul-
ing resources between its clients instead of one context
for each process. This removes the need for context
switching between two GPU kernels.

CUDA Interprocess Communication

Part of the CUDA Toolkit and available since compute capa-
bility 2.0, CUDA IPC enables sharing device buffers between
multiple processes. While the COSMIC memory manager
implementation relies on CUDA IPC to share device buffer
between processes, these calls are not supported on Tegra
device.

GPU busy wait synchronization

At some point, a process will have to wait for another to
complete, thus needing to synchronize. Previous work on
the COSMIC framework provided an assessment on which
kind of synchronization gives the best response time in order
to maximize performance [1]. From this study, it appears
that busy wait synchronization (meaning different processes
actively wait for data to be written on the GPU through
memory polling) shows a significant latency improvement
compared to a regular CPU based POSIX semaphore syn-
chronization. It has several benefits :

• The pipeline processing is now fully asynchronous from
the CPU, allowing the user to hide kernel launch latency
by accumulating jobs on the GPU scheduler in advance.

• A CPU, even isolated is still more likely to get non pre-
emptible interruption request from the OS kernel com-
pared to a GPU which is dedicated to computations.

On the other hand, each busy wait process is using a
GPU streaming multiprocessor to spin on a given location in
memory which is increasing system occupancy and resource
consumption.

Figure 1 and 2 shows how busy waiting with CUDA MPS
enabled performs compared to POSIX semaphore implemen-
tation, revealing non negligible latency improvement on a
NVIDIA DGX server (286 µs of average execution time for
semaphore and 235 µ s for GPU Busy wait). Even though
the semaphore synchronization shows a better average jit-
ter (2.1 µs for semaphore and 4.4 µs for GPU busy wait),
this synchronization process is more prone to jitter peaks
(semaphore : 35 µs of peak to valley and 30 µs for GPU busy
wait). In addition, the NVIDIA DGX server performs espe-
cially well to minimize this kind of interference, which tends

Figure 1 Time-to-solution execution profiles obtained with
COSMIC in the context of the AO application, using 2
different synchronization mechanisms over 1M iterations
[1]

Figure 2 Time-to-solution histogram obtained with COS-
MIC in the context of the AO application, using 2 different
synchronization mechanisms over 1M iterations [1]

to show higher peak to valley in the case of semaphore syn-
chronization as compared to other GPU equipped servers.
As a consequence, the GPU busy wait is preferable both in
terms of latency and jitter stability.

Considering the sub-millisecond response time require-
ment, such gains represents a great asset and are hardly
dispensable. Reproducing such results on an embedded
SoC would bring us closer to hard real-time embedded GPU
computing, although the road ahead is full of obstacles.

The challenge of embedded GPU computing

As GPUs are growing in complexity with features includ-
ing dedicated cores for specific operations including tensor

4 ERTS 2022

cores for matrix multiplication or RT cores for raytracing,
NVIDIA is regularly proposing new SoCs featuring the lat-
est innovations. As a consequence, each SoC has a specific
hardware architecture (CPU and GPU) which makes it diffi-
cult to predict performance on the targeted board without
comprehensive testing. That is why this paper will focus on
NVIDIA Jetson Xavier AGX, which is providing some fea-
tures (for instance I/O coherency) which were not available
on previous NVIDIA boards.

The Jetson Xavier AGX

Released in 2018, the Jetson Xavier AGX is currently the most
powerful embedded GPU platform available on the market.
It is featuring within its Xavier Tegra SoC a Volta GPU with
512 CUDA cores and 8 streaming multiprocessors.

Figure 3 Block diagram of Jetson Xavier complex (credits :
[13]

The CPU is composed of 8 ARM 8.2 architecture compli-
ant cores. Regarding the cache hierarchy, it is important to
notice that the CPU complex is composed of 4 islands. Al-
though each core has its own private L1 cache, the CPU L2
cache is shared between two threads. Two cores from the
same island will interfere if both are executing highly band-
width dependant tasks. As a consequence, the combined
bandwidth of two CPUs of the same island is worse com-
pared to a single core doing heavy bandwidth computations
paired with an idle one. [13].

This is why it is recommended to always isolate CPUs by
island to avoid extra interference from shared L2 cache on
this platform.

Unlike discrete GPU (dGPU), CPU and integrated GPU
(iGPU) share 16GB of DRAM clocked at most at 2133 MHz,
reaching a theoretical bandwidth of 137 GB/s.

Shared CPU/GPU memory

From a software point of view, shared memory does not
mean that a CPU pointer is accessible from GPU and con-
versely. Depending on how memory is allocated, the cache

behaviour differs and memory might not be accessible from
both the host and the device. Similarly to dGPU, memory
allocated with cudaMalloc is not accessible from the host
and a buffer allocated with cudaMallocManaged will return a
buffer accessible from both sides. The main difference with
dGPU is that there is no hidden memory copies between the
host and the device and the source code should be adapted
to make copies only when unavoidable. NVIDIA provides
detailed documentation about the cache behaviour depend-
ing on how the memory was allocated [2]. Starting with
the Xavier architecture, Tegra boards are featuring I/O Co-
herency which allow I/O devices such as the GPU to read
the latest updates in CPU caches. This is beneficial in our
case as it allows to cache CPU pinned host memory and to
register an existing host memory range for use by CUDA,
which is crucial in our proposal to bypass the lack of CUDA
IPC.

CUDA IPC/MPS unavailable on Jetson

At the time this paper was written, aforementioned multi-
process features are not available on NVIDIA embedded
systems. As a consequence, multi-process GPU busy waiting
is not viable as it is introducing strong jitter interference due
to GPU context switching. We will see in the next sections
various options we explored to get performance similar to
the classical multi-process approach, followed by experimen-
tal results.

Multi-process real-time computing on Jetson em-

bedded platforms

GPU buffer sharing on Jetson Xavier

When trying to reproduce complex GPU pipelines on Jetson,
the first obstacle lies in being able to share GPU buffers
among processes which is usually done on a discrete device
through CUDA IPC. So far, this feature is not available on
Tegra SoC although sharing device memory is a core feature
of the platform.

Fortunately, on Tegra devices with I/O coherency [2]
(starting with the Jetson Xavier, not applicable on previous
devices) it is possible to register an existing host memory
range for use by CUDA. The identified workaround takes ad-
vantage of the CPU and GPU unified memory to keep decent
performance while using a mix of POSIX shared memory and
zero-copy mechanism which allows a GPU to fetch pinned
host data.

Using GPU kernels to access pinned host memory is com-
ing with drawbacks. First, it will result in separated pointers
for host and device calls, although using the same memory
space. Second, pinned host memory accessed by the GPU
will not be cached. As a consequence, user must take ex-
tra care when accessing memory to avoid any performance
drop.

GPU busy-waiting efficiency on Jetson Xavier

Although the aforementioned shared GPU buffers enables
GPU busy wait synchronization, results showed really
poor performance using a straightforward implementation.

CETRE et al. 5

Recording sub-milliseconds computations through a non-
intrusive timer (meaning that it is using a separate process in
order to avoid interference with the main pipeline) requires
responsive measurements.

Unfortunately, measuring those events on GPU turns out
impossible as the GPU timer is unable to start and stop at
the right moment while performing sub-millisecond mea-
surements. Considering that this timer has its own process
and CUDA context, the GPU scheduler will not necessarily
give the hand back to the timer process right after the com-
putation process sends the stopping signal, thus providing
misleading results.

Although CUDA preemption mechanism and context
loading are not publicly disclosed, we know that the GPU is
handling multiple clients (i.e., multiple processes requesting
GPU resources) with a time-slicing behaviour. In addition, a
GPU always serialise two kernels from different processes,
even though the resources to run them in parallel are avail-
able.

As a consequence, the scheduler regularly interrupts the
pipeline computations to perform GPU busy waiting from
other computing units, leading to unintended performance
and jitter degradation. Considering that multi-process busy-
wait synchronization relies heavily on launching small ker-
nels from different processes, it is impossible to achieve a
satisfactory level of determinism in highly constrained envi-
ronments using regular busy-waiting without CUDA MPS.

Possible workarounds

Thanks to unified memory, potential workarounds are
available although they don’t completely overcome the lack
of CUDA MPS.

Multiple-context CPU active-wait strategy
It is possible to keep going with multiple CUDA contexts.

In this case, the important aspect is to avoid doing active
waits on GPU at all costs as explained in the previous
subsection. Active waiting with CPU on a GPU data buffer
is working, although forcing CPU thread spinning. This
avoids a synchronization between the host and the GPU as
notifications are sent through the device. However, the GPU
won’t be able to schedule kernels ahead of time as the CPU
is now blocking the execution. Adding context switching,
this strategy will introduce some overhead compared to
straightforward GPU busy-wait.

Semaphore strategy
While having an overhead compared to active wait strat-

egy, implementing POSIX semaphore based signals remains
perfectly viable and will suffice in most cases.

Multi-thread strategy for real-time computing

After establishing that the principal constraint is to keep only
one CUDA context to get best results when using the GPU
busy waiting technique, it seems that an approach relying
on both multi-thread and multiple streams is an approach to
consider. CUDA streams were specifically designed to allow

concurrency on a single process, which is a requirement for
this kind of busy-wait.

On the positive side, a multi-threaded implementation
removes software dependency to inter-process features
(CUDA MPS and CUDA IPC). As a consequence, it is de-
ployable on both discrete and integrated GPU environments
as opposed to the multi-process approach.

However, it must be pointed out that the GPU behaviour
is not strictly identical. For instance, considering the GPU
busy-wait mechanism, it is very important to synchronize
the CPU with the CUDA execution at some point. A CUDA
context has a limited queue depth in terms of kernel schedul-
ing. When this limit is reached, a forced synchronization
occurs on the CPU before it can be able to enqueue more
kernels. It is thus very easy to end up with a deadlock, with
busy wait kernels exceeding the queue depth leading to the
impossibility to send notifications. This limitation must be
taken into account by the implementation.

The described behaviour may not be the only differ-
ence between multi-thread and multi-process strategies.
Unfortunately, as for the multi-process preempting be-
haviour, CUDA stream scheduling is scarcely documented
by NVIDIA although several studies are working toward
exposing it in more details [14]. Thus, it is likely that new
behaviour specificities will be empirically discovered in the
future.

Regarding performance, results with a multi-thread im-
plementation appeared to be very similar to regular MPS
multi-processing, which is encouraging.

Environment setup and results

Use Case

For the sake of reproducibility and modularity, the decision
was taken to implement a simplified pipeline while keeping
only COSMIC core synchronization mechanisms. It allows
us to propose multiple test cases, with both embedded and
iGPUs whenever necessary.

Figure 4 shows an example of how a given sample test
behaves regardless of the synchronization approach and
its kind of parallelization, being either multi-threaded or
multi-processed. The basic architecture of the pipeline is the
following :

• A camera emulator which sends notifications at a given
framerate. The notification to start computation is sent
to both the timer and the first computation unit.

• A pipeline that can be composed of one or more com-
pute units. In our test environment, it essentially per-
forms matrix vector multiplications (MVM). It sends a
notification to the timer once it is done.

• A timer which gets notifications from the camera em-
ulator to start and from the last computation unit to
stop.

Each test is performed first in a multi-processed environ-
ment, meaning each unit (timer, camera, first MVM, second
MVM and so on) are launched as separated processes. The

6 ERTS 2022

Figure 4 Timeline of a test with two computing units

only way these units have to communicate is through shared
memory and signals to synchronize, which is done either
through POSIX semaphores or GPU busy-wait. In a second
experiment, the test is performed with the multi-threaded
approach : the computation units are launched in the same
process. However, each unit is given a distinct CUDA stream
which allows kernel execution overlapping. Both synchro-
nization methods are performed as well.

WCET and MMET

The Worst Case Execution Time is a term typically used
in critical real-time systems where reliability and safety is
paramount. As of today, it is very unlikely that an embed-
ded environment such as a Jetson can allow a demonstrated
WCET such as it is meant in avionics. In order to avoid mis-
conception about the testing process, this paper is addressing
Maximum Measured Execution Time (MMET), meaning the
worst case measured in the test session with a representa-
tive number of executions (1 million). Figure 5 shows how
MMET does not necessarily shows the worse possible case,
compared to the WCET.

Figure 5 This paper uses maximum measured execution
time (MMET) figure credit : Thales Research Technology

Timing measurement

Timing events with asynchronous CPU and GPU interactions
can be surprisingly difficult. In order to record overheads

between a computation unit sending a signal and another
receiving it, the timer must stay in a separate thread. It is
also a great asset as a timer needs to synchronize with CPU
and GPU in order to get execution time, which is unavoid-
ably introducing overhead. This kind of timer needs the
first pipeline unit to send a notification to launch measure-
ment and the last one to send a another one to stop it. The
downside is that the timer is not bounded to computation
anymore and might miss some iterations at some point if is
not awaiting for a signal when a notification is sent.

Making the timer independent of computation units will
not introduce interference to computation or forcing unin-
tended CPU/GPU synchronization, ensuring measurement
closest to the actual computation time.

The semaphore synchronization approach is measured
through the C++ high_resolution_clock API while the GPU
busy wait approach is using CUDA events.

Results will be shown through two different displays that
highlights different kind of information :

• Histograms are helpful to get a grasp of an approach
latency and jitter.

• Execution profiles include each iteration execution time.
It is useful to show how an approach is affected by jitter.
The wider the plot "line", the more jitter this approach
gets. it also shows infrequent outliers, that would not
appear on histograms.

Environment

Table 1 and 2 show both configuration used in the following
tests.

OS CentOS 8

Linux kernel 4.18.0-193.19.1.el8 2.x86 64

CPU
15 Intel(R) Xeon(R) CPU E5-2698 v4 @
2.20GHz

CUDA version 11.5

GPU Tesla V100

Table 1 Benchmark environment setup with dGPU

OS Ubuntu 18.04

Linux kernel 4.9.253-rt168-tegra

CPU 8-core ARM v8.2 64-bit

CUDA version 10.2

GPU 512-core Volta integrated GPU

Table 2 Benchmark environment setup on Jetson Xavier
AGX

CETRE et al. 7

Optimizations for real-time

Several optimisations are done to achieve real-time perfor-
mance. This includes :

• CPU isolation at boot.
• Processes scheduling set to FIFO with high priority.
• Running CUDA MPS server (for dGPU only).

In order to get comparable results across all experiments
for a given setup (dGPU or Jetson), MVM are based on a
fixed size. The framerate of the camera is set to always let
the pipeline finish its job before notifying for the arrival of a
new image.

To reach sub-millisecond computation time with both
settings, the matrix size is reduced with the Jetson Xavier,
giving the following sizes :

• 4096 X 12500 with the Tesla V100.
• 4096 x 1562 with the jetson Xavier.

Experimental results with the Tesla V100

The first step requires to study how different implementa-
tions behave with dGPUs compared to known results (Multi-
process with Active wait synchronization and CUDA MPS).
Figures 6, 7 and Table 3 shows an experiment with 1M itera-
tions of the same test performed with different paralleliza-
tion and synchronization techniques. The pipeline is the
simplest possible, composed of one camera, one processing
unit performing a matrix-vector multiplication (MVM) and
a non intrusive timer.

Figure 6 Normalized histograms with their estimated
probability density function (solid lines) of a pipeline com-
posed of one MVM unit with various synchronization ap-
proaches (SEMaphore and Active Wait) over 1M iteration
on DGX server

The best results in terms of latency come from active wait
synchronization (AW) regardless if using multi-thread or
multi-process approach with 274.3 µs of Mean Execution
Time (MET) for multi-process and 272.4 µs for multi-thread.
Even with this extremely simple pipeline, it still shows no-
ticeable improvement regarding the worse case compared
to semaphore based synchronization (gap < 25µs between
MMET and MET). However, the histogram of both active

Figure 7 Execution profiles over 1M iterations for various
scheduling and synchronization approaches on the DGX
server

Compute
type

Mean
execution
time (µs)

MMET
(µs)

Average
jitter (µs)

Jitter
Peak-to-
Valley

(µs)

Multiprocess
AW + MPS

274.3 288.8 3.5 25.6

Multiprocess
SEM

290.0 310.8 2.3 29.2

Multithread
AW

272.4 294.9 10.7 42.0

Multithread
SEM

296.0 334.3 2.3 45.9

Table 3 Summarised results of different synchronization
approaches on DGX server

wait synchronization approaches shows that results are scat-
tered across two Gaussian distributions. That is why the av-
erage jitter of multi-thread active wait is considerably higher
compared to the three other approaches. This behaviour is
not yet explained as it doesn’t look like an external interfer-
ence, which would have been highlighted with semaphore
approach as well. The multi-thread approach shows slightly
higher Peak-To-Valley jitter (P2V – MMET minus the mini-
mum measured time) with 42.0 µs with AW synchronization
and 45.9 µs with semaphore synchronization. The multi-
process approach (25.6 µs for AW and 29.2 µs) is slightly
more stable.

With these considerations, the active-wait based synchro-
nization is still outperforming semaphores in terms of la-
tency and MMET and remains the preferred option with a
dGPU. The multi-process approach shows slightly more sta-
ble results, although these gains are not sufficient to discard
the multi-threaded approach.

8 ERTS 2022

Figure 8 Normalized histograms with their estimated
probability density function of a pipeline composed of
one MVM unit with various synchronization approaches
(SEMaphore and Active Wait) over 1M iterations on the
Jetson Xavier

Figure 9 Execution profiles over 1M iterations for various
scheduling and synchronization approaches on the Jetson
Xavier

Compute
type

Mean
execution
time (µs)

MMET
(µs)

Average
jitter (µs)

Jitter P2V
(µs)

Multithread
AW

239.4 252.5 4.4 21.5

Multithread
SEM

263.9 346.4 4.8 139.8

Multiprocess
SEM

277.4 378.8 8.4 129.7

Table 4 Summarised results of synchronization techniques
on the Jetson Xavier

Experimental results on Jetson Xavier

As MPS is not available on Jetson Xavier, only 3 cases can be
assessed. We performed the exact same experiment on this
hardware and the results are presented in figures 8, 9 and

Table 4.
When comparing results obtained on both the dGPU and

iGPU platforms, a noticeable difference is that semaphore
synchronization approaches lead to less stable results on the
iGPU case with a up to 101.4µs gap between the MET and
the MMET for multi-process and 82.5 for multi-threaded
based approach. The multi-threaded active wait synchro-
nization is performing best with only 13.1 µs difference. The
P2V jitter shows the same kind of outcome with 21.5 µs for
multi-thread AW, 139.8 µs for multi-thread SEM and 129.7
µs for multi-process SEM. Even though CPU cores are iso-
lated on Jetson, semaphore synchronization is more prone
to interference compared to the dGPU case. Multi-thread
results are still considered satisfactory results, both in terms
of MMET and average time to solution.

Regarding semaphore performance, it appears that multi-
thread performs slightly better compared to multi-process.
When comparing to the dGPU (Figure 6), the reverse occurs
with multi-process semaphore delivering slightly better ex-
ecution time. It may be caused by how CPU contexts are
handled on both platforms (introducing CPU context switch)
and probably some CPU interference, more pronounced on
Jetson Xavier. We will investigate further such behavior in
future work.

Multiprocess with hybrid active wait

Figure 10 Normalized histograms with their estimated
probability density function of a pipeline composed of
two MVM units with the proposed hybrid (CPU/GPU)
active wait compared to other synchronization approaches
(Semaphore and active wait) on the Jetson Xavier

As aforementioned, the way the GPU handles multiple
processes and CUDA contexts is not suitable for GPU busy
waiting synchronization. A proposed workaround is to take
advantage of shared memory to avoid busy waiting with
GPU threads.

This hybrid active-wait strategy relies on letting the CPU
do the busy waiting on data shared with the GPU while
notifications are sent through GPU kernels. This allows
the GPU scheduler to stop constantly switching between
multiple CUDA contexts requiring GPU usage.

Although this implementation should not benefit from the
latency hiding obtained with look ahead kernel launch and

CETRE et al. 9

Figure 11 Execution profiles over 1M iterations of the hy-
brid active wait compared to other synchronization ap-
proaches on the Jetson Xavier

Compute
type

Mean
execution
time (µs)

MMET
(µs)

Average
jitter (µs)

Jitter P2V
(µs)

Multithread
AW

488.9 572.4 3.0 93.2

Multithread
SEM

519.0 611.1 5.8 116.9

Multiprocess
SEM

766.16 893.3 11.6 158.9

Multiprocess
AW hybrid

719.3 752.5 2.4 56.1

Table 5 Summarised results of hybrid synchronization
techniques on Jetson

still partly suffers from context switching overheads, using
the GPU for notification may help to reduce noxious interfer-
ence coming from the CPU, plus avoiding some CPU/GPU
synchronizations compared to semaphore approach.

It is important to note that such implementation is pos-
sible only with a sequential pipeline as concurrent kernels
have to be implemented through CUDA streams, otherwise
the resulting performance and determinism will be severely
affected.

In this test case (Figure 9, 10 and Table 5), the new mech-
anisms described are implemented (results named Multi-
process AW hybrid), resulting in a new approach for multi-
process synchronization. In order to expose how different
kinds of synchronization affect performance, two sequential
computing units are instantiated thus reproducing exactly
the setting for Figure 4. The first noticeable thing is that the
gap between multi-threaded and multi-processed synchro-
nization increases as the pipeline complexity grows. Regard-
ing latency, the multi-thread approach shows best results
regardless the kind of synchronization (488.9 µs for active

wait and 519.0 µs for semaphore) where the multi-process
approach is taking an extra 200 µs for the exact same com-
putations (766.16 µs for semaphore and 719.3 µs for the new
hybrid synchronization). This brings to light the cost of GPU
context switch which never happens in a multi-threaded
application.

However, it also shows that synchronization on the GPU
is an environment less prone to interference. The difference
between the MMET and MET of the hybrid active wait ap-
proach is 33,2 µs where the second best being multi-thread
AW with a difference of 83,5 µs. Finally, semaphore syn-
chronization with multi-thread gives a difference of 92,1 µs
and the multi-process approach comes last with a 127,14 µs
difference. The P2V jitter confirms this result with 56.1 µs
for the multi-process hybrid AW, 93.2 µs for multi-thread
AW, 116.9 µs for multi-thread SEM and finally 158.9 µs for
multi-process SEM.

As a consequence, the hybrid active waiting, although
showing marginal latency improvement compared to using
multi-process semaphore is still far from reaching multi-
threaded approaches performance and cannot be proposed
as a universal replacement for active wait with CUDA MPS.
Still, it is a great replacement for pipelines that need to com-
municate through multi-process and is a good solution in
terms of determinism.

Conclusion

The best practices introduced in the COSMIC framework en-
able the realization of complex compute intensive pipelines
while keeping a high level of modularity thanks to its effi-
cient synchronization mechanism.

It delivers latency improvements while keeping a stable
jitter with discrete GPUs, but its use on embedded platforms
needs to be adapted in order to work around missing fea-
tures on such hardware and supporting ecosystem. Best
results are obtained when reproducing the same mecha-
nism with a multi-thread implementation, instead of multi-
process. This allows the CUDA environment to keep a sin-
gle context, avoiding both kernel preemption and context
switching. However, the behaviour may differ between mul-
tiple processes and multiple streams implementations de-
pending on how the scheduler handles kernels.

The embedded Jetson CUDA package is still missing some
critical features of multi-process programming. However, it
is possible to get it working using using the hybrid active
wait strategy detailed in this paper. While the user needs to
be aware of the corresponding performance trade-off, mak-
ing sure only one context is executed at a given point in time,
a pipeline can be built with processes sending notifications
using the GPU by taking advantage of shared memory be-
tween CPU and GPU. Such approach performs better than
synchronization through CPU semaphores both in terms of
jitter and latency.

Future work will focus on further testing these new ap-
proaches to get a better understanding of embedded plat-
forms behaviour in order to get closer to true GPU real-time
determinism.

10 ERTS 2022

Acknowledgements

This work is sponsored through a grant from project 873120,
a.k.a. Rising STARS, funded by European Commission un-
der program H2020-EU.1.3.3 coordinated in H2020-MSCA-
RISE-2019.

References

[1] F. Ferreira. Hard real-time core software of the AO
RTC COSMIC platform: architecture and performance.
Proceedings of SPIE - The International Society for Optical
Engineering, 2020.

[2] NVIDIA. Cuda for tegra. https://docs.nvidia.com/cuda/

cuda-for-tegra-appnote/, 2021.

[3] Julien Bernard. Design and performance of a scalable
GPU-based AO RTC prototype. Proceedings of SPIE -
The International Society for Optical Engineering, 2018.

[4] Allen Todd. Improving Real-Time Performance with
CUDA Persistent Threads (CuPer) on the Jetson TX2.
Concurrent Real-Time White Paper, 2018.

[5] Yang Ming. Avoiding Pitfalls when Using NVIDIA
GPUs for Real-Time Tasks in Autonomous Systems.
ECRTS 2018, 2018.

[6] Paweł Czarnul. Investigation of parallel data processing
using hybrid high performance CPU+GPU systems and
CUDA streams. Computing and informatics, 2020.

[7] Ali Waqar. Protecting Real-Time GPU Kernels on Inte-
grated CPU-GPU SoC Platforms. ECRTS 2018, 2018.

[8] Kenjić Dušan. One Solution for Deterministic Schedul-
ing on GPU for Automotive Algorithms. 2021 Zooming
Innovation in Consumer Technologies Conference, 2021.

[9] Jason Baietto. Real-Time Linux: The RedHawk Ap-
proach. Concurrent Real-Time whitepaper, 2019.

[10] Tanya Amert. Gpu scheduling on the NVIDIA TX2: hid-
den details revealed. IEEE Real-Time Systems Symposium,
2017.

[11] Ignacio Sanudo Olmedo. Dissecting the CUDA schedul-
ing hierarchy: a Performance and Predictability Per-
spective. RTAS, 2020.

[12] Vance Miller. Determinism in GPU Programs, Real Time
Applications on the NVIDIA Jetson TK1. Senior Honors
Thesis, University of North Carolina, 2016.

[13] Nicola Capodieci. Contending memory in heteroge-
neous SoCs: Evolution in NVIDIA Tegra embedded
platforms. IEEE Real-Time Systems Symposium, 2020.

[14] Nathan Otterness. Inferring Scheduling Policies of an
Embedded CUDA GPU. Department of Computer Science,
University of North Carolina, 2017.

PasTiS: building an NVIDIA Pascal GPU simulator
for embedded AI applications

Michaël Adalbert∗†, Thomas Carle†, Christine Rochange†
∗IRT SystemX, Palaiseau, France

†IRIT - Univ. Toulouse III - CNRS, Toulouse, France, name.surname@irit.fr

Index Terms—GPU, cycle-accurate simulator, timing analysis

Abstract—We present PasTiS, a simulator for the NVIDIA Pas-
cal GPU architecture family, with a focus on timing simulation.
PasTiS supports a subset of the Pascal ISA, sufficient to simulate
the execution of neural networks. We present this subset, as
well as the underlying microarchitecture that we modelled using
information available from NVIDIA, from scientific publications,
and from our own experiments. We demonstrate the precision of
the simulator by comparing it to measurements on the NVIDIA

Jetson TX2 development board, on neural network applications.

I. INTRODUCTION

Real-time systems are increasingly embedding machine

learning software which requires a huge computing power. For

example, the control systems of autonomous vehicles rely on

neural networks (NNs) to detect roads and objects, compute

trajectories and plan the actions to be performed. These

algorithms are computation-intensive and inherently parallel,

which drives the industry to adopt massively parallel hardware

such as many-core and GPU accelerators. In particular, GPUs

have received a lot of attention these last years, both from the

industry and from the real-time research community.

Scheduling tasks in a timing-critical system, so as to ensure

that they will meet their timing constraints, requires being

able to determine their respective worst-case execution time

(WCET). Various approaches to WCET analysis exist and are

based on static analysis techniques and/or measurements [10].

The estimated WCET can then be deterministic (i.e. expressed

as a single upper bound) or probabilistic (i.e. several WCET

values are produced, each associated to a probability of being

exceeded) [9]. In this paper, we focus on systems where strict

upper bounds on execution times are needed, and thus consider

static WCET analysis approaches.

Static WCET analysis aims at determining invariants on the

code of the task under analysis. Some invariants are related

to the software (e.g. loop bounds), others to the state of the

hardware (processor, cache memories, etc.). They are all used

to build an integer linear program (ILP) that maximizes the

execution time of the task over all the possible paths in the

control flow graph (CFG) [17]. OTAWA is an open-source

framework that offers many built-in facilities to generate

WCET analysis tools [4].

This work was partially supported by the ANR LabEx CIMI (grant
ANR-11-LABX-0040) within the French State Programme “Investissements
d’Avenir.”

Computing hardware-related invariants requires modeling

the behaviour of the computing platform. This is usually

done manually by translating the knowledge we have of the

hardware (from documentation provided by the processor man-

ufacturer or designer) into a formal model, although automatic

translation from a VHDL specification of the processor (when

available) has also been considered [24].

However, most of existing work considers CPU-only plat-

forms. The very specific execution model of GPUs (Single

Instruction Multiple Threads - SIMT) requires a substantial

revisiting of hardware models. First, the lockstep execution of

batches (warps) of threads requires rethinking the concept of

basic block and instruction sequence due to possible branch

divergence: all the threads in a warp do not necessarily follow

the same control flow. Second, GPUs implement hardware

scheduling schemes for warps and blocks of threads that must

be accounted for in WCET estimations. Third, their memory

system is noticeably different from that of standard CPUs and

requires specific analyses.

The closed nature of most GPUs and the lack of official

documentation on their micro-architecture have slowed down

the understanding and modeling of their micro-architectural

behaviour, which plays a crucial role in the execution time.

These reasons explain that so far, no decent (industrial or aca-

demic) WCET analyzer for GPU-accelerated code is available.

As part of the French national Confiance.ai 1 program that

brings together industry and academic researchers to build

trustworthy Artificial Intelligence, we ambition to extend static

WCET analysis techniques to GPUs. The work presented in

this paper was mainly supported by the Labex CIMI2 through

the AVATAr project, and is a first step towards this objective:

we show how we were able to conduct experiments to uncover

some of the execution mechanisms and hardware parameters

of an NVIDIA Pascal GPU and how we have built a cycle-level

simulator that is able to run CUDA programs. We compare the

execution times evaluated by the simulator to those measured

on a Jetson TX2 board and demonstrate the accuracy of our

model.

The insights provided in the paper can be used by industrial

actors to assess the viability of using a GPU in their embedded

systems: they give a clearer view of how a GPU program is

actually executed and of the specificity with respect to CPU

1https://www.confiance.ai/en/
2https://cimi.univ-toulouse.fr/en/

execution. Although we focus on a particular NVIDIA GPU,

the general mechanisms that we describe are common to all

GPUs.

Contributions: In this paper, we present how we have

proceeded to understand the behavior of an NVIDIA Pascal

GPU and how we have used this knowledge to develop a cycle-

level simulator called PasTiS (Pascal Timing Simulator).

Section II describes the general organization and execution

model of GPUs, with a focus on our target (NVIDIA Pascal

architecture). In Section III, we detail two key aspects of the

GPU behaviour (thread divergence and accesses to the shared

memory), and how we proceeded to understand them. We then

introduce the PasTiS simulator in Section IV, and evaluate

its performance in Section V. Related work is discussed in

Section VI. Section VII concludes the paper.

II. GPU ORGANIZATION AND EXECUTION MODEL

In this section we present the global organization and

execution model of GPUs. We borrow the NVIDIA terminol-

ogy which is widely accepted in the community, but similar

concepts exist in GPUs from other manufacturers.

A. Heterogeneous computation

At the highest level, a GPU is an accelerator on which a

CPU can offload functions called kernels. A kernel is specified

in a particular language (or a language extension, such as

CUDA or OpenCL) that enables the description of parallel

computation. The offloading of a kernel to a GPU generates

threads that all execute the same code. The number of threads

is specified by the programmer, as a number of blocks and

a number of threads per block, and should be as high as

possible in order to fully benefit from the GPU’s resources.

This is illustrated in Figure 3. In this example, a CPU function

(lines 2-11) modifies each element in an array, depending on

its initial value. Instead of processing elements sequentially, it

invokes a GPU kernel (line 7) for a number of threads equal

to the array size (n × BLK). The code of the kernel is given

on lines 12-18. Each thread executing this code determines

its identifier (line 13) – a value between 0 and n × BLK,

and according to the initial value of the element (line 14), it

computes its new value (lines 15 and 17). The CPU and the

GPU have distinct main memories and the GPU cannot access

the CPU memory. For this reason, the CPU function has to

allocate space in the GPU memory (line 4) and to transfer

input data from the CPU memory to the GPU memory (line

5) and output data from the GPU memory to the CPU memory

(line 8).

B. General organization

On the hardware side, a GPU is a collection of clusters

called Streaming Multiprocessors (SMs). Figure 1.a shows

that the NVIDIA Pascal GPU of the Jetson TX2 contains two

SMs, that share an L2 cache. Each SM contains in turn four

processing blocks, denoted SMPs, that share an L1 instruction

cache and two L1 data caches (each shared by two SMPs),

as well as a fast multi-banked memory referred to as the

shared memory (Figure 1.b). An SMP includes 32 Cuda Cores

(CCs) that perform ALU and floating-point (32- and 16-bit)

operations, a 64-bit FP unit, 8 Special Function Units and

8 Load/Store Units (Figure 1.c). It is then able to execute

several operations in parallel, e.g. 32 integer instructions or

8 memory loads. In addition, the GPU contains resources to

host thousands of active threads so that context switching is

extremely fast.

When a kernel is offloaded to a GPU, each block of threads

(e.g. 1024 threads in the example of Figure 3) is mapped to one

SM. This mapping is performed by the hardware, following a

heuristic that tries to maximize the use of the SMs [21].

C. Execution model

At the lowest level, GPUs implement the Single Instruction

Multiple Threads (SIMT) execution model, which can be

seen as a mix between simultaneous multithreading and the

SIMD3 model. A block of threads is organized into fixed

pools of 32 threads called warps4. All the threads inside a

warp are executed in lockstep: in a given clock cycle, they all

execute the same instruction. This reduces the complexity of

the instruction fetch and decoding logic since these operations

are shared between the 32 threads of a warp.

Warps are the smallest schedulable entities in a GPU. An

SMP contains an instruction buffer for each active warp,

which stores the next instructions to be executed by the

warp. At each execution cycle, a hardware warp scheduler is

responsible for electing a warp for execution among those that

are ready, following a given scheduling policy [19]. A warp

is ready for execution when all data dependencies have been

resolved (which is checked using a scoreboard, as explained

in Section II-D), when its next instruction is available in its

instruction buffer and when the required functional units are

available. The instruction to be executed by the elected warp

is sent to a dispatch unit that pushes the instruction to the

required functional units. Each SMP has two dispatch units:

one for memory operations (which target LSUs) and one for

the other instructions. The full processing of an instruction is

depicted in Figure 2.

As long as all threads inside a warp agree on the control flow

(i.e. they follow the same direction at conditional branches),

the SIMT execution scheme is straightforward. However, when

threads within the same warp disagree on whether or not to

take a branch, both paths are executed in sequence one after

the other, with only one part of the threads being active on each

path. This phenomenon is known as thread divergence [8].We

explain in Section III-A how thread divergence is handled in

Pascal GPUs.

D. Scoreboard update and scheduling instructions

Recent NVIDIA GPUs handle pipeline hazards using a

software programmed scoreboard: in a Pascal GPU program,

the compiler inserts so-called scheduling instructions [11]

3Single Instruction Multiple Data
4The number of threads in a warp is not the same in all GPUs depending

on the vendors. In NVIDIA GPUs, warps are always composed of 32 threads.

SM

L2

SM

Instruction Cache

SMP SMP

Data Cache

SMP SMP

Data Cache

Shared Memory

Instruction Buffer

Warp Scheduler

Dispatcher Dispatcher

Registers

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC

FP64

CCCC LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SMP

(a) GPU (b) SM (c) SMP

Fig. 1. Architecture of a Pascal GPU

between each group of three successive instructions. These

are responsible for updating the scoreboard with information

needed to enforce data dependencies (minimum instruction

latencies, setup of local fences).

E. Memory hierarchy

All the SMs share a global memory that can be used by their

threads to communicate between SMs, and a constant memory

which stores constants. The global memory is also used to

communicate between the CPU and the GPU through the use

of a hardware copy engine that transfers data and instructions

between the CPU and GPU memory spaces. Threads can also

access a private local memory, which is in practice an area of

the global memory. The global, constant and local memories

are accessed through a cache hierarchy composed of an L2

cache, shared by all the SMs, and L1 caches, local to each

SM. The memory hierarchy of the Pascal GPU is displayed in

Figure 4.

In addition, each SM features a so-called shared memory.

In the GPUs terminology, shared memory refers to a fast

memory local to each SM, that is shared by threads that

belong to the same block. NVIDIA reports a 100x lower latency

for shared memory accesses compared to uncached global

memory accesses, making it a key factor in the acceleration

of kernel execution. It is implemented as an interleaved multi-

banked SRAM with 32 banks storing 32-bit words. In the

ideal case, threads of a given warp access either words from

different banks or the same word from a given bank. The

hardware is optimized to serve such requests with minimal

latency and maximal throughput by grouping them into a

single transaction. However, whenever two or more threads

from the same warp try to access different addresses in

the same bank at the same time, this results in a conflict.

The bank then serves each request in sequence as part of

a separated transaction, and all the threads in the warp wait

until all requests have been served before executing the next

instruction. This obviously degrades performance.

III. REVERSE ENGINEERING THE PASCAL GPU

EXECUTION

A. Thread divergence

Thread divergence occurs when threads within a warp do

not all follow the same direction after a conditional branch.

For example, in the code in Figure 3, threads execute either

line 15 or line 17 depending on their own evaluation of the

condition on line 14. As mentioned earlier, the SIMT execution

model does not allow threads that belong to the same warp to

execute different instructions. As a result, each path (i.e. line

15 or line 17) is executed one after the other one, and each

thread is active along one of these paths only.

According to [2], thread divergence is handled using a

hardware mask mechanism that temporarily deactivates the

threads that must not execute one path. In order to deal

with nested conditional branches, a stack (called SIMT stack

in the remainder of the paper) holds the activation masks,

along with some additional information. In order to better

understand the behavior of the SIMT stack, we read a NVIDIA

patent dedicated to this mechanism [20]. In this section we

present a model of the divergence handling mechanisms of

the Pascal GPU, based on this patent and on experiments that

we conducted in order to verify and clarify the behaviour of

the GPU on conditional branches.

Fetch
SIMT
stack

I$

Instruction
buffer

Warp
scheduler

Scoreboard

Dispatch 1
Register

file

FU LSU

Buffer

Commit

Dispatch 2

Fig. 2. Detailed view of the modeled elements for one SMP in the PasTiS
simulator. In blue, the elements related to the non-functional semantics of
instructions. In green, the elements related to the warp-level semantics.

When a kernel is launched, a stack is allocated for each

corresponding warp. In the stacks, a 32-bit mask is stored

along with the address of the next instruction to execute (next

program counter or npc) and of the address of the instruction at

which the threads must wait for reconvergence (reconvergence

program counter or rpc). Each stack is initialized with an entry

composed of: a mask in which all the threads in the warp are

active, the start address of the program as npc and the last

address in memory as rpc (note that it does nos need to be

a valid instruction address). The left part of Figure 5 shows

the state of the SIMT stack for a warp executing the kernel of

Figure 3: the next instruction to be executed is at address 0x8,

the end of the program is at address 0xFFFF and all the threads

of the warp are currently active. The GPU handles divergence

and reconvergence through the use of dedicated instructions

which are automatically inserted in the code by the compiler.

In practice these instructions are responsible for modifying

the SIMT stack of their warp. The SSY and PBK instructions

prepare the stack for a possible divergence; they contain the

reconvergence address. When SSY @addr or PBK @addr is

executed, the top entry of the stack is popped. A new entry is

pushed to handle the execution after reconvergence: the npc

1 #define BLK 1024

2 void fun(int *a, int n){

3 int *d_a;

4 cudaMalloc((void **)&d_a,n*BLK*sizeof(int));

5 cudaMemcpy(d_a, a, n*BLK*sizeof(int),

6 cudaMemcpyHostToDevice);

7 kern<<<n,BLK>>>(d_a, n);

8 cudaMemcpy(a, d_a, n*BLK*sizeof(int),

9 cudaMemcpyDeviceToHost);

10 cudaFree(d_a);

11 }

12 __global__ void kern(int *t, int n){

13 int tid=blockIdx.x*blockDim.x+threadIdx.x;

14 if (t[tid] < 0)

15 t[tid] = 0;

16 else

17 t[tid] *= 2;

18 }

19

Fig. 3. Example Cuda program

SMP

Shared
Memory

L1
Cache

SM

L2 Cache

GPU Memory

Global

Local

Constant

Fig. 4. Memory hierarchy

is the reconvergence address (@addr), and the rpc and the

mask are copied from the popped entry. A second new entry

is then pushed to handle the potentially diverging portion of

code: the npc is the actual next instruction (the npc of the

popped entry + 8, since instructions are encoded on 64 bits),

the rpc is the reconvergence address (@addr) and the mask is

the same as in the popped entry. In the example of Figure 5,

we consider that the instruction at address 0x8 is a SSY or

PBK instruction that prepares the stack for a future conditional

branch (corresponding to the if-else construct in the code of

Figure 3), with a reconvergence of the control flow at address

0x70. The stack is updated (in the right part) with two entries.

The bottom entry will be used after reconvergence: the npc

is the address of reconvergence of the control flow (0x70).

The top entry is used to let all active threads execute the

next instruction (0x10) naturally. Note that these instructions

do not create divergence but instead prepare the stack for a

possible upcoming divergence, which is why the mask remains

unchanged at this point. In our experiments, we encountered

the SSY instruction before branch instructions that correspond

to either an IF or a SWITCH construct, and the PBK instruction

before branch instructions corresponding to a loop, although

the official documentation from NVIDIA indicates that PBK

instructions are not supported by Pascal (and next-generation)

GPUs.

Actual divergence happens when a branch (BRA @addr)

instruction is executed conditionally by only a subset of the

threads of a warp. When this happens, the top entry of the

corresponding stack is popped. Two new entries are then

pushed:

• the first pushed entry concerns the threads which do not

take the branch: the rpc is the same as in the popped

entry, the npc corresponds to the next instruction in the

code (i.e. the current npc + 8) and the mask activates

only the threads that do not take the branch (the ones for

which the condition is false);

• the second entry has the target address of the branch

as npc and the same rpc as the popped entry; its mask

activates only the threads that take the branch (the ones

for which the condition is true).

As a consequence, the GPU first executes the threads that

take the branch, until they reach a reconvergence instruction

which is added by the compiler: SYNC of BRK (depending on

whether a SSY or a PBK was executed before). This process is

illustrated in Figure 6. In this example, the threads reach a BRA

0x48 instruction at address 0x10. We assume that threads 0

and 1 of the considered warp execute the else part of the code

because the elements they access in table t are positive, while

the rest of the threads execute the if part. As a consequence,

only threads 0 and 1 take the branch instruction while all other

threads in the warp continue in sequence. As displayed in the

right part of the figure, the top entry is replaced by two new

entries: one for threads 0 and 1 (activation mask 0xC0000000)

and one for the rest of the threads (mask 0x3FFFFFFF).

To the best of our knowledge, no documentation explicitly

describes the order in which the entries are pushed on the stack

when divergence occurs (and thus the corresponding execution

order of the branches). In our experiments, the first threads to

execute are always the ones taking the branch.

The reconvergence instructions pop the top entry from the

stack, as illustrated in Figure 7. In the example, threads 0 and

1 reach a SYNC (or BRK) instruction: their entry is popped from

the stack. The GPU then resumes the execution with the group

of threads active in the mask of the new entry at the top of

the stack: the threads that do not take the branch. When they

reach a SYNC (or BRK) instruction, their corresponding entry

is popped from the stack: the reconvergence is done and the

execution flow resumes at the reconvergence address (which

is the npc of the entry at the top of the stack at this point).

B. Shared memory accesses

We needed to characterize the timing behavior of the shared

memory in order to implement it in the simulator. The major

difficulty was to derive the number of transactions generated

Before:

0x8 0xFFFF 0xFFFFFFFF

npc rpc mask
After:

0x10 0x70 0xFFFFFFFF

0x70 0xFFFF 0xFFFFFFFF

npc rpc mask

Fig. 5. SIMT stack when executing SSY/PBK 0x70

Before:

0x10 0x70 0xFFFFFFFF

0x70 0xFFFF 0xFFFFFFFF

npc rpc mask
After:

0x48 0x70 0xC0000000

0x18 0x70 0x3FFFFFFF

0x70 0xFFFF 0xFFFFFFFF

npc rpc mask

Fig. 6. SIMT stack when executing BRA 0x48 by the first 2 threads

Before:
0x48 0x70 0xC0000000

0x18 0x70 0x3FFFFFFF

0x70 0xFFFF 0xFFFFFFFF

npc rpc mask
After:

0x18 0x70 0x3FFFFFFF

0x70 0xFFFF 0xFFFFFFFF

npc rpc mask

Fig. 7. SIMT stack when executing SYNC/BRK by threads 0 and 1

by the hardware. It depends on (i) the memory addresses ac-

cessed by threads in a warp, and (ii) the size of the transferred

data. To determine this number, we wrote a microbenchmark

in which we control the size of the transferred data and the

target memory addresses, so as to tune the number of conflicts

in the memory banks. We then executed the benchmark on the

Jetson TX2 board and observed the number of transactions

using the NVIDIA nvprof profiling tool.

size of accesses (# bits)
mask 32 64 128

000000FF 1 2 4
0000FFFF 1 2 4
00FFFFFF 1 2 4
FFFFFFFF 1 2 4

TABLE I
NUMBER OF TRANSACTIONS FOR CONSECUTIVE ACCESSES

We report in Table I the number of observed transactions

when threads in a warp make accesses to consecutive areas of

the memory (e.g. thread 0 accesses a 32-bit word at address

0, thread 1 accesses a 32-bit word at address 4, etc.). Table I

also displays the activation mask that we use in order to

control which threads are active. For 32-bit accesses, a single

size of accesses (# bits)
mask 32 64 128
1 00000001 1 2 4
2 00000003 2 3 5
3 00000007 3 4 6
4 0000000F 4 5 7
5 0000001F 5 6 8
6 0000003F 6 7 9
7 0000007F 7 8 10
8 000000FF 8 9 11
9 000001FF 9 10 11
10 000003FF 10 11 12
11 000007FF 11 12 13
12 00000FFF 12 13 14
13 00001FFF 13 14 15
14 00003FFF 14 15 16
15 00007FFF 15 16 17
16 0000FFFF 16 17 18
17 0001FFFF 17 17 18
18 0003FFFF 18 18 19
19 0007FFFF 19 19 20
20 000FFFFF 20 20 21
21 001FFFFF 21 21 22
22 003FFFFF 22 22 23
23 007FFFFF 23 23 24
24 00FFFFFF 24 24 25
25 01FFFFFF 25 25 25
26 03FFFFFF 26 26 26
27 07FFFFFF 27 27 27
28 0FFFFFFF 28 28 28
29 1FFFFFFF 29 29 29
30 3FFFFFFF 30 30 30
31 7FFFFFFF 31 31 31
32 FFFFFFFF 32 32 32

TABLE II
TRANSACTIONS ISSUED WHEN ALL THREADS ARE IN CONFLICT

transaction is issued by the hardware, regardless of the number

of active threads: each memory bank composing the shared

memory is accessed by one and only one thread, and the

transaction accounts for up to 32 non-conflicting accesses

to 32-bit words. For 64-bit accesses, two transactions are

issued, regardless of the number of active threads. In this

setting, when more than 16 threads are active, at least one

bank is accessed by two threads that request different words:

this conflict is handled by issuing two transactions. However,

when less than 17 threads are active and are consecutive,

the accesses made by the active threads are non-conflicting,

and we initially expected to measure a single transaction,

as in the case of 32-bit accesses. For 128-bit accesses, four

transactions are issued, regardless of the number of threads.

Once again, we expected this behavior when more than 24

threads are active, but based on the number of conflicting

accesses in the banks, we expected a single transaction when

less than 9 (consecutive) threads are active, two transactions

when between 9 and 15 consecutive threads are active, and

three transactions when between 16 and 23 consecutive threads

are active.

We designed a first experiment in which all active threads

access different words in the same bank at the same time,

and in which we vary the number of active threads from 1 to

32 and the size of the access from 32 to 128 bits. For each

…

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4

Word 0

Word 1

Word 2

Word 3

1

0

2

3

Word 4 4

Word 0

Word 1

Word 2

Word 3

Word 4

1

0

2

3

4

Word 0

Word 1

Word 2

Word 3

Word 4

1

0

2

3

4

Word 0

Word 1

Word 2

Word 3

Word 4

1

0

2

3

4

Word 0

Word 1

Word 2

Word 3

Word 4

6

5

7

Word 0

Word 1

Word 2

Word 3

Word 4

6

5

7

Word 0

Word 1

Word 2

Word 3

Word 4

6

5

7

Word 0

Word 1

Word 2

Word 3

Word 4

6

5

7

Bank 5 Bank 6 Bank 7

…

Bank 8 Bank 9 Bank 10 Bank 11 Bank 12

Word 0

Word 1

Word 2

Word 3

9

8

10

Word 4

Word 0

Word 1

Word 2

Word 3

Word 4

9

8 Word 0

Word 1

Word 2

Word 3

Word 4

9

8 Word 0

Word 1

Word 2

Word 3

Word 4

9

8 Word 0

Word 1

Word 2

Word 3

Word 4

Word 0

Word 1

Word 2

Word 3

Word 4

Word 0

Word 1

Word 2

Word 3

Word 4

Word 0

Word 1

Word 2

Word 3

Word 4

Bank 13 Bank 14 Bank 15

10 10 10

11 11 11 11

12 12 12 12

13 13 13 13

14 14 14 14

15 15 1515

Fig. 8. Conflicts between shared memory accesses

combination of active threads and access size, we measured

the number of issued transactions using nvprof. We discov-

ered that threads of a warp that perform memory accesses

are grouped in one pool of 32 threads when the accesses

performed are 32-bit wide, in two pools of 16 (threads 0 to 15

and 16 to 31) when the accesses are 64-bit wide and in four

pools of 8 (threads 0 to 7, 8 to 15, 16 to 23 and 24 to 31) when

the accesses are 128-bit wide. The results of the experiment are

displayed in table II. By default, one transaction is issued for

each pool of threads when a warp executes a memory access.

As reported in Table II we measured that even when all the

threads in a given pool are inactive, a transaction is still issued

for the pool. Since transactions are issued pool-wise, only

threads from the same pool can generate conflicting accesses

to the memory banks. We ran some additional experiments

to confirm that hypothesis. In these experiments we forced

conflicts to happen between threads from the same pool on

two separate banks. The banks accessed by threads of different

pools are not the same, in order to evaluate if the hardware

tries to coalesce accesses from different groups in transactions.

Figure 8 displays an example of such an experiment. For space

reasons, we only display the first 5 words of the first 16 banks

of the shared memory. In the example, threads 0 to 15 perform

128-bit accesses to the memory: each thread thus performs

accesses to 4 consecutive banks. Since accesses are of size 128

bits, threads 0 to 7 are in a pool (shown with orange disks)

while threads 8 to 15 are in another pool (shown with green

disks). Threads 16 to 31 are not displayed, once again for space

reasons, and without loss of generality we can assume that they

are not active in the example. The threads are programmed so

that in the orange pool, threads 0 to 4 are in conflict on banks

0 to 3 and threads 5 to 7 are in conflict on banks 4 to 7, and

in the green pool threads 8 to 11 are in conflict and threads 12

to 15 also. Running the corresponding program on the GPU

generates a total of 9 transactions.

After multiple experiments in which we varied the config-

uration of the conflicts, we observed that transactions were

generated in order to deal with the conflicts of each pool

separately, and that for each pool, the number of generated

transactions corresponds to one plus the maximum number

of conflicts on any bank between threads of the pool. In

the example of Figure 8, the maximum number of conflicts

on any bank is 4 for the orange pool, and 3 for the green

pool. In our hypothesis, the GPU is thus expected to generate

(4 + 1) + (3 + 1) = 9 transactions which is exactly what

we measured. Following our observations, we derived the

following formula to compute the number of transactions

issued by the hardware:

nTrans =

nPools
∑

i=1

(1 + max
j∈[|0,31|]

(conflict(pooli, bankj)))

where nTrans is the number of issued transactions, nPools
is the number of thread pools (1, 2 or 4) and conflict(p, b)
is the number of conflicting accesses by threads of pool p on

bank b.
We used the same benchmarks and measured the number of

cycles for the accesses instead of the number of transactions.

We could derive the following formula:

dur = 22+base+2×
nPools
∑

i=1

(max
j∈[|0,31|]

(conflict(pooli, bankj)))

where dur is the duration in cycles of the execution of the

memory instruction and base is a constant duration which

depends on the size of the accesses: 1 cycle for 32-bit accesses,

8 cycles for 64-bit accesses and 16 cycles for 128-bit accesses.

IV. THE PASTIS SIMULATOR

A. Global architecture of the simulator

The simulation of a CUDA program with PasTiS mimicks

a real execution shared between a CPU host and a GPU

accelerator target, as illustrated in Figure 9. The CPU parts

of the program (e.g. the fun function), are compiled and

executed natively by the CPU of the machine that hosts the

simulation, and the call to a GPU kernel is replaced by

a call to PasTiS (which is developed in C language). The

simulator code and the CPU part of the program are linked

together and share the same memory space. As a result, the

simulator can read and write in a memory zone accessible to

the host program5. Before starting the cycle-level simulation,

the simulate function stores the parameters in the constant

memory and initializes special registers for each thread (e.g.

with its identifiers, such as blockIdx.x), as expected by the

GPU assembly code.

PasTiS is organized around three main modules that work

together to enable a cycle-accurate simulation of GPU code:

1) an instruction set simulator: it is responsible for decoding

and functionally simulating GPU binary code. This means

maintaining the contents of registers and of the memory

all along the execution, by emulating the semantics of

the program’s instructions. The instruction set simulator

is agnostic of the timing aspects of the execution.

5PasTiS is intended to simulate and determine the duration of the execution
on the GPU, but not of the operations of the copy engine.

1 #define BLK 1024

2 void fun(int *a, int n){

3 parameter_t par[2];

4 par[0].kind = PTR; par[0].val.ptr = a;

5 par[1].kind = INT; par[1].val.i = n;

6 simulate("kern.cubin", n, BLK, par);

7 // instead of kern<<<n,BLK>>>(a,n);

8 }

9

Fig. 9. Modification of the example in Figure 3 to invoke the simulator

2) a model of the warp-level execution semantics: it simu-

lates warp selection and scheduling policies, as well as

control flow and intra-warp thread divergence.

3) a model of the timing aspects of the execution: it

maintains the state of the architectural components (e.g.

contents of cache memories, occupation of functional

units, contents of the scoreboard, etc.) and determines

instruction latencies in such a way that it is able to

determine the full state of the GPU after each simulated

clock cycle. Thanks to this module, PasTiS is able to

derive the total execution time of a kernel.

When the simulator is launched, elements modeling the

memory, caches, scoreboard, registers and SIMT stacks are

allocated. Then, a loop simulates the execution cycle by

cycle: for each SMP, if a warp is ready for execution, the

warp scheduler simulator selects the warp to execute and the

instruction set simulator decodes and emulates the correspond-

ing instruction. The latency of the instruction is computed

depending on its nature, the state of the caches, and the

potential memory access conflicts. Finally the state of the

hardware simulator is updated according to the effect of the

current instruction.

B. Instruction set simulator

The instruction set simulator is in charge of decoding

the binary code of the program and emulating its execution

from a functional perspective. For this purpose, we rely on

GLISS [23], a tool that accepts the description of an ISA

(its encoding and its semantics) and generates a library of

functions that can be invoked to decode an instruction or to

evaluate its impact onto the processor’s state (registers and

memory contents). We have described a large part of the Pascal

ISA in the GLISS format.

The Pascal GPUs use the same ISA as the Maxwell genera-

tion. Unfortunately, the low-level (SASS)6 language is not doc-

umented by NVIDIA: only the instruction names are provided,

but not their encoding nor their exact semantics. We thus

had to conduct reverse engineering in order to determine the

missing information. The work reported in [11] was a valuable

starting point for this task, which is really tedious and which

we have limited to the subset of instructions that appear in

our benchmark applications (in particular matrix products and

6PTX is a common ISA for all Nvidia GPUs, while SASS is a micro-
architecture specific ISA. SASS code is generated by JIT or AOT compilation
of PTX sources

a feed-forward fully-connected neural network). The Maxas

tool7 was very useful to uncover the entire encoding scheme

for some of the instructions. To understand the semantics of

the instructions, we carefully analyzed the mapping between

source and binary code, and we could clarify uncertainties

based on NVIDIA-related forums.

The method for deriving the encoding of instructions is the

following:

1) compile a GPU kernel to a .cubin binary file using the

nvcc compiler

2) disassemble the .cubin file using nvdisasm

3) select an instruction to investigate

4) modify the disassembled program to generate multiple

instances of the instruction with varying operands and

options

5) re-assemble the program using maxas

6) disassemble again, and compare the binary encodings of

the instructions

The second step to building an instruction set simulator

is to describe the semantics of the instructions. Once again

some reverse engineering had to be performed for this step.

To do so we once again start by writing a kernel (e.g. a matrix

product), which we compile and disassemble. We then proceed

as follows, in a systematic manner:

1) figure out the most probable semantics of the instruction

using its name

2) run the program on the GPU and on the simulator, verify

if the results are equal

3) if the results are not the same, execute the program step

by step in the simulator and on the GPU with cuda-gdb

4) find the first instruction for which the state (register and

memory values) in the simulated and executed program

differ

5) collect results and source operands on both sides

6) find the purpose of this instruction in the executed pro-

gram

7) implement this semantics in the simulator

8) try again from 2)

C. State of the implementation and current limitations

As of today, our implementation of PasTiS supports integer

and floating point arithmetic instructions, memory accesses to

all memories of the GPU, conditional branching and instruc-

tions for thread divergence/reconvergence handling, schedul-

ing instructions, memory fences and synchronization barriers.

Functionally speaking, the floating point arithmetic is handled

natively by the machine that performs the simulation, so results

may differ from the ones obtained on the Jetson TX2.

We currently simulate a direct-mapped cache hierarchy. In

our experiments, this policy is enough to get precise results in

terms of cache misses, but we expect this precision to fall as

we experiment with ever larger kernels. As a consequence we

are currently working on experimenting other policies, based

on existing results [18].

7https://github.com/NervanaSystems/maxas

Another limitation is the warp scheduler whose policy re-

mains unknown at this point. For now, a warp is simulated until

its completion or until it reaches a synchronization barrier, at

which point another warp is elected for simulation. Using this

policy the simulation is functionally correct but does not faith-

fully represent the memory latency hiding mechanisms that

the real GPU implements. As a consequence, our simulation

timing results are close to the measurements on the actual GPU

as long as at most one warp is active on each SMP, but the

overhead is growing as we add more warps to the simulation.

Determining a realistic warp scheduling policy is the next step

in our research. To do so, we can rely on existing work [21]

and on our simulator: once again we will work by trial and

error, by first assuming a policy, implement it and validate it

or not following the results of the simulations.

V. PERFORMANCE EVALUATION

We conducted two kinds of experiments to assess the

functional correctness and the timing precision of PasTiS.

Since our objective is the simulation (and in a second step

the static analysis) of neural network applications, we started

by experimenting PasTis on integer matrix multiplications,

which represent the major building block of neural network

computations. We then implemented a simple feed-forward

neural network for handwritten numbers recognition which we

trained on the MNIST dataset [1] and tested our simulator on

the inference function of this network.

The integer matrix multiplication benchmark uses the shared

memory as is usually the case in ”real-life” kernels: the

program starts by a copy of the contents of the matrices

to multiply from the global memory to the shared memory,

then each thread performs the computation of one element of

the result matrix and stores it directly in the global memory.

We started the evaluation with a multiplication of two 4 × 4
integer matrices, which is handled by 16 threads of one warp

(the 16 other threads are not active for this computation).

The results are depicted in Figure 10. First of all the results

are functionally correct: we obtain the same result matrix in

the simulation as in the actual execution on the Jetson TX2.

Second, the number of reported transactions to the shared

memory is the same in the simulation and in the execution.

Finally, the number of cycles reported in the simulation is

9.7% higher than in the measurements performed on the

execution. We expected an overhead since we do not know

all the implementation details of the GPU. In this experiment,

we believe that the overhead is linked to the L2 cache of

the GPU: in the Jetson TX2, the copy of the input data (the

two input matrices) from the CPU to the GPU is performed

through the L2 cache of the GPU. As a consequence, the

cache is warm when the execution of the kernel starts on

the GPU. Unfortunately, PasTiS does not simulate the copy

of the inputs from the CPU to the GPU: it considers that the

inputs are already in the global memory and thus starts the

simulation of the kernel with a cold cache. We performed the

same experiment on 8 × 8 (resp. 11 × 11 matrices), in order

to test the simulator with 2 (resp. 4) active warps in parallel.

size : 4*4, block : 4*4 threads

Measures GPU Simulator Overhead

shared memory reads 8 8 0

shared memory writes 2 2 0

cycles 1131 1241 9.7%

Fig. 10. Matrix multiplication on one warp

size : 8*8, block : 8*8 threads

Measures GPU Simulator Overhead

shared memory reads 32 32 0

shared memory writes 4 4 0

cycles 1381 1491 7.9%

Fig. 11. Matrix multiplication on two warps

Since our target GPU is composed of 4 SMP each capable of

running one warp in parallel, this is the maximum number of

warps that can be executed/simulated without influence from

the warp schedulers policy. Once again, the results of the

simulation are functionally correct, and we obtain an overhead

of 7.9% (resp. 6.1%) in terms of execution cycles (reported in

Figures 11 and 12 respectively). We consider that these results

validate our model of the shared memory.

Our neural network benchmark is a simple feed-forward

network composed of 3 dense layers which performs the

classification of input images representing handwritten digits

(taken from the MNIST dataset). The first (resp. second, third)

layer is composed of 784 (resp. 128, 64) weights and 128

(resp. 64, 10) biases, and the activation function is ReLU for

all three layers. Each layer is implemented as a separate kernel

which performs a matrix multiplication analogous to the one

of our first experiment, and then calls an activation function.

The network was written in C/CUDA, trained on the Jetson

TX2, and the trained parameters were exported so they could

be used for inference in the simulation as well.

In the experiments we first measured the difference between

the simulated and executed floating point operations and its

influence on the results of the network. As expected, we

measured a slight difference in the computed probabilities

(the result layer). However the difference only appears after

the 14th decimal digit, and does not affect the classification

results: the classification precision of the network is 98.4375%

both on the Jetson TX2 and on PasTiS. Unfortunately, this

benchmark heavily relies on the 64-bit floating point unit and

on some hardware prefetch optimizations whose behaviour is

not correctly modeled yet in PasTiS. As a result the cycles

count of the simulation sees a more than 100% overhead com-

pared to the actual measurement. We are currently working on

correcting this issue.

VI. RELATED WORK

With the ongoing adoption of GPUs in embedded and time-

critical systems, the real-time community has started to work

on the characterization of the timing aspects of GPUs. Since

NVIDIA is currently the leader in the market of GPGPUs, and

size : 11*11, block : 11*11 threads

Measures GPU Simulator Overhead

shared memory read 88 88 0

shared memory write 8 8 0

cycles 1580 1677 6.1%

Fig. 12. Matrix multiplication on four warps

in particular for the embedded systems segment, most of the

research has focused on understanding and taming the NVIDIA

GPUs. The main problems with these GPUs lie in their closed

nature: NVIDIA does not provide a complete documentation

of its GPUs, and many aspects that are relevant to their timing

behavior is undocumented. As a result, most of the scientific

production yet has been dedicated to reverse-engineering vari-

ous aspects of the execution of kernels on NVIDIA GPUs with

three major drawbacks. First, it is extremely tedious and time-

consuming. Second, we approach the GPUs as black boxes

and rely on experiments and measurements to characterize

their behavior, with no guarantee that a particular case was

not missed. Finally, as NVIDIA builds new GPU families,

there is no guarantee that a new-generation GPU will still

behave in the same way than the previous ones: the reverse

engineering experiments must be conducted again to validate

the hypothesis again. The same is true for the CUDA API and

drivers, as well as for the instruction set architecture which

are also closed source.

At the higher level of description, the community has so-far

covered the behavior of the stream queues which control the

interface between the CPUs and the GPU [3], [25], as well

as the timing aspects of the memory copies between the CPU

and the GPU memory spaces [7]. The memory hierarchy and

scheduler hierarchy (at the block and warp mapping levels) has

also been documented for particular GPU families [16], [18],

[21], although no reverse engineering has yet been performed

to unravel the exact warp scheduling policy.

A noticeable exception is [22], in which the authors weigh

the pros and cons of using AMD GPUs for research in

the real-time domain. The authors report that the general

organization of AMD GPUs does not differ from the NVIDIA

ones, with mainly small dimensioning differences (number of

SMs, number of threads per warp), and in the terminology.

One important difference is the absence of integrated GPUs

(iGPUs: SoCs in which the GPU and CPUs share the same

memory) in the AMD offer, and a more flexible choice in the

mapping of the thread blocks in the AMD GPUs. According

to the authors, the main point in favor of AMD is that they

decided to make their software stack (in particular their drivers

and APIs) open source and to vastly document it. However the

authors report that the vast amount of documentation is not

centralized, making it tedious to find information (the same

as for NVIDIA GPUs, although for other reasons), and that

the API and drivers code is not yet stable enough to make

it completely worthwhile to invest time in understanding its

inner workings and in designing compatible real-time modules

since they may not be compatible to the next revision of the

API (the equivalent for NVIDIA GPUs to reverse engineering

a particular aspect of a particular GPU which may behave

differently in the next family of GPUs).

Other works are dedicated to defining WCET analysis meth-

ods for more abstract GPUs (usually a simulated GPU e.g. [2]

with simplifying assumptions) [5], [6], [12]–[15]. The main

limitation in these works is the simplifying assumptions made

on the execution behavior of the GPUs: although the methods

work for the target simulated GPU, they are either incomplete

(focusing on a particular aspect) or cannot be applied to COTS

GPUs which implement more complex hardware optimization

strategies.

VII. CONCLUSION

This paper presents how we reversed-engineered some as-

pects of the NVIDIA Pascal GPU of the Jetson TX2 board,

and how we implemented them in the PasTiS simulator

that we are currently developing. PasTiS supports the actual

NVIDIA SASS assembly language, which makes it capable of

simulating kernels that are compiled for Pascal GPU targets.

We first explained the hidden mechanisms responsible for

handling thread divergence and reconvergence in the pres-

ence of conditional branch instructions. Then we uncovered

how transactions to the shared memory are handled by the

hardware. In PasTiS, we have modeled these mechanisms as

well as a consequent part of the Maxwell/Pascal ISA. We

were able to demonstrate the current accuracy of the simulator

on benchmarks implementing matrix products with the use

of shared memory. In our experiments, the simulator cycle

count suffers is overestimated by less than 10% compared to

the actual measurements on the board, and this overhead is

reduced as the size of the matrices grows. This confirms that

our model of the shared memory is correct.

As part of future work we intend to apply further our

methodology to other architectural elements (in particular

cache hierarchy, FP64 units and warp scheduler) in order to

complete our simulator, until we are able to simulate neural

networks with a high temporal precision. We will then release

the simulator code as open source. Once the model is precise

enough, we will use this knowledge to build static analysis

models in order to derive the worst-case execution time of

kernels running on the Jetson TX2 board.

REFERENCES

[1] Mnist handwritten digits data set. https://deepai.org/dataset/mnist.
[2] T. M. Aamodt, W. W. L. Fung, and T. G. Rogers. General-purpose

graphics processor architectures. In Synthesis lectures on computer

architectures, Morgan & Claypool publishers, 2018.
[3] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith. Gpu

scheduling on the nvidia tx2: Hidden details revealed. In 2017 IEEE

Real-Time Systems Symposium (RTSS), 2017.
[4] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: An Open

Toolbox for Adaptive WCET Analysis. In 8th International Workshop on

Software Technologies for Embedded and Ubiquitous Systems (SEUS),
2010.

[5] K. Berezovskyi. Timing analysis of general-purpose graphics processing
units for real-time systems: Models and analyses. In PhD dissertation,

University of Porto, 2015.

[6] K. Berezovskyi, K. Bletsas, and B. Andersson. Makespan computation
for gpu threads running on a single streaming multiprocessor. In 2012

24th Euromicro Conference on Real-Time Systems, 2012.
[7] A. J. Calderón, L. Kosmidis, C. F. Nicolás, F. J. Cazorla, and P. Onaindia.

Understanding and exploiting the internals of gpu resource allocation
for critical systems. In 2019 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 1–8, 2019.
[8] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira Jr. Divergence

analysis and optimizations. In 2011 International Conference on Parallel

Architectures and Compilation Techniques, 2011.
[9] R. I. Davis and L. Cucu-Grosjean. A survey of probabilistic timing

analysis techniques for real-time systems. Leibniz Transactions on

Embedded Systems, 6(1), May 2019.
[10] R. Wilhelm et al. The worst-case execution-time problem—overview

of methods and survey of tools. ACM Transactions on Embedded

Computing Systems, 7(3), 2008.
[11] A. B. Hayes, F. Hua, J. Huang, Y. Chen, and E. Z. Zhang. Decoding cuda

binary. In Proceedings of the 2019 IEEE/ACM International Symposium

on Code Generation and Optimization, 2019.
[12] V. Hirvisalo. On static timing analysis of gpu kernels. In Workshop in

WCET Analysis, 2014.
[13] Y. Huangfu and W. Zhang. Static wcet analysis of gpus with predictable

warp scheduling. In 2017 IEEE 20th International Symposium on Real-

Time Distributed Computing (ISORC), 2017.
[14] Y. Huangfu and W. Zhang. Wcet analysis of the shared data cache

in integrated cpu-gpu architectures. In 2017 IEEE High Performance

Extreme Computing Conference (HPEC), 2017.
[15] Y. Huangfu and W. Zhang. Wcet analysis of gpu l1 data caches. In

2018 IEEE High Performance extreme Computing Conference (HPEC),
2018.

[16] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza. Dissecting the
nvidia volta gpu architecture via microbenchmarking. arXiv, apr 2018.

[17] Y.-T.S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 16(12), 1997.
[18] X. Mei and X. Chu. Dissecting gpu memory hierarchy through

microbenchmarking. IEEE Transactions on Parallel and Distributed

Systems, 28(1):72–86, 2017.
[19] Nvidia. Across thread out of order instruction dispatch in a multithreaded

microprocessor. https://patentimages.storage.googleapis.com/ab/e4/d4/
487e7e837f2ade/US7676657.pdf.

[20] Nvidia. Execution of divergent threads using a convergence barrier.
https://patentimages.storage.googleapis.com/42/1d/77/18beae47a1fc64/
US20160019066A1.pdf.

[21] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and
M. Bertogna. Dissecting the cuda scheduling hierarchy: a performance
and predictability perspective. In 2020 IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2020.
[22] N. Otterness and J. H. Anderson. AMD GPUs as an Alternative to

NVIDIA for Supporting Real-Time Workloads. In 32nd Euromicro

Conference on Real-Time Systems (ECRTS 2020), 2020.
[23] T. Ratsiambahotra, H. Casse, and P. Sainrat. A versatile generator

of instruction set simulators and disassemblers. In Int’l Symp. on

Performance Evaluation of Computer Telecommunication Systems, 2009.
[24] M. Schlickling and M. Pister. A Framework for Static Analysis of

VHDL Code. In 7th International Workshop on Worst-Case Execution

Time Analysis, 2007.
[25] M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson, and F. D.

Smith. Avoiding Pitfalls when Using NVIDIA GPUs for Real-Time
Tasks in Autonomous Systems. In 30th Euromicro Conference on Real-

Time Systems (ECRTS 2018), 2018.

Session We.1.B

Model Driven Engineering I

Wednesday 1st June

11:30

–

Room Lauragais

31

32

Sizing a Drone Battery by coupling MBSE and MDAO

Ombeline Aı̈ello

ISAE-SUPAERO, Université de Toulouse

Toulouse, France

Ombeline.Aiello@isae-supaero.fr

Olivier Poitou

ONERA

Toulouse, France

olivier.poitou@onera.fr

Jean-Charles Chaudemar

ISAE-SUPAERO, Université de Toulouse

Toulouse, France

jean-charles.chaudemar@isae-supaero.fr

Pierre de Saqui-Sannes

ISAE-SUPAERO, Université de Toulouse

Toulouse, France

pdss@isae-supaero.fr

Abstract

Drones have increasingly been used to assist Humans
for rescue and surveillance missions. To do so, their de-
sign turns out to be a challenging issue, in particular
when their autonomy is expected by sizing of batteries.
Thus, solutions are to be sought to engineer a drone rig-
orously while specifying its main features. This paper
introduces a work in progress aiming to bridge the gap
between two engineering disciplines that have so far
been developed separately: Model Based Systems En-
gineering (MBSE) and Multidisciplinary Design Anal-
ysis and Optimization (MDAO). Coupling of MBSE
and MDAO is addressed in terms of language, tools,
and methods.

1 Introduction

Over the past decades, drones have increasingly been
used to assist Humans in hostile environments. Ex-
amples include high voltage electric line inspection in
mountains, where hostility of the nature and the cli-
mate make missions life-critical. Of prime importance
for these drones is to accomplish their inspection mis-
sions without power outage. Clearly, autonomy is a
key issue for inspection drones.

Autonomy is a challenging issue for drones in gen-
eral, and sizing of batteries raise complex design prob-
lems. Solutions may be sought in well-established engi-
neering disciplines and associations of these disciplines.

This paper addresses the problem of drone batteries
sizing by associating two families of engineering disci-
plines: Model Based Systems Engineering, or MBSE
for short, and Multidisciplinary Design Analysis and
Optimization, or MDAO for short. The benefits of us-
ing MBSE approaches for drone design have been ac-
knowledged [ASV20]. By contrast, little work has been
published [CS21] on joint use of MBSE and MDAO for
revisiting the way drones are designed.

An early work [Aı̈e+21] by the authors of this pa-
per has indicated that joint use of MBSE and MDAO
opens promising avenues for sizing drone batteries and

for drones design in general. Even if this work is still
in progress, this paper goes beyond the concept proof
presented in [Aı̈e+21], and formalizes the coupling of
MBSE and MDAO in terms of language, tools and
method.

The paper is organized as follows. Section 2 intro-
duces MBSE and MDAO, and discusses the rationale
behind the coupling of MBSE and MDAO. Section 3
surveys related work. Section 4 details the main contri-
butions of the paper. Section 5 discusses a case study.
Section 6 concludes the paper and outlines future work.

2 Rationale

2.1 MBSE

One of the current challenge is to develop innovative
systems faster than ever, meeting ever higher expec-
tations in terms of performance and safety. To take
up this challenge, new methodologies are studied. One
of the widely studied and promising approach to man-
age the complexity of systems is Model-Based Systems
Engineering (MBSE) [Zha+21].

MBSE aims to facilitate the understanding of a sys-
tem made up of parts interacting together. MBSE re-
places document-centric approaches by model-centric
ones. It improves communications between people in-
volved in systems development. It also improves the
understanding of the system under design, and rein-
forces testing and verification of the system throughout
its life cycle [ZMT18].

The main asset of MBSE is its power of abstrac-
tion and its graphical representation. MBSE models
may be classified into physical, geometric and mathe-
matical models depending on their degree of abstrac-
tion [CS21]. These three different levels of abstrac-
tion ease the management of systems complexity, and
make them understandable [CS21]. MBSE is increas-
ingly used for the development of complex systems, for
instance in [PF13] MBSE approach is used to design
submarine subsystems. The authors of [PF13] propose
to start modelling from the mission of the submarine
to its components specifications. The interest of using

1

MBSE to design a submarine is that it contains more
than 40 subsystems and a large number of functions.
The subsystems of a submarine are highly integrated
and cover a wide range of functionalities such as the
navigation ones and the combat ones [PF13]. Another
example in [Rim+] is to use MBSE approach to design
a rover autonomous guidance, navigation, and control
(GNC) and its collaborative drone. The authors of
[Rim+] justify the choice of using MBSE because it al-
lows to understand the general behavior of a complex
system. According to [PF13], MBSE is comonly used
in various industries such as aerospace and defence.

However some limitations are highlighted in the lit-
erature. In [CS21] the authors point out that MBSE
still suffers from a lack of acceptance in terms of sci-
entific and technical fields. Further, [Zha+21] high-
lights that it remains difficult to examine the design
of the system under development from the conceptual
design phase using domain-specific simulation. In ad-
dition models abstract the reality and address a simpli-
fied representation of the system. It becomes therefore
almost impossible to include all the characteristics of
the system into one model and a set of models may
be needed. Moreover, existing MBSE methodologies
are criticized for being too focused on high-level mod-
eling which leads to a lack of precision in the design
of the system [Zha+21]. On top of that, to achieve
their objectives, each domain involved into the system
development prefers to use its own methodology which
does not allow to ensure consistency between models
[Zha+21].

To ensure the consistency between domain-specific
models, the authors of [Zha+21] propose to build
an integrative system model which is linked to other
domain-specific models. In this way, it is possible to
describe the system with the accurate level expected.
With regard to the methodology proposed in this pa-
per, MBSE approach is also used to act as a guideline
for the development of the system to which the MDAO
will be integrated. The MBSE language used in this
paper as well as in [Zha+21] is the Systems Modeling
Language (SysML). SysML is a standard of the Object
Management Group (OMG). It is also a multi-purpose
language that allows to analyze, design, verify and val-
idate a wide range of systems. Another benefits of
using SysML is that it is not tool dependent and can
therefore be supported by a wide range of MBSE tools.

[Par+21] reports that MBSE tools are currently used
to describe the system baseline. [Par+21] mentioned
also that only few papers use MBSE tools to look for
design alternatives and to explore decision tradespace
which forced engineers to evaluate the different alterna-
tives at each life cycle stage. On the one hand, in which
systems performance models is concerned, [Par+21]
emphasizes the fact that MBSE tools would offer a
way to include varying fidelity models and multires-
olution models. On the other hand, in which definition
and description of systems alternatives are concerned,
[Par+21] points out that continuous design parame-
ters are required to identify tradespace and perform
Set-Based Design. Set-Based Design is a methodology

allowing to take into account numerous design options
and that eliminates poorer design choices throughout
the development of the system [Sha+21]. The idea de-
veloped in this paper is to integrate MDAO approach
into the MBSE one to precisely size a drone battery.
The MDAO offers the possibility to create low and high
fidelity models and to run different kind of analysis.
The MDAO approach can also perform design space
exploration, as well as trade-off analysis taking into
account several design parameters distributed into dif-
ferent disciplines. For this reason, coupling MBSE and
MDAO seems to be a good solution to reduce the lim-
itations of MBSE tools above-mentioned.

2.2 MDAO

Unlike MBSE, MDAO is not intended to describe the
system but rather to analyze a model in order to
demonstrate the properties of the system using dynam-
ical models based on mathematical theories [CS21].
MDAO is commonly used for designing engineering
systems, such as airplanes and drones for instance, be-
cause their design requires to involve several disciplines
[Joa12]. MDAO applies numerical optimization us-
ing algorithms that minimize or maximize an objective
function. The problem allowing to find the minimum or
maximum of the objective function can be constrained
or not [Joa12]. For instance, a structural design op-
timization may consist in varying several parameters
such as thickness in order to optimize the weight of the
piece while taking the stress constraints into account.

A MDAO model describes in details an aspect of
the system in a formal language. In [CS21], several
strengths of MDAO are identified. Firstly, MDAO
uses high computing performance for simulating and
analyzing the models. But MDAO is also able to in-
tegrate high fidelity simulation tools, to deal with a
large number of design variables and constraints, to
have a wide range of efficient optimizers, and finally,
to take into account model uncertainties [CS21]. Since
its emergence, MDAO has demonstrated its effective-
ness. For instance, MDAO can be used to design air-
craft with minimum environment impact [Joa12], to
design a CubeSat, and to achieve structural topology
optimization [Gra+19].

OpenMDAO This paper presents and uses MDAO
models built with OpenMDAO. OpenMDAO is an
open-source framework that aims to solve design prob-
lems involving coupled numerical models [Gra+19].
OpenMDAO simulates complex systems such as satel-
lites, drones, and aircrafts taking into account the in-
teractions between all disciplines involved in the prob-
lem. Further, design variables of the problem are opti-
mized simultaneously by paying attention to the inter-
disciplinary coupling. Several trade-offs are performed
while running the analysis.

XDSM One difficulty in using MDAO to solve a
problem is to choose the suitable architecture, that is
to say, the strategy for organizing the analysis in order

2

to achieve an optimal design. [LM12] identified a lack
of standard representation with respect to multidisci-
plinary design and optimization architectures. The so-
lution proposed in [LM12] is to create a diagram offer-
ing a visual representation of the MDO architecture
based on a common set of mathematical notations.
This diagram is called an extended design structure
matrix (XDSM) and its strength is to enhance the links
between the elements of the diagram and the underly-
ing mathematics.

WhatsOpt In this paper, we use the application
WhatsOpt [LDL19] developed by French laboratory
ONERA to create the XDSM of the MDAO models
built. Its environment facilitates collaborative work
providing a shared vision of the model under construc-
tion. In addition, WhatsOpt interfaces tools to con-
duct studies and generates skeleton code to facilitate
analysis implementation [LDL19].

2.3 Why coupling MBSE with MDAO?

According to [CS21] MDAO model is restricted to a
single aspect of the system. That is to say, all the
components contained in the system are not identified
by MDAO as well as their interconnection in terms of
functions and data flow. Therefore, it is interesting
to associate MDAO with MBSE given that designing
system’s models is a strength of MBSE. Moreover, it
takes time to engineers to write and validate MDAO
models because of the formal languages that support
MDAO, whereas all these information are available into
MBSE description. Conversely, the MBSE sometimes
lacks precision in terms of analytical values. This is the
reason why, this paper proposes coupling MBSE and
MDAO in order to compensate the lack of one with the
assets of the other. The following section of this pa-
per focuses on the desire to improve requirements. To
do so, we propose to start writing requirements with
data provided by the stakeholders and the limitations
of current technologies for sizing batteries. Then, to
use this first set of data as input parameters of MDAO
models. At the end of the MDAO analysis we expect
to be able to improve several requirements thanks to
MDAO results. Using more precise requirements from
the conceptual phase will allow one to design the sys-
tem in a safer and faster way since the design space to
explore will already be reduced.

2.4 MBSE-MDAO coupling proposal

Figure 1 illustrates the main points covered by the
MBSE-MDAO coupling method proposed in this pa-
per. The coupling is split up into three distinct
branches: Approach, Type and Tool. The Approach
branch provides the two approaches concerned by the
coupling and conveys the idea that MDAO results are
used to populate MBSE description. The relation
”Triggers” shows that it is the MBSE that initiate the
request of using MDAO. Thanks to the coupling with
MDAO, data contained in the MBSE description, and

more precisely into the SysML diagrams modelling the
system under development, are more accurate. The
green arrow illustrates that point through the con-
nection named ”Refines” which associates MDAO to
MBSE. The second branch entitled Type expresses that
the coupling occurs at two different level: firstly there
is a methodological coupling and secondly, there is a
language coupling. A future goal of the coupling is to
automate the communication and the data transmis-
sion between the two approaches. Finally, the third
branch presents the main tools used to realize the cou-
pling describe in this paper.

Figure 1: MBSE - MDAO coupling mind map

3 Related work

As mentioned in section 1, it is sometimes required to
complete the MBSE approach by another one such as
MDAO [CN21]. Or, by another tool, such as Mat-
lab/Simulink (for instance, [Zha+21] which enables
simulation of models developed through an MBSE ap-
proach [ZMT18]). According to [Nik+16], simulation
is one of the preferred method to explore the perfor-
mance of SysML. In the literature [Nik+15], several ap-
proaches aim to use simulation results to verify SysML
models, that is to say, to ensure that requirements spec-
ified are satisfied by the system. Simulations are used
to make trade-off analysis and take design decision.

In order to optimize the development of drones, it
is indeed required to make decisions from the concep-
tual design phases. Modeling and simulations can help
designers in making trade-off to select the most ap-
propriate design solutions before building the drones
[ZMT18]. According to [ZMT18] modeling and sim-
ulation are two different things: modeling helps un-
derstanding phenomena whereas simulation allows one
to experience a model in different environments. One
of the advantages of simulation is to better under-
stand the behavior of a system simulating its associated
model in different situations. In this paper, the SysML
language is selected as the main modeling language.
Simulating SysML models is a major step to validate
models in terms of performance. Numerous researches
are currently ongoing on the subject of generating
simulation code from SysML models. For instance,
[Nik+15] presents several approaches for automating

3

SysML models simulation process. The general pro-
cess consists in exporting SysML models in XMI format
and to transform them into another model readable by
the simulation platform. Additional information such
as constraints are transmitted to the simulation plat-
form through profiles introduced in the SysML model.
Thanks to the variety of diagrams offered by SysML,
for instance use case diagrams and block definition di-
agrams, structure and behavior of the system can be
defined. However, the behavior of the system is still
described directly into the simulation platform using
their libraries. The solution proposed by [Nik+15] to
carry out the transformation from SysML models to
simulation models is to define a meta-model describing
simulation entities. Model transformation languages
such as ATL and QVT are presented as good candi-
dates to perform SysML to simulation models trans-
formation.

In [Ker+13] the authors agree with the idea to de-
velop models in SysML and to simulate these models
with domain-specific tools. The approach developed
in [Ker+13] consists in creating an integrated SysML
model containing relevant data. From this integrated
model, it is proposed to generate domain specific mod-
els. In this way, all domain-specific models are not
developed from scratch and they depend on the same
model (the integrated one). Such a method contributes
to achieve consistency between all models. The low
cost required to implement such a method, and the ease
to set up simulation and test that allow one to obtain
quick results, are its major advantages [Ker+13]. In
terms of coupling, the SysML physical architecture of
the system is directly simulated in tools such as Mod-
elica where a code is generated from the logical ar-
chitecture and tested on a real Programmable Logic
Controller (PLC) [Ker+13].

The approach proposed in this paper is different from
the ones presented above. Even if any model transfor-
mation is performed in the method proposed in this
paper, two different approaches working on different
tools are coupled. To be efficient, the coupling between
MBSE and MDAO requires to set up communication
between both of them. Using XML to exchange the
data contained into SysML diagrams as it is done in
[Nik+16] can be a solution for the MBSE-MDAO in-
formation sharing.

The objective of our work is, in the first instance, to
refine the requirements in order to give as much details
as possible about the expected features of the system.
Writing good requirements is a crucial step of the sys-
tems engineering approach, it allows the definition of
the system under development [BCN21].

The project Agile 4.0 also addresses MBSE-MDAO
coupling and considers it as an enabler to accelerate
the development of innovative products. The authors
of [CN21] identified in the literature that deploying
an MDAO collaborative design process could help in
reducing the system development time [CN21]. The
methodology proposed in [CN21] covers the entire life
cycle of the system, starting from the stakeholders
identification to the validation process as it is done

in a systems engineering approach. The conceptual
framework in [CN21] use systems engineering for up-
stream architecting phases such as system identifica-
tion and system specification whereas they use MDAO
processes for downstream product design phases. In
our work, we propose to initiate the coupling between
MBSE and MDAO from the requirement writing in or-
der to add as details and accurate values characterizing
the system as early as possible in the life cycle.

To write good requirements, that is to say re-
quirements that are complete, consistent, understand-
able, unambiguous and traceable, [BCN21] proposes to
judge their quality using measurable indicators. The
authors of [BCN21] further present several viewpoints
as modeling guidelines with stakeholders, needs, and
requirements in mind. As far as requirements writing
is concerned, 5 fields to be filled in are expected : Text,
ID, Type, Author, and Version. The Text field is sup-
posed to be filled in by following a requirement pattern
corresponding to a standard sentence, according to the
type of requirement to be defined. For example perfor-
mance requirement, design constraints requirement or
even environmental requirements.

Finally, certification of the drone developed is also
part of the research spectrum of the Agile 4.0 project.
A certification-driven process is presented in [Tor+21].
Since drones are embedding an ever increasing number
of functionalities and become more complex, integrat-
ing the issue of certification as early as possible in the
development of such system will facilitate its final cer-
tification.

4 Contributions

The work presented in this paper aims to size a drone
battery in order to complete a given mission. To do
this, an MBSE model and an MDAO analysis are done.
The expected result is to have precise value of drone
and battery characteristics that are required to go fur-
ther in the design of both of them. Obtaining reliable
values from the conceptual design of the system is an
asset to ensure a good development of the battery and
it reduces the design space to explore from the begin-
ning of the project.

4.1 Process proposed

The process proposed in this paper is made up of 5
steps, as depicted by Figure 2.

The first step consists in writing requirements in
a SysML requirement diagram using existing SysML
stereotypes and the 3 additional stereotypes proposed
in this paper (Figure 3). In this step the scalar that
needs to be sized with the MDAO is identified with the
Boolean identifier named MDAOobjectiveFunction.
If the Boolean is true, the variable corresponds to the
objective function. During the second step, the MDAO
model that will optimize the objective function is built:
this allows one to identify the design variables and
parameters required to complete and run the MDAO
model. The third step corresponds to the search for

4

Figure 2: Requirement improvement process

these variables values in the requirements diagram us-
ing the stereotypes created in this paper (Figure 3).
Then the input values are exchanged from the require-
ment diagram to the MDAO model. Finally, after run-
ning the MDAO analysis and optimization, outputs are
added to the requirements diagram, which allows one
to update it and improve its accuracy. An example is
run in section 5.

4.2 MBSE modeling

To create a strong coupling between MBSE and
MDAO, several changes are proposed and presented
in the remainder of this paper. First, to high-
light the new links between MDAO and MBSE mod-
els, new stereotypes were created in the Papyrus
tool [DLG09]: MDAOproperties, MDAOinput, and
MDAOoutput Figure 3.

Figure 3: New stereotypes proposed for the require-
ment diagram

MDAOproperties contains all information related to
the MDAO model definition used to improve asso-
ciated requirements. Requirements with the stereo-
type ≪MDAOproperties≫ contains for example the
solver used for the optimization in the Optimizer at-
tribute, the number of disciplines that are part of
the MDAO model, and the fidelity of the model
in use. The Boolean MDAOused indicates if the

MDAO described in the requirement with the stereo-
type ≪MDAOproperties≫ is used to improve another
requirement with another stereotype or not.
MDAOinput contains data that can be used as input

values by the MDAO model. These data are classified
into 3 categories: ”design variable”, ”parameter”, and
”objective function”. The objective function is char-
acterized by a true value of the Boolean MDAOobjec-
tiveFunction. The difference between design variables
and parameters is that a value of a design variable can
be modified during the MDAO optimization process
when parameters remain fixed values. The Boolean
MDAOvarType returns the type of the variable. If the
Boolean MDAOvarType is true, the variable is a design
parameter; otherwise, it is a parameter. MDAOvari-
able indicates the name of the corresponding variable
used in the MDAO model.
MDAOoutput allows one to integrate the outputs of

the MDAO into the SysML requirement diagram. For
this reason two relations are created: MDAOupdate
and MDAOaddition. MDAOupdate represents the link
between the original requirement and the requirement
containing the variable value obtained with the MDAO.
MDAOaddition represents the link between a new re-
quirement given by the MDAO optimization and a re-
quirement already present in the initial requirement
diagram.

Several attributes created in this paper mean the
same thing in different stereotypes. They are defined
as follows. ’id data’ represents the identifier of the re-
quirement which contained a data used or obtained by
the MDAO. ’id analysis’ represents the MDAO solver
that modifies or uses the value of the considered re-
quirement. ’version’ indicates the version of the re-
quirement. If the requirement is modified, the version
number will be incremented. ’type’ indicates if the
requirement is functional or non-functional. Finally,
’text’ is a text field that supports controlled natural
language (not addressed in this paper) and defines the
variable provided into the requirement.

The 3 stereotypes ≪MDAOproperties≫,
≪MDAOinput≫ and ≪MDAOoutput≫ cover
the needs of the drone battery sizing developed in
section 5. Future work will allow one to complete and
generalize them so that they can be used for other
applications than battery sizing.

4.3 MDAO modeling

At this point, requirements are considered to be writ-
ten, but they may not be accurate enough to restrict
the possibilities of design of the future drone battery.
For instance, this applies to the requirement named
MaxWeight presented in the example section 5.

Another concern is to ensure that the drone will have
enough autonomy to complete its given mission. For
this reason, an MDAO model is built and run. It aims
to help improving part of the requirements written in a
SysML requirements diagram, and to verify if the drone
is able to complete its mission with a battery developed
that meets these requirements. The objective function

5

of the MDAO model used in this paper is the state of
charge of the battery, deduced from the Bréguet range
equation (1) for fully-electric UAV that is optimized by
the MDAO.

Relec =
cb
g

CL

CD

Wbatt

WTO
ηESCηmηp (1)

Where :

• cb is the battery specific energy

• g is the gravitational constant

•
CL

CD
is the lift to drag ratio

• Wbatt, WTO are the drone battery weight and the
takeoff weight

• ηESC, ηm, ηp are the Electronic Speed Controller
(ESC), motor and propulsive efficiency

The MDAO is used to find a trade-off between all
design variables of the problem that provides the max-
imum range of the drone, which is obtained as an out-
put of the optimization.

In this paper, Bayesian optimization [Moc75] is per-
formed and, the objective function is approximated by
a Gaussian Process [Wil+20]. This approach suits to
find a global optimum of an objective function ex-
pensive to evaluate [Fra18]. The optimizer used is
named Super Efficient Global Optimization with Mix-
ture Of Experts (SEGOMOE) [Pri+20]. SEGOMOE
optimizer is a good candidate to solve global optimiza-
tion problems subject to nonlinear constraints and in-
volving numerous design variables [Bar+19].

The MDAO model is presented in Figure 4. The
technical vocabulary defining a wing and used in the
MDAO model is presented in Figure 5 and Figure 6.

The MDAO model is made up of seven disciplines.

• Atmos, that takes as inputs parameters the flight
altitude of the drone and the Mach number. It
uses these two parameters to compute several pa-
rameters such as temperature, speed of sound, and
computes and returns Reynolds number, air den-
sity and True Air Speed (TAS) as outputs param-
eters. These values are available for the other dis-
ciplines and thus used in other computations.

• Geometry, this discipline creates the mesh of the
wing and the tail of the drone. It takes as inputs
data the root chord, the span and the twist of the
wing, respectively the tail of the drone. This mesh
is required for others disciplines such as Aerody-
namics and Structure for instance.

• W0, this discipline adds the mass of the battery
with the mass of the fuselage and of the payload.
The output corresponding to the mass of the drone
without wing and tail is required in the discipline
Structure to determine the mass of the two entities
wing and tail.

• AeroStructure: this fourth block corresponds to
a second MDAO model presented in Figure 7. It
is made up of three disciplines (Structure, Aero-
dynamics, and LoadsTransfer), and another block
named DispTransferGroup.

– Structure: discipline that takes as input the
dihedral, the sweep, the twist, the taper ra-
tio, the mesh and the thickness of the wing,
respectively the tail of the drone, and W0.
It outputs some parameters such as the dis-
placement of the wing and the tail, the mass
of the wing and the tail, and a new mesh
taking into account the real shape of the wing
and the tail (dihedral, twist, sweep...). It also
verifies if the wing, respectively, the tail re-
sist the forces exerted when the drone makes
a turn.

– DispTransferGroup: it is a third MDAO
model shown in Figure 8 and made up of two
disciplines: ComputeTransformationMatrix
and DisplacementTransfer. ComputeTrans-
formationMatrix takes as inputs the displace-
ment of the wing and the tail from the disci-
pline Structure. With this, it builds a matrix
used by the discipline DisplacementTransfer
to define the deformed mesh of wing and tail
of the drone.

– Aerodynamics: this discipline computes lift
and drag cruise coefficients as well as forces
applied on the wing and the tail. It uses
variables previously computed by other disci-
plines like the Reynolds number, the air den-
sity, the TAS, the mesh and the deformed
mesh of the wing and the tail. But also de-
sign variable found in the requirement dia-
gram like the dihedral (wing and tail), the
sweep (wing and tail), the taper ratio (wing
and tail), the twist (wing and tail), the angle
of attack (AOA) and the Mach.

– LoadsTransfer: this discipline takes as input
only variable defined by the other disciplines
of the MDAO model. The deformed mesh of
the wing and tail are transmitted by the dis-
cipline DisplacementTransfer, whereas forces
applied on the tail and the wing come from
the discipline Aerodynamics. The outputs of
LoadsTransfer are the loads of the wing and
the tail.

Once the analysis of the AeroStructure MDAO
model is completed, outputs values are sent to the
first MDAO model Figure 4 and used for the com-
putation of the state of charge of the drone battery.

• Masses, takes as inputs the output of W0 and the
mass of the wing and tail computed by the disci-
pline Structure to determine the Take-Off Gross
Weight (TOGW) of the drone.

• BreguetElec, contains the equation (1) to opti-
mize. It takes as input parameters such as the

6

Figure 4: XDSM maximizing the drone range.

Figure 5: Technical vocabulary of a wing.

Figure 6: Technical vocabulary of a NACA profile.

Figure 7: AeroStructure XDSM

Figure 8: DispTransferGroup XDSM.

mass of the battery, the battery specific energy
and the efficiency of the ESC, of the motor and of
the propeller. It also uses lift and drag cruise co-
efficients obtained as output variables of the Aero-
dynamics discipline, and the TOGW computed by
the discipline Masses. This discipline returns as
output value the maximum range that the drone
can travel.

• Functions, which is the objective function. It pro-
vides the optimized state of charge of the drone
battery by taking as input variable the maximum
range computed by BreguetElec and the target
range (corresponding variable: target range) to
travel.

5 Case study

5.1 Mission Description

The mission considered in this paper is a high-voltage
power line surveillance mission executed by a drone. In
this mission, the drone should fly over a high-voltage
power line recording data using embedded sensors.

Traditionally, inspection of high-voltage power lines
is achieved by Humans or using an helicopter [Liu+19].
Dangers for human beings along with inspection costs

7

lead to investigate new inspection solutions. Drones
have many advantages in terms of low cost, and
easier access to areas that remain difficult for Hu-
mans or helicopters. For safety reasons, high-voltage
power lines are often located far from housing and
crowded areas. They can be located in mountains or in
forests for example, which increases difficulty for tech-
nicians [Liu+19].

A high-voltage power line mission may present differ-
ent objectives. The advantage of using a drone for exe-
cuting such a mission is that a drone can be customized
depending on the tasks it will have to perform. For in-
stance, a drone can evaluate the state of the wires using
cameras, make repairs on the wires with a robotic arm,
and acquire electrical measurements from wires (for in-
stance, the temperature and the value of the current).
Drones need to be designed for the equipment they
carry, and according to the parameters related to their
mission. For instance, one needs to maintain a min-
imum distance from the power line, and to adapt to
weather conditions and relief.

In the power line surveillance mission chosen in this
paper, the main criterion to be taken into account is
the distance to travel. The drone should take-off, in-
spect the high-voltage power line, return to its starting
point and land. In this paper a fixed wing drone is
preferred to a multirotor one because of the former’s
greater flight autonomy.

In addition to having an impact on the design of the
entire drone, the mission objectives, the onboard and
the operational environments have an impact on the
drone’s battery. At the moment, the mission achieve-
ment depends on the flight autonomy, and thus, on the
battery performances. It should be noted that develop-
ing models for battery discharge is a challenge in many
ongoing researches [Cha+16].

5.2 Drone battery

Lithium polymer (LiPo) batteries are commonly used
to power drones since they present several advantages.
For instance, they provide from ten to thirty times the
theoretical energy density supplied by lead batteries.
Further, they are lighter than Nickel-Cadmium batter-
ies. Other interesting characteristics that justify their
use in drones include the low cost, the durability, and
the high charge and discharge rates [Cha+16].

In [Cha+16] the idea of categorizing drones and cre-
ating a large energy consumption model for each class
created is introduced. The objective of these models
is to estimate the energy consumption of the battery,
once the drone is associated to the mission it has to
execute. This way, the mission can be better planned
before it is executed. The objective of this paper is sim-
ilar, that is to say, to find a way to predict the battery
discharge based on the mission being performed. The
difference in this paper is that a method coupling the
MBSE and MDAO approaches is proposed and imple-
mented to predict the battery discharge. This coupling
method is detailed in section 4.

5.3 Drone battery modeling

According to the requirement TargetRange (Figure 9)
the length of the high voltage power line is 20000 m
that corresponds to the value called target range in
the MDAO model. The target value expected as an
input value in the MDAO model is provided by the
excerpt of the SysML requirement diagram Figure 9.
The remaining state of charge of the battery at the
end of the mission is computed with this target range
value and other design parameters of the drone and
the battery. In the MDAO model used in this paper,
the problem is constrained by four parameters that are
the lift coefficient of the drone, the wing and the tail
failure, and the TOGW. Considering the lift coefficient
as a constraint allows one to ensure that the drone is
able to fly. Sizing the drone thinking about wing fail-
ure and tail failure parameters ensures that neither the
wing nor the tail will break during the flight. Finally,
the maximum weight of the drone authorized is 8 Kgs
(requirement MaxWeight Figure 9). For this reason
the parameter max mass is also used to constrain the
problem Figure 10.

The MDAO model built in this paper takes 19 in-
puts parameters and design variable, as described in
section 4. After 250 optimization iterations it returns
31 variables as output, as shown on Figure 11, Fig-
ure 13, and Figure 12.

The best result obtained after 250 iterations is the
one presented in Figure 12 that corresponds to a drone
of 7.87 Kgs (TOGW).

The discipline breguet elec shows that this drone is
able to travel 109,442 m thanks to its battery, Fig-
ure 12. Knowing that the high voltage power line
surveillance mission required to fly 20,000 m, it is pos-
sible to ensure that the drone is able to complete the
mission described at the beginning of section 5. After
executing this surveillance mission, the discipline func-
tions computes the remaining SOC of the drone that
is of 81,7% Figure 12.

In view of the results obtained, particularly in terms
of remaining autonomy, it is legitimate to think that
the drone is oversized. However this gives us the pos-
sibility to rethink and reorganize the mission. For ex-
ample, it is possible to embed more energy-consuming
sensors into the drone that would allow to better in-
spect the high voltage power line. Another option is
to extend the distance of high voltage power line to
monitor during the surveillance mission. For instance,
it could be interesting to inspect a nearby high voltage
power line the same day. However, this drone won’t be
sufficient to inspect the longest high voltage power line
in the world which measures 1700 Km.

In addition, the objective of this example was a proof
of concept showing the feasibility of the coupling mech-
anism proposed in this paper. For this reason, not all
variables have been optimized. In particular, the bat-
tery mass has been fixed and was not part of the op-
timized variables. In future works, more variables will
be optimized, including the mass of the battery which
is a major point in the dimensioning of many systems.

8

Figure 9: Excerpt of the initial requirements diagram.

Figure 10: Constraints of the MDAO problem.

Figure 11: Output variables of the disciplines atmos,
geometry, and w0.

Figure 12: Output variables of the disciplines masses,
breguet elec, and functions.

The variables that characterize the drone are set in
the block AeroStructure Figure 4 by the disciplines
Structure, ComputeTransformationMatrix, Displace-
mentTransfer, Aerodynamics, and LoadsTransfer. The
results are presented in Figure 13.

5.4 Results: requirement improvement

Finally, the analytical values obtained with the MDAO
analysis (Figures 11, 13, 12) are used to update the ini-
tial requirements diagram Figure 9. The new stereo-
types proposed in section 4 as well as the relations be-
tween requirements are applied in Figure 14, the re-

Figure 13: Output variables of the blocks AeroStruc-
ture and DispTransferGroup.

quirement diagram obtained after inserting MDAO re-
sults inside.

The updated requirement diagram, more accurate
than Figure 9, allows one to go to the next step of the
drone battery design with a stronger background than
if the design method had not used MDAO model.

6 Conclusions

From some years now, drones are even more present
in the sky and execute a wide range of missions to
ease Humans’ work. There exists different kinds of
drones. Some of them are employed to travel a long dis-
tance whereas others are smaller than a human hand

9

Figure 14: Updated excerpt of the requirement diagram.

[Gro+21]. The design of each drone depends on the
mission it will have to execute. MBSE allows one to
describe the system from at least a structural and be-
havioral point of view [CS21] and to manage the re-
quirements that the system should satisfy. However
some limitations in the MBSE approach can be pointed
out [CS21].

This paper proposes to strengthen the MBSE ap-
proach by coupling it with the MDAO approach. The
latter advantageously provides precise analytical val-
ues after analyzing and optimizing a model composed
of several inter-related disciplines. In such a way,
MBSE takes advantage of the mathematical compu-
tations achieved by the MDAO. On the other hand,
the MDAO can use the MBSE as a data base to fill
in its models. For instance, requirement diagrams may
contain a lot of information expected as inputs by the
MDAO. In this paper, different stereotypes are pro-
posed to initiate the communication and exchange of
data between MBSE and MDAO approaches. The con-
sistency between all models (MBSE and MDAO) is pre-
served because the ones are modified according to the
others. In other words, they evolve in a synchronous
way.

Keeping in mind that the main objective of the

MBSE-MDAO coupling is to accelerate the develop-
ment process of the drone, future work will consist in
automating the exchange of data between the require-
ment diagram and the MDAO model. A common lan-
guage understandable by MBSE and MDAO will be
proposed.

Formalizing the drone mission will be an important
milestone of our project. More precise parameters re-
quired by the drone will be taken into account to satisfy
the mission. This will contribute to an improved design
of the drone.

Creating MDAO model patterns from the SysML re-
quirement diagram is also an avenue to explore.

Finally, the coupling of MBSE and MDAO ap-
proaches will be extended beyond the requirement step
in order to cover the entire lifecycle of the drone.

Acknowledgements

This work was supported by the Defense Innova-
tion Agency (AID) of the French Ministry of De-
fense (research project CONCORDE N° 2019 65
0090004707501).

We would like to thank M. Rémy Charayron for his
contribution to the realization of the MDAO models.

10

References

[Aı̈e+21] Ombeline Aı̈ello et al. “Populating MBSE
Models from MDAO Analysis”. In: 7th
IEEE International Symposium on Sys-
tems Engineering. virtual, Viena, Austria,
Sept. 2021.

[ASV20] Ludovic Apvrille, Pierre de Saqui-Sannes,
and Rob A. Vingerhoeds. “An Educational
Case Study of Using SysML and TTool
for Unmanned Aerial Vehicles Design”. In:
IEEE Journal on Miniaturization for Air
and Space Systems 1.2 (2020), p. 117..129.

[Bar+19] N. Bartoli et al. “Adaptive modeling
strategy for constrained global optimiza-
tion with application to aerodynamic wing
design”. en. In: Aerospace Science and
Technology 90 (July 2019), pp. 85–102.
issn: 12709638. doi: 10 . 1016 / j .

ast . 2019 . 03 . 041. url: https : / /

linkinghub . elsevier . com / retrieve /

pii / S1270963818306011 (visited on
12/22/2021).

[BCN21] Luca Boggero, Pier Davide Ciampa, and
Björn Nagel. “An MBSE Architectural
Framework for the Agile Definition of
System Stakeholders, Needs and Require-
ments”. en. In: AIAA AVIATION 2021
FORUM. VIRTUAL EVENT: American
Institute of Aeronautics and Astronautics,
Aug. 2021. isbn: 978-1-62410-610-1. doi:
10.2514/6.2021-3076. url: https://
arc.aiaa.org/doi/10.2514/6.2021-

3076 (visited on 11/02/2021).

[Cha+16] K. Chang et al. “LiPo battery energy
studies for improved flight performance
of unmanned aerial systems”. In: Vol-
ume 9837, Unmanned Systems Technology
XVIII. Ed. by Robert E. Karlsen et al.
Baltimore, Maryland, United States, May
2016, 98370W. doi: 10.1117/12.2223352.
(Visited on 09/01/2021).

[CS21] Jean-Charles Chaudemar and Pierre de
Saqui-Sannes. “MBSE and MDAO for
Early Validation of Design Decisions: a
Bibliography Survey”. In: 5th annual IEEE
International Systems Conference (SysCon
2021). 2021, pp. 1–8. doi: 10 . 1109 /

SysCon48628.2021.9447140.

[CN21] Pier Davide Ciampa and Björn Nagel.
“Accelerating the Development of Com-
plex Systems in Aeronautics via MBSE
and MDAO: a Roadmap to Agility”. en.
In: AIAA AVIATION 2021 FORUM. VIR-
TUAL EVENT: American Institute of
Aeronautics and Astronautics, Aug. 2021.
isbn: 978-1-62410-610-1. doi: 10.2514/6.
2021-3056. url: https://arc.aiaa.org/

doi/10.2514/6.2021- 3056 (visited on
11/02/2021).

[DLG09] Hubert Dubois, Fadoi Lakhal, and
Sébastien Gérard. “The Papyrus Tool
as an Eclipse UML2-modeling Environ-
ment for Requirements”. In: 2009 Second
International Workshop on Managing
Requirements Knowledge. Sept. 2009,
pp. 85–88. doi: 10.1109/MARK.2009.11.

[Fra18] Peter I. Frazier. “A Tutorial on Bayesian
Optimization”. In: arXiv:1807.02811 [cs,
math, stat] (July 2018). arXiv: 1807.02811.
url: http://arxiv.org/abs/1807.02811
(visited on 12/11/2021).

[Gra+19] Justin S. Gray et al. “OpenMDAO:
an open-source framework for multidis-
ciplinary design, analysis, and optimiza-
tion”. en. In: Structural and Multidisci-
plinary Optimization 59.4 (Apr. 2019),
pp. 1075–1104. issn: 1615-1488. doi: 10.
1007/s00158-019-02211-z. url: https:
//doi.org/10.1007/s00158-019-02211-

z (visited on 02/24/2021).

[Gro+21] Sébastien Grondel et al. “Towards the Use
of Flapping Wing Nano Aerial Vehicles”.
In: Modern Technologies Enabling Safe and
Secure UAV Operation in Urban Airspace
(2021). Publisher: IOS Press, pp. 52–63.
doi: 10.3233/NICSP210006. url: https:
//ebooks.iospress.nl/doi/10.3233/

NICSP210006 (visited on 01/03/2022).

[Joa12] Joaquim R. R. A. Martins. AE588 Multi-
disciplinary Design Optimization. en. Mar.
2012.

[Ker+13] K. Kernschmidt et al. “Possibilities and
challenges of an integrated development
using a combined SysML-model and cor-
responding domain specific models”. en.
In: IFAC Proceedings Volumes 46.9 (2013),
pp. 1465–1470. issn: 14746670. doi: 10.
3182/20130619-3-RU-3018.00391. url:
https : / / linkinghub . elsevier . com /

retrieve/pii/S1474667016344998 (vis-
ited on 12/03/2021).

[LDL19] Rémi Lafage, Sebastien Defoort, and
Thierry Lefebvre. “WhatsOpt: a web ap-
plication for multidisciplinary design anal-
ysis and optimization”. In: AIAA Aviation
2019 Forum. 2019, p. 2990. doi: 10.2514/
6.2019-2990. url: https://arc.aiaa.
org/doi/10.2514/6.2019-2990.

[LM12] Andrew Lambe and Joaquim Martins.
“Extensions to the Design Structure Ma-
trix for the Description of Multidisci-
plinary Design, Analysis, and Optimization
Processes”. In: Structural and Multidisci-
plinary Optimization (Aug. 2012). doi: 10.
1007/s00158-012-0763-y.

11

[Liu+19] Yao Liu et al. “Two-Layer Routing for
High-Voltage Powerline Inspection by Co-
operated Ground Vehicle and Drone”. en.
In: Energies 12.7 (Apr. 2019), p. 1385. issn:
1996-1073. doi: 10 . 3390 / en12071385.
url: https://www.mdpi.com/1996-1073/
12/7/1385 (visited on 09/01/2021).

[Moc75] J. Mockus. “On the Bayes Methods for
Seeking the Extremal Point”. en. In: IFAC
Proceedings Volumes 8.1 (Aug. 1975),
pp. 428–431. issn: 14746670. doi: 10 .

1016 / S1474 - 6670(17) 67769 - 3. url:
https : / / linkinghub . elsevier . com /

retrieve/pii/S1474667017677693 (vis-
ited on 12/22/2021).

[Nik+15] Mara Nikolaidou et al. “Simulating SysML
models: Overview and challenges”. In: 10th
System of Systems Engineering Conference
(SoSE). May 2015, pp. 328–333. doi: 10.
1109/SYSOSE.2015.7151961.

[Nik+16] Mara Nikolaidou et al. “Challenges in
SysML Model Simulation”. In: Advances in
Computer Science: an International Jour-
nal 5 (July 2016).

[Par+21] Gregory S. Parnell et al. “MBSE Enabled
Trade-Off Analyses”. en. In: INCOSE In-
ternational Symposium 31.1 (July 2021),
pp. 1406–1416. issn: 2334-5837, 2334-5837.
doi: 10.1002/j.2334-5837.2021.00909.
x. url: https://onlinelibrary.wiley.
com/doi/10.1002/j.2334-5837.2021.

00909.x (visited on 11/24/2021).

[PF13] Paul Pearce and Sanford Friedenthal. “A
Practical Approach for Modelling Subma-
rine Subsystem Architecture in SysML”.
en. In: Engineering Conference (2013),
p. 14.

[Pri+20] Remy Priem et al. “An efficient applica-
tion of Bayesian optimization to an indus-
trial MDO framework for aircraft design.”
en. In: AIAA AVIATION 2020 FORUM.
VIRTUAL EVENT: American Institute of
Aeronautics and Astronautics, June 2020.
isbn: 978-1-62410-598-2. doi: 10.2514/6.
2020-3152. url: https://arc.aiaa.org/
doi/10.2514/6.2020- 3152 (visited on
12/22/2021).

[Rim+] Jasmine Rimani et al. “MBSE AP-
PROACH APPLIED TO LUNAR SUR-
FACE EXPLORATION ELEMENTS”. en.
In: (), p. 4.

[Sha+21] Nicholas J. Shallcross et al. “A value of
information methodology for multiobjec-
tive decisions in quantitative set-based de-
sign”. en. In: Systems Engineering 24.6
(2021), pp. 409–424. issn: 1520-6858. doi:
10 . 1002 / sys . 21593. url: https : / /

onlinelibrary.wiley.com/doi/abs/10.

1002/sys.21593 (visited on 12/21/2021).

[Tor+21] Francesco Torrigiani et al. “An MBSE
Certification-Driven Design of a UAV
MALE Configuration in the AGILE 4.0 De-
sign Environment”. en. In: AIAA AVIA-
TION 2021 FORUM. VIRTUAL EVENT:
American Institute of Aeronautics and As-
tronautics, Aug. 2021. isbn: 978-1-62410-
610-1. doi: 10.2514/6.2021-3080. url:
https://arc.aiaa.org/doi/10.2514/6.

2021-3080 (visited on 11/02/2021).

[Wil+20] James Wilson et al. “Efficiently sam-
pling functions from Gaussian process
posteriors”. en. In: Proceedings of the
37th International Conference on Ma-
chine Learning. ISSN: 2640-3498. PMLR,
Nov. 2020, pp. 10292–10302. url: https:
/ / proceedings . mlr . press / v119 /

wilson20a.html (visited on 12/22/2021).

[ZMT18] Bernard Phillip Zeigler, Sarah Mittal, and
Mamadou Kaba Traore. “MBSE with/out
Simulation: State of the Art and Way For-
ward”. In: Systems 6.4 (2018).

[Zha+21] Yizhe Zhang et al. “Towards Holistic
System Models Including Domain-Specific
Simulation Models Based on SysML”. en.
In: Systems 9.4 (Dec. 2021). Number: 4
Publisher: Multidisciplinary Digital Pub-
lishing Institute, p. 76. doi: 10 . 3390 /

systems9040076. url: https : / / www .

mdpi.com/2079- 8954/9/4/76 (visited
on 12/05/2021).

12

Adaptation of an auto-generated code using a
model-based approach to verify functional safety in

real scenarios

Joelle Abou Faysal∗†, Nour Zalmai†, Ankica Barišić∗, Frederic Mallet ∗

∗Universite Cote d’Azur, Cnrs, Inria, I3S, Sophia Antipolis, France
†Renault Software Factory, Sophia Antipolis, France

Email: joelle.abou-faysal@etu.univ-cotedazur.fr, nour.zalmai@renault.com,

Ankica.Barisic@univ-cotedazur.fr, Frederic.Mallet@univ-cotedazur.fr

Abstract—The level of autonomy of our vehicles is rapidly
increasing. However, the acceptance of fully Autonomous Vehicles
(AVs) depends on the confidence in their ability to operate
safely in an uncontrolled environment. Hence, experts and non-
experts must have a rigorous method along with adequate tools
that can support their exigencies and safety specifications. This
paper presents a Domain-Specific Modeling Language (DSML)
for defining formal rules and generating flaw-less artefacts, which
enables the application of a Safety Analysis of Violations and
Inconsistencies (SAVI). The validity of the approach is illustrated
on a Renault use case implementation with formal safety goals
for autonomous vehicles. Our approach allows designers to detect
violation ambiguities and rule inconsistencies on real or simulated
scenarios.

Index Terms—Autonomous vehicles, safety rules, model-based
system engineering, formal methods, requirement engineering,
model development and verification, test and simulation.

Almost every mode of transportation is becoming au-

tonomous. The main difficult hurdle in the autonomous domain

is to guarantee that systems and software components are safe.

The automotive industry is investing a lot in deploying self-

driving systems in transportation technologies. It is necessary

to overcome these challenges before having big fleets of cars

on our roads. To avoid the rejection from the public opinion,

we need to get them involved in the adoption of safety deci-

sions. Operational safety defined in the ISO 26262 standard

[1] implies having a design for the safety component that deals

with all unsafe situations. The safety of intended functionality

(SOTIF) approach that extends ISO 26262, is defined in

ISOPAR 21448.1. SOTIF is concerned with failure causes

related to system performance limitations and predictable

misuse of the system. Performance limitations or insufficiency

of the implemented functions are due to technical limitations

such as sensor performance and noise. They can also be

due to limitations of the algorithm such as object detection

failures and limitations of actuator technology. Safety experts

started to use traditional manual approaches to enforce safety

decisions [2]. There is a threat of using these approaches, as

safety experts’ analyses depend on their experiences. Some-

times safety rules are not well formalized and usually are

not reusable in the future. In addition, classical exhaustive

verification techniques cannot guarantee that the system is safe

because of the high degree of uncertainty in the environment.

These test-based approaches also lead to a system complexity

where time and cost are not under control [3]. Using the

Model-Based System Engineering (MBSE) approach to assess

software safety, enables formalization, improves reuse of the

software, and helps to address safety analysis [4]. Model-

driven approaches also address the complexity with a model-

centric methodology that exploits domain models rather than

documents. The use of Domain-Specific Modeling Language

(DSML) enables fast prototyping of those behaviors by using a

metamodeling structure. [5]. Endowed with formal semantics

it brings a possibility to verify before generating a conforming

code.

In this paper, we propose a DSML to verify the safety of

Autonomous Vehicles (AVs). Monitors are generated to ensure

the functional safety. We apply the study to real scenarios

where we visualize many types of breaches.

This paper is organized as follows. Section I presents rel-

evant background information. Section II presents the DSML

proposed. We begin by detailing the language development

and presenting the user process where he is informed of the

procedure to deploy this language. The last part of this section

describes our Safety Analysis of Violations and Inconsisten-

cies (SAVI) on Renault use case. Finally, section III concludes

and discusses future directions.

I. BACKGROUND

The design of safety-critical systems involves people with

different expertise. All DSML users, whatever their domain

of expertise, must correctly evaluate the architecture and

understand the impact of their decisions on safety. On the

other hand, safety experts also need solutions to ensure a good

coverage in the considered safety scenarios and use cases.

Fortunately, DSML bridge the gap by translating artefacts from

one domain to another, and maintaining a full synchronization

with safety models [6]. The certification of the generation pro-

cess from models to deployed artefacts ensures that designers

can safely focus on models, less on implementation details,

and therefore reduce development time. Thus, it improves the

efficiency of the testing process, almost reduced to integration,

1

Fig. 1: Three-way views of the approach

as only safe artefacts are produced. Generated artefacts will

then be used by engineers to provide a verification failure

assessment.

Many approaches use the Model-Based System Engineering

(MBSE) approach to provide a verification failure assess-

ment. A safe autonomous vehicle trajectory DSML consists

of driving a vehicle through a set of known waypoints by

connecting motions in a sequence [6]. This work provides

always a safe trajectory and creates a motion navigator for the

autonomous car. Unfortunately, their domain is not applicable

if the trajectory is already planned. It also does not provide to

the user the alerts and the measures to take during an unsafe

scenario, and does not know the original cause of the violation.

An intelligible model is done to guarantee safety [7], but it is

parametric and depends on environmental conditions. Sensor

uncertainty dilemma has been handled using probabilistic

models with formal specifications [8]. A rule-based strategy

was also designed to evaluate sensors’ dependability [9]. Yet,

the main problem of autonomous driving systems perception is

still not explored. In this paper, we give the user the capability

to add parameters and specifications relying on the sensors

and the environment, to examine ambiguities. Furthermore, a

SceML study was carried out [10] to create a graphical model

to generate new scenarios or test existing ones using Machine

Learning. They facilitate the scenario creation process, but

not the formal description of safety rules. This is why we

apply formal semantics to this approach that allows specifying,

designing, and analyzing the system. Mathematical reasoning

can improve software reliability and dependability and is

essential when developing complex software systems.

We develop an abstract model expressive enough to support

safety analyses. We rely on the GeMoC framework [11]

as it integrates a set of languages and tools based on the

Eclipse Modeling Framework (EMF) to ease the definition

of new DSMLs with inherent concurrency [12]. Additional

components may be included to achieve artefact generation,

such as correct syntactical code generation [13].

II. A DOMAIN-SPECIFIC MODELING LANGUAGE FOR THE

SAFETY OF AUTONOMOUS VEHICLES

We have developed a Domain-Specific Modeling Language

(DSML) to verify the safety of Autonomous Vehicles (AVs).

To ensure the acceptability of this language, we need to

support the specification of the formal safety rules and the

environment. An automatic generation of a monitoring system

assists the interpreter by triggering alarms and possible

recover maneuvers. Those monitors are expected to enable

the user to detect inconsistencies and violations between

rules and priorities. After performing a Safety Analysis of

Violations and Inconsistencies (SAVI), the user can modify

the rules and repeat the same cycle to ensure the correctness

of the autonomous behavior.

We present three perspectives of our approach as seen in

Fig. 1. First, from a language engineer perspective in section

II-A, we describe necessary steps to implement the Exten-

sible Platform for Safety Analysis of Autonomous Vehicles

(EPSAAV) in [14]. EPSAAV is our DSML specified in our

previous study where we detailed our metamodel and concrete

syntax to auto-generate monitors. Second, we introduce gen-

2

eral steps for user perspective in section II-B. In this section,

we detail how the user should use our approach and what he

needs to do to perform a safety assessment. The third point of

view describes Renault’s use case in section II-C to test the

approach and validate a SAVI in section II-C4.

A. Language Development

One of the main objectives of our language is to empower

designers and experts with formal and yet practical solutions to

describe the environment, the expected behavior, and the safety

rules for the car under design. This is described in sections

II-A1 and II-A2.

The second objective is to support the automatic generation

of : (a) a human-readable document describing the rules

and libraries used, and (b) monitors that allow the user to

adapt output data of the simulator used with our safety rules.

The violation of safety rules triggers alarms through these

monitors. Section II-A3 details this part.

The third objective described in section II-A4, is to test, verify

and identify inconsistencies. Sometimes a rule can lead to

similar or contradictory behavior to another one. To avoid this,

an inconsistency study must be conducted.

We use the open-source Gemoc tool [11] as it covers all

aspects of a DSML development; from abstract and concrete

syntax definition to semantics and operations. Gemoc is easy

to integrate with all those technologies. It integrates solutions

to ease the code generation and includes solutions to describe

concurrent behaviors [12].

1) Abstract syntax: contains a graphical description of

the metamodel. We use Eclipse Modeling Framework (EMF)

technology. EMF is a framework and code generation facility

that defines the model and generates implementation classes.

EMF unifies the three important technologies: Java, XML, and

UML. EMF model is the common high-level representation

that glues them all together. The metamodel describes the

classes and the relationships of the environment. For example,

Fig.2 describes the abstract part of the rule-based planner,

where goals are specified and composed of conditions referred

to alerts and actions. The goals could be filtered either by

role or by expression. The RuleBasedPlanner refers to a

Scene that captures the perception capability of the vehicle.

Rules are combined with logical operators. It is also important

to prioritize rules in the case where several of them can

be simultaneously triggered with contradictory behavior (e.g.

break hard vs. maintain speed). The notion of SelectByGoal

allows executing goals either in parallel or sequentially. Once

the abstract syntax is specified, we build a concrete syntax.

2) Concrete syntax: defines the concrete terms that should

be used by designers and the grammatical rules to bind them.

We use Xtext technology to provide a concrete textual syntax

to our language. In our language, we create Xtext files for

some of the classes as defined in Fig.3. We get a separate

description for the scene, actions and alerts, parameters and

properties, and goals and priorities. The extensions defined for

each class serve to create new files and libraries.

3) Auto-generation of a human-readable document and

monitors: which enables safety engineers to easily integrate

them with the chosen simulator and adapt the auto-generated

code to check violations and consistencies described in section

II-A4. We use Xtend technology to give the operational

semantics and assign a behavior to each of the declarations

of our DSL. We generate a readable document that gave

the engineer the possibility to validate and communicate his

choice. Usually, this document is the main artefact used

by safety engineers. Here, the document can be generated

when the model is updated. We also generate code that eases

interfacing with the output of the simulator and checking the

violations. The code enables the user to analyze and identify

rule consistencies.

4) Establishing satisfiability to avoid inconsistencies:

using SAT Solver. SAT Solvers have been used in many

practical applications. We expect to enable safety engineers

to create a resilient and safe driver monitoring system

that checks safety rules defined previously and investigates

inconsistencies, possibly assigning priorities to sort them out.

The SAT problem is a decision problem, which, given a

propositional logic formula, determines whether there is an

assignment of the variables that makes the formula true [15].

This will test rule inconsistencies, and verify solutions for

all the rules. All logic operations for rules specification are

translated to specific forms of coding. The task comprises of

testing the rules with specific formulas by auto-generating

specific checks for each rule.

B. User Process

The user has three tasks to analyze and guarantee safety in

real or simulated scenarios, as seen in Fig. 4. First, he must

describe the environment (scene, parameters, and properties),

the behaviors (alarms and actions), and the security rules with

priorities. Fig.5 is an example of rules (also called goals) in-

troduced on the user interface. We define a RuleBasedPlanner

named rbp, referring to a scene defined in another file where

we introduce the capacity of ego’s perception using another

syntax. Two properties (prop1 and prop2) were previously

defined having different states in Fig.6. Libraries of actions and

alerts were also created. Conditions are put together through

logical expressions.

Safety engineers assign every goal to a type that is either

a priority or a constraint. If a goal has a priority on another,

the second one should not be executed if the first one is true.

If a goal has a goal type as a constraint, both are executed

in parallel. This priority-constraint categorization helps the

engineer choose which rule should be accomplished before

or at the same time as another one. It implies a hierarchy of

priorities between all the rules. In Fig.7, we show an example

of two contradictory actions triggered at the same time. Goal 1

consists of having three conditions : (1) following the PV, (2)

respecting speed threshold, and (3) respecting safety distance

of 2 s. The first goal leads to a light acceleration, contrary to

the second goal that generates emergency braking. It consists

3

Fig. 2: RuleBasedPlanner Abstract metamodel

Fig. 3: Concrete Xtext Files in our metamodel

Fig. 4: User process to use the approach

of respecting a Time To Collision (TTC) for every Vehicle

Road User (VRU), e.g. pedestrians. In this case, emergency

braking has a strong priority over light acceleration, and this

priority needs to be carefully defined within the priority-

constraint sorting.

When the environment definition is finalized, we execute

4

Fig. 5: Formal Rules using logical expressions described by

the user.

Fig. 6: Properties and states using formal syntax defined by

the user.

Fig. 7: Case where emergency braking should have a stronger

priority over light acceleration.

an automatic generation of monitors and a human-readable

document. The main interest of this framework is to give

the engineer the ability to define all the rules that he thinks

should be triggered. It also gives him the ability to track rule

modifications. In case of changes, the tool has the potential

to generate a new code according to the specified rules. It

is a generic tool for flexible rules that can be used not only

for safety domains but also for security and failure domains.

Depending on those rules, a specific code is then generated

related to those formal rules. The document legibly describes

the rules and libraries, so it helps to communicate the accuracy

and completeness of those rules. The monitors allow the user

to adapt perception data with safety rules and investigate rule

inconsistencies. For the generated Java code, we feed it to the

SAT Solver to test inconsistencies and modify safety rules.

For the code compatible with the simulator used, the user has

to take the generated monitors and plug them into real or

simulated scenarios such as Webots [16], Carla [17]. . .

Then, an adaptation of our input data with the output data

of the simulator is necessary to test, verify and identify rule

violations using formal languages. This part is further detailed

in our Renault use case in section II-C where we detect

ambiguities in rules that may lead to violations.

C. Renault Use Case

To apply operational safety on the trajectories of self-

driving cars, we will need the elementary data necessary for

the system, such as rules and libraries. We translate scenarios,

their risks and the measures to be taken, to formal rules

describing lateral and longitudinal control. The EPSAAV

tool facilitates this formalization process and improves

communication between the engineers. We proceed to an

auto-generation of a human-readable document and monitors,

that will be helpful to acheive a SAVI.

1) Formal Goals Description: we introduced five scenarios

in our use case as shown in Fig.10 that deal with risks of

no/insufficient or unexpected braking, no lateral correction,

and unexpected lane change. We take a scenario that describes

the case where the Ego vehicle (EV) is having a problem

detecting lines and/or Preceding Vehicle (PV) in Fig.8a. The

risk we have is a lateral collision with the Side Vehicle, or

Straddling Vehicle (SC). In case of a line or PV loss, the

system shall maintain the EV in the lane using the remaining

information. If the line disappears more than t6 seconds, the

system must trigger an Emergency Operation (EOP1). Fig.8b

formalizes this scenario by creating a goal that contains one

condition to avoid the risks and to trigger behaviors. Goals

can have multiple conditions. For each condition (WHEN),

there is logical expressivity that constitutes the syntax.

2) Generation of documents and monitors: using the

EPSAAV tool, we generate a readable document that gave

the engineer the possibility to validate and communicate his

choice. We also generate (a) C code which eases interfacing

with the output of the simulator and checks the violations,

and (b) Java code which enables the user to analyze and study

rules incoherences. The C code is compatible with Renault’s

simulator called ”FusionRunner”. We chose ”FusionRunner”

among all simulators for many reasons: (1) it executes

perception’s algorithm and sensors fusion data of Renault, (2)

it runs driving data on open roads and many other real-life or

simulated scenarios, and (3) it provides practical information

(such as data sensor, data fusion, TTC, PT, Autonomous

Emergency Braking (AEB), Adaptive Cruise Control (ACC),

...). We integrate this code into the perception algorithm and

then adapt the safety functions by feeding the simulator’s

output to the input of the generated code.

The auto-generation consists of: (1) translating all the

environment defined to functions compatible with Renault’s

language, (2) filling the functions needed to test rules

according to defined thresholds, properties, and parameters

5

(a) Lateral control scenario: no lane/PV
detection case.

(b) rule specification formalized for this use-case scenario.

Fig. 8: Formalizing scenario to goal containing one condition and using logical expressiveness in case of a no lane/PV

detection scenario.

Fig. 9: Five formal rules introduced in our Renault Use Case

with parallel and sequential executions.

Fig. 10: Five scenarios violations introduced in Renault’s use

case.

given in the beginning, and (3) creating a function that treats

all goals and conditions in priority or parallel, depending

on the goal type. We took the C auto-generated code and

implemented it into the ”FusionRunner”.

3) Interfacing the auto-generated C code with Renault’s

simulator: Fig.11, Fig.12, and Fig.13 constitute the windows

output to better visualize violations defined in the rule-based

planner. In Fig.11, we can visualize a real-time video in the

Fusion Context View and the sketch of this video in the

Fusion Display. In Fig.12, and Fig.13, we can see all the

binary states’ properties, five goals with their conditions,

actions, and alerts triggered in the SAFETYCHECKER

window output. We store, at each slot, the parameters’ values

from fusion data. The windows output helps us inspect

Fig. 11: Fusion Control View and Fusion Display windows at

step 4217.

Fig. 12: SAFETYCHECKER Window for safety analysis of

violations that shows the parameters, the goals with the alerts

and actions triggered at step 4217.

violations and ambiguities in the goals declaration.

The results in the following section indicate that it is possible

to reuse the model defined to verify safety in the automotive

industry. It also shows the benefits and efficiency of using

our DSML. In addition, it makes safety exploration easier

for engineers, therefore improving the quality of their surveys.

4) Safety Analysis of Violations and Inconsistencies (SAVI):

an ambiguity is presented in a violation that occurred in Fig.12

6

Fig. 13: SAFETYCHECKER Window for safety analysis of

violations that shows the properties binary states at step 4217.

at step 4217. This violation is assigned to the goal2 cond1

presented in 8b. The EOP1 is triggered according to this

goal when the PV disappeared more than a threshold. This

is ambiguity because if we look at the Context View in Fig.11

at that step, we can see that there is no PV, and it is not logical

to trigger an EOP1.

We propose a modification for the safety rule to erase this

ambiguity by adding a condition on the stability for the line

detection as shown in Fig.14. To study rule inconsistencies,

Fig. 14: Modification in the rule expression to erase ambiguity.

the generated Java code fed to the SAT Solver will help us

verify all solutions for all the conditions and goals. This work

is still in process. By that, we will be achieving a SAVI.

III. CONCLUSION AND PERSPECTIVES

This paper introduces a methodological proposal for using

the MBSE approach in the automotive safety field. We de-

scribe the language development viewpoint where we talked

about the abstract and concrete parts, the auto-generation of

monitors and documents, and the SAT solver to study the

inconsistency. We detail the user process tasks. The user

has to specify requirements formally using EPSAAV to help

him generate what he needs for safety analysis. We also

show code generation that the user needs to link with the

simulator’s perception data. In our use case, we generated C

code and tested and visualized goals to demonstrate that this

approach is feasible. We show a goal’s ambiguity, and the

notifications triggered to the user. We propose a modification

to delete an uncertain violation. If we could find all violation

ambiguities and analyze inconsistencies, we can assure that

all specifications are realizable and complete. We can apply

this generic tool to test rules other than safety domains,

such as security or failure domains. Ethic people can apply

this framework to two different sets of rules. They can then

select what is the best set of generated monitors. For future

work, we will auto-generate java code for the SAT Solver.

The SAT problems will help check rule inconsistencies and

achieve SAVI analysis. We will also test rules on more real-

life scenarios and analyze their output on more use-cases.

REFERENCES

[1] M. A. Gosavi, B. B. Rhoades, and J. M. Conrad, “Application of
functional safety in autonomous vehicles using ISO 26262 standard:
A survey,” in SoutheastCon 2018. IEEE, 2018, pp. 1–6.

[2] C. Ackermann, J. Bechtloff, and R. Isermann, “Collision avoidance with
combined braking and steering,” in 6th International Munich Chassis

Symposium 2015. Springer, 2015, pp. 199–213.
[3] Y. Sirgabsou, C. Baron, C. Bonnard, L. PAHUN, L. Grenier, and

P. Esteban, “Investigating the use of a model-based approach to assess
automotive embedded software safety,” in 13th International Conference

on Modeling, Optimization and Simulation (MOSIM20), AGADIR,
Morocco, Nov. 2020. [Online]. Available: https://hal.laas.fr/hal-
02942695

[4] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
based approaches for verification of embedded control systems: An
overview of traditional and advanced modeling, testing, and verification
techniques,” IEEE Control Systems Magazine, vol. 36, no. 6, pp. 45–64,
2016.

[5] K. Falkner, V. Chiprianov, N. Falkner, C. Szabo, and G. Puddy, “A
model-driven engineering method for dre defense systems performance
analysis and prediction,” in Handbook of research on embedded systems

design. IGI Global, 2014, pp. 301–326.
[6] M. Bunting, Y. Zeleke, K. McKeever, and J. Sprinkle, “A safe au-

tonomous vehicle trajectory domain specific modeling language for non-
expert development,” in Proceedings of the International Workshop on

Domain-Specific Modeling, 2016, pp. 42–48.
[7] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model

of safe and scalable self-driving cars,” arXiv preprint arXiv:1708.06374,
2017.

[8] C. Tessier, C. Cariou, C. Debain, F. Chausse, R. Chapuis, and C. Rousset,
“A real-time, multi-sensor architecture for fusion of delayed obser-
vations: application to vehicle localization,” in 2006 IEEE Intelligent

Transportation Systems Conference. IEEE, 2006, pp. 1316–1321.
[9] M. Gao and M. Zhou, “Control strategy selection for autonomous vehi-

cles in a dynamic environment,” in 2005 IEEE International Conference

on Systems, Man and Cybernetics, vol. 2. IEEE, 2005, pp. 1651–1656.
[10] B. Schütt, T. Braun, S. Otten, and E. Sax, “Sceml: a graphical model-

ing framework for scenario-based testing of autonomous vehicles,” in
Proceedings of the 23rd ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems, 2020, pp. 114–120.
[11] B. Combemale, O. Barais, and A. Wortmann, “Language engineering

with the gemoc studio,” in 2017 IEEE International Conference on

Software Architecture Workshops (ICSAW). IEEE, 2017, pp. 189–191.
[12] B. Combemale, J. DeAntoni, M. V. Larsen, F. Mallet, O. Barais,

B. Baudry, and R. B. France, “Reifying concurrency for executable
metamodeling,” in Int. Conf. on Software Language Engineering, SLE,
ser. Lecture Notes in Computer Science, M. Erwig, R. F. Paige, and
E. V. Wyk, Eds., vol. 8225. Springer, 2013, pp. 365–384.

[13] S. Kelly and J.-P. Tolvanen, Domain-specific modeling: enabling full

code generation. John Wiley & Sons, 2008.
[14] J. Abou Faysal, N. Zalmai, A. Barisic, and F. Mallet, “Epsaav: An ex-

tensible platform for safety analysis of autonomous vehicles,” Advances

in Model and Data Engineering in the Digitalization Era (MEDI 2021

Workshops), 2021.

7

[15] Borealis AI. Tutorial 9: Sat solvers i: Introduc-
tion and applications. Accessed: 2021-12-19. [Online].
Available: https://www.borealisai.com/en/blog/tutorial-9-sat-solvers-i-
introduction-and-applications/

[16] Webots for automobiles. Webots user guide and ref-
erence manual. Accessed: 2020-06-05. [Online]. Available:
https://cyberbotics.com/doc/automobile/introduction

[17] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and V. Koltun,
“CARLA: an open urban driving simulator,” CoRR, vol. abs/1711.03938,
2017. [Online]. Available: http://arxiv.org/abs/1711.03938

8

Session We.1.C

HW Formal Verification

Wednesday 1st June

11:30

–

Room Pastel

53

54

Formal Processor Modeling for Analyzing
Safety and Security Properties

Benjamin Binder, Samira Ait Bensaid, Simon Tollec, Farhat Thabet, Mihail Asavoae and Mathieu Jan
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Abstract—The emergence of open hardware initiatives ex-
poses the exact behavior of hardware designs, which thus can
be analyzed and combined with application-level semantics to
formally verify complex safety and security properties. Formal
verification relies on appropriate abstract models to cope with
the omnipresent state-space explosion. In this paper, we compare
the different needs when designing abstract processor models for
the evaluation of timing predictability, a safety property, and
for security assessments when considering fault injections. We
also report how the process of building these abstract processor
models could be automated.

Index Terms—Formal Methods, Hardware Models, Safety and
Security Properties

I. INTRODUCTION

The design of complex computational systems, such as

Cyber-Physical Systems (CPSs) or the Internet of Things

(IoT), is facilitated by the emergence of open hardware initia-

tives [2]. Such initiatives propose software-like development

workflows, from complex high-level Hardware Description

Languages (HDLs) [6] down to circuits, while using so-

phisticated compilation chains. These approaches favor the

availability of hardware designs, which can thus be used

as (detailed) golden models, replacing the standard manual

reference where only certain design details are provided.

These CPSs and the IoT are often subjected to safety

and/or security requirements. Ensuring those requirements can

be done with various degrees of confidence, from informal

argumentation to formal verification of properties. When using

the latter approach, the formal verification of software and

hardware parts of a system is generally performed as sepa-

rate activities and focuses mostly on functional correctness.

For example, a binary representation of an application can

be executed with formal Instruction Set Architecture (ISA)

semantics [1], while hardware designs can be composed from

formally proved modules [14]. However, in the former there

is no hardware model while the latter ignores the software

level. The availability of hardware designs, combined with ISA

application representations, enables new possibilities in the

formal verification of safety and security properties at system

level, in particular by integrating non-functional characteristics

such as timing. We restrict the notion of hardware design to

that of processor design.

In this paper, we study how to design formal processor

models so as to prove safety and security properties, such as

timing predictability and assessments of Fault-Injection (FI).

We present several instances of a general workflow, shown

in Fig. 1, to address various needs as designing specialized

abstractions. Due to the availability of a processor design,

different abstract processor models can be derived while

analyzing its code, both data and control paths (i.e., model

generation in Fig. 1). In the case of security assessments under

FI, such an abstraction requires a high temporal and spatial

accuracy on certain parts of the design while non-important

aspects of the system can be removed. Both control and data

path are relevant, since security properties should follow how

instructions (i.e., control) are correctly (or not) executed on

the processor (i.e., data). In the case of timing predictability

evaluations, the datapath is abstracted to black-box, but cycle-

accurate, pipeline stages imposing timing constraints to the

instruction flow, except for the execute stage where in addition

HDL model

generation

control path

data path

control path

for fault injections

for predictability

formal

verif.

data path

binary

analysis properties

Abstract Architecture Model

satisfied

counter-example

ELF

Figure 1: General workflow for the verification of system-level safety and security properties.

the scheduling algorithm mapping instructions to functional

units is fully captured. The actual system executions capture

how a given binary code is executed on the processor design

and hence, we extract a binary representation (e.g., a control-

flow graph or explicit traces) to represent these sequences of

instructions (i.e., binary analysis in Fig. 1) in the formal veri-

fication step. For timing predictability, the captured instruction

semantics is limited to dependencies between instructions.

The remainder of this paper is organized as follows. Sec-

tion II describes related work on formal modeling of micro-

architectures. In Section III, we show how to design abstract

processor models to assess timing predictability and we apply

this approach over an out-of-order pipeline to detect timing

anomalies. In Section IV, we present how to design abstract

processor models to identify exploitable fault-injection points

and we illustrate this process over a RISC-V processor. In

Section V, we look how to automate the construction of for-

mal hardware models, using underlying hardware compilation

chains. Finally, Section VI concludes the paper.

II. RELATED WORK

The literature around modeling real-time systems often elab-

orates results using a pen and paper approach, without relying

on formal and executable models—necessary in the automatic

verification of properties. There are several exceptions, for

example, the framework PROSA [13], which focuses on the

correctness of schedulability analyses (and not microarchi-

tectural modeling). The SIC pipeline is accompanied with a

formal semantics based on a detailed transition system but that

is not intended to execute in a verification methodology [21].

Even when formal models are assumed for the automatic

verification, few modeling details are provided [18]. Model

checking, a popular formal verification technique, has been

used to estimate the worst-case execution time (WCET), how-

ever on in-order architectures [17], [35]. It has been used to

co-validate hardware-software designs wrt. timing properties

on a simple processor [3]. It has also permitted verifying

the absence of particular timing anomalies in predictable

pipelines [26] and studying their occurrences in an industrial

processor [9]. A similar approach to ours for verifying a

specific safety property by model checking has already been

proposed [5], [4]. In the present work, we nevertheless adopt a

more generic viewpoint, e.g., letting the number of resources

be provided as parameters. A similar architecture template (cf.

Fig. 2) is used in [33], however together with an analytical

approach.

Formally verifying FI-related security properties has been

the subject of several works, in general at the ISA level. The

modeling of the program execution has allowed to explore all

the possible effects that certain FIs, such as register corruption,

may have on program execution [10], [41], [19]. Nevertheless,

recent results [20], [30] have shown the interest of considering

the microarchitectural behavior to find FI points ignored by

a strictly ISA-based study. This also helps to limit spurious

vulnerabilities (i.e., false positives) that are not feasible in

practice. However, to the best of our knowledge, no work has

combined formal modeling of hardware and the verification

of FI-related security properties. In the scope of general

security properties, formally verifying hardware/software co-

designs has been the subject of numerous works, such as [38].

However, they mainly focus on functional properties, such as

the correctness of updating ISA-level states of processors [22],

viewed mainly through the register file within the pipeline, or

detecting bugs in specific hardware components synthesized on

FPGA [37]. Note that safety properties can also target func-

tional failures [16], which share similar modeling requirements

with our security-assessment approach.

Generating formal models from hardware designs is an

extensively studied problem [28], [25], [36], [32], [23]. While

these works address Verilog or VHDL languages, we consider

high-level design languages that pose different challenges

when generating abstract processor models specific to the tar-

geted properties. This is possible due to hardware compilation

frameworks that are currently developed (see [6], [43], [40] to

cite a few). Note that our contribution related to the automatic

generation of abstract processor models is agnostic to the

choice of a hardware compilation tool chain.

III. ABSTRACT PROCESSOR MODELS FOR TIMING

PREDICTABILITY

In this section, we target the verification of non-functional,

safety properties, namely relative to the processor timing

behavior. We first address the general modeling needs for tim-

ing predictability, then we exemplify this modeling approach

through an Out-of-Order (OoO) template, and finally we verify

a particular safety property on the OoO model.

A. Abstract Modeling for Timing Predictability

A suitable model necessarily integrates both hardware and

software features, whose combination characterizes the system

and in particular its non-functional timing characteristics. The

properties are not correlated to the functional complexity

of architectures, which materializes into the datapath. More

precisely, we do not need to consider the functional aspects

beyond their impact on the pipeline-level timing behavior.

Instead, we need to develop an abstract formal model of

the processor focusing on the instruction progress—the soft-

ware characteristics—through the successive pipeline stages of

the processor—the hardware characteristics. Finer models are

unnecessary since they describe changes in internal, hidden

states of the datapath, typically a matter of functional cor-

rectness. On the contrary, pipeline-level models are required

since pipeline stages are essential to the cycle-accurate timing

behavior, which enables to observe external events, e.g., the

full completion of an instruction.

Our abstraction thus needs to precisely delimit the pipeline

stages from the datapath of the hardware architecture, and to

extract the control signals that impact the timing behavior of

the control path according to the pipeline stalling logic. We

also need to map at any time instructions onto the identified

2

LD r1, 0(r2) ; A

ADD r3, r1, r4 ; B

ADD r5, r6, r7 ; C

LD r8, (0)r5 ; D

p
ro
gr
a
m IF ID

RSNFU
FUNFU

COM/

su
pe
rs
ca
l

/ /

In-order front-end OoO computation In-order back-end

ROB

/

Figure 2: Representative hardware template of an OoO pipeline based on Tomasulo’s algorithm. The pipeline has NFU functional

units and is able to fetch, decode and commit superscal instructions per cycle from a software specification (program) [8].

stages that process them, from the input program—this is

the combination of the hardware and software specifications.

Finally, our model also requires explicitly capturing the exe-

cution time, in view of verifying properties.

B. Application to an Out-of-Order Pipeline Template

Hereafter, we exemplify the main features of a suitable model

for the verification of timing-predictability properties, from a

simplified standard OoO-pipeline template, shown in Fig. 2.

We present an overview of this template designed for the de-

tection of timing anomalies [8]. We intend to provide formal-

modeling details below. This template consists of stages that

process instructions in the same order as specified in the

program (i.e., IF, ID and COM), namely the in-order front-

end and the in-order back-end, as well as of Functional

Units (FU) associated with Reservation Stations (RS) and a

Reorder-Buffer (ROB) in order to implement Tomasulo’s al-

gorithm [44] for OoO computation. Instructions are dispatched

to the ROB that keeps track of their status (pending/complet-

ed/committed) (), which is used to schedule instructions

to the FUs taking into account data dependencies and to

later commit instructions in-order. Results from the FUs are

bypassed to all RSs (), which essentially avoids waiting

for the ROB update and allows back-to-back executions.

We encode the template introduced above into a formal

specification (written in the TLA+ modeling and verification

language [29]). In our abstraction, pipeline stages do not have

side effects, such as a write to the memory or the register

file. We consider multi-cycle instructions that thus may cause

stalling. The pipeline timing behavior depends on the number

of units for each stage (cf. superscal and NFU in Fig. 2), on the

program dependencies that clearly restrict OoO computations,

and, when needed, on the mere information of the required

computation clock cycles.

1) Abstract Datapath and Computations: The specification

relies on hardware parameters, i.e., superscal and NFU, which

allow to represent a particular version of the pipeline template

by fixing its abstract datapath. We define a state variable

for each pipeline stage (IF , ID , RS , FU and COM),

which notably contains the instructions that are currently pro-

cessed. The specification also relies on a software-execution

parameter, i.e., program , which specifies the input instruction

sequence with increasing addresses1 associated with informa-

tion about the mapping onto the hardware architecture. This

information originates from the analysis of the concrete pro-

gram: each instruction embeds the set of admissible functional

units (as an abstraction of the functional instruction class), as

well as the set of possible latencies related to timing-variable

stages (as an abstraction of the intended computations). The

variables related to a timing-variable stage also contain the

current elapsed latency (i.e., a counter) and the total required

latency in the stage (assigned from the program input pa-

rameter). The memory is not explicitly modeled, but the IF

stage and the FUs instead feature a variable timing behavior,

since for instance they both may perform memory accesses

resulting either in an instruction/data-cache hit or miss. The

register file is not modeled either, but only the (Read-After-

Write) data dependencies (), which are explicitly encoded

in program . The resulting abstract specification allows for

all the behaviors, i.e., series of states, that are concretely

made possible by different initial hardware states (e.g., the

initial cache content), considering the execution of the input

instruction sequence on the target architecture. It remains to

actually make instruction classes progress through the pipeline,

i.e., to encode the control path from the established datapath

and the execution information.

2) Timing-Oriented Modeling of the Control Path: The tem-

plate specification is a transition system (TS) characterized by

an initial-state predicate and a next-state relation built from

actions, namely transition predicates relating the values of

variables in the current state (e.g., x) to their values in the

next state (x ′). We consider that the pipeline is initially empty

of any instruction (cf. the datapath state variables). Transitions

model the control path, which entails changes in the datapath

state. In order to get a cycle-accurate abstraction of the control

path, a transition models one clock cycle, where each stage

processing is modeled by an action involving a datapath

variable. The additional state variable currCycle is a counter

modeling the absolute time (currCycle ′ = currCycle + 1 as

long as the input sequence has not fully executed). Finally, the

prog state variable is a record monitoring the execution, with a

field (rest) containing the remaining instructions (not fetched

yet) from program and a field (exec) modeling the ROB.

Each of these fields are sequences of instructions, where the

1We exclude branch instructions, thus focusing on one program path.

3

instructions are nested records, e.g., with Booleans completed ,

committed for the instruction status in the ROB.

We now illustrate how the abstract datapath state is used

in order to accurately model the control path, by focusing

on one of the most critical, OoO-specific elements of the

control path. Modeling the scheduling of instructions to FUs

requires selecting the next pending instruction. It relies on the

instruction status in the ROB.

a) Prerequisite Operator: Let us define an operator Exec used

in order to specify the next-state relation. It returns the set of

the ROB indexes of the instructions that will have already

completed in the next cycle.

NxtFUBusy(i)
∆

= FU [i].currLat < FU [i].baseLat

Exec
∆

= {i ∈ 1 . . Len(prog .exec) :

∨ prog .exec[i].completed

∨ ∃ j ∈ 1 . . NFU : prog .exec[i].PC = FU [j].PC

∧ ¬NxtFUBusy(j)}
The operator Exec returns the set of indexes in the range of

the current ROB (first line of the definition) s.t. the relevant

Boolean field (completed) of the corresponding instructions

(exec[i]) is set (first disjunct) or a back-to-back execution is

possible (second disjunct). In the latter case, the instruction

itself (PC field) is currently handled by one of the FUs, i.e., it

is the instruction of the j -th element of the FU state variable

(penultimate line), and the instruction in this FU is to leave the

FU in the next cycle (last line). Indeed, the NxtFUBusy(i)
operator uses the information about latencies contained in the

FU variable to determine whether the instruction currently

handled by a given FU should remain in the FU in the

next cycle and, hence, cause a pipeline stalling. This operator

compares the current latency currLat of the i -th FU with the

total required latency baseLat . The operator Exec is used to

update the ROB field exec of prog in each cycle.

b) Scheduling on the FUs: Based on the operator Exec, we

can now specify the very scheduling of instructions to the

FUs. The operator NxtFU (i) returns the instruction that is to

be scheduled to the i -th FU in the next cycle, or a special

instruction empty that models the absence of an instruction:

NxtFU (i)
∆

= IF NxtFUBusy(i) THEN empty

ELSE LET minReady
∆

= Min({x .pc : x ∈
{y ∈ RS [i] ∪ FURout(i) :

∀ z ∈ y .dep : z ∈ Exec}})IN

IF minReady = 0 THEN empty

ELSE CHOOSE x ∈ RS [i] ∪ FURout(i) : x .pc = minReady

In the case that the i -th FU does not suffer stalling and

thus may accept a new instruction in the next cycle (i.e.,

NxtFUBusy(i) evaluates false line 1), we define a local

operator minReady (lines 2-4) that determines the address

(pc field from the program input parameter) of the relevant

instruction among the candidate instructions. If this instruction

exists (0 is the conventional address of the empty instruction;

penultimate line), we select (TLA+ CHOOSE operator) the

instruction itself whose address has been determined by the

local operator minReady (last line). minReady implements

an age-ordered policy that selects the oldest instruction whose

all dependencies are satisfied (or will be in the next cycle). It

is based on the assumption that older, preceding instructions

in the program order, have smaller addresses (see above). It is

also based on the operator FURout(i) (not detailed) providing

the set of the currently decoded instructions (in the ID stage)

that have actually been assigned the FU under consideration.

This is trivial when the decoded instructions have only one

admissible FU and it lies on an arbitrary choice otherwise.

Consequently, minReady selects the smallest address (line 2),

from the instructions waiting in the associated RS or directly

from the ID stage2 (line 3), more precisely only those (line 4)

whose all dependencies (dep field assigned from the program
input parameter) will have been computed.

The issued instructions are removed from the RSs in accor-

dance, while the non-issued decoded instructions are added

for a later selection, the whole through simple set-theory

operators. Each entry of the RS variable (one per RS/FU) is

updated under this consideration:

RS ′ = [i ∈ (1 . . N FU) 7→ (RS [i] ∪ FURouting(i))

\ {NxtFU (i)}]
Similarly, the FU variable is updated using the NxtFU (i)
operator for each FU i .

C. Formal Verification of Timing Anomalies

As a case study, we introduce timing anomalies and show how

to detect them in the context of a program execution on our

OoO-pipeline template.

1) Timing Anomalies: Evaluating the timing behavior or pre-

dictability of CPSs is often based on the estimation of the

worst-case execution time (WCET). Several methods allow

to compute such a bound, e.g., testing-based methods [31],

probabilistic methods [12] or static analysis [47]. In any case,

these methods rely on specific assumptions addressing the

absence of exhaustivity, which is impractical for complex de-

signs. Certain execution phenomena, called Timing Anomalies

(TAs), question those assumptions and may thus skew WCET

analyses. As a consequence, it is essential to accurately detect

the occurrences of TAs in the execution of an application on

the target hardware architecture. Common OoO processors are

known to present TAs [46]. We are to illustrate the detection of

counter-intuitive TAs in our model, according to one family of

formal definitions of TAs from the literature [18], [27], [11].

These definitions essentially consider that a TA occurs iff the

(local) commit of a given instruction (A) is performed earlier

in one execution behavior, say α (see Fig. 3), than in another

behavior (β), whereas the commit of a later instruction in the

program (D) is performed earlier in β than in α—in other

words, a timing reversal in commit events.

2A decoded instruction is immediately issued to the FU if it is ready to
execute and the related RS is empty (see in Fig. 2).

4

1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COM
B IF ID RS2 FU2 FU2 FU2 COM
C IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM
D IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF ID FU2 FU2 FU2 ROB ROB ROB COM
D IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

•

•

Figure 3: Execution traces showing the assignment to func-

tional units (/ /) and a reversal of the order of commits

() representing a counter-intuitive TA, obtained from the

OoO template and the program of Fig. 2 (with superscal = 2
and NFU = 2) [8].

2) Formalization of a TA Property: In order to address

the verification/detection of TAs, we expand the template

specification with a comTime field in the ROB entries that

keeps track of the instant (currCycle) of each commit event

occurring during the execution. Besides, TAs are defined as a

relation between two different executions of the same program.

One behavior of the template specification is related to a single

(arbitrary) execution of the program. We thus need to consider

two behaviors at a time. To do so, we define a self-composition

through two instances of the template specification in a main,

higher-order specification module [7]. All state variables are

duplicated and each instance manipulates its own set. Both

instances share the input parameters, which guarantees that

we consider the same program and the same version of the

architecture datapath. However, they may progress at their own

pace, according to their actual choices of FUs and latencies.

We endow the main specification module with a safety prop-

erty related to the absence of TAs. We use the simplest form

of safety properties, i.e., an invariant, in order to stipulate

that (counter-intuitive) TAs may never occur while executing

the input program on the considered version of the archi-

tecture. We may observe a TA only when both executions

have completed, at least up to a certain instruction. The

operator ProgDone(n) (not detailed here) returns a Boolean

indicating whether both executions have completed (at least)

up to the n-th instruction of the input sequence. The operator

ComTime(ex ,n) returns the value of the comTime field for

the n-th instruction of the (first or second) execution ex . Based

on these operators, we now specify the property expressing the

absence of TAs:

NoTA
∆

= ∀ k ∈ 1 . . Len(Program)− 1 :

∀n ∈ k + 1 . . Len(Program) :

∧ ProgDone(n)

∧ ComTime(1, k) < ComTime(2, k)

=⇒ ComTime(1, n) ≤ ComTime(2, n)

The execution of the input sequence on the underlying archi-

tecture exhibits no TA iff, for any instruction k (line 1) and

for any subsequent instruction n (line 2), it holds that if:

a) the execution is completed up to the considered instructions

in both instances under consideration (line 3) and

b) the (local) commit ordering for instruction k is s.t. the first

instance (e.g., α) precedes the second one (e.g., β) (line 4),

then the commit ordering is the same for the subsequent

instruction n (line 5). Note that both instances are totally

interchangeable. That justifies the fact that we fix a priori the

roles of each in the property, namely their commit ordering.

3) Verification Example: We verify the property NoTA by

model checking. Consequently, the violation of the property

indicates the existence of a TA, and the provided counter-

example is a TA scenario. Let us consider the verification with

superscal = 2, NFU = 2 and program describing the input

sequence of Fig. 2 annotated with the data dependencies (),

the set of admissible FUs for the instructions (respectively, the

singletons {1}, {2}, {2} and {1}) and the possible latencies

({1}, i.e., no instruction cache miss,3 for each instruction in

the IF stage, and, respectively, {1, 3}, {3}, {3} and {3} in

the FUs, where A experiences a variable latency). The model

checker signals that the property is violated, thus indicating the

detection of a TA while executing the input program on the

OoO architecture. The reported counter-example is graphically

represented here in Fig. 3.

IV. ABSTRACT PROCESSOR MODELS FOR FAULT

INJECTIONS

In this section, we target the formal verification of security

properties under Fault-Injection (FI) attacks.

A. Modeling Requirements for FI Security Assessment

FIs consist in applying an abnormal physical stress to the

hardware to modify the behavior of the microelectronics. This

leads to the appearance of incorrect values called faults in

the micro-architecture as detailed by Yuce et al. [49]. These

faulty values can be recovered or propagated through the

processor circuit and lead to observable effects at the ISA or

software level. For instance, this can result in the execution of

a casual instruction, reading or writing to a wrong address

in memory [34]. The observable effects of the faults can

then be exploited by an adversary. To comprehensively locate

and characterize FI-based vulnerabilities, developing a formal

model of the processor helps to identify which FI attacks,

targeting the hardware, defeat a given security requirement

often expressed at the software level. Such a suitable processor

model requires four elements that we now describe.

1) The hardware model of the processor provides a complete

representation of both the combinatorial and sequential logics

constituting a processor design.

2) The software model describes the sequence of instructions,

represented in a binary form and performed on the hardware.

3) The fault model indicates how the physical attack interferes

with the hardware model. A fault model has three dimensions:

temporal, spatial and effect. The temporal dimension specifies

the targeted clock cycles by the attack. The spatial dimension

describes which signals can be modified by the fault. Finally,

the effect dimension defines which values can be applied to

3Consider an instruction scratchpad for instance.

5

PC

WB

IF

ID

ID

EX

EX

WB

IM

RF

EX

WB

IM

RF

EX

RF

CV32E40P

register

file

DIA

rB

rA DA
DB
DC

DIB

rC

CSR
OpA

OpB
RD

ALUOpB

OpC

RD

OpA

MULT

OpA

OpB RD

OpC

prefetch

buffer decoder

controller

aligner

LSU
OpA

OpB

RD
OpC

compress
decoder

hwloop
regs

sleep unit

interrupt interfacedebug interface

in
s
tr

u
c
ti
o
n

in
te

rf
a
ce

d
a
ta

in
te

rf
a
ce

Figure 4: CV32E40P block diagram.

the faulty signals.

4) The security property is necessary to identify if a FI attack

can lead to new vulnerabilities by encoding the expected

software behavior.

Compared to the modeling requirements described in Sec. III,

the assessment of FI attacks requires not only a cycle-accurate

but also a bit-accurate hardware model. This is necessary

to accurately propagate the effects of the faulty signals into

the hardware model. Note that various fault models can be

assessed on formal models involving hardware, software and

security properties. Hereafter, only transient faults that do not

permanently damage the processor are considered—i.e., when

the clock cycle leaves the temporal window specified in the

fault model, the targeted signals are no longer under the control

of the fault model.

B. FI-Assessment Process of an In-Order RISC-V Processor

We now illustrate how to implement these four elements over

an in-order RISC-V processor and simplify them to formally

verify FI-based vulnerability.

1) Hardware Design: The CV32E40P is a 32-bit processor

intended for light and embedded use. It has a 4-stage pipeline

(IF, ID, EX, WB) and the RTL implementation in the Sys-

temVerilog language is provided by the OpenHW Group [39].

Fig. 4 shows the block diagram containing the main mod-

ules and their interconnections. From the hardware-design

description, a formal Satisfiability Modulo Theories (SMT)

model is produced by relying on the open-source synthesis tool

Yosys [48]. This model is represented as a classical transition

system and is illustrated (in green) in Fig. 5a. Each state of this

transition system contains the values of the memory elements

included in the micro-architecture while the transitions are

governed by the combinatorial logic of the design.

2) Specified Software: Fig. 5b shows (in blue) how the

specified program is used to restrict the model to some

execution paths. Since the program behavior may depend

on the input data, multiple execution paths can be explored

in the model through the use of symbolic variables. Note

that these unreachable states, when executing a non-faulty

program, should not be removed as faults may have the effect

to turn them into reachable states.

— Hardware

(a) Model of the hardware

— Hardware

— Software

(b) Restrict the model with SW
execution

— Hardware

— Software

— Fault Injection

(c) Add new states and transitions
due to FI

— Hardware

— Software

— Fault Injection

— Vulnerability

(d) Specify the vulnerability state

Figure 5: Modeling steps for FI vulnerability evaluation.

Listing 1: Example of a (bit-reset) fault model at RTL level.

1 state 10:90

2 assume [fw_mux] bit-reset

3 count 1

3) Fault Model: By injecting faults into the system, the

program behaves differently over the micro-architecture. Such

a fault injection is specified into the formal model by defining

its temporal and spatial location and its effect. As an example,

Listing 1 describes a bit-reset fault model, where the fw

mux bits are set to 0 (line 2) between cycles 10 and 90

(line 1). count 1 (line 3) specifies that only one fault

injection is allowed on this time interval. Fig. 5c illustrates

the faulty behaviors by adding (purple) transitions into the

model towards the (purple) states, which were previously not

reachable by the program or not allowed by the hardware.

This creates many additional execution possibilities that can

be explored by a model checker.

4) Security Property: Security requirements can be defined

by expressing a property on the states of the model. Fig. 5d

illustrates this additional information by considering a (red)

state to be faulty. A model checker is then used to verify if the

property holds or is violated, and, in this latter case, counter-

example(s) are provided. Thereafter, the security property

is intended to control the instructions passing through the

pipeline. This analysis ensures that secure data are never

accessed or that a given instruction, whose semantics indicate

successful authentication at the program level for instance, is

never executed.

Next, we present several simplifications to efficiently handle

the model that we have previously described.

a) Hardware Reduction: The security property only checks

the values taken by a restricted number of state variables.

The hardware model can thus be reduced by keeping only

the necessary ones [15]. Whether variables are useful is

determined iteratively by observing if they have an influence

6

on the property to be verified. When performed manually, this

technique can also remove entire modules from a hardware

design if they are not involved in the faulty behaviors of

the program. Regarding the CV32E40P use case, the Control

and Status Register (CSR) module—which manages privileged

execution modes [45], performance statistics, and interruption

and debugging mechanisms—can safely be removed as its

behavior does not interfere with the specified security prop-

erty. Table I shows the proportion of variables saved in the

formal model of the CV32E40P processor when applying this

optimization. Even if the CSR does not represent a large part

of the netlist, its deletion considerably reduces the model size

because of the memory features that it contains.

Variables
Netlist Formal Model

Wire bits Logic cells of which Flip-Flops SMT-functions
Quantity 11903 374 18 110033
Proportion 6.6% 4.5% 10% 32%

Table I: Number of variables saved both at the RTL (Netlist)

and formal model levels when removing the CSR module.

The model can be further simplified by adding constraints

on the environment. The CV32E40P micro-architecture has

memory elements (e.g., flip-flops providing a large range of

initial states) that we can constrain. External modules can

also interact with the processor via interrupts or debugging

signals. Since these demands are not part of the model but

can influence the security property, they must be controlled.

b) Software Reduction: At the software level, some instruc-

tions are not relevant regarding the security property and

unused functions are embedded within the program due to

the library linking process. We manually eliminated such dead

code which allows us to considerably limit the size of the input

program used for the software model. We restricted our models

to execute an assembly program with 200 instructions—

possibly with loops and unconstrained data input. This helps

to reduce the number of states to be explored and their size

in the formal model.

C. Formal Verification of FI-based Vulnerability

We now illustrate the capability of our abstract formal model

to detect hardware vulnerabilities when verifying a specific

security property. Listing 2 shows a security property that

forbids the execution of the instruction, 0xfd5ff06f in

hexadecimal, allowing a secure authentication. The program

does not normally allow this behavior, but it can be enabled

by FIs.

Listing 2: An example of a security property.

assert (distinct [instr_id] 0xfd5ff06f)

Our fault model consists of a single bit-flip (bit-inversion)

attack during one clock cycle of the program execution. We

arbitrarily restrict the exploration of FI locations to the signals

contained in the ID stage.

Model checking identifies several injection points on the

micro-architecture, all due to the forwarding mechanism.

Laurent et al. already point out [30] that it is possible to

modify the forwarding control signal in order to recover values

from EX and WB stages. These values can then be used as

new operands, allowing, for example, to fool the comparison

instructions. By modifying the forwarding behavior of the

CV32E40P (depicted in Fig. 4 by a multiplexer in the ID

stage) with a simple bit flip, the program execution reaches

the vulnerable instruction indicated in Listing 2.

V. TOWARDS AUTOMATED EXTRACTION OF ABSTRACT

PROCESSOR MODELS

The formal models described in the previous sections are all

based on the accurate representation of specific details of the

processor microarchitecture. Ideally, these models should be

automatically derived from HDL processor designs. In this

section, we present how we can take advantage of hardware

compilation frameworks to ease the generation of abstract

pipeline-stage-level models.

A. Hardware Compilation Framework: Chisel/FIRRTL

High-level design languages and the associated compilation

chains enable the use of highly parameterized generators,

domain-specific language constructs and advance module sys-

tems to facilitate the hardware design [6], [43], [40]. These

compilation chains rely on several transformation passes to

optimize the HDL (Verilog or VHDL) code that they generate

for a later use as input in classical commercial (FPGA or

ASIC) hardware-design flows. As in software compilers, hard-

ware designers can also insert specific transformation passes

in those compilation chains to manipulate the designs. This

enables to deploy, within these chains, analyses to automati-

cally construct abstract processor models. For instance, when

targeting timing predictability, a transformation would mainly

focus on the sequential logic to generate pipeline-level models,

while for FI the whole design would initially be extracted,

before abstractions are applied over the generated models.

We select the Chisel/FIRRTL hardware-compilation

toolchain [6], [24] to illustrate this idea. Chisel (Constructing

Hardware In a Scala Embedded Language) [6] is an open-

source hardware-construction Domain-Specific Language

(DSL) embedded in the Scala programming language. Adding

hardware construction primitives to the Scala language allows

the designers to write parameterized circuit generators, while

using object-oriented and functional programming features to

design circuits. Chisel emits synthesizable Verilog through an

intermediate representation called FIRRTL [24], which stands

for Flexible Intermediate Representation for RTL. Chisel thus

constitutes the frontend part of the toolchain, FIRRTL, the

middle-end from which all Scala-related hardware generators

have been executed, and finally Verilog as a backend.

FIRRTL comes with different Intermediate Representations

(IR), called forms. Each form uses a smaller, stricter and

simpler subset of the Chisel language features and defines

different transformations to generate the next (lower) form.

Compiling FIRRTL to Verilog is implemented as a set of

7

passes that implement optimizations, such as constant folding

or dead-code elimination. A so-called high form supports the

Chisel high-level constructs such as vector types, bundle types,

and conditional statements. These constructs are replaced by

a set of low-level features, resembling a structured netlist that

simplifies its translation to Verilog, in the lowest form named

low form. Which one of these forms is the most appropriate

one to generate abstract processor models? A lower form

ensures an easier equivalence to the actual pipeline circuits

and is thus mandatory for fault-injection assessment (Sec. IV),

while a higher-level form facilitates the integration of complex

properties such as timing predictability (Sec. III).

We now illustrate these differences in the high and low forms,

through a very simple example presented by Listing 3. This

example defines two registers, reg1 and reg2, at lines

1 and 2. Both registers are initialized on reset using the

RegInit construct. Note that the reset and clock signals

are implicit in Chisel (but can be explicit in the FIRRTL

forms). Finally, both registers are updated at lines 3 and 4,

but for register reg2 this update depends on the value of the

cond variable (actual value not defined to simplify) and is

thus performed within a Chisel when construct (line 4).

Listing 3: A simple Chisel code.

1 val reg1 = RegInit(0.U(4.W))

2 val reg2 = RegInit(0.U(4.W))

3 reg1 := value

4 when (cond) { reg2 := reg1 }

Listings 4 and 5 describe, respectively, the FIRRTL high form

and low form obtained from the Chisel Listing 3.

Listing 4: FIRRTL high form from Listing 3.

1 reg reg1 : UInt<4>, clock with :

2 reset => (reset, UInt<4>("h0"))

3 reg reg2 : UInt<4>, clock with :

4 reset => (reset, UInt<4>("h0"))

5 reg1 <=value
6 when cond :

7 reg2 <=reg1

Listing 5: FIRRTL low form from Listing 3.

1 reg reg1 : UInt<4>, clock with :

2 reset => (UInt<1>("h0"), reg1)

3 reg reg2 : UInt<4>, clock with :

4 reset => (UInt<1>("h0"), reg2)

5 node _GEN_0 = mux(cond, reg1, reg2)

6 reg1 <=mux(reset, UInt<4>("h0"), value)

7 reg2 <=mux(reset, UInt<4>("h0"), _GEN_0)

It can be noticed that the when statement remains in the high

form (line 6, Listing 4), while it is translated into a multiplexer

in the low form (line 5, Listing 5). Note that in Chisel, a condi-

tion can be translated into a set of multiplexers to implement

a multi-variable condition. Directly translating a high form

into a formal-specification language may thus discard these

multiplexers, which can be source points for a fault-injection

attack as presented in Sec. IV. Such a statement can however

be safely translated into a formal statement when targeting

a pipeline-stage abstract model, such as the one shown for

the detection of TAs (Sec. III). This demonstrates the need

to develop custom FIRRTL passes aimed at automatically

generating abstract models, against the targeted properties.

B. Extracting Abstract Pipeline Models

The Chisel/FIRRTL toolchain allows such an easy integration

of a custom pass to take advantage of the different FIRRTL

forms generated from a Chisel-based design. The FIRRTL

design is internally represented with an Abstract Syntax Tree

(AST) structure, where passes recursively visit nested elements

to manipulate the AST. The FIRRTL AST consists of IR nodes

represented by objects, each of which is a subclass of the

following IR abstract classes: circuit, module, port, statement,

expression or type. The registers and when-condition nodes,

shown on the previous listings, are in the statement class. Each

update of a register is represented by a connect node that is

also part of the statement class.

We now present a custom pass that currently targets the

automatic generation of abstract pipeline models specific to

safety properties, as presented in Sec. III. This pass analyzes

both the combinatorial and sequential logic of the pipeline

datapaths in their high-form FIRRTL representations. It pro-

duces the pipeline stages, their order (thus forward edges

between stages) and the backward edges between stages. Note

that backward edges do not only correspond to the processor

data-forwarding mechanisms between stages, e.g., classically

from the write-back/memory to the execute stages, but also

for instance simply the update of the program counter.

To achieve this, Chisel registers must first be identified at

the FIRRTL level and their dependencies analyzed, by explor-

ing their combinatorial input and outputs. Then, assigning a

pipeline stage to the identified registers starts from an arbitrary

specified4 register, to be placed in the first pipeline stage. Two

successive explorations of the set of identified registers are

performed. The first exploration aims to assign pipeline stages

based on two rules relying on register dependencies: 1) when

only a single forward link between a source and a destination

register exists, assign to the destination register the imme-

diately following stage of the source register, and 2) when

a destination register has several (already assigned) source

registers, assign to the destination register the immediately

following stage of the register having the minimal depth in

the pipeline. This latter rule detects any forwarding mechanism

within a pipeline. The second rule relies on a heuristic based

on the idea that a designer simultaneously updates the registers

of the same pipeline stage within a same conditional block.

C. Case Study: a RISC-V-based Processor

We now illustrate how our pass analyzes a RISC-V processor,

called KyogenRV [42], so as to extract an abstract pipeline

4By the hardware designer for instance.

8

if pc

if npc

Fetch

id pc

id npc

id inst

Write-Back

ex pc

ex npc

ex inst

ex reg waddrIDModule

ex rs

mem pc

mem npc

mem alu out

mem reg waddr

mem rs

ALU

wb npc

wb alu out

wb reg waddr

MemoryExecuteDecode

IF
ID EX

MEM

WB

Figure 6: Representation of the extracted registers and (part) of the abstract pipeline model of the KyogenRV processor.

model. KyogenRV is an open-source 5-stage pipeline pro-

cessor (IF, ID, EX, MEM, WB) targeting Intel FPGAs and

developed for academic purposes. We focus on the top module

of the pipeline, which has 60 registers. We specify the if

pc register to our pass as being located in the first stage

of this pipeline. Our pass then automatically computes the

dependencies between these registers, which are made of 46

edges, assigns a pipeline stage to each register, and outputs the

abstract pipeline model. Fig. 6 shows a subset of the identified

registers and their dependencies (omitting the combinatorial

circuitry). Registers are represented by blue boxes, while red

boxes represents Chisel instances of modules embedded within

the currently analyzed Chisel module. Our pass correctly

identifies the 5 stages, with forwarding mechanisms from the

WB and the MEM to the EX stage. On the Fig. 6, the abstract

pipeline model corresponds to the dashed boxes only, one for

each stage, and associated edges are not shown for readability

reason. It is thus similar to the one used for the detection of

TAs (Sec. III) with: 1) a single forward edge kept between

each stage, and 2) the green edges (potentially merged) im-

plementing the forwarding mechanism corresponding to the

dashed edge () of Fig. 2, which enables a back-to-back

execution of instructions over the FUS.

Listing 6 presents a subset of the data forwarding implemented

from the WB and MEM towards the EX stage. The Chisel

wire ex reg rs1 bypass is updated from the output of the

mem alu out register (line 5), located in the MEM stage,

or from the wb alu out register (line 6), located in the

WB stage, through the Chisel MuxCase construction. In the

FIRRTL low form the MuxCase is translated into a cascade of

multiplexers. This forwarding corresponds to the green arrows,

shown in Fig. 6, from the registers wb alu out and mem

alu out to the input of the ALU red box. The other green

arrow, between the register wb reg waddr and the input of

the ALU, is part of the check to detect the need for forwarding

a value (not shown in Listing 6).

Listing 6: Forwarding in KyogenRV 5-stage.

1 val ex_reg_rs1_bypass = Wire(UInt(32.W))

2
3 /* Ci, i = 1..2 - conjuncts of write enable

→֒ and selection signals */

4 ex_reg_rs1_bypass := MuxCase(ex_rs(0), Seq(

5 (ex_reg_raddr(0) === mem_reg_waddr && C1)

→֒ → mem_alu_out

6 (ex_reg_raddr(0) === wb_reg_waddr && C2)

→֒ → wb_alu_out))

7 ...

8 when (C4 /* no stalling condition */) {

9 mem_rs(0) := ex_reg_rs1_bypass

10 }

VI. CONCLUSION AND FUTURE WORK

We have presented the various needs in the formal modeling

of pipeline processors to verify both safety and security

properties of CPS or IoT systems. The safety property that we

consider (detection of timing anomalies) requires an abstract

pipeline model where only stages are visible and whose timing

behavior is accurate, while the security property (identification

of fault-injection points) requires a cycle- and bit-accurate

model where unnecessary either software or hardware parts

of the considered system have been removed. Finally, we

have shown how a high-level hardware compilation toolchain

can ease the adaptation of automatically generated formal

abstract models to such safety and security properties. We

9

have reported on a custom pass to generate an abstract pipeline

model (and to be used for the detection of timing anomalies).

As future work, we are currently investigating how to expand

the definition of timing anomalies to other hardware resources

such as caches or speculation mechanisms and verify the

needs in formal modeling of these elements. We also plan to

implement various abstraction strategies of the formal models

to speedup the fault-injection assessment. Finally, we plan to

expand our pass to be able to generate the different formal

models needed for both the safety and security properties.

Acknowledgments. The authors would like to thank Claire

Pagetti from ONERA and the anonymous reviewers for pro-

viding valuable feedback that helped us improve this work.

REFERENCES

[1] Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E.,
Norton, R.M., Mundkur, P., Wassell, M., French, J., Pulte, C., Flur,
S., Stark, I., Krishnaswami, N., Sewell, P.: ISA semantics for armv8-a,
risc-v, and CHERI-MIPS. ACM Program. Lang. 3, 71:1–71:31 (2019)

[2] Asanović, K., Patterson, D.A.: Instruction sets should be free: The case
for risc-v. Tech. Rep. UCB/EECS-2014-146 (Aug 2014)

[3] Asavoae, M., Haur, I., Jan, M., Hedia, B.B., Schoeberl, M.: Towards
formal co-validation of hardware and software timing models of cpss.
In: CyPhy/WESE. LNCS, vol. 11971, pp. 203–227 (2019)

[4] Asavoae, M., Hedia, B.B., Jan, M.: Formal Executable Models for
Automatic Detection of Timing Anomalies. In: WCET (2018)

[5] Asavoae, M., Jan, M., Ben Hedia, B.: Formal modeling and verification
for timing predictability. In: ERTS (2020)

[6] Bachrach, J., Vo, H., Richards, B.C., Lee, Y., Waterman, A., Avizienis,
R., Wawrzynek, J., Asanovic, K.: Chisel: constructing hardware in a
scala embedded language. In: DAC’12. pp. 1216–1225 (2012)

[7] Barthe, G., D’Argenio, P., Rezk, T.: Secure information flow by self-
composition. In: CSF. pp. 100–114 (2004)

[8] Binder, B., Asavoae, M., Ben Hedia, B., Brandner, F., Jan, M.: Is this still
normal? Putting definitions of timing anomalies to the test. In: RTCSA
(2021)

[9] Binder, B., Asavoae, M., Brandner, F., Hedia, B.B., Jan, M.: Scalable
detection of amplification timing anomalies for the superscalar tricore
architecture. In: FMICS (2020)

[10] Bréjon, J.B., Heydemann, K., Encrenaz, E., Meunier, Q., Vu, S.T.: Fault
attack vulnerability assessment of binary code. In: CS2 Workshop. pp.
13–18 (2019)

[11] Cassez, F., Hansen, R.R., Olesen, M.C.: What is a Timing Anomaly?
In: WCET. vol. 23, pp. 1–12 (2012)

[12] Cazorla, F.J., Kosmidis, L., Mezzetti, E., Hernandez, C., Abella, J.,
Vardanega, T.: Probabilistic worst-case timing analysis: Taxonomy and
comprehensive survey. ACM Comput. Surv. 52(1) (Feb 2019)

[13] Cerqueira, F., Stutz, F., Brandenburg, B.B.: PROSA: A case for readable
mechanized schedulability analysis. In: ECRTS. pp. 273–284 (2016)

[14] Choi, J., Vijayaraghavan, M., Sherman, B., Chlipala, A., Arvind: Kami:
a platform for high-level parametric hardware specification and its
modular verification. ACM Program. Lang. 1, 24:1–24:30 (2017)

[15] Clarke, E.M., Kurshan, R.P., Veith, H.: The localization reduction and
counterexample-guided abstraction refinement. In: Time for verification,
pp. 61–71. Springer (2010)

[16] Cuenot, P., Delmas, K., Pagetti, C.: Multi-core processor: Stepping
inside the box. In: ESREL 2021. Angers, France (2021)

[17] Dalsgaard, A., Olesen, M., Toft, M., Hansen, R., Larsen, K.: Metamoc:
Modular execution time analysis using model checking. In: WCET.
vol. 15, pp. 113–123 (2010)

[18] Eisinger, J., Polian, I., Becker, B., Thesing, S., Wilhelm, R., Metzner, A.:
Automatic identification of timing anomalies for cycle-accurate worst-
case execution time analysis. In: DDECS. pp. 13–18 (2006)

[19] Given-Wilson, T., Jafri, N., Lanet, J.L., Legay, A.: An Automated Formal
Process for Detecting Fault Injection Vulnerabilities in Binaries and Case
Study on PRESENT. In: Trustcom. pp. 293–300 (2017)

[20] Given-Wilson, T., Jafri, N., Legay, A.: Combined software and hard-
ware fault injection vulnerability detection. Innovations in Systems and
Software Engineering 16(2), 101–120 (Jun 2020)

[21] Hahn, S., Reineke, J.: Design and analysis of sic: A provably timing-
predictable pipelined processor core. In: RTSS. pp. 469–481 (2018)

[22] Hicks, M., Sturton, C., King, S.T., Smith, J.M.: Specs: A lightweight
runtime mechanism for protecting software from security-critical pro-
cessor bugs. SIGPLAN Not. 50(4), 517–529

[23] Irfan, A., Cimatti, A., Griggio, A., Roveri, M., Sebastiani, R.: Ver-
ilog2SMV: A tool for word-level verification. In: DATE. pp. 1156–1159
(2016)

[24] Izraelevitz, A., Koenig, J., Li, P., Lin, R., Wang, A., Magyar, A., Kim,
D., Schmidt, C., Markley, C., Lawson, J., Bachrach, J.: Reusability is
firrtl ground: Hardware construction languages, compiler frameworks,
and transformations. In: ICCAD. p. 209–216 (2017)

[25] Jain, H., Kroening, D., Sharygina, N., Clarke, E.: VCEGAR: Verilog
CounterExample Guided Abstraction Refinement. In: TACAS. pp. 583–
586 (2007)

[26] Jan, M., Asavoae, M., Schoeberl, M., Lee, E.A.: Formal semantics of
predictable pipelines: a comparative study. In: ASP-DAC (2020)

[27] Kirner, R., Kadlec, A., Puschner, P.: Worst-case execution time anal-
ysis for processors showing timing anomalies. Tech. rep., Technische
Universität Wien (01 2009)

[28] Kroening, D., Purandare, M.: Ebmc. http://www.cprover.org/ebmc/
[29] Lamport, L.: Specifying Systems: The TLA+ Language and Tools for

Hardware and Software Engineers. Addison-Wesley Longman Publish-
ing Co., Inc., USA (2002)

[30] Laurent, J., Beroulle, V., Deleuze, C., Pebay-Peyroula, F.: Fault Injection
on Hidden Registers in a RISC-V Rocket Processor and Software
Countermeasures. In: DATE. pp. 252–255. Florence, Italy (2019)

[31] Law, S., Bate, I.: Achieving appropriate test coverage for reliable
measurement-based timing analysis. In: ECRTS. pp. 189–199 (2016)

[32] Lee, S., Sakallah, K.A.: Unbounded scalable verification based on
approximate property-directed reachability and datapath abstraction. In:
CAV. pp. 849–865 (2014)

[33] Li, X., Roychoudhury, A., Mitra, T.: Modeling out-of-order processors
for wcet analysis. Real-Time Systems 34, 195–227 (11 2006)

[34] Library, J.I.: Application of Attack Potential to Smartcards and Similar
Devices. Tech. rep. (2013)

[35] Mangean, A., Béchennec, J.L., Briday, M., Faucou, S.: Wcet analysis
by model checking for a processor with dynamic branch prediction. In:
VECoS. pp. 64–78 (2017)

[36] McMillan, K.: Cadence smv. Cadence Berkeley Labs, CA, 2000
[37] Mukherjee, R., Purandare, M., Polig, R., Kroening, D.: Formal tech-

niques for effective co-verification of hardware/software co-designs. In:
Proc. of the 54th Annual Design Automation Conference 2017. pp. 1–6

[38] Nienhuis, K., Joannou, A., Bauereiss, T., Fox, A., Roe, M., Campbell,
B., Naylor, M., Norton, R.M., Moore, S.W., Neumann, P.G., Stark, I.,
Watson, R.N.M., Sewell, P.: Rigorous engineering for hardware security:
Formal modelling and proof in the CHERI design and implementation
process. In: 2020 IEEE Symposium on Security and Privacy

[39] OpenHW Group: Core-v cv32e40p risc-v ip. https://github.com/
openhwgroup/cv32e40p

[40] Papon, C.: SpinalHDL. https://github.com/SpinalHDL
[41] Pattabiraman, K., Nakka, N., Kalbarczyk, Z., Iyer, R.: SymPLFIED:

Symbolic program-level fault injection and error detection framework.
In: Intl. Conf. on DSN. pp. 472–481 (2008)

[42] Saitoh, A.: Kyogenrv: simple 5-staged pipeline RISC-V. https://github.
com/panda5mt/KyogenRV

[43] Schuiki, F., Kurth, A., Grosser, T., Benini, L.: LLHD: a multi-level
intermediate representation for hardware description languages. In: Don-
aldson, A.F., Torlak, E. (eds.) PLDI. pp. 258–271 (2020)

[44] Tomasulo, R.M.: An efficient algorithm for exploiting multiple arith-
metic units. IBM J. of Research and Development 11(1), 25–33 (1967)

[45] Waterman, A., Asanovic, K., Hauser, J., Division, C.: Volume II:
Privileged Architecture. Tech. rep. (2021)

[46] Wenzel, I., Kirner, R., Puschner, P., Rieder, B.: Principles of timing
anomalies in superscalar processors. In: QSIC. pp. 295–303 (2005)

[47] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whal-
ley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller,
F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.: The worst-
case execution-time problem—overview of methods and survey of tools.
ACM Trans. Embed. Comput. Syst. 7(3) (May 2008)

[48] Wolf, C.: Yosys open synthesis suite. http://www.clifford.at/yosys/
[49] Yuce, B., Schaumont, P., Witteman, M.: Fault Attacks on Secure Em-

bedded Software: Threats, Design, and Evaluation. Journal of Hardware
and Systems Security 2(2), 111–130 (2018)

10

An Automated Framework Towards Widespread
Formal Verification of Complex Hardware Designs

Jonathan CERTES, Benoı̂t MORGAN
IRIT-ENSEEIHT, University of Toulouse

email : firstname.lastname@irit.fr

Abstract—Verification is an essential step of critical systems
design flow with regard to safety and security. It supports respec-
tively fault and vulnerability removal. Model-checking ensures
that a design meets its specifications by using an exhaustive
state exploration approach. It has been adopted to design critical
and/or secure by design embedded hardware systems. On the
one hand, model-checking is fully automated; on the other
hand, it does not scale and faces state-space explosion when
working with large industrial circuits and complex specifications.
Compositional model-checking and theorem proving enable to
verify large designs at the cost of finding abstractions and proving
an implication of the specifications. In this paper, we present a
method along with a framework to reduce this cost and improve
hardware verification performances.

We formally verified a hardware security monitor involved
in a remote attestation scheme for microprocessors. This ver-
ification could not be achieved using classical approaches as
it faces state-space explosion: the monitor is complex enough
to be unfit for model-checking. So, we applied our method to
the verification and successfully proved the security of remote
attestation using symbolic model-checking and automatic theorem
proving. Our verified security monitor is described with an
hardware description language and its specifications are written
in property specification language. Our method makes extensive
use of compositional model-checking techniques to leverage the
modular and partitioned aspects of most automata involved
in hardware modelling. This method is fully automated in a
framework build on top of free model checkers and automatic
theorem provers. Automation relies on synthesis and translation
tools which exploit the modular structure of sequential circuits
and avoid having to re-design.

Index Terms—Automation, formal verification, security, FPGA

I. INTRODUCTION

Verification of hardware designs is traditionally performed

through simulation and testing. Selected input vectors are fed

into the system and outputs are checked for correctness. The

drawback of these traditional verification techniques is that

they aim at tracing the most potential defects and suffer from

incompleteness.

Another approach, adopted to design critical and/or secure

hardware systems [1], [2], relies on formal methods to ensure

that the design meets its specifications. Formal verification is

generally conducted in three steps. First, the system (hardware

or software) is modeled, for example as an automaton. Then,

properties to be satisfied by the system are formally expressed.

Eventually, model-checking and/or proof is used against the

model to demonstrate that it satisfies the required properties.

The major obstacle for widespread application of model-

checking to real-world designs is called the state-space ex-

plosion problem [3]: when the number of states needed to

model the system accurately turns out to exceed the physical

limits of the computer memory. One of the most successful

ways to cope with this problem is to use abstract models

and check the property on them instead of the original

model. However, over-approximation, as a consequence of

abstraction, turns out to generate false negatives [4]. Finding

satisfactory abstractions, which reduce the model enough and

do not lead to false negatives, is non-trivial. Compositional

model-checking techniques, such as localization reduction and

partitioned transition relations, guarantee the absence of false

negatives [5]. These techniques are particularly adapted to

abstract hardware designs as partitioned structure of sequential

circuits ensures no interdependence between processes.

In this paper we propose a mostly fully automated frame-

work to improve hardware verification performances and effi-

ciently remove the presence of faults (consequently vulnera-

bilities) in realistic hardware designs. Our method is based on

a specific case of compositional model-checking and exploits

the modular and partitioned structure of sequential circuits.

Then, we extensively present how we applied this approach to

formally verify a hardware security monitor for remote attes-

tation of microprocessor software [6]. One of the objectives

of this monitor is to preserve the confidentiality of a secret

key used to compute a HMAC. It relies on a complex trace

decompresser for ARM CoreSight debug interface [7] whose

verification is the cornerstone of overall system security. Our

main objective is to prove the security for remote attestation

of microprocessor software from locally verified properties.

A lot of work has been dedicated to efficient and/or auto-

matic abstraction for Register Transfer Level (RTL) Verilog,

either with a smart predicate partitioning through slicing of

bit vectors [8], [9], using uninterpreted functions abstraction

[10] or by applying algebraic rewriting to extract arithmetic

functions [11]. The authors automatically provide sound parti-

tions for the system to increase compositional model-checking

efficiency. Unfortunately, writing consistent properties to be

verified regarding the content of the generated abstract model

is left to the designer’s expertise. This process is inconve-

nient since the main goal is to verify overall specifications

(i.e. formal definition of security), potentially expressed with

signals or memories that have been removed or split/renamed

in the generated abstract models. Also, local properties are

then to be expressed with generated names while making sure

that their conjunction still implies the overall specifications.

A more convenient approach, that we extensively use in our

method, is to write local properties with a proof deduction in

mind and then find abstract models that are adapted to their

verification.

For a wide adoption of formal methods to hardware verifi-

cation, expressing specifications and dividing them into local

properties must be convenient and theorem proving must be

automated. As a consequence, automatic theorem proving

must be conducted on highly expressive temporal logics.

Moreover, abstraction that is adapted to the verification of

these local properties must be automated too. To answer the

aforementioned bottleneck and challenges, we introduce in this

paper two main contributions:

1) an automated translation of Property Specification Lan-

guage (PSL) [12], dedicated to automatic theorem prov-

ing. The tool also supports uninterpreted functions ab-

straction, if needed, in order to relieve deductive proof

systems in solving the satisfiability problem;

2) an automated framework that computes, for complex

hardware designs, adapted abstract models from tempo-

ral properties, verifies their soundness and feeds model-

checking software.

Source code for algorithms that rewrite PSL and verifies the

soundness of abstract models is publicly available at [13].

This article is organized as follows: state of the art is given

in Section II. Section III details our automated verification

framework. The case study is described in Section IV and

Section V shows the application of our framework. Eventually,

limitations are listed in Section VI.

II. STATE OF THE ART

In this section we provide background on modeling complex

hardware designs and formal verification.

A. Modeling of complex hardware designs

Automatic translation tool Verilog2SMV [14] converts Ver-

ilog to SMV language, which supports similar high-level types

of state variables as Hardware Description Languages (HDL)

for wires and registers. In particular, Verilog2SMV aims at

handling designs with memories efficiently [14]. Verilog2SMV

is built on top of Yosys [15], a free Verilog synthesis suite. It

first flattens the Verilog high-level design, synthesizes the RTL

circuit while providing optimizations and then translates the

output into a corresponding SMV model.

Tuerk et al. have formally validated the correctness of a

translation from PSL to Linear Temporal Logic (LTL) [16],

they produced a model-checking infrastructure that works by

translating model-checking problems to equivalent checks for

the existence of fair paths through a Kripke structure [17].

B. Formal verification

Deterministic Büchi automata are specific ω-automata that

can accept infinite words. More especially, a word is accepted

if and only if the automaton goes infinitely often through

accepting states, called acceptance set. A deterministic Büchi

automaton can be defined as a tuple A = 〈Q,Σ,∆, I,F〉
where:

• Q is a finite set of states

• Σ is an alphabet

• ∆ : Q× Σ→ Q is a transition function

• I ⊆ Q is a set of initial states

• F ⊆ Q is an acceptance set

Deterministic Büchi automata are used to model finite state

machines and formulae in temporal logics [18]. Model-

checking algorithms manipulate them according to the au-

tomata theory approach.

NuSMV is an open-source model checker which implements

symbolic model-checking, using a fixed point algorithm with

Binary Decision Diagrams (BDD), where a set of states

is represented by a BDD instead of an exhaustive list of

individual states [19]. Models are described in SMV language

and NuSMV supports the analysis of specifications expressed

as invariants or in temporal logics, including LTL and PSL.

Duret-Lutz et al. presented Spot, a C++ library with Python

bindings designed to manipulate LTL and ω-automata [20].

Spot contains algorithms to perform the usual tasks in model-

checking, including filtering, conversion and transformation for

LTL formulae and Büchi automata.

As a response to the state-space explosion problem in

model-checking, R. Kurshan, E. Clarke and H. Veieth for-

malized the most commonly used abstraction techniques [4]:

localization reduction abstracts models by hiding variables that

are not referenced in the verified property; predicate abstrac-

tion is an over-approximation technique which may produce

spurious counterexamples; counterexample-guided abstraction

refinement is an iterative process to create new abstract models

and checks spurious counterexamples on the concrete model

until the checked property is either proved or disproved.

Berezin et al. describe the rules to follow to ensure the

soundness of compositional model-checking techniques, in-

cluding with partitioned transition relations [5], where the

global transition relation of a system is written as the con-

junction or disjunction of transition relations for the individual

components of this system. Also, R. Milner introduced the

concept of simulation between automata [21]. Bensalem et

al. demonstrated the preservation of properties in the case

of simulations parameterized by a Galois connection [22]:

establishing a simulation relation between systems, which is

straightforward in the case of compositions, allows to share a

proof that a property is verified.

III. AUTOMATED VERIFICATION FRAMEWORK

In our framework, overall specifications are formally ex-

pressed with PSL and local properties for compositional

model-checking are elaborated manually to be sufficient to

imply the specifications. All PSL properties are translated into

LTL by model checker NuSMV, which is considered correct.

Nevertheless, it is possible to also rely on proven translation

works [16], which preserve PSL semantics. Then, Spot is

leveraged to prove the implication of the overall specifications

from the conjunction of the local properties.
The hardware design is described in Verilog, it is synthe-

sized and translated using Verilog2SMV into a Büchi automa-

ton, which model is described in SMV language. To avoid

state-space explosion, we propose a method to automatically

generate abstract models, with localization reduction, for

each PSL property to verify. Property preserving simulation

relations are established between the abstract models and the

concrete model: this provides a certificate that the abstractions

are sound. Then, PSL properties are verified locally with

model checker NuSMV.

Our approach differs from previous works as abstract mod-

els are deduced from the properties to verify. We believe

that writing local properties with a proof deduction in mind

is key to proving the implication of complex specifications,

even if it implies a non-optimal reduction for the abstractions.

Furthermore, our framework is automated and relies on syn-

thesis tools so that the generated models are close to the final

implementation of the system.

Several Electronic Design Automation (EDA) suite are

available in the industry, most of which providing solutions

for synthesis and assertion based formal verification. The

approach we propose is agnostic to the choice of an EDA

toolchain: it can be applied to any of these suite as soon as

the dedicated tools can be instrumented with a high level of

granularity. For this reason, we instantiated it in a framework

which relies on open-source software.

Now, we present our automated framework, depicted in

Figure 1, which follows those three major steps:

• Step 1: as opposed to [8], [9], [10], [11], we start by

rewriting the specifications in local properties. We take

great care in ensuring that the conjunction those local

properties is sufficient to imply the specifications.

• Step 2: once we have the local properties, we prove that

their conjunction imply the specifications, i.e. when this

implication is a tautology. To do so, we rely on Spot

which provides filtering algorithms for LTL properties

[20].

• Step 3: finally, we can move on to the automatic abstrac-

tion of the system using the local properties. Hopefully,

those local properties are shrunk enough to generate

localization reductions of the system that can be model

checked in a reasonable amount of time. Model-checking

with NuSMV ensures the verification of the local proper-

ties.

A. Step 1: Formal expression of specifications and local

properties with PSL

In our framework, we take advantage of extended next

operators, a subset of PSL that can be seen as syntactic sugar

for LTL. This subset is supported by NuSMV for model-

checking [23]. PSL can be described as follows:

In addition to propositional operators, such as conjunction

(∧), disjunction (∨), negation (¬), and implication (→), PSL

features temporal operators along with replicators, which are

Verilog

PSL local
properties

PSL 0

Spot

PSL

Specifications

NuSMV

SMV 0

Verilog2SMV

Wrapper 0

NuSMV

PSL n SMV n

Verilog2SMV

Wrapper n

Step 3Step 2Step 1

Fig. 1. Automated verification framework

quantification operators. The following operators find their

equivalent in LTL, they are simple but of interest to express

our specifications:

• always(φ): holds if property φ is true for all future

states;

• next(φ): holds if φ is true at the next system state;

• (ψ) until (φ): holds if there is a future state where φ is

true and ψ is true for all states before that.

In addition to these basic temporal operators, PSL also offers

extended next operators, including:

• next event a(ψ)[range](φ): holds if φ is true at all the

next states where ψ is true in the range defined by range

(where a range is a set of consecutive integer numbers);

• next event(ψ)(φ): this is a shorthand for

next event a(ψ)[1 : 1](φ).

The last interesting operator is the forall replicator:

• forall i in {range} : φ(i): holds if the conjunction of

parameterized sub-properties φ(i) is true for all possible

values of identifier i in the range defined by range.

Specifications are formally expressed with PSL and local

properties are elaborated while trying to keep their conjunction

sufficient for the implication. These tasks rely on the designer’s

expertise in logics. This is the only part of our framework

which is manual.

B. Step 2: Proof strategy

Implication of the specifications is obtained through auto-

matic theorem proving using Spot. To achieve this, we have

instrumented parsing and translation functions from NuSMV in

order to convert PSL, which is not entirely supported by Spot,

to LTL. As a consequence, extended next operators are only

expressed with basic temporal operators; for instance, operator

next event is expressed as:

next event(a)(b) ≡ (¬(a) until (a ∧ b))∨always (¬(a))
After the translation, we generate the following formula

from a conjunction of the local properties and an implication

of the specifications:

(property0) ∧ (property1) ∧ ... → (specifications)

We rely on filtering functions from Spot [20] to automatically

process this formula:

• if the filtered formula is a tautology, then specifications

are implied;

• if the filtered formula is a temporal expression, then the

conjunction of local properties is not sufficient to imply

the specifications;

• if the physical limits of the computer memory are

reached, we cannot conclude.

Despite being automatic, proving the implication consists in

solving a satisfiability problem which suffers from state-space

explosion just like model-checking. To tackle this problem,

we provide uninterpreted functions abstractions to reduce the

proof effort:

• logic operations between bit vectors are abstracted into

booleans. For instance, equality between two vectors a
and b is only considered as either true or false to prove

the implication, regardless of the vectors size;

• forall replicators are not expanded into a conjunction

of sub-properties: only replicated sub-properties (i.e. ex-

pressions using the identifier) are considered. This greatly

reduces the complexity of the proof but comes at the

cost of manually making sure that all possible values are

verified through model-checking.

For example, the following expression gives a property that

has been verified through model-checking:

forall i in {0 : 255} : always{(a = i)→ next(b = i)}
Our abstractions reduce it to boolean “(a = i)” always

implying boolean “(b = i)” at the next state. Since sizes

for vectors a and b do not appear in the expression, it is the

responsibility of the designer to ensure that model-checking

with range {0 : 255} for identifier i covers all possible values

for both a and b. In a case where the provided abstractions are

still not sufficient to run the proof, rewriting local properties

from Step 1 or separating the proof into several steps is

required.
Our translation and abstraction algorithm is available at

[13]. It has been implemented using pyNUSMV [24], a Python

framework for prototyping and experimenting with BDD-

based model-checking algorithms from NuSMV.

C. Step 3: Automatic localization reduction and model-

checking

A model of the hardware design is described in Verilog at

RTL. To automatically generate abstract models dedicated to

the verification of the properties, we rely on hypothesis H0,

defined as follows:

H0: the concrete model is composed of multiple finite systems

running in parallel. When outputs are unused, optimiza-

tions step of synthesis separates them, removes unused

registers and leaves the useful parts of the system un-

touched.

We take advantage of synthesis optimizations step to create

localization reductions of the model: outputs are left uncon-

nected and all state variables from the model that are irrelevant

in verifying the property are abstracted. With H0, we assume

that the useful parts of the system are left untouched and

that there is a simulation relation parameterized by a Galois

connection between the concrete model and the generated

abstract models.

Since H0 is a hypothesis, we conduct an a posteriori

verification and provide a certificate that the abstract model

is simulated by the concrete model. Verified properties are

then preserved. This task is embedded in our framework and

is automatically applied to all generated abstract models. The

strength of this approach is that it makes the verification

process possible for any synthesis optimizations algorithm

and configuration as soon as our certificate guarantees its

soundness. The only restriction is to use the same algorithm

and configuration for converting both the concrete model and

its abstract model.

Regarding our framework, we proceed as follows:

• a Verilog wrapper is automatically created where all the

module outputs which do not appear in the property

are left unconnected. This is achieved using the Verilog

Procedural Interface of Icarus Verilog [25].

• Verilog2SMV synthesizes and translates the Verilog

model, extended with the previously generated wrapper,

and converts it to SMV. Optimizations step from Yosys

proceeds to a localization reduction of the model which

is dedicated to verify the property.

• Verification of replicated properties is split into the veri-

fication of several non-replicated sub-properties, one for

each value of the replicator. This reduces the cost of

model-checking as size of the BDD grows exponentially

with the complexity of the property.

• NuSMV is used to verify that the property holds on its

dedicated abstract model. If the property does not hold,

NuSMV generates a counterexample which is converted

into Value Change Dump (VCD) format.

This operation is repeated for each property as depicted in

sub-graph “Step 3” from Figure 1.

Certificate of soundness

We establish a simulation relation between the concrete

model and the generated abstract model, this is performed

by comparing transition functions of Büchi automata. To

understand the verification of soundness, we first need to

introduce some concepts regarding SMV models.

A SMV model is defined by input variables, state variables,

initial values and transition functions [14], [19]:

• SMV input variables represent the inputs of the hardware

circuit; all possible tuples for SMV input variables values

represent the alphabet (Σ) of the automaton.

• SMV state variables represent Verilog registers as either

single bits, bit vectors or multidimensional arrays; all

possible tuples for SMV state variables values represent

the finite set of states (Q) of the automaton.

• Their possible initial values are set as a result of the

translation from Verilog initial directive; initial states (I)

of the automaton are the product of initial values for all

SMV state variables.

• Finally, SMV transition functions determine, for each

SMV state variable, which SMV state the variable should

be set to from its current state and SMV input variables;

the global transition function (∆) of the Büchi automaton

is also the result of a product between SMV transition

functions for all SMV state variables.

There is no acceptance set (F) in the SMV model since it is

a consequence of having a property to be verified: final states

are, in model-checking, states that satisfy the negation of the

property on the product of both the model and the automaton

generated from the property.
SMV models are then represented by a conjunctive parti-

tioned transition relation [5]: each partition (δ) of the transition

function (∆) for the model is then a transition function for

one SMV state variable. To establish a simulation relation, we

verify that all partitions of the transition function and initial

states from the abstract model are identical in the concrete

model.

Algorithm 1 Comparison of transition functions

Input: C: concrete model, A: abstract model

Output: boolean: soundness of the abstraction

1: [∆C , IC] = parse(C)

2: [∆A, IA] = parse(A)

3: normalize(∆C); normalize(IC)

4: normalize(∆A); normalize(IA)

5: for all δA in partition(∆A) do

6: if not (∃δC ∈ partition(∆C)|δC ≡ δA) then

7: return False
8: end if

9: end for

10: for all qA in partition(IA) do

11: if not (∃qC ∈ partition(IC)|qC ≡ qA) then

12: return False
13: end if

14: end for

15: return True

Algorithm 1 presents how the comparison of transition

functions is performed. It requires two models generated from

the RTL description of the circuit: the concrete model (C)

and the abstract model (A), where both are generated using

Verilog2SMV with the same synthesis optimization algorithm

and configurations. It returns a boolean giving the soundness

of the abstraction. This returned value is true if the expression

of all transition functions and initial states from the abstract

model exist with the same expression in the concrete model.

• First, it parses both the concrete model and the abstract

model to extract their global transition function (∆C , ∆A)

and sets of initial states (IC , IA). As explained earlier,

global transition functions of both automata are the results

of a product between several transition functions (δC ,

δA) from all state variables. Respectively, global initial

states of both automata are the results of a product

between several initial states (qC , qA) from the same state

variables.

• Then, a normalization is performed so that descriptions of

initial states and transition functions are only expressed

with members of the alphabet (Σ) and other states

variables (Q). This step is important since different cir-

cuits have been processed by the optimization algorithm

and descriptions may not result from the same wiring

(Verilog2SMV preserves the hierarchy of the circuits

by expressing wires through the definition of symbols

[14]; initial states and transition functions are expressed

with these symbols). Normalization allows to abstract the

wiring of the circuit as these are not memories and do

not alter the BDD when model-checking.

An implementation of Algorithm 1 is available at [13].

Equivalence of partitioned transition functions is verified

through a comparison at syntactic level. This is justified by

the fact that many abstract models have to be checked for

soundness (one per property) for a single circuit and it makes

the algorithm more efficient. Also, this makes the algorithm

easily adaptable to fit a particular purpose if enhanced with

the use of semantic comparison instead of checking for an

equivalence. It has been implemented using pyNUSMV. Thus,

parsing and normalization functions follow an instrumentation

of NuSMV: the same model checker is used to verify the

soundness of the abstraction and the satisfiability of the

properties.

IV. CASE STUDY

We successfully applied our framework to the verification

of a hardware security monitor involved in a remote attestation

scheme for ARM microprocessors [6]. This could not be

achieved with classical automated approaches.

Modern Systems on Chip (SoC), such as Xilinx Zynq-7000,

integrate ARM microprocessors along with programmable

logic in a single device. This combines the flexibility and the

parallelism of a Field-Programmable Gate Array (FPGA) with

the performances of an Application-Specific Integrated Circuit.

Spatial partitioning for sensitive memories and implementation

of our hardware security monitor takes place in the FPGA.

ARM microprocessors come with a debug interface called

CoreSight which enables real-time instruction flow tracing

without slowing down execution. Traces contain information

to reconstruct the execution of a program which, in our case

study, is composed of cryptographic primitives.

During the computation of an integrity check, the activation

of program flow tracing, combined with the addition of specific

instructions, provides data that can be used for monitoring.

These traces are accessed by the hardware security monitor in

the FPGA and processed to achieve remote attestation security.

The proof strategy to achieve remote attestation security is

described in [6] along with the architecture of our security

monitor. Proving the security is an iterative process involving

model-checking and proving lemmas for each of four hardware

sub-modules as described in figure 2.

A0 ∧P0 → security
1 ∧P1 → A0A1

A2 ∧P2 → A1

A3 ∧P3 → A2

mod l-check ng

mode -chec ing

model c ec ing

Fig. 2. Proof strategy

Overall security is based on axioms that are formally ex-

pressed from the documentation of the SoC (A3). In particular,

the format of ARM CoreSight traces and the events causing

their output are described in PSL. The security monitor is a

composition of four sub-modules dedicated to trace decom-

pression, trace decoding, transduction and security enforcing.

Model-checking ensures that each sub-module verifies local

properties Pi (with i ∈ [0 : 3]) and proofs of lemmas provide

new axioms Ai for the next sub-module.

Understanding the overall verification of the security mon-

itor is not a prerequisite to appreciate the application of our

method as it is an iterative process. To illustrate our approach,

we focus on one iteration: the verification of temporal proper-

ties and proof of a lemma on the CoreSight trace decompresser.

This is relevant because the trace decompresser is the sub-

module of the security monitor which comes with most

memories, hence the bottleneck to model-checking regarding

the state-space explosion problem.

A. The decompresser

Traces are transmitted packet-wise by CoreSight. These

packets are compressed so that unmodified data between two

transmissions is not repeated. A packet header determines the

type of packet being transmitted and compression bits inform

about the presence of following bytes of data [26]. Figure 3

gives an overview of the decompresser’s input/output.

clk

decompresser

reset

enable

in[7:0]

ready

data_size[3:0]

data[(15 × 8)-1:0]

Fig. 3. Overview of the decompresser’s inputs/outputs

The decompresser retrieves data from a 8-bit vector (in) and

features a synchronization clock (clk) and an enable bit: data

is read from input in only when CoreSight asserts this enable
bit, which can be de-asserted in the middle of a reception for

an undefined amount of time. Once all data is received, it is

output to a longer vector which contains the content of the

whole packet. Minimal size for the decompresser’s memory

is fixed by the length of the biggest packet, hence a 15 bytes

memory to store the payload of isync packets [26].

The type of packet being decompressed is identified from

the received header. Expected size for a packet depends on

this identification and the content of the packet; it can vary

between 1 and 15 bytes. Output ready is set at the reception

of the last byte, output data size gives the number of bytes

in the decompressed packet and output data gives its content.

B. Specifications

To guaranty the overall security for the monitor, decompres-

sion for several types of packets must be correct. In particular,

CoreSight branch packets, that provide destination address

for an indirect branch and exception informations, are the

longest packets which decompression must be verified [26],

[6]. In this section, we describe the specifications for correct

decompression of a branch packet.

• data is memorized from input in, at rising edge of clk,

when enable bit is asserted;

• packet type is deduced according to the received header,

i.e. the first received byte;

• if input reset is asserted at rising edge of clk, memo-

rization and packet type deduction are discarded;

• output ready rises when the decompresser receives the

last byte of a branch packet and is set only during one

clock cycle;

• output data size gives the number of bytes in the

decompressed packet when ready rises;

• output data takes the value of the decompressed packet

when ready rises.

Figure 4 shows an example of the reception of a 4 bytes

packet, where w, x, y and z are received bytes (w contains

the packet header) and signal memory refers to an internal

memory. The last received byte is output at its reception.

clk

reset

enable

in[7:0] w x y z

memory[(15 × 8)-1:0] 0 w xw yxw zyxw

ready

data size[3:0] 0 4 0

data[(15 × 8)-1:0] 0 zyxw 0

Fig. 4. Description of the data flow stream

V. APPLICATION TO THE CASE STUDY

In this Section, we show how we applied our approach to

verification of the decompression for ARM CoreSight branch

packets.

The concrete model for the decompresser uses a total of

132 bits for SMV state variables and 11 bits for SMV input

variables. Its description in Verilog HDL has approximately

five hundred lines of code. Verilog2SMV is used to re-create

the SMV model from the HDL, which has approximately five

thousand lines of code. Both Verilog and SMV models are

available at [13].

Verification is conducted using our framework on a com-

puter cluster of 256 nodes for parallelization. Each node has

4GB of RAM and a single-core CPU running at 3GHz.

Computation times and memory usage for this application may

differ if our approach is instantiated in an other toolchain.

A. Step 1: Formal expression of specifications and local

properties

The first step consists in manually expressing the speci-

fications and local properties in PSL. Formal expression of

specifications is a difficult process and might give different

results depending on the designer’s writing choices: several

PSL expressions may translate the same specifications in

natural language.

Here, we provide an example for the formal expression of

specifications from section IV-B. To ease understanding, we

purposefully omit certain aspects of the specifications, such

as the input filtering depending on the format of CoreSight

branch packets. We also omit the duplication of forall opera-

tors for all replicators: this is not syntactically correct as a PSL

replicator only accepts one identifier but it greatly reduces the

representation of the expression. Complete PSL expressions

with correct syntax and dependencies to CoreSight format are

available at [13].

To guaranty the overall security for the monitor, decompres-

sion for the first 7 bytes of branch packets must be correct as

forall i0,i1, i2, i3, i4, i5, i6 in {0 : 255} : (1)

always(

((clk ∧ reset) ∨ (clk ∧ ready))∧ next(

¬(clk ∧ reset) until (clk ∧ ready)

∧ next event(clk ∧ ready)(data size ≥ 7)

∧ next event a(clk ∧ enable)[1 : 1](in = i0)

∧ next event a(clk ∧ enable)[2 : 2](in = i1)

∧ next event a(clk ∧ enable)[3 : 3](in = i2)

∧ next event a(clk ∧ enable)[4 : 4](in = i3)

∧ next event a(clk ∧ enable)[5 : 5](in = i4)

∧ next event a(clk ∧ enable)[6 : 6](in = i5)

∧ next event a(clk ∧ enable)[7 : 7](in = i6)

)

→

next(

next event(clk ∧ ready)(data[7 : 0] = i0)

∧ next event(clk ∧ ready)(data[15 : 8] = i1)

∧ next event(clk ∧ ready)(data[23 : 16] = i2)

∧ next event(clk ∧ ready)(data[31 : 24] = i3)

∧ next event(clk ∧ ready)(data[39 : 32] = i4)

∧ next event(clk ∧ ready)(data[47 : 40] = i5)

∧ next event(clk ∧ ready)(data[55 : 48] = i6)

)

)

they contain destination addresses and exception informations

[26]. This is formally expressed by specification 1.

This PSL specification deals with traces starting when

the decompresser is reset or ready. From the next state, a

restriction for the traces is that input reset cannot be asserted

at a rising edge of clock until output ready is set. Also, only

traces where data size is greater or equal to 7 are considered.

Left side of the implication expresses that data is memorized

from input in, at rising edge of clk, when enable bit is

asserted. This is true for all possible values between 0 and 255

for each of the 7 bytes of data. Right side of the implication

expresses that output data takes the value of the decompressed

packet when ready rises.

Expression of local properties is a manual process. Conjunc-

tion for these local properties must imply PSL specification

1. The designer can keep in mind that this implication is

proven by an automatic theorem prover and that abstracting a

module’s output in a property reduces both the complexity of

the property and the size of the automaton for model-checking.

One possible solution for expressing local properties is to

split the content of output data into seven bytes, where each

local property has one replicator of 256 possible values. An

other solution is to split the content of output data into 7× 8
bits, where each local property has one replicator of 2 possible

values. The first solution is straightforward as expressing

a local property only consists in removing next event a

operators from specification 1. The second solution requires

more rewritings but reduces the complexity of the property and

the size of the automaton even more, enabling model-checking

for more complex specifications.

For our case study, following the first solution is sufficient to

enable formal verification. An example for one local property

is given by expression 2. A total of seven local properties,

following the same approach, is needed to imply the specifi-

cation.

It is possible to give more expressive power to a local

property — in case the same property helps proving more

than one specification. For this reason, the value of output

data size in property 2 is now greater or equal to one —

forall i0 in {0 : 255} : (2)

always(

((clk ∧ reset)∨ (clk ∧ ready))∧ next(

¬(clk ∧ reset) until (clk ∧ ready)

∧ next event(clk ∧ ready)(data size ≥ 1)

∧ next event a(clk ∧ enable)[1 : 1](in = i0)

)

→

next(

next event(clk ∧ ready)(data[7 : 0] = i0)

)

)

since we only verify the first byte of data. But, care must be

taken, when modifying local properties, that the specification

remains provable.

B. Step 2: Proof strategy

Once all seven local properties are available, a proof that

the specifications are implied must be conducted. Since we

wrote the local properties with proof deduction in mind, the

proof strategy is straightforward:

• expressions that appear in both the specification and the

local properties can be left uninterpreted and abstracted;

for instance, we can replace the following PSL expres-

sions with single booleans:

– next event a(clk ∧ enable)[1 : 1](in = i0)
– next event(clk ∧ ready)(data[7 : 0] = i0)

• axioms are added if we gave more expressive power to a

local property. For instance, one axiom can be as follows:

if data size is greater than 7, then it is greater than 1.

• we rely on our framework to translate PSL into LTL, pro-

vide abstractions to reduce the proof effort and generate

the formula. Spot is leveraged to prove the implication.

Figure 5 shows how we prove for the decompression for

ARM CoreSight branch packets. This can be separated in three

steps:

1) uninterpreted PSL expressions are replaced with single

booleans ;

2) a proof is conducted that the specification is implied by

the conjunction of local properties. This step is where

Spot is leveraged, it is represented in red in Figure 5.

3) uninterpreted PSL expressions are refined to re-create

the specification.

Optimizations can be achieved by separating the proof into

several steps. In this case, we create an intermediate property,

which is larger than the local property but smaller than the

specifications to prove, then we follow the same approach. For

example, an intermediate property can describe the decompres-

sion of the first four bytes; then an other intermediate property

describes the decompression of the last three bytes. Steps 2′

and 2′′ in Figure 5 represent how we optimize the proof.

Sources to reproduce the experiment are available at [13].

Table I summarizes memory usage and computation times.

Optimizations %MEM Computation time

No (step 2) 9.6 2 minutes
Yes (steps 2′ and 2′′) < 1 < 2 seconds

TABLE I
PROOF: MEMORY USAGE AND COMPUTATION TIMES

Note: separating the proof into several steps is also an

elegant solution in case we opt for the second solution when

expressing the local properties, i.e. a split of output data into

7×8 bits. In this case, property from expression 2 serves as an

intermediate property. It must be proven from a conjunction

of the local properties and the rest of the proof remains the

same.

Regarding the abstractions of uninterpreted expressions, i.e.

steps 1 and 3 in Figure 5, we provide a coq proof at [13] that

this is correct at semantic level for any temporal property. This

proof relies on a LTL library written in coq [27]. We assume

that LTL semantic is identical for both Spot and this coq

library. So, for this particular proof, verifying the correctness

in Spot for each abstraction is unnecessary. Nevertheless, to

advocate in favor of abstraction of uninterpreted functions, we

leveraged Spot for a verification in some cases. A verification

consists in proving an implication between a local property and

its abstracted form (step 1 in Figure 5). In the abstracted form,

for each value of integer j, the following PSL expressions are

replaced with single booleans:

• next event a(clk ∧ enable)[j + 1 : j + 1](in = ij)

• next event(clk∧ready)(data[8×(j+1)−1 : 8×j)] = ij)

forall i0 in {0 : 255} :
always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)
∧ next event(clk ∧ ready)(data size ≥ 1)

∧ next event a(clk ∧ enable)[1 : 1](in = i0)

)
→

next(

next event(clk ∧ ready)(data[7 : 0] = i0)

)

)
•

•

•∧

forall i6 in {0 : 255} :
always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)
∧ next event(clk ∧ ready)(data size ≥ 7)

∧ next event a(clk ∧ enable)[7 : 7](in = i6)

)
→

next(

next event(clk ∧ ready)(data[55 : 48] = i6)

)

)

1

forall i0 in {0 : 255} :
always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)
∧ next event(clk ∧ ready)(data size ≥ 1)

∧ abstract next event a 0

)
→

next(

abstract next event 0

)

)
•

•

•∧

forall i6 in {0 : 255} :
always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)
∧ next event(clk ∧ ready)(data size ≥ 7)

∧ abstract next event a 6

)
→

next(

abstract next event 6

)

)

2

2′

forall i0, i1, i2, i3 in {0 : 255} :
always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)
∧ next event(clk ∧ ready)(data size ≥ 7)

∧ abstract next event a 0

∧ abstract next event a 1

∧ abstract next event a 2

∧ abstract next event a 3

)
→

next(

abstract next event 0

abstract next event 1

abstract next event 2

abstract next event 3

)

)

∧

forall i4, i5, i6 in {0 : 255} :
always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)
∧ next event(clk ∧ ready)(data size ≥ 7)

...

2′′

forall i0, i1, i2, i3, i4, i5, i6 in {0 : 255} :
always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)
∧ next event(clk ∧ ready)(data size ≥ 7)

∧ abstract next event a 0

∧ abstract next event a 1

∧ abstract next event a 2

∧ abstract next event a 3

∧ abstract next event a 4

∧ abstract next event a 5

∧ abstract next event a 6

)
→

next(

abstract next event 0

abstract next event 1

abstract next event 2

abstract next event 3

abstract next event 4

abstract next event 5

abstract next event 6

)

)

3

forall i0, i1, i2, i3, i4, i5, i6 in {0 : 255} :
always(

((clk ∧ reset) ∨ (clk ∧ ready)) ∧ next(

¬(clk ∧ reset) until (clk ∧ ready)
∧ next event(clk ∧ ready)(data size ≥ 7)

∧ next event a(clk ∧ enable)[1 : 1](in = i0)

∧ next event a(clk ∧ enable)[2 : 2](in = i1)

∧ next event a(clk ∧ enable)[3 : 3](in = i2)

∧ next event a(clk ∧ enable)[4 : 4](in = i3)

∧ next event a(clk ∧ enable)[5 : 5](in = i4)

∧ next event a(clk ∧ enable)[6 : 6](in = i5)

∧ next event a(clk ∧ enable)[7 : 7](in = i6)

)
→

next(

next event(clk ∧ ready)(data[7 : 0] = i0)

next event(clk ∧ ready)(data[15 : 8] = i1)

next event(clk ∧ ready)(data[23 : 16] = i2)

next event(clk ∧ ready)(data[31 : 24] = i3)

next event(clk ∧ ready)(data[39 : 32] = i4)

next event(clk ∧ ready)(data[47 : 40] = i5)

next event(clk ∧ ready)(data[55 : 48] = i6)

)

)

Fig. 5. Proving the decompression for ARM CoreSight branch packets

This verification is resource-intensive as complexity of the

properties grows exponentially with the value of integer j.
Sources to reproduce the experiment are available at [13].

Table II summarizes memory usage and computation times.

j %MEM Computation time

0 < 1 10 seconds
1 < 1 35 seconds

2 1.8 4 minutes
3 100 (runs out of memory)

TABLE II
UNNECESSARY VERIFICATION OF ABSTRACTIONS

This shows the limitations of automatic theorem proving

when dealing with complex properties. Expression of extended

next operators with basic temporal operators, which is not

required if they appear in both the local properties and the

specification, prevents the proof to complete. This is because

the number of basic temporal operators grows exponentially

with the value of integer j for our PSL expressions.

C. Step 3: Automatic localization reduction and model-

checking

The conjunction of our local properties is sufficient to imply

the specifications. Now, model-checking must guaranty that the

decompresser verifies these local properties.

Since we opted for local properties where the content of

output data is split into bytes, our framework automatically

removes 14 bytes of memory from the model, out of 15, at

each abstraction. Also, since our local properties have one

replicator of 256 possible values, our framework automatically

splits the verification into 256 steps where properties are not

replicated. As a consequence, a verification of a local property

on our concrete model results in 256 verifications of sub-

properties that are 28 times smaller, on an abstract model that

is 2(14×8) times smaller, hence an exponentially reduced BDD.

Note: even if the specification is not split into local

properties, our framework would also automatically remove 8

bytes of memory out of 15 in the abstraction. This is because

these 8 bytes of memory do not appear in the specification

either. The verification process would also be split into 7×256
steps since the specification has 7 replicators with a range of

256 values each.

To verify the soundness, our framework automatically cre-

ates one concrete SMV model — in addition to an abstract

SMV model for each sub-property. For each abstract SMV

model, it tries to establish a simulation relation with the

concrete SMV model:

• in case of success, NuSMV is used to verify that the

property holds;

• in case of failure, it shows in a log file the differences

between transition functions and initial states for the state

variables that differ.

NuSMV computes symbolic model-checking of the sub-

properties on their dedicated abstract model. It shows in a

log file the sub-properties and the results of the computation:

• in case a sub-property holds, NuSMV provides the men-

tion ”is true”;

• in case a sub-property does not hold, NuSMV provides a

counterexample. In addition to the log file, our framework

converts the counterexample into a VCD file which can

be visualized with a waveform viewer.

Memory usage and computation times depend on both the

size of the abstract model and the complexity of the property.

Size of the abstract model is identical for each of our seven

local properties. Complexity of the property mainly results of

having a high integer number in the range of PSL operator

next event a. Table III and figure 6 summarize memory

usage and computation times on one node of our computer

cluster, i.e. for the verification of one sub-property. Row

indexes represent the integer number in the range of PSL

operator next event a. Indexes 1 to 7 are of interest as

they represent our seven local properties.
Note: for the sake of the experiment, we verified two un-

necessary properties to evaluate our strategy of decomposition

for more complex specifications. This shows that we could

rely on the same solution if we specify the decompression of

packets with 8 bytes of data, but we nearly reach the limits of

our computer’s memory at the 9th byte.

%MEM Computation time

1 21.9 7 seconds
2 28.4 8 seconds
3 29.9 10 seconds
4 39.5 15 seconds
5 60.2 35 seconds
6 28.7 7 minutes
7 41.6 25 minutes

8 47.9 39 minutes
9 95.0 6 hours 55 minutes

TABLE III
MODEL-CHECKING: MEMORY USAGE AND COMPUTATION TIMES

1 3 5 7
0

20

40

60

80

100

M
em

o
ry

u
sa

g
e

[%
]

0 2 4 6 8 10
0

10

20

30

40

50

C
o

m
p

u
ta

ti
o

n
ti

m
es

[m
in

u
te

s]

Fig. 6. Model-checking: memory usage and computation times

Sources to reproduce the experiment are available at [13].

We recommend to proceed to model-checking on a computer

cluster of 256 nodes. Otherwise, computation times to verify

one local property would be approximately 256 times higher.

D. Summary

To sum up, our framework automatically provided sound

abstractions for our ARM CoreSight trace decompresser and

increased compositional model-checking efficiency. Synthesis

optimizations algorithms helped deducing these abstractions

from the local properties to verify.
We had several solutions to express our local properties: we

opted for a decomposition of an output vector into bytes as it

eases proof deduction and allows model-checking in a reason-

able amount of time. Fortunately, expression is conducted with

proof deduction in mind. So, finding a strategy to prove the

specification is straightforward: we opted to abstract functions

depending on the decomposed bytes as they appear in both

the specifications and the local properties.

In the case where our specification would have been more

complex, we could also have opted for a decomposition of the

output vector into bits. On the one hand, this solution would

have forced us to add one step in the proof strategy since

local properties would be smaller. On the other hand, it would

have greatly reduced model-checking computation times as the

abstract model would automatically be reduced as well.

We also applied our automated framework to the verification

of several hardware modules: we verified the correctness for

trace decompression, trace decoding, transduction and security

enforcing. In the end, it allowed to verify the design of our

whole security monitor and to prove the security for remote

attestation of microprocessor software [6].

VI. LIMITATIONS

This approach can be generalized to the verification of other

sequential circuits with complex specifications. Although, au-

tomatic theorem proving may show some limitations. Despite

many abstractions, implication of the specifications may be

too large to be processed in an acceptable amount of time. A

solution is then to create an intermediate property, which is

larger than the ones that are verified through model-checking

but smaller than the specifications to prove. Then the proof

must be separated into several steps following the same

approach. An example of a proof in more than one step is

publicly available at [13].

Other limitations may occur when it comes to verifying

systems depending on a high number of inputs or when the

memory of an atomic automaton already exceeds the tolerated

size. For such systems, a workaround consists in altering their

architecture so that they can be turned into partitioned systems.

Such a strategy must be anticipated as freezing the architecture

of a system is part of the early stages of the design flow for

integrated circuits.

In a case where the specification contains PSL operators

next event a with a too high integer number in the range,

a different proof strategy must be considered. This might

imply using model-checking to verify simpler properties —

for instance, about the internal memory of the hardware —

and rely on a more complex proof to imply the specifications.

A drawback is that it increases the level of expertise needed

to conduct the proof. In such case, relying on a proof assistant

might be a more elegant solution than decomposing the proof

in a high number of steps.

VII. CONCLUSION

The major obstacles for widespread application of formal

verification to real-world designs are the complexity of their

specifications and the state-space explosion problem. A lot of

work has been dedicated to automatically provide smart ab-

stractions for RTL Verilog and increase compositional model-

checking efficiency [8], [9], [10], [11]. However, dealing with

complex specifications requires to prove their implication from

local properties, and writing properties function of automati-

cally generated abstract models is inconvenient for automatic

theorem proving.

In this paper we propose a framework to overcome this

challenge and help the community going towards the adoption

of formal methods. Our framework leverages the modular and

partitioned aspects of sequential circuits and relies on synthesis

and translation tools [14] to avoid a profound redesign. It

computes convenient and sound abstract models from RTL

Verilog and the properties to verify, allowing to prove com-

plex specifications for hardware designs. Translation of PSL

properties, to be fed to automatic theorem provers, is also

automated and supports uninterpreted functions abstraction to

relieve deductive proof systems in solving the satisfiability

problem.

Further work can be conducted such as using a proven

translation from PSL to LTL [16] to ensure the correctness of

the LTL properties to manipulate. Nevertheless, our framework

has been successfully applied as is to verify the design of

a hardware security monitor for remote attestation of micro-

processor software [6]. Such hardware design contains many

memories and has similar complexity to the ones we find

in industrial designs. This brings hope to see our approach

adopted in the industry, especially since it is agnostic to the

choice of an EDA toolchain.

REFERENCES

[1] W. Khan, M. Kamran, S. R. Naqvi, F. A. Khan, A. S. Alghamdi, and
E. Alsolami, “Formal verification of hardware components in critical
systems,” Wireless Communications and Mobile Computing, 2020.

[2] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and
G. Tsudik, “VRASED: A verified hardware/software co-design for
remote attestation,” in 28th USENIX Security Symposium. Santa Clara,
CA: USENIX Association, Aug. 2019.

[3] C. Wang, G. D. Hachtel, and F. Somenzi, Abstraction Refinement for

Large Scale Model Checking. Springer, 2006.
[4] E. M. Clarke, R. P. Kurshan, and H. Veith, “The localization reduction

and counterexample-guided abstraction refinement,” in Time for Verifi-

cation, Essays in Memory of Amir Pnueli, Z. Manna and D. A. Peled,
Eds. Springer, 2010.

[5] S. Berezin, S. V. A. Campos, and E. M. Clarke, “Compositional
reasoning in model checking,” in Compositionality: The Significant

Difference, International Symposium, COMPOS’97, Bad Malente, Ger-

many. Revised Lectures, W. P. de Roever, H. Langmaack, and A. Pnueli,
Eds. Springer, 1997.

[6] J. Certes and B. Morgan, “Remote attestation of bare-metal microproces-
sor software: a formally verified security monitor,” The 5th International

Workshop on Cyber-Security and Functional Safety in Cyber-Physical

Systems (IWCFS), 2021.
[7] Coresight Technology System Desgin Guide, no. ARM DGI 0012D

ID062610, 2006-2013.

[8] Z. S. Andraus and K. A. Sakallah, “Automatic abstraction and verifica-
tion of verilog models,” in Proceedings of the 41th Design Automation
Conference, DAC 2004, San Diego, CA, USA, S. Malik, L. Fix, and
A. B. Kahng, Eds. ACM, 2004.

[9] H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke, “Word-level
predicate-abstraction and refinement techniques for verifying RTL ver-
ilog,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2008.

[10] Y. Ho, P. Chauhan, P. Roy, A. Mishchenko, and R. K. Brayton,
“Efficient uninterpreted function abstraction and refinement for word-
level model checking,” in 2016 Formal Methods in Computer-Aided

Design, FMCAD, Mountain View, CA, USA, R. Piskac and M. Talupur,
Eds. IEEE, 2016.

[11] C. Yu and M. J. Ciesielski, “Automatic word-level abstraction of
datapath,” in IEEE International Symposium on Circuits and Systems,

ISCAS 2016, Montréal, QC, Canada. IEEE, 2016.
[12] 1850-2010 IEEE Standard for Property Specification Language (PSL).

IEEE, 2010.
[13] J. Certes and B. Morgan, “Verification materials:

source code and examples,” 2021. [Online]. Available:
https://gitlab.irit.fr/these-jonathan-certes-public/erts-2022

[14] A. Irfan, A. Cimatti, A. Griggio, M. Roveri, and R. Sebastiani,
“Verilog2smv: A tool for word-level verification,” in 2016 Design,

Automation & Test in Europe Conference & Exhibition, DATE 2016,
Dresden, Germany, 2016.

[15] C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.
[16] T. Tuerk and K. Schneider, “From PSL to LTL: A formal validation in

HOL,” in Theorem Proving in Higher Order Logics, 18th International
Conference, TPHOLs 2005, Oxford, UK, Proceedings, J. Hurd and T. F.
Melham, Eds. Springer, 2005.

[17] T. Tuerk, K. Schneider, and M. Gordon, “Model checking PSL using
HOL and SMV,” in Hardware and Software, Verification and Testing,
Second International Haifa Verification Conference, HVC 2006, Haifa,

Israel, Revised Selected Papers, E. Bin, A. Ziv, and S. Ur, Eds., 2005.
[18] M. Y. Vardi, “An automata-theoretic approach to linear temporal logic,”

in Logics for Concurrency - Structure versus Automata (8th Banff Higher

Order Workshop, Banff, Canada, Proceedings), 1995.
[19] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,

M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv version 2: An
opensource tool for symbolic model checking,” in Proc. International

Conference on Computer-Aided Verification (CAV). Copenhagen,
Denmark: Springer, July 2002.

[20] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and
L. Xu, “Spot 2.0 — a framework for LTL and ω-automata manipulation,”
in Proceedings of the 14th International Symposium on Automated

Technology for Verification and Analysis (ATVA). Springer, Oct. 2016.
[21] R. Milner, “An algebraic definition of simulation between programs,”

in Proceedings of the 2nd International Joint Conference on Artificial

Intelligence. London, UK, 1971.
[22] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis, “Property

preserving simulations,” in Computer Aided Verification, Fourth Inter-

national Workshop, CAV ’92, Montreal, Canada, Proceedings, G. von
Bochmann and D. K. Probst, Eds. Springer, 1992.

[23] NuSMV 2.6 User Manual. FBK-irst - Via Sommarive 18, 38055 Povo
(Trento) – Italy, 2015.

[24] S. Busard and C. Pecheur, “Pynusmv: Nusmv as a python library,” ser.
LNCS, G. Brat, N. Rungta, , and A. Venet, Eds., vol. 7871. Springer-
Verlag, 2013, pp. 453–458.

[25] S. Williams, “Icarus verilog,” http://iverilog.icarus.com/.
[26] CoreSight Program Flow Trace Architecture Specification, no. ARM IHI

0035B ID060811, 1999-2011.
[27] C. M. V. Reyes, “Ltl (linear temporal logic) in coq,”

https://github.com/spidermoy/LTL Coq.

Session We.2.PO

Poster overview

Wednesday 1st June

14:00

–

Amphithéâtre

77

78

Short paper - Structural consistency of MBSE and MBSA models
using Consistency Links

Romaric DEMACHY
Sébastien GUILMEAU

romaric.demachy@irt-saintexupery.com
sebastien.guilmeau@irt-saintexupery.com

IRT Saint Exupéry
Toulouse, France, France

ABSTRACT

The systems designed in industrial fields such as aeronautics or

aerospace are more and more complex. In order to handle this

complexity as well as the increasing need of digital continuity,

model-based solutions are more and more introduced for system

design (MBSE). In this picture, in order to ensure the consistency

between the system design and the safety analysis, and thus increase

the confidence in safety analyses results, our proposal is to ensure

the consistency between MBSE and MBSA (Model Based Safety

Analysis), which represent different views of the same system. To

do so, we define Consistency Links (CL) that make a bridge between

the structural items of each model. Associated with dedicated rules,

that can be systematically checked, the CL can be used to drive the

cross-review of models done by system engineers (SE) and safety

specialists (SA) to increases detection of inconsistencies between

models.

The work presented here is part of the S2C project and involves

industrial partners from the space and the aeronautical industry. It

is led jointly by IRT Saint Exupéry and IRT SystemX.

Keywords : Model-Based System Engineering, Model-Based

Safety Assessment, digital continuity

1 PROBLEM STATEMENT

When designing a system which must comply with safety require-

ments, the process shall ensure, as early as possible and all along

the design phase, that the system architecture is compatible with

them.

The safety assessment is performed by SA teams and imply the

usage of safety methods and tools. Methods such as Fault Tree Anal-

ysis have been used for decades, but MBSA approach has emerged

and is now recognized as an acceptable mean of compliance by aero-

nautic regulation authorities. Indeed, this approach is identified

in ARP4761A, which gives guidelines and methods of performing

the safety assessment for certification of civil aircraft, and will be

soon published by SAE International. Ensuring the correctness of

SA models with regards to the system design is mandatory for the

relevance of the safety assessment. In current practices, this relies

on exchanges and cross-review between the SE team and the SA

team.

As the system design process also progressively relies on MBSE

approaches, there is an opportunity to ease this review process by

taking advantage of the provided model’s formalism. The problem

becomes : how to ensure a better consistency between the MBSE

model and the MBSA model ? As these analyses are currently per-

formed on specific tools dedicated to eitherMBSE orMBSA analysis,

we choose here to focus on the case where two different (i.e. each

model has its own objectives and modeling choices) and heteroge-

nous (i.e. each model uses a specific modeling language) models are

used. In this paper, the problem is narrowed taking into account

the following constraints :

• Constraint A (CA): For MBSE models: only architecture

description models (Capella, SysML, ...) and exclude spe-

cialised models (digital mock-up, electrical wiring mod-

els,etc...)

• Constraint B (CB): For MBSA models: we consider failure

propagation models (Altarica,...)

• Constraint C (CC): Only the structural consistency is cov-

ered in this paper, the consistency of the behavior being a

more difficult issue

The benefits of using such models to ease the review between

system and safety experts in the aeronautical context has been

discussed in [1]. The problem of synchronisation of architecture

models and safety models has been adressed in [2]. This thesis

is based on the analysis that the information exchanged between

these assets are informal. In [3] and [4] a processus for the synchro-

nisation of MBSE and MBSA models has been proposed, consisting

in the projection onto a dedicated language called S2ML (System

Structure Modeling Language). [5] proposes an approach consisting

in a digital collaborative space based on the federation of modeling

languages into a common ontology.

The work presented here consists in a projection into a pivot

meta-model in order to evaluate the structural consistency. The

proposed method is implemented it in a tool and experimented on

a representative case study.

Section 2 describes the principles of the method and details

the consistency link concept. Section 3 gives details on how the

method has been implemented in a tool for a Proof of Concept.

Section 4 shows how the method and its implementation have

been experimented on a representative case study, and what are

the qualitative gains that have been identified. Section 5 lists the

perspectives for future activities.

2 CONSISTENCY LINKS METHOD

To ease the consistency review, the proposed method consists in

defining consistency links (CL) between groups of artifacts of each

model with the following semantic : "The MBSE model element(s)

and theMBSAmodel element(s) linked together represent the same

object". Then, we can decompose the review to address only small

and well defined perimeters at a time.

A CL carries, also, the consistency validation by reviewers. This

is made concrete by the elements associated to the CL : a rationale

that captures justification and assumptions, a validation status,

meta-data such as the the review date and authors. The meta-model

of the CL object and associated concept is represented on the figure

1 below.

Figure 1: Metamodel of consistency link.

In this paper, the CL has been particularized for the functional

architecture, although it could be adapted to other viewpoints, such

as the logical or the physical architecture. Two types of CL are

defined : CL for Functions (CLF), and CL for functional flows (CLfl).

These concepts are illustrated on figures 2 and 3 below.

Figure 2: Consistency links for functions.

Coverage and consistency rules for these CL have also been

defined.

The coverage rules ensure that all leaves of the functional break-

down and all functional flows are covered by one and only one

CL

• Rule 1 : Each leaf function (i.e. lowest function in functional

breakdown structure) of each model shall either be linked

by one CLF , or have one hierarchical function (at any level

of breakdown) that is linked by one CLF.

• Rule 2 : Each flow whose source and destination functions

are linked to different CLF shall be linked by a CLfl.

Figure 3: Consistency links for functional flows.

The consistency rules ensure that the defined CLF and CLfl are

globally consistent.

• Rule 3 : In each model, two flows that are linked to a same

CLfl shall have source functions that are linked to a same

CLF . Symmetrically, they shall have destination functions

that are linked to a same CLF .

• Rule 4 : Given a CLfl, the source CLF from MBSE model

shall be the same as the source CLF from MBSA model.

Symmetrically, the destination CLF from MBSE model shall

be the same as the destination CLF from MBSA model.

Checking that the CL set is compliant to these rules can be easily

automated.

3 IMPLEMENTATION

The implemented process is illustrated by the figure 4, and starts

with the SE and SA domain’s models that are to be CL-linked. Con-

straints CA and CB induce an horizontal "language gap" because

methods and tools (M&T) differs between domains. To work around

this, models are translated automatically to abstracted ones (con-

sidering their relative M&T). Pragmatically, those new models are

compound data flow graphs where edges are only between the

more nested nodes. That means hierarchical functions of functional

decomposition are the compound nodes with no flows between

them. SEIM (Systems Engineering Information Model) meta-model

rules both new models. It is limited to a subset of concepts re-

quired by structural consistency needs due to constraint CC. So,

SEIM introduces a vertical "language gap", filled by the definition

of a transformation logic producing SEIM concepts from domain’s

tools ones. The automation (i.e. concepts’ extraction from domain’s

model then transformation to SEIM ones) is the last step of abstrac-

tion activity. SEIM policy is not to merge both domain’s languages

Short paper - Structural consistency of MBSE and MBSA models using Consistency Links

Figure 4: Implementation synopsys.

in an universal one, but rather to be the minimal intersection be-

tween domain’s meta-models to fulfill targeted needs. This policy

reduce the analysis workload on tools’ meta-models.

Next process’ step is the edition of CL via a graphical user in-

terface (GUI), see figure 5. Through it, zero or more SE abstracted

Figure 5: Partial view of the Graphical User Interface.

artefacts are linked with zero or more SA abstracted ones. As the

new models may have not the same abstraction’s depth (inherent

to the initial models), abstracted hierarchical compound nodes can

be linked too. This allows a customized alignment between ab-

stracted models limited to structure in this paper. This alignment

is dependent of the granularity of domain’s models, that means a

coarsest model will drive the alignment of models. Complemen-

tary data (like rationale) are added, also, to get grips with realized

grouping for the future cross-review. GUI has graphical capabilities

that auto-layouts part of both abstracted models simultaneously, so

that editor can navigate freely through them or redisplay artefacts

he grouped previously via CL. At each saving action, the defined

rules are automatically checked using CL and models. Linking may

reveal inconsistencies originated by erroneous CL edition or by

inconsistencies between models. In the first case, CL are updated

while correction and publication of model has to be done for the

second one. At end of the step, both disjunctive partition of the

respective intermediate and abstracted models is reached.

When all rules are passed, cross-review between SE and SA ex-

perts starts from CL editor’s proposed-partitioning. GUI graphical

capabilities are used again so that both contributors share the same

common representation. As the GUI represents an abstraction of

original models, it exists a "view gap" (see 4). For Structural con-

cerns, this discrepancy is limited. Round trips between authoring

tools and GUI remain easy. After experts agree on a CL-scoped

consistency they change its status and update possibly its rationale

too. When all CL-scoped cross-review are done, a global and justified

consistency status can be acted regarding the models.

Implementation considered also the iteration problem of mod-

els and CL. During design phase, models are updated (corrected,

enlarged, etc,...) so the consistency status becomes suspicious at

each evolution. But for the versioned models and CL, the rules of

method and the automated step are reused to identify the flaws

and/or corrupted CL. So incremental cross-review can be achieved

by SE and SA experts to foster inspection only on impacted part of

their models.

4 VALIDATION

In order to assess the feasibility and evaluate the gains of themethod

presented in 2 and implemented in the consistency management

tool as described in 3, it has been experimented with the AIDA case

study 1. This case study is a drone system which aims at assisting

the pre-flight check of a commercial aircraft. It consists mainly in

an architecture description model in Capella 2 which is used here

as the MBSE model. For the purpose of the S2C project, an MBSA

model has been developed in the SimfiaNeo tool, edited by Apsys3.

This case study is representative of a medium size aeronautical

system : obviously not as complex as an aircraft, but with enough

depth and complexity to assess the feasibility of the method in an

industrial case.

The validation activity has explored several phases of the life-

cycle of such models : the initial creation of the CL set, the update

of the CL set following changes in one of the models, the cross-

review led jointly by SE and SA specialist to validate each CL. The

cross-review exercise has been done as closest as possible to real

conditions, with a system engineer and a safety specialist.

The tables 1 and 2 show some metrics to illustrate the size of

the case study. Table 1 shows the number of model items, before

and after the abstraction step. This illustrates the benefits of the

abstraction step, which "flattens" the flows in the SimfiaNeo model.

As Capella already applies the principle of direct flows between

leaves elements, the abstraction step does not further reduce the

number of flows in the MBSE abstracted model. Table 2 shows

the number of CL created along with their cardinality (number

of elements from each model in a CL). It illustrates the flexibility

proposed by the method, which enables to associate any number of

elements from each model in a same CL. In particular, the possibility

1AIDA is a public case study developped by the System Engineering center of compe-
tence of IRT Saint Exupéry. It is fully open-source and available here : https://sahara.irt-
saintexupery.com/AIDA/
2https://www.eclipse.org/capella/
3https://www.apsys-airbus.com/

Type of

model

element

MBSE

model

Abstracted

MBSE

model

MBSA

model

Abstracted

MBSA

model

Functions 159 159 148 148

Funct. flows 285 285 438 196

Table 1: Complexity of the MBSE andMBSA models

Cardinality Numb. of CLF Numb. of CLfl

1 MBSE to 1 MBSA 33 60

1 MBSE to n MBSA 2 7

n MBSE to 1 MBSA 7 20

n MBSE to m MBSA 2 3

0 MBSE to 1..n MBSA 1 9

1..n MBSE to 0 MBSA 6 36

Total 51 135

Table 2: Complexity of the resulting CLset

to associate elements from one model only to a CL (i.e. those for

which the cardinality is 0-1..n) is useful for model elements that are

relevant in only one of the model. For example :

• TheMBSE model may contain functions that have no safety

impact and are not represented in the MBSA model. This

can occur when a preliminary analysis, such as a Functional

Hazard Assessment (FHA), has been realised, or thanks to

"expert" knowledge of the system.

• The MBSA model contains SA specific artifacts, such as the

failure conditions observers, that are not represented in the

MBSE model.

The Rationale attribute of the CL allows to capitalize the modelling

choices and associated assumptions. The cross-review will particu-

larly focus on the validation of these "not 1-1" CL.

The validation activity has shown the following qualitative gains

for the proposed method :

• theCL comes on top of the existingMBSE andMBSAmodels,

without generating additional modeling constraints,

• the coverage and consistency rules associated to the CL set

have shown efficiency in the detection of mismatches in the

flow consistency, while being flexible enough to address

a large number of model elements at the desired level of

details,

• the CL are helpful for the detection and propagation of

model changes,

• the CL offer a structure for an efficient cross-review focused

on model changes,

• the tooling support for consistency link definition and cross-

review is feasible outside the captive authoring tool, al-

though the developed tool could be matured for a better

user experience,

• the CL are relevant for discussions and justifications capi-

talization.

Globally, the CL method has proven to be useful to increase the

confidence in the structural consistency of models. The induced

workload may be slightly increased, which can be put in balance

with the avoidance of running future biased analyses due to incon-

sistent models.

5 PERSPECTIVES AND FUTUREWORK

The work presented here is a first attempt to ensure the consistency

between MBSE and MBSA models. It focuses on the structural con-

sistency of the functional architecture. The tool implementing the

method has the maturity of a Proof Of Concept.

Several axes of improvement can be identified :

• The method could be extended to cover also the logical and

physical architectures. Topics such as the allocation of func-

tions on logical or physical components could be addressed.

This would be particularly relevant as the safety assessment

is usually performed at those levels of representation, and

not only on the functional aspects.

• The tool can be improved in order to provide better user

experience : rationalization of the displayed information,

improvement of navigation and user displayed messages.

Additional capabilities such as report edition or assistance

algorithm for the creation of CL (ex: CL suggestion based

on the similarities of the objects names in both models)

could also be considered.

In addition of the local consistency handled by the CL at structural

level, it is important to assess the consistency between the MBSE

and MBSA behavioral level. Two approaches are possible either by

simulation on overall models or by static local analysis on common

models perimeters.

6 CONCLUSION

With the emergence of model-based approaches for the design of

complex systems, and because these systems are sometimes subject

to strong safety requirements emitted by the regulation authorities,

the problem of ensuring the consistency between MBSE and MBSA

models of a same system arises.

Within the frame of the S2C project, we proposed a method

to address the topic of structural consistency. An object called

"Consistency Link" (CL) has been defined, and particularized to

address the functional architecture. These CL are constrained by

coverage and consistency rules.

For validation purpose, the method has been implemented in a

tool. Although some improvements of the tool are needed to make

it usable in a industrial context, it helped to assess the validity of

the method.

The AIDA study case has been used to experiment the method. It

has shown qualitative gains for the consistency cross-review activity,

and an overall improvement in the trust one can have in the safety

assessment of the system.

The method only addresses at the moment the problem of struc-

tural consistency of the functional architecture. While some im-

provement axes for themethod have been identified, the S2C project

currently focus on possible approaches to evaluate the behavior

consistency.

Short paper - Structural consistency of MBSE and MBSA models using Consistency Links

REFERENCES
[1] T. Prosvirnova, E. Saez, C. Seguin, and P. Virelizier. Handling consistency between

safety and systemmodels. In IMBSA 2017 (International Symposium onModel-Based
and Assessment), pages pp.19ś34.

[2] Anthony Legendre. Ingénierie système et sûreté de fonctionnement : Méthodolo-
gie de synchronisation des modèles d’architecture et d’analyse de risques.

[3] Michel Batteux, Tatiana Prosvirnova, and Antoine Rauzy. System structure mod-
eling language (s2ml). 2015.

[4] Michel Batteux, Tatiana Prosvirnova, and Antoine Rauzy. Model synchronization:
A formal framework for the management of heterogeneous models. In Yiannis
Papadopoulos, Koorosh Aslansefat, Panagiotis Katsaros, and Marco Bozzano,
editors, Model-Based Safety and Assessment, pages 157ś172, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-32872-6.

[5] LaurentWouters, Stephen Creff, Emma Effa, and Ali Koudri. Collaborative systems
engineering: Issues & challenges. pages 486ś491, 04 2017. doi: 10.1109/CSCWD.
2017.8066742.

Experimenting with Dynamic Cache Allocation to
Improve Linux Real-Time Behaviour

Aléxis Génèrès†,
† LAAS-CNRS

31400, Toulouse, France

Email: ageneres@laas.fr

Michaël Lauer†, Jean-Charles Fabre†
† LAAS-CNRS

31400, Toulouse, France

Email: firstName.lastName@laas.fr

Abstract—Embedded systems have an increasing need for com-
puting power. To address this issue, we can implement critical and
non-critical tasks in the same multicore processor. A disadvantage
of this kind of processor is the indeterminism it involves due to its
complexity. New technologies, like dynamic allocation of cache
memory, allow reducing the impact of this indeterminism. In
this article, we provide an experimental approach to verify if the
dynamic allocation of the cache memory of Intel (CAT Intel) is
efficient.

Index Terms—multi-core, real time, multiple criticity, cache
allocation

I. INTRODUCTION

The growing need for computing power in embedded sys-

tems is leading companies to use multi-core processors. The

increased number of onboard applications requires combining

high criticality tasks with low criticality tasks on the same

multi-core processor. Unfortunately, the uses of multi-core

processors induce a lack of predictability of their temporal

behavior due to their shared resources: memories, communi-

cation buses... These factors can provoke deadlines violation

for high criticality tasks, and also a sub-optimal use of the

computing power for low criticality tasks. [1].
In this paper, we target one factor: the cache memory shared

between the cores of a processor. Our goal is to evaluate the

gain of our mechanism of dynamic cache allocation regarding

deadlines respect and processing power performance. Further-

more, we want to know if the use of these mechanisms can

be implemented with a minimum effect on the background

tasks. On the one hand, a static allocation allows to isolate

the temporal tasks and thus, to limit the interferences linked

to the shared resources. However, on the other hand, the

cache memory, in case of a static allocation, is then no longer

fully available for other tasks, even if the temporal tasks are

terminated. This limits the use of the processor. In this study,

we will therefore focus on dynamic allocation to avoid this

behavior.
In this preliminary work, we will realize a set of experiments

using high criticality tasks and low criticality tasks on a

single multi-core processor. More specifically, we will use the

technology of cache memory allocation to isolate the cache

memories of the tasks having a different level of priority. The

goal is to evaluate the impact of dynamic low-level cache

allocation mechanisms on the side-effect of shared resources.
To achieve this evaluation, we will use the Earliest Deadline

First (EDF) scheduling of Linux. Based on the works of Lelli

[2], we can use the EDF scheduling of Linux and guarantee

the real-time requirements if we limit the computing power at

90% on one core. For our experiments, we will also use CAT

technology of Intel. In section II of this article we describe

this work. In this section, we also define our experimental

approach and tools to analyze the last level of cache memory

mechanism. In section III, we detail our experimental platform

and our protocol to evaluate the mechanism.

II. EXPERIMENTAL APPROACH AND TOOLS

A. Experimental approach

The goal behind our experimental protocol is to improve the

execution determinism of the high criticality task while also

ensuring optimal performances for the low criticality tasks.

To this end, we will evaluate the relevance of the dynamic

allocation of cache memory on the shared cache memory.

To do this, we will simulate one high criticality task with 12

low criticality tasks. After that, we will measure the response

time of the high criticality task to evaluate the non-violation of

the deadline and thus the execution determinism. In a second

time, we will estimate the computing power that we can use

for low criticality tasks by measuring the IPCs of the 12 low

criticality tasks.

Therefore, the experimental approach to evaluate the impact of

dynamic low-level cache allocation mechanisms for reducing

the effect of shared resources will be composed of three

phases.

1) Without cache memory allocation.

2) With static cache memory allocation.

3) With dynamic cache memory allocation.

If we do not observe any ”deadline miss” nor any behavior

side-effect with dynamic allocation, we can state that dynamic

allocation has no negative impact on the high criticality task.

B. Tools

In our experimental framework, the high criticality task is

scheduled with the EDF scheduling policy of Linux (named

SCHED DEADLINE). This scheduler is characterised by three

key parameters: ”runtime”, ”deadline” and ”period”. The

”runtime” parameter represents the budget allocated by the OS

to perform the task before its deadline. This budget is refreshed

at each new period. If this budget is fully consumed, the task is

suspended and we consider its deadline as missed. We manage

the low criticality tasks using the default scheduling policy of

Linux: ”time-sharing”.

For cache memory allocation, we use the Intel CAT (Cache

Allocation Technology)[3]. CAT allows us to allocate a sub-

space of memory of the last level cache of the processor. We

can use CAT for multiple cores or processes. The allocation

is done via a software lock: a mask that changes the write

permissions only. It’s granularity is determined by the number

of ways in the CPU. For example, in a 8 ways last level

of cache, we can allocate from 1 to 8 ways (zero is not

possible) to one or multiple processes. The maxmium number

of allocation depends on the CPU models.

Finally, we use BCC (BPF Compiler Collection)[4] to

collect data (IPC and response times). BCC permit our obser-

vation mechanisms and measures to be implemented. BCC is

a group of elementary tools which allows us to program and

use BPF (Berkeley Packet Filter) probes in order to collect

the necessary data for our experiments. BCC introduces a

low overhead in terms of computing power and provides key

elements to implement fine-grained instrumentation.

III. EXPERIMENTAL PROTOCOL

The overall approach to address the problem is composed

of three phases. Each phase consists of the execution of

the high criticality task alone, then, in a second step, the

execution of the high criticality task and low criticality tasks

simultaneously. This step aims to generate interference. The

three phases are the following:

• Without cache memory allocation.

• With static cache memory allocation.

• With dynamic cache memory allocation.

For the realization of the experimental protocol, we will

use a two processors system. Each processor is an Intel

Xeon Bronze 3204 (named Xeon 3204). A Xeon 3204 has

6 cores without hyperthreading, its last level is an 11-way set-

associative cache with a size of 8.25MB. The L2 caches are

of a size of 1MB each and are not shared by multiple cores.

Based on the information about the last level cache of our

processors, we can explain the use of CAT in this experimen-

tation. Using CAT we can exploit two times 11 ways for the

allocation. Each way is an allocation of 0.75 MB of memory

space. Since our high criticality task needs 3 MB of cache

memory space, to isolate it, we will use CAT to allocate a

sufficient number of ways : 5 ways. We will also deactivate

the write authorization in the same memory space for the low

criticality tasks.

The operating system we will work on is a 5.12.5 Kernel.

It allows us to have access to the last version of BCC. We

will use BCC to save the start date of the high criticality task.

We will also need, using this compiler collection, to save any

violation of the deadline for the high criticality task and, to

measure the Instruction per Cycle (IPC) of each core.

A. Step by step protocol

Each of these phases (without allocation, with a static

allocation, and with a dynamic allocation) regroup two steps;

the first with the high criticality task alone and the second

with the high criticality task and the low criticality tasks in

parallel.

As we use the EDF Linux schedule for the high criticality

task, we must specify the three parameters of this scheduler:

runtime, deadline, and period.

For our experiment, the runtime is 150ms and the period

is equal to the deadline: 200 ms. Both of the tasks (high

criticality and low criticality) use an entry data size of 3 MB.

Indeed, to provoke the effect of the shared memory, the entry

data size needs to be greater than the size of L2 cache memory

size which is 1MB for the Intel Xeon 3204.
1) Without cache memory allocation phase: as mentioned

before, the first step is to launch the high criticality task alone

with the observation tools. This step intended to collect the

reference response times.

The second step is to launch the high criticality task and the

low criticality tasks at the same time. The low criticality tasks

are represented by 12 stress tasks, one per core (two processors

with 6 cores), which will flood the cache memory. Thereby,

we could measure the effect of noisy neighbors on our system.

This effect is due to the interferences of the memories shared

by other tasks.
2) With static cache memory allocation phase: the static

cache memory allocation will be effective until the end of this

step. To set the allocation, we will allocate five successive

ways among the 11 available in the processor. We can do this

allocation using the CAT intel technology.

This allocation will be exclusive to the high criticality task.

The allocated memory size is 3.75 MB (0.75MB by way). In

fact, it needs to be greater than 3 MB which is the size of

the data used by the high criticality task.

The first step, which is to launch the high criticality task

alone, will allow us to observe the effect of cache allocation

on the high criticality task response time. This effect should

be insignificant.

The second step, which is to load the system with our

12 stress tasks, should give us the same results, i.e we will

not have any modification of our response times because the

allocation protects the high criticality task. Since we use only

five or the 11 ways, we suppose that the absence of the six

other ways will impact the number of instructions per cycle.
To observe this result we compare:

• the average response time.

• the average IPCs of all the cores.

3) With dynamic cache allocation phase: for this phase,

we also use five of the existing ways for the allocation. We

will deactivate this allocation when the high criticality task has

terminated and reactivate it at the beginning of a new period.
To analyze the impact of the dynamic allocation, we will

compare the dynamic and the static allocation regarding the

average response.

To study the computing power of the low criticality tasks,

we will compare the dynamic and the static allocation regard-

ing the IPCs. This comparison will be done while the stress

tasks are activated. We should observe a higher IPC in the

case of dynamic allocation. This would conclude about the

efficiency of this mechanism towards low criticality tasks.

IV. RELATED WORKS

In this section, we will detail some solutions to make coexist

a high criticality task and tasks of low-level criticality on the

same multi-core processor.

The first solution is illustrated by the works of Suzuki and

others [5]. It suggests allocating for each core a subspace of

the cache memory. Then, to set the core affinity of the high

criticality task to only one core and assign all the other cores

to the low criticality tasks. This solution has been proven to

limit the impact of the shared resources. However, it is quite

pessimistic due to the proprietary of one core, which can be

not fully used, to the high criticality task. This solution showed

similarities with the static allocation of cache memory (risk of

over-allocation).

Another type of solution, that we call ”all-or-nothing” is

to execute the high criticality task while we deactivate all

the low criticality tasks. Such is the case of the works of

Kritikakou and others. [6] which shows how to guarantee

the real-time constraint with a two-step method. First, by

executing tasks with different levels of criticality in parallel.

Then, by deactivating the low criticality tasks based on a

computation of the RWCET (remaining worst-case execution

time). Other works of Kiritikakou and others. [7] and Girbal

and others. [8] uses this same method. In our experimental

approach, we want to be less pessimistic and keep the low

criticality tasks activated.

Finally, a solution proposed by Xu and others. [9] uses CAT

technology to allocate cache memory on Virtual Machines.

The number of Virtual Machines is equal to the different levels

of criticality. Then, tasks are executed on these Virtual Ma-

chines depending on the level of criticality. The disadvantage

of this method is that the low criticality tasks will never use

100 % of cache memory due to pre-reservation.

V. CONCLUSION

Our experimental protocol aims to analyze the dynamic

allocation mechanism of the last lever cache, with an exper-

imental computer of two intel processors, using Linux. This

experience allows us to decide on the efficiency of this kind

of mechanism using a real-time task with a period of around

100ms. Furthermore, our approach is meant to limit the impact

of the dynamic allocation on the low criticality task regarding

the computing power. At the moment, we are developing

dynamic allocation tools for our experimental platform.

CAT has a limited precision when it comes to ensuring the

allocation of ways of the processor’s last level cache.

The technology used for scheduling, which is Linux EDF,

exclude the possibility to manage the core affinity for specific

task.

About the first limitation due to CAT technology. If the

dynamic allocation is efficient, then we will circumvent this

issue by affecting different allocations over the time period of

our experimentation. More specifically, we will allocate the

sufficient ways for a task during its time execution only and

then reallocate the same ways to another task when the first

one is over. Thank’s to that, we can artificially increase the

size of the last level cache available for the tasks.

Regarding the second limitation, Linux is going through a

process of adding real time assets on it’s new Kernel. We

therefore expect this limitation to be resolved in a near future.

After obtaining the experimental results, our outlooks are

to add other high criticality tasks in our system as a first step.

Then, to use more than one core for the high criticality tasks

as a second step.

REFERENCES

[1] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza, J. Reineke,
B. Triquet, and R. Wilhelm, “Predictability considerations in the design of
multi-core embedded systems,” 05 2010, pp. 36–42. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.172.4533&rep
=rep1&type=pdf

[2] A. L. Lelli Juri, Scordino Claudio and F. Dario,
“Deadline scheduling in the linux kernel,” Software prac-

tice and experience, vol. 46, 2015. [Online]. Available:
https://onlinelibrary.wiley.com/doi/epdf/10.1002/spe.2335

[3] K. Nguyen, “ cat cache allocation technology ” 2016. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/articles/introduction-
to-cache-allocation-technology.html

[4] “Bpf compiler collection (bcc),” 2021. [Online]. Available:
https://github.com/iovisor/bcc

[5] N. Suzuki, H. Kim, D. d. Niz, B. Andersson, L. Wrage, M. Klein, and
R. Rajkumar, “Coordinated bank and cache coloring for temporal protec-
tion of memory accesses,” in 2013 IEEE 16th International Conference

on Computational Science and Engineering, 2013, pp. 685–692.
[6] A. Kritikakou, T. Marty, and M. Roy, “DYNASCORE:

DYNAmic Software COntroller to Increase REsource Utilization
in Mixed-Critical Systems,” ACM Tran. on Design Automation

of Electronic Systems, vol. 23, 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3149546.3110222

[7] A. Kritikakou, C. Rochange, M. Faugère, C. Pagetti, M. Roy,
S. Girbal, and D. G. Pérez, “Distributed run-time wcet controller
for concurrent critical tasks in mixed-critical systems,” in Proceedings

of the 22nd International Conference on Real-Time Networks and

Systems, ser. RTNS ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 139–148. [Online]. Available:
https://doi.org/10.1145/2659787.2659799

[8] S. Girbal, X. Jean, J. Le Rhun, D. G. Pérez, and M. Gatti, “Deterministic
platform software for hard real-time systems using multi-core cots,”
in 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC),
2015, pp. 8D4–1 to 8D4–15.

[9] M. Xu, L. Thi, X. Phan, H.-Y. Choi, and I. Lee, “vcat: Dynamic cache
management using cat virtualization,” in 2017 IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2017, pp.
211–222.

1 Model-based approach for the design of high-performance computer based architectures 2021-08-25

Model-based design of high-performance computer-based architectures

Speaker: Alexander Haliulin (alexander.haliulin@vector.com)

Author: Alexander Haliulin

Vector Informatik GmbH

Ingersheimer Str. 24, 70499 Stuttgart, Germany

Conference Domain: Processes, methods and tools, embedded computing platforms and networked systems

Conference Topics: Modes-based system engineering, embedded networks, service-oriented platforms

Keywords: Model-based development, high performance computer, automotive

Short paper

This paper focuses on a domain-specific architecture description language (ADL), that can be utilized in a model-

based tool to design automotive Electric/Electronic-architectures. This ADL should be able to describe relevant

aspects of modern E/E-architectures holistically with sufficient precision, clarity, and visual expressiveness to be

understood by professionals of different disciplines in the automotive industry. Due to the pursued completeness

of models, it should enable transformations into various standardized formats and allow metric calculation for

optimization purposes. To cover innovations related to centralized computers in the vehicle, both regarding to-

pology and implementation of service-oriented architectures (SOA), the problem of the design and deployment

of applications in heterogeneous E/E-architectures on the system level is addressed. For this purpose, the exist-

ing domain-specific language Electric/Electronic-Architecture-ADL (EEA-ADL), used in the tool PREEvision, is ex-

tended. Furthermore, an integrated workflow using EEA-ADL is proposed, which could help establishing a com-

prehensive model of various deployment scenarios.

Introduction

Confronted with trends such as autonomous driving and connectivity, the industry is undergoing tremendous

changes. Established E/E-architectures are not able to cope with emerging requirements for future automotive

applications [1][2][3]. On the one hand, the amount and complexity of software functions are steadily increasing

and require powerful computing resources and communication channels with higher bandwidths [1][4]. This re-

sults in the introduction of ethernet in automotive networks and centralized computer architectures. Function-

ality is removed from deeply embedded electronic control units (ECUs) and allocated on heterogeneous high-

performance computers (HPCs) [1][5]. On the other hand, functions need to communicate to the outside world

with offboard machines providing further services and data. The variety of protocols, that will be employed in

these newly introduced communication paths, can only be guessed beforehand [5]. The structure of software

architectures is changing as well. The conventional, predominantly signal-oriented manner of communication of

automotive applications is complemented by the service-oriented paradigm of communication [6][7][8]. Conse-

quently, future automotive E/E-architectures will be increasingly complex and versatile, thus presenting an ob-

stacle to existing methodology and tooling, used for the design at system level [7].

The answer to system complexity may lie in a consequent use of a model-based approach throughout the devel-

opment. Existing ADLs usually exhibit either a lack of expressiveness to depict complex software architectures or

topology, or a lack of usability, by preventing clear graphical notation [17][18][19]. Therefore, they cannot con-

stitute a model-based workflow in which E/E-architectures can be designed and described comprehensively on

different levels of abstraction, establishing clarity in the overview of possible scenarios of software allocation on

heterogeneous hardware platforms, the so-called “deployment problem” of software units.

Model-based approaches for handling the deployment problem

Several concepts of Model-Based System Engineering (MBSE) are known in the automotive sector [10][11]. They

aim to provide a formal system description and refine it in various steps, allowing to derive further artifacts,

preferably in an automated way. Known concepts include code generation, based on formal descriptions, and,

by means of model transformations, derivation of the same model into different exchange formats [11], such as

AUTOSAR XML. The model needs to be kept in a consistent state on all levels of abstraction. i.e., evolutions of

requirements must necessarily lead to corresponding adjustments on dependent artifacts and vice versa [12].

Among the fundamental tasks to be performed by an appropriate model-based tooling, Rohdin et. al. points out

notation of requirements, elaboration, and distribution of functions within a network topology [10]. A holistic

model of the deployment on system level, may be achieved by a combination of tools or can be seamlessly

2 Model-based approach for the design of high-performance computer based architectures 2021-08-25

integrated into a single model-based tool [13][14][15]. The latter approach facilitates traceability between dif-

ferent abstraction layers and overcomes boundaries between tools. Further advantages and challenges of each

of the alternatives are addressed by Herrmann et. al. [12].

MBSE needs to cope with a fundamental challenge to establish appropriate description languages. Hölldobler et.

al. [16]. provide an overview of MBSE methods currently considered in research. A comprehensive overview of

some of the most important existing and widely used ADLs is covered by Haber [17] and Wortmann [18]. Con-

stantly, the dilemma of the expressiveness of a language is being approached. Generic ADLs can be extended,

processed, and applied to different domains more flexibly. Opposed to them, domain-specific ADLs aim to cap-

ture systems of their domain, e.g., avionics or automotive, more precisely, at a cost of being difficult to maintain

and to extend [16][18]. A notable automotive specific ADL is the Electronics Architecture and Software Technol-

ogy (EAST-ADL). It provides a metamodel for system modeling covering the four abstract layers Vehicle, Analysis,

Design, and Implementation. On the implementation level, however, EAST-ADL fully relies on the metamodel of

the AUTOSAR standard, directly including it. There are several tools with different levels of maturity, which apply

EAST-ADL. Another integrated approach is proposed by Kugele et. al., who describe an optimization algorithm

dealing with the deployment problem in a holistic architectural model, however operating on an own ADL, lim-

ited both in terms of software and topology expressiveness [13]. Considerable efforts have been made in graph-

ical representation of models designed in domain specific ADLs [15][19][20]. However, conceptual completeness,

usability and visual abilities of the approaches proposed so far are still not mature.

Comparable to EAST-ADL, EEA-ADL is a domain-specific language focusing on automotive and allows a holistic

description of E/E-architectures including the notation of requirements, logical (or functional) architecture, soft-

ware architecture, hardware architecture, network topology and wiring harness. Based on the Meta-Object Fa-

cility (MOF), it can be extended according to new requirements. Figure 1 shows an exemplary formal abstraction

of an ECU by means of the EEA-ADL.

Figure 1: MOF-based approach of the EEA-ADL

It is arguable, which level of completeness and precision models need to be transformable into different formats

or visualized in a tool in a comprehensible way. However, only upon a precise model, various metrics can be

calculated on the same database providing necessary details for a certain system design scenario, such as bus

load, costs, and length of the wiring etc. opening up various ways of optimization.

3 Model-based approach for the design of high-performance computer based architectures 2021-08-25

Modern E/E-architectures

An evolution towards centralized E/E-architectures can be observed in the automotive sector. Figure 2 shows an

overview of a modern architecture consisting of onboard and offboard participants, which can be classified into

the following, hierarchically ordered, clusters [2]:

• Sensor/Actuator Layer (Commodity ECUs, Domain ECUs)

• Computing Layer (High Performance Computers)

• IT Backend Layer and External Devices (Offboard)

Figure 2: Network diagram of a modern E/E-architecture modeled in PREEvision

Onboard participants are ECUs of vastly differing complexity. While deeply embedded commodity ECUs are han-

dling sensors and actuators directly, and executing simple control, diagnostics, or monitoring functions, domain

ECUs integrate functionality of a specific functional domain. They communicate with commodity ECUs, which

they are supervising, in a signal-based manner over field buses such as CAN or LIN [8]. Finally, HPCs establish

computing platforms of the vehicle. The internal structure of an exemplary HPC is shown in Figure 3.They can

communicate both in a signal-based way using legacy bus standards and in a service-oriented way via Ethernet.

HPCs can combine (multicore)-microcontrollers alongside with microprocessors providing powerful computing

resources for automotive applications of high complexity [2][3]. Both, as well as hypervisor technology, allow for

several virtual environments with independent, e.g., POSIX-based, operating systems, to be executed on an HPC.

Functionality from different domains can be deployed on such independent partitions, and while the layout and

significant parts of an HPCs functionality will lie in the responsibility of an OEM, applications of certain partitions

will potentially be supplied and developed independently [2]. Between partitions of an HPC, communication can

be established by various kinds of inter-process communication (IPC) [8]. Lastly, HPCs can be connected via a

connectivity unit to offboard servers, which also must be considered in the overall design [5]. All structural ele-

ments mentioned and depicted in Figure 2 and Figure 3 have been considered during the extension of the EEA-

ADL.

Based on Ethernet, the paradigm of SOA is gaining in importance and must be supported during system level

design. SOA treats software as encapsulated in services, i.e., sets of functionalities, provided, or consumed over

defined interfaces. Such interfaces can integrate different communication paradigms like Remote Procedure

Calls (RPC) or publish-subscribe patterns, and therefore need a specific generic notation, as well as the ability to

be assigned to software units. SOA aims to make software development independent from the hardware. This is

ensured by using a middleware which abstracts from a specific communication technology. Still, deployment

4 Model-based approach for the design of high-performance computer based architectures 2021-08-25

decisions must be taken during system design for the sake of optimal core assignment of applications. Since

flexibility is a key benefit of SOA, enabling software updates during the whole lifetime of a vehicle [1], changes

and extensions to services, addition of new services, additional service consumers etc. need to be supported by

design tools in a flexible way and consistently aligned with the deployment decisions made.

Figure 3: Component diagram of a HPC modeled in PREEvision

To describe a deployment scenario of software units in heterogeneous hardware architectures using EEA-ADL, a

workflow involving several conceptual layers of the language, is proposed. A schematic of this workflow is shown

in Figure 4:

Figure 4: Workflow for completing deployment scenarios in relation to the layer architecture of PREEvision

In a first step, requirements are noted, providing input for a functional design. Based on this implementation-

independent design, the software and hardware architectures are elaborated. The actual deployment decisions

are made in a subsequent step by mapping of software to hardware. Different possible deployment scenarios

can be evaluated using variants. On a holistic model of each deployment variant, formalized in EEA-ADL, various

metrics such as static bus loads, costs etc. can be calculated. Based on the calculated metrics, a particular de-

ployment scenario can be chosen. Further steps can include a potentially automated synthesis of communication

artifacts and possible optional modeling steps, e.g. specification of communication characteristics, summarized

as refinement in the workflow overview.

5 Model-based approach for the design of high-performance computer based architectures 2021-08-25

References

[1] AUTOSAR (2020): Explanation of Adaptive Platform Design – AUTOSAR AP R20-1

[2] Reinhardt, Dominik; Dannebaum, Udo; Scheffer, Michael; Traub, Matthias (2019): High Performance Processor Architecture for Auto-

motive Large Scaled Integrated Systems within the European Processor Initiative Research Project

[3] Sommer, Stephan; Camek, Alexander; Becker, Klaus; Buckl, Christian; Zirkler, Andreas; Fiege, Ludger; Armbruster, Michael; Spiegelberg,

Gernot; Knoll, Alois (2013): RACE: A Centralized Platform Computer Based Architecture for Automotive Applications

[4] Varas, Marcelino (2019): Service-orientierte Software-Architekturen: Brücken schlagen

[5] Tischer, Mirko (2018): Das Rechenzentrum im Fahrzeug.

[6] Heling, Günther(2019): Neue Herausforderungen für AUTOSAR

[7] Helmling, Markus (2017): Service-orientierte Architekturen und Ethernet im Fahrzeug: Auf dem Weg zum fahrenden Rechenzentrum.

[8] Oertel, Markus; Zimmer, Bastian (2019): E/E-Architekturen mit AUTOSAR Adaptive. Mehr Leistung, bitte!

[9] Rumez, Marcel; Grimm, Daniel; Kriesten, Reiner; Sax, Eric (2020): An Overview of Automotive Service-Oriented Architectures and Impli-

cations for Security Conutermeasures

[10] Rohdin, Martin; Ljungberg, Lars; Eklund, Ulrik (2002): A Method for Model Based Automotive Software Development

[11] Schlingloff, Holger; Conrad, Mirko; Dörr, Heiko; Sühl, Carsten (2014): Modellbasierte Steuergerätesoftwareentwicklung für den Au to-

mobilbereich

[12] Herrmann, Christoph; Krahn, Holger; Rumpe, Bernhard; Schindler, Martin; Völkel, Steven (2009): Scaling-Up Model-Based Develop-

ment for Large Heterogeneous System with Compositional Modeling

[13] Kugele, Stefan; Pucea, Cheorghe (2014): Model-Based Optimization of Automotive E/E-Architectures

[14] Eder, Johannes; Bahya, Andreas; Voss, Sebastian; Ipatiov, Alexandru; Khalil, Maged (2018): From Deployment to Platform Exploration.

Automatic Synthesis of Distributed Automotive Hardware Architectures

[15] About EAST-ADL http://www.east-adl.info/Specification.html (25.08.2021)

[16] Hölldobler, Katrin; Michael, Judith; Ringert, Jan Oliver; Rumpe, Bernhard; Wortmann, Andreas (2019) Innovations in Model-based

Software And Systems Engineering

[17] Haber, Arne (2016): MontiArc – Architectural Modeling and Simulation of Interactive Distributed Systems

[18] Wortmann, Andreas (2016): An Extensible Component & Connector Architecture Description Infrastructure for Multi -Platform Model-

ing

[19] Lu, Jinzhi; Wang, Jiquang; Chen, Dejiu; Wang, Jian; Törngren, Martin (2018): A Service-Oriented Tool-Chain for Model-Based Systems

Engineering of Aero Engines

[20] Grönniger, Hans; Hartmann, Jochen; Krahn, Holger; Kriebel, Stefan; Rumpe, Bernhard (2009): View-Based Modeling of Function Nets

1

Towards Model-Based Support for STPA as a

Capella Add-On

Olivier Constant, Emmanuel Ledinot, Jérôme Le Noir

Thales Research & Technology, 1 av. Augustin Fresnel, 91120 Palaiseau, France

Category: Short paper

Keywords: Safety, MBSA, STPA, STAMP, MBSE, Arcadia, Capella

Introduction

STPA (System-Theoretic Process Analysis) [1][2] is a risk analysis method that considers Safety

as a dynamic control problem. It allows identifying, in particular, problems or hidden assumptions

in the design of a system that may lead to hazards through inappropriate interactions, even in the

absence of breakdowns and cascading failures. By considering sociotechnical control structures, it

allows the scope of the analysis to cover technical concerns as well as human factors and

organizational issues.

As the evolution of the nature and complexity of systems tends to increase the possibility of

inappropriate or badly understood interactions – due to the emergence of Systems of Systems, the

increase of autonomy favored by progress in Artificial Intelligence, or the pervasive presence of

software and connectivity, for example –, the focus and scope of STPA seem all the more relevant.

Model-Based Systems Engineering (MBSE) provides well-established engineering practices and

tools that help design complex systems. By primarily working on models rather than documents,

engineers benefit from consistent views, validation, traceability, impact analysis and many other

features that contribute to increase trust in the quality of the design.

When applying STPA on the design of a safety-critical system, the presence of an MBSE context

is thus likely. Going further, expressing an STPA analysis as (a part of) a model makes it possible

to smoothly integrate it with other engineering artefacts and benefit from model-based features that

help strengthen its contents. That, however, requires dedicated tool support.

We have investigated tool support in the form of an add-on to the open source Capella MBSE

tool [3]. This paper describes the rationale we have followed to design and develop the tool and its

main capabilities. The tool is currently in an evaluation and improvement phase.

Rationale

STPA takes as input information about the goals of the system, its intended environment and

usage, its design at some level of abstraction. Among other things, this information is used to

elaborate a sociotechnical Hierarchical Control Structure which identifies control relations and loops

– internal or external to the system – that functionally contribute to the preservation of safety

constraints. The method then challenges how critical and trustable these control loops are. As

2

outputs, STPA provides additional requirements and design constraints, and explicit usage

restrictions. STPA is thus both a consumer of, and a contributor to, information that is at least

partially present in a typical system architecture model. Support for traceability, consistency, impact

analysis and version control is thus of particular relevance.

Capella is an open source model-based system architecture tool. Based on the Arcadia method

[4], it proposes complementary modeling “perspectives” to clarify and analyze the needs

(operational and system analyses), and elaborate a corresponding solution (logical and physical

architectures). Roughly, every perspective is concerned with functional aspects – what has to be

performed – and structural aspects – what are the entities or components involved, what functions

are allocated to them, how they interact.

Depending on the objectives of the modeling activity and project constraints, perspectives do not

necessarily need to be elaborated in their “natural” order nor with the same degree of detail. Every

perspective is mostly independent in the sense that when an entity appears in different perspectives,

it is technically represented by different model elements. Those elements are bound by traceability

links which, all together, form the basis for global consistency checking. The cost of using links is

mitigated by tool support that helps synchronize perspectives.

We judged this approach relevant for STPA because an STPA analysis sheds its own light on the

system in terms of concerns and abstractions, while it is clearly related to the other perspectives.

This approach also provides flexibility in the modeling process and supports “standalone” STPA

analyses in the absence of system architecture models. So we developed tool support for STPA

similarly to a perspective. A different concern or analysis may require a different approach [5].

While we thus opted for a loose integration on methodological aspects, we chose a tight

integration from a technological point of view. We heavily relied on the technological stack of

Capella in order to benefit from model-based capabilities and features that are provided by its

constituent open source Eclipse technologies and by Capella itself.

Although we obviously had to define a metamodel for STPA [6] and design diagrams and tables

[7], a number of features worked essentially out of the box: model/diagrams/tables synchronization,

model navigation, basic validation, impact analysis, mass visualization and edition, user-defined

queries, diff/merge, version control with Git, reuse by duplication and synchronization

(“REC/RPL”). Other features like simplified navigation (“Semantic Browser”), methodological

guidance (“Activity Explorer”) or HTML documentation generation were obtained through

dedicated customizations. All these features contribute to obtaining a full-fledged, albeit

experimental, model-based engineering environment supporting STPA.

Related Work

A number of tools supporting STPA are available [8]. Among those that integrate into modeling

environments, CAMET/SESSAF [9] is a commercial tool which extends OSATE [10] and its

modeling language AADL. Similarly, SAHRA [11] is based on SysML in the Enterprise Architect

environment. Other proposals have been made to integrate with SysML [12][13] according to certain

3

methodological principles. At a sole language level, the Object Management Group is working on

RAAML [14], a new specification that extends SysML to cover STPA concepts, among others. It is

in beta stage at the time of writing.

Our approach differs from the ones above in that we are not trying to integrate STPA into an

existing modeling language. By considering STPA as an independent perspective on system

architecture, we impose very few assumptions and constraints on modeling processes and

methodology while trying to keep the STPA language (metamodel) as simple as possible to use.

XSTAMPP [15] and STAMP Workbench [16] are open source tools whose technological stack

share a small subset with Capella’s. Nonetheless, that part is too small to realize the tight integration

mentioned above. Finally, ANSYS presented work in progress [17] that seems closer in spirit to our

approach, but it has not been released as a product yet, to our knowledge.

Tool highlights

The illustrations below come from the case study of a delivery drone introduced in [18]. All

STPA steps are covered. Figure 1 shows tool support for methodological guidance (Activity

Explorer) and the edition of hazards. The edition of losses, safety constraints and loss scenarios is

similar. We also found useful to add a table for the elicitation of stakeholders and stakes.

Figure 1: STPA steps in the Activity Explorer, edition of stakes, edition of hazards

Figure 2: Properties, local graphical view, relation view (Semantic Browser) of a hazard

Figure 2 shows the editable properties of a hazard, its relations with other elements in a diagram

and in tree widgets. More globally, the influence and justification of every element in the whole

analysis can be visualized (impact analysis, Figure 3). Figure 3 and Figure 4 illustrate the edition of

hierarchical control structures, the edition of unsafe control actions and the analysis of causal factors.

Figure 5 - left-hand side shows the details of a controller with its process model, responsibilities and

mapping to elements of the Logical Architecture perspective (blue squares).

4

Since the analysis led to the addition of constraints as countermeasures on the controller, and the

controller is mapped to a component in the Logical Architecture, that logical component

automatically inherits those constraints. This is demonstrated in Figure 5 - right-hand side, where

“STPA Design Constraints” appears in the bottom left-hand corner when the component is selected.

Figure 3: Impact analysis (of a loss scenario in this case), hierarchical control structure

Figure 4: Edition of unsafe control actions, study of causal factors

Figure 5: Focus on a controller, impact on the Logical Architecture

Conclusion

We have designed model-based tool support for STPA with the intent that it benefits from a tight

technological integration while leaving freedom w.r.t. its methodological integration with system

architecture. We see it as a first step enabling practitioners to carry out significant experiments, with

the objective to gain maturity on possible design processes involving design iterations and parallel

work with perspective synchronization and consistency checking.

5

Acknowledgements

We thank Juan Navas and his team at Thales Global Services for all the fruitful discussions.

References

[1] Leveson, N.G. Engineering a Safer World: Systems Thinking Applied to Safety (2011). MIT

Press.

[2] Leveson, N.G., Thomas, J.P. STPA Handbook (2018).

https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf.

[3] Capella MBSE Tool. https://www.eclipse.org/capella/

[4] Voirin, J.-L. Model-Based System and Architecture Engineering with the Arcadia Method

(2017). ISTE Press.

[5] Navas, J., Voirin, J.-L., Paul, S., Bonnet, S. Towards a Model‐Based approach to Systems and

Cyber Security co‐engineering (2019). INCOSE International Symposium 29(1):850-865.

[6] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E. EMF: Eclipse Modeling Framework,

2nd Edition (2008). Addison-Wesley Professional. https://www.eclipse.org/modeling/emf/

[7] Sirius technology. https://www.eclipse.org/sirius/

[8] MIT Partnership for Systems Approaches to Safety and Security (PSASS): STAMP Tools.

http://psas.scripts.mit.edu/home/stamp-tools/

[9] Adventium Labs. How to Conduct Safety Analysis with SESSAF

https://youtu.be/V1fsUdWluCw

[10] OSATE: Open Source AADL Tool Environment.

https://osate.org/

[11] Krauss, S., Rejzek, M., Hilbes, C. Tool qualification considerations for tools supporting STPA.

Procedia Engineering 128 (2015) 15-24. 3rd European STAMP Workshop (2015).

[12] Hurley, M., Wankel, J. Safety guided design using STPA and model-based system engineering

(MBSTPA). STAMP Workshop (2019).

[13] Rey de Souza, F.G., de Melo Bezerra, J., Hirata, C.M., de Saqui-Sannes, P., Apvrille, L.

Combining STPA with SysML Modeling. 14th Annual Systems Conference SYSCON (2020).

https://hal.telecom-paris.fr/hal-02933575/document

[14] Object Management Group. Risk Analysis and Assessment Modeling Language (RAAML)

Libraries and Profiles, Version 1.0 - beta 1 (2020).

https://www.omg.org/spec/RAAML/1.0/Beta1/PDF

[15] Abdulkhaleq, A., Wagner, S., XSTAMPP: An eXtensible STAMP Platform as Tool Support for

Safety Engineering. STAMP Conference (2015).

https://github.com/SE-Stuttgart/XSTAMPP

[16] STAMP Workbench (IPA – Information-technology Promotion Agency).

https://www.ipa.go.jp/english/sec/reports/20180330.html

6

[17] Gabriel, N., Holz, E. SOTIF and FuSa STPA for a Highway Pilot Function of a Passenger Car.

European STAMP Workshop and Conference (2020).

https://warwick.ac.uk/fac/sci/wmg/mediacentre/wmgevents/stamp/wmg_eswc_day_2.pdf

[18] Ledinot, E. CPS Engineering: Gap Analysis and Perspectives (2021). CoRR abs/2104.13210.

PLATO N-DPU ON-BOARD SOFTWARE:

AN IDEAL CANDIDATE FOR MULTICORE SCHEDULING ANALYSIS

Philippe Plasson (1), Gabriel Brusq (2), Frank Singhoff(3), Hai Nam Tran(3), Stéphane Rubini(3), Pierre Dissaux (4)

(1) LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules

Janssen, 92195 Meudon, France, philippe.plasson@obspm.fr
(2) CNES, 18 avenue Edouard Belin 31400 Toulouse France, gabriel.brusq@cnes.fr

(3) Lab-STICC, CNRS UMR 6285, Univ. of Brest, 20, av Victor le Gorgeu, 29200 Brest, France, surname@univ-brest.fr
(4) Ellidiss Technologies, 24 quai de la douane, 29200 Brest, France, pierre.dissaux@ellidiss.com

INTRODUCTION

Each day, space missions require ever more computing

power. PLATO mission, parts of ESA’s Cosmic Vision
program, is no exception. To answer the demand,

multiprocessors chips are now used in space industry. In

several ways it impacts space engineering habits.

Architects have to rethink their software designs to

benefit these extra processing resources, while

considering shared accesses constraints. Their real-time

applications are based on complex dynamic architectures

and require a schedulability proof for flight. A model

based analysis approach has been selected for PLATO N-

DPU ASW. An AADL model representative of the

application has been designed, and analysed through

AADLInspector and Cheddar tools. In this paper, we

present the PLATO N-DPU ASW architecture, and the

LESIA GERICOS framework it relies on. We also

discuss the model and the tools used to perform

schedulability analysis.

1. PLATO MISSION PRESENTATION

1.1. PLATO mission goal

PLATO (“PLAnetary Transits and Oscillations of stars”)
is an M-class mission of the European Space Agency

foreseen to be launched in 2026 [3]. PLATO aims to

characterize exoplanetary systems by detecting planetary

transits and conducting asteroseismology of their parent

stars.

The PLATO payload concept is based on a multi-camera

approach, involving a set of 24 normal instruments

monitoring stars fainter than mV=8, plus a smaller set of

two fast instruments observing extremely bright stars

with magnitudes brighter than mV=8.

1.2. PLATO On-Board Data Processing System

The PLATO Data Processing System, called DPS, is the

sub-system of PLATO payload module in charge of the

on-board data processing (data acquisition, data

reduction, data compression, monitoring, etc.) [4]. The

DPS is a set of several on-board computer boards

connected via a SpaceWire network. The DPS

architecture is composed of:

- 12 Normal Data Processing Units (N-DPU)

embedding a GR712RC dual-core LEON3FT

SPARC V8 processor.

- two Fast Data processing Units (F-DPU)

- two Instrument Control Units (ICU) working in

cold redundancy

The N-DPU and F-DPU are connected via SpaceWire

interfaces to the front-end electronics of the normal (N-

FEE) and fast (F-FEE) cameras at one end and to the ICU

at the other.

The N-DPU and F-DPU are in charge of processing

respectively the data of two normal cameras for each N-

DPU and the data of one fast camera for each F-DPU.

The active ICU is responsible for managing the payload,

communicating with the spacecraft service module, and

compressing the scientific data before transmission as

telemetry packets.

1.3. PLATO N-DPU Application Software Overview

The N-DPU Application Software (N-DPU ASW) is the

embedded software deployed in each of the 12 N-DPU

boards. Each N-DPU ASW manages two cameras (four

21-million pixel detectors per camera) and collects

science and housekeeping data from their N-FEE. During

the Observation mode, each N-DPU unit is receiving

window segments of observed stars from both N-FEE as

inputs. The window segments are transferred every 6.25

seconds through a single SpaceWire link per N-FEE. The

window segments are then reconstructed back using a

lookup table into windows and are processed by the N-

DPU ASW.

The detector exposure time is 25 seconds, but the four

detectors are read sequentially every 6.25 seconds with a

read-out time of four seconds.

In the observation mode, the N-DPU ASW role is to

produce 6x6-pixel square-shaped windows (i.e. raw star

windows not transformed on-board) for 21% of the

incoming stars (out of 132350 stars per camera) and

photometry products using binary mask algorithms for

79% of them.

The photometry products are made up of star flux and

centroids of stars. The N-DPU ASW computes also the

offset, background, smearing and performs outlier

detection.

The N-DPU ASW calculates light fluxes and centres of

brightness (COB) every 25 seconds. These photometry

products are then averaged over 50 and 600 seconds

(samples of two and 24 measurements respectively). The

averaged photometry is then sent to the ICU.

The other 21% stars (27500) of each camera are directly

transmitted to the ICU.

In addition to the science services, the N-DPU ASW

offers services dedicated to calibration activities: full-

image acquisition service and window acquisition

service.

Last but not least, the N-DPU ASW implements services

for checking the telecommand packets, managing the

production of housekeeping reports and event reports,

handling the time, accessing to the N-DPU and N-FEE

memories, managing and monitoring the on-board

parameters, etc.

2. SOFTWARE FRAMEWORK AND DYNAMIC

ARCHITECTURE

2.1. GERICOS framework

The architecture of the N-DPU ASW is built according

to an Asymmetric Multi-Processing approach (AMP)

using the GERICOS framework running on top of the

RTEMS 4.8 real-time kernel (Edisoft version).

The GERICOS platform (GEneRIC Onboard Software),

which is a generic platform for the development of space

payload software, is made up of two parts:

- GERICOS C++ framework: a set of layered,

reusable and customizable software components,

- GERICOS::TOOLS: a set of tools for automatizing

the development process of embedded software

(building chain, code generation, UML profile,

UML diagram transformation, AMP support, …).
The GERICOS::CORE layer, which is part of C++

framework and which acts as a middleware, offers an

extremely lightweight (small memory footprint),

optimized (low CPU resources) and space qualified

implementation of the active object paradigm on top of a

real-time kernel.

With the GERICOS::CORE layer, a real-time application

is built as a set of active objects (called "tasks"), each

active object having its own message queue and its own

computational thread. Each Thread processes incoming

messages one by one by executing the function

associated with the message [5].

The support of the AMP architecture in the GERICOS

framework relies on the intrinsic features of the active

object paradigm of the GERICOS::CORE layer. With

this paradigm, two objects communicate via marshalled

messages. Each object is split in an implementation

object (which implements the services offered by the

object) and in a stub object which is responsible for the

marshalling aspects (message serialization, message

unserialization). The marshalling process implemented

in the stub has been extended so that the objects are able

to communicate from a CPU core to another one using

simple communication mechanisms based on shared

memory for passing the messages and spin locks based

on the LEON3 atomic compare-and-swap operation

(CASA instruction) to make safe the inter-core

concurrent access to the memory.

The GERICOS::CORE task components include

functionalities for recording and reporting either

response time statistics or execution time statistics of the

various threaded functions. These features are used to

assess by measurements the worst-case execution times

(WCET) needed by the scheduling analysis model.

2.2. Dynamic architecture

The dual-core AMP architecture of the N-DPU ASW

means that two applications coexist.

The first application, which acts as the master, is

deployed on the LEON3-FT CPU core #0 and is in charge

of managing the ICU interfaces (telecommand and

telemetry packets), processing the data of camera #A,

managing modes and technical services. This first

application is made up of 21 tasks supporting 57 threaded

functions. Among these threaded functions, only 23 have

been identified as playing a key role in the computational

model used for performing the scheduling analysis of the

observation mode, which is the most demanding and

critical mode of the software.

The second application is deployed on the LEON3-FT

CPU core #1 and is in charge of processing the data of

camera #B and scrubbing the memory. This second

application is made up of 9 tasks supporting 35 threaded

functions. Among these threaded functions, 13 have been

identified as playing a key role in the computational

model.

In terms of real-time sequencing, the fundamental period

to consider is 6.25 seconds: the software receives every

6.25s a new set of star windows to process. The

transmission of these star windows is spread over the 4.1

seconds corresponding to the readout of the detector. Up

to 25 packets of 32 kilobytes are transmitted per second

by the camera over the readout period. At the end of the

packet reception, the software has to extract the window

segments from the packets and reconstruct the windows

in less than 2.15 seconds, that is to say before the end of

the cycle of 6.25 seconds. Once the reconstruction phase

is complete, the software can start the photometric

processing. These photometric treatments are carried out

during the transmission of the star windows of the next

detector and must imperatively be finished 4.1 seconds

after the starting of the following cycle. Figure 1

illustrates the sequence of the N-DPU ASW tasks with

the main periods and deadlines.

This real-time sequencing and the related constraints are

the same for both applications. The main difference is

related to the periodic technical functions (data pool

management, housekeeping packet production,

monitoring of the parameters, transmission of telemetry

packets, etc.) which are not the same for both

applications. These threaded functions execute

periodically in the cycle of 6.25 seconds with a period

that depends on the function (between 50 ms and one

second).

Science processing (n-1)
Window

processing (n)

Window acquisition (n)

Periodic technical tasks (TM transmission, ...)

4.1 s. 2.15 s.

Figure 1: sequence of the N-DPU ASW tasks with the

main periods and deadlines

During the observation mode, both applications

communicate through the circular buffers containing the

telemetry packets. The second application builds the

telemetry packets corresponding to the data from camera

B and stores them in a shared queue. The first application

retrieves these packets from the shared queue and

transmits them to the ICU. There can also be inter-core

message exchanges when, for example, an event is

detected by the second application and a report must be

transmitted by the first application.

2.3. Real-time constraints

The N-DPU ASW is a real-time software where failure

to conform to timing constraints can result in a loss of

science data or of the instrument. Particular attention

shall be paid to the window and science processing tasks

which are considered critical for the scientific mission. A

schedulability proof must be provided to validate that the

dynamic architecture design prevents any deadline miss

for those critical activities.

2.4. Dynamic model

The real-time application presented above is based on a

complex dynamic architecture. A schedulability proof

and CPU margins are required for flight in order to

comply with ECSS standards. Such results are tricky to

obtain because of the multi-core architecture. In

particular, every access conflicts and locks must be taken

into account. A model of the PLATO N-DPU ASW has

been specifically designed to describe all its dynamic

properties, and in particular, shared resources access,

priority inheritance protocols, synchronization

mechanisms, tasks precedence’s constraints, WCET, …

Dynamic model design is a trade-off between model

representativeness and model complexity. The goal is to

propose a model using simplification hypothesis as little

pessimistic as possible, to end up with sufficient

representativeness to guarantee the schedulability

analysis validity. In particular, some modelling

hypothesis have been proposed for caches and DMA

burst transfers. The model is populated thanks to real-

time measurements performed on the on-board computer,

via a dedicated GERICOS feature.

The next section details how the model of the application

can be analyzed to get a schedulability proof and a worst-

case CPU occupation ratio. These results are then

confronted with the CPU margin requirements.

3. SCHEDULABILITY ANALYSIS

3.1. Cheddar Scheduling Analysis Tool

Cheddar is an open-source real-time scheduling analysis

tool developed and maintained by the University of Brest

and Ellidiss Technologies [1]. Recent improvements

have been implemented to support scheduling analysis of

software running on multi-core architectures [2].

Although Cheddar can be used in a standalone mode, i.e.,

using its own internal modelling language and editor, it

is also semantically compliant with the SAE-AS5506

international standard (AADL: Architecture Analysis

and Design Language) and can thus be easily integrated

within interoperable systems and software development

toolchains.

3.2. AADL Language

The AADL standard [7] has been defined to describe

software intensive real-time system architectures and to

embed a sufficient level of semantics to enable early

analysis at model level. It is used worldwide for mission

critical programs in the aerospace, ground transportation

and medical device industries.

AADL is supported by a variety of modelling and

analysis academic and industrial tools, including Osate

[11], Ocarina [12], Masiw [13], Ramses [14], SCADE

Architect, FASTAR, TASTE [15], Stood, and AADL

Inspector. An alternate approach would have been to use

the UML MARTE profile associated with the MAST

scheduling analysis tool [8,9]. However, the strength of

the AADL ecosystem [6] militates in its favour.

3.3. AADL Inspector Model Processing Framework

AADL Inspector (see Figure 2) is a model processing

framework. It can load hand-written or automatically

generated AADL models from modelling tools or inward

model transformations. It provides dedicated outward

model transformations to feed real-time, safety and

security analysis tools. For this project, AADL Inspector

has been used to load the hand-written AADL

representation of the PLATO N-PDU ASW into Cheddar

to perform the required multi-core scheduling analysis. A

possible enhancement would consist in adding a custom

model transformation to directly load the GERICOS

UML model into AADL Inspector.

4. FEEDBACK FROM PLATO N-DPU ASW

ANALYSIS

AADL offers a large panel of entities and properties to

Figure 2. AADLInspector

model dynamic systems, that AADLInspector and

Cheddar kernel tools can analyze. There are often several

ways to model a dynamic behavior combining different

elements of the language. For example, PLATO N-DPU

ASW tasks synchronization is performed through

messages exchanges. This behavior can be modeled in

AADL by events sent through an event port, that can

trigger the dispatch of a task. Another example is the

modeling of task precedency by the dispatch offset

property: to model that a task B starts after a task A, we

can set a dispatch offset property for task B with a

duration equal to task A period. The challenge is to find

a valid model which is a trade-off between model design

complexity and its pessimism. Assumptions can make the

model more pessimistic, but also easier to design, and

sometimes easier to analyze. Another solution is to tune

the dynamic architecture model to make it compliant with

schedulability analysis. For instance, the task set periods

have been reworked to decrease as much as possible the

Least Common Multiple (LCM) in order to decrease the

time required to perform the scheduling analysis.

Some features that were missing to analyze the complete

PLATO N-DPU ASW, such as the management of

resources shared between cores, have been quickly

integrated in AADLInspector and Cheddar tools. Then,

the access to those resources can be accurately

represented in AADL combining a resource protected by

a spinlock (blocking statement) for core access, and a

semaphore protected against deadlock by a priority

inheritance protocol for task accesses (See Figure 3).

Figure 3. Modeling of core shared resources

For PLATO ASW, the memory accesses slowdown

caused by DMA transfer has been computed based on

SDRAM burst accesses configuration. A DMA burst

access consumes 12 cycles every 153 cycles. It represents

7,84% of the SDRAM access cycles. In the worst case, 3

DMA transfers can occur at the same time, leading to a

24% slowdown ratio. This ratio is added to each task for

which the WCET has been measured out of any DMA

perturbation.. Conversely, some WCET are obtained

from measures on worst case scenarios, and already take

into account the DMA impacts. In this case the slowdown

ratio is not applied. Regarding caches, no theoretical

impact has been computed. Instead, the impact is also

taken into account when measuring WCET on worst case

scenarios.

The schedulability proof can be obtained with Cheddar

by static analysis or by simulation performed on the

feasibility interval, which is the interval of time that

captures all possible events of the analyzed model. It can

be computed with the following rule [10]:

Feasibility interval = [0 .. 2 * LCM + max (first dispatch

time)] = 54 second sfor PLATO N-DPU ASW.

Both methods allow to check that the WCRT are always

below the deadline, which is the expected schedulability

proof.

CONCLUSION

In this paper, we presented how an AADL model of the

PLATO N-DPU ASW system has been designed for

schedulability analysis. The model has proved than all

the tasks of the system, and in particular the more critical

ones, theoretically cannot miss their deadlines. Execute

window processing has a deadline of 2150 ms, and a

computed WCRT of 1552ms on core 0 and 1142 ms on

core 1. Execute science processing has a deadline of 4100

ms, and a computed WCRT of 3616 ms on core 0 and

2699 ms on core 1. Moreover, we were able to compute

CPU margins from the model. Since the model is

significantly pessimistic, due to hypothesis we took, we

are confident that real CPU margins are above the one

computed from the model.

The dynamic model helped to improve the dynamic

architecture of the on-board software, in particular since

the design of the model requires a flawless understanding

of the real-time architecture and constraints. Outputs of

analysis tools were precious to find real time

optimizations. For instance, improvements were made by

relaxing unjustified too hard timing constraints, or on

priority and period assignments. Finally, WCET

measurement mechanisms have been improved to be as

less pessimistic as possible. Once an optimal dynamic

architecture was reached, the model was used to get the

analytical proof of the schedulability thanks to dedicated

tools. Moreover, the model is helpful to validate any

dynamic architecture evolution before its software

implementation, and to continuously monitor the

schedulability until the software design is frozen.

REFERENCES

[1]. Singhoff, F., Legrand, J., Nana, L., & Marcé, L.

Cheddar: a flexible real time scheduling

framework. In Proceedings of ACM SIGAda

international conference. 2004, November, pp. 1-8

[2]. Rubini, S., Fotsing, C., Singhoff, F., Tran, H. N., &

Dissaux, P. Scheduling analysis from architectural

models of embedded multi-processor systems.

ACM SIGBED Review, 11(1), 68-73. 2014

[3]. Ragazzoni, R., Magrin, D., Rauer, H., Pagano, I.,

Nascimbeni, V., Piotto, G., Piazza, D., Levacher,

P., Schweitzer, M., Basso, S., Bandy, T., Benz, W.,

Bergomi, M., Biondi, F., Boerner, A., Borsa, F.,

Brandeker, A., Br• andli, M., Bruno, G., Cabrera,

J., Chinellato, S., Roche, T. D., Dima, M., Erikson,

A., Farinato, J., Munari, M., Ghigo, M., Greggio,

D., Gullieuszik, M., Klebor, M., Marafatto, L.,

Mogulsky, V., Peter, G., Rieder, M., Sicilia, D.,

Spiga, D., Viotto, V., Wieser, M., Heras, A. M.,

Gondoin, P., Bodin, P., and Catala, C., PLATO: a

multiple telescope spacecraft for exo-planets

hunting, in [Space Telescopes and Instrumentation

2016: Optical, Infrared, and Millimeter Wave],

MacEwen, H. A., Fazio, G. G., Lystrup, M.,

Batalha, N., Siegler, N., and Tong, E. C., eds.,

9904, 731-737, International Society for Optics and

Photonics, SPIE (2016).

[4]. Ziemke, C., Witteck U., Peter G., Plasson P., Galli

E., Ulmer B., Ottensamer R., Ottacher H., Windsor

J. PLATO DPS: State of the art on-board data

processing for Europe's next planet-hunter.

OBDP2021 - 2nd European Workshop on On-

Board Data Processing. 2021, June.

[5]. Plasson, P., Cuomo, C., Gabriel, G., Gauthier, N.,

Gueguen, L., Malac-Allain, L. GERICOS: A

Generic Framework for the Development of On-

Board Software. In proceedings of DASIA

Conference. 2016, May. ISBN: 978-92-9221-301-

5. ESA-SP Vol. 736, 2016, id.39

[6]. Boydston A., Feiler P., Vestal S., Lewis B.,

Architecture Centric Virtual Integration Process

(ACVIP): A Key Component of the DoD Digital

Engineering Strategy. https://resources.sei.cmu.-

edu/library/asset-view.cfm?assetid=634965

[7]. Feiler, Peter H., Bruce A. Lewis, and Steve Vestal.

The SAE Architecture Analysis & Design

Language (AADL) a standard for engineering

performance critical systems. 2006 IEEE

Conference on Computer Aided Control System

Design.

[8]. Harbour, M. González, et al. Mast: Modeling and

analysis suite for real time applications.

Proceedings 13th Euromicro Conference on Real-

Time Systems. IEEE, 2001.

[9]. Faugere, Madeleine, et al. Marte: Also an uml

profile for modeling aadl applications. 12th IEEE

International Conference on Engineering Complex

Computer Systems (ICECCS 2007). IEEE, 2007.

[10]. Goossens, Joël, Emmanuel Grolleau, and Liliana

Cucu-Grosjean. Periodicity of real-time schedules

for dependent periodic tasks on identical

multiprocessor platforms. Real-time systems 52.6

(2016): 808-832.

[11]. Osate, https://osate.org/

[12]. Hugues, Jerome, et al. From the prototype to the

final embedded system using the Ocarina AADL

tool suite. ACM Transactions on Embedded

Computing Systems (TECS) 7.4 (2008): 1-25.

[13]. Khoroshilov, Alexey, et al. AADL-based toolset

for IMA system design and integration. SAE

International Journal of Aerospace 5.2 (2012): 294.

[14]. Blouin, Dominique, and Etienne Borde. AADL: A

Language to Specify the Architecture of Cyber-

Physical Systems. Foundations of Multi-Paradigm

Modelling for Cyber-Physical Systems. Springer,

Cham, 2020. 209-258.

[15]. Perrotin, Maxime, et al. TASTE: An open-source

tool-chain for embedded system and software

development. Embedded Real Time Software and

Systems (ERTS2012). 2012.

Unboxing the Sand: on Deploying Safety Measures
in the Programmable Logic of COTS MPSoCs

Sergi Alcaide†, Guillem Cabo†, Francisco Bas†,‡, Pedro Benedicte†,

Fabio Mazzocchetti†, Francisco J. Cazorla†, Jaume Abella†
†Barcelona Supercomputing Center (BSC)

‡Universitat Politècnica de Catalunya (UPC)

Abstract—The lack of sufficient hardware support for
functional safety precludes the full adoption of many Commercial
Off-the-Shelf (COTS) MPSoCs in safety-related systems, such as
those in the aerospace industry. Some recent MPSoCs come along
with programmable logic (PL), primarily intended to offload
some specific complex functions that can be much more efficiently
implemented in hardware than in software, hence being such PL
a kind-of-sandbox fully mastered by ASIC cores outside the PL.

This paper proposes using PL in those COTS MPSoCs
to deploy the support needed to implement safety measures
efficiently to enable the use of those MPSoCs for systems needing
high assurance levels. Hence, the goal is not mastering PL from
the cores solely, but also allowing PL to provide monitoring (e.g.
contention, diversity, watchdogs) and control (e.g. configuring
QoS features) capabilities to enable the realization of a safety
concept atop. The early work presented in this paper already
provides specific monitoring, diversity, and controlling strategies
to allow PL take over safety-related functionalities.

Index Terms—safety, observability, controllability, MPSoC,
programmable logic

I. INTRODUCTION

Increased automation and autonomy in safety-related
systems requires higher performance platforms able to execute
those safety-critical tasks within tight time bounds. This
can be achieved by using high-performance heterogeneous
MultiProcessor Systems-on-Chip (MPSoCs) that include some
form of accelerator (e.g. GPU, DSP, vector accelerator, and the
like). For instance, platforms such as the NVIDIA Drive PX2
in the automotive domain [1], and the Xilinx Zynq UltraScale+
in the avionics domain [18] emerge as candidates to meet the
corresponding performance goals.

Unfortunately, while those platforms provide the raw
performance required, they challenge certification against
safety standards due to their limited support to implement
safety measures atop [10]. In particular, safety-related
MPSoCs are generally expected to come along with
native hardware support for independent watchdogs, diverse
redundancy, error detection, etc. This is, for instance, the case
for the Infineon AURIX processor family often used in the
automotive domain [8], which on the other hand provides
limited performance. Overall, end users face a conundrum
between using platforms with appropriate hardware support
to implement the safety measures needed at system level [9],
[11], but insufficient performance, or using high-performance
platforms lacking sufficient native hardware support to deliver
mandatory safety measures.

As part of our recent work, we have devised and deployed
a number of hardware components highly convenient to
implement safety measures on top, as well as to improve
testability, such as a multicore interference-aware statistics
unit (SafeSU) [5], a module to enforce diversity across cores
executing tasks redundantly (SafeDE) [2], and a programmable

on-chip traffic injector to test timing and functional behavior
during MPSoC validation and during operation (SafeTI) [12].
Those components are undergoing the final steps of their
integration [7], [13] in commercial NOEL-V based MPSoCs
for the space domain by Cobham Gaisler [6], and are offered
as open source components [4]. However, those components
rely on being integrated in MPSoCs during the design phases,
hence with the ability to introduce some – yet limited –
modifications related to the observability of some signals and
control of some features.

Some MPSoCs, such as the Zynq UltraScale+ family,
include some Programmable Logic (PL) as part of the
SoC, typically intended to implement efficiently some
functionalities, where the ASIC cores act as masters, and the
PL as slave (e.g. working as an accelerator where cores offload
some computation). In this context, the PL can be seen as a
sandbox just responding to requests from the cores, where the
latter truly exercise control over the MPSoC.

This paper contends that, enabling the use of high-
performance MPSoCs for safety-related applications can be
achieved by leveraging PL as a means to deploy hardware
support to implement safety measures in COTS MPSoCs.
In particular, we note that, if privileges (e.g. user mode,
supervisor mode, etc.) are managed properly, functionalities
in the PL can span beyond the sandbox by monitoring
autonomously parts of the SoC and taking actions to control
a subset of the MPSoC features. To illustrate this approach,
in this work, and focusing on the Xilinx Zynq UltraScale+
MPSoC as a research vehicle, we show how safety-related
hardware components can be deployed in the Zynq’s PL
to implement a number of safety measures such as (1)
multicore interference monitoring building on the SafeSU [5],
(2) support for diverse redundancy building on the SafeDE [2],
and (3) support for device diagnostics building on the
SafeTI [12], among other features.

The rest of the paper is organized as follows. Section II
briefly introduces the Xilinx Zynq UltraScale+ MPSoC, as
well as SafeSU, SafeDE and SafeTI. Section III presents the
strategies being studied to allow the successful integration of
the latter components (and some others to be developed) in
the MPSoC. Finally, Section IV concludes this paper with a
discussion on the forthcoming developments and opportunities
emanating from this work.

II. BACKGROUND

In this work, we analyze how to deploy safety-related
hardware components in the PL of a MPSoC. Without loss
of generality, we focus on a Xilinx Zynq UltraScale+ (ZUS
for short) MPSoC. Hence, this section introduces the ZUS, as
well as the already available safety-related components.

Fig. 1. Safety-related components as deployed in a NOEL-V MPSoC for the
space domain.

A. Xilinx Zynq UltraScale+ MPSoC

The ZUS is a powerful MPSoC including a high-
performance computing application cluster, referred to as
APU, which includes 4 Arm Cortex A53 cores and a shared L2
cache. It also includes a real-time computing cluster, referred
to as RPU, which includes 2 Arm Cortex R5 cores. Other
computing elements such a GPU and PL are also present in the
ZUS. Multiple memories and memory controllers are included
in the ZUS, such as a DDR controller, an On-Chip Memory
(OCM), and controllers to access flash memories. Multiple
peripherals such as PCIe and Ethernet ports are also included.
All those components are connected by means of a distributed
network, so that traffic across different components can be
fully segregated. For instance, independent routes exist from
the APU to the DDR controller, from the PL to the OCM, and
from the GPU to the DDR controller.

ZUS’ interconnect builds on Arm components such as
the CoreLink CCI-400 Cache Coherent Interconnect, and
the CoreLink NIC-400 Network Interconnect, which include
further Arm components, all of them implementing multiple
and flexible QoS features, as shown in [14].

B. Hardware Components Supporting Safety Features

The work in this paper focuses initially in three already
existing components supporting safety features, although
we plan to develop and deploy additional ones. Those
components, whose existing deployment in a commercial
MPSoC is illustrated in Figure 1, are as follows:

SafeSU. The SafeSU statistics unit [5] includes observability
and controllability channels to master multicore interference
in MPSoCs. In particular, it collects statistics about how
many cycles each master is delayed by each other master
in an AMBA Advanced High-performance Bus (AHB)
interface. Such information is particularly useful to diagnose
timing overruns during operation and to optimize application
deployment so that multicore interference is kept low.

The SafeSU also includes a multicore interference quota
mechanism so that, if the observed interference caused by
one master on another exceeds a user-programmed quota, an
interrupt is raised. This allows limiting interference during
operation.

Finally, the SafeSU includes specific logic to measure the
highest latency experienced by a request in the AHB interface.
Such information is collected per request type (e.g., read/write,
burst/no-burst, etc.) and allows collecting maximum latencies
used for Worst-Case Execution Time estimation, and also
allows monitoring during operation whether latencies exceed

Fig. 2. Safety-related components deployed as proposed in this work in a
Zynq UltraScale+ MPSoC.

a user-programmed threshold, which could be used as a form
of watchdog.

SafeDE. The SafeDE is a module intended to enforce the
staggered execution of a given task running redundantly in
two cores. This feature is particularly useful to achieve some
form of lockstepping (i.e. efficient diverse redundancy) in
processors lacking it natively or, at least, lacking it for its
highest performance cores. SafeDE collects the number of
instructions executed by the cores running the redundant task,
and whenever the advantage of the head core falls below a
given threshold w.r.t. the trail core, SafeDE stalls the trail core
for a while until the staggering is large enough.

SafeTI. The SafeTI is a sophisticated and programmable
traffic injector able to inject specific traffic patterns whose
elements are read and write operations, with parameterizable
data transmitted, with user programmable source/destination,
with a burst/no-burst parameter, with independent and
programmable stalls between transactions, and with capability
to store multiple independent or overlapping traffic patterns
that may be used under different circumstances. As explained
before, SafeTI is particularly adequate to test the platform
during validation, as well as to test functionality and timing
during operation.

While the ZUS MPSoC also includes its Xilinx AXI Traffic
Generator (ATG) [17] in the PL, such IP is less flexible than
SafeTI, and comes along a restrictive license, hence precluding
its use in other platforms. Instead, SafeTI is provided under a
highly-permissive open source license [12].

III. DEPLOYING SAFETY MEASURES IN THE PL OF THE

ZUS

Deploying hardware support to implement safety measures
in a full-custom design, either deployed as an ASIC or as an
FPGA product, provides flexibility to find the most efficient
solutions. For instance, in the case of SafeDE, cores can be
made to export some signals to let SafeDE easily monitor their
progress and stall the trail core whenever needed. Analogously,
SafeSU and SafeTI can be attached to any interconnect
directly, hence achieving full observability of the on-chip
traffic. However, if those components are deployed in the PL of
a COTS MPSoC, observability and controllability channels are
limited and cannot be changed. Hence, the challenge tackled
in this work consists on how to deploy such hardware support

Fig. 3. Schematic of the ZUS MPSoC (baseline picture taken from [18]).

effectively in the PL, as illustrated in Figure 2 for the ZUS
MPSoC.

A. Monitoring and Controlling Multicore Interference with

SafeSU

Interference monitoring. The first relevant characteristic of
the deployment of the SafeSU in the ZUS is that the ZUS
has a distributed interconnect (see Figure 3), hence meaning
that traffic is distributed rather than centralized in a single
interconnect. This fact differs from previous deployments of
the SafeSU, which built upon centralized interconnects (e.g.
a bus) [15]. The second relevant characteristic is that the
SafeSU cannot directly manage the AMBA AXI signals of the
NoC, as it did with the AMBA AHB signals in its previous
deployments. Overall, the SafeSU needs to collect NoC traffic
information from remote locations and without direct access
to protocol signals.

In order to properly integrate the SafeSU in the PL
of the ZUS, we note that ZUS interconnects include AXI
performance monitors (APM) [16], which gather transaction
metrics such as the following:

• Read and write transaction counts.
• Read and write byte counts.
• Read and write latencies.
• Number of idle cycles caused by masters and slaves.
• Counts on some additional AXI-related protocol signals.

Moreover, APMs exist in different locations of the MPSoC,
such as the interfaces near the DDR, the OCM, and the main
switches connecting the APU and RPU computing units. They
are shown as yellow squares in the ZUS schematic in Figure 3.
They have been further indicated with thick dark red arrows
and numbered. APM-1 monitors the OCM (aka as scratchpad
memory). APM-2 monitors the traffic arriving from the Low

Power Domain (LPD), where real-time cores are located, to
the Full Power Domain (FPD). APM-3 monitors the traffic
from the FPD, including APU cores, some of the PL ports
and the GPU among others, to the LPD. APMs 4 to 9 monitor
DRAM traffic for each of its different ports connected to the
LPD, APU cores, PL, etc. In Figure 3, we have also included
the SafeSU, SafeTI, and SafeDE in the PL for clarity. Hence,
our current work focuses on interfacing APMs, as well as
core-related memory access counters, to use their information
to infer, either deterministically or statistically, how much
interference each computing component has caused on each
other. Moreover, the SafeSU needs to be extended to further
break down interference across main locations to further ease
diagnostics in case of deadline overruns.

Interference control. The SafeSU includes interference quota
monitoring capabilities, and, upon a quota violation, it raises
an interrupt. We note that the ZUS includes a wide variety of
QoS knobs in its NoC interfaces, hence allowing to prioritize
traffic based on its type and/or source. While not originally
developed as part of the SafeSU, part of our work focuses
on how to interface those QoS knobs so that the SafeSU can
control them to limit specific interference channels whenever
needed. This naturally needs being done in close collaboration
with the Real-Time Operating System (RTOS), which should
instruct the SafeSU on what knobs to set and how under
quota violation scenarios, and must grant the SafeSU with
appropriate privileges to change such configuration settings.
Alternatively, the SafeSU can raise interrupts and be the RTOS
the one in charge of configuring the QoS knobs as needed.

B. Enforcing Diverse Redundancy with SafeDE

Originally, the SafeDE has direct access to the instruction
counts of the cores executing a task redundantly, so that it

can determine the staggering among them. SafeDE has also
access to the stall signal of one of the pipeline stages of the
trail core so that it can stop it almost immediately whenever
the staggering is too low (e.g. below few cycles) [2].

In the context of the ZUS, the SafeDE can neither snoop
instruction count registers nor control pipeline stall signals
of the cores. Hence, alternatives are under consideration.
Regarding instruction counts, we aim at, in cooperation with
the RTOS, having means to read instruction counts from the
virtually lockstepped cores as software would do. Note that
paths to reach the cores in the RPU and APU from the PL
exist in the platform. They have been indicated with dashed
thick dark red lines in Figure 3. Hence, if the performance
monitoring counters of interest are mapped into readable
address spaces from the outside, and the RTOS programs
privileges properly, SafeDE could read those counters from
the PL and take an action whenever needed to preserve the
staggering. Regarding stalling the trail core whenever needed,
multiple alternatives are being considered such as:

• Modifying QoS knobs in the interconnect to favor the
head core at the expense of slowing down the trail one.
However, this is only effective if the task being run misses
in local caches and accesses those interconnects.

• Issuing specific interrupts to the trail core so that, by
programming them properly, the RTOS takes over for a
short period intended to be enough to recover sufficient
staggering between head and trail cores.

C. Diagnostics and Latency Measurements with SafeTI

The least impacted component due to being deployed in the
PL of the ZUS is the SafeTI traffic injector since it issues
transactions as programmed by the end user, regardless of
whether the component is directly attached to the AMBA
interface, or whether the interconnect is a bus or a NoC.
Hence, integration of the SafeTI to generate traffic during
operation for diagnostics purposes is not expected to bring
major concerns.

We note, however, that the SafeSU may have difficulties
to measure latencies of different request types by itself due
to the lack of access to the AMBA interfaces, and due to
the distributed nature of the ZUS’ NoC. In this case, we
plan to leverage the SafeTI to compensate that limitation
since it can be programmed to produce specific traffic patterns
triggering latencies that should allow building iteratively the
latency to reach additional switches and components. Hence,
by operating cooperatively, the SafeSU and the SafeTI will
be able to measure the highest latencies experienced in most
parts of the NoC.

D. Beyond Existing Components

Part of our ongoing work also includes the development of
diversity monitors to complement SafeDE. A first version of
those diversity monitors, referred to as SafeDM, has already
been released [3]. Those monitors aim at measuring diversity
across cores running redundant tasks, but not performing
any control of their staggering. Such diversity is measured
accessing pipeline information. However, it is still unclear how
to measure diversity when pipelines are not visible. This is
ongoing work for the ZUS which we expect to solve with as
much precision as possible due to the limited observability of
the cores.

Other components we intend to deploy in the PL of the
ZUS relate to aliveness monitoring of different computing

components with some form of watchdogs. Those will likely
build on the instruction counts of the cores, and their NoC
activity as primary sources of information related to aliveness.

Overall, the strategy is exploiting the (many) observability
and controllability features of the COTS MPSoCs in general,
and the ZUS in particular, with specific modules deployed in
the PL to provide support for safety measures implementation.

E. Safety Considerations

By deploying safety measures in the PL of a COTS
MPSoC, the set of assurance (integrity) levels that can be
targeted are limited by the native safety support of the
MPSoC itself. Hence, if the development process of the
MPSoC does not adhere to the requirements of some assurance
levels (e.g. DAL-A or DAL-B for avionics), then it is very
unlikely that applications with safety requirements at those
levels can be deployed on the MPSoC regardless the safety
measures deployed in the PL. A sufficient assurance level
must be attained at least for those parts of the MPSoC
controlling the monitoring capabilities for fail-safe systems,
and for those parts providing computing capabilities and
monitoring capabilities for fail-operational systems. Else,
external solutions may be required, such as the use of multiple
MPSoCs with a sufficient degree of redundancy to meet the
requirements of the highest assurance levels.

IV. CONCLUSIONS AND FUTURE WORK

High-performance COTS MPSoCs needed for future
aerospace systems lack sufficient native hardware support
to implement efficiently many of the usual safety measures
needed in those systems. We note, however, that some of those
MPSoCs include a PL region which, despite generally intended
to operate as a sandbox, can be used to deploy hardware
components supporting safety features.

In this work, we review some existing such components
and analyze how they could be deployed in the Xilinx Zynq
UltraScale+ (ZUS) MPSoC, as representative example of
high-performance COTS MPSoC, despite the gap existing
between their original implementations and the observability
and controllability channels available in the PL of the ZUS.
In particular, we review the alternatives offered by the ZUS to
monitor and control multicore interference with the SafeSU, to
enforce diverse redundancy with the SafeDE, and to provide
diagnostics with the SafeTI.

Our future work includes performing the integration of those
hardware components in the ZUS to enable multiple safety
measures in COTS MPSoCs, investigating additional hardware
components that could be incorporated, and looking beyond
the ZUS to consider even more powerful MPSoCs such as, for
instance, the Xilinx VERSAL platform.

ACKNOWLEDGEMENTS

This work is part of the project PCI2020-112010, funded
by MCIN/AEI/10.13039/501100011033 and the European
Union “NextGenerationEU”/PRTR, and the European Union’s
Horizon 2020 Programme under project ECSEL Joint
Undertaking (JU) under grant agreement No 877056. This
work has also been partially supported by the Spanish Ministry
of Science and Innovation under grant PID2019-107255GB-
C21 funded by MCIN/AEI/10.13039/501100011033.

REFERENCES

[1] NVIDIA DRIVE PX. Scalable supercomputer for autonomous driving.
http://www.nvidia.com/object/drive-px.html.

[2] F. Bas et al. SafeDE: a flexible diversity enforcement hardware module
for light-lockstepping. In 2021 IEEE 27th International Symposium on

On-Line Testing and Robust System Design (IOLTS), pages 1–7, 2021.
[3] F. Bas et al. SafeDM: a hardware diversity monitor for redundant

execution on non-lockstepped cores. In 2022 IEEE 25th Design,

Automation and Test in Europe Conference (DATE), pages 1–6, 2022.
[4] BSC - CAOS. Safety-Related Hardware Components webpage. https:

//bsccaos.github.io.
[5] G. Cabo et al. SafeSU: an extended statistics unit for multicore

timing interference. https://people.ac.upc.edu/jabella/ets21.pdf. In IEEE

European Test Symposium (ETS), 2021.
[6] Cobham Gaisler. NOEL-V Processor.

https://www.gaisler.com/index.php/products/processors/noel-v.
[7] De-RISC Consortium. De-RISC website, 2021. https://www.

derisc-project.eu/ (accessed Feb-2021).
[8] Infineon. AURIX Multicore 32-bit Microcontroller Family

to Meet Safety and Powertrain Requirements of Upcoming
Vehicle Generations. http://www.infineon.com/cms/en/about-
infineon/press/press-releases/2012/INFATV201205-040.html.

[9] International Standards Organization. ISO/DIS 26262. Road Vehicles –

Functional Safety, 2009.
[10] J. Perez-Cerrolaza et al. Multi-core devices for safety-critical systems:

A survey. ACM Comput. Surv., 53(4), 2020.
[11] RTCA and EUROCAE. DO-178B / ED-12B, Software Considerations

in Airborne Systems and Equipment Certification, 1992.
[12] O. Sala et al. SafeTI: a hardware traffic injector for mpsoc functional

and timing validation. In 2021 IEEE 27th International Symposium on

On-Line Testing and Robust System Design (IOLTS), pages 1–7, 2021.
[13] SELENE Consortium. SELENE website, 2021. https://www.

selene-project.eu/ (accessed Feb-2021).
[14] A. Serrano-Cases et al. Leveraging Hardware QoS to Control Contention

in the Xilinx Zynq UltraScale+ MPSoC. In 33rd Euromicro Conference

on Real-Time Systems (ECRTS 2021), 2021.
[15] G. Wessman et al. De-RISC: the first RISC-V space-grade platform for

safety-critical systems. In IEEE Space Computing Conference (SCC),
2021.

[16] XILINX. AXI Performance Monitor LogiCORE IP Product Guide.
PG037 (v4.0). 2013.

[17] Xilinx. AXI Traffic Generator v3.0. LogiCORE IP Product Guide, 2019.
[18] XILINX. Zynq UltraScale+ Device. Technical Reference Manual.

UG1085 (v2.1). 2019.

Towards a Novel UAV Position Tracking and
Reporting System for Very Low Level Airspace

Bruno Chianca Ferreira∗, Guillaume Dufour† and Guthemberg Silvestre‡
∗‡ENAC/ReSCo, †ONERA/DTIS

Université de Toulouse, France

Email: ∗bruno.chianca@enac.fr, †guillaume.dufour@onera.fr, ‡silvestre@enac.fr

Short paper about ongoing research.

Abstract—The integration of Unmanned Aircraft Systems into
the airspace is a challenging, complex task for both operators
and regulators. To ensure a safe and secure UAS integration, they
should rely on wide variety of dependable sub-systems, including
a tracking and position reporting system. This paper proposes a
system architecture for tracking and position reporting of UAS
in very-low level airspace. The system leverages low-latency com-
munications and distributed computing to offer highly available,
consistent tracking information. Preliminary results suggest that
our approach is especially useful for the traffic management and
operations in densely populated areas.

Index Terms—utm, uas, edge, emulation, ads-b, mobile, ad-hoc

I. INTRODUCTION

Recently, there has been increasing interest in Unmanned

Aircraft Systems (UAS) for many real-life, civilian appli-

cations [1], including real-time monitoring, remote sensing,

search and rescue, agriculture services and delivery of goods.

In addition, a rapid growth in the number of drones in activity

is expected, especially at very low-altitude of airspace with

high demand in densely populated areas [2]. For instance, a

recent study [3] forecasts that 98% of the aircraft operating in

the airspace of Paris by 2035 will be autonomous. The inte-

gration of UAS will certainly result in fundamental changes

of the air traffic management (ATM). Consequently, there is

a need for the design of an Unmanned Traffic Management

(UTM) system that will be able to manage a large number of

autonomous vehicles in a safe and efficient manner.

One of the key components of the emerging UTM system

is the the capability to track the vehicles’ positions. Currently,

tracking and position reporting of aircraft relies on long-range

radio communications. Unfortunately, a large number of ve-

hicles communicating through conventional radio frequencies

(RF) in densely populated areas is likely to incur mutual

interference and, consequently, poor performance. One way of

reducing interference is to limit the range of the wireless radio

but, which in conjunction with the limitation introduced by the

buildings, it can render systems such as Automatic Dependent

Surveillance–Broadcast (ADS-B) unfeasible. Furthermore, it

remains unclear how the current ATM systems could be

redesigned to enforce highly available, consistent position

reporting to meet safety and performance requirements of

novel UTM systems.

This study aims to investigate the feasibility of a novel

tracking and position reporting system that could replace ADS-

B in the context of UTM and UAS. The rational behind it is

two-fold. First, the new system should allow small autonomous

vehicles to communicate with low-cost, low-footprint, short

range wireless interfaces and broadcast real-time data with

local stations in the vicinity. Second, the system should rely

on distributed computing techniques to share positioning data

of vehicles with high availability and strong consistency,

allowing even aircraft which are beyond line of sight to have

updated information, ensuring proper functionality of their

own applications.

Fig. 1: Distributed UTM Data Service

In this paper, we introduce a system architecture to reach

the aforementioned design goals by deploying a distributed

tracking and position reporting system throughout stations of

Radio Access Network cloudlets, as depicted in Figure 1.

The architecture provides performance requirements, such as

low-latency, high-throughput data exchange thanks to 5G’s

communication capability. To meet consistent, highly avail-

able positioning data sharing, our architecture leverages the

functionalities of a strongly consistent distributed key-value

store. Preliminary results based on mobile systems’ emulation

suggest that this architecture meets both performance and

safety requirements of emerging UTM’s tracking and position

reporting system.

II. STATE OF THE ART

A. Unmanned Traffic Management

The rapid expansion of the market of small UAS has created

new risks for civil aviation [4][3]. That increases the need

for regulation and deployment of a fully functional UTM [5].

Some governmental agencies have been more prominent in

UTM proposals, such as USA with NASA/FAA and Euro-

pean Union’s SESAR/U-space. In [6], the author described

NASA’s research initiative related to the concept of operations

(ConOps). NASA established a research platform which is

used together with their partners to test and evaluate the

challenges and solutions proposed for each of the technical

capabilities associated with UTM. For NASA/FAA the UTM

is set to evolve incrementally according to technical capability

levels (TCL), and some research works have been conducted in

order to verify the full development and verification of TCL

levels. In [7] flight tests demonstrating the most basic TCL

levels 1 and 2 were performed even with beyond visual-line-

of-sight (BVLOS) for unpopulated areas. BVLOS in populated

areas is introduced in [8], where the authors performed a flight

demonstration of TCL3. In [9] the author demonstrates TCL4

capabilities using simulation tools, and gave a high emphasis

in safety by describing in details the SAFE50 architecture.

The framework on how a UTM system should work and the

interaction between the stakeholders is not yet finalized [10]

and many aspects are not clear in order to achieve the highest

levels of autonomy. However, the main proposed architectures

are composed of distinctive applications [11] such as sense

and avoid [12], [13], [14], [15], path planning [16], [17], [18],

[19], which rely on the fact that trustable data can be shared

among stakeholders with low latency.

B. Aircraft Surveillance

A position tracking and reporting system is a crucial system

for aircraft surveillance. The Automatic Dependent Surveil-

lance–Broadcast (ADS-B) is a service present in aircraft1

that broadcasts relevant unencrypted data in real-time. It aids

radars in keeping updated and correct information about all

the aircraft currently flying. With such information about

all aircraft, air traffic management (ATM) authorities can

develop applications to improve security, and efficiency of air

transportation system and airports. Albeit not mandatory like

ADS-B Out, other aircraft can also receive broadcasts with

ADS-B In and use the information to build knowledge about its

surroundings in order to improve conflicts avoidance. Aircraft

equipped with ADS-B equipment, periodically broadcast their

call sign, latitude and longitude, ground speed and flight

number with signals modulated in 1090 MHz. Considering

the importance systems like ADS-B have for ATM, a similar

technology is also expected to play an important role in

UTM. Unlike large aircraft, small UAVs are harder to be

detected with radars, increasing the importance of a ADS-B

like system. Previous works have proposed ADS-B alternatives

1Mandatory in many countries depending on aircraft weight or airspace
class.

Fig. 2: Our System Architecture

in the context of UTM as explored in [20]. The authors

in [21] and [22] proposed an architecture based in low-cost

radio transferring data to a central cloud, which does not

solve the problem of fast replication across the urban area

for low latency and availability to all stakeholders. In [22]

the author proposes an ADS-B like system for UTM based

on APRS (Automatic Packet Reporting System), which is an

approach different to what is proposed in this work, since it

is based on relatively long range radio (40Km) with restricted

throughput. In [13], the author proposed a solution to inject

the position data in the SSID of WiFi and the results has

shown that the proposed setup yielded reasonably low latency

(under 125 ms) and acceptable throughput (4 messages/s)

under an experimental setup. By having a secure ADS-B like

data layer, applications such as presented in [15] where the

authors proposes a sense and avoid system that used ADS-B

data as input, can be built.

III. A NOVEL SYSTEM ARCHITECTURE FOR TRACKING

AND POSITION REPORTING

Our system architecture is designed to enable fault-tolerant

and efficient data sharing for UTM stakeholders. The main

blocks of this architecture are shown in Figure 2. It is built on

top of two key components: a distributed, strongly consistent

key-value store and the next-generation cellular communica-

tion technology. The distributed key-value store is composed

of distributed UTM Data Service (UDS) units spread across

the urban area as shown in Figure 1. We assume that UDSs are

deployed in federated cloudlets interconnected through low-

latency mobile network, such as 5G or 6G[23]. In this section,

we describe the design of our architecture by focusing on

the SMR protocol and the architecture’s API endpoints. We

skip further details about the mobile network due to space

constraint.

A. State Machine Replication

To enable fault-tolerant, highly available key-value store,

UDSs run state machine replication (SMR) protocol[24]. SMR

is a technique to implement fault-tolerant service by repli-

cating servers and coordinating client interactions with server

replicas. In particular, stakeholders (e.g., service providers, op-

erators and vehicles) are clients and servers/replicas are UDSs.

Our architecture leverages etcd 2, a distributed, strongly-

consistent key-value store, to run SMR. This distributed ap-

proach solves important problems of ADS-B [25], such as

lack of fault tolerance, data inconsistency, and unpredictable

availability of shared data.

B. API Endpoints

The API endpoints are used to put or get data from the

system.

• ADS-B Transponder - A ADS-B receiver connected to

the system can put data from aircraft.

• Service Endpoint - The end-point that can be used by the

UTM service providers or operators to get the current and

past state of the airspace via restful API, time series or

stream.

• UAS Endpoint - Used by UASs to insert broadcast data

into the system.

IV. EXPERIMENTAL EVALUATION

This section presents the performance evaluation of our sys-

tem architecture using MACE [26], an emulation framework

to study, design and evaluate mobile Ad-hoc applications.

Figure 3 shows the architecture of our emulation with MACE

detailing how the main blocks communicate with each other.

Fig. 3: Emulation Architecture

A. Cloudlets and Aircraft

MACE uses CORE as network emulator, and it emulates

each network instance as Linux namespaces serving as min-

imal containers. Each aircraft client application runs inside

these namespaces, and they communicate via veth network

interfaces with connectivity controlled by the distance between

the nodes. The cloudlets are also emulated in such namespaces

with a server running the UAS endpoint and interfacing in-

stances of etcd running in the same namespaces. The emulated

scenario is run over an area of one square kilometre.

2https://etcd.io/

B. Mobility

The Random Waypoint mobility model was adopted for the

experiment. In this model each aircraft receives a random

waypoint and a random velocity to simulate a mission’s

objective. The movement of the aircraft is emulated in MACE,

and the real-time position is injected directly in the network

emulator so that it is reflected in the network connectivity. The

position is made available to the applications running in the

virtual aircraft via UNIX sockets.

C. UAS Broadcasts

For the payload reporting, a client running in each aircraft

broadcasts a JSON object containing the position and addi-

tional data via IPV4 UDP sockets using the emulated Ad-hoc

wireless links. The payload includes also an unique message

ID, timestamp, an aircraft ID, velocity and status. The unique

message ID is used to verify that the message was received

and the timestamp used to calculate the latency between the

broadcast and full replication.

D. UDS Cloudlet

To simulate the UDS cloudlets, a server representing them

is deployed in each emulated cloudlet. The servers which are

in range of a broadcasted message, will receive the new data in

the UAS endpoint and replicate it to the other towers which are

not in range by using the state machine replication layer. Data

is also written in persistent storage for posterior analysis. The

consistent replication ensures that the data is reliable across

all participant cloudlets, so that distributed third part actors

can see this reporting system as a trusted oracle for UTM

applications such as asset managers, schedulers and collision

avoidance path planners. When a message is fully replicated

among all replicas, a callback function records the time stamp

so that the total latency can be calculated.

All the experiments were performed on a Linux server

whose configuration is described in Table I. Our empirical

evaluation is split in the scenarios detailed in Table II.

TABLE I: Test Platform

Processor Manufacturer / Model: Intel i7-8550U @ 4GHz

Number of cores 8

Memory 16GB DDR4

Emulator MACE

Operating System Linux Mint 20 x86 64bits

Routing Protocol B.A.T.M.A.N IV

TABLE II: Emulation Scenarios

Setting Without Losses With Losses

Cloudlet Range 250m 250m
Number of cloudlets 4 10
Cloudlet Bitrate / Delay 433.3Mbps / 1000us 433.3Mbps / 1000us
UAS Range 90m 250m
Number of UASs 5 and 20 5 and 20
UAS Bitrate / Delay 54Mbps / 3000us 54Mbps / 3000us
Jitter 0 us 2 us
Error rate 0% 1%

E. Preliminary Results

In the first scenario, the main goal was to measure the

latency between the data broadcasting and full replication

when there are no network losses between cloudlets or in the

UAS communication interfaces. One of the side effects of the

strong consistency is the communication complexity conse-

quence of the multistep consensus algorithm. So, in addition

of the broadcast latency, it is expected also a component for

the replication latency.

We assume that ADS-B broadcasts 2 messages per second

since detect and avoid / path planning algorithms usually

run with frequencies ranging from 1Hz to 2Hz. A previous

experiment with only one fixed UAS was run to measure the

replication overhead. Running such scenario yielded an repli-

cation overhead of 10ms, which is acceptable but is closely

related to the number of replicas and, more considerably,

to the total coverage area. Larger areas would require more

communication hops even if the number of replicas is left

unchanged, hence increasing the total latency.

(a) 10 Replicas and 5 UAS (b) 10 Replicas and 20 UAS

Fig. 4: Total replication latency with increasing broadcast

delay

In the second scenario, losses are added to emulate a

more realistic scenario, but the values of losses, latency and

bandwidth are closely related to communication technology

adopted. Due to the random nature of the mobility model,

each emulation session yields different results, so the median

and standard deviation of 5 sessions are shown. Figure 4(a)

illustrate the results for 5 UAS, while Figure 4(b) the results

for 20 UAS for both scenarios.

The impact of the introduction of losses is perceived differ-

ently in the UAS links and intra-cloudlets links. Since in this

implementation the UAS broadcasts data via UDP links (more

suitable for mobile and lossy links), lost messages do not

impact the broadcast latency because there are no timeouts and

retransmissions. Since etcd is implemented to communicate

via TCP, the losses increase the overall replication latency as

shown in the Figure 4. It is important to notice in Figure 4(b)

that increasing the number of aircraft while leaving the delay

between broadcasts low increase significantly the end-to-end

latency. This could mean that in order for such platform scale

to more representative scenarios of a crowded airspace, the

number of replicas cannot be too high. It is also important to

highlight that since these were performed with an emulator, all

software components related to all cloudlets and UAS, such as

the clients, servers and etcd, are running in the same computer

and competing for resources, and that the its state can affect the

results. It is therefore unfeasible to emulate scalability tests on

an emulation platform, since they consume too much computer

resources, and more tests with a simplified replication model

running on a scalable simulator are required.

V. DISCUSSION, LIMITATION AND FUTURE WORK

The emulator helped us to implement and evaluate a very

first prototype of our proposal, providing quick, yet prelimi-

nary results. For instance, latency measurements with many

applications running on a single computer might skew the

results. The server implementation (i.e., an UDS unit) used a

callback function from a etcd library that was not designed to

have low-latency capability, specially when running multiple

requests simultaneously. In this preliminary study, we also

overlooked the impact of the number of replicas in the overall

latency while keeping a large number of access points. We

also ignored the impact of different failure models, including

a Byzantine one. One important aspect of such deployments is

how they will act in presence of malicious actors, which is a

reasonable assumption for a open air platform with competing

actors. We believe that the target system could tolerate attacks

such as Sybil attacks [27]. Alternatively, we could consider a

distributed data store based on blockchain technique in order

to cope with Byzantine faults.
For future work, scenarios with larger areas, different

number of replicas are required. This would ensure a more

clear view of the latency impact of the replication quorum.

Furthermore, scalability studies are also required to simulate

scenarios with hundreds of UAS. A fast simulator would also

allow the study of optimal placement of such replicas in

different realistic maps.

VI. CONCLUSIONS

This work presents a novel tracking and position reporting

system to enable emerging UTM services for autonomous

vehicles operating at very low level airspace. Our preliminary

performance evaluation suggests that the latency measure-

ments yielded results that are suitable for building a system

architecture for UTM in densely populated areas. The highly

available, distributed data store allows even vehicles that are

hidden behind constructions to be spotted by all stakeholders

in a consistent way. In contrast to the current ADS-B, our

architecture enable fast, fault-tolerant data sharing by design.

REFERENCES

[1] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita,
I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned
aerial vehicles (uavs): A survey on civil applications and key research
challenges,” Ieee Access, vol. 7, pp. 48 572–48 634, 2019.

[2] S. J. Undertaking, “European drones outlook study,” SESAR Joint

Undertaking: Brussels, Belgium, 2016.
[3] R. Rumba and A. Nikitenko, “The wild west of drones: A review on

autonomous- UAV traffic-management,” 2020 International Conference

on Unmanned Aircraft Systems, ICUAS 2020, pp. 1317–1322, 2020.

[4] J. Lundberg, K. L. Palmerius, and B. Josefsson, “Urban Air Traffic
Management (UTM) Implementation in cities - Sampled side-effects,”
AIAA/IEEE Digital Avionics Systems Conference - Proceedings, vol.
2018-Septe, no. September, 2018.

[5] M. Elsayed and M. Mohamed, “The impact of airspace
regulations on unmanned aerial vehicles in last-mile operation,”
Transportation Research Part D: Transport and Environment,
vol. 87, no. August, p. 102480, 2020. [Online]. Available:
https://doi.org/10.1016/j.trd.2020.102480

[6] P. Kopardekar, J. Rios, T. Prevot, M. Johnson, J. Jung, and J. E. Robin-
son, “Unmanned aircraft system traffic management (UTM) concept of
operations,” 16th AIAA Aviation Technology, Integration, and Operations

Conference, pp. 1–16, 2016.

[7] J. Rios, D. Mulfinger, J. Homola, and P. Venkatesan, “NASA UAS
traffic management national campaign: Operations across Six UAS Test
Sites,” AIAA/IEEE Digital Avionics Systems Conference - Proceedings,
vol. 2016-December, pp. 1–6, 2016.

[8] J. Rios, A. Aweiss, J. Jung, J. Homola, M. Johnson, and R. Johnson,
“Flight Demonstration of Unmanned Aircraft System (Uas) Traffic
Management (utm) at Technical Capability Level 3,” Aiaa Aviation 2020

Forum, vol. 1 PartF, 2020.

[9] A. Chakrabarty and C. Ippolito, “Autonomous flight for multi-copters
flying in UTM -TCL4+ sharing common airspace,” AIAA Scitech 2020

Forum, vol. 1 PartF, no. January, 2020.

[10] T. McCarthy, L. Pforte, and R. Burke, “Fundamental elements of an
urban UTM,” Aerospace, vol. 7, no. 7, 2020.

[11] N. S. Labib, G. Danoy, J. Musial, M. R. Brust, and P. Bouvry, “A
multilayer low-altitude airspace model for UAV traffic management,”
DIVANet 2019 - Proceedings of the 9th ACM Symposium on Design

and Analysis of Intelligent Vehicular Networks and Applications, pp.
57–63, 2019.

[12] D. Scott, M. Radmanesh, M. Sarim, A. Deshpande, M. Kumar, and
R. Pragada, “Distributed bidding-based detect-and-avoid for multiple
unmanned aerial vehicles in national airspace,” in 2019 International

Conference on Unmanned Aircraft Systems, ICUAS 2019, 2019, pp. 930–
936.

[13] F. Minucci, E. Vinogradov, and S. Pollin, “Avoiding Collisions at Any
(Low) Cost: ADS-B like Position Broadcast for UAVs,” IEEE Access,
vol. 8, pp. 121 843–121 857, 2020.

[14] J. H. Park, S. C. Choi, J. Kim, and K. H. Won, “Unmanned Aerial Sys-
tem Traffic Management with WAVE Protocol for Collision Avoidance,”
International Conference on Ubiquitous and Future Networks, ICUFN,
vol. 2018-July, pp. 8–10, 2018.

[15] Yucong Lin and S. Saripalli, “Sense and avoid for unmanned aerial ve-
hicles using ads-b,” in 2015 IEEE International Conference on Robotics

and Automation (ICRA), 2015, pp. 6402–6407.

[16] J. Besada, I. Campaña, L. Bergesio, A. Bernardos, and G. de Miguel,
“Drone flight planning for safe urban operations: UTM requirements
and tools,” Personal and Ubiquitous Computing, pp. 924–930, 2020.

[17] Q. Tan, Z. Wang, Y. S. Ong, and K. H. Low, “Evolutionary optimization-
based mission planning for UAS traffic management (UTM),” 2019

International Conference on Unmanned Aircraft Systems, ICUAS 2019,
pp. 952–958, 2019.

[18] P. B. Sujit and R. Beard, “Multiple uav path planning using anytime
algorithms,” in 2009 American Control Conference, 2009, pp. 2978–
2983.

[19] A. Chakrabarty, V. Stepanyan, K. Krishnakumar, and C. Ippolito, “Real-
time path planning for multi-copters flying in UTM-TCL4,” AIAA

Scitech 2019 Forum, no. January, 2019.

[20] G. L. Orrell, A. Chen, and C. J. Reynolds, “Small unmanned aircraft
system (SUAS) automatic dependent surveillance-broadcast (ADS-B)
like surveillance concept of operations: A path forward for small
UAS surveillance,” AIAA/IEEE Digital Avionics Systems Conference -

Proceedings, vol. 2017-Septe, 2017.

[21] C. E. Lin, “An ADS-B like communication for UTM,” Integrated

Communications, Navigation and Surveillance Conference, ICNS, vol.
2019-April, pp. 1–12, 2019.

[22] Y. H. Lin, C. E. Lin, and H. C. Chen, “ADS-B Like UTM surveillance
using APRS infrastructure,” Aerospace, vol. 7, no. 7, pp. 1–14, 2020.

[23] M. M. Azari, S. Solanki, S. Chatzinotas, O. Kodheli, H. Sallouha,
A. Colpaert, J. Fabian, M. Montoya, S. Pollin, A. Haqiqatnejad,
A. Mostaani, E. Lagunas, and B. Ottersten, “Evolution of Non-Terrestrial
Networks From 5G to 6G : A Survey,” pp. 1–35.

[24] F. B. Schneider, “Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial,” ACM Computing Surveys (CSUR),
vol. 22, no. 4, pp. 299–319, 1990.

[25] Y. Kim, J. Y. Jo, and S. Lee, “ADS-B vulnerabilities and a security
solution with a timestamp,” IEEE Aerospace and Electronic Systems

Magazine, vol. 32, no. 11, pp. 52–61, 2017.
[26] B. C. Ferreira, G. Dufour, and G. Silvestre, “Mace: A mobile ad-hoc

computing emulation framework,” in 2021 International Conference on

Computer Communications and Networks (ICCCN), 2021, pp. 1–6.
[27] B. Yu, C. Z. Xu, and B. Xiao, “Detecting Sybil attacks in VANETs,”

Journal of Parallel and Distributed Computing, vol. 73, no. 6, pp. 746–
756, 2013.

A cross-domain framework for Operational Design
Domain specification

Guillaume Ollier1, Morayo Adedjouma1, Simos Gerasimou2, Chokri Mraidha1

1Université Paris-Saclay, CEA LIST, Dept. Ingenierie Logiciels et Systemes, P.C. 174, Gif-sur-Yvette, 91191 Cedex, France
2University of York, Department of Computer Science, United Kingdom

guillaume.ollier@cea.fr

Abstract—This paper presents a method to generalize the
concept of “Operational Design Domain” (ODD) used in the
automotive domain to any cyber-physical system. The approach
proposes to use domain-level and meta-theories taxonomies to
develop a cross domain ontology for the definition of the ODD.

Index Terms—ODD, ontology, taxonomy, logical scenario, Au-
tonomous System

I. INTRODUCTION

To solve the challenge of the specification of the intended

capabilities and limitations of Autonomous Systems (ASs)

based on AI models, a solution is to capture the scenario space

covering all possible Usage Scenarios (USs) of the system.

Such scenario space is defined in the automotive domain

with the concept of Operational Design Domain (ODD) [1].

Within ODDs, USs are decomposed into Operating Conditions

(OCs) which might include environmental conditions (e.g,

illuminance, weather, traffic), conditions on the ego system

(e.g, speed limitations, maneuvers), etc. The OC terms and

their relations can be formalized through an ontology, i.e,

“a representation, formal naming, and definition of the cat-

egories, properties, and relation between the concepts, data

and entities that substantiate one, many, or all domains of

discourse” [2]. In other words, an ontology can represent the

body of knowledge in a given field. It seems, essential to be

able to generalize this concept of ODD from automobile to

any other domain relative to ASs.

Indeed, the approach could provide a huge benefit for

all safety-oriented and scenario-based methods for systems

development at various phases, e.g., for the specification and

design phase, the ODD could support the identification of the

capacities and limitations of the system and refine it as the

safety analysis advances. The ODD could also be a source for

the verification and validation scenario specification and help

to guide the testing process.

However, while current approaches supporting the ODD

specification are only adapted to one specific domain, it may

Fig. 1. A representation of the different scenario spaces.

be interesting to define a commonly controlled vocabulary

that may embody the knowledge related to ASs from different

application domains in a harmonized way. In this paper, we

present a cross-domain approach for ODD specification. Our

goal is to define a method to formalize the overall scenario

space relevant for any application domains of ASs. In Figure 1,

we illustrate how the different scenario spaces are related. The

outer oval represents the overall scenario space for any AS.

We refer here to the world in which any of these ASs might

operate, no matter their capability. We represent this scenario

space with a global ontology. The second most external oval

represents the domain-specific scenario space. This scenario

space is a subset of our AS scenario space and it is represented

with relevant aspects for a domain extracted from our global

ontology. The third oval represents our Operational Domain

(OD) as an ADS-specific scenario space and it is formed of

all OCs of this ADS. Then, the oval in it is for the ODD of

the system. This scenario space represents the intended AS

capability to handle OCs. We exclude from this space the

specific OC combinations unsafe for our system. This space

is refined through the development process. Lastly, the inner

oval represents a US, i.e, any scenario for which our system

Fig. 2. A representation of concepts in common for several domains.

is specifically designed to function.

We ensure that our global ontology contains all the concepts

from the most common safety-critical AS domains, e.g, auto-

motive, avionics, and manufacturing. We compile and structure

these concepts into ”upper ontologies”, i.e, ontologies reusable

to specify the ODD from new domains systems.

Our multi-domain formalization aims to facilitate the defini-

tion of the scenario space for a new application domain using

the captured knowledge from existing ones. We aim to validate

the approach on ASs from various UCs concerning different

domains, including the domains used to extract the generic

concepts but also new domains which combine concepts from

other domains, e.g, urban rescue robot which combine urban

environment from automotive domain and object manipulation

[3]. The notion of “generic concepts” is illustrated in Figure 2.

Each circle represents a specific-domain ontology. At the

crossing of two circles, we list as examples some common

concepts for these two corresponding domains, e.g, the drone

and automotive systems are designed to work outside then the

concepts relative to weather and vegetation are relevant for

these two domains. In the space shared by all circles, we list

some concepts relevant for any AS domains, e.g, events or

actions.

II. BACKGROUND

To address the problem of the harmonization of scenario

representation through different domains, we use upper on-

tologies [4], i.e, general concepts which can be reused to

express knowledge for several different domains, e.g, space,

time, weather, infrastructure. The knowledge transfer from a

well-defined domain to new domains is resolved by these

upper ontologies that ensure completeness of semantic rep-

resentation. These upper ontologies can be cross-cutting to all

domains, e.g, ATIC for time representation [5], RCC-8 for

space representation [6], or they can concern only a domain

set, e.g. CORA [7] for the autonomous robotic domain. We

also integrate domain standards (e.g, the PAS1883 [8] which

defines a taxonomy for safe automated driving systems, the

taxonomy of unmanned aircraft, and their operations [9]).

III. APPROACH

Our approach follows several steps as presented below.

The activity and its output concerning the compilation of the

concepts used to describe OCs (S1 and O1) are independent

of the activity and its output concerning the formalization

language used to structure these concepts (S2 and O2). Fig-

ure 3 presents how these steps are organized. The output

“Taxonomies” (O1) is illustrated by a portion of the figure

from the PAS1883 standard whereas the output “ontology

formalization” is illustrated by a modified version of the UFO

meta-model [10]. This model is UML-based and we present

here the different stereotypes used with the class stereotypes

in rectangle shapes and association stereotypes in stadium

shapes. The stereotypes in green, yellow, and red shapes

model respectively the OCs, events and, intentional entities.

This representation of events and intentional entities is not

part of the ODD itself but it complements OCs to allow US

description for safety analysis.

S1 Theories & Standards: We list all standards and meta

theories which present concepts to describe usage scenario for

ASs from various domains. We use all the acquired standards

to build a taxonomy that lists all OCs extracted from theories

and standards. The knowledge from expertise related to ASs

has to be represented, e.g, computer vision, human operator

factors, system engineering.

S2. Ontology Language Definition: We define a domain-

specific language to capture our knowledge representation as

ontologies. We specify additional modeling constraint and

change the vocabulary to adapt our ontology representation

to US description.

S3. Meta-domains Knowledge: We formalize our tax-

onomies (O1) with our ontology language (O2). The obtained

ontology has to cover all relevant concepts to analyze ASs

from any domain.

S4. Generics domains Knowledge: Any new AS domains

can be represented using upper ontologies, e.g, a drone on-

Fig. 3. Our approach steps.

tology can be built using a weather ontology and an aerial

environment ontology. The upper ontology representation

is completed with domain-specific concepts, e.g, the drone

maneuvers. The classic domains (e.g, automotive, aviation,

robotic manufacture) are defined in a similar way to make

them compatible with the ODD formalization.

S5. ODD Specification: For the ODD definition of a

specific UC, we extract from the corresponding domain

ontology (defined at S4) all the required concepts to

characterize the scenario space of the UC. Furthermore,

the ODD specification includes the OCs together with their

properties and applicable range or limit values, e.g, the OC

“moderate rain” may be included in the ODD with 2.5 mm/h

as minimum values and 7.6 mm/h as maximum values. It is

also completed by information to help the safety analysis, e.g.

the exposure probability and acceptable uncertainty thresholds.

IV. RELATED WORK

We propose three main contributions in our paper: a cross-

domain AS taxonomy definition, the ontology language for-

malization adapted to US description, and an ODD language

formalization. The following subsections present related work

for each of these contributions.

A. Autonomous Systems Taxonomy

The taxonomy definition for an autonomous system has

been presented in [11]. A meta-domain knowledge is extracted

from meta-theories for known cross-cutting domains i.e, time,

space, communication, etc. and it might be used to represent

plain domains. The article doesn’t provide an exhaustive list

of meta-theories. A framework to categorize the OCs of a

UC is given in [12]. This classification was defined for the

automotive domain but it is enough general to be adapted to

other domains. Another framework to define safety-relevant

scenarios at a logical level is presented in [13]. It is based on

a 6-layer model to represent the road environment including

the structural and dynamic aspects. This notion of layers for

scenario representation could be adapted and generalized on

other domains.

B. Ontology Languages

For the ontologies formalization, the most common ap-

proach is to use the Web Ontology Language (OWL) [14]. It is

capable of representing classes, properties, defining instances

and its operations and it structures the semantics for reasoning

and inferences. But although this language family is employed

in practice for conceptual modeling, it is not designed to

be specifically truthful to reality, i.e, there are no modeling

constraints to guarantee that our ontology can be used to

analyze the scenario space. For example, for these modeling

constraints, the property classes shall be connected to exactly

one bearer class, or a rigid attribute (i.e, attribute that must

instantiate a given type in all possible scenarios in which

it exists) shall not subclass a state. The approach proposed

by the Unified Foundational Ontology (UFO) [10] aims to

solve this conceptual modeling problem. It is an extension of

Unified Modeling Language (UML) and it is implemented in

OntoUML [15]. A formal ontological framework developed

for hazard identification of autonomous systems and adapted

from UFO is raised in [16]. This paper proposes a method

to incorporate ideas from other models to build their “ESHA

ontology” but the complete ontology language is not presented.

C. ODD Languages

Some initiatives to define a Domain Specific Language

(DSL) to represent ODD for vehicles has been developed

with the projects OpenODD [17] and [18]. These formats are

designed to be machine-processable throughout the vehicle

development and lifecycle thanks to a well-defined syntax

and semantics. It also includes pre-defined attributes, metrics,

scenario exposure probabilities. The standard OpenODD also

includes representation of scenarios uncertainty, and a query

language to access and manipulate a scenario database.

V. CONCLUSION & FUTURE WORK

We have presented an approach to formalize and build the

ODD of autonomous systems for any domain. We detailed

all the needs to achieve this formalization from the domain

representation to the system-specific constraints representa-

tion. We further need to implement the tool for domain and

ODD specification. For the choice of the ontology language,

we have to compare the existing ones to select the most

appropriate given our requirements and extend it if needed.

Our tool has to be compatible with the existing DSLs (e.g,

OpenODD). To make our approach usable even for non-

experts, a user interface could guide stakeholders through the

domain description and ODD boundaries specification. The

OC selection could be achieved with predefined questions on

the system. Finally, our validation process includes evaluating

our approach on UCs from various domains.

VI. ACKNOWLEDGEMENTS

This work was partially supported by the European H2020-

ECSEL CPS4EU project under grant no 692474 and the

Confiance.ai project of the Grand Défi “Securing, certifying

and enhancing the reliability of systems based on artificial

intelligence” launched by the French Innovation Council.

REFERENCES

[1] SAE Mobilus. SAE J3016 Taxonomy and Definitions for Terms Related
to Driving Automation Systems for On-Road Motor Vehicles. Technical
report, Society of Automotive Engineers International, 2018.

[2] George H Mealy. Another look at data. In Proceedings of the November

14-16, 1967, fall joint computer conference, pages 525–534, 1967.
[3] K. Osuka, Robin Murphy, and Alan Schultz. Usar competitions for

physically situated robots. Robotics & Automation Magazine, IEEE,
9:26 – 33, 10 2002.

[4] Viviana Mascardi, Valentina Cordı̀, and Paolo Rosso. A comparison of
upper ontologies. In Woa, volume 2007, pages 55–64. Citeseer, 2007.

[5] James F Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832–843, 1983.

[6] Anthony G Cohn, Brandon Bennett, John Gooday, and Nicholas Mark
Gotts. Qualitative spatial representation and reasoning with the region
connection calculus. GeoInformatica, 1(3):275–316, 1997.

[7] Joanna Isabelle Olszewska, Marcos Barreto, Julita Bermejo-Alonso, Joel
Carbonera, Abdelghani Chibani, Sandro Fiorini, Paulo Goncalves, Maki
Habib, Alaa Khamis, Alberto Olivares, et al. Ontology for autonomous
robotics. In 2017 26th IEEE international symposium on robot and

human interactive communication (RO-MAN), pages 189–194. IEEE,
2017.

[8] British Standard Institution. PAS 1883 Operational Design Domain
(ODD) taxonomy for an automated driving system – Specification.
Standard, British Standard Institution, 2020.

[9] Anna Masutti and Filippo Tomasello. International regulation of non-

military drones. Edward Elgar Publishing, 2018.
[10] Giancarlo Guizzardi. Ontological foundations for structural conceptual

models. 2005.
[11] Leonard Petnga, Mark Austin, and Mark Blackburn. Semantically-

enabled model-based systems: Engineering of safety-critical network of
systems. Insight, 20(3):29–38, 2017.

[12] Magnus Gyllenhammar et al. Towards an operational design domain
that supports the safety argumentation of an automated driving system.
In 10th European Congress on Embedded Real Time Systems (ERTS

2020), 2020.
[13] Hendrik Weber, Julian Bock, Jens Klimke, Christian Roesener, Johannes

Hiller, Robert Krajewski, Adrian Zlocki, and Lutz Eckstein. A frame-
work for definition of logical scenarios for safety assurance of automated
driving. Traffic injury prevention, 20(sup1):S65–S70, 2019.

[14] Holger Knublauch, Daniel Oberle, Phil Tetlow, Evan Wallace, JZ Pan,
and M Uschold. A semantic web primer for object-oriented software
developers. W3c working group note, W3C, 2006.

[15] OntoUML metamodel & definition. https://ontouml.org/ontouml/
metamodel-definitions/. Accessed: 2021-10-02.

[16] Christopher Harper and Praminda Caleb-Solly. Towards an ontological
framework for environmental survey hazard analysis of autonomous
systems. In SafeAI@ AAAI, 2021.

[17] ASAM OpenODD project details. https://www.
asam.net/index.php?eID=dumpFile&t=f&f=4544&token=
1260ce1c4f0afdbe18261f7137c689b1d9c27576. Accessed: 2021-
09-27.

[18] Daniel Hillen and Jan Reich. Model-based Identification of Operational

Design Domains for Dynamic Risk Assessment of Autonomous Vehicles.
PhD thesis, 08 2020.

Towards Real-time Adaptive Approximation

Raheleh Biglari
Cosys-lab, University Of Antwerp

Flanders Make@Uantwerpen

Raheleh.Biglari@uantwerpen.be

Joost Mertens
Cosys-lab, University Of Antwerp

Flanders Make@Uantwerpen

Joost.Mertens@uantwerpen.be

Joachim Denil
Cosys-lab, University Of Antwerp

Flanders Make@Uantwerpen

Joachim.Denil@uantwerpen.be

Abstract—Cyber-physical systems (CPS) are real-time systems
that operate in dynamic and non-deterministic environments.
Models are often used for control and prediction, however do
not reason on the trade-off between real-time constraints and
uncertainty. This paper presents a conceptual model to reason
on adaptive approximation in such systems. Furthermore, we
envision a framework to allow the adaptivity of models, balancing
between uncertainty and the real-time behavior of the system.

Index Terms—cyber physical systems, real-time, uncertainty,
adaptation, abstraction

I. INTRODUCTION

Cyber-physical systems (CPS) are engineered systems that

have tight integration between the cyber part (computation

and networking) and its physical components [1]. Examples

include but are not limited to industry 4.0, automotive, and

aerospace. Engineered systems have a goal to achieve in the

context of the system, e.g. an autonomous vehicle needs to

pilot the environment while not harming anyone. To achieve

this goal, multiple decision models are needed and combined.

For example, an autonomous vehicle has low-level control to

accelerate and brake, tactical decision-making models for path

planning, and strategic models to decide which roads to avoid,

e.g., as an accident occurred. All of these decision models

implement some form of (feedback) control.

Cyber-physical systems of systems are CPS that exhibit the

features of a system of systems (SoS). They are large and

spatially distributed, have distributed control, and autonomic

behavior where parts of the SoS can join or leave the system

[2]. As such it is a system composed from different CPS where

each part of the system contributes to the overall goal of the

CPSoS. The engineering of such a CPSoS has to address the

complex situations and, environments of the system, which is

characterized by ambiguity, high uncertainty and emergence

[3]. CPSoS have to allow for collaborative decision making

and, as such, need to be aware of the state of the other

constituents of the system [2].

CPS and CPSoS operate in a very dynamic environment

where lots of uncertainty is present [4]. Uncertainty points to

the lack of information that is available about the system or its

environment. An autonomous vehicle might have uncertainties

about its own position in the system and about the direction

and velocities of other vehicles and road users. Cyber-physical

Raheleh Biglari is funded by the BOF fund at the University of Antwerp.
Joost Mertens is funded by the Research Foundation - Flanders (FWO)
through strategic basic research grant 1SD3421N.

Fig. 1. Lane changing scenario.

systems are also real-time systems which means that the

time at which a decision is made is as important as the

decision itself. This means that during design time, the system

is analyzed to ensure that all the deadlines of the control

components are met in the worst-case.

One way to deal with the contradiction of better perfor-

mance and reduced cost in CPS is to allow adaptivity at run-

time and to change the underlying decision and estimation

models such that they are sufficient for computing the control

actions but at the same time computationally less intensive.

Techniques that abstract or approximate models are commonly

available in the literature, e.g., surrogate modeling [5].

In this short paper, we look at different dimensions of

the problem to allow for such a run-time adaptation of the

underlying control and decision models with more abstract

and approximate models. The rest of the paper is organized

as follows: section II introduces our running example, section

III describes the challenges in our work. We also present use

case evaluation results. In section IV we describe our strategy

to dealing with the challenges. We provide related works in

section V and section VI presents our conclusion and discusses

future directions.

II. RUNNING EXAMPLE

We use a lane change control algorithm to show the chal-

lenges of introducing adaptive abstraction and approximation

in a real-time context. While we do not aim precisely at this

class of control algorithms, lane changing allows for visual

and intuitive reasoning over the problem space.

Lane changing algorithms control the lateral direction of

the vehicle. The scenario throughout this paper is shown in

Figure 1. The ego car (in dark blue) tries to change the lane in

between two other cars. The velocity and acceleration vectors

of the two cars is shown as vectors v1,v2, a1 and a2. The

front car is lightly decelerating while the back car is lightly

accelerating. Multiple algorithms have been proposed in the

literature to solve such lane changing problems, e.g. [6]. In

the context of this paper, we use a Simulink provided model

Fig. 2. Causal Block Diagram of the Lane Change Algorithm

to simulate the lane changing behavior. Figure 2 shows the

high-level architecture of the lane changing algorithm. The

algorithm uses Frenet Coordinate System, which represents the

position of the car on the road more intuitively than traditional

(x, y) coordinates.This algorithm also uses a prediction step

to predict the trajectories of the different actors. Afterward,

path planning takes care of finding a good path in the world.

Finally, a model-predictive controller steers the vehicle over

the planned path.

In the rest of the paper, we focus on the prediction step of

the other vehicles. The prediction step simulates a trajectory

relative to the ego car for each vehicle in the environment. The

component receives information on the lateral and longitudinal

position, velocity, and acceleration of the vehicles. In the

default case, the prediction step uses a constant velocity model

to predict the vehicle’s position at multiple time-steps in a

three-second window:s(t) = v ∗ t + s0 (with s the relative

distance to the ego-car, v the relative speed to the ego vehicle,

and s0 the initial distance). However, we can imagine much

more detailed models that also take the vehicle’s acceleration

into account or even more detailed models that simulate the

complex decision-making in each of the vehicles.

III. CHALLENGES

Using a model of a car performing a lane change such as the

scenario in Section II, we elaborate on identified challenges.

The model is simulated with Simulink.

A. Model Prediction Uncertainty

Each of the different models has a different amount of

predictive power. As such, more detailed models typically have

lesser prediction uncertainty. Figure 3 depicts the prediction of

the scenario with two different models over three time-steps.

The top control bar is the uncertain position of the cars using

a constant velocity model. The lower control bar shows the

uncertain position using a constant acceleration model.

To reason over using different alternative models, we need

to map the prediction uncertainty of all the different models.

Two types of uncertainty are typically present in modeling

and simulation: aleatoric and epistemic uncertainty. Aleatory

uncertainty is known as stochastic uncertainty and is due to

probabilistic variability. Epistemic uncertainty is the uncer-

tainty that occurs because of the lack of knowledge [7].

With the simulation model, we demonstrate how the con-

stant velocity and constant acceleration models have different

predictive power. Figure 4 shows the velocity profile of car 2

and the L2-norm (Euclidean distance) between 4 predictions

and the true location of that car. The number behind each

Fig. 3. Prediction of the car position on three time steps within the time
window, relative to the leading car. On each car, the prediction uncertainty of
two different models is shown, one solid, one dashed.

Fig. 4. Car 2’s velocity profile, compared with the L2 errors made by the
constant velocity and acceleration prediction models.

prediction tells us how many steps (of 0.1s) in the future

this prediction is. The simulation includes uncertainty on the

sensor inputs of the ego vehicle, which results in slightly

jagged error traces. The velocity profile shows that the car

accelerates to 22 m/s. Afterward, it holds a constant velocity.

We observe that under acceleration, the constant velocity

model has a continuous error that only diminishes as the

vehicle approaches constant velocity. The constant acceleration

model performs better when conditions are constant, that is,

positive, negative, or 0 acceleration, and shows the largest error

when the predictions cross transitions in acceleration. Such

transitions can be seen at t = 0s, where the initial acceleration

measurement is 0, yet the car is already accelerating at

0.8m/s2, and at t = 2.4s, when the car stops accelerating.

Under constant velocity, both models perform equally. From

the results, we can say that the constant acceleration model has

better predictive power, given the generally smaller errors.

B. Dynamic Environment

The environment in which systems operate is dynamic. Cars

enter and leave the operating environment of the system. Some

highways have more lanes than others. Even more, not all of

the actors within the environment are of the same type. In a

traffic environment, we have pedestrians, bicycles, cars, trucks,

and buses that all behave differently. The prediction compo-

nent of the lane change algorithm has to set up this dynamic

2

Fig. 5. Experimental CDF of the profiled execution times of both models.

environment each time and select the most appropriate models

to include.

C. Real-time Constraints

Often our cyber-physical systems are also real-time systems.

This means that the time at which the computation result

is available is as important as that result itself. During the

design of such systems, care is taken that the computations are

finished before the expiry of the deadline of the computation.

Different analytical techniques are available to check that this

is correct. However, in the dynamic environment described

above, this is difficult. How many cars, pedestrians, and

bicycles are in the system’s environment is unknown at design

time. However, we still need a prediction of the behavior of

each of these actors in the example within a certain time-span.

With the simulation model, we can demonstrate the impact

computations can have on the number of predictions. Figure 5

shows the experimental cumulative distribution function of the

profiled execution times of the state predictor for the constant

velocity and acceleration models. 400 simulations were run

for each model. Although profiling a Simulink model does not

yield real-time results, it does allow us to relatively compare

the computational burden of its blocks, We observe that,

on average, the constant acceleration model requires 22.74%

more computation time than the constant velocity model.

This implies that for predicting 4 other cars with constant

acceleration, 5 cars with constant velocity could be computed.

IV. APPROACH

This section details our approach to handle these challenges.

In the first part of this section, we look at a conceptual manner

on reasoning over substitutability of models. We look at the

effect of approximating a model with a surrogate model and

how it impacts a decision making algorithm. The conceptual

framework is used as the foundation for a framework that

allows for the run-time adaptation of a system where models

can be swapped by more approximate models based on the

context of the system and the available library of models.

A. Language Engineering Framework

To reason on the challenges, we propose an adapted version

of the conceptual framework proposed by Barroca, Kuhne and

Vangheluwe [8]. The conceptual framework in Figure 6 inte-

grates ontological and language engineering. We extended the

framework with two different models with different approxi-

mations, and the layer of the decision-making algorithms. The

linguistic level starts with a simulation model. The simulation

model has semantics (denoted by [[.]]), which results in a

Fig. 6. Conceptual framework.

simulation behavior trace. However, the trace might not be

the quantity of interest of the decision-making algorithm or for

reasoning over the logical behavior of the system. A function

f() (e.g. integrating the signal) transforms the trace into some

quantity of interest, here called the prediction value. A logical

property is on the ontological level where it gets a real-world

meaning, e.g. will the two cars collide? The logical property

is a Boolean value; either the cars collide, or they do not

collide. Another function g() is used to transform between

the quantity of interest and the logical property. Decision

algorithms typically work directly with the prediction value

but implicitly encode the transform within its algorithm. We,

therefore, show the direct link between the logical property

and the decision-making model.

The framework is analog for a model that is approximated.

It reasons on the same logical property, however, using a

more approximate model introduces uncertainty. This means

that the function g′() should give the same answer as the

original model, except with more uncertainty. If the uncertainty

is within bounds, the original model can be substituted with

the more approximate one. This bound is defined by some

metric, which is the tolerance to this change in the logical

property (and hence later in the decision that was made by the

decision-making model). The tolerance depends on a number

of factors. In our lane changing example, the tolerance is

based on (a) the goal model: do I actually want to change

lanes, or do I want to stay in the same lane? When staying

in the same lane, the cars on other lanes are maybe less

important. (b) the context or environment of the system: is

the car close-by (less tolerance) or far away (more tolerance)

(c) the decision-making model itself: is the algorithm itself

more or less tolerant to uncertainties?

B. Adaptive abstraction and approximation for real-time sys-

tems

Based on the insights provided by the conceptual frame-

work, we propose an architecture for adaptive abstraction and

3

approximation for real-time systems. The architecture is shown

in Figure 7. The high-level architecture is based on the MAPE-

K architecture [9]. MAPE-K is a high-level control loop for

self-adaptive systems. The managed system is, in our case,

the embedded system running the control application for lane

changing.

Fig. 7. Real-time Adaptive Abstraction and Approximation Architecture

The MAPE-K loop starts with a Monitor-phase where the

necessary (processed) sensor data, the current goal function

and the decision-maker are communicated to the adaptation

mechanism. Here some processing occurs to allow for easier

Analysis. The analysis phase starts by updating a model tree.

This model tree contains, in the ordered branches, all real-

world objects that are passed by the sensor data. In the running

example, we only have two objects: the two cars. It uses

the (processed) sensor data to add or remove objects from

the model tree incrementally. The Model Selection activity

updates or selects the different models for each object in the

model tree. The update is based on the goal, context and

decision model, the quantified tolerances, and the available

models with uncertainty quantification. The combination of

these Knowledge items result in a set of rules to decide if a

certain model can or cannot be used in this specific instance.

Furthermore, the tree is also ordered with the most important

objects in the first branches, and the most appropriate model

in the first branch. In our case, the acceleration model is

placed before the constant velocity model. If another car

was present at a larger distance, the constant vehicle model

would be first, and an empty model second branch. Using

the accelerated model would not make sense as the tolerance

for the decision-maker is high. The empty model is present,

as the non-computing of the model reduces the execution

time significantly but reduces the performance of the system.

Finally, real-time constraints are imposed on top of the model

tree to prune infeasible solutions. After the analysis phase, a

set of feasible solutions is left. Based on this set of solutions,

the co-simulation scheme is adapted and a master is generated

that enables execution of the simulation. Note that each co-

simulation unit contains the different possible models (possibly

an empty model) for fast adaptation. Finally, in Execute, the

scheduler in the Managed system is updated.
The scheduler itself is an adaptive mixed-criticality sched-

uler based on [10]. This allows for responsiveness to overload

conditions and imperfections in the execution time measure-

ment of each co-simulation unit.

C. Discussion

This paper shows how to deal with the trade-off between

uncertainty and real-time behaviour using models at different

approximation levels. Consider if the number of cars increases

in a scenario, the ECU will not have sufficient time to compute

a prediction of all the different models.

The proposed conceptual model solves the dynamic envi-

ronment where you cannot reason over real-time behaviour as

worst-case bounds or where fallbacks in the decision logic are

necessary. This solution needs computation of the MAPE-K

loop and switching of models.

In this research, we address Tolerance Quantification. We

need to be able to evaluate the tolerance of the decision making

algorithm, since it is one of the model selection criteria. Off-

line experiments are needed to see how a decision making

algorithm responds to uncertainty. In the example, it is the

tolerance to the uncertain distance and velocity vector that

must be quantified.

V. RELATED WORK

In previous work [11]–[13], we worked on the adaptivity

of large scale simulations with surrogates. However, none of

these techniques use a quantification of tolerance or reason

over the real-time behaviour of the system.

The two most related techniques to our defined methods

are mixed criticality systems and the imprecise computation

model. Most of the complex embedded systems like automo-

tive and avionic industries are mixed criticality systems. These

systems deal with task-priority scheduling regarding execution

time [14]. The imprecise computation is also a technique

to deal with transient overload and improve real-time fault

tolerance. This approach ensures that all critical tasks never

miss their deadlines [15]. Both techniques do not take the

uncertainty of the models into account but allow for adaptation

based on real-time citeria.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a conceptual model for reasoning

on adaptive approximation in a dynamic environment. We

used a Simulink model for the simulation of the lane change

control algorithm as a visual and tangible use case. Guided

by it, we identify 3 main challenges faced for real-time

adaptive approximation: model prediction uncertainty, dynam-

icness of environments and real-time constraints. To handle

those challenges, we envisioned an integrated framework for

adaptive approximation in CPS that balances the uncertainty

and real-time behavior of the system. In the future, we aim

to implement the framework with a supporting architecture,

methods, and techniques to reason over the use of self-adaptive

approximations and abstractions at runtime. We also want

to create an appropriate modeling language and supporting

techniques to find better runtime deployment solutions.

4

REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th

IEEE international symposium on object and component-oriented real-

time distributed computing (ISORC). IEEE, 2008, pp. 363–369.
[2] S. Engell, “Cyber physical sos-definition and core research and devel-

opment areas,” Working paper of the Support Action CPSoS. Retrieved
from http://www. cpsos . . . , Tech. Rep., 2014.

[3] A. Sousa-Poza, S. Kovacic, and C. Keating, “System of systems engi-
neering: an emerging multidiscipline,” International Journal of System

of Systems Engineering, vol. 1, no. 1-2, pp. 1–17, 2008.
[4] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, “Under-

standing uncertainty in cyber-physical systems: a conceptual model,”
in European conference on modelling foundations and applications.
Springer, 2016, pp. 247–264.

[5] D. Caughlin and A. F. Sisti, “Summary of model abstraction techniques,”
in Enabling Technology for Simulation Science, vol. 3083. International
Society for Optics and Photonics, 1997, pp. 2–13.

[6] D. Bevly, X. Cao, M. Gordon, G. Ozbilgin, D. Kari, B. Nelson,
J. Woodruff, M. Barth, C. Murray, A. Kurt, K. Redmill, and U. Ozguner,
“Lane change and merge maneuvers for connected and automated
vehicles: A survey,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 105–120, 2016.

[7] W. L. Oberkampf and C. J. Roy, Verification and validation in scientific

computing. Cambridge University Press, 2010.
[8] B. Barroca, T. Kühne, and H. Vangheluwe, “Integrating language and

ontology engineering.” in MPM@ MoDELS. Citeseer, 2014, pp. 77–86.
[9] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”

Computer, vol. 36, no. 1, pp. 41–50, 2003.
[10] F. Guan, L. Peng, L. Perneel, H. Fayyad-Kazan, and M. Timmerman,

“A design that incorporates adaptive reservation into mixed-criticality
systems,” Scientific Programming, vol. 2017, 2017.

[11] S. Bosmans, S. Mercelis, P. Hellinckx, and J. Denil, “Towards evaluating
emergent behavior of the internet of things using large scale simulation
techniques (wip),” in Proceedings of the 4th ACM International

Conference of Computing for Engineering and Sciences, ser. ICCES’18.
New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3213187.3213191

[12] ——, “Reducing computational cost of large-scale simulations using
opportunistic model approximation,” in 2019 Spring Simulation Confer-

ence (SpringSim), 2019, pp. 1–12.
[13] S. Bosmans, T. Bogaerts, W. Casteels, S. Mercelis, J. Denil,

and P. Hellinckx, “Adaptivity in multi-level traffic simulation
using experimental frames,” Simulation Modelling Practice and

Theory, vol. 114, p. 102395, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1569190X2100099X

[14] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department

of Computer Science, University of York, Tech. Rep, pp. 1–69, 2013.
[15] J. W. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise

computations,” Proceedings of the IEEE, vol. 82, no. 1, pp. 83–94, 1994.

5

STARTREC: Verification of a safety-critical system
for autonomous vehicles

Marwan Wehaiba El Khazen
Inria and Statinf, Paris

marwan.wehaiba-el-khazen@inria.fr

Slim Ben Amor
Statinf, Paris

slim.ben-amor@statinf.fr

Liliana Cucu-Grosjean
Inria and Statinf, Paris

liliana.cucu@inria.fr

Arnaud Dumérat
EasyMile, Toulouse

arnaud.dumerat@easymile.com

Xavier Jean
EasyMile, Toulouse

xavier.jean@easymile.com

Kossivi Kougblenou
Statinf, Paris

kos@statinf.fr

Benjamin Monate
Trust-in-Soft, Paris

benjamin.monate@trust-in-soft.com

Abstract—In this paper, we present our on-going work on
verification activities of the software used in a safety-critical em-
bedded system dedicated to autonomous vehicles. These activities
are focused on the use of formal methods for the verification
of functional properties on the embedded code, and statistical
methods for the analysis of its Worst-Case Execution Time
(WCET). The project’s goal is to address some technical barriers
of software verification that will impact the safety demonstration
of future autonomous driving systems. These barriers are chal-
lenging because of the high complexity of an embedded hardware
and software, and appeal for methods and tools reaching the
highest level of rigorousness.

Index Terms—autonomous vehicles, formal verification, timing
verification

I. INTRODUCTION

The safety of autonomous vehicles is one of the numerous

challenges this industry will face in the decade to come. In

the latest years, the way to tackle this problem has become

consensual [10]. An applicant needs first to establish an

Operational Design Domain for its use case, summarizing the

assumptions of use, hazard analysis and validation strategy

at the system scale. This analysis is then refined to the sub-

system level, assigning to each component a target integrity

level (ASIL) associated to a safety function. The safety demon-

stration against this function at the appropriate integrity level

is conducted under functional safety norms, such as the ISO

26262 [11]. The STARTREC project contributes to this second

phase, by addressing the validation of a software component

against the ISO 26262.

Even if its functional scope is clearly defined, the verifi-

cation of a piece of software implementing an autonomous

driving function constitutes a major issue with regard to

many aspects [2]. It covers topics such as the correctness of

algorithms [8], the correct implementation of these algorithms

as well as their infrastructure software, being an operating

system, a middle ware or third-party libraries, and finally

the validation of their real-time properties when deployed on

embedded hardware [1].

The component under verification in the STARTREC project

is a safety relevant algorithm taking emergency decisions

with regard to the environment, the sanity of the autonomous

vehicle and its navigation stack. As part of the safe design

process, this algorithm is designed to be explainable and

verifiable in a white-box approach. It takes as inputs the

perception infrastructure including the sensors of the vehicle,

and various data produced by the navigation stack. It is

interfaced with a safety relevant system capable of executing

emergency maneuvers.

The activities planned during the STARTREC project are

centered around the three following topics:

• Verify the correctness of the implementation of the al-

gorithm embedded in the system. The correctness of the

algorithm itself does not fall in the scope of the project.

Related activities are centered around the use of sound

static analysis methods and their combination with unit

tests and integration tests. Sound methods can prove the

absence of some categories of bugs [15], which makes

them highly suitable for high integrity systems, but hard

to deploy in practice on large pieces of software.

• Evaluate the Worst Case Execution Time (WCET) of the

embedded software implementing this algorithm. Related

activities are centered around statistical and probabilistic

WCET evaluation methods [5].

• Demonstrate the compliance of the tools involved in

the verification activities with regard to the ISO 26262

requirements, at the appropriate Tool Confidence Level

(TCL). This compliance allows the applicant to consider

the results provided by the tools as trustworthy.

This paper summarizes the overall problem, details the

position of the project’s stakeholders on the activities in

progress, and presents preliminary results on the probabilistic

WCET estimation tool.

II. PROBLEM STATEMENT AND RELATED WORK

The STARTREC project addresses the functional verifica-

tion of the embedded software with the use of sound static

analyzers, namely frama-c [14], and TIS-Analyzer [25]. These

tools are used to prove (i) that the software is free from runtime

errors, and (ii) that it complies with its functional specifica-

tion. One challenge to address is the seamless integration of

these tools with standard verification and validation processes:

radical changes to traditional processes are costly in terms of

project management and risky in term of certification [19].
Runtime errors cover a large class of software misbehavior.

Such errors encountered in embedded software are typically

divisions by 0, memory overflows, out-of-bounds accesses,

violations of flow integrity, typically dangling pointers or

uninitialized variables. The numeric stability of floating point

operations is also under consideration. Runtime errors are

classically tackled by defensive programming techniques, but

this raises a problem of software testing. Indeed, defensive pro-

gramming introduce a systematic verification of each condition

that could trigger a runtime error. This makes the test activity

painful, as every branch shall be tested. For each condition

a test case shall be specified and developed according to

the quality insurance process. The proof of runtime errors

absence, presented by Moy et al. [18] as the ”silver level”

of formal verification, allows to reduce the need of defensive

programming by removing unnecessary checks at runtime. The

method used in the project is abstract interpretation. It can be

deployed on large pieces of code with a minimal effort of code

annotation, but the analyzer’s accuracy trends to decreases

while progressing in the software analysis. Therefore, the

main challenge is to analyze the algorithm while providing

a reasonable set of annotations to keep a sufficient accuracy.
The proof of functional correctness, presented by Moy et

al. [18] as the ”gold level” of formal verification, relies on

deductive verification. Frama-c implements this method in the

Wp plugin. However, its use demands a high amount of code

annotations, and reaches the limits of automatic provers on

various aspects, like the handling of floating point numbers

or the memory model associated with the representation of

pointers. Although the STARTREC project will support the

improvement of tools in these areas, proving the functional

correctness of the whole software is considered not achievable

in the frame of the project. A more pragmatic approach

combining unit tests and unit proofs [14] is preferred, with

the use of executable annotations.
The second theme of STARTREC is the evaluation of the

software’s Worst Case Execution Time (WCET). This activity

is complicated for the following reasons:

• The software has many inputs impacting the execution

time. Typically, sensors generate point clouds whose

size and disparity varies with the environment, the me-

teorological conditions, and the sunlight. The scenario

leading to the WCET of the algorithm is far from being

reproducible on a real scene, so that the complexity

of these inputs remains empirical. It is necessary to

understand, build and justify the diversity of the situations

encountered in the vehicle’s environment to gather a set

of recordings sufficient to conduct a meaningful WCET

analysis. Note that every situation at a vehicle level does

not need to be considered as long as it is demonstrated

that they are equivalent to other situations, from a WCET

point of view.

• The embedded software is to be deployed on a multi-

core processor, able to execute several tasks in parallel.

This leads to interference in the underlying hardware,

when several cores compete to access shared resources,

typically the memories, with complex patterns [3], [21].

At a high-level, this can be observed as a slow-down on

every task. Estimating an upper bound for the interference

is known to be an open problem in general case, with

pathological situations that can be considered as denial-

of-service attacks [17], the slow-down factor can be

an order of magnitude [20]. We tackle this problem

with the following restrictions: (i) the whole stack of

embedded software is known, (ii) no piece of software

has been designed to maximize the interference, and (iii)

the scheduling of tasks might be reconsidered to limit the

impact of interference.

• For WCET analyses and interference analyses, identify-

ing the potential sources of interference as well as the size

of the benchmarks set is also complex [12]. One typical

problem of interference analyses is justifying why their

results are trustworthy and provide certification credit.

Statistical methods deployed in the project, as described

thereafter, are focused on the detection of inputs that impact

the execution time, so that they do not need to be considered

independently in the benchmark set. A similar approach is

developed for interference analysis on multi-core micropro-

cessors.

Any measurement protocol of the execution time of a

program should take into account the fact that the actual

WCET might not, or rather almost certainly will not be

achieved. Rather, a set of highly unlikely but observed ”ex-

treme” worst-case values should be considered to represent the

general behavior of all worst-case values. Then, assuming an

appropriate theoretical foundation whose hypotheses would be

checked, a statistical estimation of the WCET can be produced,

along with an appropriately small probability that the actual

WCET is higher than that estimation. Extreme Value Theory

(EVT) provides such a probabilistic framework, much needed

for the estimation of the statistical WCET. Its central result,

the extreme value theorem, was given by Gnedenko [9] and

describes the possible distributions of the extreme values. With

a finite set of observed extreme values, one can then estimate

the parameters of the whole distribution of extremes and give

probabilistic guarantees pertaining to execution times much

larger than the largest observation. The use of probabilistic

performance guarantees and of distributions of execution times

was originally suggested for scheduling by Tia et al. [22].

Later, these results have been consolidated and expanded

to different aspects of real-time systems beyond scheduling

by an important thread of results [5]. By using EVT, the

authors provide estimations of the distribution bounding a

sequence of measurements, when such bound exists. However,

previous work [16] underlines that there are two associated

problems while applying EVT to the statistical WCET es-

timation problem. The first one concerns the measurement

protocol and whether or not it produces measurements that are

representative of the actual distribution of the execution times

Fig. 1. The execution time sequence of the minver program on T1040

of a program. The second problem increases the tightness

of the statistical WCET estimation while of course keeping

the same level of probabilistic guarantees. Indeed, it may

be counter-intuitive, but statistical estimators can be more

pessimistic if they lack sufficient information on the sequence

of measurements.

III. FIRST RESULTS

In this section we provide first results of statistical meth-

ods applied to the interference analysis integrated within the

WCET estimation.

Within the STARTREC project, we use a new Python library

that has been designed by StatInf to fill the gap of EVT-based

estimators of the statistical WCET in Python, while increasing

their robustness as described in [24] using a combination of

existing statistical estimators and novel methods. Moreover,

the tightness of the statistical WCET EVT-based estimators

has been improved by proposing a new statistical test, the

WKS test [23]. The open problem that we will solve within

the STARTREC project is the representativity one. We split

this problem into three main parts:

• The representativity with respect to the program structure,

• The representativity with respect to the variation of the

input variables,

• The representativity with respect to the interference anal-

ysis due to the presence of several cores.

The first problem may be solved by a hybrid approach which

implies engineering effort putting together existing results,

while the second problem has been formalized through a

recent preliminary result [4]. In this paper, we deal with

the representativity of measurements with respect to the third

problem, the interference analysis.

To illustrate our strategy and for the sake of simplicity, we

consider the program minver of the TACLeBench [7] executed

on the QorIQ T1040 which is a Quad-core processor designed

by NXP [13]. It belongs to the T1 family of QorIQ using the

e5500 Power PC 64-bit single threaded core at 1.4 GHz with a

private L1 cache (data and instruction caches) and a private L2

unified cache. It also has a CoreNet Platform Cache (shared

L3 cache) associated to a DDR controller. In this paper, we

consider e5500 cores and its private caches, as well as on the

shared cache. The program minver is executed by imposing

a specific memory location for the matrix to be inverted,

while the adversaries are accessing the same memory location

from different cores. The sequence of measured execution

times is illustrated in Figure 1, where the horizontal axis

corresponds to the order of execution times, while the vertical

axis corresponds to the values of the execution times. We may

note that such strategy is applied to the Easymile programs

and other future publications may include comparison to other

existing benchmarks [6], if publicly available.

In Figure 2, we represent the statistical WCET estimation

obtained by using two possible EVT estimators, integrated

within the StatInf tool and described in [24].

Fig. 2. The statistical WCET estimation using two possible implementations
for EVT as implemented by the StatInf tool [24]

There are two possible EVT estimators, GEV and GPD,

that first select maxima from an ordered sequence of execution

times, and then they estimate the WCET distribution. The GEV

estimator uses the block maxima approach by dividing data

into several blocks with the same size and select the maximum

of each block. While the GPD estimator selects the largest

values above a given threshold (see Figure 3).

The statistical WCET estimator allows to quantify the

impact of programs ”assaulting” the execution of the target

program, minver. This aggression has been manually built for

the particular case of the minver program. The purpose of

STARTREC is to automate such a process with respect to a

given configuration of a processor. Existing work focuses on

providing interference analysis results under the hypothesis of

worst-case processor configurations. In reality, the user comes

with a configuration of the processor that has been tailored to

meet other design constraints, such as security concerns, and

a reduced configuration space is to be explored.

Fig. 3. The two EVT approaches are either picking the appropriate block
size or the threshold.

IV. CONCLUSION AND FUTURE WORK

Ongoing work within the STARTREC project shall bring

answers concerning future development projects of safety

critical software, with an objective to comply with norma-

tive activities, ISO 26262 or any other norm dealing with

functional safety. The authors believe that the specification

of software safety requirements will be enriched by the use of

formal specification. The tooling scalability on large examples

will determine whether this may be used or not for software

verification. Embedded software testing will also benefit from

formal specification as it allows the production of testing code

for the specified pre-conditions and post-conditions.

The STARTREC project will contribute to tools and meth-

ods that extend the existing processes incrementally. The scale-

up challenge for the tools and frameworks will take into

account the following constraints:

• An industrial process based on Continuous Integration

and Continuous Validation,

• Training and mentoring needs for embedded software

developers, and auditors,

• All necessary activities to achieve the confidence in the

use of software tools and comply with the normative

framework, at the appropriate confidence level.

Within the STARTREC project, we also aim at performing

Worst Case Execution Time analyses on the software used in

the safety critical system, and justify their statistical signifi-

cance by relying on the Extreme Value Theory. This aspect is

challenging because of the complexity of the software and the

hardware, leading to computation intensive phases interleaved

with numerous data access and bus access patterns that are

not humanly addressable. Here the authors claim that the

progress of data analysis, combined with a deep knowledge

of the underlying hardware, will offer the necessary support

for engineers to produce optimized and predictable software

with stringent timing constraints.

This approach will leverage the trust that formal verification

and statistical WCET analysis brings to safety critical software

while limiting the risk of software developments in terms of

budget, timeline and certification.

V. ACKNOWLEDGMENT

This research is partially funded by the FR PSPC STARTEC

supported by Bpifrance and La Région Occitanie, and the

CIFRE StatInf-Inria agreement.

REFERENCES

[1] Miguel Alcon, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti,
Jaume Abella, and Francisco J. Cazorla. Timing of autonomous driving
software: Problem analysis and prospects for future solutions. In IEEE

Real-Time and Embedded Technology and Applications Symposium,

RTAS, pages 267–280. IEEE, 2020.
[2] D. Buttle. Real-time in the prime time, keynote talk. In Euromicro

Conference on Real-Time Systems (ECRTS), 2012.
[3] Cédric Courtaud, Julien Sopena, Gilles Muller, and Daniel Gracia Pérez.

Improving prediction accuracy of memory interferences for multicore
platforms. In 2019 IEEE Real-Time Systems Symposium (RTSS), pages
246–259. IEEE, 2019.

[4] Liliana Cucu-Grosjean, Avner Bar-Hen, Yves Sorel, and Hadrien Clarke.
The impact of the period variation on execution time distributions of
programs. In the 27th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA), Aug 2021.
[5] R. I. Davis and L. Cucu-Grosjean. A survey of probabilistic timing

analysis techniques for real-time systems. LITES, 6(1):03:1–03:60, 2019.
[6] F. Cazorla et al. https://people.ac.upc.edu/fcazorla/archives/muBT-

brochure-jan2017.pdf, 2017.
[7] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolf-

gang Puffitsch, Christine Rochange, Martin Schoeberl, Rasmus Bo
Sørensen, Peter Wägemann, and Simon Wegener. TACLeBench: A
benchmark collection to support worst-case execution time research. In
the 16th International Workshop on Worst-Case Execution Time Analysis

(WCET 2016), volume 55, pages 2:1–2:10, 2016.
[8] W.H. Freeman and Company, editors. Computers and Intractability: A

Guide to the Theory of NP-Completeness. 1979.
[9] B.V. Gnedenko. Sur la distribution limite du terme maximum d’une

seris aleatoire. Annals of Mathematics, 44:423–453, 1943.
[10] Road vehicles — safety of the intended functionality. Standard,

International Organization for Standardization, Geneva, CH, 2019.
[11] Road vehicles — functional safety. Standard, International Organization

for Standardization, Geneva, CH, 2018.
[12] Xavier Jean, Laurence Mutuel, and Vincent Brindejonc. Assurance

methods for cots multi-cores in avionics. In 2016 IEEE/AIAA 35th

Digital Avionics Systems Conference (DASC), pages 1–7, 2016.
[13] Kossivi Kougblenou, Rihab Bennour, Adriana Gogonel, and Liliana

Cucu-Grosjean. Work-in-progress: Towards representative measurement
protocols. In the 41st IEEE Real-Time Systems Symposium (RTSS), pages
419–422, 2020.

[14] Viet Hoang Le, Loic Correnson, Julien Signoles, and Virginie WIELS.
Verification Coverage for Combining Test and Proof. In 12th Interna-

tional Conference on Tests and Proofs, Toulouse, France, June 2018.
[15] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej

Lhoták, J Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer,
Uday P Khedker, Anders Møller, and Dimitrios Vardoulakis. In defense
of soundiness: A manifesto. Communications of the ACM, 58(2):44–46,
2015.

[16] Cristian Maxim, Adriana Gogonel, Irina Mariuca Asavoae, Mihail
Asavoae, and Liliana Cucu-Grosjean. Reproducibility and representativ-
ity: mandatory properties for the compositionality of measurement-based
WCET estimation approaches. SIGBED Rev., 14(3):24–31, 2017.

[17] Thomas Moscibroda and Onur Mutlu. Memory performance attacks:
Denial of memory service in multi-core systems. In USENIX Security

Symposium, 2007.
[18] Yannick Moy. Climbing the software assurance ladder - practical formal

verification for reliable software. Electron. Commun. Eur. Assoc. Softw.

Sci. Technol., 76, 2018.
[19] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and

Benjamin Monate. Testing or formal verification: Do-178c alternatives
and industrial experience. IEEE Software, 30(3):50–57, 2013.

[20] Jan Nowotsch, Michael Paulitsch, Daniel Bühler, Henrik Theiling,
Simon Wegener, and Michael Schmidt. Multi-core interference-sensitive
wcet analysis leveraging runtime resource capacity enforcement. In
2014 26th Euromicro Conference on Real-Time Systems, pages 109–
118. IEEE, 2014.

[21] Ahsan Saeed, Daniel Mueller-Gritschneder, Falk Rehm, Arne Hamann,
Dirk Ziegenbein, Ulf Schlichtmann, and Andreas Gerstlauer. Learning
based memory interference prediction for co-running applications on
multi-cores. In 2021 ACM/IEEE 3rd Workshop on Machine Learning

for CAD (MLCAD), pages 1–6, 2021.
[22] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J.W.-

S. Liu. Probabilistic performance guarantee for real-time tasks with
varying computation times. In Real-Time Technology and Applications

Symposium, pages 164–173, 1995.
[23] Marwan Wehaiba El Khazen, Liliana Cucu-Grosjean, Adriana Gogonel,

Hadrien Clarke, and Yves Sorel. WKS test, a local unsupervised
statistical algorithm for the detection of transitions in timing analysis.
In the 27th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA), August 2021.
[24] Marwan Wehaiba El Khazen, Adriana Gogonel, and Liliana Cucu-

Grosjean. Work in Progress: Lessons learnt from creating Extreme Value
Libraries in Python. In the 41st IEEE Real Time Systems Symposium

(RTSS), Dallas / Virtual, United States, December 2020.
[25] Jakub Zwolakowski. Trust-in-soft ebook, 2020.

Session We.3.A

Memory Management

Wednesday 1st June

15:00

–

Amphithéâtre

133

134

Dynamic Memory Management in
Critical Embedded Software
Category: regular paper
Authors: Cyrille Comar (AdaCore), Claire Dross (AdaCore), Florian Gilcher (Ferrous Systems), Yannick
Moy (AdaCore)
Keywords: critical embedded software, dynamic memory management, program proof

Memory management has always been a delicate issue in critical embedded software because memory is
often a scarce resource and many of the typical software errors jeopardizing the integrity of the execution
of the software are related to memory mismanagement. Furthermore, critical software has had a tendency
to grow in size and complexity in recent years, because it is using more and more complex algorithms in
the critical parts of a system. The push towards autonomous mobility is a good example of the drivers for
complexity reaching the most critical parts of software controlling such systems. This added complexity
requires added flexibility in memory management that is not compatible with the traditional memory
management techniques used for critical embedded software. In this paper we will first go over the
traditional memory management limitations and the reasons behind them, we will then explore
possibilities for going beyond them while being able to provide a high level of guarantees of correctness
with regard to memory usage.

Dynamic Memory Management in Critical Software
We usually distinguish different kinds of data depending on the complexity of their memory management
life cycle. The simplest is statically-allocated data, which is allocated once at the start of the application
and is never deallocated. The case of dynamically allocated data is far more complex. It includes both
stack-allocated and heap-allocated data. Stack-allocated data is data locally allocated by a subprogram in
its activation frame, so there might be multiple instances of the same data if the subprogram is recursive,
and the maximum memory usage depends on the call-graph of the program. Heap-allocated data can be
allocated at any point, and deallocated at any later point, with associated risks of accessing deallocated
data, losing access to allocated data or even deallocating already deallocated data.

The only requirement for safe use of statically-allocated data is that it fits in memory. This is similar to the
requirement that the code fits in memory, and is checked by comparing the size of the corresponding
segment in the executable with the available memory size on the target platform. The corresponding
requirement for stack-allocated data is that it fits in memory at all times during the execution of the
application. This is checked by performing a worst-case analysis of local memory usage, taking into
account the call-graph of the application, and comparing it with the size allocated to the stack(s) on the
target platform. Such a worst-case analysis can be made slightly difficult by the presence of cycles in the
call graph, the existence of dynamically sized variables on the stack or the use of indirect calls but
professional grade tools exist to perform this kind of analysis (e.g. GNATstack for Ada). As stack-allocated
data is deallocated at subprogram exit, there is another requirement that such data is not accessed after
subprogram exit, which could happen when the address of such local data is stored in pointers. This
requirement can be enforced by programming languages (in Ada, Java, OCaml, Rust) or by static
analysis (in C, C++). There are many more requirements for heap-allocated data, besides avoiding the

errors previously mentioned. One also needs to make sure that fragmentation doesn’t hinder memory
allocation of large data pieces and more generally that enough memory is available at any time for the
needs of the application.

Given the difficulty of guaranteeing that these requirements are satisfied, many coding standards for
critical software forbid heap allocation either completely or after initialization. The most common pattern
allowing heap allocation in critical software consists in an initialization phase where memory is
dynamically allocated, and never deallocated. Thus, the only requirement for such a pattern is that there
is enough memory for allocations to succeed during this initialization phase which is relatively easy to
meet.

However, more liberal use of dynamic memory should also be possible in critical software, provided the
associated requirements are adequately addressed. In the following, we refer to the subsections and risks
of section OO.D.1.6.1 of the DO-332/ED-217 Object-Oriented Technology and Related Techniques
Supplement to DO-178C and DO-278A avionics standards. It lists the following risks, phrased here
alternatively as criteria that a memory management should meet:

a. Risk: Ambiguous references. Criterion: The allocator returns a reference to a valid piece of
memory, not otherwise in use.

b. Risk: Fragmentation starvation. Criterion: If enough space is available, allocations will not fail
due to memory fragmentation.

c. Risk: Deallocation starvation. Criterion: An allocation cannot fail because of insufficient
reclamation of inaccessible memory.

d. Risk: Heap memory exhaustion. Criterion: The total amount of memory needed by the
application is available (that is, the application will not fail because of insufficient memory).

e. Risk: Premature deallocation. Criterion: An object is only deallocated after it is no longer used.
f. Risk: Lost update and stale reference. Criterion: If the memory management system moves

objects to avoid fragmentation, inconsistent references are prevented.
g. Risk: Time-bound allocation or deallocation. Criterion: Allocations and deallocations complete in

bounded time.

Those risks and associated criteria can be grouped as follows:

- Criteria related to temporal memory safety, to ensure that accessed data is allocated (a.k.a.
use-after-free, or Risk (e) “Premature deallocation”) and that data is not deallocated multiple
times (a.k.a. double-free)

- Criteria related to memory availability, which requires in particular that access to allocated data is
not lost (see Risks (b) “Fragmentation starvation”, (c) “Deallocation starvation” and (d) “Heap
memory exhaustion”)

- Criteria related specifically to the garbage collection techniques. The time at which memory is
deallocated, and the running time for deallocation, are in general unpredictable, which is a
problem for real-time critical software. See also Risk (g) “Time-bound allocation or deallocation”.
The garbage collector may move data to avoid memory fragmentation, which requires all
references to the data to be updated to its new location. See also Risk (f) “Lost update and stale
reference”.

DO-332 lists three main techniques for dynamic memory management: object
pooling, activation frame based object management (divided into stack allocation and scope allocation),
and heap based object management (divided into manual heap allocation and automatic heap allocation).

The following table summarizes how criteria are addressed with each technique, detailing whether the
application code (AC) or the memory management infrastructure (MMI) is responsible for it:

Table OO.D.1.6.3 Where Activities Are Addressed For DMM

Technique
Activities (OO.6.8.2)

a b c d e f g

Object pooling AC AC AC AC AC N/A MMI

Stack allocation AC MMI MMI AC AC N/A MMI

Scope allocation MMI MMI MMI AC AC MMI MMI

Manual heap allocation AC AC* AC AC AC N/A MMI

Automatic heap allocation MMI MMI MMI AC MMI MMI MMI

AC = application, MMI = memory management infrastructure, N/A = not applicable, and * = difficult to
ensure by either application or MMI.

Ease of use correlates with the larger dependency on MMI for addressing criteria: automatic heap
allocation (garbage collection) only leaves to AC the need to verify that there is indeed enough memory
for the application to run, while manual heap allocation only leaves to MMI the need to verify that
allocation and deallocation operate in bounded time. Garbage collection is thus far superior in terms of
usability, at the cost of offsetting a lot of responsibilities to the MMI, which comes with major challenges
for certification.

Use Case: Message Handling
In order to explain the main memory management techniques, we consider a use case of message
handling. The application receives a message which it stores as an array of bytes. For efficiency, this
array of bytes should not be copied, but instead a pointer to the dynamically allocated array should be
passed to parts of the application that need access to the message. When handling of the message is
complete, the corresponding memory should be reclaimed. Let’s consider how the five memory
management techniques introduced previously address this use case.

In object pooling, a different memory pool must be allocated statically for all objects of a given type. Thus,
this requires creating a memory pool for all the different sizes of arrays, or at least enough intermediate
values of sizes so that not too much memory is wasted as padding. Then, it’s entirely up to the AC to
ensure correct pool usage, making sure stale references to arrays are not used for example after the
corresponding array has been reclaimed. When objects of a pool are of the same size, object pooling
helps address Risk (b) “Fragmentation starvation” as it eliminates fragmentation within a pool, but the
memory remains fragmented between pools.

Stack allocation and scope allocation are not applicable here, as we need to return the allocated array
from the activation frame in which it was created.

In manual heap allocation, we are in a similar situation as with object pooling, only with one pool. In
particular, objects are not all of the same size, so Risk (b) “Fragmentation starvation” is particularly

difficult to address with this technique, as outlined in the table from DO-332. Allocators like jemalloc
mitigate fragmentation by internally using multiple arenas for different allocation sizes [JEMALLOC].

In automatic heap allocation, memory is allocated as needed when creating the data structure from the
incoming message, and from that point on, the AC needs not be concerned with dynamic memory
management. The MMI is in charge of ensuring that all other criteria (except availability of enough
memory) are ensured. Addressing fragmentation in particular requires moving allocated data to ensure
larger contiguous patches of memory are available for allocation, which greatly increases the complexity
of the MMI. Similarly for addressing time-bound allocation and deallocation, which makes it necessary for
the garbage collector to operate in chunks instead of in one go.

Use Case: Current Practice and Challenges
In cases where it applies, garbage collection clearly provides the best user experience. But the cost of
certifying the MMI prevents this technique from being used in many cases. Real time Java was the only
effort to adapt garbage collection to the needs of critical real-time software, by providing the means to
exempt regions of code from garbage collection and use region-based memory management instead, but
it has not seen much adoption. [SCJAVA, USCJAVA]

This leaves object pooling and manual heap allocations as the only two applicable techniques, with the
same assignment of most responsibilities to AC for ensuring criteria a-b-c-d-e are satisfied. This is a
major challenge in certification, which explains why dynamic memory management remains difficult to use
in critical software, beyond the previously mentioned pattern of use only during initialization.

The Ownership Approach to Dynamic Memory
Management
Ownership is an approach whereby, at any program point, an entity within the program is statically
identified as the “owner” of a piece of dynamically allocated memory. Only the owner of a piece of
memory can deallocate it, and an analysis tool ensures statically that the deallocated memory cannot be
accessed afterwards through the owning pointer or one of its aliases. Ownership rules are generally
useful to describe data structures that only create lists or trees, and never direct acyclic graphs or cycles
or arbitrary graphs.

The central principle in the ownership approach is that assigning moves the ownership from the source to
the target of the assignment. The owner of a piece of memory has exclusive read-write access to the
memory, which includes the (implicit or explicit) right to deallocate the memory. The owner of a piece of
memory can also grant temporary read-write access to a single other object, or temporary read-only
access to multiple objects, after which ownership is transferred back to the original owner, this is often
called borrowing or lending. This is typically done when passing a pointer as a parameter to a call.

Adhering to the ownership approach has several benefits for ensuring the safe use of dynamic memory:
- It guarantees temporal memory safety (no use-after-free or double-free) - Risks (a) and (e).
- It guarantees that memory is not lost (no memory leak) - Risk (c).
- It does not rely on garbage collection for releasing memory safely - Risks (f) and (g).

Thus, ownership only leaves Risks (b) and (d) that should be addressed at the level of the AC. In addition,
it provides the basis for addressing safe concurrency (no data races) and formal verification (with
pointers). Two programming languages used in critical software, Rust and SPARK, have implemented the
ownership approach, with a focus on safe concurrency in Rust, and on formal verification in SPARK.
We’re going to consider both.

Rust Approach to Ownership
Rust is a general purpose programming language originally developed by Mozilla Research. Coming from
an organisation with a large C++ codebase, Rust aims to make systems programming at scale safer by
enforcing strict rules around memory usage. It does so at a type level.

Rust is often characterised around the borrow checker, allowing safe referencing of values. But Rust uses
ownership as the governing principle for the whole programming language. Every value introduced into a
program has exactly one owner. Ownership is gained by introducing the value (independent of the
location) and lost by dropping the value or passing it. In general, dropping happens if a value reaches the
end of a scope without being passed on. The regions where a value is alive define the lifetime of the
value. Those lifetimes are later used by the borrow checker to prove that references are safe. Rust strictly
bans double ownership of an allocation. Rust also disallows giving up ownership while there are still
references existing on the owned value.

As an example, Rust provides the Box<T> type for allocating a single value on the heap. The Box type
logically owns its contents and is responsible in its implementation to ensure that it behaves like an
owner. The implementation of Box is private and internally unsafe. Consider a possible expression in Rust
of the message handling use case:

use std::sync::mpsc::channel;

type Message = [u8];

fn main() {

let (sender, rcvr) = channel::<Box<Message>>();

let task1 = move || {

let msg: Box<[u8]> = Box::from([1,2,3,4]);

sender.send(msg); // ownership is moved

// payload is inaccessible here

};

let task2 = move || {

if let Ok(msg) = rcvr.recv() { // ownership is gained

println!("{:?}", msg);

drop(msg); // drop is inserted implicitly, inserted for clarity

}

};

task1();

task2();

}

The use of the “move” keyword moves ownership of the referenced “sender” and “rcvr” endpoints of the
channel to task1 and task2 respectively. Ownership of the message is passed on from task1 to task2
through the channel, ending with the message being deallocated by calling “drop” in task2, an action
automatically inserted by the compiler when not done explicitly like here. This example illustrates a
number of points: The correctness of this code relies on the correctness of the implementation of Box and
mpsc::channel. Box<u8> expresses ownership of a range of bytes of dynamic size on the heap. Giving up
ownership of a Box triggers immediate deallocation. mpsc::channel on the other hand is a primitive that
passes owned types between potentially concurrent components. To the user, this is expressed through
owning a sender and a receiver. The internals of both primitives are private and often internally unsafe.

The Rust language expresses certain assumptions (that Box owns the type it is constructed with its
contents), the implementation of Box<T> ensures this by transparently heap-allocating the value and
deallocating it when ownership of the Box is given up. It is also the burden of the library programmer to
make sure that the internal pointer is always valid to dereference, never dangling while in use, always
pointing to a valid heap allocation and that there is only one way to deallocate the value (by letting it run
out of scope, giving it up). It is also the burden of the library programmer to ensure that destructors of
logically owned values are called, if necessary. If correctly implemented in the library, the type cannot be
misused.

Rust as such pushes the burden of implementing valid, memory-safe types to library implementers, giving
them a number of rules to uphold to implement safe components. It then constructs a facade around the
internal complexity, by using visibility rules - the internal are inaccessible to the user. Because Box<[u8]>
only has a single owner, by proxy, we also know that the byte field ([u8]) only has a single owner (the
owner of the box).

Rust's background of being developed for large codebases informs its outside-in approach: it trades ease
of systems construction against implementation complexity of components. Heap-allocating types like Box
and Vec have far more rules to uphold in their interface than in other programming languages such as C,
for example, they are also not allowed to be moved while referenced. Rust strongly suggests reuse of
known-safe components, a practice that is both found in its standard library and outside of it.

We can use this information to build a generic and safe to use API to express passing data between
components:

fn send<T: ‘static>(t: Box<T>) {

// ‘static declares that T is not allowed to hold inner references

// internal implementation

}

This signature does not only declare that a value of Box<T> is taken, but also that if passed, the caller
gives up ownership, passing it to the sending component (which later passes it to the receiver). This holds
true in both single-threaded and concurrent scenarios. The ability to fully pass ownership between
components is crucial to Rust's concurrency guarantees, as it allows to avoid pessimistic locking and
confusion at deallocation time. Other usages include resource modelling approaches like RTIC
[RTIC-BOOK] that use ownership to model exclusive access to hardware resources.

Rust addresses Risk (a) by requiring the same behavior of an allocation system in use (that is, the
underlying call to the memory allocator should not return a pointer to memory already in use). Rust
prevents Risks (c) and (e) by providing a type system that makes it easy to pair allocations with

deallocations and clarifies the responsible component for the deallocation operation. Risk (f) is mitigated
by the Rust language strictly disallowing references existing on data being moved. Given a memory
allocator with the required behaviour, Risk (g) is prevented by Rust providing clear deallocation points and
not deferring memory deallocation.

SPARK Approach to Ownership
Ada is a general purpose language designed for safety critical applications. SPARK is a subset of Ada
aimed at formal verification. One of the major restrictions imposed by SPARK over Ada is the absence of
aliases. The latest releases of SPARK support pointers without introducing aliasing, thanks to the use of
an ownership model [CAV].

In SPARK, ownership is only concerned with pointers. Pointers in Ada are called access types. They are
basically references, pointer arithmetics is only possible through a library and is not supported in SPARK.
Their design is low-level, a pointer is null at declaration, it is possible to manually allocate data on the
heap, or to take a reference to a stack-allocated object which has been explicitly marked as potentially
aliased. The data allocated on the heap is not reclaimed automatically (Ada does not have a garbage
collector), it has to be explicitly deallocated. In addition, to enforce some level of safety, Ada introduces a
notion of accessibility level associated to all access types. This level is used to statically enforce that data
allocated on the stack in a function can never be referenced by a pointer of a type declared outside of the
function, therefore ensuring that the data will not be accessed once it has been popped from the stack.
Finally, Ada makes a difference between pool-specific access types, which are necessarily
heap-allocated, and general access types which may be either heap-allocated, stack-allocated, or even
statically allocated.

Pointer support in SPARK was designed to stay compatible with the usual semantics of pointers in Ada.
As a result, pointers are allowed to be null, and, if they have been allocated on the heap, they should be
deallocated manually (no automatic reclamation is done when the scope of an object is exited). To be
able to verify that stack-allocated data is never deallocated, deallocation is only allowed in SPARK for
pool-specific access types.

An ownership policy is used to ensure that pointers cannot create visible aliases in the program, namely,
either there exists only one pointer that can be used to access the data and modify it, or there exist
several pointers that can access the data but only for reading. As discussed above, this is necessary so
that formal analysis remains tractable and efficient (the analysis tool can continue to assume that there
can be no aliases in the program). Together with the Ada semantics, this allows to ensure the memory
integrity of SPARK programs and prevent Risk (e) as follows:

● A pointer designating stack-allocated or statically allocated data is never freed. This comes from
the fact that objects of a general access type can never be deallocated in SPARK.

● A pointer which is not null always designates valid data. This follows from the accessibility rules
of Ada for pointers designating stack-allocated data. For heap-allocated data, this is a result of
the ownership policy, which ensures that when something is deallocated through a pointer, it
cannot be accessed through any other pointers, together with the fact that deallocation nullifies
the deallocated pointer in Ada.

The properties above are ensured in SPARK by construction, that is, by the semantic checking of the
SPARK language, without running the formal verification tool.

In addition, the static verification tool for SPARK programs considers both dereferencing a null pointer and
exiting the scope of an object when it still owns some heap-allocated memory as run-time errors, and will
therefore attempt to verify that it never occurs. This prevents Risk (c).

SPARK addresses Risks (a) and (g) with the same requirements as Rust on the underlying allocation
system to return valid pointers on allocation, and perform allocation and deallocation in bounded time. As
just seen, SPARK verification prevents Risks (c) and (e). Risk (f) is mitigated by the SPARK language
strictly disallowing references existing on data being moved. That leaves Risks (b) and (d) that should be
addressed at the level of the AC.

Thanks to ownership, it is possible in the verification tool associated with the SPARK language to
completely ignore the indirection associated to the pointer, and instead to consider pointers as composite
types which are either null, or hold the value that they reference (similarly to option or maybe types
commonly used in functional programming languages). This allows users to verify relatively complex
heap-manipulating programs, involving for example recursive data-structures such as lists and trees, in
an efficient way. The ownership policy allows the specifications to remain simple, as separation of
memory segments remains implicit (contrary to explicitly having to state that all owned memory blocks are
distinct from one another), at the cost of only being able to verify alias-free programs (no doubly linked
lists or Directed Acyclic Graphs).

Here is how we could implement in SPARK the small example presented as a case-study. We define a
type Bytes to be an array of an unknown number of elements of type Byte. We then define a type Ptr for
pointers to such an array of bytes. Here we want to allocate data on the heap, so we use a pool-specific
access type.

type Byte is mod 2**8;

type Bytes is array (Natural range 1 .. <>) of Byte;

type Ptr is access Bytes;

The function Alloc allocates an array of bytes of a specific size given as a parameter. The rules of SPARK
require that the newly created pointer is stored in an object. During formal verification, the tool will make
sure that this value is never discarded before being moved away or properly deallocated, so we can know
that the memory will never be leaked.

function Alloc (Size : Natural) return Ptr is

(new Bytes'(1 .. Size => 0));

The procedure Free deallocates a non-null pointer. Using an instance of the Ada.Unchecked_Deallocation
generic is the normal way to deallocate data in Ada. It also sets its pointer parameter to null. Because of
the ownership rule, we know that no other object can hold a reference to a pointer when it is given to
Free, so the deallocated memory cannot be accessed after the free. So, while deallocation is indeed
“unchecked” in Ada, it is fully formally verified in SPARK.

procedure Free is new Ada.Unchecked_Deallocation (Bytes, Ptr);

As an example of use of pointers, Swap exchanges two pointers without copying the memory around. The
ownership of the memory initially designated by X is moved to Tmp and then Y, after the ownership of the
memory initially designated by Y has been moved to X. Note that the ownership rules of SPARK will

require that Swap is always called on distinct pointers, even though its body would also handle the case
where X and Y are the same correctly.

procedure Swap (X, Y : in out Ptr) is

Tmp : constant Ptr := X;

begin

X := Y;

Y := Tmp;

end Swap;

SPARK formal verification tools can be used on this procedure to show that it correctly implements
swapping of the underlying values of two non-null pointers:

procedure Swap (X, Y : in out Ptr) with

Pre => (X /= null) and (Y /= null),

Post => (X.all = Y.all'Old) and (Y.all = X.all'Old);

Comparison Between the Rust and SPARK Approaches
Rust and SPARK approaches, while closely related, bring different benefits, which we will explore in this
section.

Rust was the first language to popularize the ownership approach. It has evolved around this core
principle, and consequently offers the most features around ownership. Ownership in Rust is
implemented as a core concept of the language, enabling it in all contexts, allowing the modelling of
lifetimes everywhere. Rust takes advantage of ownership to provide automatic deallocation of dynamically
allocated memory. Rust aims at providing safe concurrent access to dynamically allocated memory and
similar resources, and defines several standard libraries implementing standard approaches to dynamic
memory management such as collections and a pointer module. A key benefit of the Rust approach is
that it is implemented in the compiler, hence is enforced on all programs.

SPARK has adapted the ownership approach to the existing Ada rules regarding pointers and dynamic
memory, using the existing notions of scopes and types of pointers. Thus, SPARK does not provide
automatic deallocation of dynamically allocated memory, instead it allows checking that explicit
deallocation does not introduce errors and does not leak memory. A key benefit of the SPARK approach
is that it allows to prove properties of programs with pointers, starting with absence of runtime errors and
extending to arbitrary security or safety properties expressed as contracts.

In a nutshell, program objects subject to ownership are not the same in Rust and SPARK: this concerns
all objects in Rust, and only objects containing pointers in SPARK. Deallocation of dynamically allocated
memory is automatic in Rust, while its correction is verified in SPARK. And enforcement of ownership is
done by the compiler in Rust, by the verifier in SPARK. But both programming languages make it possible
to create and reclaim objects subject to ownership via various means: this can be through a standard
library like std::boxed::Box in Rust or a user library; this can be through standard allocation/deallocation in
SPARK or a user library. Finally, it is possible in both Rust and SPARK to use libraries that internally
violate the ownership principles, but should expose an API to client code in Rust or SPARK that is safe to
use from code subject to ownership principles. This is done in Rust by using so-called “unsafe code” and
in SPARK by using plain Ada code.

While Rust focuses on safe concurrency and SPARK focuses on formal verification, these shared benefits
of ownership apply to both. The Rust example of sending a message across tasks can be written in
SPARK too, and there are academic formal verification systems that can prove the Swap function in Rust
too.

Applicability of Ownership to Other Languages
The term ownership was picked by Rust and later adopted in SPARK as it is a frequent concern also
expressed in other languages, such as C/C++ and Java.

For C++, a common concern is the following question: given a pointer to a memory location, is the code
handling that pointer allowed to deallocate (implying ownership) and mutate it (implying the question of
aliasing). Both are sources of mistakes. Structured solutions for this exist. Particularly Rust's notion of
ownership being paired with destruction is bringing the common C++ concept of RAII (Resource
Acquisition Is Initialization) into the language directly. Rust also implements moves as an implicit core
language operation coupled with passing ownership, expressed in C++ through the std::move function.
Still, a lot of concepts exist in C++ as library concepts, such as std::unique_ptr for pointers that should not
alias and hence should destroy the pointee when they are themselves destroyed (similar to the above
mentioned Box), and std::shared_ptr for reference counted objects. C++ is lacking a general solution for
ensuring reference validity, while having a very structured approach to using its modern std library
components to signal intent. Pitfalls in those API still exist, as illustrated in [UNIQUEPTR].

For C, the situation is similar to SPARK, namely, there is little support in the language for checking
memory safety of programs, but some can be added using an external analysis tool. There exist several
tools targeting the C language, be they general-purpose analysis tools [FRAMAC] or specific tools
targeting memory safety [CLOUSEAU], which could be used for that purpose.

Ownership concerns are also a large issue in concurrent programming, particularly the ability to cleanly
move data and responsibilities from one component and thread to another. Early approaches to solving
this problem can for example be found in introducing the notion of owned pools into Java in JCoBox
[JCOBOX], where passing objects between actors in Java also forces them to give up all references to
those objects for the passing actors. This work points to Java lacking a general solution for unwanted
aliasing.

Given that ownership is an implicit concern in many languages and settings, raising it to a language level
concern if possible is useful. This can be done as part of the core language like in Rust, or as part of a
language subset like in SPARK. The former requires influence over the committee presiding over the
language evolution, which is a large endeavour for most programming languages. The latter is easier to
adopt, but it puts constraints on the features supporting ownership, as they must be compatible with the
base programming language.

Application of Ownership to Critical Software
The ownership approach does not address all issues with the use of dynamic memory in critical
embedded software. Memory availability remains an issue, both to ensure that there is enough available
memory at all times, and that memory fragmentation does not make it unavailable for allocating larger

objects. Traditional solutions to address these issues have relied on static memory pools for objects of
different sizes, with a suitable analysis of the program needs for each memory pool.

We will review the use of Rust and SPARK in critical software, and how ownership plays a role,
concluding with a roadmap to further the applicability of both technologies to critical software.

Use of Rust in Critical Software
While Rust is not used in safety critical applications with regulatory concerns to date, it is used at many
locations with major security concerns today (often referred to as “mission critical”). Rust being built for
use in Firefox (a program with a massive user base and strong security concerns as an entry point for
exploits) informs the ethos and the goals of the language. This reflects in project policies such as very
strong requirements for supported software targets of the highest tier [TARGETPOLICY], requiring
committed developers and fully automated testing of all changes, blocking release of the whole compiler,
should bugs arise. Examples of further usage include use at many cloud providers such as AWS and
Microsoft Azure. There is an expressed interest in moving Rust further into the critical spaces, with gaps
to be filled, particularly enabling developers to better understand the tradeoffs that Rust makes and
enabling them to easier implement safe base abstractions. The Ferrocene project [FERROUS] is currently
underway to ensure that.

Use of SPARK in Critical Software
Since its inception in 1987, SPARK has been adopted in numerous large industrial projects to get as
close as possible to zero-defect software. Typically, only critical parts of the software were proved
“correct” with respect to full functional specification. More generally, SPARK was used to prove specific
properties of interest about the software, like the absence of all possible run-time errors (no division by
zero, no buffer overflow, etc.) and some user-specified safety or security properties. Thanks to its benefits
for increasing software quality (and thus safety and security), SPARK has been a language of choice for
the most stringent levels of certification domains: level A for avionics (DO-178), space (ECSS-E-ST40C),
level 4 for railway (EN 50128) and automotive (ISO-26262).

Conclusion
To this day, certification standards for developing critical software applications strongly discourage the use
of dynamic memory, due to the associated risks and the difficulty of demonstrating with sufficient
confidence that these risks are adequately addressed. The avionics certification standard supplement
DO-132 published in 2011 was the first effort to describe in detail the risks associated with the use of
dynamic memory, and acceptable means of compliance. Since then, Rust has emerged as a new
language for mission critical software, and it has popularized the ownership approach to dynamic memory
management. This approach is not limited to Rust, as the example of SPARK has shown that it can be
adapted for adoption in other languages, even supporting formal verification of pointer programs in
SPARK.

Industrial users of Rust and SPARK are currently adopting this approach in the automotive domain. It
remains to see how easily the objectives of ISO-26262 can be addressed when using ownership in both
programming languages. The extension to other certification domains is a challenge for the near future,
that others have started investigating for the avionics domain [VFS].

References
[SCJAVA] Thomas Henties, Siemens Ag, James Hunt, Doug Locke, Kelvin Nilsen, Aonix Na, Martin
Schoeberl, and Jan Vitek. Java for Safety-Critical Applications. Electronic Notes in Theoretical Computer
Science - ENTCS 2009.
https://www.researchgate.net/publication/228806774_Java_for_safety-critical_applications

[USCJAVA] Kelvin Nilsen. Unification of Safety-Critical Java. Embedded Real Time Software and Systems
(ERTS2012), Feb 2012, Toulouse, France. https://hal.inria.fr/ERTS2012/hal-02263468v1

[FERROUS] https://ferrous-systems.com/ferrocene/

[SPARKPRO] https://www.adacore.com/sparkpro

[TARGETPOLICY] https://doc.rust-lang.org/rustc/target-tier-policy.html#tier-1-with-host-tools

[CAV] Claire Dross and Johannes Kanig. Recursive Data Structures in SPARK. CAV 2020

[JCOBOX] Jan Schäfer and Arnd Poetsch-Heffter. JCoBox: Generalizing Active Objects to Concurrent
Components. 24th European Conference on Object-Oriented Programming (ECOOP 2010).
https://softech.informatik.uni-kl.de/homepage/publications/SchaeferPoetzschHeffter10jcobox.pdf

[UNIQUEPTR] https://bartoszmilewski.com/2009/05/21/unique_ptr-how-unique-is-it/

[JEMALLOC] https://engineering.fb.com/2011/01/03/core-data/scalable-memory-allocation-using-jemalloc/

[VFS] Max Taylor, Josh Ehlinger, Jeff Imig, Massimiliano De Otto: Rust for Safe and Secure Avionics and
Mission System Software, Vertical Flight Society Forum, May 2021

[RTIC] https://rtic.rs/1.0/book/en/

[CLOUSEAU] David L. Heine and Monica S. Lam. A practical flow-sensitive and context-sensitive C and
C++ memory leak detector. Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation.

[FRAMAC] Florent Kirchner, Nikolai Kosmatov, Virgiles Prevosto, Julien Signoles, and Boris Yakobowski.
Frama-C: A software analysis perspective. Formal Aspects of Computing.

Certifiable Memory Management System for Safety
Critical Partitioned System

Alexy Torres Aurora Dugo, Jean-Baptiste Lefoul, Serge Harnois, Felipe Gohring de Magalhaes and Gabriela

Nicolescu

Abstract—Aerospace systems are safety-critical systems that need
to respect tight constraints in terms of execution time, resource
usage and predictability. This industry is currently transitioning
from predictable single-core processors to less predictable multi-
core architectures. This transition reveals multiple challenges due to
interferences. The contention of different cores on shared resources
introduces interferences. This phenomenon prevents the required
isolation between applications and the estimation of their worst-case
execution time. To prevent interferences and ease the certification
of robust partitioned multi-core systems, guidance documents, such
as the CAST-32A, provide objectives on resource isolation and
management. In this paper, we propose a memory manager to mitigate
memory interferences generated in shared cache, main memory and
memory bus. Our results show an increase in timing predictability by
68.1%. Aside the memory manager, based on our results, we provide
a set of recommendations to assist system integrators’ decisions and
ease the certification process by conforming to the current guidance.

Keywords—Aerospace, ARINC-653, Certification, Critical sys-
tems, Interference, Resource management, RTOS

I. INTRODUCTION

The aerospace domain relies on highly critical software

to ensure the reliability and safety of the system. The first

generation of computer-assisted functionalities in planes is

based on the federated architecture. This type of architecture is

designed such that each computer-assisted functionality has its

controller or computer, called Line Replaceable Unit (LRU).

LRU communicate through different networks and buses.

Due to the increased number of computer-assisted features

in planes, the use of federated architecture is impossible to

sustain. The increase in communication nodes often results in

network contention and poor fuel efficiency of the plane due

to the equipment weight [1].

To leverage the size, weight and power (SWaP) of federated

architectures, the Integrated Modular Avionics (IMA) archi-

tecture was proposed. The IMA architecture is designed such

that multiple functionalities are gathered in the same module.

This design eases the communication between applications,

reduces the SWaP and facilitates the maintenance of the

equipment. Multiple IMA units can be scattered in the plane

and communicate via networks and buses.

IMA architectures rely on Real Time Operating Systems

(RTOS) to manage the different components in the system

and the different applications running concurrently. Real time

A. Torres, JB. Lefoul, F. Gohring de Magalhaes and G. Nicolescu are with
the Department of Computer Engineering, Polytechnique Montreal, Montreal,
QC, CANADA. email: alexy.torres-aurora-dugo@polymtl.ca

Serge Harnois is with Mannarino Systems & Software Inc., Montreal, QC,
CANADA. email: Serge.Harnois@mss.ca

systems are subject to strong constraints in terms of execution

time and response latency. Hence, it is imperative to ensure

the Worst-Case Execution Time (WCET) of all applications.

Nowadays, IMA architectures are implemented relying on

Commercial Off-The-Shelf (COTS) hardware [1]. This reduces

the cost of the equipment but also reduces the design’s

flexibility.
Despite the determinism of single-core processors, more

energy-efficient and powerful multi-core architectures slowly

replace them [2]. Multi-core processors provide better per-

formance by the ability to execute multiple applications at

the same time. With the increasing production of multi-core

architectures, single-core processors slowly disappear from

the market. Aerospace system designers need to transition to

multi-core architectures to keep the equipment up to date.
However, optimizations brought by multi-core processors

make execution times less predictable and impact WCET.

The execution of multiple parallel applications also introduces

contention on the shared resources. These phenomena are

called interferences [2]. Interference channels exist at different

levels of the architecture. In this paper, we focus on memory

interferences for which channels are the shared caches, shared

memory bus and shared DRAM. We propose a memory

manager to mitigate memory interferences. For this purpose,

we extend the cache, memory and bus management methods

proposed by the Single-Core Equivalent framework [3] to

allow better integration with certifiable RTOS and without the

use of virtualization. We propose a flexible design to accom-

modate with different architectures and certification processes.

Our results show an increase in timing predictability by 68.1%

on average while increasing the execution time of applications

by 22.3% on average. The Certification Authorities Software

Team (CAST) published a guidance paper, the CAST-32A,

that provides objectives to be met when certifying multi-core

critical systems. Based on this paper, we propose a set of rules

and insights to the system integrator (SI) to improve safety and

performance of the system [4]. Our work brings the following

contributions:

1. We propose a novel memory manager enabling to reduce

cache and memory interferences as well as the bus

interferences. By integration of most efficient methods

for cache and memory partitioning and bandwidth man-

agement, we obtain a solution applicable to certifiable

systems in a context where hardware-assisted virtualiza-

tion is not available;

2. Improving the bus bandwidth management by proposing

an extension of MemGuard [5], a memory bandwidth

manager, to allow more flexibility and I/O bandwidth

Fig. 1. Multi-core same-length MAjor Time frame defined on two cores

management by extending configuration capabilities, per

application budgeting, and an initial budget pool;

3. The proposition of guidelines, named safety net as per

CAST-32A [4], to ensure quality of service (QoS) and

safety in the RTOS and ease the certification process in

avionic systems. We further formalize the notion of robust

partitioning for shared memory and bus.

II. BACKGROUND AND CONTEXT

To allow their certification, civilian aerospace systems must

follow strict rules. Multiple standards exist to ease the de-

velopment process and RTOS use (e.g., ARINC-653 [6]). In

this section we present those requirements and the current

challenges of certification in multicore systems.

A. Multicore Safety Critical Systems Challenges

The notion of robust partitioning implies that an application

cannot impact any other applications in the system. This is

true from a software perspective, where the undefined behavior

of the application cannot block or impact the execution of

another application [6]. This is also enforced in the hardware

aspect, where an application should not change the state of the

hardware to the point that it might impact another application.

In this context, applications are called partitions [6].

ARINC-653 compliant systems must conform to the fol-

lowing constraints: (1) Time isolation: a partition must execute

during a given time slot without being preempted. As shown in

Figure 1, the scheduling relies on a MAjor time Frame (MAF)

that is repeated indefinitely. (2) Space isolation: a partition

can only access resources it has been explicitly allocated. For

instance, a Memory Management Unit (MMU) can enforce

space partitioning. CAST-32A [4] also proposes the integration

of a safety net that should provide means to monitor and

recover from failure in space and time isolation.

To allow the use of multi-core processors in critical systems

two approaches are foreseen. The first is to take interferences

into account during system analysis to consider their impact

on timing. With this approach, one could account every access

to the cache as a cache miss. This provides overly pessimistic

results. The second approach is to bound or eliminate them to

allow the use of known analysis methods. In this work, we al-

low robust partitioning of the shared resources. The objectives

provided by the CAST-32A are abstract are sometimes difficult

to transpose into system’s constraints. Thus, we propose to

formalize these objectives regarding shared memories and bus

for robust partitioned systems in Section 5.

B. Interferences

In this section, we present the interferences that we consider

in our work. We also describe the interference channels studied

and their impact on the system’s execution.

1) Cache Interferences: Cache interferences in multi-core

systems appear in two contexts: shared caches and private

caches [2]. Shared caches interferences occur when multiple

cores share the same cache. Two types of interferences might

appear in this context: (1) Contention interferences, when

multiple cores try to access the cache at the same time, only

one core is granted access and other core wait to access the

bus. (2) Eviction interferences, when an application on a core

evict data owned by another application on another core.
2) Bus Interferences: Bus or interconnect interferences

occur when multiple components (cores, coprocessors, etc.)

try to access the bus at the same time [5]. This contention

results from the arbitration of the controller on the bus. Only

one component may access and process transaction on the bus

at a given time. Thus, the system puts other components that

request the access on hold and wait for their turn to use the

bus. Although multiple arbitration policies have been proposed

to reduce or remove bus interferences, they are rarely available

on COTS hardware.
3) Memory Interferences: Main memory interferences can

be observed at different levels. Memory can be accessed

through different independent channels without showing any

interference [7]. However, if two core access the memory

through the same channel, the contention on that channel

generates interferences.
The second type of interferences appears at the bank level

[8]. Each bank comprises a row buffer, which stores the

content of the last accessed row in the DRAM. The row buffer

acts as a cache that allows accessing the data contained in the

same row faster. When multiple core access the same memory

banks, the row buffer unpredictably changes its content to

accommodate cores access patterns. Thus, affecting the ex-

ecution time of partitions executing on the different cores.

C. Interferences Mitigation Means

Different mechanisms are present in COTS hardware to

isolate components and make the platform more predictable.

Table I provides a summary of the mitigation methods we

discuss in this article. We also provide the availability of

the solution, where it is said to be low when additional

hardware is required and such type of hardware is usually not

present in COTS processors. A high availability means that the

hardware required to apply such technique is usually present

in COTS processors (e.g., Performance Monitoring Counter

(PMC), Memory Management Unit (MMU), etc.).
Cache way partitioning relies on hardware facilities to

allocate ways of the cache to designated cores. Hardware

specific registers must be set to allow segregation of the cache.
Cache set partitioning or cache coloring, relies on the

structure of cache memories and the physical address of the

data to know where the data will be placed in caches. Figure

3 shows the physical address layout that allows to know in

which set the data will be loaded. Based on this information,

the RTOS can wisely choose the virtual to physical translation

to place pages in selected sets of the cache.
Finally, cache line partitioning is a combination of ways and

set partitioning, where the RTOS allocate a set of cache ways

and cache sets to a partition.

TABLE I
LIST OF INTERFERENCE MITIGATION MEANS AVAILABLE IN COTS

HARDWARE

Mitigation method Interference Availability

Cache way partitioning Shared cache eviction Low
Cache set partitioning Shared cache eviction High
Cache line partitioning Shared cache eviction Low
Memory bank partitioning DRAM Row buffer High
Memory channel partitioning DRAM channel Low
Bus budgeting Bus contention High

Memory banks and channels partitioning work the same

way as cache set partitioning. By wisely choosing the physical

address of a data, the RTOS knows in which DRAM bank and

channel the data are stored. Placing data of different partitions

into different banks will remove bank interferences (row buffer

interferences). Channel partitioning allows assigning unique

channels to cores. When a core accesses the DRAM, it can

do so without contention on its channel due to another core

requesting data.

Bus budgeting relies on the monitoring of memory accesses

done by a core. When the number of accesses made during a

given period of time exceeds a certain amount, the core stops

its execution by scheduling an idle task or halting the core.

This method has the effect to stop the contending core and

release the bus bandwidth it uses.

All the previously mentioned methods provide the same

amount of isolation and can be used for safety-critical systems.

The choice of a technique over another should be based on the

availability of the hardware and the overhead it introduces.

III. RELATED WORK

In this section we present the current state of the art and

position our work with regard to the interference channels we

study in this article.

A. Cache Interferences

In [9], the authors present a survey of the different tech-

niques for cache partitioning. Cache way partitioning is shown

as the most used implementation. While line partitioning

offers finer granularity, it also brings a higher execution and

development overhead. Finally, set partitioning is known to be

more complex to implement but offer better portability.

In [10], the UCP (Utility-Based Cache Partitioning) ap-

proach was introduced. It defines cache partitioning and mon-

itoring hardware module to update the cache configuration at

run-time. In the avionic domain, all configurations should be

static and validated prior to system deployment as certification

requires it [11]. Thus, we cannot apply dynamic approaches

in this context. In [12] and [13], semi-partitioned caches are

explored to improve performance while keeping the system

in a more predictable state. The work of [14] extends this

concept by clustering applications and partitioning caches on

a per-cluster basis. In [15], the authors present a scheduling

technique to account of the cache usage and reduce the

performance hit introduced by cache partitioning.

In [16] and [17] cache partitioning is proposed alongside

prefetching techniques. In our context, the system design

often disables performance improvement facilities such as

prefetching or branch prediction to reduce non-determinism

produced by them. In [18], the authors use different processor

management methods to reduce energy consumption. Litera-

ture also studied super pages with cache partitioning but the

existing solutions use additional hardware [19].

In [20] and [21], hypervisors and the notion of virtual

CPUs are proposed to ease cache partitioning implementation.

The use of an hypervisor allows the application of cache

partitioning to existing OS without modifying their code.

However, it yields to an increased overhead in memory size

and execution time.

B. Memory Interferences

In [22] the authors give a comprehensive list of mem-

ory interferences in COTS platform. The authors propose a

methodology to analyze and understand the impact of the

different mechanism in DRAM on predictability and latency.

In [23] the authors propose a multi-policy resource allocation

method. They use DRAM and cache partitioning together to

leverage interferences in the system. Their approach relies on

the analysis of a huge data set (2000 workloads) of execution

(over 10000 experiments).

In [24], [25], [26] scheduling is explored to reduce in-

terferences in the memory hierarchy. This approach allows

reducing contention on the shared resources and thus, increase

the throughput of tasks naturally. However, in [25], only

one application can execute on multiple cores. Even-though

scheduling reduces interferences, it does not ensure isolation

between the partitions and makes certification more difficult

in systems where robust partitioning is required [4].

In [27] the authors propose a software memory coloring

approach to separate applications’ memory between DRAM

banks and channels. The method relies on a dynamic approach

that changes the number of allocated banks and channels to

threads at run-time. However, we cannot apply this method

to hard real-time systems as the dynamic behavior would

introduce non-determinism and make WCET estimation more

complex due to the added factors to consider.

In [8], the authors coordinate the use of cache coloring

and bank coloring. The duality of the approach and the

conflict between cache and bank coloring is explained. In this

paper, we review the approach proposed in [8] to allow faster

integration and certification in safety-critical systems.

In [28] the authors propose a bank partitioning method

to improve performance while considering the profile of the

applications. The method relies on application profiling and

clustering to categories their memory usage. However, we

cannot use additional hardware to gather the metrics needed

by the online algorithm. Similarly, in [29] the authors propose

to isolate concurrent threads to use different memory banks for

data sampling applications. Performances are further improved

by balancing the load between the different memory banks.

C. Bus Interferences

Bus bandwidth management is a widely studied approach

to leverage bus interferences. In [5] the authors present an ap-

proach called MemGuard. MemGuard regulates bus bandwidth

and propose different mechanisms to increase performances.

Each core has an allowed amount of access to the bus during

a quantum of time. If the core exceeds its budget, the RTOS

puts it on hold until the next quantum of time. MemGuard uses

per-core budget allocation and lacks configuration flexibility.

These two main limitations that are further explained and

addressed in Section 4.2.

In [25], [30] and [31], scheduling frameworks to lever-

age predictability in multi-core systems are proposed. The

approaches use memory bandwidth throttling mechanisms to

ensure bus and memory interferences bounding. In [32], the

authors propose to isolate bus resources when hard real-time

applications execute, thus, giving them exclusive access to the

bus. In [33], critical applications are mapped to a single core,

leaving the other cores to use by best effort applications.

In [21], the authors design a resource management frame-

work based on virtualization to leverage cache partitioning and

memory bandwidth limitation. The approach is based on the

use of virtual CPU (vCPU).

Execution models were introduced to manage bus and

memory interferences. In [34] and [35] the authors use the

Acquisition Execution Restitution model (AER). The objective

of this method is to separate the computation (Execution

phase) from memory accesses (Acquisition and Restitution)

during run-time and schedule the memory phases so only one

partition can be in those phases at a time. Thus, the RTOS

schedules access phases to ensure no contention occurs.

Other works rely on hardware mechanism to reduce, bound

and remove interferences. In [24], [36], [37] and [38] memory

controllers and arbiters are proposed to improve predictability

while increasing the performance. However, these approaches

are not compatible with COTS hardware as it requires addi-

tional hardware that is not certifiable in some cases. In [39] the

authors study three techniques to manage memory bandwidth:

thread packing, clock modulation and Intel MBA technology.

We cannot apply the exclusive use of resources at a given

time such as the method proposed in [32]. We consider

all the partitions in the system as highly critical. Applying

this method would be useless as only one application could

execute at a time. The approach provided in [30] reduces

the overhead and improves the performance but we cannot

afford to change the criticality of the applications nor provide

different execution modes. Unfortunately, we cannot rely on

the additional hardware components used in [40]. Moreover,

contrary to the proposed method, isolation must be maintained

at any moment in the execution window. Finally, our objective

is to reduce applications WCET contrary to optimizing the

average performance. Work such as [39] does not provide

strict isolation of resources and thus, makes certification more

tedious. In [3] the Single-Core Equivalence principle was

proposed. We base our work on this approach and refine it

to enable easier integration with non-virtualized environments.

While virtualization allows a better management of resources,

this method is not applicable in our context. We aim to rely

on a bare-metal RTOS that does not allow virtualizing the

system’s resources and to reduce the overhead introduced by

these techniques.

Using the AER model is not applicable in our context as

Fig. 2. Memory hierarchy with key points where our management framework
applies.

we need to keep compatibility with legacy applications that

do not make use of such model.

In [41], the authors show that per application budgeting

increases the system’s performance and scheduling feasibility.

In this paper, we provide an extension to MemGuard that

allows per application budgeting instead of the per core

budgeting previously allowed by MemGuard.

In this paper, we choose to use set based cache partitioning

alongside with DRAM bank partitioning. Both approaches are

portable to any architecture with virtual to physical address

translation and are applicable to COTS hardware. For the same

reason, we choose to extend the MemGuard approach that

relies on COTS available features such as PMC (Performance

Monitoring Counters) [5]. To enable portability, our solution

can be extended for cache way partitioning use.

IV. GLOBAL MEMORY MANAGER

In this section, we present our centralized memory manager.

This module extends the state-of-the-art approaches to ease

their certification in the context of aerospace systems. Figure

2 provides an overview of the system’s architecture with key

points where our method applies. While the memory allocator

manages how shared caches and DRAM is allocated across

partitions, the bus budgeting module monitors and controls

bus usage by the partitions. Finally, the safety net module is

scattered across the memory hierarchy, to monitor the system’s

health. In case of an error, the safety net triggers an error to the

heal monitoring manager. Throughout this section, we explain

in detail each module and how they interact with each other.

A. Memory Management

Three main approaches exist to partition the cache. Way

partitioning allows segregating caches in ways, by allocating

them across cores. Set partitioning, also named cache coloring,

profits from the virtual to physical translation mechanism to

arrange the memory layout and allocate cache sets to different

applications. Finally, line partitioning allows allocating cache

lines to applications. Line partitioning is available when both

set and way partitioning are possible. Set partitioning is privi-

leged over way partitioning as it allows more cache partitions

and is easily portable to different architectures. It is worth to

be mentioned that our approach can be extended to use way

or line cache partitioning with few modifications.

As discussed in [8], cache coloring (set partitioning) may

interfere with memory coloring. Figure 3 shows the different

memory layouts encountered during our study on architectures.

Fig. 3. Memory coloring layouts found in 40 different architectures.
(a) allows separate allocation of banks and cache partitioning, (c) show
overlapping bits while (b) and (d) show that bank coloring completely overlaps
cache coloring and vice versa.

Fig. 4. Two-level memory allocator flow. We use the same process for both
private and shared memory.

[8] also discuss the bank bit randomization technique used

in modern processors. Such process is not present in all

architecture but should be considered by the system designer

when studying the memory address layout of the system.

Our allocator takes into account overlapping bits in memory

coloring to ensure complete isolation of the resources.

We propose a two-level memory allocator. First the allocator

selects a memory bank based on the core the application is

running on. In our design, we allocate banks on a per-core

basis while allocating cache partition on per-application basis.

Using private cache partitions for each applicative partition

allows the systems to skip cache flush and invalidate when

switching between partitions as recommended by the CAST-

20 [42]. This method allows us to use cache more efficiently

while reducing the partition switch time.

We define an allocation unit by the couple (B;C) where B
is the bank identifier and C the cache color. An application can

have one or more assigned (B;C) couples. Shared memory

regions (between application on the same or different cores)

use the (B;C) couples of all applications sharing the region.

Figure 4 depicts the execution flow of the allocation process.

Our method ensures compatibility with all layouts depicted

in Figure 3. It is also extensible to other future layouts. The

safety net is explained in the next section of this paper.

When applications’ private and shared memory have multi-

ple allowed couples, the allocator select the (B;C) couple to

evenly distribute the workload on all available memory.

Once the algorithm selected the memory bank, the allocator

provides one or more cache colors to the application. Each

memory bank contains at least one cache color. We compute

the number of cache colors per bank by subtracting the number

of overlapping bits between the cache color bits and the bank

color bits to the number of cache color bits.

To provide a faster allocation, we do not rely on linked list

to represent free memory. We represent the memory banks

with the bank_color structure.
struct bank_color {

uint8_t bank_id;

uint32_t free_mem;

ptr_t cache_color_head[nb_cc];}

In this structure, the cache_color_head array represents the

next free address in memory for a given cache color. We also

use nb_cc to represent the number of cache color associated

with the current bank. Using this structure, the allocation

process is straightforward. When allocating a page to an

application, the allocator sets the cache color head referred

by (B;C) to the next free page in (B;C).

B. Bus bandwidth budgeting

We propose to extend the MemGuard [5] approach by

adding the following features: (1) Per application budget

allocation: each application receives a static amount of budget

for the duration of its time window in the MAF; (2) An initial

reclaiming 1 pool budget to accommodate with the scenario

where all applications are critical; (3) Introduction of four

application modes that we present later in this section;

1) Reclaiming modes: The computation of the initial re-

claiming pool size as well as the budget allocation are out of

the scope of this article and can be computed using the method

proposed in [41].

To accommodate with the critical nature of ARINC-653

systems and render our approach more flexible, we propose to

classify applications in four categories to extend the reclaiming

feature:

• Full reclaiming mode, which allows an application to

reclaim budget and provide budget to the reclaiming

pool. Soft real-time partitions can use this mode. We

also propose to further constrain the budget prediction to

provide bounds on the budget removal of the application.

• Greedy mode for which an application does not provide

any budget to the global budget pool but can reclaim

budget from this same pool. This is suitable for any

hard and soft real-time partitions, however, hard real-time

applications are more prone to use this mode.

• Altruist mode, which allows an application to provide

budget to the global pool but not reclaim budget from this

pool. This mode is suitable for best-effort applications

which can run in degraded mode.

• Strict mode, which forbids budget reclaiming and pro-

viding budget to the global pool.

1Reclaiming budget means that an application can request more budget than
it was allocated by the means of a shared budget pool.

(a) (b)

(c) (d)

Fig. 5. Partitions’ scheduling behavior when using full reclaiming mode (a), greedy mode (b), altruist mode (c) and strict reclaiming mode (d).

Figure 5 (a) depicts the execution of a partition under full

reclaiming mode, which means that it can reclaim budget

from the global pool and provide budget to it. At time 1

the partition starts executing. At the end of the budgeting

periods 2 and 3 , it was predicted that the partition will

use less budget than initially provided. Budget is removed

from the partition to provide it to the global pool. At 4 the

partition exceeded its budget and reclaimed a fixed amount of

free budget from the global pool. At 5 , the does not remove

budget from the partition. Finally, at 6 the partition exceeds

its budget but the global pool is empty, the partition is removed

from execution until the next timer’s period.

Figure 5 (b) shows the execution of a partition under greedy

mode. This time the partition’s budget is exceeded at 2 , 3

and 4 and is replenished at 2 and 4 by reclaiming budget

from the global pool and at 1 and 5 from the bus budgeting

replenish server. In greedy mode, no prediction is made and

the partition does not provide any budget to the global pool.

Similarly Figure 5 (c) shows the execution of a partition

under altruist mode. The budget can only be replenished by

the bus budgeting server (at times 1 , 2 , 4 and 6).

The partition can provide budget to the global pool and gets

removed from execution when it exceeds its budget at times

3 and 5 .

Finally, Figure 5 (d) depicts the execution for a partition

using strict mode. Here, the partition does not give any budget

to the global pool but also cannot reclaim any. The only

replenish events occur at 1 , 2 , 3 and 5 and the partition

is removed from execution at times 4 and 6 .

The proposed reclaiming modes allow a complete flexibility

on the system bus management. The system can change the

mode at any moment and for any partition during the execution

of the RTOS. Changing the reclaiming more is done through an

API proposed by the RTOS. This API allows reconfiguring the

budgeting mode while ensuring highly critical partitions are

still correctly isolated. The API can be called at any moment

by the partition during its execution.

Algorithm 1 shows the execution flow of the periodic

server interrupt. This process is executed before restoring the

application’s context. Algorithm 2 depicts the process executed

when an application exceeds its allocated budget. As proposed

Algorithm 1 Periodic server timer handler function.

1: function TIMERHANDLER

2: App = ScheduledApp()
3: nextBud = App.initBud
4: if App is (full reclaiming or altruist) then
5: nextBud = PredictNextBudget()
6: AddSlackBudgetToPool(App.initBud - nextBud)
7: end if
8: if HealthCheck() is Failure then
9: RaiseHMError()

10: Return
11: end if
12: UpdatePMC(nextBud)
13: UnlockCore()
14: end function

in MemGuard, when all cores become idle because of budget

exceeding, the mechanism will reschedule all applications.

Finally, we explain the HealthCheck block in the next section

and refers to the safety net feature proposed by the CAST-32A

document.

Algorithm 2 Interrupt handler executed when an application

exceeds its budget.

1: function PMCHANDLER

2: App = ScheduledApp()
3: if HealthCheck() is Failure then
4: RaiseHMError()
5: Return
6: end if
7: if App is (full reclaiming or greedy) then
8: nextBud = ReclaimBudget()
9: UpdatePMC(nextBud)

10: Schedule(App)
11: end if
12: if AllCoresIdle() then
13: ForceResetTimer()
14: else
15: ScheduleIdle()
16: end if
17: end function

In our context, we consider systems with hard real-time

applications only. We cannot afford removing budget from

a partition using s. Thus, we introduce an initial reclaiming

pool containing free budget for any application. The global

pool contains budget that the partitions can reclaim when

their budget is exceeded. This global pool is replenished at

each budget server’s tick. This approach allows improving the

overall system’s performance as presented in our result section.

The benefits of this method are presented in the results section.

Both the periodic replenish server and the PMC interrupt

handler are integrated from scratch in the RTOS. We have

chosen to implement the different modules from scratch and

not use a patched version of MemGuard because the architec-

ture of an ARINC-653 compliant RTOS greatly differs from

the Linux kernel. The periodic replenish servers consists in

an interrupt service routine called every time the global timer

triggers its periodic interrupt. In the same manner, when the

PMC detect that the budget is exceeded, an interrupt handler

is called and an idle task is scheduled to replace the running

application as presented in Algorithm 2.

V. SAFETY NET

To ease the certification process, we define a set of rules that

should always be verified during the system’s execution. Apart

from the CAST-32A guideline, we provide a way to ensure

synchronization between cores regarding the MAF timings.

A. Core Verification

The RTOS architecture we use offers an Asymmetric Multi-

Processing paradigm to manage the CPU. In this architecture,

each CPU executes a separate instance of the RTOS. Small

shared memory region enables the inter-core communications.

Each CPU has its own timer and uses a tick-less scheduler.

This means no periodic tick is present in the system and timers

interrupt occur only when needed (for instance, when the next

application should be executed). To ensure synchronization,

we add constraints to the MAF length. All CPUs can have

different MAF length; however, we define a global hyper

period based on the least common multiple Q between all

CPUs MAF.

We define qi the length of the MAF Mi defined for CPU

i. Mi will be executed Q
qi

times before reaching a synchro-

nization point. When reaching such point, the CPU waits for

the synchronization barrier release. When all CPUs reach the

barrier, the kernel releases the CPU and immediately start a

new MAF. This process corrects the drift between CPU clocks

while ensuring real-time constraints are met on all cores. Our

results show that the overhead introduced by the synchro-

nization mechanism does not break any real-time constraint

nor introduces deadline miss in the system. We provide the

overhead considerations and experiments in Section 6.3. Q
may be further constrained to reduce the drift between CPUs

clocks. The smaller Q is, the faster the synchronization module

correct the time drift.

B. Runtime Verification

To ensure safety of the proposed memory manager, we

define a set of constraints that are verified at critical points

during execution. Table II defines the set of variables we use

to formalize the system. We further define the following rules:

TABLE II
LIST OF VARIABLES ASSOCIATED WITH SAFETY NET CONSTRAINTS

Q
System’s hyperperiod, defined as the least
common multiple between all CPUs MAF

qi The length of the MAF Mi defined for CPU i.

Ai Application i

CAi The memory colors set allocated to the application i.

AC
i

The CPU identifier where Ai is mapped.

AB
i

The bus bandwidth budget allocated to Ai.

AM
i

The maximum number of bus access done by
Ai during a single MAF.

Acc(Ai, t) Accessed number done by an Ai at time t.

SC
i

The memory colors set allocated to the shared
memory region i.

SA
i

Applications set sharing the memory region i.

G(t) The free budget in the global pool at t.

R(Ai, t) 1 when Ai executes at time t, 0 otherwise.

Bmax The maximal bus bandwidth.

TABLE III
FORMALIZED SAFETY NET RULES

Rule 1 AC
i ̸= AC

j ⇒ CAi

⋂
CAj

= ∅

Rule 2 SC
i ⊆

⋃
∀Aj∈SA

i
CAj

Rule 3 ∀t ∈ [0;Q], G(t) +
∑

∀Ai
AB

i ×R(Ai, t) ≤ Bmax

Rule 4 ∀Ai,
∑q

AC
i

t=1 Acc(Ai, t) ≤ AM
i

Rule 1: At any time during the system’s execution, co-

running applications must not share memory or cache color.

Rule 2: Shared memory regions color set must only contain

colors allocated to the applications that share this region.

Rule 1 and rule 2 are verified during the system startup

when allocating memory. It is further verified during a page

fault, when the RTOS handles the page fault, it ensures that the

address generating the fault is mapped to a physical address

in the application’s colors set. This rule does not apply to

explicitly shared memory.

Rule 3: At any time t during execution, the sum of the

bus bandwidth budget of the executing applications and the

global budget pool must not exceed the maximal bandwidth

permitted by the bus.

Rule 4: For safety purpose and fault detection, we define a

maximum number of bus access for each application and IO

in the system. The system should never reach this number to

ensure the system’s stability.

To verify rule 3, we add the HealthCheck function in

Algorithm 1. Every time the system changes the budget con-

figuration, the health monitor ensures that rule 3 is satisfied.

If not, the health monitor handles the error. Rule 4 is verified

in Algorithm 1 when handling applications budget overflow.

Bmax can be provided by the processor’s manufacturer or

can be empirically measured with benchmarks. In this paper,

we rely on the work presented in [43] to compute the value

of Bmax for our architecture.

VI. RESULTS

In this section we present the study of our global approach

and compare it to the current literature.

Our test bench comprises an NXP T2080RDB-PC board

with four PowerPC e6500 cores running at 1.8GHz. We

rely on a proprietary ARINC-653 RTOS (M-RTOS [44]) to

0 0.5 1 1.5 2 2.5 3

·104

0

200

400

600

Number of allocated pages

A
ll

o
ca

ti
o
n

ti
m

e
(u

s)
Our approach

[8]

Fig. 6. Allocation time for different allocation sizes. The results show that
our allocator allows faster allocation time.

retrieve our experiments results. We study the system using the

TACLeBench [45] benchmark suite. We do not show results

for the safety net other than its overhead. This is because the

safety net is a part of the environment that is evaluated. All

measures and results presented here are conducted with the

safety net enabled.

A. Memory Allocation Overhead

We compare the execution time of our memory allocator

for different allocation sizes to the one proposed in [8]. Our

allocator initialization time is 2 us compared to 7120 us for the

one proposed in [8]. This is because we do not have to create

a linked list of available pages at initialization. Furthermore,

we do not have to maintain this list during allocation. Figure 6

shows the allocation time reduction that benefits our method.

Memory allocation only occurs at the system’s startup,

which implies that the allocator’s overhead only impacts the

system’s performance during boot time. In our test environ-

ment, memory allocation represents 9.39% (2.04ms) of the

total startup time (21.74ms), which justifies the need to reduce

its impact as much as possible. Our allocator reduces the

startup time of the RTOS we use in our experiments by

24.8% (21.74ms) compared to the method proposed in [8]

(28.91ms). After allocation, the cache partitioning technique

has no overhead. Indeed, it relies on the MMU to perform a

controlled translation of addresses. This process also occurs

when not partitioning the cache.

B. Bandwidth Limitation Overhead

Our second experiment evaluates the overhead introduced

by the bandwidth limitation module. We compare our im-

plementation that adds reclaiming modes with the overhead

introduced by MemGuard. Figure 7 present the overhead of

our bus bandwidth management technique.

We based our test environment in the same context as

what is proposed in [5]. To measure the overhead introduced

by bandwidth limitation mechanisms, we use the following

settings:

• For server’s timer overhead, we disable bandwidth limita-

tion mechanism by disabling PMCs interrupts. The rest of

the mechanism is enabled. Figure 7 (a) shows our results.

• For server’s timer overhead and budget exceeding mech-

anism, we enable bandwidth limitation mechanism by

0.1 0.5 1 2.5 5 10
0

2

4

6

8

10

Timer’s period (ms)

O
v
er

h
ea

d
(%

)

Our approach (pred)

[5] (pred)

Our approach (no pred)

[5] (no pred)

(a)

0.1 0.5 1 2.5 5 10
0

2

4

6

8

10

Timer’s period (ms)

O
v
er

h
ea

d
(%

)

Our approach (pred)

[5] (pred)

Our approach (no pred)

[5] (no pred)

(b)

Fig. 7. Bandwidth limitation mechanism overhead depends on the timer’s
period.

Alloc Page Fault Application Switch BL Server BL Interrupt Synchronization

0

2

4

E
x
ec

u
ti

o
n

o
v
er

h
ea

d
(%

)
Absolute overhead Smoothed overhead

Fig. 8. Absolute overhead of the safety net compared to the smoothed
overhead introduced at run-time.

enabling PMCs interrupts. We also make sure that the

application only exceeds its budget once every server’s

period expires. The RTOS directly reschedule the appli-

cation once its budget is exceeded to measure only the

limitation mechanism’s overhead. Figure 7 (b) shows our

results.

We compare our approach when using a predictor to add

budget to the global budget pool and when not using any

predictor. Results show that our extension of MemGuard

to support per applications budgeting as well as reclaiming

modes adds a small overhead (less than 0.5%). Our experi-

ments show that the bus usage predictors introduce the most

overhead.

Finally, we studied the impact that the mode change API

has on the execution time of partitions. The mode change was

implemented to only impact the calling core. Thus, this API

call is no different than any system call made by the user

to the RTOS (e.g. mutex acquisition, display print, etc.). The

API performs a constant number of accesses to the memory.

Based on the measurements of the execution time of common

API and system calls in the used RTOS, changing mode is

4.6 times faster than a semaphore signaling, 8.5 times faster

than getting the current partition’s status and takes sensibly

the same time as retrieving the current process’s identifier.

C. Safety Net Overhead

We further study the impact of the safety net on the

performance. We provide two metrics to express the overhead.

We define the absolute overhead, which gives the absolute

execution time added by the safety net. We also define the

smoothed overhead, which describes the impact of the safety

net on the applications execution time. It is important to note

that the safety net overhead should be reduced as much as

possible at its routines frequently executed in the system (e.g.,

TLB miss handlers, context switch, etc.).

Figure 8 presents the absolute and smoothed overhead of

the safety net. BL stands for “Bandwidth Limitation”. While

we manage to maintain the overhead under 1% for most

safety nets, the allocation safety net (Rule 1 and Rule 2)

overhead reaches 4.56%. However, this overhead only occurs

during the system startup and slows down the boot process by

1.5%. Therefore, we do not provide any allocation smoothed

overhead metric, as it is nonexistent.

The time synchronization overhead presented in Figure 8

refers to the overhead added by the core MAF synchronization

mechanism. Two factors cause this overhead. First, the syn-

chronization routine itself must access shared data atomically

to know the state of the synchronization barrier. The second

factor comes from the potential synchronization of the cores.

The more a core drifts, the more it is prone to reach the

synchronization barrier late. In this test, the synchronization

primitive causes the absolute overhead while the smoothed

overhead accounts for the total overhead (synchronization

primitive and drift of the cores clocks). The second factor

is the more impacting, hence the bigger smoothed overhead.

The results were gathered by measuring the number of cycles

the cores stay in the synchronization routine at every MAF

renewal and compared to the number of cycles the complete

MAF renewal routine takes. The synchronization happens at

most once every MAF start. Current timing analysis methods

can take this overhead into account in the MAF renewal time.

The overhead added by the synchronization was measured to

be 0.56% of the MAF renewal time in the worst case. To

gather the results, we measured 100,000 MAF renewal.

D. Scalability of the solution

The partitions-related safety net as well as the bus band-

width limitation mechanism are designed to be independent

for each core and are based on an AMP RTOS architecture.

The cache coloring run time mechanism solely relies on the

MMU and, thus, is independent of each core that has a private

MMU. By construction, those mechanisms are not impacted

by the number of cores in the system.

The startup memory allocation mechanism is impacted by

the number of cores in the system. Memory allocation must

keep global structures to ensure correct memory allocation

between cores, thus synchronization primitives are used to

ensure exclusive use of these structures. The worst case

happens when all cores allocate memory at the same time. To

access the shared data structures, a core might wait until all

other cores have finished their allocation. Thus, the allocation

time can be multiplied linearly by the number of cores in

the system. To validate our assumption, we artificially created

such a case by adding a barrier before each core allocates

the partitions’ memory. Each core has the same amount

of memory to allocate. Our experimental measures show a

maximal allocation time of 233µs on 1 core, 429µs on 2

cores, and 849µs on 4 cores. Finally, the core synchronization

mechanism itself is not impacted by the number of cores.

However, the time waited for all cores to reach the barrier

may differ and is likely to increase with the number of cores.

The equation
∑N

i=1Di provides a way to compute the worst

A
D

PCM

Q
ui

ck
Sor

t
FFT

JF
D

CTIN
T

M
PEG

2

Pet
rin

et

M
Sor

t

IO
-P

ar
t

1

1.2

1.4

1.6

1.8

W
C

E
T

in
cr

ea
se

(x
)

CC + BC CC + BC + BB CC + BC + BB GRP

(a)

A
D

PCM

Q
ui

ck
Sor

t
FFT

JF
D

CTIN
T

M
PEG

2

Pet
rin

et

M
Sor

t

IO
-P

ar
t

0

20

40

60

80

100

E
x
ec

u
ti

o
n

ti
m

e
st

an
d

ar
d

d
ev

ia
ti

o
n

(%
)

CC + BC CC + BC + BB CC + BC + BB GRP

(b)

Fig. 9. WCET (a) and predictability improvements (b) provided by the
memory manager. We compare the proposed metrics when using cache and
bank coloring (CC + BC), bus budgeting (CC + BC + BB) and the initial
reclaiming pool (CC + BC + BB GRP)

synchronization time where N is the number of cores and Di

is characterized by the amount of time the clock of the core i
drifts between two synchronizations.

E. Effect on Predictability

We validate our approach by studying the predictability of

eight concurrent applications. We define the predictability of

an application based on the standard deviation of the execution

time. We compare the predictability with interference manage-

ment to the predictability without interference management.

A lower value means the partitions’ execution time is more

predictable.

To approximate the measured WCET2, we analyze each

application under the same input data for all executions.

We further executed each application multiple times until no

higher execution time is detected after 1000 executions. In a

safety-critical context, a more formal approach should be used,

however, timing analysis in presence of interference in multi-

core system is not yet attainable and provides results that are

too pessimistic [35].

This method provides a way to analyze the impact our

work has on the applications’ actual WCET. The WCET

increase entailed by the interference mitigation mechanism is

compared to the applications’ WCET measured with a single-

core setup, where only one application exclusively uses the

system’s resources. The lower the WCET increase, the better

our method performs.

Finally, the bus budgets as well as the initial reclamation

pool size are computed using the method proposed by [41]

where an ILP formalism to the budget allocation that fits our

experimental environment is defined.

Figure 9 (a) shows the relative increase of measured WCET

compared to the WCET measured in single-core execution.

Lower values are better and means the application suffered

less slow down because of the interference mitigation means.

We used 8 applications from the TacleBench suite and co-run

them on 2 cores. Interferences are naturally introduced by the

memory usage of each application. Table IV sump up our test

2We use a measured approximate WCET because current state of the art
in multicore WCET analysis does not provide precise means of analysis in
presence of interference. Our work is a step towards the use of conventional
analysis methods, but other interferences exist and need to be addressed before
being able to use regular analysis methods.

TABLE IV
TEST ENVIRONMENT APPLICATIONS

Application Description Core

ADPCM
Analog to digital filter
Memory intensity: medium

0

QuickSort
Array sorting algorithm
Memory intensity: high

0

FFR
Fast Fourrier Transform implementation
Memory intensity: medium

0

JFDCTINT
Forward discrete cosine transform implementation
Memory intensity: low

0

MEPG2
MPEG2 manipulation
Memory intensity: medium

1

Petrinet
Petrinet simulation implementation
Memory intensity: low

1

MSort
Array sorting algorithm
Memory intensity: high

1

IO-Part
Application performing IOs on the serial port
Memory intensity: high

1

payload. The period of each partition on the core 0 is 50 ms

while periods for the core 1 are 75 ms. This ensures that with

enough executions of the system, all partitions of the core

1 are co-run at least once with all partitions of the core 0.

Our approach reduces the impact of isolation on the WCET

while drastically increasing the predictability. In Figure 9 (b),

the predictability corresponds to the standard deviation of

execution time where 100% is the standard deviation in multi-

core processors with the same setup but without interference

mitigation. We show that in our test bench, we reduce the

standard deviation of execution times by 68.1% on average.

Isolation is ensured by design. When using cache coloring,

shared caches are strictly segregated into different areas and

partitions using strictly different cache colors cannot share any

cache area. It is the same for memory banks. Bus budgeting

will also detect when a budget is exceeded and stop the parti-

tion at the very instruction where the budget is exceeded. Thus,

isolation on cache and bus is ensured. However, in multicore

systems, far more interference channels exist. For instance,

cache coherence protocols will introduce delays when in need

to update private caches [2]. Other hardware mechanisms such

as the Miss Status Holding Registers (MSHR) will create

interferences [46]. Thus, is it impossible to reach the same

predictability in multi-core systems compared to single-core

ones. Our objective is to remove the most critical one to

lower the analysis pessimism and further conduct the system’s

analysis considering the remnant interferences.

It must be noted that the increase in predictability as

well as the increase of the WCET is not the same for all

applications. Indeed, in the system, some applications are

more prone to interferences (usually applications that use

more memory). Thus, memory-intensive applications (in our

experiments MSort, QuickSort) will see their execution time

increased more than other applications because of the resource

restriction cache coloring and bus budgeting apply to them. For

the same reason, the increase of the WCET is not proportional

to the decrease of the standard deviation of execution time.

We also show that for highly critical system with only

hard real-time applications, the initial reclaiming pool allows

improving the overall system performance. Based on experi-

ments with the proposed benchmark, we use an initial global

reclaiming pool containing 10% of the maximal bus budget.

This configuration yields to the best performance by providing

additional budget for hard real-time applications using full-

reclaiming and greedy modes while avoiding budget waste.

Our study shows that while using an initial global reclaiming

pool slightly reduces predictability, it allows to reduce the

WCET and reduce the impact of bus budgeting.

Finally, it is important to discuss the tradeoff between

WCET increase and predictability. An increase of less than

2 on dual-core architecture means that the system will be able

to host more partition than a single-core system. Similarly, an

increase of less than 4 on a 4-core architecture would mean

the same. The goal of our interference mitigation means is

to reduce the WCET impact as much as possible to ensure

isolation but also allow more petitions to be hosted by the

system. Based on our results, the method we propose increases

applications’ WCET by 22.3% on average on 2 cores, which is

deemed acceptable to provide an increase of predictability of

68.1% on average. We also applied our approach on a 4-core

setup, which yielded the same results, following the scalability

analysis we provide in Section 6.5. For the sake of space, we

do not present these results in this paper.

VII. CONCLUSION

Safety-critical systems rely on partitioned system to ensure

complete isolation between applications. However, with the

advent of multi-core processors, such isolation is impossible

when using regular resource management methods. The con-

tention on resources shared between the different cores gener-

ates interferences. Interferences are non-deterministic delays

in execution time that prevent certification of safety-critical

systems. The delay interferences introduce at run-time cannot

be predicted. Thus, when measuring the Worst-Case Execution

Time of applications, one must assume the worst case when

sharing resources with other applications. This yields to overly

pessimistic results that render the system unusable.

Research in the domain proposes multiple solutions to

isolate different components and improve predictability. How-

ever, such solutions are not always applicable to safety-

critical systems, where the configuration and implementation

of interference mitigation methods must be deterministic and

known during system design to allow certification.

In this paper, we presented a statically configurable memory

manager that isolates the memory hierarchy between applica-

tions. Our approach enables to mitigate shared cache, DRAM

and bus interferences with deterministic and certifiable meth-

ods. We further provided safety net rules to accommodate with

the CAST-32A guidance document. Finally, we studied the

impact of our method in terms of performance improvement

and overhead. Our approach increases predictability by 68.1%

while reducing the impact of mitigation methods.

As explained in Section 3, other interferences exist. Our

approach restricted interference mitigation to shared caches,

memory bank and bus interferences. Future work could in-

tegrate the use of channel partitioning in our mitigation

framework and study its impact.

REFERENCES

[1] C. B. Watkins and R. Walter, “Transitioning from federated avionics
architectures to integrated modular avionics,” in 2007 IEEE/AIAA 26th

Digital Avionics Systems Conference, 2007, pp. 2.A.1–1–2.A.1–10.
[2] A. Löfwenmark and S. Nadjm-Tehrani, “Challenges in future avionic

systems on multi-core platforms,” in 2014 IEEE International Sympo-

sium on Software Reliability Engineering Workshops, Nov 2014.
[3] L. Sha et al., “Single core equivalent virtual machines for hard

real—time computing on multicore processors,” 2014.
[4] C. A. S. Team, “Cast-32, multi-core processors,” USA, November 2016.
[5] H. Yun et al., “Memory bandwidth management for efficient per-

formance isolation in multi-core platforms,” IEEE Transactions on

Computers, vol. 65, no. 2, feb 2016.
[6] ARINC, “Arinc specification 653: Avionics application software stan-

dard interface,” Maryland, USA, 2015.
[7] S. P. Muralidhara et al., Reducing Memory Interference in Multicore

Systems via Application-Aware Memory Channel Partitioning, 2011.
[8] N. Suzuki et al., “Coordinated bank and cache coloring for temporal

protection of memory accesses,” in Proceedings - 16th IEEE Inter-

national Conference on Computational Science and Engineering, CSE

2013, 2013.
[9] S. Mittal, “A survey of techniques for cache partitioning in multicore

processors,” ACM Comput. Surv., vol. 50, no. 2, May 2017.
[10] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A

low-overhead, high-performance, runtime mechanism to partition shared
caches,” in 2006 39th Annual IEEE/ACM International Symposium on

Microarchitecture, 2006.
[11] R. SC-205, “Do-178c, software considerations in airborne systems and

equipment certification,” 2011.
[12] G. Kedar et al., “Space: Semi-partitioned cache for energy efficient, hard

real-time systems,” IEEE Transactions on Computers, vol. 66, no. 4,
2017.

[13] J. Brock et al., “Optimal cache partition-sharing,” in 2015 44th Inter-

national Conference on Parallel Processing, 2015.
[14] N. El-Sayed et al., “Kpart: A hybrid cache partitioning-sharing technique

for commodity multicores,” in 2018 IEEE International Symposium on

High Performance Computer Architecture (HPCA), 2018.
[15] G. Aupy et al., “Co-scheduling amdahl applications on cache-partitioned

systems,” The International Journal of High Performance Computing

Applications, vol. 32, 2017.
[16] G. Sun et al., “Combining prefetch control and cache partitioning to

improve multicore performance,” in 2019 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), 2019.
[17] J. Xiao et al., “Cppf: a prefetch aware llc partitioning approach,” 08

2019.
[18] M. Nejat et al., “Coordinated management of processor configuration

and cache partitioning to optimize energy under qos constraints,” ArXiv,
vol. abs/1911.05114, 2019.

[19] Z. Cui et al., “A swap-based cache set index scheme to leverage both
superpage and page coloring optimizations,” in Proceedings of the 51st

Annual Design Automation Conference, 2014.
[20] X. Jin et al., “A simple cache partitioning approach in a virtualized

environment,” in 2009 IEEE International Symposium on Parallel and

Distributed Processing with Applications, 2009.
[21] M. Xu et al., “Holistic multi-resource allocation for multicore real-

time virtualization,” in Proceedings - Design Automation Conference,
jun 2019.

[22] M. Hassan, “Managing dram interference in mixed criticality embedded
systems,” in 2019 31st International Conference on Microelectronics

(ICM), 2019, pp. 253–257.
[23] L. Liu et al., “Going vertical in memory management: Handling mul-

tiplicity by multi-policy,” in Proceedings - International Symposium on

Computer Architecture. Institute of Electrical and Electronics Engineers
Inc., 2014.

[24] M. Hassan et al., “A framework for scheduling DRAM memory accesses
for multi-core mixed-time critical systems,” in Proceedings of the IEEE

Real-Time and Embedded Technology and Applications Symposium,

RTAS, vol. 2015-May, may 2015.
[25] W. Ali and H. Yun, “RT-Gang: Real-time gang scheduling framework

for safety-critical systems,” in Proceedings of the IEEE Real-Time and

Embedded Technology and Applications Symposium, RTAS, vol. 2019,
apr 2019.

[26] J. Fang et al., “A memory scheduling strategy for eliminating memory
access interference in heterogeneous system,” Journal of Supercomput-

ing, vol. 76, apr 2020.

[27] L. Liu et al., “BPM/BPM+: Software-based dynamic memory partition-
ing mechanisms for mitigating dram bank-/channel-level interferences
in multicore systems,” in Transactions on Architecture and Code Opti-

mization, vol. 11, no. 1, 2014.
[28] T. Ikeda and K. Kise, “Application aware DRAM bank partitioning in

CMP,” in Proceedings of the International Conference on Parallel and

Distributed Systems - ICPADS. IEEE Computer Society, 2013.
[29] J. Zhou and J. Wang, “Archsampler: Architecture-aware memory sam-

pling library for in-memory applications,” in 2018 IEEE 36th Interna-

tional Conference on Computer Design (ICCD), 2018.
[30] M. A. Awan et al., “Mixed-criticality scheduling with dynamic memory

bandwidth regulation,” in Proceedings - 2018 IEEE 24th International

Conference on Embedded and Real-Time Computing Systems and Ap-

plications, RTCSA 2018, jan 2019.
[31] J. Kim et al., “Reducing Memory Interference Latency of Safety-Critical

Applications via Memory Request Throttling and Linux Cgroup,” in
International System on Chip Conference, vol. 2018-September. IEEE
Computer Society, jan 2019.

[32] H. Yun et al., “BWLOCK: A dynamic memory access control framework
for soft real-time applications on multicore platforms,” IEEE Transac-

tions on Computers, vol. 66, no. 7, jul 2017.
[33] A. Agrawal et al., “Contention-Aware Dynamic Memory Bandwidth

Isolation with Predictability in COTS Multicores: An Avionics Case
Study,” in 29th Euromicro Conference on Real-Time Systems (ECRTS

2017), 2017.
[34] G. Durrieu et al., “Predictable Flight Management System Implemen-

tation on a Multicore Processor,” in Embedded Real Time Software

(ERTS’14), TOULOUSE, France, Feb. 2014.
[35] S. Park et al., “Execution model to reduce the interference of shared

memory in arinc 653 compliant multicore rtos,” Applied Sciences,
vol. 10, 04 2020.

[36] M. Hassan and H. Patel, “Criticality- and Requirement-Aware Bus
Arbitration for Multi-Core Mixed Criticality Systems,” in 2016 IEEE

Real-Time and Embedded Technology and Applications Symposium,

RTAS 2016 - Proceedings, apr 2016.
[37] A. Kostrzewa et al., “Safe and dynamic traffic rate control for networks-

on-chips,” in 2016 Tenth IEEE/ACM International Symposium on

Networks-on-Chip (NOCS), 2016.
[38] A. Dabaghi and H. Farbeh, “High performance and predictable memory

controller for multicore mixed-criticality real-time systems,” IET Com-

puters & Digital Techniques, jun 2019.
[39] J. Park et al., “HyPart: A hybrid technique for practical memory

bandwidth partitioning on commodity servers,” in Parallel Architectures

and Compilation Techniques - Conference Proceedings, PACT, nov 2018,
pp. 1–14.

[40] Y. Xiang et al., “EMBA: Efficient memory bandwidth allocation to im-
prove performance on intel commodity processor,” in ACM International

Conference Proceeding Series. Association for Computing Machinery,
aug 2019.

[41] M. A. Awan et al., “Uneven memory regulation for scheduling IMA
applications on multi-core platforms,” Real-Time Systems, vol. 55, apr
2019.

[42] C. A. S. Team, “Cast-20, addressing cache in airborne systems and
equipment,” USA, July 2003.

[43] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high
performance computers,” University of Virginia, Tech. Rep., 1991-2007.

[44] M. S. . S. I. MSS, “M-rtos,” 2020. [Online]. Available:
https://www.mss.ca/m-rtos/

[45] H. Falk et al., “TACLeBench: A benchmark collection to support worst-
case execution time research,” in 16th International Workshop on Worst-

Case Execution Time Analysis (WCET 2016), 2016.
[46] P. K. Valsan et al., “Taming non-blocking caches to improve isolation in

multicore real-time systems,” in 2016 IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2016.

Whole-System Analysis for Memory Protection and Management

Felix Bräunling1, Simon Wegener2, Daniel Kästner2, and Isabella Stilkerich3*

Keywords— Memory Management, Safety, Genericity

Abstract

The automotive industry is a market that is heavily cost driven.

Thus, software development without the reuse of software com-

ponents is no longer economically feasible due to the increase

in complexity of vehicle functionality, software, and hardware.

To facilitate this reuse, software development—especially for

control systems—is done on a functional level using domain-

specific languages (DSLs) and model-based software develop-

ment (MBSD). DSLs and models are later on translated into a

general-purpose language such as C or C++. While such soft-

ware components are likely to meet functional requirements,

they need to be tailored to the specific application being tar-

geted and the quality requirements posed by that application.

One aspect that needs to be taken into consideration during this

tailoring is the management of memory and its direct impact on

quality requirements such as functional safety, security and per-

formance. The proper management of memory is a non-trivial

task and has to embrace not only the target hardware but also

the infrastructure software used, e.g., the operating system.

In this paper we present cAMP (constructive and Adaptive

Management Partitioning), a tool to influence model-based

code generation to respect functional safety and performance

requirements by performing trait-based data classification.

The trait-based data classification is based on the output of

concurrency-aware sound static code analysis performed by

Astrée.

1 Introduction

Model-based software development and the use of domain-

specific languages enable control engineers to develop applica-

tion software, e.g., traction or engine control systems, in a lan-

guage familiar to their domain. At the same time, models and

DSLs abstract away the underlying programming language and

hardware model, therefore no deep knowledge about these parts

is required by the control engineer. Control engineers are often

domain experts on control theory, but not software engineers.

As an additional advantage, MBSD focuses by design on a pure

functional development of systems, which eases reusability in

projects with similar functional requirements. Models and pro-

grams written in DSLs later on are translated into a lower-level

*1Felix Bräunling is with Method Park by UL, Germany

felix.braeunling@fau.de
2Simon Wegener and Daniel Kästner are with AbsInt Angewandte Informatik,

Germany {swegener, kaestner}@absint.com
3Isabella Stilkerich is with Schaeffler Technologies AG, Germany

isabella.stilkerich@schaeffler.com

language such as C/C++, or are directly compiled into machine

code. An integration engineer then takes the generated arti-

fact and integrates it into a bigger software system, along with

other application software, basic software, and infrastructure

software such as an operating system. A successful integration

requires the fulfillment of quality requirements, especially for

safety-critical embedded systems:

• Functional Safety: The system shall operate correctly

in reaction to its inputs such that the environment is not

harmed by the system. This is part of the system’s func-

tional suitability.

• Performance / Resource Efficiency: To save costs, ex-

ecution time and memory usage of the deployed system

should be economic.

• Adaptability and Reusability: The integrated software

shall be downward adaptable, meaning it can be adapted

to various microcontrollers to use their resources in an ef-

ficient manner. It also shall be upward adaptable to reflect

application-specific, that is, project-specific requirements.

Software components shall be reusable in various project

instances (platform approach).

These requirements are not indifferent to each other, but

are interwoven by complementary or competitive relations.

Oftentimes quality requirements are also referred to as non-

functional requirements. The ones mentioned above and more

are part of the quality model described in ISO 25010 [19].

1.1 Problem Statement

In this paper, we will describe how the quality requirements

mentioned above are respected in our approach. As an example,

we consider memory management, which is a crucial aspect

that needs to be considered during integration. Proper memory

management has a big impact on achieving resource efficiency,

by reducing access times, using the restricted amount of avail-

able memory efficiently, and exploiting the intertradeabilty of

memory and computation time. Memory management is also

supporting functional safety by limiting processes to their own

memory regions, isolating these memory regions with memory

protection mechanisms, and creating deterministic memory ac-

cess times to support real-time system development.

On the other hand, MBSD and the goal of writing software

generically for high reusability does not consider memory man-

agement at all, due to its tight coupling with the specific tar-

get hardware. While this lack of memory management aware-

ness can be mitigated manually during the integration, this

1

approach does not scale with platform-based or product-line-

based development approaches. The manual approach is also

prone to errors and reduces reproducibility of the achieved re-

sults. The problem space grew even larger with the introduction

of multi-core microcontrollers and heterogeneous, distributed

memories-on-chip The question arises how reusable or generic

software, developed using DSLs and MBSD, can be tailored

during the integration to fit application-specific requirements

with regards to memory management in a manner that is scal-

able and reproducible.

1.2 General Approach

The authors argue that, by analysis of the whole system us-

ing sound static analysis, and combining this information with

system-architecture information, a memory management solu-

tion can be automatically derived.

To achieve this, sound static analysis has to be applied on the

code of the software instantiated for a particular project. In or-

der to derive information on data and memory-usage behavior,

the software has to be free of type and memory defects. While

languages such as Rust, Java, and Ada exhibit type and mem-

ory safety by design, C and C++ which are predominant in the

automotive industry are not type and memory safe. By em-

ploying sound static analysis these properties can be retrofitted

to C and C++ by removing detected type and memory defects

in application software.

Type- and memory-safe software can then be analyzed us-

ing concurrency-aware whole-system analysis [28] to gather

memory-access information. Combining this memory-access

information with the application-specific system architecture,

common data traits can be identified. Based on these data

traits, each individual data item can be classified and a mem-

ory mapping can be derived for common classes of data.

1.3 Contribution

As we demonstrated in [13], a memory management tool can

be integrated in a workflow that enables the tailoring of generic

software systems to product specific application in an auto-

mated fashion. This paper focuses on the details of such an

automated memory management tool and its tailoring towards

application-specific quality requirements. We develop a sys-

tem model of the problem statement and present the data traits

that are derived from said model. We show the possibility

of retrofitting C and C++ with type and memory safety using

sound static analysis. cAMP, implementing a data-trait-based

data classification algorithm, is presented and its capability to

derive a memory mapping is demonstrated using an example

application.

2 Aspects of Memory Management

Memory Management concerns itself with the allocation of

memory, the access to that memory and the freeing (dealloca-

tion) after the use of that memory. In safety-critical embedded

systems, supplying vehicle control functions, the memory is

usually linearly mapped. Functions can optionally be protected

by a memory-protection unit (MPU), if isolation is needed and

the microcontroller is equipped with an MPU.

Table 1: High-level qualitative comparison of memory types

[43, 32, 40]
Type Read Time Write Time Volatile

SRAM Very Low Very Low Yes

DRAM Low Low Yes

EEPROM High Very High No

Flash Low High No

Often, heap-based memory management is prohibited, due to

problems such as indeterministic (de-)allocation times, unpre-

dictability of run-time memory requirements and general im-

plementation bugs (e.g., use after free, double free, memory

leaks).

The amount of available memory is usually restricted, due

to the increased cost per unit of added memory. Therefore, it

is necessary to provide an economic management strategy for

the deployed application. This strategy shall include informa-

tion about memory technologies (Section 2.1) and shall respect

quality requirements (2.2).

2.1 Memory Technologies

Predominant technologies used are static RAM (SRAM), dy-

namic RAM (DRAM), flash memory, or EEPROMs. Each

of these technologies offer different characteristics in terms of

read tR and write tW time, volatility, and cost per unit of mem-

ory. Table 1 gives a qualitative overview of the different types

of memories and their properties. The cost per unit decreases

for each line in the table for the same volatility.

In addition to the chosen memory technology, the connection

between a processing unit C and a memory M influences the

total access time tA. Modern microcontroller such as Infineon’s

AURIX TC2xx/TC3xx series [18] (see Figure 1), STM’s SPC5

series [36] or the ARM Cortex-R52 [5] family exhibit similar

patterns in connecting memories with processing units:

• Tightly-coupled: Memory is integrated within the pro-

cessing unit.

• Direct: Memory and processing unit are connected via an

exclusive direct connection.

• Bus with arbitration: Memory and processing unit are

connected via a shared bus that uses arbitration to manage

concurrent usage.

• Interface with arbitration: Memory access is performed

through an interface, which manages concurrent access

and offers additional functionality such as error detection

or even error correction.

Tightly-coupled or direct connections only incur a determin-

istic cost tD in addition to the technologies read or write time.

DRAM incurs an additional time cost every few accesses, due

to memory cell refresh cycles. In this paper this effect is not

taken into consideration. Access over a bus and/or an inter-

face add a similar deterministic cost tD but also an arbitration-

dependent cost tArb. This cost is depending on the amount of

concurrent traffic on the bus/memory at runtime and the arbi-

tration technique used and can introduce jitter when accessing

Crossbar

PSPR

ICache

DSPR

DCache

PSPR

ICache

DSPR

DCache

PSPR

ICache

DSPR

DCache

D-Flash P-Flash
System

RAM

FPU

FPU

FPU

Bridge DMA

System Peripheral FPI Bus

Figure 1: Hardware Diagram of the AURIX TC277

data. The total access time depending on the these factors is

therefore:

tA = tArb + tD +

{

tR for read access

tW for write access
(1)

The use of caches and memory hierarchies changes this be-

havior as it improves the access time, if the data is present in the

cache, but adds a penalty if it is not, leading to varying access

times. In this paper, caching and its effects are not considered.

2.2 Quality Requirements and Memory Man-

agement

By allocating data to memories while respecting their technol-

ogy and connection, the memory management can make ef-

ficient use of the available resources and support the quality

requirements posed by the application. The following section

will present how selected quality requirements are linked to the

choice of data allocation.

2.2.1 Functional Safety: Real-Time and Isolation Re-

quirements

In safety-critical domains, such as aerospace, medical and auto-

motive, systems have to react in a timely manner to events. Of-

ten, hard real-time requirements are posed towards these sys-

tems and time-deterministic execution of the system’s functions

is therefore necessary. As Equation 1 shows non-determinism

in the access time tA stems from data access over arbitrated bus

systems and memory interfaces. By allocating data to memo-

ries which exhibit deterministic, jitter-free access times, such as

tightly-coupled SRAM, the allocation choices can support the

requirements of hard real-time behavior and functional safety.

Also, the availability and overall quality of timely functions can

benefit from this approach.

In addition, functional safety requirements can add the need

for fault-tolerant memory behavior. This can either be reflected

in memory-technology properties such as read/write cycles in

a memory lifetime and / or the resistance to environmental ef-

fects. Often, specific memories in a system offer additional

measures such as error detection and error correction capabil-

ities. By allocating data which is used in critical functions to

these memories, the fault-tolerance of the system can be in-

creased.

To achieve freedom from interference in space between dif-

ferent functions realized by one system, it is necessary to re-

strict the access to data allocated to the respected functions.

This is achieved by a proper configuration of the MPU that re-

spects proper access modes (the combination of read, write and

execute authorizations) for each of the processes1 deployed on

the system and the data these processes operate on. Configura-

tion errors which restrict the access right too much, prohibiting

legal access to data, have a negative impact on the safety and

security of the application. The inverse is true as well, as too

permissive access authorizations enable rogue data accesses. It

is thus paramount that memory protection regions configured

in the MPU reflect the memory access rights intended by the

application.

For a static system the MPU configuration defines how a pro-

cess P running on a processing unit C can access a set of data

D = {d1, ...,dn}. Each data set D is associated with a memory-

protection region R(D)→ A that prescribes the allowed access

mode A, which is a combination of read r, write w and exe-

cute x modes. To differentiate between different access rights,

processes can be linked to protection regions.

2.2.2 Performance Efficiency

One common trade-off in memory management is that of com-

putational space-time, where memory can be exchanged for run

time and vice versa in certain applications (such as using pre-

computed lookup tables instead of performing time consuming

computations during run-time).

On the other hand run time cost is directly influenced by the

choice of allocation. As the processing unit operates on data

that is read from or written to memory the run time cost of the

execution is dependent on the speed at which these operations

are performed. In an optimal case, all necessary data must only

1A process is a set of threads of control executing in a common address

space.

be read once and is then kept in CPU registers. But as CPU

register space is limited this is not feasible. Therefore, in or-

der to reduce run time cost caused by access times given by

Equation 1, the average access time must be kept minimal:

min

(

∑
n
i=1 f ∗ tAi

n

)

for n = Amount of Data (2)

Where f describes how often access to a data item is performed

and tAi
describes the access time for a data item. This can be

achieved by allocating as much data as possible in fast-access

memories such as SRAM and DRAM. As these types of mem-

ory are also often the smallest on the device and cannot store

all data, priority can be given to data which is accessed often.

Avoiding concurrent access that leads to arbitration can also

increase performance efficiency by reducing tArb. This can be

achieved by allocating data, that is not shared between different

processing units, on different memories. This reduces synchro-

nized access by different processes to the same memory. For

example on the SPC584 [36] each core has a tightly-coupled

data memory that can be preferred for data not shared between

the two cores to avoid access conflicts which lead to arbitra-

tion. The reduction of access time jitter caused by arbitration

is also beneficial for the realization of the functional safety re-

quirements.

3 Ensuring Well-defined Memory Ac-

cess Behaviour

Our goal is the automatic derivation of a mapping of the vari-

ous data objects to the memories such that the integrated soft-

ware system fulfills all quality requirements (functional safety,

performance, resource efficiency, adaptability, etc). We apply

static whole-system analysis to derive a traits-based data clas-

sification (Section 4), paving the way for the memory mapping

later on (Section 5).

However, any erroneous memory access behavior would fal-

sify the traits-based data classification. Hence, we need to

ensure that the integrated software system has a well-defined

memory access behavior. In other words, we need to ensure

type and memory safety of the program, since this is a nec-

essary precondition that the semantics of a program exhibits a

well-defined data access behavior. Therefore, achieving type

and memory safety for a program is a crucial requirement for

the automated memory-management approach presented in this

paper. However, this does not exclude programming errors on

the logical level. Other types of analyses and testing need to be

performed to avoid these.

3.1 Memory and Type Safety in C and C++

Aiken et al. [3] defines that type safety is present when opera-

tions are only performed on types for which they are defined.

Memory safety is present when only existing objects are ac-

cessed and access only happens within the object’s boundaries.

Type-safe applications are also memory-safe.

Languages such as Rust, Java, or Ada provide type and mem-

ory safety by design, usually enforced by their strong type sys-

tem. But for various reasons such as performance, availabil-

ity of programmers, availability of compilers for the intended

target hardware, or the lack of a language standard, these lan-

guages are not commonly used in embedded automotive sys-

tems. C and C++ are the predominant programming languages

used in embedded automotive control applications. Neither of

them guarantees type and memory safety by design [35].

3.1.1 Dialects and Libraries

One approach to remedy the lack of type and memory safety

are C/C++ dialects or libraries, that enhance the type system,

such as Cyclon [21], CCured [33], Checked-C [38] for C or the

Guideline Support Library [27] for C++. Problems with this ap-

proach can be the lack of compilers for the target hardware and

the missing interoperability with legacy code. Some of them

also introduce additional run-time checks, that entail a perfor-

mance cost as a trade-off for the increased type and memory

safety.

3.1.2 Retrofitting Type and Memory Safety Using Sound

Static Analysis

While all of these problems can be remedied, the authors ar-

gue that—instead of rewriting extensive, existing code bases to

use dialects or external libraries—sound static analysis based

on abstract interpretation [15] can be employed to achieve type

and memory safety. In C and C++ type and memory defects are

exhibited when undefined or unspecified behavior is evoked.

An example for a violation of type safety is the overflowing

of integer types or comparing incompatible pointer values. An

example for a violation of memory safety in C and C++ would

be accessing an array outside its bounds or dereferencing a

null pointer. To avoid these type of defects, programs need

to be limited to a well defined subset of the language which

is type and memory safe. Standards such as MISRA C [30]

and MISRA C++ [31], CERT-C [14], or the C++ Core Guide-

lines [37] define such subsets. Static analysis can be employed

to enforce these subsets and detect type and memory defects,

allowing developers to remove those defects.

Sound static analysis based on abstract interpretation guaran-

tees to detect all defects present in a program, for the types of

defects the analysis targets. For our approach a sound system-

level analysis is needed which determines the data flow be-

tween different threads (called processes in the terminology

of Astrée) that may be distributed over several cores. Such

an analysis requires a concurrent semantics providing a scal-

able sound abstraction that covers all possible thread interleav-

ings. These requirements are met by Astrée [28, 25, 23], a

sound static analyzer employing abstract interpretation for C

and C++ Code. Astrée’s main purpose is to report program de-

fects caused by unspecified and undefined behaviors in C/C++

programs. Table 2 compares the type and memory safety defi-

nition given by [3] with a subset of defects that are detected by

Astrée. A particularity of Astrée is its memory domain which

supports an exact analysis of pointer arithmetic and union ma-

nipulations and provides a type-safe analysis of absolute mem-

ory addresses.

If all defects found by the analysis are removed from the pro-

gram, the resulting program exhibits well-defined behavior and

Table 2: Mapping of Alarm Types [2] to Requirements of Type-

and Memory Safety [3].
Requirement Alarm Type

Only operations applied for Invalid pointer comparison

instances of the type Subtraction of invalid pointers

Attempt to write to a constant

Dereference of mis-aligned pointer

Overflow of Integers or Float

Invalid shift argument

Use of uninitialized variables

Division or modulo by zero

Undefined integer modulo

Invalid function calls

Access only existing objects Dereference of null or invalid pointer

Pointer to invalid or null function

Use of dangling pointer

Arithmetics on invalid pointers

Possible overflow upon dereference

Access only inside object boundaries Incorrect field dereference

Out-of-bound array access

Dereference of mis-aligned pointer

Possible overflow upon dereference

is free of type and memory defects. The advantage of this ap-

proach is its applicability to legacy code. By using an iterative,

per-use-based approach, legacy code can be transformed into

a state of type and memory safety economically. As no addi-

tional annotations, libraries or specific compilers are necessary

other parts of the tool chain are not limited or in need of being

exchanged. This approach is also in line with standard recom-

mendations, such as those posed by ISO 26262-6 [20], which

recommend the use of static analysis to detect programming

defects and language subsets to avoid programming defects.

The approach presented in this paper is aimed at achieving

correct memory mapping at a source code level. While com-

piling and linking the program errors can be introduced into

the resulting binary. This paper does not consider errors during

compiling and linking the program.

3.2 Handling of Stack Objects

Local variables of C/C++ functions are stored on the stack,

which is dynamically managed at run-time. This is usually

transparent to the program and based on the translation of the

program by the compiler and the targeted hardware. These

stack objects need to be allocated in memory as well, and the

same requirements for memory safety need to be applied to

them. In safety-critical systems it is usually the case that the

memory used for the stack is statically allocated before run-

time with an upper limit to its size. If this upper bound is

wrongly chosen a read or write out-of-bounds can occur, vi-

olating memory safety.

To determine safe upper bounds sound static analysis can be

employed: in this case, soundness means, that the worst-case

stack usage might be overestimated but never underestimated.

For safe stack usage analysis, it is important to work on fully

linked binary code, since the effects of code generation—

inserting padding bytes, register allocation, etc.—or link-time

optimizations have to be taken into account. Hence the static

stack usage analysis cannot be based on the source code but

must work on the executable machine code. It approximates the

semantics of the machine code of the microprocessor by using

an abstract model of the processor architecture. The abstract

model does not need to cover the entire state of the micropro-

cessor, only the parts affecting the stack space are needed. The

hardware state relevant for worst-case stack analysis includes

the processor registers and the memory cells. For a naı̈ve anal-

ysis, only the stack pointer register is needed, but for precise

results it is important to perform an elaborate value analysis on

the contents of processor registers and memory cells.

The tool StackAnalyzer [22, 1] is one example of a sound

static stack usage analyzer. By concentrating on the value of

the stack pointer during value analysis, StackAnalyzer com-

putes how the stack increases and decreases along the various

control-flow paths. This information can be used to derive the

maximum stack usage of the entire task. StackAnalyzer takes

the entire application into account and interprocedurally ana-

lyzes each call site with its precise stack height. The results of

StackAnalyzer are presented as annotations in a combined call

graph and control-flow graph. It shows the critical call stack,

i.e., the path on which the maximum stack usage is reached

which gives important feedback for optimizing the stack usage

of the application under analysis.

4 Traits-based Data Classification

To reason which data needs to be allocated to which memory M

and be contained in which protection region R(D), the data and

its properties need to be known. In this section whole-system

analysis using concurrency-aware static analysis is presented

as a means to identify data properties. Afterwards it is shown

how data can be grouped into data classes using associated data

traits.

4.1 Identifying Data Traits by Whole-System

Analysis

One example tool providing the necessary information about

the data access behavior is Astrée, which leverages its sound

abstraction of thread interleavings (cf. Section 3.1.2) for sound

global data and control flow analysis.

The information about the execution model, in particular

threads, their priorities, their core assignment etc. cannot be

extracted from the C/C++ source code. Astrée provides intrin-

sics to support a manual specification of the execution model.

In addition, Astrée supports a fully automatic analysis of con-

current software projects which comply to either the ARINC

653 standard, or the OSEK/AUTOSAR standards [34, 7]. For

those OS norms Astrée provides stub libraries which imple-

ment an abstract model of the OS API. A particularity of

OSEK/AUTOSAR is that system resources, including tasks,

mutexes, or spin-locks are not created dynamically at program

startup; instead they are hard-coded in the system: a spe-

cific tool reads a configuration file in OIL (OSEK Implemen-

tation Language) or ARXML (AutosaR XML) format describ-

ing these resources and generates a dedicated version of the

system to be linked against the application. Astrée supports a

similar work-flow [29]. In the preprocessor stage it can read

OIL/ARXML files and outputs a C file containing a table of

the declared resources, with their attributes (mapping of tasks

to applications and cores, task priority, alarm periodicity, etc.)

which are fully taken into account during the analysis.

Astrée generates sound data and control flow reports (see Fig-

ure 3). Astrée tracks accesses to global variables, static vari-

ables, and local variables in case those accesses are made out-

side of the frame in which the local variables are defined (e.g.,

because their address is passed into a called function). All data

and function pointers are automatically resolved. The sound-

ness of the analysis ensures that all potential targets of data and

function pointers are taken into account. Astrée’s data and con-

trol flow reports show the number of read/write accesses for

every global, static, and out-of-frame local variable, lists the

location of each access and shows the function from which the

access is made. All variables are classified as being globally-

accessible, effectively shared between different threads, or sub-

ject to a data race. The control flow is described by listing all

callers and callees for every function along with their respective

call sites and the threads in which they can run. In AUTOSAR

projects, additionally the application and the core to which the

executing thread belongs is listed (cf. Section 5.1).

More sophisticated information about selected flows of val-

ues can be provided by a user-configurable taint analysis en-

gine and a built-in program slicer. They enable Astrée to also

compute a safe approximation of the data and control coupling

between software components [24].

4.2 Data Traits and Classes

The way data is accessed can be described by traits. The traits

we identified can be grouped into five groups:

• Mode of access: Data is either only read r, only written w,

read and written rw or exectued x.

• ”Sharedness”: Data is either accessed by only one process

P = Pi (process-local) or by a set of processes P = {P0, ...}
(process-global).

• Origin of access: Data is either accessed from a single pro-

cessing unit C = Ci (core-local) or by a set of processing

units C = {C0, ...} (core-global)

• Special uses: Certain data is accessed for a specific pur-

pose and behaves different than ”ordinary” data. Exam-

ples for this kind of data are symbols representing mem-

ory mapped I/O as well as calibration or measurement data

that can be accessed by specialized tools during develop-

ment and production. Stack objects, representing the local

data stack of a threads are also tagged as special uses. The

symbols representing special uses are provided by the sys-

tem architecture specification.

• Dead data: Data that is never accessed or only written to,

but still declared in the program. However, this trait is

only derived if the data is not already marked as a special

uses data.

trusted

application

Data

non-trusted

application

kernel

non-trusted

application

Task A

DataData

Data
CodeCode

Code

Code

Task B Task C Task D

Data DataData

Data

Stack

Stack Stack Stack

kernel protection

control-flow isolation

application isolation

Figure 2: Isolation Boundaries in AUTOSAR [35]

Data classes, describing common access behavior, can be de-

rived by combining the above traits. Examples for these data

classes can be found in Section 5.3.

5 Memory Mapping

This section presents cAMP as an implementation of traits-

based memory management using the output of a whole-system

analysis as described in 4.1 and information about the system

architecture. Section 5.1 presents the environment for which

cAMP was developed. Section 5.2 to 5.4 describe the phases

of cAMP’s operation that derive the mapping. Section 5.5

presents limitations of this implementation and how these can

be remedied through future work. Finally, Section 5.6 shows

how example mappings have been derived for an academic con-

trol application.

5.1 Environment and Goals

cAMP targets automotive control applications that are devel-

oped using a model-based development approach and C as the

intermediate programming language bridging MBSD and the

target hardware. These applications are deployed alongside

an implementation of the AUTOSAR operating system on an

AURIX TriCore TC2xx series microcontroller. The choice of a

particular microcontroller from the series depends on the per-

formance needs of the deployed functionality.

In AUTOSAR, schedulable units (Runnables) are grouped

into threads (OsTasks) that are executed according to one or

more static schedules. Each OsTask is part of a single OsAp-

plication and has its own stack object. An OsApplication is

a collection of tasks, interrupts, alarms, data, etc. that form a

functional unit in AUTOSAR with its own address space. Os-

Applications are in turn allocated to exactly one execution unit

(EcuC). Protection regions R(D) are linked to OsApplications

which we will take as a close approximation to a process P.

Protection regions can isolate one OsApplication from another,

and even OsTasks executing within an OsApplication can be

isolated from each other (indicated by the thick black lines in

Figure 2). [9].

The goal of the mapping is foremost to be automated, correct

and repeatable. Correct in this case means all data is bound

(if possible with the available memory space) and no isolation

or safety requirements are violated. As a secondary goal the

mapping intends to increase deterministic execution and per-

formance efficiency.

5.2 Information Aggregation

To perform the mapping, cAMP gathers information about:

• Deployment of AUTOSAR tasks: AUTOSAR provides

a system specification, that contains the mapping of Os-

Applications to EcuCs and OsTasks to OsApplications. It

also includes information about the real-time system, such

as the periodicity pi of OsTasks. This specification is se-

rialized to ARXML, which is a machine-readable format

of the system specification. cAMP extracts the relevant

portions from the ARXML file to identify the mapping of

processes to processing units.

• Memory Layout: This is currently passed as a CSV file

describing the boundary addresses of each hardware mem-

ory.

• Data access behavior: Astrée provides a report for its

whole-system analysis describing the flow of data (see

Figure 3). This provides information about which data is

accessed by which process in which mode and from which

core. Data and OsTasks are identified by their symbols.

Astrée also produces a similar report that maps processes

to functions. StackAnalyzer provides safe upper bounds

for the stack objects of each OsTask.

• Data classes and their traits: cAMP uses data classes

of the form described in Section 4.2. These are currently

hard-coded in the implementation.

• Mapping rule set: The mapping rule set describes which

data classes are mapped to which memories. In the cur-

rent implementation this mapping rule set is a hard-coded

state machine. The details of this rule set are described in

Section 5.4.

• Additional Requirements: To identify calibration and

measurement data classes cAMP reads A2L files emit-

ted by TargetLink during code generation [16], which is

a specification format for the CCP and XCP measurement

and calibration protocols. These A2L files identify spe-

cial use data by their symbols. Alternatively the AUTOR-

SAR RTE specification and its measurement and calibra-

tion support could be leveraged [10].

• Safety Constraints: To respect specific binding require-

ments, cAMP provides a simple constraint language that

enables expressions of the form Pi(Data)→ Mi that en-

forces a mapping of data belonging to Pi to the memory

Mi. This is useful if data must be mapped to specific

memories due to the presence of safety features, such as

error correction codes. Additionally, constraints of the

form Mi(Pi(Data)) 6= Mk(Pk(Data)) can be formulated to

enforce hardware isolation between process not only en-

forced by the MPU, but also by allocating to different

physical memories. One possible use case are monitoring

functions that must not share the same physical memory

as the monitored functions.

• Data representation: From the model-based develop-

ment tools (such as Matlab/Simulink in conjunction with

TargetLink) information about data types of the data is ex-

tracted.

This data is automatically read in via adapters to the file for-

mats (ARXML, CSV, A2L) and then used to perform the clas-

sification of the identified data.

5.3 Classification

In this phase each data item is mapped to an ”owning” process

and assigned a data class. Each data item starts with the classi-

fication ”No Class”. The data classes assigned by cAMP are:

• Core-(i)-local, process-(k)-local: Data only accessed by

a process Pk deployed to processing unit Ci.

• Core-(i)-local, process-(k, ...)-global: Data that is ac-

cessed by a set of processes P = {Pk, ...} that are all de-

ployed to Ci.

• Core-(i, ...)-global, process-(k, ...)-global: Data that is

accessed by processes P = {Pk, ...} that are deployed to

various processing units C = {Ci, ...}.

• Constant: Data that is only read and never written.

• Calibration: Data that is marked in A2L files as

CALIBRATION.

• Measurement: Data that is marked in A2L files as

MEASUREMENT.

• Optimized Out: Data that is only written, but never read.

This is currently not used further, as cAMP is not capable

of identifying symbols used for memory mapped I/O.

Orthogonal data is assigned an access mode A ∈ {r,w,rw,x}.
For technical reasons the mapping of a data item to an ac-

cessing core is performed by linking the OsApplication P via

the OsTask T that accesses the data.

The concept of an ”owning” process is introduced to iden-

tify a predominant core for data that is shared across processes

and processing units. In its current implementation this ”own-

ing” process is the process with the most write accesses per-

formed on the data. This is a pre-optimization for performance,

as Table 1 shows that writes are usually more expensive and the

”owning” process ensures that the core linked to that process is

looked at first, when searching for a suitable memory.

The mapping is performed by a decision tree, fed by the

information aggregated in the first phase, described in Sec-

tion 5.2.

After the classification phase all data has an assigned data

class which is used in the mapping phase to produce a mapping

of data to memories and protection regions.

As a last step each data’s access frequency fDi is determined

for reads, writes and calls. This is done by computing a hy-

perperiod H for all OsTasks Ti and their periods p(Ti). This

Figure 3: Excerpt of Astrée’s data flow report

enables cAMP to compute how often each OsTasks Ti is exe-

cuted in each hyperperiod:

fTi =
p(Ti)

H
(3)

This is turn can be multiplied with the access frequencies of

reads fr and writes fw on a data item Di determined by Astrée’s

data flow analysis:

fDi = fr ∗ fTi + fw ∗ fTi (4)

For aperiodic and sporadic tasks the minimum interarrival time

provided in the ARXML is used as the periods p(Ti) value. This

constitutes an over approximation of actual accesses. In future

work alternative ways to include such tasks will be evaluated.

5.4 Mapping

The underlying memory model for the mapping models the

whole system memory as a set of linear, continuous hardware

memories M. Each memory Mi has a starting address astart , an

end address aend , and therefore, a size of si = aend−astart +1 in

Bytes. Each memory is split into sections S, which in turn con-

tain data D. Each section is 64-bit aligned, due to a constraint

on the placement of memory protection units for the AURIX

TriCore [18]. This is also reflected in the generated linker file.

After the mapping data is mapped to a section, which is mapped

to memory D→ S → M. Data of primitive data types (e.g.,

int, char) have the size of their data type in Bytes. Data types

are aligned in accordance with Tasking’s TriCore alignment

requirements [39]. Complex data types’ sizes are computed

by recursively accumulating the contained type’s sizes and re-

specting word alignment. In the memory model other types of

alignment (such as that of packed structs) is not reflected, but

the linker can still align these as packed.

First the set of all mappable data is sorted according to its

access frequency fDi: D = {Da,Db, ... : fDb ≤ fDa}. For the

data item with the highest access frequency a mapping is de-

rived until all data is mapped or there is no memory with free

space for mapping available. The mapping rule set is described

by Algorithm 1 for all data D = {D0,D1, ...}.
M is the set of all possible memories. In general the algo-

rithm tries to map data to the tightly-coupled (local) memory

that is closest to the core with the highest access frequency.

If this fails other accessing cores are tried in decreasing order

of access frequency. If this fails all other memories are tried,

starting with tightly-coupled SRAM, bus-accessed SRAM and

finally available Flash memories. This process ensures that as

long as memories have enough space, all data is mapped and

all mapping constraints are satisfied.

The mapping rules were designed based on the hardware lay-

out of the targeted AURIX TriCore TC2xx series (see Figure 1).

Because of XCP-tooling limitations, Calibration and Measure-

ment Data is mapped to Flash Memories only. Constant data

is mapped to Flash Memories, but cached by core-local caches.

This is only used for read-only data, as the TriCore does not

provide hardware cache coherency, and the decision was made

that no software cache coherency will be implemented. An al-

ternative would be to map constants like any other data, and

use the core-local caches as an extension of the tightly-coupled

memories. The order in which memories are tried for a fit is

determined by the access speed described in the Aurix Refer-

ence Manual [18] and measured by [26] for each of the memory

types.

The UpdateMemory function updates the section Sn of the

memory Mn with the size of Di. If there is not already a section

Sn for Mn, it is added to the memory. A section contains all

variables of a process P, belonging to the same data class, with

the same access mode A.

The mapping for functions occurs in a similar, but simplified

fashion. Only instruction memories are used for functions and

no special function types exist, only the core and process access

behavior is used for the mapping.

After a mapping has been derived for all data and functions,

cAMP adapts the model-based code, (in this case using Tar-

getLinks API) to add compiler-dependent syntax for section

assignment. For example using #pragma section type

"section name" to the symbol definition. In conjunction

a linker script is generated, mapping the defined sections to

hardware memories during the linking stage. Alternatively, a

MemMap.h file could be generated which serves a similar pur-

pose in the AUTOSAR workflow. More on MemMap.h can be

found in [8]. Each section’s start and end addresses are also ex-

ported as symbols, which can be used to configure each core’s

MPU to enforce the isolation requirements. Therefore each sec-

tion S can be used as a memory protection region R(D).

5.5 Current Limitations

The current implementation is limited in some aspects:

• Mapping of stack memory: Currently stack objects are

treated as if they were already allocated. Mapping of stack

objects can be included by using the stack usage informa-

tion emitted by StackAnalyzer for each OsTask stack ob-

ject and allocating these objects first on the EcuC’s tightly-

coupled memory, to which the OsTask is deployed.

Algorithm 1 Mapping algorithm used by cAMP

Require: D is sorted by fD

Require: M is sorted as local SRAM > global SRAM >
global Flash

1: procedure MAPALL(M, D)

2: for Di ∈ D do

3: if All Mi ∈M are full then return Fail

4: (Mn,Sn)← MAP(Di, M)

5: if Mn = None∧Sn = None then return Fail

6: else

7: UPDATEMEMORY(Mn,Sn,Di)
return Success

8:

9: function MAP(Di,M)

10: if Di has constraints then

11: M←M−Constrained Memories

12: if Di ∈ {Calibration, Measurement, Constant} then

13: Map Di to Flash

14: else if Di = process-local then

15: Get local memory M j of accessing core Ck

16: (Mn,Sn)← TRYFIT(M j, M)

17: else if Di = process-global, core-(j)-local then

18: (Mn,Sn)← TRYFIT(M j, M)

19: else if Di = core-global then

20: Sort accessing cores C by access frequency

21: for Ck ∈C do

22: Get local memory M j of core Ck

23: (Mn,Sn)← TRYFIT(M j, M)

24: if Mn = None∧Sn = None then

25: Let M′ be M−Memories tried

26: for M j ∈M′ do

27: (Mn,Sn)← TRYFIT(M j, M)

28: if Mn 6= None∧Sn 6= None then

29: Break
return Mn,Sn

• Mapping of handwritten code: Due to the way in which

the mapping is added to the code, cAMP only works for

generated code. In the future this can be remedied by ei-

ther adapting handwritten code through transpilation or by

modifying unlinked object files’ section assignments. The

analysis would still need the source code, as Astrée does

not perform data flow analysis on a binary level.

• Memory Mapped I/O: The current implementation is

not capable of identifying symbols representing memory

mapped I/O devices or special hardware registers. This

information could be retrieved by parsing CMSIS-System

View Description [6] files for ARM processors or similar

formats for other microcontroller families.

• Hardcoded Ruleset: The current implementation uses a

hardcoded set of data classes and mapping rules. By de-

veloping a domain specific language that can express the

mapping rules and the relationship between data traits and

classes this can be made more flexible.

Remote Control Height & Attitude
Controller Engine Control System Reaction

Sensor FusionAttitude
Observer

Distance
Observer

Height Observer

Figure 4: I4Copter control system.

• Automated generation of the MPU configuration: Cur-

rently only section symbols are exported to support the

configuration of the MPU. In theory a configuration could

be already generated automatically. But since the amount

of protection regions per MPU is limited, and reprogram-

ming at run-time causes a performance cost, the selection

which sections of data need to be protected by the MPU

is still done manually. cAMP still aids the configuration

of the MPU by providing symbols for the start and end of

each section.

• Lack of Optimization: The current goal of cAMP is to

enable the automated, repeatable generation of memory

mappings and enforce functional safety requirements. It

only performs heuristic-based optimizations. The rule set

could be expanded with optimizing algorithms such as

[11], though this would increase the complexity of the

mapping. The effect of caches is only used for constants

at the moment. No consideration is given to the placement

of data to achieve better cache performance.

5.6 Example

cAMP has been employed to derive memory mappings for the

I4Copter [41, 42] in different configurations to demonstrate its

functionality and the approach described in this paper. The

I4Copter is a control system (see Figure 4) to steer a quadro-

copter. It is deployed with an AUTOSAR Classic operating

system to an AURIX TC277 (see Figure 1). The I4Copter sys-

tem contains 7151 lines of C code which expose 206 mappable

symbols.

Figure 5(a) and Figure 5(b) show two possible process de-

ployments for the application. These were chosen to show

how cAMP can be used to generate a mapping for applications

where the system architecture differs. Blue boxes are execution

units (CPU cores), white boxes are processes (OsApplications),

yellow boxes are threads (OsTasks). Variant 2 adds additional

constraints to ensure that observer processes (OsApplications

1, 3, 5) are exclusivly mapped to the tightly-coupled memories

of the cores they are assigned to.

The mapping result of cAMP, generated source and linker

files can be found at [12]. A summary is given in Table 3.

cAMP was able to derive a mapping for all 206 variables in

both variants. The mapping process successfully returns a cor-

rect mapping as described in Algorithm 1. No data is classified

as ”No Class”. In variant 2 all constraints are satisfied.

Due to the small size of the example application the algo-

rithm does not map anything but data of class ”Constant” to the

CPU 0

OS-Application 0

T1_Controllers

T2_EngineController

OS-Application 1

T6_DSP

CPU 1

OS-Application 2 OS-Application 3

T3_AttitudeObserver T4_HeightObserver

T5_AltitudeObserver

(a) Variant 1

CPU 0

OS-Application 0

T1_Controllers

OS-Application 1

CPU 1

OS-Application 2 OS-Application 3

T3_AttitudeObserver

T2_EngineController T4_HeightObserver

CPU 2

OS-Application 4 OS-Application 5

T5_AltitudeObserverT6_DSP

(b) Variant 2

Figure 5: Deployment variants for the I4Copter

flash memory. To demonstrate the behavior for a bigger system

the size of tightly-coupled memories in the input memory lay-

out is reduced iteratively. The more it is reduced, the more data

is bound to the LMU-RAM or D-Flash. This is the expected

behavior and reflects the mapping rule set of cAMP, as more

and more data is mapped to these memories, in ascending or-

der of access frequency fDi. This is successful until either in

variant 1 everything is bound to LMU-RAM/D-Flash or until

in variant 2 constraints are violated.

For either variant a mapping and the associated output files

were generated in five minutes. Most of that time is spent inter-

facing with the code generator to adapt the configuration that

adds the #pragma section statements. Each time cAMP

runs the same mapping is derived, if given the same input.

5.7 Similar approaches

Amarnath [4] presents a very similar approach. Integer linear

program (ILP) and a heuristic based greedy algorithm are com-

pared in terms of their capability to derive a memory mapping.

It concludes that a heuristic based approach for the memory

mapping scales better than the ILP approach due to the dimen-

sionality of the problem space. Giannopoulou et al. [17] pri-

marily performs task allocating for mixed criticality systems

and combines this with a heuristic based memory mapping

Table 3: Mapping determined by cAMP for variant 1, 2, and 2

without constraints
Memory Variant 1 Variant 2 Variant 2 w/o

DSPR CPU 0 80 99 108

DSPR CPU 1 126 61 52

DSPR CPU 2 0 46 46

SRAM (LMU) 0 0 0

D-Flash (PMU) 17 17 17

strategy.

Both use heuristics very similar to those used in this paper,

but both are limited to the core-memory access behavior. With

our approach of data classes we reflect more traits than just the

core-memory access behavior and are able to reflect application

specific needs with regards to the mapping through these. Nei-

ther approach is concerned with memory isolation using MPUs

or mapping constraints. What is unique to our approach is the

use of sound static analysis to automatically detect the access

behavior using sound static analysis based on abstract interpre-

tation. The approach to minimize task access interference pre-

sented in Giannopoulou et al. [17] could be used to enhance the

heuristics of the solution presented in this paper.

6 Conclusion

The approach presented in this paper enables the automatic

generation of a reproducible memory management configura-

tion. This includes the memory mapping and the definition of

memory-protection regions. The approach is less error prone

than manual memory mapping and protection region definition,

reproducible, and requires less effort due to automation. The

manual approach for an automotive industrial sized application

was estimated by engineers at Schaeffler to take around 40 per-

son hours. cAMP was able to derive a mapping in a timespan of

minutes. This is achieved by combining the information gen-

erated during a sound concurrency-aware whole-system analy-

sis with a heuristics-based rule set that is automatically applied

to generate a memory management configuration. Due to the

reusability of the rule set and the application-agnostic nature

of the approach it enables the tailoring of model-based generic

software to the quality requirements of a specific application.

In future work the limitations in Section 5.5 will be remedied.

The focus is put on enhancing the underlying memory model,

supporting handwritten and third-party code, and performing

optimizations. In addition we want to perform runtime bench-

marks comparing cAMP to other approaches and iterations of

cAMP itself.

ACKNOWLEDGMENT

This work was funded within the project ARAMiS II by the

German Federal Ministry for Education and Research with the

funding ID 01IS16025. The responsibility for the content re-

mains with the authors. The authors would like to thank Pe-

ter Ulbrich for his valuable hints and ideas for this project.

This work was partly supported by the German Research Foun-

dation (Deutsche Forschungsgemeinschaft (DFG)) under grant

no. SCHR 603/9-2 AORTA.

References

[1] AbsInt Angewandte Informatik GmbH. StackAnalyzer Website.

http://www.absint.com/stackanalyzer.

[2] AbsInt Angewandte Informatik GmbH. Safety Manual for aiT,

Astrée, RuleChecker, StackAnalyzer, May 2018.

[3] M. Aiken, M. Fähndrich, C. Hawblitzel, G. Hunt, and J. Larus.

Deconstructing process isolation. In MSPC ’06: 2006 W’shop

on Memory System Performance and Correctness, pages 1–10,

New York, NY, USA, 2006. ACM.

[4] R. Amarnath. Techniques for memory mapping on multi-core

automotive embedded systems. Master’s thesis, Delft University

of Technology, June 2012.

[5] Arm Ltd. Arm Cortex-R52 Processor Technical Reference Man-

ual, July 2020.

[6] Arm Ltd. CMSIS system view description, June 2021.

https://www.keil.com/pack/doc/CMSIS/SVD/

html/index.html, visited 2022-01-01.

[7] AUTOSAR (AUTomotive Open System ARchitecture). http:

//www.autosar.org[retrieved: Jan. 2020].

[8] AUTOSAR. Specification of memory mapping (R21-11). Tech-

nical report, Automotive Open System Architecture GbR, Nov.

2021.

[9] AUTOSAR. Specification of operating system (R21-11). Tech-

nical report, Automotive Open System Architecture GbR, Nov.

2021.

[10] AUTOSAR. Specification of rte software (R21-11). Technical

report, Automotive Open System Architecture GbR, Nov. 2021.

[11] O. Avissar, R. Barua, and D. Stewart. An optimal memory allo-

cation scheme for scratch-pad-based embedded systems. ACM

Transactions on Embedded Computing Systems (TECS), 1(1):6–

26, 2002.

[12] F. Bräunling, R. Hilbrich, S. Wegener, I. Stilk-

erich, and D. Kästner. Generic Software Tailor-

ing Example. https://github.com/Gronner/

GenericSoftwareTailoringExample.

[13] F. Bräunling, R. Hilbrich, S. Wegener, I. Stilkerich, and

D. Kästner. Using generic software components for safety-

critical embedded systems - an engineering framework. In Pro-

ceedings of the 10th European Congress on Embedded Real Time

Systems, ERTS ’20, Jan. 2020.

[14] SEI CERT C Coding Standard: Rules for Developing Safe, Reli-

able, and Secure Systems. June 2016.

[15] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approx-

imation of fixpoints. In 4th POPL, pages 238–252, Los Angeles,

CA, 1977. ACM Press.

[16] dSpace Gmbh, Rathenaustraße 26, Paderborn, Germany. Gener-

ating TargetLink Code and ASAP2 Files for an Arbitrary Plat-

form, Feb. 2014.

[17] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Map-

ping mixed-criticality applications on multi-core architectures.

In 2014 Design, Automation & Test in Europe Conference & Ex-

hibition (DATE), pages 1–6. IEEE, 2014.

[18] Infineon Technologies AG, 81726 Munich, Germany. AURIX™

– TC27x – User’s Manual, Nov. 2013.

[19] ISO 25010. ISO/IEC 25010:2011: Systems and software engi-

neering — Systems and software Quality Requirements and Eval-

uation (SQuaRE) — System and software quality models. ISO,

Geneva, Switzerland, 2011.

[20] ISO 26262-6. ISO 26262-6:2018: Road vehicles – Functional

safety – Part 5: Product development at the software level. ISO,

Geneva, Switzerland, 2018.

[21] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney,

and Y. Wang. Cyclone: A safe dialect of C. In 2002 USENIX

ATC, pages 275–288, Berkeley, CA, USA, 2002. USENIX.

[22] D. Kästner and C. Ferdinand. Proving the Absence of Stack

Overflows. In SAFECOMP ’14: Proceedings of the 33th Inter-

national Conference on Computer Safety, Reliability and Secu-

rity, volume 8666 of LNCS, pages 202–213. Springer, September

2014.

[23] D. Kästner, L. Mauborgne, S. Wilhelm, and C. Ferdinand. High-

Precision Sound Analysis to Find Safety and Cybersecurity De-

fects. In 10th European Congress on Embedded Real Time Soft-

ware and Systems (ERTS 2020), Toulouse, France, Jan. 2020.

[24] D. Kästner, L. Mauborgne, S. Wilhelm, and C. Ferdinand. Static

Data and Control Coupling Analysis. Submitted to the 11th Eu-

ropean Congress on Embedded Real Time Software and Systems

(ERTS 2022), March 2022.

[25] D. Kästner, A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot,

A. Schmidt, H. Hille, S. Wilhelm, and C. Ferdinand. Finding All

Potential Runtime Errors and Data Races in Automotive Soft-

ware. In SAE World Congress 2017. SAE International, 2017.

[26] S. Keßler. Messbasierte analyse der zeitlichen isolationseigen-

schaften der aurix tc2xx familie. Master’s thesis, Friedrich-

Alexander-University Erlangen-Nürnberg, Mar. 2019.

[27] Microsoft et al. Gsl: Guideline support library, 2021. https:

//github.com/Microsoft/GSL, visited 2021-12-30.

[28] A. Miné. Static analysis of run-time errors in embedded real-

time parallel C programs. Logical Methods in Computer Science

(LMCS), 8(26):63, Mar. 2012.

[29] A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot, D. Kästner,

S. Wilhelm, and C. Ferdinand. Taking Static Analysis to the

Next Level: Proving the Absence of Run-Time Errors and Data

Races with Astrée. Embedded Real Time Software and Systems

Congress ERTS2.

[30] MISRA C: 2021 - Guidelines for the Use of the C Language in

Critical Systems. Feb. 2019.

[31] MISRA C++: 2008 - Guidelines for the Use of the C++ Lan-

guage in Critical Systems. June 2008.

[32] S. Mittal and J. Vetter. A survey of software techniques for using

non-volatile memories for storage and main memory systems.

IEEE Transactions on Parallel and Distributed Systems, 27, 01

2015.

[33] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe

retrofitting of legacy code. In POPL ’02: 29th ACM SIGPLAN-

SIGACT Symp. on Principles of Programming Languages, pages

128–139, New York, NY, USA, 2002. ACM.

[34] OSEK/VDX. OSEK/VDX Operating System. Version 2.2.3.,

2005.

[35] M. Stilkerich. Memory Protection at Option - Application-

Tailored Memory Safety in Safety-Critical Embedded Sys-

tems. PhD thesis, Friedrich-Alexander University Erlangen-

Nuremberg, 2012.

[36] STMicroelectronics. SPC58 C Line Data Sheet, May 2021.

[37] B. Stroustrup et al. C++ core guidelines, 2021. https:

//github.com/isocpp/CppCoreGuidelines, visited

2021-12-30.

[38] D. Tarditi, A. S. Elliott, A. Ruef, and M. Hicks. Checked c:

Making c safe by extension. In 2018 IEEE Cybersecurity Devel-

opment (SecDev), pages 53–60, October 2018.

[39] Tasking Germany GmbH. Alignment Requirements - Restric-

tions for the TriCore Architecture, Feb. 2021.

[40] I. Troxel. Memory technology for space, Aug. 2009. https:

//nepp.nasa.gov/mapld_2009/talks/083109_

Monday/06_Troxel_Ian_mapld09_pres_2.pdf,

visited 2021-12-29.

[41] P. Ulbrich. The I4Copter project — Research platform for em-

bedded and safety-critical system software. https://www4.

cs.fau.de/Research/I4Copter/, visited 2012-07-20.

[42] P. Ulbrich, R. Kapitza, C. Harkort, R. Schmid, and W. Schröder-

Preikschat. I4Copter: An adaptable and modular quadrotor plat-

form. In 26th ACM Symp. on Applied Computing (SAC ’11),

pages 380–396, New York, NY, USA, 2011. ACM.

[43] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie.

Hybrid cache architecture with disparate memory technologies.

In Proceedings of the 36th Annual International Symposium on

Computer Architecture, ISCA ’09, page 34–45, New York, NY,

USA, 2009. Association for Computing Machinery.

Session We.3.B

Model Driven Engineering II

Wednesday 1st June

15:00

–

Room Lauragais

171

172

ERTS 2022 – Automatic Test Generation - An Industrial Feedback 1 / 9

Automatic Test Generation - An Industrial Feedback
Mathilde Ducamp, David Lesens, Philippe Ranoarivony

first_name.surname@ariane.group
ArianeGroup

Keywords: Automatic Test Generation, Simulation, Model Based System Engineering
Abstract: This paper presents an industrial feedback about the use of automatic test generation in the

development of a critical real-time embedded system (a space launcher).

1. Introduction: Why automatic test generation?
Test activities are known as some of the most costly phases in the development of a critical system. So, naturally,
automating completely or partially these activities has been an objective of a lot of industries since several decades,
with the classical objectives of decreasing the costs and the delays, while in the same time increasing the quality of the
system.

Testing a system is achieved in several steps: (1) definition of the test cases (what has to be tested), (2) definition of
the test scenarios (what inputs shall be provided to the system to cover the test cases), (3) execution of the tests (on a
real or on a simulated platform), (4) analysis of the test’s results and decision about their status (success or failed), (5)
assessment of the test’s coverage (generally requirement’s coverage). The challenges to be solved when dealing with
automatic test generation depend on the nature of the considered system: Complexity of the missions to be achieved,
man in the loop, nominal scenarios or degraded ones, and so on…

The objective of this paper is to provide an industrial feedback (development of a space launcher) concerning all these
steps of automation of tests. On one hand, a space launcher is a complex system: it involves complex subsystems
(propulsion, avionics, flight control…), shall be more and more versatile (i.e. shall cover a huge number of types of
missions) and shall implement a complex FDIR (Fault Detection, Isolation and Recovery) to reach fault tolerance
objectives. On the other hand, it has no man in the loop (except during the ground phase before the lift-off) and has a
quite predictable environment (wind, gravity) compared to other systems (such as automotive).

The section 2 recalls the obviously prerequisites for automating the tests of a system. The section 3 describes the
approach used to develop space launchers. The section 4 details the synchronous approach used at both system and
software levels and allowing a full representativeness of the used models with respect to the actual system. The section
5 compares this approach with off the shelf solutions. And finally, the section 6 provides a feedback on automatic test
generation.

2. Prerequisites
In a classical approach, testing a system requires obviously the availability of the system (the product under tests) and
the system requirements (allowing inferring the test’s objectives). Automating the test activity requires furthermore the
capability to simulate the system environment (man in the loop, occurrence of failure…) and the capability of automating
the assessment of the quality of the service delivered by the system (e.g. the assessment of the consumption of energy
of the system can be easily automated; the level of usability of the system may be more interpretable).

More and more often, the use of Model Based System Engineering (MBSE) allows testing the system design before its
actual development. Several kinds of models are generally used, covering specific parts of the development (concepts,
architecture or detailed design) and / or of the system (the system as a whole, a subsystem such as the propulsive
subsystem, the avionics subsystem, the FDIR or the software subsystem). The availability of a system model makes
easier the simulation of the system environment and so the automation of test’s execution.

In a similar way, generating automatically the tests requires a level of formalisation of the system requirements allowing
their automatic analysis by a computer. Ideally, the automatic generation of tests shall use the formalism put in place
for the system development. Duplicating the requirements (first in an informal way for the system development and
second in a more formal way for the automatic test generation) is indeed costly and especially error prone (the risk being
a discrepancy between the two formalisms).

3. Case of the management of a space launcher

3.1. Problematic
ArianeGroup has put in place a method to develop the management of a space launcher (and more generally of a space
system). The launcher design is based on a modular architecture (see [1]) where the launcher is composed of a set of

ERTS 2022 – Automatic Test Generation - An Industrial Feedback 2 / 9

logical components. Each logical component deals with a kind of equipment (accelerometers, valves, and so on…) and
contains a piece of software controlling all the equipment of this kind. For each logical component, a Finite State Machine
represents its behaviour.

The consistency between the logical components is ensured by a centralised mission management executing a mission
plan (aiming at fulfilling the mission objectives). The mission plan sends commands to the components which can in
return send mission events to the mission plan. The FDIR monitors the launcher state and in case of failure raises an
alarm. Depending on the alarm and on the launcher state, a recovery is decided, which can be executed either locally
to a logical component (local recovery) or executed by the mission management (system recovery implying a change
of mission).

We call launcher management the association mission management and FDIR. Our target is to automate as far as
possible the testing of the launcher management.

Several modelling languages are
used to describe the system

 Capella for the hardware
architecture

 SysML ([2]) for the logical
components with their Finite
State Machines and the
FDIR

 A Domain Specific Language
(DSL) for the launcher
management

Launcher
Management

=
Mission

Management
+

FDIR

Component 1

Init Off On

SoftwareHardware
Component 2

Init Off On

SoftwareHardware

Component 3

Init Off On

SoftwareHardware
Component 4

Init Off On

SoftwareHardware

Domain Specific
Language

Figure 1: The modular architecture of a launcher

This approach allows developing the system in a modular way:

 Each logical component is developed independently of the other logical components depending on the maturity
of its definition, for its hardware part, or for its software part.

 The launcher management is the last developed artefact allowing ensuring the consistency between all the
previously developed logical components.

3.2. Semantics definition

3.2.1. Generality
Automatic testing requires first a clear unambiguous definition of the semantics of the used system artefacts. Especially
in a MBSE approach, it is of prime importance to understand the links between the actual system (which development
is the objective of the project) and the model representing it (aiming at developing and validating the actual system). We
have thus first defined a system physical event as an event occurring at hardware level (i.e. on the actual system, such
as the ignition of an engine, the release of the fairing, the occurrence of a failure, and so on). As such events are not
easily handled, we have defined the notion of virtual event corresponding to the representation of the physical event by
a model element, such as commands (controlling a physical events), alarms (detection of a failure), activation /
deactivation of a continuous control, entry / exit of a state (being in a given state corresponding generally to a continuous
action) or other events (detection of a tail-off, detection of an empty tank, and so on). The requirements and the
hypotheses on the system environment are formalised on these virtual events

3.2.2. Formalisation of requirements
The requirements of the launcher management which have to be verified can then be modelled by timing constraints
between the defined virtual events. For instance

 “Event1 {1} > Event2 {3} + 10s”: The first occurrence of the event “Event1” shall occur more than 10 seconds
after the third occurrence of the event “Event2” (the notation {i} referring to the ith occurrence of the event during
a test).

 “For all Event1, for some Event2, Event1 = Event2 + 5s + [0ms .. 20ms]”: For each occurrence of the event
“Event1”, it shall exist an occurrence of the event “Event2”, such that “Event1” occurs 5 seconds after “Event2”
with an accuracy of 20ms.

ERTS 2022 – Automatic Test Generation - An Industrial Feedback 3 / 9

 “State S in [5s .. 10s]”: Each time the system enters the state “S”, it shall stay in this state more than 5 seconds
and less than 10 seconds.

To make easier the daily use of this syntax and to facilitate its acceptance, this syntax may be adapted to the tools the
system engineers are accustomed: for instance an ASCII description or a tabular representation in the Excel tool (as
shown in the next figure).

First event Operation Second event Delta T Jitter
Event1 = Event2 5 [0ms .. 20ms]

Figure 2: Syntax included in Excel

The applicability of these requirements depends
generally on the current mission. To ease their
management, the requirements are gathered in
consistent sets: e.g. such set of requirements is
applicable only for a sun synchronous orbit, this other set
is applicable only for a launcher configured with four
boosters, and so on. The applicability of a set of
requirements is formalised by SysML activity diagrams
(called the requirement’s architecture)

First set of requirements

Second set of requirements Third set of requirements

[Mission = Mission_Type_1] [Mission = Mission_Type_2]

Figure 3: A SysML activity diagram describing the

scheduling of set of requirements

Each node of the SysML activity diagram is either decomposed into another activity diagram, or corresponds to a set of
requirements. The conditions guarding the transitions between the nodes allow controlling the launcher mission
behaviour. Such guard may correspond either to a nominal behaviour or to an abnormal behaviour. So, it may involve
either:

 A configuration data defining the targeted mission. E.g. “[Mission = Mission_Type_1]": In Figure 3, when the
configuration data “Mission” is equal to “Mission_Type_1”, the applicable sets of requirements are the sets 1
and 2. If this configuration data is equal to “Mission_Type_2”, the applicable sets of requirements are the sets
1 and 3.

 Or the occurrence of an alarm. E.g. “[Alarm1 or Alarm2 in [Engine_Start .. Engine_Start+10s]]”: The transition
is triggered if “Alarm1” or “Alarm2” occurs in the ten seconds following the start of the engine.

These timing constraints organised by these activity diagrams play the role of oracles for the system under test.

3.2.3. Formalisation of the system environment
A system behaves as intended only in a specific environment. The formalisation of the system environment is thus of
prime importance to first validate the system and second to generate automatically tests.

A specific syntax has been defined to capture such environment. E.g.

 “Event = fix Guidance.Date when Test_Level.Low_Level_Detected”: The date of the “Event” is defined as the
value of the parameter “Date” computed by the “Guidance” when the flag “Low_Level_Detected” is raised by
the “Test_Level” function.

 “Event = saturate Guidance.Flag in [Min, Max]”: The date of the “Event” is defined by

o “Min” if the “Flag” is raised by the “Guidance” before the “Min” date.

o The date of the raising of the “Flag” by the “Guidance” if it is raised between the “Min” date and the
“Max” date.

o “Max” if the “Flag” is not raised by the “Guidance” before the “Max” date

 “Event = min Flag1 or Flag2 in [Min, Max]”: The date of the “Event” is defined by

o “Min” if “Flag1” or “Flag2” is raised before the “Min” date.

o The date of the raising of “Flag1” if it is raised between the “Min” date and the “Max” date and before
“Flag2”.

o The date of the raising of “Flag2” if it is raised between the “Min” date and the “Max” date and before
“Flag1”.

o “Max” if neither “Flag1” nor “Flag2” are raised before the “Max” date

ERTS 2022 – Automatic Test Generation - An Industrial Feedback 4 / 9

 And so on

3.3. Automatic test generation

3.3.1. Approach
Generating a system test may be quite complex. For instance, to test the behaviour of the system in case of sub-
propulsive engine, one has to simulate the behaviour of an accelerometer to detect too early a thrust tail-off. The MBSE
approach allows greatly simplifying the test generation thanks to abstractions. As our objective is the validation of the
launcher management, the environment of the launcher (such as the engine, the accelerometer or the navigation
algorithm) can altogether be modelled by the raising of a single flag at the desired time (at a nominal time, too early or
too late depending on the test objective).

Avionics
equipment

Flight Control

Propulsion

Launcher
environment

(wind,
gravity…)

Mission
Management

Physical environment Software environment

Flight Control Mission
Management

Abstracted environment

Real system

Abstracted system

Event

Event

Figure 4 Abstraction of the environment of the product under test

The raising of the Event is specified by the syntax defined in section 3.2 (such as “Event = saturate Guidance.Flag in
[Min, Max]”)

The coverage of requirements requires first

 The coverage of the SysML model (the requirement’s architecture) describing the architecture of the sets of
requirements (shown Figure 3). The customisation data and the occurrences of alarms are selected to reach
this coverage.

Vulcain

Stop_Vulcain

[sensor or level
or tod in early
=> stop_requested = 200ms]

[sensor or level
or tod in late
=> stop_requested = 300ms]

[sensor or level
or tod in nominal
=> stop_requested]

Test 1 Test 2 Test 3

Vulcain

Stop_Vulcain

[sensor or level
or tod in early
=> stop_requested = 200ms]

[sensor or level
or tod in late
=> stop_requested = 300ms]

[sensor or level
or tod in nominal
=> stop_requested]

Model Tests

Figure 5: Automatic Test Generation: Coverage of the SysML model

 The coverage of the complex events. E.g. for a saturation, three tests may be generated:

1. With the event detected before the minimal time,

ERTS 2022 – Automatic Test Generation - An Industrial Feedback 5 / 9

2. Between the minimal and maximal times and

3. After the maximal time.

Earliest date

Latest date

Event

Action
Delta

Earliest date

Latest date

Event

Action
Delta

Earliest date

Latest date

Event

Action
Delta

Nominal occurrence Early occurrence Late occurrence

Figure 6: Automatic Test Generation: Coverage of the input events

This first coverage can be completed by robustness tests. On one hand, a recovery (local or system) may have a
functional impact (modification of the mission) or a temporal one (delay of a nominal command). On the other hand, a
nominal action may prevent the immediate execution of a recovery and delay it. An automatic test generation strategy
may be to simulate a failure each time a nominal action is executed, just before and / or just after.

Nominal
command

Alarm before the nominal command

Alarm at the same time than the nominal command

Alarm after the nominal command

Figure 7 : Automatic Test Generation: Robustness tests

3.3.2. Strategies
As the number of automatically generated test can very quickly becomes very high, the approach shall allow the tester
specifying the maximal number of failures to be considered for a test. The following strategies can be applied

 For the requirement’s architecture

o Selection of configuration data forbidding or allowing some sets of requirements

o Coverage of the complete SysML model of the requirement’s architecture

 For the complex events

o Coverage only of the nominal cases (events generated in the middle of the [Min, Max] time windows)

o Limit tests (events generated at the lower bound Min and at the upper bound Max of the [Min, Max] time
window)

o Degraded cases (events generated before the lower bound Min and after the upper bound Max of the
[Min, Max] time window)

o Specification of the maximal number of limit tests and of degraded cases

 For the robustness tests

o Generation of alarms before, during or after each nominal events

o Generation of all the alarms

o Generation of a user specified set of alarms

ERTS 2022 – Automatic Test Generation - An Industrial Feedback 6 / 9

o Generation of the alarm with the longest recovery

3.3.3. Implementation
As described in the previous sections, this approach requires first the development of a set of models:

 A model of the product under test through a SysML model completed by a Domain Specific Language

 A requirement’s model through Excel sheets completed by architecture formalized using SysML activity
diagrams. This model (Excel + SysML) is used as an oracle of success of the tests.

 A model of the input events, i.e. of the system environment, through a Domain Specific Language

Two tools allow generating, executing and analysing the tests

 A simulator of the product under test (and of its environment).

 A test supervisor (developed in Java) able to

1. Read the test model,

2. Provide consigns to the simulator,

3. Analyse the simulation results and

4. Generate a test report

In order to improve the simulator performance (i.e. to reduce the duration of the simulations), there is no direct
communication between the supervisor and the simulator. The supervisor provides consigns of simulation to the
simulator through an ASCII file. This consign file is made of interdependent constraints representing the requirements
and the hypotheses on the environment. The simulator interprets this consign file, performs the requested simulations
by solving and propagating the constraints, and generate simulation traces. The supervisor analyses the generated
simulation traces.

The simulator is thus composed of two distinct parts:

1. The Ada code of the flight software (automatically generated from the SysML model of the flight software)

2. The simulation engine (also coded in Ada) composed of

o A parser

o A propagator of constraints

The following figure summarizes this automatic test generation approach:

Model of the product under test
 Component’s finite state machines
 Mission Management
 FDIR

Scheduling of
the sets of

requirements

Timed
requirements

Simulator
Behaviour of the

product under
tests

Consigns

Test’s
supervisor

Test’s
Oracle

Test report

Figure 8: The automatic test generation and simulation framework

4. Representativeness of the abstraction
Performing qualification tests on a model requires an appropriate representativeness of the used model with respect to
the actual system. This is insured by a synchronous approach both at system and software levels.

The wording “synchronous approach” is inspired from [3].

ERTS 2022 – Automatic Test Generation - An Industrial Feedback 7 / 9

The synchronous abstraction makes reasoning about time in a synchronous program a lot
easier, thanks to the notion of logical ticks: a synchronous program reacts to its environment in
a sequence of ticks, and computations within a tick are assumed to be instantaneous, i.e., as if
the processor executing them were infinitely fast. [...] At a more fundamental level, the
synchronous abstraction eliminates the non-determinism resulting from the interleaving of
concurrent behaviours.

This notion has been extended to the avionics system thanks to the use of a Time Triggered Ethernet (or TTE, see RD
[4]) and to software with multithreading architecture.

 The Time-Triggered Ethernet (SAE AS6802) (also known as TTEthernet or TTE) standard defines a fault-
tolerant synchronization strategy for building and maintaining synchronized time in Ethernet networks

 In a multithreading software architecture, the threads are pre-emptive (a thread with a high priority can interrupt
a thread with a low priority), with fix priority, cyclic and harmonic (the period of a thread is a multiple of the
period of the thread just faster).

 All the communication are performed in a time triggered way: The communications between the avionics
equipment, and between the software threads are performed at predefined moments of time.

Flight software
Cyclic activation

Fix period

Time-Triggered
Ethernet

Synchronised
control

Figure 9 : Synchronous architecture at

system level

Slow thread

Fast thread

Mono thread

Strictly identical
functional
behaviour

Flight Code

Simulation

Figure 10 : Synchronous architecture at software level

In Figure 10, the slow thread (in blue) is 10 times slower that the fast tread (in yellow). The slow thread is suspended at
each execution of the fast thread. It reads all its inputs at the beginning of its execution (i.e. at cycle 0). The date of end
of the execution of the slow thread depends on its execution time and the execution time of each cycle of the fast thread
and thus varies from one cycle to another. In this example, the slow thread ends at the cycle 5. However, in order to
ensure a functional behaviour independent from the execution times, it delivers its outputs at the end of its cyclic
execution (i.e. at cycle 9; in practice this exchange of data is performed during a time-triggered rendezvous initiated by
the fastest thread). So, the fast thread can read the outputs of the slow thread at cycle 10. In this example, the
communications between the two threads is implemented through two rendezvous symbolized by the red arrows (at
cycles 0 and 9). The slow thread is said to have an offset or shift of 0 (it starts at the cycle 0) and a deadline of 10 (it
ends after 10 cycles).

The slowest software thread is triggered by the TTE. During a TTE cycle, time windows are allocated to the
communications with sensors and to the communication with actuators. The measurement provided by sensors at cycle
n are used by the software at cycle n+1 and the corresponding commands are sent to the actuators at cycle n+2
according to a LINO approach (Last cycle In, Next cycle Out) as shown Figure 11.

ERTS 2022 – Automatic Test Generation - An Industrial Feedback 8 / 9

Actuator 1

… … …Software

Sensor 2

Actuator 2Sensor 1

Cycle n Cycle n + 1 Cycle n + 2

Read measurement Write commands

Time windows
for commands

of cycle n-1

Time windows
for measurement

of cycle n+3

Figure 11 : Hardware / Software synchronisation

This synchronous and LINO architecture makes the system behaviour independent from the communication duration
and from the computation duration. It is fully deterministic and allows a complete representativeness of the MBSE model
with respect to the actual system (except for numerical accuracy, which is not needed for the validation of the launcher
sequence).

5. Comparison with other approached
Several solutions of automatic generation are available on the market, either as academic products or as commercial
tools. ArianeGroup has evaluated some of these solutions in the past. For instance:

 UPPAAL (see [5]): Uppaal is an integrated tool environment for modelling, validation and verification of real-
time systems modelled as networks of timed automata, extended with data types (bounded integers, arrays,
etc.). It uses timed automata as input formalism.

 Lutin (see [6]): from the Verimag Synchronous Reactive Toolbox, industrialised by the Stimulus tool (see [7]).
Lutin is a language to program stochastic reactive systems. It has been designed to model environments and
perform automated testing of reactive systems.

 MaTeLo from All4Tec (see [8]) allows generating test from a proprietary modelling language

 TGV (see [9]) is a tool for the generation of conformance test suites for protocols. TGV takes as entries a
description of a protocol’s behaviour and a test purpose. It applies algorithms coming from verification
technology to produce automatically conformance test suites.

 Etc.

The main advantage of these tools is that they benefit from several years or decades of academic research. They may
for instance include language with a high representativeness, powerful model checker and advanced analysis engines.

They all have however several drawbacks

 They relies on a formalism which is not used by the ArianeGroup system designers. The use of these tools
requires thus a translator from the ArianeGroup domain specific language to this specific formalism. It has been
judged that the risk of errors in this translator may cancel the benefit of the tool

ArianeGroup
formalism

+
Domain Specific

Language

Tool
formalism Off the shelf tool

Figure 12 : Using an off the shelf solution

ERTS 2022 – Automatic Test Generation - An Industrial Feedback 9 / 9

 Even if these tools may contain powerful engines, their goal is to be as generic as possible. We have
experienced that a simple but specific tool may be more efficient than a complex but generic tool.

 These tools have to be maintained during several decades. The costs of the licences on a so long period may
be quite high and there is a non-negligible risk that a commercial tool becomes unavailable

6. Feedback on automatic test generation
This section presents some feedbacks about automatic test generation.

6.1. Dashed hopes and real benefits
After several attempts to deploy generic on the shelf automatic test generation techniques, we have reach the conclusion
that it was unavoidable to develop processes and tools specific to the product under tests.

As any improvement actions, the main hope of automatic test generation is an immediate decrease of costs and delays,
even a complete suppression of the manual test activities. But achieving these results requires in practice first a
significant investment in the process and in the tools, and then in the modelling activities for the product under tests and
in the formalisation of the requirements. The development and validation teams have to be trained and opened to the
change of their habits. The manual test activities are not completely suppressed, but are limited to the manual analysis
of the failed tests.

But as soon as these elements are in place, the return on investment may be considerable, in terms of decrease of
delays and especially improvement of the quality. We have been able to automatically generate and execute several
thousands of tests in a few hours whereas it may have taken several weeks or months to generate and execute a much
lower number of tests.

6.2. Unexpected benefits
The main unexpected benefit of such automatic test generation framework is its ability to be very easily extended with
new features: Coverage of the product under tests and of the requirements, automated analyses, report / documentation
generation, extension of the expressiveness power of the framework and so on.

We have for instance added to our framework the capability to specify the amount of resources (power, electro-valves,
pyrotechnic commands, and so on) a component of the system is authorised to use. Such information allows the tools
performing an automated budget analysis.

7. Conclusion
This paper has presented an example of automatic test generation framework developed specifically to a dedicated kind
of product. Indeed, we had reach the conclusion that a too generic framework, even if often cheaper (thanks to its
genericity) is also more difficult to deploy and not so efficient (also because of its genericity). Associated to a MBSE
approach (both for the requirements and for the design of the system) and of simulation techniques, the return on
investment may be considerable after an unavoidable investment.

8. References
[1] Launcher Sequential Analysis – M. Ducamp, J. Grand, D. Lesens, D. Mercier – ERTS 2018

[2] SysML - www.omgsysml.org

[3] Synchronous programming of reactive systems" – Nicolas Halbwachs, Kluwer Academic Publishers, 1993.
http://www-verimag.imag.fr/~halbwach/newbook.pdf

[4] TTE - https://www.tttech.com/products/technologies/time-triggered-ethernet/ (see also SAE AS6802)

[5] UPPAAL - https://uppaal.org/

[6] Lutin - https://www-verimag.imag.fr/Lutin.html

[7] Stimulus - https://www.3ds.com/fr/produits-et-services/catia/produits/stimulus/

[8] MaTeLo - https://matelo.all4tec.com/

[9] TGV - https://www-verimag.univ-grenoble-alpes.fr/TGV.html

1

ROS communications profiling for bus load analysis
from AADL

SENN Eric

Lab-STICC / Université de Bretagne Sud

Lorient, France

eric.senn@univ-ubs.fr

Abstract—This paper presents a case study which settles the
basis for a modeling approach dedicated to robotic applications
build upon ROS, the Robot Operating System. The Architecture
Analysis and Design Language (AADL) is used with specific
properties that allow to analyze bus load and CPU load of the
embedded hardware. This paper focuses on bus load analysis:
a profiling of ROS communication services, based on standard
performance reporting tools from Linux, permits to determine
the values of those properties. A library of AADL models is
proposed, both for ROS services and for robots and embedded
computer boards. We explain how this library is built, and show
how to use components from this library to model the robotic
system, including the software, the hardware, and the deployment
of the software components on the hardware platform. Then we
demonstrate bus load analysis using the analysis tool included in
OSATE2 (Open Source AADL2 Tool Environment). Combined
with CPU load analysis, exploration of deployment solutions can
then be achieved.

Index Terms—Robotics, Embedded System, Model Driven En-
gineering, Architecture Analysis Design Language AADL, Robot
Operating System ROS, Profiling

I. INTRODUCTION

In the process of developing our mobile robotics application,

we are constantly confronted with situations where a robot

does not behave as fast as expected, or worst, does not

reach the goals of its missions. At design, however, every-

thing should work fine since, of course, every bug has been

corrected. Many times, the reason why this happens is that

the robot’s embedded hardware is, at some point, overloaded

by the application demand. We are, in our case, using the

ROS (Robot Operating System) middleware [1]. While easing

the programming of applications, bringing standard commu-

nication and synchronization mechanisms over a wide variety

of platforms, this middleware adds a significant computation

overhead. The knowledge of this overhead will drive the choice

of the embedded computer boards and communication devices,

of the software architecture, and of its deployment.

Robotic applications getting more complex, we soon needed

a method, and the support of a tool, to help us with the

modeling and the analysis of our software and hardware

architectures. An important point is that we needed something

simple, and fast. We did not want to spend an excessive time

on modeling our application, and profiling its components;

and we were ready to sacrifice some precision for that. So

we always tried to use out-of-the-box language and tools as

long as that was all right with our need which is (i) firstly

to understand why performances constraints may be or not

satisfied in different situations, and that means, to find where

the bottlenecks are (ii) secondly to determine a solution in the

design space that meets the application requirements.

We finally came with using AADL (Architecture Analysis

and Design Language) [2] as a modeling language, and

OSATE2, with it set of tools to analyze software demand vs

hardware capacity [3]. We are mainly confronted with two

types of bottlenecks: CPU and communication bus overload,

and OSATE2 has everything to check this. Again, for the

sake of simplicity, our profiling approach is based on standard

Linux performance reporting and analysis tools.

Regarding bus load, we will present here two main aspects

of our works. First we need to develop a model for the different

components of our ROS based applications. We are indeed

building an AADL library of ROS components, beginning

with the most commonly used services in robotics applications

(sensors interfacing, localization, mapping, naviguation ...),

and the robots, devices, and computer boards we are using.

Then we have to profile the component demand over CPU

and communication resources. From this profiling, specific

properties are added to the model for analysis purpose. In

this paper, we will only focus on communication requirements

analysis. Finally, we use our library of models, both for the

software and hardware parts or our application, we describe

the deployment of the software components on the hardware

resources, and we use OSATE2 analysis tools to report on the

performance.

II. RELATED WORKS

Setting up robotic applications, even with the help of ROS,

is a complex task since they usually involve several services,

with many communications between them, each service with

a large set of parameters to adjust [4]. One first question

is to determine how the behavior of the robot should be

evaluated, according to the objective of the mission. This could

be in term of speeds or accuracy for instance like in [5] for

trajectory planning, or in [6] for an automated guided vehicle

application. Then understanding why the robot is not fast or

precise enough implies to investigate how the hardware is

stressed by the software. A full navigation stack is studied

in [7] and high processor loads are measured, as well as

slow messages frequencies. The hardware is obviously not

fitted to the software demand. The values of ROS parameters

2

impact this demand, like shown in [8], where the CPU load

is measured for different nodes in a complete localization

and mapping (SLAM) application. Node per node, the best

parameters configuration is thus determined.

Still, the way the software is deployed on the hardware

needs to be considered. In [9], an heuristic is proposed to

determine together parameters values and nodes allocations for

maximizing performance and minimizing hardware resources.

Common monitoring tools from Linux and ROS are used

to measure average CPU loads and messages frequencies, a

choice that we have also made for our approach. More detailed

studies of the load generated by a ROS application have been

proposed, like in [10]. However, the contribution of each node

is not distinguished, and a large number of tests ought to be

done, a thing that we want to avoid.

To get a comprehensive view of the whole system, includ-

ing its software and hardware parts, and the way software

components are bound to the hardware, a model is more

than needed. The Architecture Analysis & Design Language

(AADL) [11] has been proposed as a standard for model

based design of mission critical embedded systems, like a

robotic application often is. The language is also commonly

used for modeling multiprocessors systems [12], like computer

boards found in nowadays robots. The Open Source AADL2

Tool Environment (OSATE2) supports the writing, checking,

and the manipulation of AADL models. It also comes with

several plugins, which, in association with dedicated param-

eters to be defined in the models, allow to perform different

analysis regarding the performance of the system. Recently,

[13] demonstrated the benefit from modeling and developing

ROS based robotic application with AADL. The author also

proposes an automatic generation of ROS code from AADL

[14]. The AADL model is software centric however and

hardware allocation is not addressed

AADL modeling, hardware profiling, and deployment anal-

ysis, have been combined in the work reported in [15]. The

approach for measuring compute execution time is however

more complex since it involves modification and rebuilding

of the source code for every ROS node. This involves extra

work that we want to avoid, firstly for our own programs,

and moreover for entire ROS on-the-shelf packages where the

difficulty of such re-writing arises significantly. This approach,

beside being time consuming, is also intrusive, and its impact

on measured performances should be evaluated. Nodes are also

considered independently, whereas we observe a modification

of performance when they are connected to others; that pleads

for the necessity to profile a node in its proper usage context.

In the proposed models, an AADL virtual bus component is

used to describe ROS communications. That unfortunately

prevents the use of the OSATE2 bus load analysis tool. Also

the MIPS budget properties are not set, and MIPS demand can

not be checked at the processes level.

III. ROBOTIC APPLICATION

To illustrate our approach, we use the simple application

shown on figure 1. This application involves several services

deployed both on the robot with its embedded computer board,

and on a remote laptop. In ROS, a service is implemented as

a node. Nodes communicate through virtual channels called

topics. A node may publish on a topic, subscribe to a topic,

or do the both in the same time. The following nodes are found

in our application:

• usb cam captures the video stream from the camera (con-

nected to the computer board USB socket) and publishes

it on the rgb image raw out topic,

• ocv color tracking subscribes to this topic and processes

the video stream to find the position of the target accord-

ing to its color,

• imgview subscribes to the same topic and displays the

video on the screen of the remote laptop,

• pos to cmd gets the target position on the target pos out

topic and issues velocity commands on cmd vel out to

drive the robot towards this position,

• rosaria translates those velocity commands to low-level

commands for its differential drive, i.e. the two wheels

actuators,

• sonar alert detects potential collisions and stops the robot

if imminent,

• on the remote computer, joy reads the joystick controls

and publishes them on the joymsg o topic.

• joyteleop converts those controls into velocity commands,

which are sent to the robot. It is thus possible to tele-

operate the robot from the laptop, bringing it to the

desired position where it can start its mission.

The robot is a Pioneer3DX from Adept/Mobile Robots. It is

equipped with an Odroid XU4 board from Hardkernel, which

carries a Samsung Exynos 5422 multi-processor SoC.

Different types of communication take place in our ap-

plication. All communications are in charge of the ROS

middleware, and orchestrated by the ROS master node. Every

other node registers to the master when it starts. When a node

is ready to publish messages on a topic, it advertises this topic

to the master. Another node that wishes to read those messages

subscribes to the associated topic with the master. The master

informs the subscriber node that a new publisher is ready. Then

the subscriber directly contacts the publisher and a connection

is established between the two nodes, using a TCP/IP socket

like protocol called TCPROS. When latency is more important

than reliable transport, the UDPROS transport might also be

used.

One of the strengths of ROS is that the same communication

mechanism is used, even when nodes are located on different

computers, or robots, and whatever the communication media

is.

In our application indeed, different media are used:

• between two nodes located on the robot’s computer board

the communication is purely software and can be seen as

taking place on a virtual bus. This is the case, for instance,

between usbcam and ocv color tracking (con6).

• between usbcam on the robot’s board and imgview on

the remote laptop, the connection takes place on a

wired Ethernet or wireless WiFi link (con12).

• the connection between the robot’s computer board and

its sensors and actuators is done, here, through USB ports.

3

Fig. 1. Robotic application.

ROS nodes in charge of those communications can be

seen as driver nodes, each one dedicated to a specific

device. In our system, the USB camera is mapped to a usb

device in OS file system, and the robot’s USB/serial inter-

face to a ttyusb device. On this last connection, several

messages may travel if requested (velocity commands,

sonar measurement, odometry feedback ...).

Depending on the application deployment scheme, connections

may be bound to different media, virtual or physical. For

example, the joy and the joyteleop nodes might be deployed on

the robot’s computer board, and the connection from joyteleop

node to rosaria would be bound to the ROS virtual bus. This

reflects the situation where the joystick is directly plug to

the robot. In our case, tele-operation is needed and, since the

joystick is plugged to the remote computer, the connection is

bound to a physical WiFi or Ethernet link. Thus one message

may travel on different media, but we can also have several

messages traveling on one unique medium. By ”message” we

mean here: the stream of messages produced on a topic by a

publisher node.

To determine if a message, or a set of messages, can travel

on a medium, we must know:

• the message bandwidth requirement, which depends on

the message size and frequency. This property is generally

quite simple to get, simply multiplying the message size

by the frequency. Consider the example of the video

stream produced by the node usb cam: the data size for

the associated message is 640×480 (the image resolution)

×3 (the number of channels: R, G, B) ×1 (the number

of bytes per pixel, here we are dealing with 8 bits per

channel images). The result is 921600 Bytes.

• the medium bandwidth capacity. This feature is measured

on the virtual or physical link to which connections may

be bound.

IV. BANDWIDTH CAPACITY PROFILING

To profile the bandwidth capacity of our connections, we use

two specific nodes: a producer node that publishes messages

with different sizes at different frequencies on a ROS topic,

and a consumer node that subscribes to this topic.

The actual messages rate and bandwidth are measured

with two standard reporting tools from the ROS toolbox:

rostopic hz and rostopic bw. Measures are averaged

by the tools during one second long windows.

The different data block sizes used are 32768, 65536,

131072 and 262144 Bytes, and the frequencies are: 100,

1000, 5000, and 10000 Hz. Every combination of block size

and frequency is probed 6 times, during 6 seconds. Reported

frequencies and bandwidths are then filtered by a median filter.

A. ROS virtual bus bandwidth capacity

We begin by showing the results for the ROS virtual bus.

Figure 2 shows, with blue points, the measured bandwidth on

this bus when both the producer and consumer are running

on the four Cortex A15 cores of the Odroid XU4 board. Red

squares show the bandwidth requested by the producer node.

A saturation can be observed, and the average value of the

bandwidth when the connection is saturated, noted BW sat,

is 166 MBytes/s. The difference between bandwidth demand

(surface in red) and bandwidth capacity (in blue) appears more

clearly on figure 3.

4

Fig. 2. ROS virtual bus profiling nodes on A15 cores.

Fig. 3. ROS virtual bus capacity against demand, nodes on A15 cores.

The same experiment was conducted with the producer and

consumer running on the four Cortex A7 cores of the Exynos

SoC. Figure 4 shows the results.

It appears that the average maximum bandwidth is lower

than before since BW sat is now 71 MBytes/s. That is not

surprising since, the bus being virtual and the connection being

established between two nodes, the speed of the processors

on which those nodes are running naturally impacts the

performance. Indeed, we have profiled the MIPS capacity of

the Exynos 5422 SoC cores, thanks to a simple 7z LZMA

benchmark, and we got 1100 MIPS for the A7 and 2000

MIPS for the A15. Thus, it seemed also interesting to profile

the connection bandwidth in the standard situation where no

CPU affinity is set for any of the processes in the robotic

application. The maximum bandwidth is now 122 MBytes/s.

Figure 5 shows how the measured bandwidth evolves with the

message size and frequency in the three situations mentioned

before. The situation where no CPU affinity is set appears

in the middle of the two others. Since the operating system

is then free to run every process on either the big or little

Fig. 4. ROS virtual bus profiling, nodes on A7 cores.

Fig. 5. ROS virtual bus capacity saturation vs CPU affinity.

cores, the average MIPS capacity of the whole SoC is between

the capacity obtained with the four A15 cores, and the one

obtained with the four A7 cores. This results seems quite

normal.

B. TCPROS over Ethernet bandwidth capacity

This time, we want to profile TCPROS over wired Ethernet.

The producer node is on the robot’s computer board, and the

consumer on the remote PC. This is the configuration we face

usually when data streams from the robot’s sensors have to be

used, or simply echoed on a remote computer.

Figure 6 shows the bandwidth measurements for the same

combinations of message sizes and frequencies as before.

Bandwidth saturation appears at 103 MBytes/s, 208 MBytes/s,

and 253 MBytes/s, respectively when the producer and con-

sumer affinity is set to the Cortex A7 cores, Cortex A15 cores,

or is not set. This values are significantly under the maximum

916 MBytes/s that we have benchmarked (using the standard

Linux tool iperf) for the Ethernet link in our system (which

is itself not far from the theoretical 1 GBytes/s given for fast

5

Fig. 6. TCPROS over Ethernet capacity saturation vs CPU affinity.

Ethernet over physical links). Again, the actual bandwidth is

limited by the CPU speed, and, as expected, A7 cores give the

lowest performances.

C. TCPROS over WiFi bandwidth capacity

When WiFi is used to transport ROS messages from a node

to another, the connection speed is only slightly under the

preceding one. As presented on Figure 7, it ranges from 103 to

173 MBytes/s with the CPU affinity. The theoretical speed we

should observed, according to our WiFi devices specifications,

should be 450 MBytes/s. The same conclusion are drawn from

these new results. The actual bandwidth depends on the CPU

ability to implement the TCPROS connection over the physical

link.

Fig. 7. TCPROS over WiFi saturation vs CPU affinity.

V. AADL LIBRARY FOR ROS

In this section, we explain how we organize the AADL

model of our ROS applications, in order to enable bus load

and bandwidth budget analysis.

A ROS application consists in a number of services running

concurrently on possibly different hardware platforms. Every

service is a node in the ROS terminology. A ROS distribution

offers a large number of standard nodes for many of the

common tasks a robot have to accomplish. To these nodes

we add our own nodes, implementing the services we have to

develop to fill our specific needs.

According to the component based modeling approach in-

herent to AADL, we have developed an AADL library of ROS

components. To allow checking the validity of connections

between components, data format have to be declared and

associated to input or output ports of every component. Hence,

our library includes a package dedicated to the declaration

of every data format which may be transported as a ROS

message on a ROS topic. Indeed, many different message

formats are defined in the ROS middleware. This package uses

the inheritance mechanism of the AADL language: from one

high level data type, children are declared that extends the

features and properties of the parent.

For example, the AADL model of our RGB image stream

is thus:✄ �
data t o p i c end t o p i c ;
data implementation t o p i c . impl end t o p i c . impl ;

data sensor msgs extends t o p i c end sensor msgs ;
data implementation sensor msgs . impl extends t o p i c . impl

data Image extends sensor msgs end Image ;
data implementation Image . impl extends sensor msgs . impl end

Image . impl ;

data implementation Image . rgb extends Image . impl
properties

Data Size => 921 KByte ;
end Image . rgb ;✂ ✁
As usual in AADL, the model of a component is divided

into the declaration of the component type itself, and the dec-

laration of one or several implementations of the component.

Here we can observe that the size of the data is declared as

a specific AADL property that will be used later by the bus

load analysis tool included in OSATE2, namely Data Size.

Now, this data implementation can be used in the declaration

of input, output, or in/out ports of our components. As

explained before, this, before anything, allows to check the

validity of a connection between two components: obviously,

a connection is only permitted between two ports that carry

the same data type.

For instance, the usb cam node will be declared as

follows:✄ �
process usb cam nd extends node

features
rgb stream in : in event data port video stream . rgb ;
rgb image raw out : out event data port Image . rgb ;

end usb cam nd ;✂ ✁
In order for the OSATE2 bus load analysis tool to work,

we need to set, beside the size of data transmitted over a

connection, the period at which this transmission occurs. This

information is set with the period property of the thread in

charge of sending the data over the connection. Let us continue

with the standard ROS usb cam node. The node implemen-

tation describes its subcomponents and inner connections:

6

connections between them, and from input or to output ports

of the node.✄ �
process implementation usb cam nd . impl

subcomponents
image broadcaster : thread imagePubl isher . impl ;
usbSpinner : thread usbcam spinner . impl ;

connections
con1 : port image broadcaster . pub msg −>
rgb image raw out ;

con2 : port rgb stream in −> usbSpinner . rgb stream in ;
end usb cam nd . impl ;✂ ✁
Two threads are included in the usb cam node. usbSpinner

is a spinner thread which role is, in this node, to launch

the publisher thread, named image broadcaster, every time

this is needed. For our USB camera working at 30 images/s,

that is every 33 ms. This value is given to the Period

property associated to the publisher thread implementation,

imagePublisher.impl presented below. The connection con1

above is important since it allows to connect the node out-

put rgb image raw out to the thread output pub msg which

format is refined to data Image.rgb.✄ �
thread imagePubl isher extends pub l i she r

features
pub msg : ref ined to out event data port Image . rgb ;

end imagePubl isher ;

thread implementation imagePubl isher . impl
properties

Period => 33333 us ;−−@ 30 images / s
end imagePubl isher . impl ;

thread implementation imagePubl isher . xu4 a15 extends
imagePubl isher . impl

properties
Compute execution time => 2319 us . . 2319 us ;

end imagePubl isher . xu4 a15 ;✂ ✁
Another property is set here: Compute execution time. This

property comes from a profiling of the MIPS demand of

the running node over a specific CPU, here A15 cores in

the Odroid XU4 board. We defined this property, along with

processes MIPS budget and CPUs MIPS capacity, to allow for

CPU load and MIPS budget analysis. This particular subject

will be developed in an other paper.
Now, from the Data Size and Period properties defined

respectively in the data and in the thread components, the

analysis tool is able to calculate the bandwidth demand for a

publisher thread on the bus onto which its output connection

is bound. In our example, that would be 921 KBytes×
1/33333µs = 27.63 MBytes/s.

The next step is to compare this bandwidth demand with the

bandwidth capacity of the bus. For this we need to add this

specific property to the AADL model of our hardware plat-

form, where buses are declared, and to the ROS library where

a bus component will be added for every implementation of

the TCPROS virtual bus. Hence, our ROS AADL package will

include the following components, with the bandwidth capac-

ities reported from the profiling work presented in section IV:✄ �
bus ros bus end ros bus ;
bus implementation ros bus . no taskset extends ros bus . impl

properties
SEI : : BandWidthCapacity => 122.0 MBytesps ;
end ros bus . no taskset ;

bus implementation ros bus . A15 extends ros bus . impl
properties

SEI : : BandWidthCapacity => 166.0 MBytesps ;
end ros bus . A15 ;✂ ✁

Only a part of the whole package is given here of course. In

fact, because TCPROS connections capacity on Ethernet (and

that is the same for WiFi), does not depends on the Ethernet

device itself, but on the CPU capacities of the computer

board, a software bus, called ros ethernet (ros wifi for WiFi)

is included in the library:✄ �
bus ros e therne t end ros e therne t ;
bus implementation ros e therne t . impl end ros e therne t . impl ;

bus implementation ros e therne t . no taskset extends
ros e therne t . impl

properties
SEI : : BandWidthCapacity => 253.0 MBytesps ;

end ros e therne t . no taskset ;✂ ✁
An AADL virtual bus component could have been used for

those TCPROS buses, like in [15]. This however does not

allow the use of the bus load analysis tools in OSATE2.

On the hardware side, bandwidth capacities of physical links

have to be declared. Thus the AADL model of our Odroid

XU4 board contains the following declarations (among other

things):✄ �
system implementation Odroid XU4 . impl

subcomponents
Exynos SOC : system Exynos 5422 : : Exynos 5422 . impl ;
ethernet bus : bus Ethernet : : Ethernet . impl {SEI : :
BandWidthCapacity => 1000.0 MBytesps ;} ;

usb bus 1 : bus USB : : USB. impl {SEI : : BandWidthCapacity =>
480.0 MBytesps ;} ;

usb bus 2 : bus USB : : USB. impl {SEI : : BandWidthCapacity =>
4800.0 MBytesps ;} ;

usb bus 3 : bus USB : : USB. impl {SEI : : BandWidthCapacity =>
4800.0 MBytesps ;} ;

hdmi dev : device HDMI . impl ;
connections

connect ion1 : bus access e therne t −> ethernet bus ;
connect ion2 : bus access usb 1 −> usb bus 1 ;
connect ion3 : bus access usb 3 −> usb bus 3 ;
connect ion4 : bus access usb bus 2 −> usb 2 ;
connect ion5 : port hdmi dev . hdmi port −> hdmi ;

end Odroid XU4 . impl ;✂ ✁
USB buses are used to connect the robot devices (here the

RGB camera and the robot control board), to the Odroid XU4

board.

VI. RESULTS: BUS LOAD ANALYSIS FROM AADL

Using the AADL libraries that we have written for both

the ROS middleware and the robot and the computer board

it carries, we can build an AADL model of our complete

application, including its deployment. Figure 1 is the graphical

view of the application software, compliant with the AADL

diagram meta-model, and is a direct translation of its AADL

textual model, that we will not be presented here.

The application deployment is modeled as follows (instruc-

tions for binding processes and threads to CPUs are omitted):✄ �
system implementation remote tracking dep . impl

subcomponents
rem trk sw : system remote t rack ing : : remote tracking sw .
impl ;

p3DX : system Pioneer3DX : : Pioneer3DX . i ;
ROSbus : bus ros : : ros bus . impl ;
ROSEthernet : bus ros : : ros e therne t . impl ;

connections
con1 : port p3DX . video rgb pass −> rem trk sw .
v ideo rgb input ;

con2 : port rem trk sw . cmdvel2hw −> p3DX . vel cmd in pass
;

con3 : port p3DX . sonar out pass −> rem trk sw . hw2sonar ;
properties

7

Actual Connect ion Binding => (reference (ROSbus))
applies to rem trk sw . con6 ;−− usbcam−>c o l o r t r a c k i n g

Actual Connect ion Binding => (reference (ROSbus))
applies to rem trk sw . con5 ;−− pos2cmd−>r o s a r i a

Actual Connect ion Binding => (reference (ROSbus))
applies to rem trk sw . con3 ;−− rosa r ia−>s o n a r a l e r t

Actual Connect ion Binding => (reference (ROSbus))
applies to rem trk sw . con2 ;−− sonara le r t−>pos2cmd

Actual Connect ion Binding => (reference (ROSbus))
applies to rem trk sw . con4 ;−− c o l o r t r a c k i n g−>pos2cmd

Actual Connect ion Binding => (reference (ROSEthernet))
applies to rem trk sw . con12 ;−− usbcam−>imgview

Actual Connect ion Binding => (reference (ROSEthernet))
applies to rem trk sw . con10 ;−− j oy te leop−>r o s a r i a

Actual Connect ion Binding => (reference (p3DX .
OdroidXU4 . usb bus 3)) applies to p3DX . con10 ;−− camera
i npu t on USB

Actual Connect ion Binding => (reference (p3DX .
OdroidXU4 . usb bus 3)) applies to rem trk sw . con8 ;−−
r o s a r i a cmdvel on USB

Actual Connect ion Binding => (reference (p3DX .
OdroidXU4 . usb bus 3)) applies to p3DX . con11 ;−−r o s a r i a
sonar on USB

end remote tracking dep . impl ;

system implementation remote tracking dep . xu4 extends
remote tracking dep . impl

subcomponents
rem trk sw : ref ined to system remote t rack ing : :
remote tracking sw . xu4 ;

ROSbus : ref ined to bus ros : : ros bus . no taskset ;
end remote tracking dep . xu4 ;✂ ✁

The binding of connections (software), to bus (hardware or

pseudo hardware in case of TCPROS), is defined in the system

implementation with Actual Connection Binding instructions.

The first five connection binding instructions, referencing

bus ROSbus, are for binding connections labeled con6, 5, 3,

2, 4 in figure 1, to the ROS virtual bus. ROSbus is later refined

to the ros::ros bus.no taskset bus component from our ROS

package. The two next binding instructions are for remote

connections via bus ROSEthernet. The three last instructions

are for binding devices inputs or outputs connections to the

physical USB bus p3DX.OdroidXU4.usb usb 3.

With those bindings defined, an instance of our deployed

system implementation is generated in OSATE. An instance is

a view of the system that gathers all the components included

in the different models that we have created to describe our

system, software and hardware, from our library of ROS

components. Figure 8 show the packages dependency graph

for our complete application model.

Fig. 8. Packages dependency graph.

From the instance, different analysis can be performed,

depending on the properties that have been added to the

models. The output of the OSATE2 bus load analysis tool

is displayed table I. First, we get a list of all the buses found

inside the system, with their capacity, budget, required budget,

and actual load. The budget property is used whenever we want

to allocate a limited part of the bandwidth capacity to a bus,

virtual bus, or connection.

Then, we have the detail, for each bus, of the bandwidth

demand per connection. A bus overload might be reported

there. None are detected for any of the three buses we are using

in our system. The USB bus comes first. Every connection

bound to this bus is listed here. Those are connections to

or from devices attached to the robot: the RGB camera, the

robot’s sonar belt, and the robot’s control board. Messages

from the sonar are relatively small: 220 Bytes are enough to

transmit the measurements from the eight ultrasound sensors.

They are transmitted every 100 ms. The generated bandwidth

demand, 2.2 KBytes/s, is pretty small in front of the bandwidth

requested by the RGB camera. Every velocity command sent

to the robot is a 50 Bytes long message. Those commands

are sent at 10 Hz so the bandwidth demand is 0.5 KBytes/s.

This is again almost negligible in front of the RGB camera

bandwidth demand.

In the situation where devices are at the source of messages,

and to complete the preceding section, there is no process or

thread to refer to, for finding the period at which the data is

sent on the connection. The Period property must be placed in

the device implementation declaration, like shown below for

the RGB camera model, and the data size must be added to

the data format declaration of the output stream of the device:✄ �
device camera rgb

features
camera usb : requ i res bus access USB : : USB. impl ;
RGB stream out : out event data port ros : : video stream .
rgb ;

end camera rgb ;

device implementation camera rgb . impl
properties

Period => 33333 us ;
end camera rgb . impl ;

. . . / . . .

data implementation video stream . rgb
properties
−−640x480x3=921600 Bytes #0.92MBytes
Data Size => 921 KByte ;

end video stream . rgb ;✂ ✁
The two last sections in table I concern the ROS virtual

bus, ROSbus, and the TCPROS connection over Ethernet,

ROSEthernet. For each, the bound connections are listed with

the bandwidth they are requesting from the bus. Again, the

video stream from the camera, which travel both on the ROS

virtual bus, from node usb cam to ocv color tracking, and on

the ROSEthernet bus, from usb cam to image view on the

remote computer, is the major consumer.

VII. CONCLUSION

With the AADL model of our robotic application, built on

top of our two main libraries: a library of components for ROS

services and middleware, and a library of hardware platforms,

including robots, devices, and computer boards, we are able

to perform a complete analysis of the bandwidth demand from

the application over the hardware resources. This analysis

allows to check if the deployment scheme of our application

meets its requirements. Overloaded buses are exhibited and

8

TABLE I
BUS LOAD ANALYSIS REPORT

✄ �
” Phys ica l Bus ” , ” Capaci ty (KB/ s) ” , ” Budget (KB/ s) ” , ” Required Budget (KB/ s) ” , ” Ac tua l (KB/ s) ”
” usb bus 1 ” , ” 480000.0 ” , ” 0.0 ” , ” 0.0 ” , ” 0.0 ”
” usb bus 2 ” , ” 4800000.0 ” , ” 0.0 ” , ” 0.0 ” , ” 0.0 ”
” usb bus 3 ” , ” 4800000.0 ” , ” 0.0 ” , ” 0.0 ” , ” 27632.976302763025 ”
”ROSbus” , ” 122000.0 ” , ” 0.0 ” , ” 0.0 ” , ” 27633.034259960732 ”
” ROSEthernet ” , ” 253000.0 ” , ” 0.0 ” , ” 0.0 ” , ” 27632.276302763024 ”

” Bus usb bus 3 has data overhead of 0 bytes ”
” Bound V i r t u a l Bus / Connection ” , ” Capaci ty (KB/ s) ” , ” Budget (KB/ s) ” , ” Required Budget (KB/ s) ” , ” Ac tua l (KB/ s) ”
”p3DX . rgb cam . RGB stream out −> rem trk sw . usbcam . usbSpinner . rgb stream in ” , ” ” , ” 0.0 ” , ” ” , ” 27630.276302763024 ”
”p3DX . sonar . sonar out −> rem trk sw . r o s a r i a . hw 2 sonar ” , ” ” , ” 0.0 ” , ” ” , ” 2.2 ”
” rem trk sw . r o s a r i a . cmdvel broadcaster . pub msg −> p3DX . base vel cde . vel cmd in ” , ” ” , ” 0.0 ” , ” ” , ” 0.5 ”

” Bus ROSbus has data overhead of 0 bytes ”
” Bound V i r t u a l Bus / Connection ” , ” Capaci ty (KB/ s) ” , ” Budget (KB/ s) ” , ” Required Budget (KB/ s) ” , ” Ac tua l (KB/ s) ”
” sona r a le r t . a l e r t b roadcas te r . pub msg −> pos to cmd . d i sab le i n ” , ” ” , ” 0.0 ” , ” ” , ” 0.0015015015015015015 ”
” r o s a r i a . c loud broadcaster . pub msg −> sona r a le r t . sensors in ” , ” ” , ” 0.0 ” , ” ” , ” 2.2 ”
” usbcam . image broadcaster . pub msg −> ocv co lo r t rack ing . c tSubscr ibe r . subs msg ” , ” ” , ” 0.0 ” , ” ” , ” 27630.276302763024 ”
” ocv co lo r t rack ing . c tPub l i she r . pub msg −> pos to cmd . pos cmd sub . subs msg ” , ” ” , ” 0.0 ” , ” ” , ” 0.24 ”
” pos to cmd . cmd vel pub . pub msg −> r o s a r i a . cmd vel in ” , ” ” , ” 0.0 ” , ” ” , ” 0.31645569620253167 ”

” Bus ROSEthernet has data overhead of 0 bytes ”
” Bound V i r t u a l Bus / Connection ” , ” Capaci ty (KB/ s) ” , ” Budget (KB/ s) ” , ” Required Budget (KB/ s) ” , ” Ac tua l (KB/ s) ”
” j o y t e l e o p . te leopPub l i she r . pub msg −> r o s a r i a . cmd vel in ” , ” ” , ” 0.0 ” , ” ” , ” 2.0 ”
” usbcam . image broadcaster . pub msg −> imgview . image raw in ” , ” ” , ” 0.0 ” , ” ” , ” 27630.276302763024 ”✂ ✁

different options may be investigated, with no need for having

the real hardware at hand.
In parallel of this work, we have also enrich our models with

AADL properties that allows to check if the MIPS demand

from every node in the application is inside the MIPS capacity

of the CPU, or cluster of CPUs, the node is bound to. Again,

a standard tool from OSATE2, namely, the ”budget analyze

resource allocations” tool, is used. With BUS load analysis

and CPU load analysis, we can really explore many options

for placing our ROS nodes on the hardware architecture. For

instance, a node exhibiting high CPU load with low output

bandwidth, might be bound on an additional computer board

with no performance penalty. The node ocv color tracking

from our application has this kind of profile. The main board

would be relieved of this heavy task and have more time for

dealing with the remaining processes to maybe reach real time

constraints in some other situation.
Design space exploration for hardware and software ar-

chitecturing is what we need for our robotic applications,

and that is what we get with the set of libraries, models,

and usage of tools we are proposing. But we also wanted

something fast and easy to set up, hence the choice for a

simple profiling approach, using standard on-the-shelf tools,

for keeping models as simple as possible, for adding only

properties and details that are necessary for the analysis we

need to carry on.
We are currently pursuing the development of our libraries

with more components both from ROS constellation of nodes

and hardware platforms. Our libraries will be make available

to the public in the near future.

REFERENCES

[1] ROS, powering the world’s robots. [Online]. Available:
https://www.ros.org/

[2] P. H. Feiler, B. A. Lewis, and S. Vestal, The SAE Architecture Analysis

& Design Language (AADL) a standard for engineering performance

critical systems, 2006, pp. 1206–1211.

[3] Osate 2.9.1 documentation. [Online]. Available: https://osate.org/
[4] X. Ma, F. Fang, K. Qian, and C. Liang, “Networked robot systems

for indoor service enhanced via ROS middleware,” in 2018 13th IEEE

Conference on Industrial Electronics and Applications (ICIEA), 2018,
pp. 852–857.

[5] F. de Assis Moura Pimentel and P. T. Aquino-Jr, “Performance evalua-
tion of ROS local trajectory planning algorithms to social navigation,”
in 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian

Symposium on Robotics (SBR) and 2019 Workshop on Robotics in

Education (WRE), 2019.
[6] D. Bore, A. Rana, N. Kolhare, and U. Shinde, “Automated guided

vehicle using robot operating systems,” in 2019 3rd International

Conference on Trends in Electronics and Informatics (ICOEI), 2019,
pp. 819–822.

[7] S. Gatesichapakorn, J. Takamatsu, and M. Ruchanurucks, “ROS based
autonomous mobile robot navigation using 2d lidar and rgb-d camera,”
in 2019 First International Symposium on Instrumentation, Control,

Artificial Intelligence, and Robotics (ICA-SYMP), 2019, pp. 151–154.
[8] Y. Abdelrasoul, A. B. S. H. Saman, and P. Sebastian, “A quantitative

study of tuning ROS gmapping parameters and their effect on performing
indoor 2d slam,” in 2016 2nd IEEE International Symposium on Robotics

and Manufacturing Automation (ROMA), 2016, pp. 1–6.
[9] J. Cano, A. Bordallo, V. Nagarajan, S. Ramamoorthy, and S. Vijayaku-

mar, “Automatic configuration of ROS applications for near-optimal
performance,” in 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2016, pp. 2217–2223.
[10] F. Xiaorong, X. Jing, L. Wei, and Y. Panfe, “A multi-level grey

performance evaluation model for robot operating system,” in 2nd

International Conference on Safety Produce Informatization (IICSPI),
2019.

[11] P. Feiler and D. Gluch, Model-Based Engineering with AADL: An

Introduction to the SAE Architecture Analysis & Design Language.
Addison-Wesley, 2012.

[12] S. Rubini, P. Dissaux, and F. Singhoff, “Modeling shared-memory
multiprocessor systems with AADL,” in 1st Architecture Centric Vir-

tual Integration (ACVI) Workshop. In conjonction with the MODELS

international conference, September 2014.
[13] G. Bardaro and M. Matteucci, “Using AADL to model and develop

ROS-based robotic application,” in 2017 First IEEE International Con-

ference on Robotic Computing (IRC), 2017, pp. 204–207.
[14] G. Bardaro, A. Semprebon, A. Chiatti, and M. Matteucci, “From models

to software through automatic transformations: An AADL to ROS end-
to-end toolchain,” in 2019 Third IEEE International Conference on

Robotic Computing (IRC), 2019, pp. 580–585.
[15] M. Larsen, “Modelling field robot software using AADL,” Electrical and

Computer Engineering Technical report ECE-TR-25, april 2016.

2022 01-25 Version 1.5 1

STPA Analysis of Automotive Safety Using
Arcadia and Capella

David Hetherington

President Asatte Press, Inc

david_hetherington@ieee.org

Pascal Roques

Independent Author, Trainer, and Consultant at PRFC

pascal.roques@prfc.fr

Abstract
This paper demonstrates the use of the Arcadia methodology and the open source Capella tool to implement a

STPA-based analysis technique that augments the conventional HARA, HAZOP. The STPA approach extends the

conventional methods to include a holistic perspective considering hardware, software, humans, and control

failures in a balanced manner.

Introduction
As embedded software becomes an ever-increasing percentage of the value of an automobile, functional

safety and cybersecurity are becoming dominant concerns in the design of both the automotive embedded

electronics and the embedded software that runs on that hardware. However, both topics are exceptionally

challenging in an automotive embedded software environment.

Current safety methodologies have evolved over the last 30-40 years from a set of practices originally

intended for chemical plants.

Figure 1 – Historical safety approaches not well-matched to current challenges

IEC 61508 had its origins in industrial plant safety. At the time, the primary concern with cascading hardware

failures. This early focus has tended to shape the perspective of other standards such as ISO 26262 that are

descended from the original versions of IEC 61508.

The 2018 version of ISO 26262 consists of 12 parts totally 808 pages. Of these, software makes up one part

(Part 6) which at 66 pages comprises 8.2% of the standard. For comparison, parts 5 and 11 are completely

ERTS 2022 STPA Using Arcadia and Capella

2022 01-25 Version 1.5 2

about hardware (288 pages). Parts 8, 9, and 10 are nominally applicable to both hardware and software, but a

close examination of the detailed recommendations in these parts (For example Part 9, 7.4.4) reveals an

almost complete focus on hardware as well. (Another 200 pages).

As for software, part 6 itself consists of 15 tables listing well-established quality techniques in bullet form.

Figure 2 – Example table from ISO 26262 Part 6 (2018)

Figure 2 above is an example of the thin nature of the standard when it comes to software. The entire topic of

model-based engineering is reduced to a single bullet: “semi-formal notations”. Model-based engineering is a

huge topic, and the standard provides no depth of thinking about what one might be trying to accomplish with

the use of these techniques. Although some work was done between the 2011 and 2018 versions of the

standard to improve part 6, the recommendations are still weak when it comes to specific methods for dealing

with emergent behavior in software system- of-systems. Interactions with humans are not considered at all.

Artificial Intelligence and other types of software with behavior that is not deterministic by design is out of

scope in ISO 26262.1

The main difficulty with classical automotive safety techniques is that they have become somewhat of a victim

of their own success. The hardware reliability of automotive components has improved by orders of

magnitude since the 1980s when the industry started thinking in earnest about the problem. On the other

hand, the amount and complexity of the software in and around the vehicle has exploded. Even without

artificial intelligence, vehicles are already streaming data into the cloud and downloading software updates

from the cloud. The complexity of systems like the infotainment system one would find in a current

competitive minivan are far beyond the wildest imagination of the 1980s engineers who laid the groundwork

for current safety practices. Overwhelmed drivers are a real problem. Software that is so complex that it

exhibits what might as well be random failures is also a problem. Our automotive functional safety processes

are balanced to fit the challenges of the 1980s, not the challenges of the 2020s.

The “System-Theoretic Process Analysis” or “STPA” hazard analysis technique addresses many of the

weaknesses listed above. During the hazard analysis process, STPA looks at control loops within the system. In

the STPA technique, hazards are posed by unsafe control actions. This technique is quite helpful in that any of

the elements in the loop can be hardware, software, or human. For example, if the controlled process is

keeping a car in its lane on the highway, the “process model” that might fail could be the driver’s perception
of where the lane is. With the STPA technique, we have an analysis approach that can more evenly and

uniformly consider software and humans in the loop. Even better, we do not have to assume that the software

or the humans are “deterministic” for the analysis technique to work.

The first question is what sort of tool, if any, we should use for STPA. Many instructors of STPA apparently

discourage the use of modeling tools, perhaps out of fear that the modeling tool will introduce some sort of

tunnel vision regarding the system.

1 The ISO 26262 community has developed the separate SOTIF standard to address this gap. See [3]

ERTS 2022 STPA Using Arcadia and Capella

2022 01-25 Version 1.5 3

While that concern cannot be discounted, an actual safety analysis

at the scale needed for a commercial vehicle is simply not feasible

without tooling.

By the time a vehicle first rolls off of the assembly line, the vehicle

maker and its multiple tiers of suppliers will have worked their way

through hundreds of thousands of context elements, system

elements, hazards, failures, effects, and other related information.

This scale of analysis simply cannot be done with paper and

clipboard or even with spreadsheets. Intelligent modeling tools are

mandatory. It is not feasible to design a current generation

commercial automobile without them.

A number of suppliers make purpose-built safety analysis tools. Many of these purpose-built safety analysis

tools include “SysML-like” features that are tailored for safety analysis work. Some tools also claim support for

STPA. Unfortunately, neither author has current license for any of these tools. As such, the authors are not in

a position to evaluate these sorts of purpose-built tools and they are out of scope for this paper.

That leaves model-based systems engineering (MBSE) tools as candidates for conquering the complexity that

would be involved in a full-scale STPA analysis of an entire vehicle or a large subsystem within a vehicle.

Within the field of MBSE tools, SysML tools are obvious candidates for performing this sort of analysis and

many companies do at least some parts of their safety architecture work using SysML tools. Both authors are

quite familiar with SysML tools. In fact, David Hetherington publishes beginner books for SysML tools and uses

SysML tools regularly for functional safety modeling.

Recently, however, the authors have begun collaborating on a beginner book for the Capella tool and the

Arcadia method. During this work, the authors noticed that Arcadia has some special characteristics that are

well-suited for functional safety work and STPA in particular. This rest of this paper will demonstrate an

approach to using the open source Capella tool and the Arcadia methodology3 to perform the STPA analysis.

The specific MBSE features of the tool and method that are convenient for STPA analysis will be highlighted.

Getting to the Starting Line
There are a few things we need to do to get to the starting line to use the analysis technique laid out in the

STPA Handbook.4

System of Interest

Our system of interest is the “Bold Truck” Electric Sport Utility Vehicle.

Figure 4 – The Bold Truck electric sport utility vehicle

2 See [2] Adapted from STPA Handbook Figure 2.6 on page 23
3 See Erreur ! Source du renvoi introuvable.
4 See [2] to download the STPA Handbook.

Figure 3 – Generic control loop 2

ERTS 2022 STPA Using Arcadia and Capella

2022 01-25 Version 1.5 4

Figure 4 shows the truck in its context. Of course, the truck would have a lot of other subsystems. For this

paper, however, we are going to focus on a “narrow slice” to explore how STPA would be used to model safety

hazards in the control of the electric motor.5

Modeling Setup

For this paper, we used Capella 5.1. We also installed the requirements add-on. 6

Analysis Procedure

For the context analysis, we will follow the definition of “TypicalAutomotiveSituation” from the OMG Risk

Analysis Modeling Language (RAML) 1.0 Beta specification7 with the modification that we will replace the

word “Typical” with the word “Valid”, the word “Typical” being a little too open-ended for our purposes.

In order to keep the size of this paper manageable, we will focus on just one valid situation.

Name Vehicle Usage Traffic and People Road Condition Location
Environmental

Condition

Freeway
Driving forward

at >100 km/hr

Light traffic. Nearest car

is 15 seconds away.

Clean, dry,

asphalt

Public high-

speed highway

Warm, sunny, dry,

normal humidity

Table 1 – Valid automotive situation

A real-life analysis of an entire vehicle would start with a large number of such situations, perhaps 100 or

more. For example, the control actions and hazards for backing out of a driveway would be quite different

from those for driving on a freeway. Likewise, driving in snow or rain would present different control

behaviors than driving in nice weather.

The first thing we will model is the Freeway valid automotive situation.

Below is a specific Arcadia diagram called “Contextual System Actors”, modeled at “System Analysis” level. The
Bold Truck Electric SUV is considered as a “black box”, and all external entities are called “Actors” (as in UML
and SysML). We used the “constraint” concept, still as in UML and SysML and noted with {c}, to model the

qualifying scope constraints of the valid automotive situation.

Figure 5 – The Freeway valid automotive situation

With the context defined, we can proceed with the steps laid out in the STPA Handbook.

STPA Step 1: Define the Purpose of the Analysis
Let us start now with the first STPA step: “Define Purpose of the Analysis”.

5 See [5] for an excellent discussion of the functionality and safety concerns for such a power inverter.
6 See [7] for download of Capella and also the requirements add-on
7 See [4] Figure 9.124 - TypicalAutomotiveSituation

ERTS 2022 STPA Using Arcadia and Capella

2022 01-25 Version 1.5 5

Figure 6 – STPA Step 1: Define the purpose of the analysis8

The first step consists of four parts:

1. Identify losses

2. Identify system-level hazards

3. Identify system-level constraints

4. Refine hazards (optional)

Identify Losses

In the first step, we need to identify the potential losses at the system level.9

Figure 7 – Freeway: identify losses

In order to capture the losses in the model, we have created a new requirement type, using the Capella

“Requirements viewpoint” add-on. For the Ids we follow the convention shown in the STPA Handbook.

Identify System-level Hazards

The next step is to identify the system-level hazards and tie them to losses. A key point here is that the

methodology and the tool can help, but it is ultimately the humans who identify the hazards. The

methodology and the tool merely provide a framework to stimulate productive thinking and help keep track of

the hazards identified by the humans.

Figure 8 – Freeway: identify system-level hazards

8 See [2] Adapted from STPA Handbook Figure 2.2 on page 15
9 See [2] page 16 for the formal definition of a loss.

ERTS 2022 STPA Using Arcadia and Capella

2022 01-25 Version 1.5 6

Here we create a “system-level hazard” type and the “causes” relationship. As it turns out, all of the hazards

that we have identified can cause all of the losses. That is a coincidence and would not be the case in general.

Identify System-level Constraints

Here the goal is to identify constraints that will prevent or at least mitigate the hazards identified in the

previous step and thereby prevent the losses from occurring.

Figure 9 – Freeway: System-level constraints

In the interest of brevity, we have shown only one system-level constraint here.

STPA Step 2: Model the Control Structure

Now we are ready to proceed to the second STPA step: “Model the Control Structure”.

Figure 10 – STPA Step 2: Model the control structure10

The first level of control loop is between the driver and the vehicle with input from the weather and scenery.

Figure 11 – Control loop: driver, vehicle, and weather/scenery

This is our first option for an Arcadia diagram to show a control loop. We used a “System Architecture Blank”
diagram in Capella, which is similar to a SysML internal block diagram (ibd). The light blue rectangles represent

external actors, as in Figure 4. Notice that small arrow icons inside the ports indicate the direction of flow

between the structural blocks (system / actors). As the vehicle moves, the changing position of the vehicle in

the environment causes changing visual feedback to the driver. The visual feedback from the environment as

well as potential alerts from the vehicle itself cause the driver to take action to increase, decrease, or maintain

speed as needed.

10 See [2] Adapted from STPA Handbook Figure 2.5 on page 22

ERTS 2022 STPA Using Arcadia and Capella

2022 01-25 Version 1.5 7

Figure 12 – Level 2: Power inverter internal control loop with Arcadia functions and functional exchanges

Within the vehicle, the power inverter controls the motors. The main subsystems involved, as shown in Figure

4, are now connected by means of functions and functional exchanges. The diagram we used is a “Logical
Architecture Blank” diagram from Arcadia. This type of diagram allows us to represent not only logical

components inside the system but also the functions allocated to the components. We can see the control

loop just by following the sequence of functional exchanges: “torque command” going into the Processing
Unit of the Power Inverter, then the outgoing pulse width modulation signal (“PWM”), which is used to create

positive and negative three-phase alternating current (“current phases”) to feed the motor. Coming back,

current, temperature, and other physical properties (“physical sensor indication”) are monitored by sensors

that transduce the physical phenomena into electrical signals. Back inside the power inverter, these sensor

electrical signals are transformed into meaningful digital data for use by the processing unit.

Arcadia also has a very useful concept called “Functional Chain” (which is missing from SysML). A functional
chain is an ordered set of references to functions and the functional exchanges that link them, describing one

possible path among all the paths forming the dataflow. Here we modeled the control loop as a specific

functional chain. The functional chain is a model element itself, which means we will be able to assign non-

functional properties such as requirements directly to the functional chain.

Figure 13 – Level 2: Power inverter control loop with Arcadia functional chain

ERTS 2022 STPA Using Arcadia and Capella

2022 01-25 Version 1.5 8

For safety analysis (STPA or conventional methods like dependent failure analysis) the Arcadia functional chain

is really useful. Essentially, the functional chain allows the safety engineer to depict a use case’s flow through
the system while showing both information moving between components/functions as well as information

being processed within the components/functions. This duality is important because safety-related failures

can occur both within the components/functions and also in the path between functions/components.

SysML can partially represent a similar concept, but the SysML internal block diagram does not allow the

modeler to depict an item flow through a component, making it difficult to unambiguously show the

sequential path. SysML sequence diagrams can also be used to some extent, but it is cumbersome to show a

path failure inside a lifeline. In SysML it is also difficult to link a failure directly to an item flow or to a message

in a sequence diagram. As we will see below, this sort of linking is quite easy in Arcadia.

STPA Step 3: Identify Unsafe Control Actions
Now we are ready to proceed to the third STPA step: “Identify Unsafe Control Actions”.

Figure 14 – STPA Step 3: Identify Unsafe Control Actions11

An Unsafe Control Action (UCA) is a control action that, in a particular context and worst-case environment,

will lead to a hazard. Using Capella and the “Requirements Viewpoint” add-on, we will once again create a

new requirement type for unsafe control actions. We can create specialized “UCA” requirements and link

them with any Arcadia concept, such as a single link on a functional chain.

Looking at the functional chain shown in Figure 13 on page 7, when the processing unit sends the pulse width

modulated signal (PWM) to the motor interface, this flow can be considered to be a control action “Provide
PWM Signal”. Using the standard STPA questions, this control action can be mirrored with four potential

unsafe control actions.12

Control

Action

Not Providing

Causes Hazard

Providing Causes

Hazard

Too Early, Too

Late, Out of Order

Stopped Too

Soon, Applied Too Long

Provide

PWM

Signal

UCA 1 - PWM

signal not

provided

UCA 2 - PWM

signal provided

erroneously

UCA 3 - PWM

signal provided

prematurely

UCA 4 - PWM signal halted

prematurely

UCA 5 - PWM signal provided

after vehicle stopped

Table 2 - Potential unsafe control actions for Provide PWM Signal

11 See [2] Adapted from STPA Handbook Figure 2.14 on page 35
12 See [2] STPA Handbook Table 2.3 on page 36

ERTS 2022 STPA Using Arcadia and Capella

2022 01-25 Version 1.5 9

Figure 15 – Level 2: UCA linked to Arcadia functional chain

Once identified, the unsafe control action can be linked back to a specific hazard that it causes in a manner

similar to the linking of the system constraints to hazards as shown in Figure 9 on page 6. In the interest of

brevity, we have not provided a diagram for this step.

STPA Step 4: Identify Loss Scenarios
Now we are ready to proceed to the fourth STPA step: “Identify Loss Scenarios”.

Figure 16 – STPA Step 4: Identify loss scenarios13

Loss scenarios are the final step in the STPA analysis technique. This step is where the cause of the hazard

comes together with the resulting unsafe control action to cause the hazard. Again, we can create a

specialized Arcadia requirement type for the STPA scenario.

Figure 17 – Failure causes unsafe control action and hence hazard

13 See [2] Adapted from STPA Handbook Figure 2.16 on page 42

ERTS 2022 STPA Using Arcadia and Capella

2022 01-25 Version 1.5 10

In the example loss scenario shown in Figure 17, a bug in the processor software causes the software to hang,

interrupting the PWM signal and causing the hazard that the vehicle brakes suddenly and is too slow relative

to the traffic behind it.

Notice that the using the STPA analysis techniques and Arcadia functional chains, only the links between

functions are candidates for unsafe control actions. The links that go through a function are the potential

location of failures which become scenarios that cause the unsafe control action on the output link.

Discussion
While this example was necessarily brief, the Arcadia method, the Capella tool, and the STPA Hazard analysis

technique can all contribute to a robust automotive safety program. Although STPA does not fully replace all

other hazard analysis techniques, it can be used as an additional technique to cover weaknesses in the more

conventional techniques regarding human factors as well as unexpected emergent behaviors caused by the

complex interaction of a large number of software components sourced from different suppliers interacting

with each other and less stable environments such as the internet.

STPA can be implemented using SysML tools or specialized safety analysis tools. However, the Arcadia method

and Capella tool offer some convenient features that ease the analysis. In particular, functional chains are a

very good fit for the fundamental control loop approach of STPA. More subtly, specialized requirement types

can be created using the requirements add-on to represent the different STPA concepts like unsafe control

actions and these can be placed on Arcadia diagrams and tied directly to specific links in a functional chain.

While it is easy enough in SysML to create specialized requirement types, it is quite difficult or impossible in

SysML to connect these directly to item flows, elements in a sequence diagram, or elements in an activity

diagram.

Follow-Up
The techniques in this paper show promise, but we have not presented a full solution that would be ready for

commercial deployment. As described in the introduction of [2], STPA is a hazard analysis technique. While

hazard analysis is a crucial first step in a functional safety process, there is a lot more to functional safety than

just identifying the hazards. A more complete implementation of the Arcadia method demonstrated in this

paper would integrate the STPA method shown into a full, end-to-end automotive safety process.

Both authors will be delighted to answer follow-up questions on this paper and the Arcadia technique

presented. If you would like a copy of the Arcadia model used in this paper, and created with Capella 5.1,

please send an e-mail to either or both authors.

References

[1] ISO 26262 - https://en.wikipedia.org/wiki/ISO_26262

[2] STPA Handbook - https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf

[3] SOFTIF - ISO/PAS 21448:2019 Road vehicles — Safety of the intended functionality

https://www.iso.org/standard/70939.html

[4] RAAML - https://www.omg.org/spec/RAAML/

[5] Safety Concept Overview Of High-Voltage (HV) Traction Inverter

Antoine Dubois, Erik Santiago, Sandeep Kumar (NXP)

https://www.avnet.com/wps/wcm/connect/onesite/c7840908-f6bd-4df7-a07e-dd380d7f9bdc/nxp-

SAFETY-CONCEPT-OVERVIEW-HV-TRACTION-

INVERTER.pdf?MOD=AJPERES&CVID=nHyIEM9&CVID=nHyIEM9&CVID=nHyIEM9&CVID=nHyIEM9&CV

ID=nHyIEM9&CVID=nHyIEM9&CVID=nHyIEM9&CVID=nHyIEM9&CVID=nHyIEM9&CVID=nHyIEM9

[6] Arcadia Datasheet: https://www.eclipse.org/capella/resources/Datasheet_Arcadia.pdf

[7] Capella Download web site: https://www.eclipse.org/capella/download.html

Session We.3.C

Formal Methods

Wednesday 1st June

15:00

–

Room Pastel

201

202

Static Data and Control Coupling Analysis

Daniel Kästner, Laurent Mauborgne, Stephan Wilhelm, Christoph Mallon, Christian Ferdinand

AbsInt Angewandte Informatik GmbH. Science Park 1, D-66123 Saarbrücken, Germany

Abstract

All current safety norms require determining the data and con-

trol flow in the source code and making sure that it is compliant

to the intended control and data flow as defined in the software

architecture. In traditional static code analysis, data accesses

via pointer variables and control flow by function pointer calls

might be missed. Using sound static analysis based on abstract

interpretation, it is possible to guarantee the absence of run-

time errors that could cause memory corruption and control

flow corruption. Furthermore, it is possible to guarantee that

in the analysis, all data and function pointer targets are consid-

ered and that the possible data and control coupling is fully cap-

tured. In this article we propose a comprehensive methodology

for statically computing a safe approximation of the data and

control coupling between software components. Our approach

incorporates global static data and control flow analysis, taint

analysis and program slicing. It can detect critical data and

control flow errors and allows to complement traditional code

coverage criteria by the degree of data and control coupling

covered by the testing process, helping to identify relevant pre-

viously untested scenarios. It can also demonstrate freedom of

spacial interference between software components at the source

code level.

Keywords: data coupling, control coupling, DO-178C, static analysis,

taint analysis, program slicing, abstract interpretation, interference

analysis, software architecture

1 Introduction

A failure of a safety-critical system may cause high costs or

even endanger human beings. With the unbroken trend to-

wards growing software size in embedded systems more and

more safety-critical functionality is implemented in software.

Preventing software-induced system failures becomes an in-

creasingly important task. Contemporary safety norms from

all industry domains – including DO-178B, DO-178C, ISO-

26262, IEC- 61508, the FDA Principles of Software Valida-

tion, IEC62304, and EN-50128 – require to identify potential

hazards and to demonstrate that the software does not violate

the relevant safety goals.

Functional safety implies demonstrating the functional cor-

rectness: the functional software requirements have to be satis-

fied. Demonstrating functional correctness can be addressed by

requirements-based testing, in particular automatic and model-

based testing, and by formal methods such as model check-

ing or theorem proving. In addition, safety-relevant quality

requirements, the so-called non-functional requirements, have

to be addressed. Examples of safety-relevant non-functional

software requirements are adherence to resource bounds, es-

pecially worst-case execution time bounds and stack size, as

well as freedom of run-time errors. Runtime errors are typi-

cally caused by undefined or unspecified behaviors of the pro-

gramming language used. In the case of the programming lan-

guage C they include faulty pointer manipulations, numerical

errors such as arithmetic overflows and division by zero, as well

as data races, deadlocks, and further synchronization errors in

concurrent software.

The data and control flow of the software is of crucial im-

portance for the verification of functional and non-functional

correctness properties. In the DO-178C, the verification goal

6.3.3.b (Consistency) demands that “a correct relationship ex-

ists between the components of the software architecture. This

relationship exists via data flow and control flow.” It is com-

plemented by the verification goal of Sec. 6.3.4.b (Compliance

with the software architecture) which demands to “ensure that

the source code matches the data flow and control flow de-

fined in the software architecture”. Obviously the data and con-

trol flow of the implemented software must match the intended

data and control flow as specified in the software architecture,

and unintended data and control flow must be avoided. This

also implies demonstrating freedom of interference between

software components in mixed-criticality software. Accord-

ing to DO-178C, Sec 2.4.1, if partitioning and independence

between software components cannot be demonstrated, all of

them are subject to the highest criticality level assigned to any

of them. Similar requirements can also be found in ISO-26262

(cf. Sec. 7.4.9 and Annex D of [8]) and other safety norms.

Furthermore, the data and control flow also determines the

required effort for functional testing. In DO-178C, Objective

8 of Annex A Table A-7 requires that “Test coverage of soft-

ware structure (data and control coupling) is achieved”, refer-

encing Sec. 6.4.4.2.c which states that structural coverage anal-

ysis should “confirm that the requirements-based testing has

exercised the data and control coupling between code compo-

nents”. These terms are defined as:

Data coupling The dependence of a software component on

data not exclusively under the control of that software

component.

Control coupling The manner or degree by which one soft-

ware component influences the execution of another soft-

ware component.

The term “software component” is not precisely defined for

these requirements. As stated in the CAST19 report [2],

1

there is currently no established understanding of the granu-

larity of “component”, it depends on the architecture being

implemented. As a consequence, [2] suggests that certifica-

tion projects should define what they mean by “component” in

their specific architecture for demonstrating compliance to DO-

178C.

The intent of structural coverage analysis is to provide a mea-

sure of the completeness of the testing process to ensure that

requirements-based testing adequately exercised the software

program under test [2]. Statement coverage, decision cover-

age and modified condition/decision coverage (Objectives 5-7

of Table A-7 of [20]) can be addressed at the module level by

reviewing test cases and executing requirements-based tests of

that module in isolation from other program modules. In con-

trast, Objective 8 of Table A-7 is primarily intended to be a

verification of the integration activity: The intent of the struc-

tural coverage analysis of data coupling and control coupling

is to provide a measurement and assurance that the software

modules/components affect one another in the ways in which

the software designer intended and do not affect one another

in unintended ways, thus resulting in unplanned, anomalous or

erroneous behavior. Hence, satisfying this objective is intended

to provide a measure of the completeness of integration verifi-

cation. As software increases in size and complexity, the qual-

ity of data and control coupling analysis is a growing concern

for certification authorities [2].

In general, the data and control flow of the software can

be determined by semantical static analysis. Semantics-based

methods can be further grouped into unsound and sound ap-

proaches. Abstract interpretation is a formal method for sound

semantics-based static program analysis which provides assur-

ance that there are no false negatives with respect to the classes

of defects under consideration. For data and control flow anal-

ysis the soundness of the analysis ensures that all potential tar-

gets of data and function pointers are taken into account.

This article is structured as follows: In Sec.2 we will give

a brief overview of abstract interpretation and illustrate its ap-

plication to runtime error analysis with the example of the an-

alyzer Astrée. As discussed in Sec. 3 runtime error analysis

can be seen as a prerequisite for data and control flow analysis,

since it aims at detecting code defects that can corrupt the in-

tended data and control flow. Sec. 4, Sec. 5 and Sec. 6 give a

general overview of the core methodologies used in our work:

sound global data and control flow analysis, sound taint analy-

sis, and semantically refined program slicing. Based on those

methodologies, Sec. 7 presents a novel approach for static data

and control coupling analysis and interference analysis, that

builds on a specification mechanism for software components

appropriate for automatic static code analysis. It augments

global data and control flow analysis by the software compo-

nent level and presents a scalable and automatic taint analysis

to determine data and control dependences between software

components. Sec. 9 concludes.

2 Sound Static Source Code Analysis

The term static analysis is used to describe a variety of program

analysis techniques with the common property that the results

are only based on the software structure. Purely syntactical

methods can be applied to check syntactical coding rules as

contained in all relevant coding guidelines, including MISRA

C/C++ [19, 15], or SEI CERT C/C++ [21]. A deeper under-

standing of the code such as knowledge about variable values,

pointer targets, etc. requires semantical static analysis. It can

be applied to check semantical coding rules which are also con-

tained in the coding guidelines mentioned above, or to identify

semantical code defects.

The semantics of a programming language is a formal de-

scription of the behavior of programs. The most precise seman-

tics is the so-called concrete semantics, describing closely the

actual execution of the program on all possible inputs. Yet in

general, the concrete semantics is not computable. Even under

the assumption that the program terminates, it is too detailed

to allow for efficient computations. Unsound analyzers may

choose to reduce complexity by not taking certain program ef-

fects or certain execution scenarios into account. A sound ana-

lyzer is not allowed to do this; all potential program executions

must be accounted for. Since in the concrete semantics this

is too complex, the solution is to introduce a formal abstract

semantics that approximates the concrete semantics of the pro-

gram in a well-defined way and still is efficiently computable.

This abstract semantics can be chosen as the basis for a static

analysis. Compared to an analysis of the concrete semantics,

the analysis result may be less precise but the computation may

be significantly faster.

Abstract interpretation is a formal method for sound

semantics-based static program analysis [3]. It supports for-

mal correctness proofs: it can be proved that an analysis will

terminate and that it is sound, i.e., that it computes an over-

approximation of the concrete semantics. Imprecisions can oc-

cur, but it can be shown that they will always occur on the

safe side. Abstract interpretation-based static analyzers pro-

vide full control and data coverage and allow conclusions to be

drawn that are valid for all program runs with all inputs. Nowa-

days, abstract interpretation-based static analyzers that can de-

tect stack overflows and violations of timing constraints [22]

and that can prove the absence of runtime errors and data races

[4][12], are widely used for developing and verifying safety-

critical software [9].

Runtime Error Analysis

At the source code level, the data and control flow of a program

might be accidentally affected by unintended behavior, includ-

ing unspecified and undefined behaviors of the programming

language. Hence, a safe analysis of data and control flow must

be embedded in a runtime error analysis that captures such un-

defined/unspecified behaviors.

In runtime error analysis, soundness means that the analyzer

never omits to signal an error that can appear in some execu-

tion environment. If no potential error is signaled, definitely no

runtime error can occur: there are no false negatives. When a

sound analyzer does not report a division by zero in a/b, this

is a proof that b can never be 0. If a potential error is reported,

the analyzer cannot exclude that there is a concrete program ex-

ecution triggering the error. If there is no such execution, this

is a false alarm (false positive).

Throughout this article, we will focus on the Astrée analyzer

as an example of sound static runtime error analyzer [13][18].

Astrée’s main purpose is to report program defects caused

by unspecified and undefined behaviors in C/C++ programs.

The reported code defects include integer/floating-point divi-

sion by zero, out-of-bounds array indexing, erroneous pointer

manipulation and dereferencing (e.g., buffer overflows, null

pointer dereferencing, dangling pointers), accesses to uninitial-

ized variables, and further sequential programming defects. In

addition, Astrée’s sound thread interleaving semantics enables

it to also report concurrency defects, such as data races, lock-

/unlock problems, and deadlocks. Hence, Astrée not only de-

termines the data and control flow within one thread of control,

but can also capture interferences between different threads and

their effects on the data and control flow within those threads.

Practical experience on avionics and automotive industry ap-

plications are given in [13][17][14]. They show that industry-

sized programs of millions of lines of code can be analyzed in

acceptable time with high precision for runtime errors and data

races.

3 Data and Control Flow Errors

The purpose of data and control coupling analysis is to deter-

mine the effective data and control flow between software com-

ponents which might be desired or undesired, depending on the

properties of the software architecture. In addition, cases where

there is an actual defect in the data or control flow behavior with

respect to the semantics of the programming language, must be

reported as an error.

In general, Astrée reports defects related to undefined or un-

specified behavior of the programming language. Since their

behavior is undefined or unspecified, all of them might have

an effect on data or control flow – an example is a division by

0, which can cause the program to stop with a trap, obviously

causing an unexpected change in control flow. In the follow-

ing we will give an overview of the alarm classes of Astrée that

specifically address memory safety or control flow behavior of

the program.

Data Flow Errors

• Out-of-bounds array access: The value of the index used

to access an array can be outside the feasible index range.

• Invalid pointer dereference and manipulation: This de-

fect category includes dangling pointer accesses, invalid

pointer dereferences and arithmetics, null pointer derefer-

ences, misaligned dereferences, buffer overflows, etc.

• Invalid dynamic memory allocation: Allocation size is

negative or too large.

• Memory leak: Memory may not be freed after dynamic

allocation.

• Uninitialized variable access: This category includes read

accesses of uninitialized local variables and read accesses

to global/static variables without explicit initializer or

prior assignment.

• Data race: Write-write or read-write data race, i.e. ac-

cess to the same variable from at least two threads without

proper synchronization.

• Spectre vulnerability: Occurrences of Spectre V1, V1.1,

or SplitSpectre vulnerabilities.

• Writes to constant memory: Attempts to write to a con-

stant.

• Pointer aliasing: Two pointer variables may alias

which have been declared as distinct by the directive

ASTREE check separate.

Control Flow Errors

• Non-returning functions: Functions that may never return,

e.g. due to infinite loops, calling exit, etc.

• Incompatible function calls: This category includes func-

tion calls with wrong number or incompatible types of pa-

rameters, incompatible return types, etc.

• Deadlocks: A deadlock occurs when two threads wait for

each other indefinitely, e.g. due to blocked resources.

• Recursions: Recursive function calls are reported.

• Infinite loops: This category includes alarms about loops

which definitely never terminate, and alarms about loops

that might never terminate (e.g. only terminate upon read-

ing a particular value from a truly volatile variable).

• Lock/unlock problems: This category includes attempts to

unlock a mutex variable that has not been locked, locks

without unlocks, locks acquired by a wrong task, etc.

• C++ Exception: The alarm reports C++ statements that

can raise a C++ exception.

• Pure virtual function call: A pure virtual function is called

in a specific context (C++).

It is apparent that these defects may invalidate any assumptions

about the data and control flow behavior of the program, and

hence, must also be considered for data and control coupling

analysis. The same may also hold for other cases of unde-

fined/unspecific behavior which are reported by Astrée. Hence

sound static runtime error analysis can be seen as prerequisite

for data and control coupling analysis. As emphasized in Sec. 2

the defect classes are not limited to sequential program execu-

tion but also include program defects induced by concurrent

thread execution.

4 Data and Control Flow Analysis

Classical global data and control flow analysis determines the

variable accesses and function invocations throughout program

execution. It is centered on concepts included in the program-

ming language, as compared to data and control coupling anal-

ysis that focuses on software components which are not ex-

pressed by programming language constructs. It constitutes the

required basis for data and control coupling analysis.

Figure 1: Astrée’s Data Flow View.

In its basic data and control flow analysis module, Astrée

tracks accesses to global variables, static variables, and lo-

cal variables whose accesses are made outside of the frame in

which the local variables are defined (e.g., because their address

is passed into a called function). All data and function point-

ers are automatically resolved. The soundness of the analysis

ensures that all potential targets of data and function pointers

are taken into account. Astrée’s data and control flow reports

show the number of read/write accesses for every global, static,

and out-of-frame local variable, lists the location of each ac-

cess and shows the function from which the access is made. All

variables are classified as being thread-local, effectively shared

between different threads, or subject to a data race (cf. Fig. 1).

Variable accesses can be interactively explored, e.g. , by select-

ing a variable and filtering for accesses from a particular thread

or function, or for a given access type.

Figure 2: Astrée’s Control Flow View.

The control flow is described by listing all callers and callees

for every C function along with the threads in which they are

called. In AUTOSAR projects, additionally the application and

the core to which the executing thread belongs is listed. An ex-

ample is shown in Fig. 2. The control flow can be interactively

explored, e.g. , when selecting a function and filtering for its

callers or callees or for threads in which it is called, all relevant

call sites are displayed. There is also a call graph visualization

which can be interactively explored as well (cf. Fig. 3).

In case of C++ programs, a class graph visualization shows a

selected class with all its fields and methods as well as its sub-

and superclasses with the relevant template instantiations in a

Figure 3: Astrée’s Call Graph Visualization.

graph depicting the inheritance hierarchy (cf. Fig. 4).

Figure 4: Astrée’s Class Graph Visualization.

More sophisticated information about selected flows of val-

ues can be provided by two dedicated analysis methods: taint

analysis and program slicing. Taint analysis is a forward anal-

ysis and can answer questions about program parts affected by

reading corrupted input values. Program slicing is a backward

analysis which can answer questions about the program parts

which might influence the value of a particular variable at a

particular program point.

All data and control properties described in this section are

agnostic of the definition of software components; they are lim-

ited to native concepts of the programming language. Lifting

this information to the level of software components is the topic

of Sec. 7 which leverages the techniques of taint analysis and

program slicing described in Sec. 5 and Sec. 6.

5 Taint Analysis

Taint analysis was first introduced as a dynamic analysis tech-

nique (e.g., in PERL), to try to find out which part of a code

could be affected by some inputs. The original technique con-

sisted in flipping normally unused bits, that would be copied

around by operations and assignments. The same idea can be

extended to static analysis by enhancing the concrete seman-

tics of programs with tainting, the formal equivalent of the un-

used flipped bit in the dynamic approach. In the context of

abstract interpretation, it is easy to abstract this extra infor-

mation in an efficient and sound way, using dedicated abstract

domains. Conceptually, taint analysis consists in discovering

data dependencies using the notion of taint propagation. Taint

propagation can be formalized using a non-standard semantics

of programs, where an imaginary taint is associated to some

input values. Considering a standard semantics using a suc-

cessor relation between program states, and considering that a

program state is a map from memory locations (variables, pro-

gram counter, etc.) to values in V , the tainted semantics relates

tainted states, which are maps from the same memory locations

to V ×{taint,notaint}, and such that if we project on V we get

the same relation as with the standard semantics.

To define what happens to the taint part of the tainted value,

one must define a taint policy. The taint policy specifies:

• Taint sources which are a subset of input values or vari-

ables such that in any state, the values associated with that

input values or variables are always tainted.

• Taint propagation describes how the tainting gets prop-

agated. Typical propagation is through assignment, but

more complex propagation can take more control flow into

account, and may not propagate the taint through all arith-

metic or pointer operations.

• Taint cleaning is an alternative to taint propagation, de-

scribing all the operations that do not propagate the taint.

In this case, all assignments not containing the taint clean-

ing will propagate the taint.

• Taint sinks is an optional set of memory locations. This

has no semantical effect, except to specify conditions

when an alarm should be emitted when verifying a pro-

gram (an alarm must be emitted if a taint sink may become

tainted for a given execution of the program).

A sound taint analyzer will compute an over-approximation

of the memory locations that may be mapped to a tainted value

during program execution. The soundness requirement ensures

that no taint sink warning will be missed by the analyzer.

Astrée provides a generic abstract domain for taint analysis

that can be freely instantiated by the users. It augments Astrée’s

process-interleaving interprocedural code analysis by carrying

and computing taint information at the byte level. Any num-

ber of taint hues can be tracked by Astrée, and their combi-

nations will be soundly abstracted. Tainted input is specified

through directives (__ASTREE_taint((var;hues))) at-

tached to program locations. Such directives can precisely de-

scribe which variables, and which part of those variables is to

be tainted, with the given taint hues, each time this program lo-

cation is reached. Any assignment is interpreted as propagating

the join of all taint hues from its right-hand side to the targets of

its left-hand side. In addition, specific directives may be intro-

duced to explicitly modify the taint hues of some variable parts.

This is particularly useful to model cleansing function effects

or to emulate changes of security levels in the code.

The result of the analysis with tainting can be explored in the

Astrée GUI, or explicitly dumped using dedicated directives.

Finally, the taint sink directives may be used to declare that

some parts of some variables must be considered as taint sinks

for a given set of taint hues. When a tainted value is assigned

to a taint sink, then Astrée will emit a dedicated alarm, and

remove the sinked hues, so that only the first occurrence has to

be examined to fix potential issues with the security data flow.

The main intended use of taint analysis in Astrée is to ex-

pose potential vulnerabilities with respect to security policies

or resilience mechanisms. Thanks to the intrinsic soundness

of the approach, no tainting can be forgotten, and that without

any bound on the number of iterations of loops, size of data

or length of the call stack. Based on its taint analysis, Astrée

provides an automatic detection of Spectre-PHT vulnerabilities

[10].

6 Program Slicing

The following definitions introduce the basic principles of static

program slicing.

Definition 1 (Slicing Criterion) Let P be a program. A slicing

criterion in P is a tuple (s,V) which consists of a statement s

and a set of variables V from P

Definition 2 (Slice) A slice S is a subprogram of P that exhibits

the same behavior with respect to the slicing criterion (s,V).

Computing a statement-minimal slice is an undecidable prob-

lem. However there are well-established algorithms for com-

puting non-minimal, but still useful slices. A common ap-

proach is to compute a System Dependence Graph (SDG),

which contains all data and control dependences of the pro-

gram. Then a slice can be expressed as a reachability problem

in this graph [7]. The precision of the slice directly depends on

the precision of the SDG. However, computing precise system

dependency graphs is a non-trivial task since it requires deriv-

ing intricate program properties. These may include points-to

information for variable and function pointers, code reachabil-

ity, context information or possible variable values at certain

program points. As an example, over-approximating the set of

possible destinations of a pointer variable blows up the size of

the system dependence graph as it may add false dependences

to statements which contain variables that would otherwise not

be included in the slice. This may cause a drastic transitive

increase in the number of dependences and vertices.

Astrée provides a novel concept of program slicing, that can

be termed sound semantically refined slicing: its slicer can be

run in the sequel of a finished Astrée analysis run, which makes

it possible to leverage the invariants computed by its main fix-

point analysis. The system dependence graph computed by our

approach is a sound abstraction of the data- and control depen-

dences of a computer program. This follows from the sound-

ness of the Astrée core analysis. As a consequence, the re-

sulting slices are also sound. Minimizing false alarms is an

important design goal of Astrée, which mandates a highly pre-

cise point-to analysis. Furthermore, Astrée detects code which

is guaranteed to be unreachable for any possible program exe-

cution, and which, consequently, can be ignored when comput-

ing the slices. Hence, compared to slicing without leveraging

Astrée invariants, a significant precision and efficiency gain is

achieved by reducing the amount of vertices and the amount of

data- and control dependences in the system dependence graph.

This efficiency improvement makes it possible to compute pre-

cise slices for very large programs in feasible time.

Semantically refined slicing can be run in context-insensitive

mode (considering all possible call contexts) and context-

sensitive mode (considering exactly one call context). To com-

pute context-sensitive slices we enhance the slicing algorithm

of [7] with a description of call contexts (stacks). In each step

of the reachability analysis we additionally check that the de-

Figure 5: Alarm Slicing in Astrée

pendences under examination match the relevant stacks. De-

pendences which do not match are discarded. When following

a dependency edge which represents a function call, the top-

most function is removed from the stack. For one given pro-

gram point a context-insensitive slice is identical with the union

over all context-sensitive slices.

In contrast to context-insensitive slices, context-sensitive

slices do not capture all possible behaviors of the original pro-

gram which influence the slicing criterion. Instead, the be-

havior described by the slice is restricted to execution paths

which are in accordance with the set of considered call con-

texts. Context-sensitive slices tend to be significantly smaller

than context-insensitive ones.

The different slicing modes presented in this section are

relevant for demonstrating safety and security properties.

Sound slices can be computed by context-insensitive analysis-

enhanced slicing. With these slices it is possible to show that

certain parts of the code or certain input variables might influ-

ence or cannot influence a program section of interest. They

yield a global overview of these properties for the entire pro-

gram.

In contrast to that, context-sensitive analysis-enhanced slic-

ing, which only considers a subset of possible contexts, is more

suitable for investigating the influence of a certain code sec-

tion, e.g. a function, or a module, on the program location of

the slicing criterion. Hence it is perfectly suited as a basis for

automatic alarm slicing, which is available in Astrée. To give

an example, the critical situation for a division by zero alarm,

which is reported for a given context, is precisely the context

where the denominator becomes 0. Therefore the alarm slice is

a partial slice for the variables used in the denominator, which

only considers program paths leading to this particular context.

This concept of alarm slicing has been implemented in Astrée

and is available from the GUI: from the context menu of an

alarm in the Astrée graphical user interface the computation of

a slice for the alarm can be automatically triggered, as shown

in Fig. 5.

A detailed experimental survey of Astrée’s semantically

refined program slicer with programs from automotive and

avionic industry is given in [11]. It demonstrates that semanti-

cally refined slicing (termed analysis-enhanced slicing in [11])

can be applied to industry-size code with high precision and

with feasible memory and computation time requirements.

7 Data and Control Coupling

The CAST19 report [2] reviews the data and control coupling

requirements of the DO-178C and provides clarifications about

the intended use. It emphasizes that the purpose of data cou-

pling analysis includes (among others) identifying data depen-

dences, verifying the data interfaces between modules/compo-

nents through testing and analyses, identifying inappropriate

data dependencies, evaluating the need for and accurate use of

global data, and evaluating input/output data buffers.

The purpose of control coupling is stated to include identi-

fying control dependencies, identifying inappropriate control

dependencies, verifying correct execution call sequence, defin-

ing and evaluating the extend of interface depth, and assisting

in WCET analysis.

In addition, as outlined above, data coupling and control cou-

pling together aim at providing a completion check of the inte-

gration testing effort. The CAST19 report further clarifies that

the “Data Coupling and Control Coupling Analyses” objective

of the DO-178C (Objective 8 of Annex A, Table A-7 [20]) may

be satisfied as a static activity, a dynamic activity, or a combi-

nation.

In the following we propose a concept for sound static data

and control coupling analysis that builds on Astrée’s data and

control flow analysis as described in Sec. 4, and which satisfies

all requirements mentioned above. First, in Sec. 7.1, we present

a flexible and extensible concept for specifying software com-

ponents and critical data and control flow interactions between

them. Sec. 7.2 outlines static data and control flow analysis

augmented by the concept of components. Sec. 7.3 presents an

automatic taint analysis that efficiently tracks the flow of values

between components, and automatically reports undesired data

flow and undesired control dependencies. In case of taint sink

alarms indicating undesired data or control flow, alarm slicing

can be used to track down the cause of the undesired behavior.

7.1 Specifying Software Components

Since there is no established understanding of the granularity

of “component”, a specification mechanism is needed that al-

lows users to specify their concept of software components

and the “interesting” data or control flow between them. For

the purposes of data and control coupling, the full power of

special-purpose architecture description languages (ADL) is

not needed (cf. AADL [6], ArchiMate [1], SysML [23], or

UML-based architecture specifications), since the aim is to as-

certain the desired properties by automatic static analysis from

the source code.
A simple starting point is to define a software component as

a collection of all variables and functions defined in a set of
source files. This can be provided by (conceptual) annotations
of source files or functions:
"xfile1.c" insert :

__ASTREE_attributes((component("trusted")));

"yfile1.c" insert :

__ASTREE_attributes((component("non-trusted")));

This schema can be easily extended to more complex com-

ponent definitions, e.g., based on individual functions, all files

in a sub-directory, etc.
In addition to defining the elements of a software component,

the specification also allows to declare component interactions
that should be “observed” during the analysis, i.e., specifically
tracked and reported. To this end, the analyzer can be instructed
to report control and data flow from the component “trusted” to
the component “non-trusted”, and vice versa:
<observe>

<item key="trusted">"non-trusted"</item>

<item key="non-trusted">"trusted"</item>

</observe>

A dedicated view in the graphical user interface of Astrée

allows to conveniently create the software component specifi-

cation, and then export them to an XML file. Alternatively, the

XML file may also be generated automatically from an existing

ADL specification.

The specification of component interactions to be observed

mostly aims at explicitly reporting unexpected or forbidden in-

teractions. By placing components with expected interactions

under observation, Astrée can also address intended interac-

tions, however, in that case, the result of Astrée only contributes

potential interactions due to its sound over-approximation: a

reported component interaction can also be a “false alarm”. A

dedicated tag to support simultaneous tracking of unexpected

and intended interactions is currently not available but could be

easily added.

7.2 Augmented Data and Control Flow Analysis

The first step towards detecting and reporting data and control

flow relations between software components is to enhance the

standard data and control flow analysis by taking the compo-

nent definitions into account, which we term augmented data

and control flow analysis.

The augmented data and control flow analysis of Astrée will

thus report any interaction between two software components

of the following classes:

• Calling a function of a given component, including indi-

rect calls through pointer dereferences.

• Writing to a variable defined in a given component, which

can be a global variable that belongs to the component or a

local variable defined in a function of the component. That

includes indirect writes through pointer dereferences.

• Reading from a variable defined in a given component.

That includes indirect reads through pointer dereferences.

These interactions already capture most interferences between

components, including indirect ones, such as scenarios when

the address of a variable of component A is stored in compo-

nent C, and then read from C by component B which writes to

it through dereference.

They will not capture more subtle value dependencies, such

as component C copying the value of a global variable of com-

ponent A, store it in one of its variables and then give the value

to component B that may take different control flow based on

that value. To track such interferences, we need to follow the

flow of values, and we can do that using taint analysis tech-

niques – cf. Sec. 7.3.

The data and control flow views in the Astrée GUI presented

in Fig. 1 and Fig. 2 of Sec. 4, and the corresponding data and

control flow reports will be augmented by additional columns

which make the component assignment explicit. Each access

to a variable X then is reported with the following information

in the data flow view:

– variable name

– component to which the variable belongs

– location of access (may be pointer dereference)

– access type (read/write)

– function containing the access

– component to which the accessing function belongs

– task in which the accessing function is executed

– application of task

– core to which application has been assigned

– access locality (thread-local, effectively shared, data race)

– notification for components under observation

Each function call is reported with the following information

in the control flow view:

– caller

– component of caller

– callee

– component of callee

– call site (may be function pointer call)

– task in which the call is executed

– application of task

– core assigned to application

– notification for components under observation

The data and control flow reports can be generated in various

open formats that support post-processing, so it is easy to query

for any component interaction of interest. If a flow from a

component X to a component Y has been introduced with an

observe tag in the component specification, a dedicated no-

tification is generated about any observed flow from X to Y.

Also the visualizations of Fig. 3 and Fig. 4 will be augmented

by component information so that it will be possible, e.g., to

highlight the nodes for selected components, or show different

components in different colors.

This mechanism gives a sound overapproximation of all vari-

able accesses and function calls, and establishes their link to the

software component definition. It makes it easy to spot flows

under observation, hence call attention to flows that should be

investigated.

7.3 Data and Control Coupling Analysis

As outlined in Sec. 5, taint analysis allows to track the flow of

values in a project. One solution to compute data dependencies

between components is to assign a distinct taint hue to each

component, and use all global and local variables of a compo-

nent as taint source with the component hue. To be automat-

ically notified about all components where these values flow,

all reads in each component are declared as taint sinks for all

other components hues. The required __ASTREE_taint and

__ASTREE_taint_sink directives can be generated auto-

matically. To focus on particular component interactions, the

automatic generation of taint source and taint sink directives

can be restricted to only those component flows placed un-

der observation, which reduces the number of taint sink alarms

about component dependences. Of course, it is also possible to

manually select specific component flows to observe, or per-

form the taint analysis on a per-variable base for individual

variables deemed critical.

This approach not only detects additional interferences com-

pared to the augmented data and control flow analysis, it also

allows to account for authorized interactions in a fine-grained

way. One example is that data flow from component Y to X

is forbidden, unless the access is made by specific gateway

functions. Such interactions can be modeled by taint-cleaning

operations which remove the taint in those gateway functions

(sanitization points), reducing the number of legitimate inter-

ferences that need to be examined. To further facilitate this

examination, automatic alarm slicing on taint sink alarms can

be used to help identify the program regions responsible for

undesired component interactions.

In addition to the data flows reported by the automatic taint-

ing as described above, taint analysis also allows to focus on

control coupling. The generation of taint sink directives can

be adapted, so that only values used in guards (for conditional

statements, while loops or switch statement) and in function

pointer dereferences are considered as taint sinks.

Hence, the taint analysis of software components can be per-

formed in data coupling and control coupling mode, satisfying

the requirements of the CAST19 report as described above.

It should be noted that taint analysis is a complement to the

augmented data and control flow analysis (cf. Sec. 7.2), but

cannot replace it, since it focuses on the data flow aspect and

does not report invocations of functions from other compo-

nents. Its data flow results are more powerful: taint analysis

can keep track of call-by-value parameters of functions and of

function return values and hence report dependences with re-

spect to constants or local variables. It not only shows that at a

certain location a given variable is accessed, but also provides

the corresponding call context – as an example, if a function is

called with a pointer argument, and only in one call site an ad-

dress of a variable from another component is passed, then the

alarm context will show precisely this call site. Furthermore,

it makes it possible to narrow the focus on selected component

interactions and tracks the relevant data flows also through code

that does not belong to one of the components under observa-

tion. Both of them together, i.e. , the combination of augmented

data and control analysis and the taint analysis for software

components provide a sound interference analysis. They re-

port all interactions between software components executed in

one or multiple concurrent threads, pinpoint interactions under

observation, hence enable users to find undesired interactions,

and browse the code locations where they happen. They also

provide a basis for checking intended interactions and allow

computing metrics about the data and control flow between the

software components.

As an example, consider the following code sequence:
/* file main.c */

void main(void) {

int x;

x = F_a(0);

g_b = x;

F_c(g_b);

}

/* file A.c */

__ASTREE_attributes((component("A")));

int g_a;

int F_a(int x) {

int y=x;

return x + 2;

}

/* file B.c */

__ASTREE_attributes((component("B")));

int g_b;

/* file C.c */

__ASTREE_attributes((component("C")));

int g_c;

int F_c(int x) {

g_c=g_a;

if (g_c < 0) g_c = F_a(3);

}

The augmented data and control flow analysis provides the

information that component C depends on A through variable

read and function call, since F_c reads variable g_a and calls

function F_a. Component tainting raises four taint sink alarms:

first it reports that component C depends on A at the assignment

g_c=g_a in F_C, which is information also available in the

augmented data flow view. It also reports a dependence from A

to C at g_c = F_a(3); in F_C because the return value of

F_A is assigned to g_c. This is more precise information than

provided by the augmented control flow view which just reports

a call to a function from C at this location. Third, the taint

analysis reports a dependence from C to A at the assignment

y=x in F_a, since C passes a constant value to F_a, which

then is assigned to a local variable of A. Finally, the compo-

nent tainting reveals that component B depends on component

A through variable x: a taint sink alarm is raised at the assign-

ment g_b = x in main.c, which is outside of components

A, B, and C. Note that in the example, all variables are directly

accessed, however, the analysis results would not change if all

variable accesses and function calls were made via pointers.

8 Experimental Results

The augmented data and control flow analysis is part of the

sound runtime error analysis, hence, it is not associated with

additional runtime or memory overhead.

To assess the performance of the taint-based components

analysis we investigated four industry projects of various sizes,

two from the avionics domain and two from the automotive

domain. We partitioned the code in software components and

determined the increase in analysis time and memory consump-

tion caused by component tainting. Tab. 1 shows the character-

istics of the projects, the results obtained with component taint-

ing are summarized in Tab. 2. Column S of Tab. 1 gives the size

of the projects in million physical lines of code1 after prepro-

cessing, column NC indicates the number of software compo-

nents. The large number of software components in project

AE2 results from declaring every application source file as an

own component; in the other projects the components consist

of larger code parts. Column T and M show the analysis time

and memory consumption in their original configuration.

Project S [MLOC] NC T M [GB]
AE1 0.14 11 33m 2.43

AE2 1.08 4309 8h 27m 15.53

AU1 5.46 11 7h 1m 39.81

AU2 5.03 35 10h 44m 31.52

Table 1: Project Characteristics

Column Tt and Mt of Tab. 2 show the analysis time resp.

memory consumption with component tainting. The increase in

analysis time and memory consumption associated with com-

ponent tainting is given in column ∆T resp. ∆M . The results

show that the overhead of component tainting is low. The in-

crease in memory consumption is below 1% for all test cases

except AE2. For AE2 an extremely high number of compo-

nents has been defined, which also entails a large number of

component interactions: there are 78283 alarms about variable

accesses creating component dependencies (cf. Tab. 3). How-

ever, even in that scenario the memory overhead is only 4.76%.

The increase in analysis time is between 4.93% and 8.07%

for the larger projects. The largest increase of 8.07% occurs in

project AU2, where the analysis time increases by 45 min from

a total analysis time of 10 hours 44 minutes. On the small-

est project, AE1, there is no measurable difference in memory

consumption.

Project Tt Mt [GB] ∆T ∆M

AE1 33m 2.43 0% 0%

AE2 8h 52m 16.27 4.93% 4.76%

AU1 7h 24m 40 5.5% 0.48%

AU2 11h 36m 31.78 8.07% 0.82%

Table 2: Results with Component Tainting

Taint sink alarms for component dependences can be limited

to flows under observation. However, in the experiments, we

configured Astrée to generate taint sink alarms for every cross-

component flow, since the goal was to assess performance on

large projects with many component interactions. The num-

ber of cross-component variable accesses derived from the aug-

mented data flow view is listed in column NV of Tab. 3, column

NC gives the number of cross-component function invocations,

and the number of taint sink alarms denoting cross-component

data flows is listed in column NTA. All numbers indicate the

number of code locations which exhibit a cross-component in-

teraction, e.g., all accesses to a variable gA of component A

from component B are separately counted.

1I.e., comment lines and empty lines are not counted.

The difference between columns NV and NTA, on the one

hand, is due to additional dependences discovered by taint-

ing, e.g., due to values passed through library functions not

assigned to a specific components, call-by-value function pa-

rameters and function return values. On the other hand, as dis-

cussed in Sec. 7.3, component tainting focuses on data depen-

dences and tracks the effect of all function calls, but does not

separately report the calls themselves. The effect of infrastruc-

ture code without component assignment is particularly visible

in project AE2. The components do not explicitly invoke one

another, the invocations are made in an infrastructure layer we

did not assign to an own component. Dependencies carried

through that infrastructure layer, e.g., by copying component

variables via infrastructure variables, are visible with compo-

nent tainting, but not in the augmented data flow view.

Project NV NC NTA

AE1 147 289 415

AE2 40929 0 78283

AU1 9569 1695 10285

AU2 8485 4242 16852

Table 3: Code locations with cross-component interactions

9 Conclusion

At the source code level, the data and control flow of a program

might be affected by behavior unintended by the programmer,

including unspecified and undefined behaviors of the program-

ming language. Hence, a safe analysis of data and control

flow must be embedded in a runtime error analysis that cap-

tures such undefined/unspecified behaviors. Determining the

data and control flow in the source code and making sure that it

is compliant to the intended control and data flow as defined in

the software architecture is a common requirement in all con-

temporary safety norms. The aim of data coupling and control

coupling analysis objective of DO-178C is to provide a measure

of the completeness of integration verification by ensuring that

the software components affect one another only in intended

ways. Furthermore all safety norms require demonstrating the

freedom of interference between software components of dif-

ferent criticality levels.

In this article we have presented a novel approach for data

and control coupling analysis and interference analysis, that

builds on a specification mechanism for software components

appropriate for automatic static code analysis. It is based on the

sound static analyzer Astrée that allows to prove the absence of

critical runtime errors that could cause memory corruption and

control flow corruption. Our approach augments sound global

data and control flow analysis by the software component level,

proposes a scalable and automatic taint analysis to determine

data and control dependences between software components,

and incorporates semantically refined program slicing to help

identify the program regions responsible for undesired com-

ponent interactions. It enables a sound approximation of data

and control coupling and a sound interference analysis that help

demonstrating the correctness of the data and control flow of

the program and contribute to satisfying the data and control

coupling and freedom of interference verification goals of con-

temporary safety norms. The experimental results show that

our approach is highly efficient and can be applied to industry-

size software projects.

References

[1] The ArchiMate Enterprise Architecture Modeling Language.

https://www.opengroup.org/archimate-forum/

archimate-overview[retrieved: Jan. 2021].

[2] Certification Authorities Software Team (CAST). Position Paper

CAST-19. Clarification of Structural Coverage Analyses of Data

Coupling and Control Coupling, 2004.

[3] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approxi-

mation of fixpoints. In Proc. of POPL’77, pages 238–252. ACM

Press, 1977.

[4] D. Delmas and J. Souyris. ASTRÉE: from Research to In-

dustry. In Proc. 14th International Static Analysis Symposium

(SAS2007), number 4634 in LNCS, pages 437–451, 2007.

[5] C. Faure and V. Delebarre. Automatic proof of freedom from

interference with iffree. In Proccedings of the 10th European

Conference on Software Architecture Workshops, Copenhagen,

Denmark, November 28 - December 2, 2016, page 36, 2016.

[6] P. Feiler, D. Gluch, and J. Hudak. Technical Note CMU/SEI-

2006-TN-011. The Architecture Analysis & Design Language

(AADL): An Introduction. Technical report, Software Engineer-

ing Institute, Carnegie Mellon University, 02 2006.

[7] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing

using dependence graphs. ACM Trans. Program. Lang. Syst.,

12(1):26–60, Jan. 1990.

[8] ISO 26262. Road vehicles – Functional safety, 2018.

[9] D. Kästner. Applying Abstract Interpretation to Demonstrate

Functional Safety. In J.-L. Boulanger, editor, Formal Methods

Applied to Industrial Complex Systems. ISTE/Wiley, London,

UK, 2014.

[10] D. Kästner, L. Mauborgne, C. Ferdinand, and H. Theiling. De-

tecting Spectre Vulnerabilities by Sound Static Analysis. In

R. F. Anne Coull, Steve Chan, editor, The Fourth International

Conference on Cyber-Technologies and Cyber-Systems (CYBER

2019), volume 4 of IARIA Conferences, pages 29–37. IARIA

XPS Press, 2019. Archived in the free access ThinkMindT M Dig-

ital Library, http://www.thinkmind.org/download.

php?articleid=cyber_2019_3_10_80050.

[11] D. Kästner, L. Mauborgne, N. Grafe, and C. Ferdinand. Ad-

vanced Sound Static Analysis to Detect Safety- and Security-

Relevant Programming Defects. In J.-C. B. Rainer Falk,

Steve Chan, editor, 8th International Journal on Advances in Se-

curity, volume 1 & 2, pages 149–159. IARIA, 2018.

[12] D. Kästner, A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot,

A. Schmidt, H. Hille, S. Wilhelm, and C. Ferdinand. Finding All

Potential Runtime Errors and Data Races in Automotive Soft-

ware. In SAE World Congress 2017. SAE International, 2017.

[13] D. Kästner et al. Finding All Potential Runtime Errors and Data

Races in Automotive Software. In SAE World Congress 2017.

SAE International, 2017.

[14] D. Kästner et al. Analyze This! Sound Static Analysis for In-

tegration Verification of Large-Scale Automotive Software. In

Proceedings of the SAE World Congress 2019 (SAE Technical

Paper). SAE International, 2019.

[15] M. Limited. MISRA C++:2008 Guidelines for the use of the

C++ language in critical systems, June 2008.

[16] A. Miné. Static analysis of run-time errors in embedded real-

time parallel C programs. Logical Methods in Computer Science

(LMCS), 8(26):63, Mar. 2012.

[17] A. Miné and D. Delmas. Towards an Industrial Use of Sound

Static Analysis for the Verification of Concurrent Embedded

Avionics Software. In Proc. of the 15th International Confer-

ence on Embedded Software (EMSOFT’15), pages 65–74. IEEE

CS Press, Oct. 2015.

[18] A. Miné et al. Taking Static Analysis to the Next Level: Proving

the Absence of Run-Time Errors and Data Races with Astrée. In

8th European Congress on Embedded Real Time Software and

Systems (ERTS 2016), Toulouse, France, Jan. 2016.

[19] MISRA (Motor Industry Software Reliability Association)

Working Group. MISRA-C:2012 Guidelines for the use of the

C language in critical systems. MISRA Limited, Mar. 2013.

[20] Radio Technical Commission for Aeronautics. RTCA DO-178C.

Software Considerations in Airborne Systems and Equipment

Certification, 2011.

[21] Software Engineering Institute SEI – CERT Division. SEI CERT

C Coding Standard – Rules for Developing Safe, Reliable, and

Secure Systems. Carnegie Mellon University, 2016.

[22] J. Souyris, E. Le Pavec, G. Himbert, V. Jégu, G. Borios, and

R. Heckmann. Computing the worst case execution time of an

avionics program by abstract interpretation. In Proceedings of

the 5th Intl Workshop on Worst-Case Execution Time (WCET)

Analysis, pages 21–24, 2005.

[23] OMG Systems Modeling Language (OMG SysML™) Ver-

sion 1.6. https://www.omg.org/spec/SysML/1.6/

PDF[retrieved: Jan. 2021].

[24] B. Zimmer, C. Dropmann, and J. U. Hanger. A systematic ap-

proach for software interference analysis. In 25th IEEE Inter-

national Symposium on Software Reliability Engineering, ISSRE

2014, Naples, Italy, November 3-6, 2014, pages 78–87, 2014.

Automatic Support for Requirements Validation

Assioua Yasmine†, Rabéa Ameur-Boulifa∗, Patricia Guitton-Ouhamou†, Renaud Pacalet∗
∗LTCI, Télécom Paris, Institut Polytechnique de Paris, France

firstname.lastname@telecom-paris.fr
†Renault Software Labs, France

firstname.lastname@renault.com

Abstract—The automotive industry is currently going through
rapid changes from a mechanical industry to one driven by
innovation in electronics and embedded software. This significant
change creates also significant challenges to the industry. One
of the most important is the ability to create safe vehicles,
emphasizing the importance of safety by design. This paper
is intended to contribute to current activities working towards
an industry-wide development of reliable and secure systems.
Correct by design methodology, including formal methods, have
the potential to improve dependability of systems in this domain.
And their use at an early stage of the development process
ensures faster time to market. In this paper, we present tool
support for our approach that aims at integrating the formal
analysis and verification of functional requirements from early
stages of the development life cycle, by using model checking
technique. From informal requirement specifications the tool
delivers models. They will be used to produce evidences that the
requirement specifications are realizable, otherwise it can guide
their revision. The approach is illustrated by a case study based
on a specific function of autonomous vehicles.

Keywords—Requirements analysis, Reliable systems, Model-
based design, Systems engineering.

I. INTRODUCTION

Designing complex systems is a difficult task. Conventional

development approaches provide a unified process for system

development, from requirements analysis to implementation

[14]. Such approaches play a major role in software engi-

neering practices. But quality of designed products in terms

of correctness and robustness still remains a hot spot. The

issue of building a practical but accurate methodology for

designing safe and correct systems still remains unsolved.

Such approaches are generally based on late-stage validation

relying on testing to check that the requirements specifications

are correct or to detect possible flaws, which leads to hight-cost

corrective measures or even huge financial losses. According

to [6] and [22] financial losses caused by failures represent

more than 5% of the overall turnover of the companies. On

the other hand, the study published in [12] reports that 64%

of all errors are introduced during requirements specification

and design, and 36% of the errors are introduced during the

implementation phase.

Test coverage techniques which are commonly used to

ensure the quality of developed systems cannot be used at

early stages. In contrast, formal analysis grants much higher

potential to discover flaws during the design phase of a system.

Yet, formal techniques for verification and validation often

require a strong technical background that limits their usage

especially in the industrial context.

In [32] we proposed a model-based approach for early

validation of requirements that relies on formal methods. To

facilitate the design of automotive software from requirements,

we suggest enhancing the system design process with the use

of formal methods, and to offer a tool that system designers

can use to assess through a rigorous and systematic process

that the developed systems is compliant with the predefined

requirements. This paper is an extension of this previous work.

In this one, we have significantly extended and implemented

the proposed method. First, we enrich and improve the require-

ments expression language to address more applications in

the automotive domain. The work resulting from this research

is an approach to analyse adaptable and extensible templates

that can be used to specify requirements in the automotive

domain. Second, we introduce the implementation of the

resulting template in Xtext an eclispe-based tool [7]. Finally,

we significantly extend the empirical study by evaluating our

approach with an additional use-case. We demonstrate the

applicability of our tool on an industrial context through a

realistic use-case: the Automatic Park Assist system.

While this work is conducted in a context of analysis of

the software requirements embedded in vehicles, we believe

that our approach is not related to any specific system. This is

why throughout the paper we use the term generic ”system”

regardless of which system (software or physical components)

it is referred to.

The rest of the paper is organised as follows: section II intro-

duces the overall process for the formalization of requirements

by showing the steps from input data to final output. Section

III gives the structure of the requirements language used to

specify automotive requirements. It resembles EARS require-

ments structure. Section IV provides the technical approach for

the formalization of requirements. This includes the natural-

like languages template for specifying requirements, as well

as the association between templates and their semantics in

the UPPAAL formalism, for the derivation of formal models.

Section V validates our approach. Section VI surveys related

work before concluding in section VII.

II. APPROACH FOR REQUIREMENTS VALIDATION

The approach we advocate for formally analysing and

validating requirements is described in Fig. 1. Our tool, which

Fig. 1: An overview of the end-to-end approach for analysing formally automotive requirements

is a proof of concept, is built on the basis of open-source tools.

It consists of three main parts:

• Step 1: To have a clear understanding of the automotive

requirements, we conducted a deep analysis of textual re-

quirements specifying different use-cases in our company.

This work led to the identification of patterns and the

establishment of their classification. From those patterns

we created a grammar that gathers all the possible forms

that a requirement can take. The classification is built

regarding their structures and their role in the model

construction. As with a programming language, the over-

all structure involves fixed terms (keywords), such as

while and shall, that can be combined with free-form

elements with no predefined scheme. The transformation

of these structures into a formal notations allows to verify

their completeness, consistency, and correctness by using

automatic tools. The transformation task is implemented

using the open-source software framework Xtext used for

developing programming languages and domain-specific

languages.

• Step 2: During this step we translate the requirements

from their textual form to a model. We chose the UP-

PAAL automaton formalism as the modelling language

for its ability to represent all the aspects desired and

targeted by the analysis. In particular, the UPPAAL for-

malism supports various constructors, which gives it great

power of expression. For instance, the use of expres-

sions (for expressing guards and assignments) built over

variables and parameters, and the use of synchronisa-

tion over channels. It also allows to model a global

system by composition of subsystems (processes). The

translation procedure is implemented using the open-

souce Eclipse Xtend framework, also widely used for

developing domain-specific languages.

• Step 3: The outcome of the construction of step 2 is either

a valid model, or a non-valid model. In the former case,

the automaton has an initial state, from the initial state

there is a path to all other states, and the automaton is

deterministic. A valid result provides an early evidence of

requirement’s consistency and correctness, it can then be

used to a posteriori analysis and verification of properties.

In the latter case, the malformations are shown to engi-

neers who will correct or complete the requirements in an

iterative process. To perform the analysis and verification

task, we use the UPPAAL model checker: this tool allows

to check automatically the consistency of the model

against properties that can be expressed using specific

languages (such as CTL language) or observer automata.

In cases where properties are violated, the tool is able to

provide a precise and useful feedback to the developer

(engineer) to understand the source of the violation, and

possibly how to fix it.

III. REQUIREMENTS SPECIFICATION

Many large firms, such as Renault, write technical spec-

ifications for the system under design or for the software

application before getting started. The features and behaviour

of the system or the application are described in a set of

documents. It includes a variety of texts and graphics that

defines the intended functionality required by the customer.

At Renault, this document is called STRComp (from System

Technical Requirement Component). This document includes

textual templates that are requirements written in a constrained

natural language, i.e, natural-like language with restricted

syntax.

The analysis of the STRComp of different case studies stud-

ied during our work allowed us to classify the requirements

into categories according to their role and their nature. Overall,

we have identified three categories:

• Interface requirements specification defines interface for

the system under design, in that it describes how to access

the functionality provided by the system via variables or

signals. This type of requirement gives the names of the

variables and signals, and their domain. For example, the

requirement scheme that is used to specify the signals

sent by the system to the environment (subsystems) is of

the following form:

<system> shall send from <actor> the signal <name>

[with the following values : (- <value>)+]

In the same way, requirement schemes are defined spec-

ifying the signals received by the systems:

<system> shall receive from <actor> the signal <name>

[with the following values : - <value>)+]

• Functional requirements or specification points describe

the desired behaviour of the system: what the system is

intended to do and what conditions it must meet. The

requirements of this category are written in a format close

to the Easy Approach to Requirements Syntax (EARS)

notation [24]. The structure of a specification point is

made up of one or more patterns combined in the same

order. A pattern is a compact and structured template;

it consists of attributes and fixed syntax elements (key-

words). In all the syntactical forms given below, the terms

in bold are fixed syntax elements, while those between

rafters are attributes. The generic pattern syntax used in

our study is the following:

1) A state-driven requirement defines the states of the

system and the condition or triggering event that

enables/disables actions:

while <state> and <condition> [when <trigger>]

<system> shall <action>

An action describes the behaviour that the system

should achieve. It is defined by a change of state

or by an occurrence or consecutive occurrences of

signal setting actions. It has the following format:

<action> ::= switch to <state>

| set <name> to <value>

| activate <function>

| release <function> control

specifying a change of state, an update of a variable

to a given value, an activation of a function, or a

release of a control function of an actuator or sensor.

The terms activate and release are introduced for

readability reasons; they are used to raise requests

that refer to an updating of signals, i.e. actions.

2) An event-driven requirement defines how the system

should behave in response to an effect (nominal or

failure) of an action or an external stimulus that

occurs:

when <trigger>, <system> shall switch to <state>

3) An action-driven requirement defines the action that

is invoked when entering a certain state:

when entering <state>, <system> shall (-<action>)+

4) Some requirements define the conditions that enable

a certain event to be issued. These conditions are

complex and timed. A typical example of such

requirements is the following:

<system> shall detect <trigger>,

if <name> = <value> for more than <delay>

It specifies the conditions under which a certain

event is triggered.

where <system> a name of the system, <name> a name

of signal, <state> a name of state, <condition> a

condition that enables/disables actions, <trigger> an

affect of an internal action or an external stimulus, and

<action> a processing step, e.g. operations updating

variables. These basic forms of requirements can be

combined to specify complex requirements. For instance,

the maximal representation of a state-driven requirement

is given in Fig. 2. The identification of each pattern and

its semantics allows to build the global model of the

specified system.

• Constraints are also functional requirements that impose

restrictions on the realisation of the system. They describe

what constraints the realisation must satisfy to prevent

various risky behaviour. They are of two types: those

called plausibility that define rules about execution which

are plausible and which are not, and those called priori-

ties that define the priorities between its subsystems. As

an example of a constraint:

if <system> is in <state> and entrance conditions to

<state> are satisfied, <system> shall switch to <state>

this additional rule specifies the execution to be set aside

and the execution to be imposed instead.

Although it is well-structured, this language, like RELAX

[31] and Stimulus [20] languages, is classified as a natural

language. It does not meet several assessing criteria for

requirements engineering approaches, which are required by

industry standards (as mentioned in ISO/IEC/IEEE 29148-

2011 [19]). Among these criteria we find verifiability, which

assesses whether an approach supports the possibility of

formally verifying the properties of the requirements. This is

inherently not the case for this language, as it is not tied to a

formal semantics.

IV. FROM TEXTUAL DESCRIPTION TO MODEL

The main objective of our approach is to provide early

evidence that a given set of requirement specifications are

realizable. This objective is specifically related to the require-

ments formalisation challenge [26], [29]. The formalisation

task refers to the transformation of requirements into formal

models. In this section, we outline how formal models are

derived from textual requirements.

For this purpose, we specified the requirement specifications

using the state machine model. The main criteria used in

selecting this formalism includes its precise formal seman-

tics, but also its integration with automatic verification tools

such as model-checkers. We have used the UPPAAL model

checker [23] as it has proven to be successful and practical in

various domains. This tool offers an integrated environment

for analysing real-time systems based on networks of timed

automata. It provides an editor, a symbolic simulator and

a verifier, for modelling, enabling examination of dynamic

executions, and verifying (by covering exhaustive dynamic

behaviour).

A. UPPAAL Model

The model-checker UPPAAL is based on the theory of

timed automata. Within this tool, a system is modelled as

✗

✖

✔

✕

✞
✝

☎
✆while 〈state〉 and 〈condition〉 ,
✞
✝

☎
✆when 〈trigger〉 ,

✓

✒

✏

✑
〈system〉 shall

✞
✝

☎
✆switch to 〈state〉✞

✝
☎
✆〈action〉

Fig. 2: The generic syntax of state-driven requirements

a network of timed automata that communicate in a syn-

chronous fashion using so-called channels. A timed automaton

is a classical finite-state machine extended with clocks. Each

transition (edge) of such an automaton can be decorated with

three (optional) labels:

s
guard sync−−−−−−−→

update
s′

• guard expressing a condition on the values of the vari-

ables, which must be satisfied for the transition to be

fired.

• sync, to represent synchronisation. Automata can syn-

chronise over channels. The synchronisation mechanism

in UPPAAL is a hand-shaking synchronisation: two pro-

cesses take a transition at the same time on a common

channel e, one will have a transition labelled e! to identify

the sender and the other a transition labelled e? to identify

receivers. UPPAAL offers urgent channels to force a

synchronisation as soon as it is possible. It also supports

the notion of broadcast channels that allow 1-to-many

synchronisations.

• update a set of actions, which are expressions with a side-

effect, i.e, assignment of variables or reset of clock. They

may also be functions calls.

Note that S and S′ are called locations in UPPAAL. A state

of a UPPAAL model is defined by the locations of all automata

being part of the model, the clock values, and the values of the

variables. This other feature of UPPAAL is very useful for the

applicability of our approach in an industrial context. It leads

to a reduction of the state-space representation: automata with

an infinite number of states can be represented by a finite set

of symbolic states.

In addition to the network of automata, UPPAAL model

includes a declaration part, which contains declarations of

clocks, (global and local) variables, synchronisation channels,

and constants manipulated by automata.

B. Model Construction

We provide an automatic and a systematic stepwise ap-

proach for transforming specification requirements into UP-

PAAL models. We first start with a preprocessing phase for

unifying grammatical notations, e.g. unification of the letter

case of attributes, and for defining a basis for modelling. Once

the preprocessing is complete, all the requirements are trans-

lated systematically into automata that can model them. At the

end of the translation we obtain an UPPAAL model, a network

of (timed) automata, representing all the requirements.

a) Declaration part: Given a set of interface require-

ments, we get a set of variables. We translate each signal into

a variable with the same name and definition domain. This

part will be completed by the declaration of the channels as

they are being created.

b) Automata generation: They are incrementally built

by addressing all functional requirements (specification points

and constraints). To do this, the translation procedure relies

on an interpretation function denoted J.K that translates each

textual item to a corresponding UPPAAL item. To build the

global model we provide a systematic stepwise procedure:

1) During the first phase, the main automaton is derived

from the state-driven requirements. To this end, we

have associated each pattern with its semantics in UP-

PAAL formalism that can formally capture it. From each

requirement, elements of the automaton are derived by

transforming all patterns which forms the requirement,

one after the other in the order of their appearance. The

details of the translation of all the patterns are presented

in Table I. Note that in the description, the parts already

generated and which do not change from one step to

another are greyed. In particular, we see each state of

a requirement is translated to a location with the same

name, a condition to a guard, etc. Note that an event

is generated and initiated each time a condition is built,

not only when a trigger event takes place. Indeed, the

requirements specification is based on an eager seman-

tics: transitions are fired as soon as they are enabled.

However, UPPAAL considers all transitions as lazy:

when a transition is enabled, the system can choose to

react immediately or to wait. To cope with this issue, we

declare all generated synchronisation channels as urgent,

to enforce that the transitions will be taken immediately

when the condition is satisfied. Moreover, when the

translation does not generate a synchronisation event,

to ensure the immediate execution of the transitions we

resort to a modelling artefact with the use of the special

event denoted now emitting over a broadcast channel.

At the end of this step, all state-driven requirements are

addressed and an initial automata is then built.

2) During the second phase, the model is complemented by

transitions and states representing the trigger events that

may occur. In particular, we see an event-driven pattern

is translated into a corresponding synchronisation chan-

nel, which completes a previously generated transition.

3) The model is also complemented in a third phase

through the treatment of action-driven requirements. The

side effect expressions related on certain transitions are

completed (using the ⊎ operator) to produce a complete

update (complete actions to be executed when these

transitions are fired). At the end of these three steps,

a complete automata is built.

4) The fourth phase is the pruning phase that deals with

constraint-type requirements. These requirements mod-

ify the structure of the resulting automata, by pruning

the non-valid transitions. Indeed, as this kind of require-

ments explicitly express undesirable situations. Then,

based on them, the model is modified and corrected

to meet their contacts. After all constraints have been

applied, the final automaton is built.

5) During the final phase, other automata of the global

model are generated. They are derived from the last

family of requirements, those that describe when certain

events are issued. These requirements are in a limited

number and they have generic templates. To each tem-

plate we associated a generic model which is instantiated

when a matching requirement is met.

Once the translation procedure is complete, if it is possible

to generate a valid result (model), this constitutes evidence that

the set of requirements is consistent, correct, and feasible. This

initial model may be supplemented, if necessary, by additional

information that will give the engineers reference points for

missing requirements. Only the properties that cannot be

enforced by design need for a posteriori verification.
The different processes of our framework are automatic, ex-

cept the preprocessing phase that is performed in cooperation

with the domain experts in charge of system design.

V. CASE STUDY: AUTOMATIC PARK ASSIST

To illustrate our approach, we use as example a feature

available in almost all self-driving cars. The advanced driver-

assistance systems (ADAS) are a key underlying technology

in emerging autonomous vehicles [28]. They include several

functions for automated driving, among them the Automatic

Park Assist (APA) function that assists the drivers (see Fig.3)

with parking safely and accurately. APA function provides

easy parking by identifying sufficient parking spaces and steer-

ing the vehicle into it. The parking system can be supervised

by the driver, who can override the operation pushing the

accelerator pedal or the brake pedal. It can be fully automatic

by an activation of the driver on the control broad, then

APA function fully takes over control of parking functions,

including steering, braking, shifting, and acceleration, to assist

drivers in parking. To position the vehicle for parking, it

gathers information from different types of sensors, such as

ultrasonic sensors, lidar, camera, evaluate the situation. It sub-

sequently sends control signal to actuators. When these latter

receive control signal, active steering or braking subsystem

execute instructions effectively and efficiently. Information is

exchanged between components by updating the signals shared

between them.

The specification of this function is defined in a STRComp

including 400 textual requirements, but also requirements

in the form of use-cases, tables and graphics. We carefully

Fig. 3: Interactions between APA function and other compo-

nents

studied the STRComp documents. They provide the overall

description of the function, including details about interactions

with other subsystems. Our study reveals that 70% of the

requirements gleaned from the documents are interaction-

specific while the remaining 30% are functional-specific. Their

analysis helped in identifying 41 signals: 16 originate from the

SONAR sensors, 17 from the Around View Monitor (AVM)

system, and 18 move towards various actuators such as the

steering and the braking. We will illustrate our explanation of

the different phases through examples of requirements.

Declaration part: Let us consider the interface require-

ment REQ_01 that defines the incoming signal pgen_APA_Failure

and its possible values vgen_NoFailure and vgen_Failure.

REQ_01: APA system shall process and receive from SONAR

the signal pgen_APA_Failure with the following values:

- vgen_NoFailure

- vgen_Failure

We define signals within UPPAAL tool as variables. For

practical purposes, we encoded all symbolic values of signals

by numerical values (int type). Indeed, UPPAAL does not sup-

port type String. Fig. 4 shows a small portion of the interface

showing the declarations, we see the signal pgen_APA_Failure

can have values 0 or 1 corresponding to vgen_NoFailure or

vgen_Failure respectively.

Fig. 4: Screenshot of a part of the declaration

Automata construction: The analysis of all the functional

requirements reveals that the function consists of six states (po-

sitions) in_maneuver, out_maneuver, safe_state_

1, safe_state_2, safe_state_3 and safe_state_4

TABLE I: Patterns and their associated model excerpts

Requirement patterns their associated semantics

S
ta

te
-d

ri
v
en

#
1

(a)
✞
✝

☎
✆while 〈state〉 and 〈condition〉 guard = JconditionK

〈state〉
guard
−−−−→

(b)

✞
✝

☎
✆when 〈trigger〉

event = JtriggerK

〈state〉
guard event?
−−−−−−−−−→

urgent broadcast chan now

〈state〉
guard now!
−−−−−−−−→

(c)
✞
✝

☎
✆〈system〉 shall

✞
✝

☎
✆switch to 〈state〉

✞
✝

☎
✆〈action〉

〈state〉
guard event?
−−−−−−−−−→ 〈state〉

update = JactionK

〈state〉
guard event?
−−−−−−−−−→

update

E
v
en

t-
d

ri
v
en

#
2

✞
✝

☎
✆when 〈trigger〉, 〈system〉 shall switch to 〈state〉

Let S be the set of all states generated in step #1

event = JtriggerK

For all s ∈ S, s
event?
−−−−−→ 〈state〉

A
ct

io
n

-d
ri

v
en

#
3

✞
✝

☎
✆when entering 〈state〉, 〈system〉 shall 〈action〉+

update′ = Jaction+K

for all transition
guard event?
−−−−−−−−−→

update
〈state〉

guard event?
−−−−−−−−−−−−→
update⊎update′

〈state〉

which are modelled in UPPAAL by six locations. These lo-

cations combined with the different signal values give several

thousand of actual states.

To illustrate how the procedure operates let us apply the

translation rules on a small subset of requirements.

1) Let us start with the following requirement:

REQ_02: while APA system is in Safe_State_2 and

pgen_Ramp = vgen_on,

APA system shall switch to Out_Maneuver

that is a state-driven requirement by applying the ap-

propriate rule, the translation generates the following

transition:

Observe the use of the urgent broadcast synchronisation

channel now to enforce the immediate crossing of the

transition when the condition is satisfied.

2) The translation of another requirement of the same type:

REQ_03: while Out_Maneuver, when S34_ECM_timeout,

APA system shall switch to Safe_State_4

generates another transition from the state

Out_Maneuver to Safe_State_4:

3) Then, let us consider the following event-driven require-

ment:

REQ_04: when standstill activation timeout,

APA system shall switch to Safe_State_2

The translation of this requirement completes the model

as follows:

Observe that a transition going from all already gener-

ated states (Out_Maneuver and Safe_State_4) to the

state Safe_State_2 and labelled with a triggered event

is generated.

4) Let us now consider an example of action-driven re-

quirement:

REQ_05: when entering Safe_State_2 APA system shall:

- set pgen_Warning to vgen_Alert

- release powertrain control

its translation allows the completion of the action part

as shown in the following figure:

Observe that two actions are added to the two

transitions entering the state Safe_State_2: –

(pgen_Warning=1) is a direct translation of the first

action; while the action – (pgen_APA_PWTOrder=0)

results from the treatment of another requirement

(which is not detailed here).

5) Once all requirements have been processed and the

elements of the automaton created, the constraint re-

quirements are applied. To show how they operate on

the model, let us consider the following constraint:

REQ_06: if APA system is in Safe_State_4 and entrance

conditions to Safe_State_2 are satisfied,

APA system shall switch to Safe_State_4

The model is then transformed into the following:

Observe that as specified by the constraint the transition

going to state Safe_State_2 is redirected to state

Safe_State_4.

6) Finally, let us consider the following requirement that

allows the triggering of the event S34_ECM_timeout:

REQ_07: APA system shall detect,

if pgen_APA_PWTOrder = vgen_NotRequested

for more than c_ECMReactionTime

the result of its translation is the following timed

automaton which completes the main automaton:

The outcome of the translation of the APA system require-

ments is a collection of 8 automata: one main automaton

which models the behaviour of the function, and additional

automata modelling all the events that cause the evolution

of the behaviour. The main automaton is given in Fig. 5.

Although it appears to be small in size, the number of states

obtained by product with the seven other automata (which

are similar to the automaton corresponding to the requirement

REQ_07) is around 37 thousand states.

Building a valid model offers an early assurance of the

correctness and consistency of requirements. In addition to

provide evidence that the system is realisable, the generated

model from a set of requirements can be used for a posteriori

verification. It may also be used as an aid to deep understand-

ing in early phase requirements engineering. With this in mind,

we used the generated model to check some properties.

First, we started by verifying (using UPPAAL model

checker) usual properties such as the verification of deadlock

freedom which is essential when combining concurrent com-

ponents. This property is expressed in CTL language as:

• A[] NOT DEADLOCK

This property is evaluated to TRUE meaning that the model

is deadlock-free.

Next, we proved a formula that checks the reachability of

all system states. For example, the property:

• E <> APA.IN MANEUVER

expressing that there exists at least one path starting from

initial state along which state IN MANEUVER will be reached.

The property holds for this state and for all others, except for

Safe_State_3 and Safe_State_4. Not surprisingly, indeed

these two states are reachable by firing condition dealing

with signals updated by an external component, typically the

SONAR. However, we did not include this component in our

model, so the update will never be performed and therefore

the condition will never be enabled.

Afterwards, we proved properties related to the system but

not described in the requirements specification. For example,

having the knowledge about the value of certain signals

when the function is in a given state, we check whether this

property is complied with. For instance, we know that the

Flashing Indicator and the Braking signals have to be available

only when the system is In_maneuver state. By using the

corresponding signals in the model this can be expressed by

safety properties as follows:

• A[] APA.OUT OF MANEUVER IMPLY

PGEN APA FLASHINGINDICATORREQUEST IN==0

• A[] APA.OUT OF MANEUVER IMPLY

PGEN APA BRAKEWHEELTORQUEORDER APAPARK==0

Both properties are evaluated to TRUE meaning that the

specification as defined is compliant with expected behaviour,

that is to say that the set of requirements covered describe the

expected behaviour.

Discussion: This pilot study shows the potential of the

proposed approach. Our approach is based on predefined set

of templates, but it can accommodate additional templates

for requirements specification, provided that they are asso-

ciated with automata semantics. However, to be adopted in

an industrial context some issues remain and need to be

addressed. These include the effectiveness of the approach

and the use of the analysis results, that might be addressed in

future work. Generated models can be used to help discussion

and to explore and learn about the engineer’s needs. The

information provided by UPPAAL model checker to the users

for feedback, including animations, simulations, and derived

counter-examples, assists in this regards. However, to apply

remedial measures if needed, it is necessary that the negative

feedback be viewed on textual representation of the system

requirements.

The scalability issues in the context of industrial verification

still need to be resolved. The approach presented in the paper

pursues this objective by attempting to reduce the time and

cost of the verification phase. The environment or context in

which a system will run is often not taken into account. Rea-

soning about these aspects and their integration into the tool is

among the point that requires further work. It is necessary to

model not only the behaviour of the target system but also the

environment interacting with the system. In UPPAAL, contrary

to NuSMV model checker, the system variables cannot change

via external interactions with the environment. So in order to

simulate the system there is a need to model the environment.

The typical approach to model the environment is to build

an automaton which updates the values of all signals used

by the system non-deterministically. Although it allows the

exhaustive control of all possible execution sequences. It tends

to generate a large number of instances of a single model and

consequently leads to state-explosion. There is need to other

approach that enables to filter out uninterested input values

from all possible values.

The applicability of our approach naturally depends on the

size of the generated models and is therefore limited by the

capacity of the model checker used. In this work, we have

used a symbolic model checker precisely to challenge this

limitation. We are aware that there are solutions that can be

used to alleviate the problem of state explosion, such as the

adoption of a compositional analysis approach or the use of

modular model checking algorithms.

VI. RELATED WORKS

Plenty research works for the requirements analysis have

been presented in the scientific literature, most of them focus

on new or improved techniques for evaluating the quality

of requirements. They look for ill-formedness or errors in

requirements, where an error can be inconsistency, incom-

pleteness or ambiguity [8], [27], [30]. There have been very

few tools that support such analysis on real-world applications

and in an industrial setting. The lack in tooling is partly due

to the use of natural language. Indeed, natural language is

the dominant form of expression of requirements in practical

projects in industry. Such approaches face a fundamental

challenge: writing requirements and designing system requires

a high degree of precision and accuracy, but natural language

is inherently imprecise.

Significant efforts, including both research efforts and in-

dustrial products development, have been made to improve

the techniques for analysing the quality of requirements. Some

approaches use partially formalized notations or semi-formal

languages such as Doors [2], Reqtify [1], and SysML [16].

Doors and Reqtify are widely used in industry, they benefit

from mature tools, e.g. [4] and [3] developed by major

companies, IBM Rational and Dassault Systems respectively.

In both cases the focus is not on analysing requirements and

verification methodology, but on managing requirements.

Another approach introduces the notion of Constrained

Natural-Languages (CNL) such as EARS [24], RELAX [31]

and Stimulus [20] languages. These languages with a simpli-

fied syntax and restricted lexical terms help to bridge the gap

between informal and formal representation of requirements,

and improve their translation from informal to formal. Such

research is often accompanied by proofs-of-concepts or pilot

studies that show the potential of the proposed ideas. Some

research, such as the approach described in the paper [17] is

concerned with the translation of requirements into properties

that can be used with finite-state verification tools, while our

approach aims at building state machines for verification of

functional properties. To the best of our knowledge, only

Stimulus is supported by a tool [21], both the language and

the tool have the same name. It enables engineers to generate

test vectors and test objectives automatically, that can be used

to check whether the developed system is compliant with

its specification. Our approach is similar to to the stimulus

approach, in the sense we generate state machines from CNL

templates. An important difference from this approach, we aim

at the transformation of system requirements into a model, that

provides early evidence that the requirement specifications are

realizable, as opposed to the test objectives that the system

should meet.

Formal methods have proven their cost-effectiveness

through their successful use in industrial context and in differ-

ent areas, such as railway [13], aeronautics and aerospace [9].

There exist a number of approaches relying on mathematical

theories of graphs and automata for requirements analysis.

Such approaches use graphical notations, such as infinite au-

tomata, state diagrams and statecharts, to specify requirements.

However, these representations make their use less practical on

real-world applications, in particular in an industrial setting.

Requirements can use other mathematical theories for system

modelling and analysis, for example Event-B [5] which is

equipped with its own methodology based on set theory and

predicate logic for modelling and to formally prove system

correctness. This kind of mathematically rigorous tools, while

they are powerful, are intended to specialists and engineers

with deep understanding of their mathematical foundations

and, also, applicable domains and limits.

In recent years the early validation of requirements and

the use formal methods has become a focus for industrial

research such as as mentioned in [10], [25] and [29]. Such

empirical research needs to be supported by tools that can be

used on real-world applications and in an industrial setting.

In particular, the automotive industry has expressed interest

in using such approach in developing complex automotive

systems.

VII. CONCLUSION

This paper introduced a systematic process for building

models from automotive requirements written in natural lan-

guage with the aim to reduce the effort of testing and detects

fixes late in software development lifecycle. The process is

automated through a tool and existing verification tool.

The first effort led to categorize the entire set of require-

ments of the system under design in order to formalize them.

We provided a proof of concept regarding our approach by

designing models and verifying some properties. We veri-

fied general properties using UPPAAL such as liveness and

reachability. Naturally our next goal is to find some new

type of properties to be verified in order to validate safety

critical aspect and also detect flaws. Another goal can be to

propose a requirement specific language for the expression of

requirement in the automotive domain to match standard such

as AUTOSAR [18]. In [32], we have given some directions as

well limited to a smaller set of requirements. This language is

different from the languages that already exist for the descrip-

tion of automotive standards, as [15] and [11]. In the sense, it

allows the specification of systems at a high abstraction level,

without any prior knowledge about architectural considerations

and how the functions are then allocated to the components

of the physical architecture.

REFERENCES

[1] Dassault system–reqtify. https://www.3ds.com/fr/produits-et-services/
catia/produits/reqtify/.

[2] Ibm–rational doors. http://www-03.ibm.com/software/products/ratidoor.
[3] The reuse company–rat. https://www.reusecompany.com/

rat-authoring-tools.
[4] The reuse company–rqa. https://www.reusecompany.com/

rqa-quality-studio.
[5] Jean-Raymond Abrial. Modeling in Event-B: System and Software

Engineering. Cambridge University Press, USA, 1st edition, 2010.
[6] AFNOR. National Survey: The costs of poor quality in industry.

Technical report, AFNOR, October 2017.
[7] Thomas Baar. Verification Support for a State-Transition-DSL Defined

with Xtext. In Lecture Notes in Computer Science, vol 9609, pages
50–60. Springer, 06 2016.

[8] Daniel M. Berry and Erik Kamsties. Ambiguity in Requirements

Specification, pages 7–44. Springer US, Boston, MA, 2004.
[9] Jean-Louis Boulanger. Industrial Use of Formal Methods: Formal

Verification. ISTE Ltd. Wiley, 2013.
[10] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Panagiotis

Katsaros, Konstantinos Mokos, Viet Yen Nguyen, Thomas Noll, Bart
Postma, and Marco Roveri. Spacecraft early design validation using
formal methods. Reliability Engineering & System Safety, 132:20–35,
2014.

[11] Stefan Bunzel. AUTOSAR the Standardized Software Architecture.
Informatik-Spektrum, 34:79–83, 2011.

[12] Robert N Charette. Software engineering environments : concepts and

technology. Intertext Publications, New York, NY, 1986.
[13] X. Chen, Z. Zhong, Z. Jin, M. Zhang, T. Li, X. Chen, and T. Zhou.

Automating consistency verification of safety requirements for railway
interlocking systems. In 2019 IEEE 27th International Requirements

Engineering Conference (RE), pages 308–318, 2019.
[14] B. H. C. Cheng and J. M. Atlee. Research directions in requirements

engineering. In Future of Software Engineering (FOSE ’07), pages 285–
303, 2007.

[15] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn, Yiannis
Papadopoulos, Mark-Oliver Reiser, Anders Sandberg, David Servat,
Ramin Tavakoli Kolagari, Martin Törngren, and Matthias Weber. The

EAST-ADL Architecture Description Language for Automotive Embed-

ded Software, pages 297–307. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[16] Michel dos Santos Soares and Jos L. M. Vrancken. Requirements
specification and modeling through sysml. 2007 IEEE International

Conference on Systems, Man and Cybernetics, pages 1735–1740, 2007.
[17] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns

in Property Specifications for Finite-State Verification. In Barry W.
Boehm, David Garlan, and Jeff Kramer, editors, Proceedings of the

1999 International Conference on Software Engineering, ICSE’ 99, Los

Angeles, CA, USA, May 16-22, 1999, pages 411–420. ACM, 1999.
[18] Simon Fürst and Markus Bechter. AUTOSAR for connected and

autonomous vehicles: The AUTOSAR adaptive platform. In DSN

Workshops, pages 215–217. IEEE Computer Society, 2016.
[19] IEEE. Systems and software engineering – Life cycle processes –

Requirements engineering. ISO/IEC/IEEE 29148:2011(E).
[20] Bertrand Jeannet and Fabien Gaucher. Debugging Real-Time Systems

Requirements: Simulate The “What” Before The “How”. In Embedded

World Conference, Nürnberg, Germany, 2015.
[21] Bertrand Jeannet and Fabien Gaucher. Debugging Embedded Systems

Requirements with STIMULUS: an Automotive Case-Study. In 8th

European Congress on Embedded Real Time Software and Systems

(ERTS 2016), Toulouse,France, 2016.
[22] Herb Krasner. The Cost of Poor Quality Software in the US: A 2018

Report. Technical report, CISQ Consortium for IT Software Quality,
September 2018.

[23] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-
2):134–152, December 1997.

[24] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. Easy Approach
to Requirements Syntax (EARS). In 2009 17th IEEE International

Requirements Engineering Conference, pages 317–322, 2009.
[25] Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mats P. E.

Heimdahl. Proving the shalls: Early validation of requirements through
formal methods. International Journal on Software Tools for Technology

Transfer, 8(4):303–319, 2006.
[26] Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mats Per Erik

Heimdahl. Early validation of requirements through formal methods.
International Journal on Software Tools for Technology Transfer, 8(4-
5):303–319, 2006.

[27] Paul Rayson, Ieee Computer Society, Ken Cosh, and Ieee Computer
Society. K.: Shallow Knowledge as an Aid to Deep Understanding in
Early Phase Requirements Engineering. IEEE Transactions on Software

Engineering, pages 969–981, 2005.
[28] Y. Song and C. Liao. Analysis and review of state-of-the-art automatic

parking assist system. In 2016 IEEE International Conference on

Vehicular Electronics and Safety (ICVES), pages 1–6, 2016.
[29] Emmanouela Stachtiari, Anastasia Mavridou, Panagiotis Katsaros, Si-

mon Bliudze, and Joseph Sifakis. Early validation of system re-
quirements and design through correctness-by-construction. Journal of

Systems and Software, 145:52–78, 2018.
[30] Kimberly S. Wasson. A Case Study in Systematic Improvement of

Language for Requirements. In Proceedings of the 14th International

Requirements Engineering Conference, pages 6–15. IEEE Computer
Society, 2006.

[31] Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Jean-
Michel Bruel. RELAX: Incorporating Uncertainty into the Specification
of Self-Adaptive Systems. 2009 17th IEEE International Requirements

Engineering Conference, pages 79–88, 2009.
[32] Assioua Yasmine, Ameur-Boulifa Rabea, and Guitton-Ouhamou Patricia.

Towards Formal Verification of Autonomous Driving Supervisor Func-
tions. In 10th European Congress on Embedded Real Time Software

and Systems (ERTS 2020), Toulouse, France, January 2020.

Fig. 5: Main automata for Automatic Park Assist function

Property Expression and Verification in an
Incremental Model Development Framework:

a Case Study
Thomas Lambolais and Anne-Lise Courbis,

EuroMov DHM, IMT Mines Ales, Univ Montpellier,

thomas.lambolais@mines-ales.fr, anne-lise.courbis@mines-ales.fr

Abstract—The IDCM framework (Incremental Development
of Conforming Models) supports incremental constructions and
evaluations of UML behavioral models (architecture of compo-
nents and state machines). This framework evaluates models with
respect to implicit temporal safety and liveness properties. The
specifiers and designers only describe models, they don’t need
to write down explicit temporal logic properties. In this paper,
we show how explicit safety and liveness properties can also be
described using semi-formal boilerplates, translated into classical
temporal logic formulas which are themselves translated into
testing transition systems.

Adding evaluation means to model-based development (rela-
tion checking) is a way to develop models incrementally, following
a spiral-based development cycle.

I. INTRODUCTION

Our goal is to assist designers during modeling tasks of

reactive systems. We consider two aspects: describing the

history of an architectural model construction by a sequence

of modeling steps; offering assistance during this history, by

providing evaluation and construction techniques based on

formal relations.

In [26], we proposed a set of architectural construction

techniques which (i) contribute to architectural model qualities

through well-known design principles in software engineering

(separation of concerns, hierarchy and information hiding); (ii)

include formal verifications for early detection of behavioral

issues, i.e. safety and liveness problems.

In this paper, we extend this approach and show how typical

informal temporal properties, described by boiler plates, can

be translated into Labelled Transition Systems and verified by

our framework.

The article is structured as follows. Section 2 presents the

main incremental paradigms, safety and liveness concerns and

incremental relations. This section also presents a semantics

of UML architectures. Section 3 presents the way we can

define and verify explicit safety and liveness properties. A

case study is given in Section 4, on which two properties are

specified. Comparison with existing work is given in Section

5. We conclude in Section 6.

II. FUNDAMENTALS OF INCREMENTAL MODELING AND

UML COMPOSITE COMPONENT SEMANTICS

By incremental modeling, we mean that models are pro-

gressively developed. They may be refined or abstracted, and

extended or restricted [26], [27]. At each step, the new model

is compared to the previous one through a suitable relation,

which focuses on behavioral and temporal aspects.

As shown by Alpern and Schneider [35], all temporal

properties can be seen as a conjunction of safety and liveness

properties. The relation used to compare models is chosen

among a set of relations which can be interpreted with respect

to the way they preserve safety and/or liveness properties. We

say that a property φ is preserved by a relation R if, for any

two models P and Q such that P R Q, P |= φ⇒ Q |= φ.

We observe safety and liveness properties by means of

the interactions of the system with its environment. These

interactions consist in accepting an event (signal or operation

reception), or performing an action requiring a signal send

or operation call. A trace is a partial sequence of observable

interactions starting from the initial state.

The LTS (Labeled Transition Systems) semantics we give

to UML primitive components behavior state machines is not

recalled here, see [16], [27]. Let us briefly recall that an LTS

P is a tuple 〈P,Act ,→, P 〉 where:

• P is a set of state names,

• Act is a set of action names,

• → ⊆ P×Act ×P is a set of labeled transitions between

states,

• P is the initial state.

The tool we have developed includes UML State Machine

transformation into LTS [15]. Here follows an intuitive pre-

sentation of incremental relations, and a proposal for the UML

composite component semantics.

A. Incremental relations between UML components.

Based on classical trace inclusion ⊑MAY and conformance

relation conf [28], the IDCM framework implements several

incremental relations. We only give an intuitive presentation

here of conf, ⊑INC, ⊑REF and =REF, which will be used in

sections III and IV. Refer to [16], [27], [33] to find formal

definitions and an extensive presentation of other incremental

relations. Given two models M1 and M2, M2 ⊑MAY M1 means

that M2 traces are included into M1 traces. It ensures that M2

satisfies any safety property of M1: indeed, M2 must refuse

all what M1 must refuse.

M2 conf M1, or M2 conforms to M1, if after any trace of

M1, M2 must accept every action that M1 must accept.

It ensures that M2 is more deterministic than M1. This

relation guarantees that any liveness property of M1 is

satisfied by M2. The conformance relation is seen as

an implementation relation. However, this relation is not

transitive and cannot be used as such for incremental

developments.

M1 ⊑INC M2, or M2 increments M1, if any model which

conforms to M2 also conforms to M1. In particular,

M1 ⊑INC M2 ⇒ M2 conf M1, and ⊑INC is a transitive

relation.

M1 ⊑REF M2, or M2 refines M1, if M1 ⊑INC M2 and M2 ⊑MAY

M1. Hence, M1 ⊑REF M2 guarantees that liveness and

safety properties of M1 are also satisfied by M2. =REF is

the equivalence relation associated to ⊑REF.

The verification algorithms to check these relations have

been implemented within the IDCM tool.

B. UML composite components semantics.

UML composite components describe architectural systems

in terms of UML component instances, linked between them-

selves by assembly connectors and connected to the outside

environment by delegation connectors. We give a semantics

of UML composite component behaviors on parallel compo-

sitions of processes in the EXPOPEN process algebra [21].

EXPOPEN shares the same concepts as basic LOTOS process

algebra [28]. Secondly, EXPOPEN models are translated into

LTS by the CADP tool [21].

For instance, fig. 1 presents a UML architecture (A0)

which models an automotive front-light system (see details in

section IV). In the architecture A0, there are three component

instances linked by assembly connectors c3 and c4. There are

three delegation connectors c1, c2 and c5 that link ports of

the architecture to ports of its components. Ports linked by a

connector share the same UML interface.

The external interfaces of A0 correspond to actions ex-

changed on delegation connectors c1, c2 and c5. These actions

must be observable to verify the properties of the system, while

the set of synchronized actions on assembly connectors c3 and

c4 are not on the focus of verification and will be hidden.

Fig. 1. A UML composite component (A0)

III. PROPERTY DEFINITION AND VERIFICATION

Let a and b be two actions (a, b ∈ Act). We illustrate here

two patterns of temporal properties to be satisfied by a model

M , for safety (S) and liveness (L) properties:

(S) “In any 〈a〉-circumstances, action b is never possible.”:

– an 〈a〉-circumstance means that M offers action a,

what is formally written, in Hennessy Milner Logic

(HML): M |= 〈a〉tt
– b is not possible is written, in HML: M |= [b]ff
– Hence, using usual logical implication⇒ and modal

operator � (always) for convenience, property (S)

corresponds to:

M |= �(〈a〉tt ⇒ [b]ff)

– This is a general expression of a safety property.

Derived expressions of this kind are simply “b is

never offered” or “b is always possible”, since action

b may also be a positive statement: M |= �〈b〉tt
– For example, “In any circumstances, the flash action

is always offered”.

(L) “In any circumstances, every a-action leads eventually to

b.”:

– Using � and ♦ (eventually) operators, such proper-

ties can be formally written:

M |= �([a]♦(〈b〉tt ∧ [Act − b]ff)

– A property [a]F states in Hennessy-Milner logics

that, for all processes after a, F is true. If there is no

a-successor, this property is true whatever the value

of F .

– 〈b〉tt ∧ [Act − b]ff is true when there exists a b-
successor, and no other successor.

– This is a general expression of liveness property:

after any a-action, b will be done.

– For example, “When the system is in headlamp mode

(low or high beam), switching back to side lights

switches off high beams and low beams”.

A. Verification of safety properties (S)

1) General case: Properties of kind (S) lead to:

M |= �([a]ff ∨ [b]ff).

Such safety properties define unwanted action. We define

the LTS T (using ‘+’, ‘.’ operators and recursion textual

notations for convenience), which accepts at any time actions

a or b:
T = a.T + b.T

Then, we observe the set of systems ObsSet after any trace

of M :

ObsSet = {M ′ |M σ
=⇒M ′, ∀σ ∈ Tr(M)}

Let us recall that Tr(M), the set of traces of M , are all the

sequences of observable actions starting from the initial state,

and that M
a1···an====⇒M ′ =M

τ∗

−→ a1−→ τ∗

−→ · · · τ∗

−→ an−→ τ∗

−→M ′.

If the safety property (S) is satisfied by M , no set of ObsSet
should simulate T :

∀M ′ ∈ ObsSet . T 6⊑M ′

The ⊑ relation is the preorder associated to Milner’s

congruence equivalence. This verification corresponds to a

simulation, which is convenient to verify safety properties and

the most efficient for our purposes.

2) Particular case for positive statements when there is no

premise: We may choose a simpler verification means, when

safety properties (S) are of the kind:

M |= 〈b〉tt ∧�◦〈b〉tt
which means that M must always accept b every two actions

(◦F means that F is true in the next state).

We define process

T = b.
∑

a∈Act

a.T

T is a process that “always” does b, at least every two

following actions, and possibly several times in sequence (b ∈
Act).

In order to check the safety property, we verify that the

process T synchronized with M on every actions (operator

‘||’) :

T ||M
is deadlock free. This means that M can always do T

actions. Absence of deadlock can be verified in IDCM.

B. Verification of liveness properties (L)

We consider properties of the kind (L):

M |= �([a]♦〈b〉tt ∧ [Act − b]ff).

Let success 6∈ Act . We define LTS T and Tb as follows:

T = 〈Act − a〉.success.T + a.Tb

Tb = b.success.T + 〈Act − b〉.Tb
Then, we observe the system M synchronized with T

on every actions (operator ‘||’), where every actions except

success are hidden:

Obs = hide Act − success in (M ||T)
If the liveness property (L) is satisfied by M , Obs should

be refinement equivalent to a process Ok = success.Ok:

Obs =REF Ok

which means that, when all actions are hidden except

success, Obs should perform success infinitely often.

IV. ILLUSTRATION: ADAPTIVE FRONT-LIGHTING SYSTEM

We consider a car Adaptive Front-lighting System (AFLS)

implemented by several car manufacturers [36]. We have

developed an incremental construction which consists in five

models (S0, A0, . . . , A3), as presented in [26]. In this incre-

mental construction [26], verification relations used between

models ensure us that safety and liveness properties are

preserved: A0 has the same safety and liveness properties as

S0, A1 has the same properties as A0, and so on. But the

question of the safety and liveness properties satisfied by the

initial models S0 still remain. Here, we present S0 and A0

which have to fit the following requirements, and show how

we can verify such safety and liveness properties:

(Informal user req.): the front-lighting system comprises side

lamps, low and high beams that the driver chooses accord-

ing to a precise protocol. There are two driver commands:

a manual lighting control position switch (Fig. 2.1) and a

low and high beam lever (Fig. 2.3). The lighting control

switch offers “off” (A), “side lights” (B) and “headlamps”

(C) positions. It is only when this switch is in the C

position that the driver can change between the low and

high beams with the lever. In any position, the low and

high beam lever also offers a flash command.

A1, not presented here, consider an automatic mode

(Fig. 2.2, position D), which switches headlamps on and off,

depending on the ambient light. High beams are still manually

activated. A2 and A3 consider a further improvement with

automatic high beams.

(1) (2) (3)

Fig. 2. Driver commands: (1) manual lighting control, (2) lighting control
with auto mode, (3) low and high beam lever.

A. S0 and A0 models

S0 is intended to be a primitive component, representing the

initial specification, whose behaviour is described by a single

State Machine. A0, representing a possible realization of S0,

is a composite component describing an architecture. Both S0

and A0 have the same outside provided and required interfaces

(Fig. 3): Driver Light Switch and Driver High Beam correspond

to Fig. 2.1 and Fig. 2.3, Device Light Switch is the required

interface which commands the lighting device through Driver

Light Switch and Driver High Beam interfaces correspond to

driver commands of Fig.2.1 and Fig.2.3.

Fig. 3. UML provided and required interfaces for S0 component

In complement to further models, we developed a Java

prototype application, which simulates the AFLS behaviour

(Fig. 4). The two driver commands are the two button lines

at the bottom (the low and high beam lever is grey, while the

beige one can only go from one position to its successive or

preceding position).

Fig. 4. Example of Graphical User Interface associated to a Java simulation
of the AFLS.

The behavioral specification of S0 (Fig. 5) has two roles:

(i) it defines when operations are provided to the driver:

in particular, driverHBon and driverHBoff are only possible

when the switch is in LowBeam mode; (ii) it translates the

driver commands into the lamp device operations: for instance

driverLow switches low beams on, but keeps side lights on,

driverPark switches side lights on or switches low beams off,

and driverFlash effect is described by an activity of two se-

quenced operations: highBeamOn followed by highBeamOff.

Fig. 5. S0 state machine

In [26], we described a way to build an architecture A0

which is a correct refinement of S0:

S0 =REF A0. (1)

It leads to A0 (described in Fig. 1) which connects three

primitive components. We give here the state machines of

HighBeamProtocol (Fig. 6) and LightControl (Fig. 7).

Fig. 6. HighBeamProtocol state machine

B. Specification and verification of typical properties

While equation (1) guaranties that A0 and S0 share the

same safety and liveness properties, obviously, it does not

Fig. 7. LightControl state machine

guarantee that S0 satisfies the informal requirements (User

informal req.).

1) Example of safety property: “The system can always ac-

cept driverFlash commands every two steps, except in highbeam

mode.” This is the following φ safety property:

φ = �(〈driverFlash〉.〈Act − driverHB〉.〈driverFlash〉.tt)
In order to check this property, we build the LTS presented

in Fig. 8, which first tests a driver flash action, and after

any other action (driver low, driver park, driver off), tries to

perform a driver flash action again.

4

0

1

6

2

7

3

OUT_SIDELIGHT

IN_DRIVEROFF

IN_DRIVERFLASH

OUT_LOWBEAMON

OUT_LIGHTOFF

IN_DRIVERFLASH

OUT_HIGHBEAMON

IN_DRIVERPARK
OUT_HIGHBEAMOFF

OUT_LOWBEAMOFF

IN_DRIVERLOW

Fig. 8. LTS T to check if S0 or A0 can always accept the DRIVERFLASH
action, except in high beam mode.

Using model transformation and IDCM, we can check that

property φ is satisfied:

hide driverHB in (S0 ||T)
is deadlock-free.

2) Example of liveness property: “In low/highBeam mode,

driverPark command always switches off low beams.” This is

the following ψ property:

ψ = �([driverLow][driverPark]♦(〈lowBeamOff〉tt
∧ [Act − lowBeamOff]ff))

Let G = Act− driverLow − driverPark. The testing LTS T is:

T = 〈G〉.success.T + driverLow.driverPark.T2
T2 = lowBeamOff.success.T + 〈G− lowBeamOff〉.T2

It appears that

hide Act − success in (S0||T) 6=REF Ok .

with Ok = success.Ok

Indeed, when in HighBeam state, S0 can not perform

driverPark followed by lowBeamOff: a transition is missing

from HighBeam state to SideLight state, triggered by driverPark.

V. RELATED WORK

Most of the works dealing with verification (model-checking

and theorem proving) take formal specifications as inputs.

We used CADP toolbox [21], as well as CCS tools such as

CAAL [1], [38]. Model checking tools use temporal logics

(for instance Hennessy-Milner Logics in CAAL) do describe

and verify properties. Compared to such tools, our objective

in the IDCM framework is threefold: (i) taking as input UML

architectures and state machines, i.e. semi-formal descriptions

(ii) describing properties within the same language (iii) pro-

viding incremental relations of refinement and extension. In

this paper, safety and liveness properties are verified by LTS

comparisons and deadlock detection, without having to use

temporal logics.

Moreover, the increasing number of works dealing with

formal model based analysis [9] do not ensure extension,

refinement or substitutability of models [27]. To the best of

our knowledge, no work has defined relations for incremental

development of architectural models, defined in UML. Table I

gives the synthesis of the analyzed approaches along liveness,

safety, substitution, extension and refinement aspects.

Liv. Saf. Sub. Ext. Ref.
UML/Wright [23] X X X

UML/B [34] ∼ X X X

SysML/Interface automata [14] ∼
UML/omega2 [30] ∼ X

AADL/FIACRE [7] X X

AADL/BIP[13] X

Archware (LOTOS) [31] X X

PADL-Æmilia [2] X X

SafArchie [3] X ∼
FIESTA [37] ∼

X: supported; ∼: partially supported; ‘ ’: not supported;

TABLE I
EVALUATION OF ARCHITECTURAL AND VERIFICATION TOOLS.

[23] proposes a UML profile and translates UML models

into Wright for using the model checker FDR. FDR focuses

on safety and liveness analyses without fairness assumption. It

does not analyze any extension nor substitution relation. Some

work such as [34] focus on translating UML into B or Z. They

include refinement techniques but do not address extension

techniques. [14] considers SysML models in order to verify

components assemblies. They perform behavioral compatibil-

ity verifications, but do not analyze any liveness property other

than dead-lock detection and do not address extension and

refinement problems. [30] has extended the analysis techniques

proposed by [18] which defined OMEGA2, a UML profile.

Architectures are translated into IF/IFx models [10], [11] in

order to be analyzed by the CADP toolbox [21] for safety

property analysis. However, model substitutability, extension

and refinement are not supported.

[7] considers AADL descriptions and transforms them into

FIACRE in order to apply the model checker TINA [8]. TINA

analyzes safety, liveness and deadlocks under the fairness

hypothesis, but it does not address extension, refinement and

substitutability. [13] has a similar approach by translating

AADL into the BIP language [4]. [17] transforms UML

architecture into BIP. However, BIP focuses on safety prop-

erties and does not address liveness, extension, refinement,

nor substitutability. Archware [32], [31] is a framework based

on the LOTOS language allowing the use of the CADP model

checker [21]. Safety and liveness properties are analyzed under

fairness assumption. Compatibility between components is

verified, but no extension nor substitution relations is con-

sidered. PADL and Æmilia [6], [2] are languages based on a

stochastic process algebra. They are associated with the model

checker TwoTowers [5]. Analyses can be conducted according

to several bisimulation relations. It appears that these relations

are too strong for incremental developments.

SafArchie and TranSAT framework [3] deal with the evo-

lution of architectures using safe patterns. The compatibility

between components is addressed from different points of

view: structural, functional and behavioral. Substitutability of

components is studied from a syntactical point of view by

considering interfaces. This does not guarantee the behavioral

conformance of the architecture in which the component is

substituted. FIESTA [37] defines a generic framework where

new components are introduced into architectural models. It is

based on a pattern approach and focus on adding or modifying

connections in order to ensure the compatibility between

components. This work addresses a part of the incremental

development in so far as the structural compatibility does not

guarantee the behavioral one.

In [20], the authors propose a transformation of UML

state charts and communication diagrams in LOTOS and use

FOCOVE verification environment where properties expressed

by CTL formulas are verified. [24] proposes UML statecharts

and their synchronization transformation in LOTOS. No veri-

fication is proposed, nor extension and refinement.

[22] transforms UML protocol state machines into Alloy.

No temporal properties are taken into account. Protocol state

machines are convenient to express predicates on states, which

depend on terms and values. We do not support such data

verifications. On the opposite, standard Alloy models do not

allow temporal logic verifications.

[25] presents a transformation of UML activity diagrams

into Alloy. Such work has the same limits as [22] concerning

temporal aspects, hence they do not verify liveness properties.

UML activity diagrams are also considered in [19], using

model checkers such as: UPPAAL, SPIN, NuSMV and PES.

Hence, safety and liveness properties are described in specific

temporal logics. Nevertheless, the automated aspect of the

Eclipse-plugin implementation of the tool allows users without

a background in formal methods to verify the safety and

liveness of a system.

[29] presents an interesting transformation of UML compo-

nents diagram and state machines into timed automata that are

checked with UPPAAL tool. [12] also proposes a transforma-

tion of UML state machines into timed automata. These work

support timed properties, whereas we only consider temporal

properties. However, user must provide explicit descriptions

of properties using timed temporal logics.

VI. CONCLUSION

IDCM framework proposes architectural modeling tech-

niques for reactive systems which cover refinement and ex-

tension approaches, as well as evaluation means, based on

conformance and refinement relations. Such relations verify

implicit safety and liveness properties. In this paper, we

present patterns of explicit safety and liveness properties and

a mechanism to check them on the desired models, using

the refinement equivalence relation. This relation has the

advantage of being weaker than the traditional observational

Milner’s relation.

Describing and verifying explicit properties is a comple-

mentary means to check: (i) first abstract models; (ii) ex-

tension points: in the incremental approach, we check that

extension preserves liveness properties, but we were not able

to check that a specific safety property is not violated by new

behaviours.

This work has several limits. The designer does not need to

express safety and liveness properties in a specific temporal

logics, but he has to translate such properties into specific

LTS. Even if we provide templates, this can be tricky task.

Secondly, the UML State Machine translation into LTS does

not consider data and timing aspect. We focus on ‘pure’

actions, without data parameters. Hence, guards, change event

and time event in UML state machines are always translated

by non deterministic LTS.

Further works consist in improving the IDCM tool on

two points: offering a way to describe semi-formally such

properties (formal translations being automatically generated);

improving verdicts and counter-examples in case a relation or

property is not satisfied.

REFERENCES

[1] L. Aceto, A. Ingólfsdóttir, K. Larsen, and J. Srba. Reactive Systems:

Modelling, Specification and Verification. Cambridge University Press,
2007.

[2] A. Aldini and M. Bernardo. On the usability of process algebra: An
architectural view. Theoretical Computer Science, 335(2-3):281–329,
May 2005.

[3] O. Barais, E. Cariou, L. Duchien, N. Pessemier, and L. Seinturier.
Transat: A framework for the specification of software architecture
evolution. Issues on Coordination and Adaptation Techniques, pages
31–38, 2004.

[4] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time
Components in BIP. In Proceedings of the Fourth IEEE International

Conference on Software Engineering and Formal Methods (SEFM 2006),
pages 3–12, Washington, DC, USA, 2006. IEEE Computer Society
Washington.

[5] M. Bernardo. TwoTowers 5.1 User Manual, 2006.
[6] M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting families

of software systems with process algebras. ACM Trans. Softw. Eng.

Methodol., 11(4):386–426, Oct. 2002.
[7] B. Berthomieu and J.-P. Bodeveix. Formal Verification of AADL models

with Fiacre and Tina. In Embedded Real-Time Software and Systems

(ERTS 2010), 2010.
[8] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA: Con-

struction of abstract state spaces for Petri nets and time Petri nets.
International Journal of Production Research, 42(14):2741–2756, 2004.

[9] A. Bertolino, P. Inverardi, and H. Muccini. Software architecture-based
analysis and testing: a look into achievements and future challenges.
Computing, 95(8):633–648, 2013.

[10] M. Bozga, S. Graf, and L. Mounier. IF-2.0: A Validation Environment
for Component-Based Real-Time Systems. In International Conference

on Computer Aided Verification, pages 343–348. Springer, 2002.

[11] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF Toolset. In
Formal Methods for the Design of Real-Time Systems, volume 3185 of
LNCS, pages 237–267. Springer Berlin Heidelberg, 2004.

[12] S. Burmester, H. Giese, M. Hirsch, and D. Schilling. ”incremental design
and formal verification with uml/rt in the fujaba real-time tool suite”.
In ”International Workshop on Specification and Validation of UML

Models for Real Time and Embedded Systems, SVERTS2004, Satellite

Event of the 7th International Conference on the Unified Modeling

Language”, 2004.

[13] M. Y. Chkouri and M. Bozga. Prototyping of distributed embedded
systems using AADL. ACESMB 2009, pages 65–79, 2009.

[14] S. Chouali and A. Hammad. Formal verification of components assem-
bly based on SysML and interface automata. Innovations in Systems

and Software Engineering, 7(4):265–274, Oct. 2011.

[15] A.-L. Courbis and T. Lambolais. IDCM. http://idcm.wp.mines-telecom.
fr. Accessed: 2017-04-01.

[16] A.-L. Courbis, T. Lambolais, H.-V. Luong, T.-L. Phan, C. Urtado, and
S. Vauttier. A formal support for incremental behavior specification in
agile development. In The 24th International Conference on Software

Engineering and Knowledge Engineering (SEKE), pages 694–699, 2012.

[17] A.-L. Courbis, T. Lambolais, and T.-H. Nguyen. Safe Incremental
Design of UML Architectures. In 29th International Conference on

Software Engineering and Knowledge Engineering, 2017.

[18] A. Cuccuru. Meaningful composite structures. In K. Czarnecki, I. Ober,
J.-M. Bruel, A. Uhl, and M. Völter, editors, Model Driven Engineering

Languages and Systems (MODELS 2008), volume 5301 of LNCS, pages
828–842. Springer Berlin Heidelberg, 2008.

[19] Z. Daw, J. Mangino, and R. Cleaveland. Uml-vt: A formal verification
environment for uml activity diagrams. In P&D@ MoDELS, pages 48–
51, 2015.

[20] S. Djaaboub, E. Kerkouche, and A. Chaoui. Generating verifiable
LOTOS specifications from UML models: A graph transformation-based
approach. International Journal of Embedded Systems, 10(6):453–469,
2018.

[21] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A
Toolbox for the Construction and Analysis of Distributed Processes. In
P. A. Abdulla and K. R. M. Leino, editors, Tools and Algorithms for

the Construction and Analysis of Systems, volume 6605 of LNCS, pages
372–387. Springer Berlin Heidelberg, Saarbrücken, 2011.

[22] A. Garis, A. C. Paiva, A. Cunha, and D. Riesco. Specifying UML
protocol state machines in alloy. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 7321 LNCS(June):312–326, 2012.

[23] M. Graiet, M. T. Bhiri, F. Dammak, and J.-P. Giraudin. Adaptation
d’UML2.0 à l’ADL Wright. In CAL, pages 83–100, 2006.

[24] B. Hnatkowska and Z. Huzar. Transformation of Dynamic Aspects of
Uml Models Into Lotos Behaviour Expressions. International Journal

of Applied Mathematics and Computer Science, 11(2):537–556, 2001.

[25] M. Kherbouche and B. Molnár. Formal model checking and transforma-
tions of models represented in uml with alloy. In International Workshop

on Modelling to Program, pages 127–136. Springer, 2020.

[26] T. Lambolais and A.-L. Courbis. Development and Verification of UML
Architecture by Refinement and Extension Techniques. In European

Congress on Embedded Real Time Software and Systems (ERTS), 2018.

[27] T. Lambolais, A.-L. Courbis, H.-V. Luong, and C. Percebois. IDF: A
framework for the incremental development and conformance verifi-
cation of UML active primitive components. Journal of Systems and

Software, 113:275–295, 2016.

[28] G. Leduc. Conformance relation, associated equivalence, and minimum
canonical tester in LOTOS. PSTV XI. North-Holland, pages 249–264,
1991.

[29] A. L. Muniz, A. M. Andrade, and G. Lima. Integrating uml and
uppaal for designing, specifying and verifying component-based real-
time systems. Innovations in Systems and Software Engineering,
6(1):29–37, 2010.

[30] I. Ober and I. Dragomir. Unambiguous UML composite structures: the
OMEGA2 experience. SOFSEM 2011: Theory and Practice of Computer

Science, pages 418–430, 2011.

[31] F. Oquendo. π-Method: A Model-Driven Formal Method for
Architecture-Centric Software Engineering. ACM SIGSOFT Software

Engineering Notes, 31(3):1–13, 2006.

[32] F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux, F. Gallo, H. Gar-
avel, and C. Occhipinti. ArchWare: Architecting Evolvable Software. In
Software Architectures, volume 3047 of LNCS, pages 257–271. Springer
Berlin Heidelberg, 2004.

[33] T.-L. Phan. Développement Incrémental de Spécifications

d’Architectures en UML Intégrant des Procédures de Vérification.
PhD thesis, Montpellier 2, France, 2013.

[34] M. Y. Said, M. Butler, and C. Snook. A method of refinement in UML-
B. Software & Systems Modeling, 14(4):1557–1580, 2015.

[35] F. B. Schneider. Decomposing Properties into Safety and Liveness using
Predicate Logic. Technical report, Cornell Univ. Ithaca, NY, Dept. of
Computer Science, 1987.

[36] Texas-Instruments. Automotive Adaptive Front-lighting System Refer-
ence Design. Technical Report SPRUHP3, Texas Instruments, System
Application Engineering, July 2013.

[37] G. Waignier, A.-F. Le Meur, and L. Duchien. FIESTA: A Generic Frame-
work for Integrating New Functionalities into Software Architectures. In
F. Oquendo, editor, Software Architecture, volume 4758 of LNCS, pages
76–91. Springer Berlin Heidelberg, 2007.

[38] J. K. Wortmann, S. R. Olesen, and S. Enevoldsen. Caal 2.0 recursive
hml, distinguishing formulae, equivalence collapses and parallel fixed-
point computations, 2015.

Session We.4.A

AI:Assurance & Testing I

Wednesday 1st June

17:00

–

Amphithéâtre

231

232

1

Programming Neural Networks Inference in a Safety-Critical Simulation-based Framework

Bernard Dion1, Max Najork1, Nicolas Dalmasso1, Jean-Louis Colaço1, Olivier Andrieu1,

Bernd Buettner1, Thomas Most1, Janaína Ribas de Amaral2

1Ansys 2Airbus

Abstract

This paper presents a framework for the development and validation of a neural network in the context of a safety-

critical function implemented in SCADE. It consists in a simulation-based training process to build a model in a deep

reinforcement learning environment, to transform it into a SCADE model, and to perform again runs with the same

simulation environment for validation of the safety-critical function. The approach is illustrated by a use case

regarding an unmanned aerial system that calculates a maneuver to avoid collisions with other aircraft,

infrastructure, and ground. The training and validation phase, including sensitivity analysis and reliability calculation

have been performed successfully, as well as the implementation of the function in SCADE.

1 Introduction

The challenges raised by the introduction of autonomy in embedded systems and the success of Neural Network

(NN) based approaches in many domains has generated strong interest from the safety-critical systems industry.

Cross-industry working groups have started to systematically collect the challenges for machine learning in safety-

critical applications and introduce first results for safe usage [1]. Other industry specific work focuses on the safe

automation of vehicle functions while combining machine learning techniques and suitable verification techniques

[2]. Key standardization bodies, such as SAE and EUROCAE, with the “Artificial Intelligence in Aeronautical Systems:

Statement of Concerns” [3], have clearly identified that it is now necessary to incorporate existing work to produce

a standard that provides the necessary accommodation to support the integration of Machine Learning (ML) enabled

sub-systems into safety-critical aeronautics software, hardware, and system development.

In this context, Ansys and some of its customers, anticipating that safety-critical software will evolve to integrate

machine learning functions, are working in this direction. The goal of this paper is to define an end-to-end workflow

for the safety-critical development of a neural network-based vehicle function and to demonstrate its applicability

to an Airbus use case.

The approach that we propose is based on three pillars:

• The formal notation and qualified code generation of the Scade language that provide a solid foundation

for implementing neural networks

• The definition of the Operational Design Domain (ODD) and a scenario-driven evaluation of the ODD

• The combination of simulation-based Reinforcement Learning (RL) [4], and robustness and reliability

analyses [11][12] to create and assess a Neural Network model together with its safe implementation in

SCADE, as described in Figure 1 below.

The Operational Design Domain (ODD) is first created to describe the system’s intended operating conditions.

System safety analysis activities are then performed, and the system architecture is defined. When done with this

initial phase, the neural network architecture and its parameters are defined, and training can be performed based

on simulation scenarios (see Section 2). Complementing the training activities, the neural network behavior can be

assessed through robustness and sensitivity analysis, and training scenarios where insufficient generalization was

observed can be added to the training process until functional and safety goals are achieved.

Once training is completed, the Neural Network is automatically imported into SCADE to create a complete

embedded Software (SW) application, including both the Neural Network and the traditional functions in a unique

design model (see Section 3). The same simulation environment is finally used to validate the complete application.

2

Reliability analysis can be performed to assess the probability of failure (see Section 4) and classical verification

activities be carried out for the complete application.

Figure 1: the overall workflow for training and implementing a neural network.

To illustrate this workflow, Airbus proposed the use case of an aircraft that must reach an item of interest, while

avoiding an intruder. In Section 5, the use case and its implementation will be described in depth. The resulting

artifacts from the training process, the import to SCADE, and the different forms of analysis will be presented.

2 Training the Neural Network Model

In the training phase (see Figure 1), we show variations of a flight scenario (an episode) to the reinforcement learning

agent [4]. Over the execution of many episodes, the agent will learn based on trial and error. In the early training

stages, it will pick actions randomly and observe the reward. It will then start to favor actions that result in a higher

expected reward, becoming more and more accurate in the action selection.

 The training environment for Deep Reinforcement Learning (DRL) is shown in Figure 2 and it requires:

• The agent: to perceive and interact with the environment for its trial-and-error learning approach. It

includes the simulated physical aircraft (we used the Ansys AVxcelerate Simulator for that purpose [5]), and

it requires a significant amount of traditional Software (SCADE) performing pre- and post-processing to the

NN, as well as the implementation of subsequent conventional control algorithms.

• The environment: this includes the scenario configuration (start point, waypoints, buildings, etc.) as well as

the underlying physics of the world, such as flight physics to simulate and propagate the objects (again using

the AVxcelerate Simulator for that purpose).

• The reward function: to evaluate the agent's performance and to provide incentives for good behavior

(SCADE). The total reward of an episode is the accumulation of the individual rewards over the time steps

of the episode.

• The Neural Network and DRL framework: to hold the Neural Network. It collects the experiences

(observation, action, and rewards) from the last episodes and evaluates a loss function to optimize for

actions that yield the best expected rewards. The DRL framework then starts tuning every individual weight

of the millions of neural network weights so that the Neural Network produces better actions. For the

experiment in this paper, we have used minds.ai DeepSim [6] as the DRL framework.

• Results analytics: to assess the neural network behavior and visualize it so the engineer can understand it.

This is performed with the Ansys optiSLang tool to uncover issues while performing and sensitivity (Figure

11) and robustness (Figure 14) analysis, and to understand the need for further training episodes.

3

Figure 2: the training environment for DRL.

3 Implementing the Inference Model with SCADE

SCADE Suite is a development environment dedicated to the software design of safety critical systems. The toolset

supports qualified workflows: code generation, test execution, and coverage analyses; all qualified for safety

standards (DO-178C, EN 50128, and ISO 26262). The qualification credit of the code generator allows to compile C

code from a SCADE design, without the need to verify that this code complies with the design. This approach has

been used successfully and contributed to the certification of more than 300 systems in the last 20 years.

This environment is built on an underlying programming language called Scade [7], which is a major evolution of

Lustre [8]. The Scade language allows the manipulation of composite data organized in structures or arrays. It is

strongly typed, and the types include array sizes to ensure that all the accesses are within bounds. This property is

statically verified in the front-end of the code generator, and no code is produced for incorrect models. To introduce

and illustrate Scade arrays, we start with simple linear forms. Then, we address standard NN layers.

Programming Linear Forms in Scade

Scade provides a type construct to represent unidimensional arrays of a given type and size; this size is part of the

type and verified by the type checker. For instance, a vector of 32 bits integers has type int32^m where m is a static

integer. Multidimensional arrays are represented as vectors of vectors. The primitives proposed in Scade to define

and use arrays ensure that all the items have a defined value, and all the accesses are done within bounds. These

properties are strong, and they are not guaranteed by general purpose programming languages without additional

activities (code review, tests, or proofs). While in a correct Scade model, they are guaranteed. To achieve this goal

on array computation, Scade arrays are manipulated through dedicated primitives. Here are the main ones:

• e^n represents an array of size n in which all elements are equal to e

• (A.[i] default e) is a projection of A at index i. It returns e whenever i is out of A bounds

• A[i] is a projection at static index i

• (map Op <<n>>)(A, B) applies operator Op point wisely to the elements of arrays A and B

• (fold Op <<n>>)(a, A, B) cascades the application of Op with the elements of A and B starting with a

Figure 3 gives the complete definition of the scalar product

operator, with its genericity parameters in size (m, n) and

type ('T), with the constraint that it must be numeric.

Mathematically, the product of a matrix A by a vector u can

be defined as the vector w which is such that its ith coefficient

is defined by the scalar product of the ith line of A by vector

u. Figure 4 shows the corresponding definition; we can

notice the presence of a transposition to iterate on the

lines of A. These simple and very regular formulas can

be written in a compact way without explicit access to

the vectors’ elements (i.e., without projection).

function MatVectProd <<m, n>> (A: 'T^m^n; u: 'T^n)

returns (w: 'T^m) where 'T numeric

 w = (map (ScalProd <<n>>) <<m>>)

 (transpose(A; 1; 2), u^m);

function ScalProd <<n>> (u, v: 'T^n)

returns (w:'T) where 'T numeric

 w = (fold $+$ <<n>>)

 (0, (map $*$ <<n>>)(u, v));

Figure 3: scalar product in Scade.

Figure 4: matrix-vector product in Scade.

4

Multilayer Perceptron in Scade

A classical design of neural network (see [9]) is

the multilayer perceptron (MLP). Each layer

computes output values from its input values

by the composition of a linear combination of

the weighted input values with a non-linear

activation function. The output of the last layer

of the MLP constitutes the output of the whole

network. The implementation of a layer

corresponds to a product of the layer input

vector with the matrix of coefficients plus a

bias; both coefficients and bias are tuned during the learning phase

and do not vary during the inference phase. The definition of the

operator dot_bias (resp. InnerProduct_1D) is basically the same as

ScalProd (resp. MatVectProd) introduced earlier with the integration

of the bias. Figure 5 shows how to define standard layers that can

be grouped in a library of Layers that is then used to develop

different applications involving MLP. Figure 6 defines the classical

ReLU activation function that is straightforward to implement in

Scade; other classical activation like tanh, sigmoid, softmax etc.

may require floating-point math primitives to be defined.

Convolutional Neural Networks in Scade

For some applications, the important information is more local, and this locality must be captured by the network.

This led to a new kind of layer called convolution [10] that only combines neurons that are neighbors. A convolution

is a mathematical operation that combines these neighbors based on a kernel of weights. Its definition involves a

sliding window on the array content that is done with an iterator that captures the iteration index (mapi) and array

projections to access the neighbors of a cell. Figure 7 shows a Scade definition of a pooling layer [10]. The entry point

for this function is Pool_max. It takes a 3-D array as an input and, for each 2-D array of size D1*D2, returns an array

that is half size in each dimension and whose content is defined as the maximum content of a kernel of size 2*2.

function private _Pool_max_cell <<D2, D1>>(j,i : int32; x : 'T ^D1^D2)

returns(y : 'T) where 'T numeric

 y = max(max((x.[i*2][j*2] default 0), (x.[i*2][j*2+1] default 0)),

 max((x.[i*2+1][j*2] default 0), (x.[i*2+1][j*2+1] default 0)));

function private _Pool_max_row <<D2, D1>>(i: int32; x: 'T ^D1^D2)

returns (y: 'T^(D1/2)) where 'T numeric

 y = (mapi (_Pool_max_cell <<D2, D1>>) <<D1/2>>)((i, x)^(D1/2));

function private _Pool_max_mat <<D2, D1>>(x: 'T ^D1^D2) returns(y: 'T^(D1/2)^(D2/2)) where 'T numeric

 y = (mapi (_Pool_max_row <<D2, D1>>) <<D2/2>>)(x^(D2/2));

function Pool_max <<D3, D2, D1>>(x: 'T^D1^D2^D3) returns (y: 'T^(D1/2)^(D2/2)^D3) where 'T numeric

 y = (map (_Pool_max_mat <<D2, D1>>) <<D3>>)(x);

function dot_bias <<n>>(x, w: 'T^n; b: 'T)

returns (y: 'T) where 'T numeric

 y = (fold $+$ <<n>>)(b, (map $*$ <<n>>)(x, w));

function InnerProduct_1D <<n, m>>

 (x: 'T^n; weight: 'T^n^m; bias: 'T^m)

returns (y: 'T^m) where 'T numeric

 y = (map (dot_bias <<n>>) <<m>>) (x^m, weight, bias);

function _relu (x: 'T)

returns (y: 'T) where 'T numeric

 y = if x >= 0 then x else 0;

function ReLU <<n>> (x: 'T^n)

returns (y: 'T^n) where 'T numeric

 y = (map _relu <<n>>)(x);

Figure 5: a dense layer in Scade.

Figure 6: a ReLU layer in Scade.

Figure 7: a pooling layer in Scade.

5

4 Function Implementation and Validation

Figure 8 below illustrates the import of a trained NN into Scade from a machine learning framework. The trained

NN model, as stored in the DRL framework, is transformed into a SCADE NN inference model based on the above

library of layers, while discarding all unnecessary information used for training purposes. This transformation is

automated through tool support within SCADE.

Figure 8: importing the trained inference model in SCADE and verifying the design.

Once the NN has been imported into SCADE, as shown in Figure 8 above, scenario-based co-simulation of the

complete SCADE model together with the Simulator is performed. Based on statistical testing, the probability of

failure of the application can be estimated, leveraging a probabilistic model for the occurrence of each scenario and

the probability distribution of the input parameters of these scenarios. Rather than typical Monte-Carlo simulation,

optiSLang is using Importance and Directional Sampling techniques to efficiently calculate the probability of failure

of a given scenario, as described in [11], and as shown in Figure 15. This analysis will first be done using model-in-

the-loop simulation. In addition, hardware-in-the-loop simulation will be needed to assess the uncertainty due to

small numerical differences between the host and target platforms.

5 Airbus Use Case

Unmanned Aerial Vehicles (UAVs), which are aircraft that are guided remotely or autonomously without any human

on board, are widely used on tasks like wildfire monitoring [14], surveillance [15], and search and rescue [16]. To be

able to operate them autonomously in unknown environments and overcome uncertainties, they need a system

that immediately calculates a maneuver to avoid collision with other aircraft, infrastructure, and ground. Existing

systems like TCAS are limited because they only consider aerial collision avoidance, and not collision with ground

obstacles.

Based on the holistic set of information available, a combined approach, such as Reinforcement Learning which fulfils

the possible contradictory objectives of a mission “Approach of an item of interest” and “Avoid conflicts” (obstacles
or other vehicles), is an interesting solution to be used for the next generation of maneuver planning systems, as it

can deliver a real time response to complex scenarios. However, current certification standards do not consider the

application of artificial intelligence in safety-critical systems yet. Therefore, Airbus and Ansys are collaborating in

activities that perform investigations on this topic. One of these activities is the evaluation of the safety-critical

simulation-based framework proposed by Ansys in this paper.

For that, Airbus proposed the use case “Approach of item of interest with collision avoidance”, illustrated in Figure

9. The goal is to train a Neural Network using Reinforcement Learning to ensure safety of the aircraft and its

surrounding by performing collision avoidance maneuvers. Once the Neural Network is trained, the approach

described in this paper is applied for the validation and safe implementation of the vehicle function.

6

Figure 9: the aircraft must reach an item of interest while avoiding collisions with ground obstacles and an intruder.

The following sub-sections describe the learning problem and the training results, the implementation in SCADE, and

the subsequent validation of the vehicle function using the robustness and reliability analysis methods.

Reinforcement Learning Problem Definition

The agent corresponds to a medium size fixed-wing UAV. It must learn how to reach the item of interest, avoid an

intruder, and fly with an altitude higher than 30 meters. In DRL, the inputs to the neural networks are called

observations. They contain three main types of information:

1. Ego state: the orientation of the aircraft (roll, pitch, yaw) and the altitude above ground

2. Target information: the Euclidean distance to the target and the 3D directional components to the target

3. Intruder information: the Euclidean distance to the intruder, the 3D directional components to the

intruder, and the 3D velocity components of the intruder relative to the ego vehicle

All position vectors are measured in the vehicles body-fixed coordinate frame. All observations are pre-processed

by the conventional Software, by clipping and normalization operations, so that all neural network inputs are within

the interval [-1, +1]. The actions computed by the Neural Network are the pitch, roll, and yaw rate targets, as well

as the desired level of thrust. The rate commands are further processed by the flight control functions that command

the flight control surfaces (ailerons, elevator, rudder) and the aircraft engine.

Ansys AVxcelerate was used to simulate the physics of the UAV, the intruder, and ground. The agent interacts with

this simulation environment to generate the trial-and-error experiences which are divided into episodes. At the

beginning of each episode, the positions of the UAV and the item of interest are randomly initialized within a defined

airspace volume (bounding box), and the intruder has its straight-line trajectory of fixed length also randomly placed

in the environment. The episode ends when the UAV reaches the item of interest or violates the safe distance of 50

meters to the ground or the intruder.

As Deep Reinforcement Learning framework, minds.ai DeepSim [6] was used. It collects the observations, actions,

and rewards generated during the episodes and trains the Neural Network. The Neural Network has 2 hidden layers

with 256 neurons each. The parameters of the Neural Network were updated using an actor-critic policy gradient

method for DRL called Proximal Policy Optimization (PPO) [17].

The reward function is composed of several positive elements. A main reward is provided for reaching the target

and being efficient in time doing so. Additional guidance rewards are provided whenever the aircraft gets closer to

the target or further away from the intruder.

7

Training Results

The training was performed over 1 million training steps. The resulting TensorBoard [18] average reward graph is

shown in Figure 10.

In the beginning of the training process, one can

observe a steep early climb where the basic

principles of the scenarios were learned by the

Neural Network. After 200,000 steps, we can see an

asymptotic phase where small adjustments are

made to improve the overall efficiency of the

learned policy. The overall graph creates a good

impression, indicating that the learning process was

successful.

To confirm the result, a sensitivity analysis using Ansys optiSLang [12] was performed. Figure 11 shows the analysis

results. Gray boxes or small percentages indicate the independence between an output and input and vice versa.

Figure 11: result of the optiSLang sensitivity analysis showing the mapping of neural networks inputs to outputs.

Several observations can be made:

• Firstly, several inputs to the Neural Network contribute very little to the computation of the actions, e.g.,

the Euclidean distance to the target and the intruder, the measured yaw angle, or the longitudinal distance

to the intruder. Those inputs can possibly be pruned.

• Secondly, we see strong dependencies on the measured pitch and roll angles, which is essential to maintain

a stable orientation. Additionally, there is a strong effect of the vertical and longitudinal distances on the

pitch and acceleration commands, that are consistent with our expectation of fixed-wing dynamics.

However, the transversal distance should primarily affect the roll command, to introduce a turn through a

combined roll pitch motion. Nevertheless, there is a strong yaw effect shown by the analysis, that may be

due to the reinforcement learning algorithm exploiting inaccuracies of the simplified flight dynamic model

used. Additional analysis of the representativeness of the flight dynamics model and possible improvements

are required.

• Thirdly, we can observe different dependencies on the intruder. However, it is less evident how the precise

commands are computed. One explanation is that the intruder distances and velocities are measured in the

ego aircraft’s body-fixed coordinate frame. For example, at 90-degree roll angle, a transversal motion of

the intruder in an earth-fixed coordinate frame would be perceived along the vertical axis within the ego’s
body-fixed frame. This coupling through the rotations does not allow a trivial control policy but requires a

more complex policy considering the orientation of the ego aircraft. From the sensitivity analysis we can

observe this clear dependency on the orientation (pitch, roll) as well as the more complex dependencies on

the distances and velocities measured in the body-fixed frame.

Figure 10: average reward over the training steps.

8

The open-loop sensitivity analysis confirms the positive impressions from the learning graph. Generally, the learned

mappings are consistent with engineering judgement. However, further analysis is required to confirm the correct

learning and compliance with safety requirements. In the following sections, we proceed to import the Neural

Network to SCADE and perform further analysis based on the closed-loop simulation of the full application.

Import to SCADE

The automatic importer for Keras models [19] translates the Neural Network to a Scade representation, as shown in

Figure 12, and the Scade inference model is integrated in the end-to-end vehicle function, as shown in Figure 13.

For the implementation of the complete vehicle function, we use the same functions for normalizing the

observations and calculating the controls as we used during the training, while placing the imported Neural Network

in between. This ensures full consistency between the training and the inference phase. In the next section, we

describe the validation of the end-to-end vehicle function.

Figure 13: end-to-end vehicle function in SCADE - normalization (left), trained NN (center), and the control functions (right).

Function Validation

The function validation is divided into three steps. Firstly, we need to create a probabilistic model for our scenario

parameters to describe the scenario variations we expect in real-world operations. Secondly, we leverage robustness

analysis to get a first indication of the performance of the end-to-end vehicle function. Thirdly, we leverage the

reliability analysis to quantify the failure probabilities for rare events.

Table 1 below shows the scenario parameters and their corresponding probability distribution. The values are

directly entered into optiSLang implementing the probabilistic model. In terms of criteria, both robustness and

reliability analysis will evaluate the minimum altitude and minimum collision distance where values below 50 meters

are assumed as unsafe.

Figure 12: trained neural network model in Scade for inference.

9

Table 1: probability distributions for scenario parameters.

Parameter Name Distribution Type Distribution values

Target X Normal mean: 0, std dev: 50

Target Y (Altitude) Truncated Normal mean: 100, std dev: 50, min: 51, max, 1000

Target Z Normal mean: -650, std dev: 100

Initial Pitch Normal mean: 0, std dev: 0.2

Initial Yaw Uniform min: -0.01, max: 0.01

Initial Roll Normal mean: 0, std dev: 0.2

Initial Position X Normal mean: 0, std dev: 50,

Initial Position Y (Altitude) Truncated Normal mean: 100, std dev: 50, min: 51, max, 1000

Initial Position Z Normal mean: 650, std dev: 100

Intruder Initial Altitude Truncated Normal mean: 100, std dev: 50, min: 51, max, 1000

Intruder Altitude Change Truncated Normal mean: 0, std dev: 50, min: -50, max, 1000

Intruder Range Normal mean: 50, std dev: 10,

Intruder Heading Uniform min: -3.14, max: 3.14

Based on the probabilistic model and the closed-loop simulation containing the end-to-end vehicle function, a

robustness analysis is executed. The results are shown in Figure 14.

Figure 14: histogram for the Safety KPIs and their corresponding safety limit.

The results show a good compliance with the safety limits. Some individual failures can be observed. Therefore, the

next step uses the reliability analysis to quantify the failure rate of the rare events.

The reliability analysis utilizes the same probabilistic model and

closed-loop simulation as the robustness analysis. However, using the

Adaptive Response Surface Model with Directional Sampling [13],

more scenarios are created around the failure regions. The overall

result of the reliability analysis for both safety criteria together is

shown in Figure 15. The achieved probability is already low, which

explains the rare occurrences of safety violations in the robustness

analysis.

However, due to the adaptive nature of the reliability analysis, it could

find different failure cases and allows us to further understand the

scenarios in which failures occur. In this paper, we will summarize the

results only for the most dominant scenario parameters and their

effect on the safety limit.

Figure 15: results of the reliability analysis.

10

Figure 16: part of the results of the reliability analysis.

From the results graph (Figure 16), we have three types of colored dots. Black dots “Support Points” are the actual
scenarios that have been evaluated through the closed-loop simulation. Those scenarios are used as support points

to fit the Adaptive Response Surface Model (ARSM). The model is then used for a faster evaluation represented by

the blue and red dots depending on whether the result meets the safety criteria or not.

On the left-hand side of Figure 16, we can see the effect the Target Altitude has on the Minimum Altitude of the

aircraft. A lot of safety violations occur when the target is close to the ground leaving little room for error. This is in

line with our engineering judgement. However, there is an additional failure region for target altitudes above 250

meters. This indicates a lack of generalization capability of the Neural Network for these target ranges. We can also

see that the minimum aircraft altitude is the predominant failure cause for our scenarios.

On the right-hand side of Figure 16, we can see the relation between the Minimum Collision Distance and the Target

Z coordinate that determines the distance of the target along the longitudinal axis1 (backward - forward) of the

aircraft. It will also naturally influence the distance between the intruder and the target. Here, the focus is on failed

designs below the minimum collision distance of 50 meters, to discard the failures due to a ground collision. We can

observe both from the support points (black) and failed designs (red) that intruder collisions predominantly occur

when the Z coordinate is between -500 and 0. When we compare these values to our bounding box for the Target Z

coordinate during training [-800, -500], we can explain this lack of robustness through the fact that the predominant

failure range was not included in the training phase and the agent did not sufficiently generalize to this region.

In summary, the reliability analysis shows that the algorithm performs well on most scenarios with a good failure

rate. Additionally, it pinpoints specific failure regions that can be improved in further training iterations.

6 Conclusion and Future Work

This work has applied the described methodology proposed by Ansys on the Airbus use case, approaching an item

of interest, while avoiding an intruder. While doing so, we achieved the following results:

• The agent was successfully trained.

• The sensitivity analysis helped to get valuable insights into the learned control policy.

• When evaluating the end-to-end vehicle function implemented in SCADE, consisting of the traditional

Software as well as the imported Neural Network, the robustness analysis showed overall good results with

little failures.

• Leveraging the reliability analysis, we could quantify the failure probability of the vehicle function on the

described scenario and pinpoint the different failure regions.

• Future work can build on top of the analysis results, and further improve the vehicle function and the

training process.

1 References are in the frame of the general-purpose dynamics engine used, which may deviate from aeronautical reference conventions.

11

Additionally, as explained in Section 4, the numerical differences between host and target computations could

possibly influence the performance of the vehicle function and the compliance with safety requirements. Future

work should elaborate more in detail on the requirement and methodology for target testing to prove the absence

of significant differences between computation platforms.

Finally, as major certification credit is taken from the analysis and closed-loop simulation, tool qualification

considerations need to be established. This is not only limited to the correct functioning of the tools guaranteeing

the absence of implementation errors, but it also relates to the accuracy of the simulation itself and the methods

used for robustness and reliability analysis.

References

[1] E. Jenn, A. Albore, F. Mamalet, G. Flandin, C. Gabreau, H. Delseny, A. Gauffriau, H. Bonnin, L. Alecu, J. Pirard , B.

Lefevre, J-M. Gabriel, C. Cappi, L. Gardès, S. Picard, G. Dulon, B. Beltran, J-C. Bianic, M. Damour, K. Delmas, and C.

Pagetti, “Identifying Challenges to the Certification of Machine Learning for Safety Critical Systems”, 10th European

Congress Embedded Real Time System (ERTS), March 2020

[2] “Safety First for Automated Driving”, APTIV, Audi, Baidu, BMW, Continental, Daimler, FCA, Here, Infineon, Intel,

and VW, July 2019, available at: https://www.daimler.com/innovation/case/autonomous/safety-first-for-automated-

driving.html

[3] AIR6988, “Artificial Intelligence in Aeronautical Systems: Statement of Concerns”, SAE, April 2021

[4] R. Sutton and A. Barto, “Reinforcement Learning: An Introduction”, MIT Press, 2018

[5] Ansys AVxcelerate, 2022R1, Ansys, December 2022

[6] DeepSim, https://www.minds.ai/deepsim, minds.ai, 2021

[7] J-L. Colaço, B. Pagano and M. Pouzet, “Scade 6: A formal language for embedded critical software development”,

11th International Symposium on Theoretical Aspects of Software Engineering, TASE 2017, September 2017

[8] P. Caspi, N. Halbwachs, D. Pilaud and J. Plaice, “Lustre: a declarative language for programming synchronous

systems”, 14th ACM Symposium on Principles of Programming Languages, October 1987

[9] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning”, MIT Press, 2016

[10] Y. LeCun, "LeNet-5, convolutional neural networks," available at: http://yann.lecun.com/exdb/lenet/

[11] Rasch, M., P.T. Ubben, T. Most, V. Bayer, R. Niemeier, “Safety Assessment and Uncertainty Quantification of

Automated Driver Assistance Systems using Stochastic Analysis Methods”, NAFEMS World Congress, Quebec,
Canada, June 2019

[12] T. Most and J. Will, “Sensitivity analysis using the Metamodel of Optimal Prognosis”, Proceedings Weimar

Optimization and Stochastic Days (WOST), Weimar, 2011

[13] D. Roos and U. Adam, “Adaptive Moving Least Squares approximation for the design reliability analysis”,

Proceedings Weimar Optimization and Stochastic Days (WOST), Weimar, 2006

[14] M. A. Akhloufi, A. Couturier, and N. A. Castro, “Unmanned Aerial Vehicles for Wildland Fires: Sensing,

Perception, Cooperation and Assistance”, Drones 2021, 5, 15, available at: https://doi.org/10.3390/drones5010015

12

[15] A. Ahmadzadeh, J. Keller, G. Pappas, A. Jadbabaie, and V. Kumar, “An Optimization-Based Approach to Time-

Critical Cooperative Surveillance and Coverage with UAVs”, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.

491–500, available at: https://doi.org/10.1007/978-3-540-77457-0_46

[16] C. Recchiuto, C. Nattero, A. Sgorbissa, and R. Zaccaria, “Coverage algorithms for search and rescue with UAV

drones”, AI*IA Symposium on Artificial Intelligence (AIRO Workshop), Pisa, December 2014

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, “Proximal Policy Optimization Algorithms”, Cornell

University, arXiv:1707.06347, July 2017

[18] TensorBoard, https://www.tensorflow.org/tensorboard, TensorFlow

[19] F. Chollet, “Deep Learning with Python”, Second Edition, Manning, October 2021

Leveraging Influence Functions for Dataset
Exploration and Cleaning

Agustin Martin Picard∗†, David Vigouroux†, Petr Zamolodtchikov‡,

Quentin Vincenot∥†, Jean-Michel Loubes§, Edouard Pauwels¶

∗ Scalian, † IRT Saint Exupéry, ‡ University of Twente, ∥ Thales Alenia Space,
§ Institut Mathématique de Toulouse, Université Paul Sabatier, ¶ IRIT, CNRS, Université de Toulouse,

Abstract—In this paper, we tackle the problem of finding
potentially problematic samples and complex regions of the input
space for large pools of data without any supervision, with the
objective of being relayed to and validated by a domain expert.
This information can be critical, as even a low level of noise
in the dataset may severely bias the model through spurious
correlations between unrelated samples, and under-represented
groups of data-points will exacerbate this issue. As such, we
present two practical applications of influence functions in neural
network models to industrial use-cases: exploration and clean-
up of mislabeled examples in datasets. This robust statistics tool
allows us to approximately know how different an estimator
might be if we slightly changed the training dataset. In particular,
we apply this technique to an ACAS Xu neural network surrogate
model use-case[14] for complex region exploration, and to the
CIFAR-10 canonical RGB image classification problem[20] for
mislabeled sample detection with promising results.

Keywords: Intelligent Systems, Artificial Neural Networks,

Influence functions, Dataset Exploration, Mislabeled Sample

Detection.

I. INTRODUCTION

In recent times, the field of artificial intelligence (AI)

and machine learning has been shifting to a paradigm with

an extreme reliance on huge, over-parametrized models and

equally large pools of data. These models leverage correlations

between samples of the same class to perform their predictions

with an impressive precision on domains ranging from image

classification [20, 8], object detection [8, 22] and semantic

segmentation [22, 6] in computer vision, to sentiment analysis

[23] and natural language translation [16] in natural language

processing (NLP). The exponential growth of widely available,

vast amounts of data for these applications has been a major

catalyst in this process, and along with it comes the need to

validate it and clean it.

Traditionally, domain experts would be requested to perform

this task, but when dealing with millions of examples, it

becomes impossible to realistically verify each one. As such,

there has been an emergence of different techniques to remedy

this issue by automatically proposing interesting samples that

might need to be verified before integration into the dataset.

Related work

Namely, Koh et al. recovered a classical statistics tool and

adapted it to differentiable statistical models and applied it to

dataset cleaning and white-box model explainability [18] with

interesting results in the former task. It is this formulation that

we will be employing in this work. They later went further

and studied the effect groups of data-points have on models

in [17], with Basu et al. providing a second-order formulation

that takes into account pairwise interactions between samples

[3]. Choosing a different starting point, Giordano et al. have

proposed alternative formulations based on the infinitesimal

jack-knife for first [9] and higher order approximations [10],

where they also provide bounds on the error incurred during

the approximation.

More recently, Kong et al. have adapted the notion of

influence function to Variational AutoEncoders in [19], where

they address the problem of computing the loss of test samples

over the expectation over the encoder, and they apply it to

dataset cleaning tasks on the MNIST [21] and CIFAR-10 [20]

computer vision datasets. With another application in mind,

Alaa et al. have employed higher-order influence functions to

measure uncertainty in deep learning models [1], showcasing

the numerous applications of this tool.

There are also numerous techniques for estimating the

influence of training samples based on other principles. In

[32], the authors propose to leverage the representer theorem

[26] to find the training points that contribute the most –

both positive and negatively – to the model’s output. In

particular, they apply this technique to offer explanations to

the neural network’s decisions. With the same application in

mind and basing themselves off of the same principle, Sui et

al. derive a technique that employs a local Jacobian Taylor

expansion instead of re-fitting a new output layer [30] – as

in [32]. They also measure its capacity to detect mislabeled

examples in very noisy scenarios. Finally, in [25], Pruthi et

al. propose to compute a first-order approximation of the

influence function by capitalizing on the model’s checkpoints

saved during the training process. This allows them to spare

themselves the difficulties related to handling with hessian

matrices of considerable size – a problem that, depending on

the dimensionality of the task, can complicate matters in our

case.

However, they all performed tests on canonical datasets

and focused on single model architectures. In contrast,

in this work, we successfully demonstrate the utility of

influence functions on practical industrial applications,

namely on the ACAS Xu use-case, and we perform exper-

iments on multiple types of models and training schedules

to conclude that they constitute a critical component to

obtaining satisfactory results.

In practice, we know that mislabeled data-points heavily

influence the shape of the decision boundary, and thus, when

fixed, force the optimal model to change drastically to accom-

modate this deformation. In much the same way, removing

samples from insufficiently dense regions of the input space

will result in a model whose parameters are significantly

different. However, it would be prohibitively time-consuming

to re-train a model leaving out one sample at a time in

most use-cases. This is why we turned to the concept of the

influence function, that allows us to approximately measure the

importance of each data-point without the need for expensive

re-trainings – assuming certain criteria are met.

II. INFLUENCE FUNCTIONS

A. Theory

In the literature of classical robust estimation, the question

of how to appropriately measure the influence of subsamples

of data on a given estimator is often raised [11, 5, 13]. In

other words, how an estimator would behave if some of the

data-points were not provided. An accurate way to answer

this question would be to re-fit the estimator on a dataset with

these points held-out. However, for modern models on high-

dimensional data, this process can be computationally very ex-

pensive and time-consuming. Fortunately, when working with

neural network models, it is possible to leverage any of the

modern, widely available automatic differentiation frameworks

to approximate the answer.

In [18, 17], the authors adapt the concept of influence

function to neural networks trained using empirical risk min-

imization (ERM) and leveraging the automatic calculation of

gradients.

Definition 1. Let z1, ..., zn be a group of training points,

where zi = (xi, yi) ∈ X × Y – where X and Y are the input

and output spaces respectively –, θ ∈ Θ be a set of parameters,

ℓ(z, θ) a loss function, and θ̂ = argminθ∈Θ
1
n

∑n
i=1 ℓ(zi, θ)

the empirical risk minimizer. Then, they posit that the influence

that a test point ztest has in the model’s weights induced by

infinitesimally up-weighting a data-point z is equal to [18]:

Iup,loss (z, ztest) = ∇θℓ
(

ztest, θ̂
)T

H−1

θ̂
∇θℓ

(

z, θ̂
)

, (1)

where H
θ̂
= 1

n

∑n
i=1∇2

θℓ
(

zi, θ̂
)

is the average Hessian with

respect to the model’s weights.

This formulation requires us to make some very strong as-

sumptions about the underlying problem. Namely, we assume:

1) the loss ℓ : (x, y, θ) 7→ ℓ (fθ(x), y) to be convex and

twice continuously differentiable.

2) that ∃θ0 ∈ R
d such that ∇θE [ℓ (fθ0(x), y)] = 0.

3) the matrix H
θ̂

to be invertible.

These hypotheses are reasonable when the model has been

trained long enough to be close to a local first and second-

order minimum. However, they can constrain the applicability

of this formulation considerably, but to work around them,

we may limit ourselves to the regression – linear or logistic,

depending on the task – between the embedding engendered

by the feature extraction chain (from the input to the last

layer of the neural network) and the output. If this embedding

was created carefully enough, the first and last assumptions

should be true, and the second one, approximately verified

(∇θE [ℓ (fθ0(x), y)] ≈ 0). This also allows us to drastically

reduce the computational cost associated to these calculations

for the large models that are typically used in high-dimensional

applications.

Returning to Eq. 1, when z = ztest, this quantity is exactly

identical to the influence measure introduced by Cook in [5],

also known as Cook’s distance, and we will apply this concept

to our practical applications.

B. Implementation

Up until now, we have considered a theoretical problem

leaving out all possible practical issues we might run into,

but it turns out that the exact computation of Cook’s distance

through the formulation we described above can raise plenty

of technical challenges. Namely, calculating the hessian – and

thus, its inverse – can be extremely computationally intensive,

and even impossible depending on the amount of weights our

model has, as this matrix grows quadratically in size with the

model’s parameters.

The first measure to alleviate the computational burden is

to reduce the amount of parameters to consider during the

estimation of the H−1

θ̂
. In particular, we considered only

the neural network’s last layer containing trainable weights,

thus both reducing the size of the hessian and verifying the

hypothesis we need for accurate calculation of these quantities.

Secondly, when this does not suffice to render the problem

tractable, it is still possible to estimate the inverse-hessian-

vector product directly without explicitly computing the hes-

sian by using a Conjugate Gradient Descent algorithm [29].

Furthermore, by leveraging forward-over-backward automatic

differentiation, we can do so in a very memory-efficient

manner. However, although this scheme has been successfully

implemented, it was not employed for the results we showcase

below; we do estimate the hessian matrix of the loss with

respect to the model’s weights in our experiments.

C. Methodology

Intuitively, we can use the concept of influence introduced

in 1 to obtain a measure of how ”interesting” a data-point in

the training dataset is to a given model. If we consider that

those that are difficult to learn will be so for any statistical

model, we can use the information relayed by these influence

functions to assign a value of interest to each data-point and

provide them to the user for validation.

It is important to note that we will be focusing on the

influence functions with respect to the neural network’s

last layer. This not only renders the computation considerably

more memory-efficient, but also places us closer to the hy-

potheses that are necessary for accurate computation of these

values.

In all of our experiments and for both of the different ap-

plications – detection of important data-points and mislabeled

example detection –, the procedure we followed was to:

1) Train a neural network model until convergence on

80%/20% training/test dataset splits as it is convention-

ally done.

2) Compute the value of Cook’s distance for each training

point separately.

3) Sort the training dataset by its data-points’ Cook’s

distance.

4) Consider the top-most points – i.e. those whose Cook’s

distance was the highest – as important or mislabeled,

and request human input for validation.

By performing this procedure, we intend to determine

which training points are maximally important to the model,

and without whom the final neural network would be the

most different. This typically means samples that are under-

represented in the dataset – as the model would rely heavily

on the little information it has to learn how to predict in those

cases –, mislabeled data-points – for much the same reason –,

or those that lie right in the decision boundary – as they help

the model fix it correctly. In our case, examples coming from

all three situations are useful for our tasks.

Concerning the detection of mislabeled samples, as this

technique aims to provide us with the training points that

would change our model the most if they were removed, we

posit that it could help in their detection. These data-points,

that, due to a variety of conditions during the consolidation of

the dataset, have labels that do not correspond to the correct

classes, would introduce confounding factors to our model

during the training process. As such, we want to rid ourselves

of them, and to do so as efficiently as possible, as inspecting

the whole dataset one example at a time might be prohibitively

time-consuming for large pools of data. Thus, we postulate

that by sorting our data-points by their Cook’s distance value,

we should be able to accelerate this process and find the

mislabeled examples among the most influential points in the

dataset.

As a matter of fact, this technique has already been used

as a baseline for other methods [32, 25], but with what seems

to be different model configurations and training schedules.

Indeed, by testing out different architectures, learning rate

decay functions and layer regularization strategies, we have

found that these have a considerable impact on its capacity to

single out mislabeled examples.

III. RESULTS

For each of the tasks, we started by testing our intuitions on

synthetically generated toy datasets, and then moved on to the

actual use-cases. In particular, for the detection of interesting

data-points, we focused on simple, two-dimensional binary

classification datasets with an increasing level of complexity,

and then applied what we had learned to a drone collision

avoidance problem. For the mislabeled point detection, we

followed the same procedure: we corroborated that we were

able to correctly identify a single mislabeled data-point on a

simple, two-dimensional binary classification synthetic dataset,

and then moved on to noisy versions of the CIFAR-10 image

classification dataset.

A. Detection of interesting training points

Experiments on toy examples

As a means to test the validity of this mathematical tool

in the context of deep learning models, we began with some

examples where we controlled perfectly the inputs and already

knew what to expect – i.e. some toy examples. In particular,

we generated groups of points in two-dimensional space,

with different decision boundaries and local down-sampling

strategies to corroborate our intuitions.

For all the following toy problems, a simple 2-hidden layer

multi-layer perceptron with sigmoid activations was employed.

They were all trained until convergence on splits with 80% of

the whole data being used during the training process, and the

remaining 20% was held out for validation. Then, we applied

our methodology and plotted the whole training dataset with

the transparency set as a function of each point’s influence.

In Fig. 1, we showcase the results, and we observe that

for each problem, the most influential points are always close

to the decision boundary. This applies to the more complex

examples as well, telling us that our intuitions about the

capabilities of the power of this tool might be correct. In

particular, it is interesting to note how the data-points near

under-sampled parts of the boundary of the more complex

example carry some influence, as otherwise the model would

not know where to place its decision boundary. Similarly,

we observe the whole region with mislabeled samples in the

noisy boundary toy example to be influential, as the model

is not quite confident inside of it and is forced to memorize

each data-point, thus rendering them important to the model

in question. This last intuition will be important for the

mislabeling sample detection task later on.

Experiments on ACAS Xu

The ACAS Xu problem [14] is an unmanned drone collision

avoidance use-case, where, knowing some information about

the drone and the intruder’s states, and the previous action that

was taken, a look-up table (LUT) is employed to compute the

next optimal step our drone has to take to successfully avoid

a collision between the two aircraft. Considering that these

decisions will depend on 7 variables – 6 describing the current

state of both drones + 1 for the previous action –, this cost

table can be quite difficult to manipulate efficiently, specially

due to the fact that it contains 93 million points.

The six variables that are presented in Fig. 2 are:

• ρ [ft]: The distance from ownship to intruder.

• θ [rad]: The angle to intruder relative to ownship heading

direction.

• ψ [rad]: The heading angle of the intruder relative to

ownship heading direction.

• vown [ft/s]: The speed of the ownship.

• vint [t/s]: The speed of the intruder.

• τ [sec]: Time until the loss of vertical separation.

(a) Unit circle dataset (b) Influential points of the
unit circle dataset

(c) Unit circle dataset with a
down-sampled region

(d) Influential points of the
unit circle dataset with a
down-sampled region

(e) Unit circle dataset with
noisy boundary

(f) Influential points of the
unit circle dataset with noisy
boundary

(g) More complex 2D
dataset with a line boundary
that transforms into a sinus

(h) Influential points of the
more complex 2D dataset.

Fig. 1: The synthetic 2D toy datasets and their corresponding most influential
samples according to simple two-layer perceptrons, in increasing complexity
from top to bottom. In the scatter plots on the left, each color indicates the
class label for each point. On the right, all the points are colored blue and
their transparency is a function of their influence value.

Consequently, a solution to reduce its cost is to train a neural

network to operate as a surrogate model, which, in inference,

would be able to produce predictions much faster and at a

much lower memory cost. This technique would allow us to

accurately approximate the predictions of the 2GB+ table with

a simple ≈3MB neural network[14, 7].

Fig. 2: Illustration of the ACAS Xu problem, as per [14].

Placing ourselves in this frame of work, we wish to increase

the confidence we have on what the model is learning without

having to manually search for regions of the input space that

may be hard to learn for the model. As such, will apply the

methodology described above to determine whether we need

to gather more data on specific regions with the help of a

human domain expert.

To do so, we trained a simple, 6-hidden-layer multi-layer

perceptron with ReLU activations with an Adam optimizer

on 8096 sized mini-batches with the table’s contents for 200

epochs until convergence, reaching 99% accuracy. We chose

to optimize directly for the classification between the different

5 actions – ‘COC’ (clear of conflict), ‘WR’ (weak right), ‘WL’

(weak left), ‘R’ (right) and ‘L’ (left) – and starting always from

the state ’COC’, to keep the optimization and interpretation

of the results simple, as well as be able to easily apply our

current formulation of the influence functions. Additionally,

as it is typically done in these sorts of scenarios, we held out

20% of the dataset for validation, which left us with 80% for

training.

Thus, we applied the influence function’s method to single

out the most influential datapoints in the training dataset. For

these points, we plotted the two-dimensional cuts obtained by

sweeping the range (i.e. the distance to the intruder) and the

theta (i.e. the angle between the ownship and the intruder)

while keeping the rest of the parameters constant. These plots

simulate a situation where the intruder moves in a straight

line and our drone tries to avoid it. We expect to find some

interesting scenarios, and the most influential points to be close

to the decision boundary.

We observe from Fig. 3 that these influential regions usually

contain either groups of points that are quite close to each other

but belong to different classes, or are sparsely sampled. In both

cases, the influence is mostly monopolized by the samples that

are close to the decision boundary.

Once these regions have been identified, we can present

them to a domain expert for further analysis and validation.

If they are indeed important for the task, more data could be

gathered to facilitate the learning process near them, and if

not, then they can be filtered out to prevent the addition of

confounding data-points.

In particular, when we showed our results to some experts

on the ACAS Xu drone collision avoidance problem, they

Fig. 3: Some 2D cuts of influential regions in the input space.

The scatter plot on the right of each sub-figure represents the

ground-truth’s decisions, and the one on the left, the model’s.

Each dot is a point in the training dataset, and its size depends

on its influence, bigger meaning more influential.

found some interesting patterns: in most of the most influential

2D cuts we generated, there was either one or both drones

that were traveling at high speeds. Additionally, they found

that there were some situations where the region was very

sparsely sampled, and contained some very sudden changes in

the LUT’s decisions – i.e. switching from left to right and back

in contiguous data-points. This is important information to

have before finishing the consolidation of the training dataset,

as it could guide experts to push for asking for more data from

the regions in input space in question.

B. Mislabeled sample detection

Experiment on a toy example

As we have done for the previous task, we test our intuitions

on a synthetic dataset so as to be able to easily visualize and

understand the problem at hand. In this case, we will generate

a set of uniformly distributed points, with a decision boundary

at the center of the horizontal axis, of which one point will

have its label flipped.

In this experiment, we will attempt to trace the point’s

influence during the model’s training phase to verify whether

we can retrieve it successfully. Given the previous ones, we

would expect the point to dominate the rest as the model starts

to gradually overfit on it to minimize the training loss. As the

problem is quite a simple one, we solve it with a simple, one-

hidden-layer MLP, and we minimize a binary cross-entropy

loss.

(a) 500 epochs (b) 2000 epochs

(c) 4000 epochs (d) 8000 epochs

(e) 12000 epochs (f) 20000 epochs

Fig. 4: Influence of a simple 2D binary classification dataset

as training progresses. Blue and red indicate each class and

the yellow data-point has been incorrectly labeled as blue in

the red zone (i.e. has been mislabeled). The size of each point

is proportional to its Cook’s distance.

In Fig. 4, we observe that the model attributes a high

influence to the decision boundary points at first, but as

training progresses and it starts to overfit, the influence shifts

to the points close to the mislabeled one – showing that the

model is forced to bend its decision boundary to accommodate

this outlier –, and ends up with only the mislabeled point

dominating the rest of the dataset in terms of influence value.

Experiments on CIFAR-10

Now that our intuitions have been confirmed, we will gauge

the informative power of this technique on the CIFAR-10[20]

RGB image classification dataset. This problem consists on

assigning the correct category to natural images of 32 × 32
pixels and belonging to 10 classes ranging from cars to frogs

and in different contexts.

In particular, we have tested the EfficientNetB0[31],

ResNet-20[12] and VGG-19[27] architectures, trained with

Adam[15] optimizers and custom learning rate schedules, and

Dropout[28] and layer-wise elastic net reguralizations (L1L2).

For each of these configurations, we have trained sets of 6–12

models on the CIFAR-10[20] dataset on two noisy regimes:

≈ 0.05% and ≈ 0.01% of randomly changed labels throughout

the training set. These proportions of noise were chosen to

simulate what we would expect to have on standard, clean

data in industrial use-cases.

In Fig. 5, we observe that, in most cases, our technique of

searching the most influential samples for mislabeled images

is a good strategy for cleaning up a slightly noisy dataset.

Furthermore, it seems that the choice of architecture can have

a considerable impact on the results.

In particular, as we are comparing ROCs, we expect the

best curves to be those that get as close to as possible to

detecting every mislabeled image with as little samples as

possible. Thus, we notice that the EfficientNetB0 architecture

does not seem suitable for this task as the VGG-19, which

itself performs quite well if we exclude the outliers. Ideally,

we would not have any poorly performing models from a given

architecture, and this seems to be the case for the ResNet-20

models. This is why we used this last architecture for the rest

of the experiments.

Additionally, we tested the effect of adding elastic net

regularization to the classification head of the ResNet-20, and

of training with a smaller learning rate for more epochs. These

results are presented in Fig. 6.

In [2], it was demonstrated that it is possible to more

accurately compute influence values on layers that have been

trained with layer-wise regularization, and in Fig. 6a, we

corroborate this and we obtain an even better performance.

However, contrary to our intuition, by training for a longer

period of time – and potentially overfitting the model on the

training set –, we severely deteriorate the network’s capacity

to retrieve these samples. We surmise that once it has reached

convergence, the cross-entropy loss encourages the model to

assemble all the points from each class together and form

tightly knit clusters, and to separate these groups from each

other as much as possible. This leads to it not being able

to differentiate individual points through their influence, and

hence, to not be capable of detecting these artificially gener-

ated mislabeled images.

(a) EfficientNetB0

(b) ResNet-20

(c) VGG-19

Fig. 5: ROC curves for the detection of mislabeled examples

for both noise regimes. In each case, we plot the mean ROC

in solid blue, each individual ROC in transparent blue, and the

random baseline in orange.

These two phenomena of performing better when con-

strained by the L1L2 regularization and worse when overfit-

ting are the two sides of the same coin: once an unconstrained

network starts approaching convergence, it can decrease the

surrogate classification loss (i.e. the negative log-likelihood or

cross-entropy loss) without altering the 0-1 loss – the actual

loss we would like to optimize, that indicates whether an

element was correctly classified – by increasing its Lipschitz

constant [4]. This can be easily demonstrated by leveraging

some of the softmax activation function’s properties when the

neural network has already achieved the 100% accuracy in

the training dataset, but this phenomenon has been observed

to also occur slightly before reaching this point [4]. In layman

terms, this means that the model will attempt to maximally

(a) ResNet-20 with L1L2

(b) ResNet-20 with slower schedule

Fig. 6: ROC curves for the detection of mislabeled examples

for both noise regimes when training the model with an L1L2

constraint, and a slower learning rate schedule. In each case,

we plot the mean ROC in solid blue, each individual ROC in

transparent blue, and the random baseline in orange.

distance the points from different classes, theoretically con-

verging to Nclass clusters of points infinitely far away from

each other in the form of a simplex [24].

We leave for future work the analysis of when this happens

and how to guarantee that our model has been correctly trained

for useful information retrieval through influence functions.

IV. CONCLUSIONS

Initially applied to simple models and computed in its exact

form, the influence function fell into disuse when models

and datasets started to grow, making the procedure practically

intractable. However, with the advent of frameworks that effi-

ciently implement auto-differentiation and the popularization

of GPUs capable of greatly accelerating computation times, it

became possible to develop an approximate version specific

to neural network models.

In this work, we have successfully leveraged them to deter-

mine influential points in the dataset and retrieve potentially

problematic regions on the ACAS Xu use-case, and for the

mislabeled example detection on the CIFAR-10 image classi-

fication dataset. In both cases, despite the size and complexity

of the models at hand, the results were quite impressive, and

come to show of its usefulness in real-life scenarios.

ACKNOWLEDGMENTS

This work was conducted as part of the DEEL project1.

Funding was provided by ANR-3IA Artificial and Natural

Intelligence Toulouse Institute (ANR-19-PI3A-0004). The au-

thors thank Florence de Grancey, Claire Pagetti and Adrien

Gauffriau for their input on our results on the ACAS Xu

problem.

REFERENCES

[1] Mihaela van der Schaar Ahmed M. Alaa. Discriminative

jackknife: Quantifying uncertainty in deep learning via

higher-order influence functions. In International Con-

ference on Machine Learning, 2020.

[2] Samyadeep Basu, Philip Pope, and Soheil Feizi. Influ-

ence functions in deep learning are fragile, 2021.

[3] Samyadeep Basu, Xuchen You, and Soheil Feizi. On

second-order group influence functions for black-box

predictions. In Hal Daumé III and Aarti Singh, editors,

Proceedings of the 37th International Conference on Ma-

chine Learning, volume 119 of Proceedings of Machine

Learning Research, pages 715–724. PMLR, 13–18 Jul

2020.

[4] Louis Béthune, Alberto González-Sanz, Franck Mamalet,

and Mathieu Serrurier. The many faces of 1-lipschitz

neural networks, 2021.

[5] R. Dennis Cook and Sanford Weisberg. Characterizations

of an empirical influence function for detecting influen-

tial cases in regression. Technometrics, 22(4):495–508,

1980.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos,

Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,

Uwe Franke, Stefan Roth, and Bernt Schiele. The

cityscapes dataset for semantic urban scene understand-

ing, 2016.

[7] Mathieu Damour, Florence De Grancey, Christophe

Gabreau, Adrien Gauffriau, Jean-Brice Ginestet, Alexan-

dre Hervieu, Thomas Huraux, Claire Pagetti, Ludovic

Ponsolle, and Arthur Clavière. Towards certification of

a reduced footprint acas-xu system: A hybrid ml-based

solution. In Ibrahim Habli, Mark Sujan, and Friedemann

Bitsch, editors, Computer Safety, Reliability, and Secu-

rity, pages 34–48, Cham, 2021. Springer International

Publishing.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical

image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee,

2009.

[9] R. Giordano, W. Stephenson, Runjing Liu, Michael I.

Jordan, and T. Broderick. A swiss army infinitesimal

jackknife. In AISTATS, 2019.

[10] Ryan Giordano, Michael I. Jordan, and Tamara Broder-

ick. A higher-order swiss army infinitesimal jackknife,

2019.

1www.deel.ai

[11] Frank R. Hampel. The influence curve and its role in

robust estimation. Journal of the American Statistical

Association, 69(346):383–393, 1974.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition, 2015.

[13] Louis A. Jaeckel. The infinitesimal jackknife.

https://faculty.washington.edu/fscholz/Reports/

InfinitesimalJackknife.pdf.

[14] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P.

Owen. Deep neural network compression for aircraft col-

lision avoidance systems. Journal of Guidance, Control,

and Dynamics, 42(3):598–608, Mar 2019.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization, 2017.

[16] Philipp Koehn. Europarl: A parallel corpus for statistical

machine translation. In MTSUMMIT, 2005.

[17] Pang Wei Koh, Kai-Siang Ang, Hubert H. K. Teo, and

Percy Liang. On the accuracy of influence functions for

measuring group effects, 2019.

[18] Pang Wei Koh and Percy Liang. Understanding black-

box predictions via influence functions. In Doina Precup

and Yee Whye Teh, editors, Proceedings of the 34th In-

ternational Conference on Machine Learning, volume 70

of Proceedings of Machine Learning Research, pages

1885–1894, International Convention Centre, Sydney,

Australia, 06–11 Aug 2017. PMLR.

[19] Zhifeng Kong and Kamalika Chaudhuri. Understand-

ing instance-based interpretability of variational auto-

encoders, 2021.

[20] A. Krizhevsky. Learning multiple layers of features from

tiny images. 2009.

[21] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist

handwritten digit database. ATT Labs [Online]. Avail-

able: http://yann.lecun.com/exdb/mnist, 2, 2010.

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir

Bourdev, Ross Girshick, James Hays, Pietro Perona,

Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.

Microsoft coco: Common objects in context, 2015.

[23] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan

Huang, Andrew Y. Ng, and Christopher Potts. Learning

word vectors for sentiment analysis. In Proceedings of

the 49th Annual Meeting of the Association for Com-

putational Linguistics: Human Language Technologies,

pages 142–150, Portland, Oregon, USA, June 2011.

Association for Computational Linguistics.

[24] Vardan Papyan, X. Y. Han, and David L. Donoho.

Prevalence of neural collapse during the terminal phase

of deep learning training. Proceedings of the National

Academy of Sciences, 117(40):24652–24663, Sep 2020.

[25] Garima Pruthi, Frederick Liu, Mukund Sundararajan,

and Satyen Kale. Estimating training data influence by

tracking gradient descent. CoRR, abs/2002.08484, 2020.

[26] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A

generalized representer theorem. In David Helmbold and

Bob Williamson, editors, Computational Learning The-

ory, pages 416–426, Berlin, Heidelberg, 2001. Springer

Berlin Heidelberg.

[27] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recognition,

2015.

[28] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal

of Machine Learning Research, 15(56):1929–1958, 2014.

[29] Trond Steihaug. The conjugate gradient method and trust

regions in large scale optimization. SIAM Journal on

Numerical Analysis, 20(3):626–637, 1983.

[30] Yi Sui, Ga Wu, and Scott Sanner. Representer point

selection via local jacobian expansion for post-hoc clas-

sifier explanation of deep neural networks and ensemble

models. In Thirty-Fifth Conference on Neural Informa-

tion Processing Systems, 2021.

[31] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking

model scaling for convolutional neural networks, 2020.

[32] Chih-Kuan Yeh, Joon Sik Kim, Ian En-Hsu Yen, and

Pradeep Ravikumar. Representer point selection for

explaining deep neural networks. CoRR, abs/1811.09720,

2018.

Towards the certification of vision based systems: modular

architecture for airport line detection

Esteban Perrotin12 Matthieu Roy2 Ariane Herbulot2

Michel Devy 2 Fabrice Bousquet1

1 AIRBUS Operation
2 LAAS-CNRS

esteban.perrotin@airbus.com

Abstract

This paper addresses the certification issues for
vision based systems embedded on civil air-
craft to assist pilots during the ground naviga-
tion phase. We propose a design methodology,
through the example of a modular architecture
to detect ground mark lines in a color image.
Our detection method is based on the combi-
nation of classical image processing algorithms,
deep learning methods and a particle filter algo-
rithm. We argue that the main interest of this
architecture is to ease the certification problem
when compared to an end-to-end neural network.
We discuss about difficulties around certification
and propose some arguments.

1 Context

Computer vision applications have made consid-
erable progress in recent years, with applications
to many fields, from healthcare to autonomous
vehicles. In this context, the civil aeronautic
is considering using vision based systems to
support pilots in their operations during the
ground navigation tasks. For instance, functions
such as obstacle detection, axis keeping, runway
detection and others are currently studied. How-
ever, due to the complexity of such functions, it
is challenging today to achieve the certification
of systems largely based on computer vision
algorithms in civil aeronautic field.

Actually, all functions embedded in civil air-
craft have to be compliant to standard design
processes defined by the authorities. These
processes are described in documents such as
Certification Specification [1], the ARP-4754a
[2] and DO-178-C [3]. These documents define

Figure 1: General V-model and our scope.

complete guidelines to design, develop and
implement functions to be embedded on civil
aircraft. This whole process is called certifica-
tion. The standard certification process follows
a V-model. It consists in designing, developing,
implementing, verifying and validating a system
by following specific steps described in guide-
lines. An example of V-model is shown in Figure
1. More details are provided in the section 2.1.

Some functions embedded on civil aircraft are al-
ready using vision based systems (VBS). For ex-
ample, the A380 from AIRBUS is equipped with
a camera integrated in the aircraft fin. The video
input can be sent to both passengers and pilots.
The pilot can use the video output as an help to
drive the aircraft during the taxi phase. The im-
age is directly used and interpreted by the pilot
without any algorithm used for its interpretation.
However, actual certified functions based on vi-
sion systems let the pilot as the principal actor
to extract and interpret information represented

in each image. New functions, such as line detec-
tion, motion estimation or obstacle detection are
using complex algorithms to extract and process
features from the image in order to improve the
pilot assistance. The certification of such algo-
rithms has never been done in the European civil
aeronautic field.
That is why, previous studies [4] highlighted the
fact that the design of computer vision-based
systems opens a new paradigm in certification.
These difficulties are mostly due to the com-
plexity of algorithms. For example, most of
recent computer vision algorithms are based on
machine learning (ML). Machine learning algo-
rithms learn through examples how to analyze
images in order to achieve a desired task. This
approach is not compliant with standard design
process [5]. Actually, current standards require
an explicit description of detailed requirements.
This is the opposite of ML systems which
they learn the operational behaviors through
examples and not from requirements. In order
to prepare a new standard, the European Union
Aviation Safety Agency (EASA) is working on
guidelines [6] [7] to safely design such systems.
There are also many public research projects on
this topic. The DEEL project is also currently
working on this problematic and and have
published a White Paper [8]. They address many
questions on the risks, challenges and potential
solutions of using ML in systems submitted to
certification constraints. However, vision based
algorithms are not limited to machine learning.

In this paper, we present our position with
regards to VBS certification issues. In order to
illustrate how to solve these problems, we will
take the example of line detection on airport
runways/taxiways and describe our methodology
to design the modular architecture of a specific
line detection algorithm. Line detection is
a useful function that could make easier the
ground navigation for the aircraft pilot. Due
to its simplicity, it is probably one of the first
task using vision based algorithms which could
be certified. However, most of recent methods
repose on end to end deep learning architecture
[9]. Because of the certification aspects, we desire
to construct a functional architecture without
using end to end deep learning methods. Figure
2 shows an example of system architecture that
could be used to guide an aircraft on a taxiway,
and/or to display information to the pilot. We
will focus our discussions on the design and tests
of this line detection function architecture. We
will not discuss the hardware implementation or

Figure 2: Example of visual based functions
integrated in a civil aeronautic system

interface with other systems. The input of the
function is an image provided by the Fin Taxi
Aid Camera (FTAC) of the aircraft. We make
the assumption that this image gives a correct
representation of the real world.

The paper is organized as follows: Section 2
presents difficulties that could be encountered in
the certification of computer vision based sys-
tems. Section 3 presents our proposed archi-
tecture in the specific line detection application.
Section 4 explains our arguments to help certifi-
cation of this architecture. Then the last section
concludes.

2 General aspect of the cer-

tification of Computer

Vision-based systems

Computer vision-based algorithms can be sum-
marized in two main parts: extract from each
image discriminant information (often called fea-
tures) and then process this information to
achieve the desired operation. Extracting perti-
nent information is a difficult task. An image can
be seen as a 2D signal and the undesired infor-
mation can be seen as a structured noise. In our
application, we aim at extracting features that
characterize lines. Hence, we desire to remove all
other elements of the image.

In order to answer such problems, complex
algorithms of computer vision are used. We
will show in the following section that standard
guidelines used for the development of civil
avionic function are difficult to be applied on
complex computer vision items.

In this section, we briefly present general aspect
of certification, then we expose steps that could
lead to difficulties in the certification of vision
based algorithms and expose some elements from
the state of art.

2

2.1 General aspects of certification

The principal guidelines of the civil aeronautics
certification is provided by standards such as
ARP-4754A [2] and DO-178C [3]. To design a
new avionic high level function, the first point of
the design process consists in analyzing the im-
pact of this function in case of potential hazards.
This step is called functional hazard analysis
(FHA). For instance, if a failure of the function
could lead to endanger the aircraft or passenger
safety, the function will probably be classified as
”catastrophic”. It will be necessary to prove that
the probability for the failure of this function
during a flight hour is less than 10−9. This
FHA step will drive requirements that should
be verified by the implementation of the function.

Then, this high-level function is refined into
lower level functions and a preliminary functional
architecture is proposed. This architecture is
submitted to a preliminary system safety as-
sessment (PSSA). It verifies that requirements
from the FHA are fulfilled by the architecture.
If requirements are not fulfilled the architecture
should be consolidated or a new one should be
proposed.

Once a correct architecture is proposed, for
each item’s architecture a Deasign Assurance
Levels (DAL) is addressed. It drives hardware
objectives for the specific item and software
guideline activities to develop the function. The
highest critical level is of DAL A and the lowest
is of DAL E. For instance, in case of a DAL A
item, the software will be executed on different
hardwares reducing the risk of hardware failure
and ensuring the availability of the function at
every time.

During the design process, multiple tests have
to be defined to guarantee and verify that the
implementation of items is correct and fulfill
requirements at each level. Tests are driven by
the system safety assessment (SSA) to ensure the
availability and the performance of the function
in all identified scenarios.

This safety design process is used to develop
high level safety functions for civil avionic system.

2.2 Difficulties around certification

for VBS algorithms

The certification process ensures that the pro-
posed high-level function is correctly designed

and implemented following specific guidelines de-
pending on the level of criticality of the function.
Each sub-level item should verify specific require-
ments. However, in the case of computer vision
systems some aspects of the guidelines seem com-
plicated to satisfy, in particular in systems using
machine learning. The authors in [5] and [10] dis-
cuss on this problematic for adaptive systems. In
[4] the authors detail the certification challenges
on a specific VBS dedicated for two applications:
visual odometry and obstacle detection.
Considering this previous work and with regards
to the difficulties we encountered during our de-
velopment, we precise some points that seem dif-
ficult to answer considering the current certifica-
tion standards:

• Comprehensible requirements have to
be written. In computer vision applications
writing high level requirements - HLR (e.g.
detect a specific object) could follow the
usual process. However, writing lower level
requirements could be harder (e.g, explicit
evidences that characterize a given object in
all kind of environments).

• Verifiable requirements: In order to ver-
ify that a computer vision algorithm is cor-
rectly working, we have to present different
inputs in the system and verify that the out-
puts correspond to the desired ones. Ide-
ally, we would like to test all potential in-
puts. But, due to the high dimensionality of
images (2551024×768×3 ≈ 104718592 combina-
tions for 1024px ×768px color images) it is
not realistic to test all possibilities. Most of
these images are pure noise or not relevant.
A solution could be to provide a minimal
dataset, with a distribution of images close
to the real application. Furthermore, the
desired outputs have to be known for each
image tested. Manual labelling on a huge
dataset seems impossible and it raises an is-
sue on the accuracy on the labelling process.
When using automatic or semi-automatic la-
belling one has to prove that the algorithm
used for labelling is robust with regard to the
performance for the high-level function. Val-
idating an automatic labelling process raises
similar certification activities. Section 2.3
contain more details about the acquisition
of a test data set.

• Robustness: The recent advances in com-
puter vision (in particular with deep learn-
ing methods) have greatly enhanced perfor-
mance for many applications. However,these

3

performances must be defined and evaluated
in particular in degraded conditions (fog,
rain, low illumination, etc.). In such condi-
tions with environmental hazards algorithms
could perform poorly. Avionic systems have
to operate correctly despite abnormal inputs
and conditions.

In addition the stability of the results have
to be considered. For a small variation in
the input image, computer vision algorithms
have to output the same value. There is
no evidence that computer vision algorithms
achieve this stability. In particular this case
appears with deep learning methods and ad-
versarial attack [11].

• Traceability: During the design process,
the requirements of a given level are broken
down into one or more requirements of the
next level. It has to be shown that each low
level requirement (LLR) corresponds to a re-
quirement of the higher level (HLR).

• Interpretability: This point is not essen-
tial for the process of certification but it ar-
gues about trustworthiness of the system and
helps to convince authorities about the via-
bility of the system. In order to trust a func-
tionality, each step of a function has to be
explained and must have its proper purpose
based on rationals. This is not true for ma-
chine learning based applications. Machine
learning learn to extract and process features
from the image through examples. Many
works have been done to explain which fea-
tures are extracted, how an interpretation is
generated from these features, especially for
deep learning methods [12]. However, this
aspect should be accepted for classic com-
puter vision algorithms.

2.3 Related works

To address these difficulties, many works have
been done, for example to ensure robustness
of algorithms, to discuss and propose methods
for the creation of test data sets and develop
solutions to interpret complex algorithms such
as convolutional neural networks.

To ensure robustness of algorithms (accuracy and
confidence on the output), methods have been
proposed to compute bounces of confidence [13].
These methods could be based either on the
demonstration of a formal proof that gives a guar-
antee about envelope of the algorithm output, or

on the execution of enough tests to cover all po-
tential use cases.

In computer vision, due to the complexity of al-
gorithms, the large variety of input images and
the lack of precise requirements, it is difficult to
develop formal proofs for applications. However,
this is already the case in many avionic systems.
This is why functions are tested on large data
tests. The construction of these test data sets
raises many interrogations. Since it is not feasi-
ble to test every images, it is necessary to select
pertinent scenarios to test algorithms. But algo-
rithms have to be tested in many corner cases, so
that acquiring real data for every desired scenario
is impossible. A solution consists in generating
synthetic images from simulators. Many works
have been done to provide image generators use-
ful to test computer vision algorithms for given
applications. For instance, we use OKTAL-SE
simulator. It generates color or infrared images
based on a physical model. However, there is a
gap between their simulated image and real im-
age, in particular in the level of detail for the
textures representation.

On the other hand, Zendel et al. [14] have pro-
posed a system of guide-words to quantify and
qualify hazards that could appear in computer
vision applications. Their works provided an
answer to ”Which situations should be covered
by the test data and have we tested enough to
reach a conclusion?”. By using CV-HAZOP,
in [15] and in [16] they propose a standard
procedure devised by the safety community to
validate complex systems.

In the next section, we describe our line detec-
tion algorithm, so that we could illustrate how
to deal with the verification of the properties
summarized here above.

3 Modular architecture of

our line detection method

As said previously, constructing an argument
of certification for VBS is a difficult task. This
section describes our methodology to construct
our line detector. We start by modeling the
problem using prior information. Then a general
architecture solving this problem. Finally we
describe each item in this architecture. Our prin-
cipal objective is to ease the certification process
by diminishing the complexity of verification and
validation on each item of our architecture.

4

3.1 Problem modeling

As said in the previous section, an important
point to follow in the certification process is the
definition of requirements. The objectives of the
function (high level requirements - HLR) should
be as clear as possible. In our application, we
aim at detecting lines (ground marks). That is
why, we define the objectives of our function as
the following example: ”The function has to de-
tect ground marks that define lines for aircraft
ground navigation. The input of the function is
an RGB image acquired by an embedded cam-
era (typically in the fin or the cockpit as shown
in Figure 3) and parameters set from operational
concept. Internal and external parameters of the
camera are known. Lines have to be detected un-
til a desired distance to the camera. Output lines
will be defined by a set of points.”.

Figure 3: Input RGB image from the fin camera.

We start by constructing a model of the lines that
will help to fulfill HLR. We construct this model
by following some key points:

• Use the maximum of prior information to
select important regions of interest (ROI)
in the image. These regions have a high
probability of containing desired information
(presence or absence of ground marks). A
ROI is constructed by using the parame-
ters of the camera and the desired maximum
range. In practice, it will mask unwanted el-
ements like the aircraft (if the image is from
the fin camera) or the sky.

• Construct it in order to facilitate broken high
level requirements into lower level require-
ments. Construct a set of information that
represents the object and its evolution (spa-
tial and/or temporal). In our case, the HLR
specifies the output: a set of points. Thus,

we consider this set of points as the spatial
propagation of points that describe a line.
So, we have to detect a first point, define a
dynamic law that describes the propagation
of points, and precise an end criteria.

• Find and write most of the properties veri-
fied by the desired object in the image (size,
structure, texture, etc.). These properties
will help to verify that extracted informa-
tion is correct. These properties could also
help in writing an end criteria.

Figure 4: Model of a line.

Following these points, we model a line as a
spatial repetition of a pattern (Figure 4). The
pattern is considered known. The pattern will
repeat himself in the presence of some noise
(degradation, orientation, illumination variation,
deformation, etc.). This repetition is done in
respect to some properties provided by the In-
ternational Civil Aviation Organization (ICAO)
[17]: the curve made by central points of the
patterns must satisfy constraints. In addition,
depending on the illumination, the color of the
painting on each pattern should be close to
yellow [18]. The width of lines is known.

To describe a pattern in a thumbnail, we use a
state vector Xk = {(xk, yk), θk, sk}. (xk, yk) is
the position of the center of the thumbnail in
the image, θk is the orientation of element in the
thumbnail and sk is the size of the thumbnail
(considered as a square).
The evolution between state vectors is described
by a function g, where g uses the current state
vector Xk to update the next state vector Xk+1.
The update depends also on external factor noted
in an unknown noisy term Uk:

Xk+1 = g(Xk, Uk) (1)

5

This function is unknown and we consider a sim-
plified model. We use the following equations to
update the variables inside the dynamic model:

xk+1 = xk + skcos(θk) (2a)

yk+1 = yk + sksin(θk) (2b)

θk+1 = θk (2c)

sk+1 = min(max(sk, a), b) (2d)

Where the constants a and b determine the min-
imal and maximum size of thumbnails. It mod-
els the line’s trajectory as a linear trajectory and
supposes the two variables sk and thetak are not
evolving. This model is not quite precise. But the
particle filter will correct the evolution of these
parameters according to the observations from
the image. In practice it is good enough to catch
simple line patterns. In the future, we plan to add
other variables to capture and describe environ-
mental perturbations (such as the illumination,
the principal color, etc.) and also enhance the
dynamic model to improve performances.

3.2 General architecture

Using this model, we split our specification into
three parts: find potential starting points of the
line, recognize a pattern of the line from a thumb-
nail described by a state vector and predict the
evolution of the pattern in the image. Each item
has its own requirements driven from HLR and
its own unit tests. The coverage of the HLR by
LLR is ensured by the model. Figure 5 shows
our design. Once the interface between modules
is defined, it is important to note that each part
can be developed independently.

Figure 5: Design and test of our model.

Following the key points expressed above and us-
ing our model, we propose a modular architecture
to detect lines from an image. The architecture
of the system is described in Figure 6. The main
point of our architecture is to separate prediction
from a model to information extracted from the

image (since the image can be considered as a
complex noisy signal). The proposed algorithm
works as follows:

1. The image is acquired by the camera and
considered as a representative data of the re-
ality.

2. Using the image, an initialization based on
simple assumptions (such as gradient, color
and position) will propose some initial con-
ditions (potential starts of lines) as an initial
state vector X0.

3. Using the initial condition and the dynamic
model of lines a filter will predict the next
state of the line X̂k+1.

4. The prediction will be sent to an observa-
tion function that will attribute a measure
corresponding to the probability of the cor-
rectness of the prediction X̂k+1 with regards
to the image and modeled feature of the de-
sired pattern.

5. Using the measures, the filter will update his
predictive model: X̂k+1 → Xk+1.

6. Until an end criterion is verified, the pro-
gram will repeat from step (3).

This algorithm detects one line. In practice, we
applied this algorithm many times to detect many
lines in the image. Some heuristics are used to
discard some elements like the ridges of the lines
(see Figure 3).

Figure 6: Simplified schema of our modular line
detection architecture.

6

3.3 Description of modules

Now, we detail and explain our choice for each
module.

Initialization module. The initialization
function uses the image as input. It has to
propose potential starting points of a ground
line. To detect these starting points we de-
veloped an algorithm based on classical image
processing, using gradient and color prior from
the model of line. This algorithm is not detailed
in this paper. The robustness of this function is
low. However, in case of failure (wrong starting
point), the proposed point might be discarded
by the filtering and observation function. That
is why we favor recall over to precision.

Filtering module. To predict the next state
of the line, we have to estimate the solution
from the equation 1. To solve this equation
many filters can be used such as the Kalman
filter. However, in practice, that model is limited
due to the noisy term Uk. If the distribution
of Uk was Gaussian, the Kalman filter would
be a suitable solution. In our case, we choose
to use a particle filtering algorithm similar to
the one presented in [19]. Firstly because it
can solve this problem without knowledge on
the distribution of Uk. Secondly, to provide a
first analysis on problems encountered by the
certification process of particle filters. These
filters are useful for navigating, positioning
and tracking [20], they could be used in more
applications in the future. Since our project is
to put on the table new technologies, we made
the choice to construct our line detector using a
particle filter.

The particle filters are a set of Monte Carlo
algorithms. The objective is to compute the
posterior distribution of a stochastic process.
The first step is to create particles {Xn

k
}N

n=1

from an initial prior distribution. Each particle
corresponds to an estimation of the state vector.
A weight wn

k
is associated with each particle.

This weight corresponds to the confidence in
a particle to represent the actual real state.
The closer the particle is to the real state the
higher its weight is. In most systems using
particle filters the weight is computed by using
a measure provided from external sensors (such
as GPS or inertial sensor in the case motion
estimation). In our case, we define a sub-item
called ”observation module” that attributes a
weight to a particle using as input the image

and the variables contained in the particle. This
observation module is detailed below. Once all
particles have an associated weight, the particle
filter algorithm will re-sample particles using
the distribution created by {(Xn

k
, wn

k
)}N

n=1.
More information about particle filtering can be
found in [21][22] and more about this particle fil-
tering method are provided in a french paper [23].

The principal advantage of particle filter algo-
rithms is their ability to solve nonlinear problems
tainted by a noise without prior knowledge about
this noise. The principal inconvenience of these
algorithms is the computing time. The more
a problem is complex, the more it will require
particles to compute a good estimation. We
don’t cover computation time problematic in our
approach. However, it could be possible to cover
this issue by adapting the amount of particles
depending on the confidence in the observation
module [24].

Observation module. Using a state vector
provided by the filter (through a particle), it se-
lects a thumbnail in the image (between 15 and
51 pixels depending on the variable sk in the state
vector), resize the thumbnail to 33×33 pixels and
attributes it a score. This score is between 0 and
1 and evaluates the pertinence of components in
the state vector in regard to the thumbnail. The
score is the product of the output of tree sub-
items:

• The first one is a binary classifier. It scores
the presence or absence of ground marks in
the thumbnail. After a preliminary study
[23], we selected a small convolutional neu-
ral network (CNN) as classifier. This choice
is also motivated to provide a real applica-
tion to use CNN in a restrained context con-
trolled by other elements. By using a CNN
at this part of the line detection method, it
permits to achieve correct result in the line
detection without using end-to-end CNN. To
train this CNN we constructed a dataset
of 4000 thumbnails with manual annotation
(50% positive and 50% negative). The score
used is directly the output of the classifier.
More details about the creation of the CNN
are provided in [23].

• The second item measures correlation be-
tween the orientation θk in the state vector
and the principal orientation in the thumb-
nail. We compute the orientation of the ele-
ment in the thumbnail using a method based

7

on the Gabor filter.

• The last item measures the centering of the
line in the thumbnail using classical image
processing techniques such as gradient, color
processing, Otsu’s binarization and Hough
transformation. It extracts the principal
straight yellow lines in the thumbnail. Then
it computes a score (between 0 and 1) de-
pending on the projection of the center of
the thumbnail on the line equation.

The product of these scores produces the final
score that will serve as the weight for the particle
in the filter.
In the next section, we discuss the verification
and validation of these modules.

4 Certification Arguments

This section presents our arguments and thoughts
about the feasibility of the certification for this
architecture. This architecture proposes to re-
duce the amount of tests required to verify the
system by using unit tests on each item. The
principal assumption is: ”If each item works cor-
rectly the function works correctly”. This as-
sumption holds because high level requirements
are covered by lower level requirements. Each
item has a simple and comprehensive task. The
next parts develop discussion and arguments
about verifying whenever each item is doing its
task correctly.
This modular architecture should make the cer-
tification easier. The more an architecture is de-
composed on items the more we can hope to re-
duce the complexity of each item and facilitate
the creation of tests to verify performance of each
item. It also helps to implement monitoring sys-
tems. Each item can have its own monitoring sys-
tem and improve confidence on its results. In ad-
dition, when a module is changed (or improved)
the certification should be done for this module
only. It can significantly reduce certification cost
when updating a system.

4.1 Filtering module

From the point of view of certification, Monte
Carlo methods are often used to test algorithms
but are generally discarded in embedded avionic
systems. This is partially due to the fact that
these algorithms use random number generation
and one requirement for certification is repeata-
bility. However, it is possible to generate offline
a set of distributions that verify desired prior
distribution. In addition, some particle filter

algorithms use fewer random steps. A survey of
recent advances in particle filtering can be found
in [25].

Errors in the particle filter could occur depending
on three conditions. Firstly, if the dynamic model
is incorrect and does not match the real trajec-
tory of the line. Secondly, if the prior distribution
is not realistic (e.g. if the distribution has a huge
bias). Thirdly, if the measure provided by the
observation module is wrong and does not bring
information about the evolution of the dynamic
system. Figure 7 shows these potential errors.

Figure 7: Potential errors of the particle filter

To test and validate performances of the filter,
we build a generator of lines. An example of the
generated line is shown in Figure 8. In this gen-
erator, it is possible to compute the perfect mea-
sure (it is computed by checking if the position
of the particle is on the line or not and if the
orientation of the particle is correct or not). We
selected a prior distribution as a Gaussian distri-
bution, where the variance is fixed in regards to
the width of the line. These tests allow validating
that within our dynamic model and prior distri-
bution this method can follow line until a certain
curve and depending of the amount of particles.

Furthermore, authors have been conducting re-
search to prove the convergence of the particle
filter [26] or computing bound of errors in par-
ticle filtering algorithms depending on incorrect
model assumption [27]. Also, they have proposed
solutions to enhance the algorithm in presence of
noise and bias on the measure [28]. In regards
to the state of the art, it should be possible in
some situations to use formal proof to guarantee
confidence of the particle filter. Otherwise, the
feasibility of tests ensure the possibility to com-
pute performance on such algorithms.

8

Figure 8: Example of test to validate the
particle filter under the proposed dynamic

model. In white the generated line. In green,
particles with high weight (positioned on the
line). In red particles with low weight (not on

the line).

4.2 Observation module

The observation module obtains as input a state
vector from the filtering module and an image
from the camera acquisition. It has to judge the
pertinence of the state describing a line pattern.
The first step of this module is to create a thumb-
nail by selecting a specific region of interest in
the image using information in the state vector.
Then it attributes a measure by combining the
result of three sub functions. The first one is a
classifier that predicts the presence or absence of
the desired pattern in the thumbnail. The second
one is a function that estimates the principal ori-
entation of elements in the thumbnail. And the
last is a function that estimates if the element is
centered in the thumbnail.

Classification. We provide here a minimal
scope to use deep learning methods. Instead
of using them to achieve complex tasks in high
dimensional images, we reduce the problem to a
simple binary classification of small thumbnails.
In addition, the output of the classifier does not
require a very high integrity. As said previously,
the filtering module accepts a part of error from
the measure. It is acceptable for the classifier to
make some wrong prediction.

In this context, it is still not possible to test the
classifier on every possible image (2563×33×33 ≈
107843). At the same time it should be possible
to compute confidence bounds for the classifier
by using methods proposed in the state of art.
For example, the Pac-Bayes theory [29], adver-

sarial method [11] or bounce generalization[30]
seem promising.
This part is still ongoing and at the moment the
only confidence in our classifier comes from a data
test consisting of approximately 4000 thumbnails
(50% positive and 50% negative). This dataset
is constructed by manual annotation and we lack
arguments in the confidence of this test. Figure
9 shows examples of thumbnails of the dataset.
Our convolutional neural network achieved 88.3%
of accuracy on training and 87.2% on the test
data set.

Figure 9: First line shows thumbnails considered
as positive. Second line shows thumbnails

considered as negative.

Orientation and center measure. The ori-
entation measure defines the general orientation
of a line in the thumbnail. The orientation is
found by filtering the thumbnail using the Gabor
filter on every possible orientation. The maxi-
mum response of the filter appears when the di-
rection of the line is in the same orientation that
the filter. In the case of absence of line in the
thumbnail, the response of the filter is not pre-
dictable. This function is checked from a dataset
similar to the one built for the classifier. In ad-
dition, because of the pattern of line, we can en-
sure that the Gabor filter has one of the best
response when the line is the principal element in
the thumbnail.
Another measure consists in determining when-
ever the line is or not in the center of the thumb-
nail. This is done by geometric image processing
without much difficulty. It is verified on the same
data set as for orientation measure.

4.3 Initialization

The initialization extracts features that lines
should verify: color, gradient and position as-
sumptions. From camera parameters we defined
the region of interests where the starting points of
the lines can be. In each region, we use color pro-
cessing to separate ”yellow” elements from oth-
ers. Then we use the morphological operator
and skeleton algorithm to select potential start-
ing points. Due to the use of color processing,
environmental hazards impact the result. To im-

9

prove performance and robustness against illumi-
nation variation and other hazards, the defined
color ”yellow” is adapted in each region by using
a method proposed in [18]. In case of a false start-
ing point, other modules should detect and dis-
card this point (absence of ground marks, length
of line, etc.). It is still possible to miss a line be-
cause the minimal requirements are not fulfilled
(illumination, camera resolution, etc.).

4.4 Verification

The final verification is done qualitatively on real
images from different scenarios. Figure 10 shows
results to illustrate the function. Points of the
same color correspond to the result of the filter
at each iteration. Red curves correspond to the
quadratic regression of these points. Currently,
the system is not designed to be robust to oc-
clusion. As we can see, the initialization step
captures only three lines. Lines far away from
the camera are not detected because of this step.
The architecture is designed to reduce false pos-
itives (erroneous detection).

Figure 10: Results with our architecture.

5 Conclusion and future

works

This paper focuses on the design methodology of
vision based algorithms. We proposed a mod-
ular architecture for line detection applications
designed to ease the certification process. This
proposition avoids the use of end to end deep
learning methods. They seem to have better ac-
curacy but they are not compliant with the actual
certification process. The main interest of de-
composing vision architecture into smaller parts
is to facilitate the generation of tests. Each part
of the architecture has its own specifications and
its own test data set. In addition, it provides a
minimal restrained context where complex algo-
rithms, such as deep learning methods, could be

studied. Also, it should be easier to update and
improve components one by one.
To build this architecture, we propose a general
method describing the spatial or temporal dy-
namic of the visual object and decompose the
architecture into two parts. The first one will
predict features that should describe the object.
The second one will check in the image if this
feature corresponds to reality. This architecture
should work for object tracking.
We are currently working to build larger test
data sets and a monitoring system using tempo-
ral information (video processing). The question
about test data sets is still ongoing. The use of
guidelines such as CV-HAZOP helps the identi-
fication and construction of potential hazardous
scenarios. However, data from these scenarios are
not easily acquired and we have to base tests from
simulators. It raises the question about the cer-
tification of such simulators.

ACKNOWLEDGMENT

This work was supported by AIRBUS Opera-
tions. Any opinions, findings, conclusions, or
recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views AIRBUS Operations. We would like to
thank the OKTAL-SE company for providing the
simulation tool, used to build synthetic images.

References

[1] EASA, Certification Specifications and Ac-
ceptable Means of Compliance for Large
Aeroplanes CS-25. 2007.

[2] SAE., ARP4754a - Aerospace Recommended
Practices (Development of Civil Aircraft and
Systems.). 2010.

[3] RTCA, DO-178C, Software Considerations
in Airborne Systems and Equipment Certifi-
cation. 2008.

[4] F. Boniol, A. Chan-Hon-Tong, A. Eudes,
S. Herbin, G. Besnerais, C. Pagetti, and
M. Sanfourche, “Challenges in the certifica-
tion of computer vision-based systems,” 09
2020.

[5] S. Bhattacharyya, D. Cofer, D. Musliner,
J. Mueller, and E. Engstrom, “Certification
considerations for adaptive systems,” 2015
International Conference on Unmanned Air-
craft Systems, ICUAS 2015, 2015.

[6] EASA and Daedalean, “Concepts of design
assurance for neural networks (codann) ii,”
tech. rep., 5 2021.

10

[7] EASA, “Easa concept paper: First usable
guidance for level 1 machine learning appli-
cations,” tech. rep., 2021.

[8] H. Delseny, C. Gabreau, and A. G. et al.,
“White paper machine learning in certified
systems,”CoRR, vol. abs/2103.10529, 2021.

[9] Z. Wang, W. Ren, and Q. Qiu, “Lanenet:
Real-time lane detection networks for au-
tonomous driving,” 2018.

[10] E. Mirzaei, C. Thomas, and M. Conrad,
Safety Cases for Adaptive Systems of Sys-
tems: State of the Art and Current Chal-
lenges, pp. 127–138. 09 2020.

[11] Y. Lin, H. Zhao, X. Ma, Y. Tu, and
M. Wang, “Adversarial attacks in modula-
tion recognition with convolutional neural
networks,” IEEE Transactions on Reliabil-
ity, vol. 70, no. 1, pp. 389–401, 2021.

[12] C. Molnar, Interpretable Machine Learning.
2019.

[13] P. Germain, A. Lacasse, F. Laviolette,
M. March, and J.-F. Roy, “Risk bounds
for the majority vote: From a pac-bayesian
analysis to a learning algorithm,” Journal of
Machine Learning Research, 2015.

[14] O. Zendel, M. Murschitz, M. Humenberger,
and W. Herzner, “Cv-hazop: Introducing
test data validation for computer vision,”
in 2015 IEEE International Conference on
Computer Vision (ICCV), 2015.

[15] O. Zendel, K. Honauer, M. Murschitz,
M. Humenberger, and G. Fernan-
dez Dominguez, “Analyzing computer
vision data - the good, the bad and the
ugly,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[16] O. Zendel, M. Murschitz, M. Humenberger,
and W. Herzner, “How good is my test
data? introducing safety analysis for com-
puter vision,” International Journal of Com-
puter Vision, vol. 125, pp. 1–15, 12 2017.

[17] ICAO, AERODROMES: aerodromes design
and operations. International Civil Aviation
Organization (ICAO), 2018.

[18] C. Meymandi-Nejad., E. Perrotin., A. Her-
bulot., and M. Devy., “Colorimetric space
study: Application for line detection on air-
port areas,” in VEHITS, 2021.

[19] C. Meymandi-Nejad, S. E. Kaddaoui,
M. Devy, and A. Herbulot, “Lane detection
and scene interpretation by particle filter in
airport areas,” in VISAPP, 2019.

[20] F. Gustafsson, “Particle filter theory and
practice with positioning applications,”
IEEE Aerospace and Electronic Systems
Magazine, vol. 25, no. 7, pp. 53–82, 2010.

[21] B. Ristic, S. Arulampalam, and N. J. Gor-
don, “Beyond the kalman filter: Particle fil-
ters for tracking applications,” 2004.

[22] A. Doucet and A. M. Johansen, “A tutorial
on particle filtering and smoothing: Fifteen
years later,” 2008.

[23] E. Perrotin, C. Meymandi-Nejad, A. Herbu-
lot, M. Devy, and F. Bousquet, “Détection
des lignes aéroportuaires par méthode de fil-
trage particulaire: Évaluation de fonctions
d’observations,” in ORASIS 2021.

[24] X. Zhang, J. Peng, W. Yu, and K.-C. Lin,
“Confidence-level-based new adaptive par-
ticle filter for nonlinear object tracking,”
International Journal of Advanced Robotic
Systems, vol. 9, no. 5, p. 199, 2012.

[25] X. Wang, T. Li, S. Sun, and J. Corchado Ro-
dŕıguez, “A survey of recent advances in par-
ticle filters and remaining challenges for mul-
titarget tracking,” Sensors, vol. 17, p. 2707,
11 2017.

[26] X.-L. Hu, T. B. Schon, and L. Ljung, “A
general convergence result for particle filter-
ing,” IEEE Transactions on Signal Process-
ing, vol. 59, no. 7, pp. 3424–3429, 2011.

[27] N. Vaswani, “Bound on errors in particle fil-
tering with incorrect model assumptions and
its implication for change detection,” in 2004
IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 2004.

[28] F. Abdallah, A. Gning, and P. Bonnifait,
“Box particle filtering for nonlinear state es-
timation using interval analysis,” Automat-
ica, vol. 44, no. 3, pp. 807–815, 2008.

[29] K. Pitas, M. Davies, and P. Vandergheynst,
“Pac-bayesian margin bounds for convolu-
tional neural networks,” 2018.

[30] P. M. Long and H. Sedghi, “Size-free general-
ization bounds for convolutional neural net-
works,”CoRR, vol. abs/1905.12600, 2019.

11

Session We.4.B

Simulation

Wednesday 1st June

17:00

–

Room Lauragais

265

266

Combining Real and Virtual Electronic Control Units in Hardware in the Loop Applications for

Passenger Cars

Jan Röper1 Arpita Bhattacharjee2 Franz Kramer3 Purushottam Kuntumalla2

Andreas Junghanns3

1Mercedes-Benz AG jan.roeper@daimler.com
2Mercedes-Benz Research and Development India Pvt. Ltd.

arpita.bhattacharjee3@gmail.com purushottam.kuntumalla@daimler.com
3Synopsys GmbH {franz.kramer, andreas.junghanns}@synopsys.com

Abstract

For the testing of modern electronic control unit (ECU) software, different test-platforms like Software-in-the-Loop (SIL)

and Hardware-in-the-Loop (HIL) but also in vehicle testing are used. To ensure a realistic behavior of the software in SIL

and HIL testing, models of the environment as well as residual bus simulation are required. A detailed representation of

other controllers in the vehicle network that feeds into the residual bus simulation is needed to test complex functions of

the software and to close distributed control loops. We present a novel approach, where a virtual ECU designed for SIL

testing is reused to generate the input to the residual bus simulation. For export from the SIL tool and import into the HIL

modelling environment, a C-Code functional mockup unit is used. To show the benefit of this approach, the setup is

compared to an existing setup, which uses both a simplified model of an ECU or the real ECU. In addition, drawbacks of

the presented approach are presented and the potential of other methods is discussed.

1. Introduction

For the testing of modern electronic control units (ECU), multiple test environments exist. In the early stage, these include

software in the loop (SIL) and hardware in the loop (HIL) testing. In SIL environments, the ECU code is executed on a

standard PC, which requires virtualization of the ECU [1]. In HIL testing, the ECU code is executed on the target

hardware, which is connected to a simulator for stimulating input signals and measuring output signals. In both cases, a

complex simulation of the environment of the device under test (DUT) is required, which consists of plant models and a

simulation of the communication also known as residual bus simulation (RBS). The RBS stimulates the communication

interfaces of the DUT using both static fixed values as well as dynamic signals. This is necessary to ensure that the test

conditions match the conditions in the real application, which in this case, is the control of an automatic transmission in a

passenger car by a transmission control unit (TCU). Additional features of a RBS are the manipulation of signals,

messages, message counters and various other mechanisms that control the data flow in an ECU network.

A major task in the development of a HIL test environment is to provide a mechanism to generate the dynamic signals for

the RBS. One approach is to provide the dynamic signals through the test automation that executes test scripts. However,

for complex controllers with multiple parallel control loops, this approach is unfeasible. An alternative can be simulated

ECUs, where the basic functionality of an ECU is modeled in the same fashion as a plant. For an aggregate component

HIL environment, multiple simulated ECUs provide the dynamic signals to the RBS to satisfy the DUT with adequate

stimulus. While simulated ECUs allow for a more detailed representation of the DUT environment, their implementation

effort is high: the ECU to be modeled has to be analyzed, the targeted functionality reengineered and the result tested on

the HIL with the DUT. Additional challenges are the need for parameter management based on the specific variant of the

simulated ECU and the incessant demand by testers to add further functionalities to the simulated ECU. In this paper, we

present a novel approach where virtual and real ECUs are combined in a HIL simulator for component testing.

2. Previous Work

Because of the shortcomings of the simulated ECU concept, multiple approaches have been made to replace them with a

more desirable design. Common goal of all these approaches is to reduce the engineering effort by reusing code or

precursors of the code of the targeted real ECU. One approach is to import fragments of the models, which are the base for

the ECU code into the HIL model development tools. While this approach is straightforward, it leaves the developer with

the problem that the interfaces of these fragments do not directly correspond to the dynamic signals of the RBS. For proper

integration, wrapper models are necessary. However, this approach faces the same challenges as the simulated ECU

approach. In turn, the reuse of the code for smaller ECUs as discussed in [2] is carried out in the same fashion by building

a wrapper around the ECU code. This process resembles the process of virtualizing ECUs for SIL applications mentioned

above but is specific to the specific HIL environment. Another approach, presented by [3], employs a SIL that runs on a

standard PC in parallel to a HIL. The SIL communicates with the HIL and the DUT via bus systems. This represents a

distributed RBS, where the part represented by the PC is not a hard real time system but runs in a standard Windows setup

with additional tweaks that ensure acceptable stability. In this scenario, full reuse of an existing SIL reduces the effort for

providing dynamic signals to the RBS. At the same time, this approach leads to more complexity, as the test automation

has to control two environments and special mechanisms for manipulating signals in both RBSs are necessary. [4] discuss

a similar scenario, where a virtual ECU is executed on a separate system, which communicates with a HIL and other test

systems. A complex control system is presented that handles the resulting hybrid test system. This work does not state

whether the virtual ECU running on a separate system is operating in real-time. Table 1 summarizes the above-mentioned

approaches to generate dynamic signals for the RBS and their most relevant properties.

Table 1: Types of Sources for Dynamic RBS Signals

Signal Generation Type Relevant Properties

script in test automation limited to non-parallel control loops

simulated ECU high effort for reengineering

reuse of ECU code fragments or precursors wrapper for integration required

virtual ECU in a SIL on separate PC distributed system with stability and automatization challenges

real ECU replaces RBS; limited ability for manipulation; late availability

3. Proposed Approach

The approach presented in this paper combines the reuse of existing code in a SIL by [3], while maintaining the integrity

of the RBS as described by [2]. A C-Code based virtual ECU of a powertrain control unit (PCU) that was originally

designed for the usage on a Windows PC was adapted for platform independence. The effort and cost for adapting a virtual

ECU for platform independence depend on the specific virtual ECU and can vary drastically. In addition, cost and effort

are hard to estimate in advance and the complete virtual ECU has to be available as C-Code. The resulting platform

independent virtual ECU represents a pretested black box for the HIL developer and can be parameterized for different

variants before the export from the SIL environment.

The C-Code functional mockup unit (FMU), which was originally designed for plant model exchange, is chosen as a

container for the exchange of the platform independent virtual PCU [5]. An important argument for using a C-Code FMU

in this scenario is the support by many different simulator platforms. The ability of FMUs to be used as a container for

ECU code by exporting a plant model to an actual ECU is shown in [6], while in [7] FMU is only used to import models

into a HIL environment and a proprietary format is used to import controller code that is not further described. For future

applications, the FMU for embedded systems (eFMU), as described by [8], can also be a potential container for the code of

a virtual ECU. Like FMU, eFMU are designed for plant models as well but with the goal of integration in an embedded

real time target. Specifically the features to add information that is relevant for the build process, e.g. target compiler

options, can be useful when it comes to integrating a virtual ECU in a HIL environment.

After importing the virtual PCU in its FMU container into the build environment of the HIL application, all rest bus

relevant signals are routed to the respective RBS model interfaces. The real PCU that is replaced by the virtual PCU uses

CAN, Flexray and LIN as bus systems. An overview of the challenges faced when integrating the virtual PCU with the

existing RBS model is presented below. Some of these challenges result from the characteristics of the RBS models, while

others result from the characteristics of the different bus systems.

4. Generation of Virtual ECU FMU

The virtualized PCU is a level two virtual ECU according to [9]. It contains the full application layer and a simulation

basic software providing necessary functionality to increase test coverage of the software under test. The tool for creating

and simulating the virtual ECU is Synopsys Silver®, a virtual ECU tool available for Windows and Linux PCs. Notable

components of the simulated basic software layer are signal and PDU based COM for multiple bus systems including

network routing, NVM for nonvolatile memory and a replacement OS. This level of abstraction of this ECU was chosen as

it provides high complexity with multiple bus systems and large target code size in application layer, without involving

multiple stakeholders in the code to be virtualized. Integrating target code deeper in the ECU stack should pose little

additional challenge provided it is microcontroller independent.

The move from a PC simulation to a platform independent virtual model can be seen in Figure 1. The challenge during

FMU generation is removing dependencies on the compiler and linker toolchain as well as automatically generating

platform independent C-Code for all required features and components provided by Synopsys Silver®. Developing the

methodology initially required in depth compiler knowledge as well as a profound understanding on modern operating

systems and CPU architectures. Once the tooling was developed subsequent updates of the target software or the

simulation basic software require little effort.

Figure 1: Porting a PC based simulation to be platform independent.

While the approach is conceptionally straight forward and the project was successfully integrated, the team gained key

insights which influenced the initial favorability assumptions. The use of open C-Code can be problematic when

integrating intellectual property from multiple parties. This issue was limited by keeping the number of involved parties

small but must be kept in mind when applying this method to future projects.

There are mandatory virtual ECU features which cannot simply be provided as platform independent code. One example is

the parametrization of ECU CHARACTERISTICs using production parameter and A2L files. Exporting such a feature as

C-Code requires that certain assumptions like endianness or type sizes are known about the platform the FMU is later

executed on. This is natural as this information is also required by industry measurement tools and is encoded in the ECU

A2L. Removing such a feature to achieve true platform independence would drastically reduce the useability of the

resulting FMU, so these assumptions were verified on the HIL platform and introduced into the export process. Doing so

voids the platform independence of the FMU, as it is now compatible to the two specific PC and HIL platforms.

The use of pure source code to become compiler/linker independent shifts the build process to the HIL environment. To

minimize the frequency of feedback loops related to the build step, the compiler toolchain of the HIL and the PC were

aligned, as it is available for both platforms. Even then it is only possible to functionally verify the FMU built for PC

without consuming HIL resources. A high-quality acceptance test on PC kept the number of functional errors and the time

spent validating the FMU on the HIL system to a minimum. However, even validation using source level debugging on the

PC system only assures the quality of the PC-built binary and due to the mandatory rebuild on the HIL it is possible that

the different HIL platform introduces side effects.

In general, there are not many hard limitations. One is the computing power of the HIL system. In this case it was a multi

core HIL x86 CPU and the FMU runs on a single HIL core without encountering task overruns. The second limitation is

some required compatibility between the HIL and PC architecture, as true platform independence would have only been

achieved with an unreasonable amount of engineering. When designing the complexity of such a virtual ECU export to the

HIL it is advisable to evaluate level of detail versus the potential gain to avoid lengthy and costly iterations in the HIL

environment.

5. Integration

In order to integrate the virtual PCU in the HIL model, the FMU is imported into the build environment. In our setup the

build environment consists of two main components: 1. The tool Configuration Desk® that is used to configure the

dSpace® HIL hardware, the task configuration and the signal routing between plant models or FMUs and the IO of the

HIL and 2. The modeling tool Simulink® that is used to implement plant models as well as the RBS. Figure 2 shows the

structure of the overall setup after integrating the virtual PCU. As the PCU only interacts through bus systems, only the

parts relevant to the integration of bus systems is visualized in Figure 2. All other parts that a HIL system normally

requires like power supplies and multi IO are omitted.

Figure 2: Integration of Real, Simulated and Virtual PCU in the HIL System with Focus on Bus Systems

Like the plant model as well as the RBS model and the operating system, the FMU is executed on a dedicated core of the

HIL simulator’s processor. The cores exchange signals through an inter-core communication mechanism. FMU do not

allow calling portions of their code from different tasks. The virtual PCU integrated into the HIL setup handles task

scheduling by using internal subtasks and is called by the HIL by an external 5 ms task. For applications with time critical

tasks, a design that imports multiple FMU and calling them by separate tasks would be required. Note that the setup allows

running either a simulated, a real or a virtual PCU with the same executable by configuring the model through the HIL

automation. The TCU is always kept as a real component and is the DUT, as described above.

The signal routing for the three implementations real, virtual and simulated PCU integrated into the HIL model is

fundamentally different and in the case of the simulated and the virtual PCU depends on the way the RBS is implemented.

Figure 3 shows an example for the signal routing for all three PCUs in a minimal example. Only the different

implementations of the PCU, the real TCU as well as an additional simulated ECU are displayed for the implementation of

signal routing of CAN bus signals.

Figure 3: Signal Routing for a Setup with a) Real PCU, b) Simulated PCU and c) Virtual PCU

Figure 3 a) shows the case where the real PCU communicates with the real TCU and one additional simulated ECU. In this

setup, three physical bus controllers are connected on the bus lines. The controller of the real TCU, the controller of the

real PCU and the controller of the HIL RBS. In the case of the real TCU and the real PCU all signals are calculated in their

respective application and are then transferred to the controller and vice versa. In the case of the simulated ECU, only a

subset of the signals that require dynamic changes during the HIL simulation are calculated in the model of the simulated

ECU. These signals are then merged with static default signals in the RBS and the resulting values are then transferred to

the communication stack of the HIL and the HIL bus controller. The same is true for incoming signals from the bus. Only

signals that are required for the computations in the simulated ECU are selected in the HIL communication stack for

transfer to its model.

Figure 3 b) shows the case where the simulated PCU communicates with the real TCU and one additional simulated ECU.

What was described above for the generalized simulated ECU is also true for the simulated PCU. Dynamic signals from

the simulated PCU model are merged with static default signals, are processed by HIL communication stack and then sent

on the bus via the bus controller. The switching between the setup from Figure 3 a) and the one from Figure 3 b) requires

deactivating the power supply as well as activating the nodes for the simulated PCU in the HIL RBS. When modifying the

physical setup of the bus, proper CAN termination must be ensured as well.

Figure 3 c) in turn shows the case where the virtual PCU communicates with the real TCU and one additional simulated

ECU. Compared to the setup in Figure 3 b), all signals are computed by the virtual PCU and merging with static default

signals is only required for the simulated ECU. As the virtual PCU runs on a separate core, signal routing to the Simulink®

model containing the RBS is required. The RBS model implementation accepts signals of the type double and converts

these internally to the required data type. As the virtual PCU provides all signals in the equivalent data type real, no

additional handling of datatypes is required. While this simplifies the implementation, drawbacks regarding performance

have to be accepted due to usage of unnecessarily expensive data types for some signals. The large amount of signals in a

vehicle network requires an automated process to generate the signal routing parts of the model. The automated process

requires naming of the virtual ECU input and output signals based on the description files of the bus systems. Due to

differences between the implementations of RBS models for the bus types CAN, LIN and Flexray, both the signal routing

as well as the merging with static default signals requires variants of the approach presented above.

6. Experiment and Results

The resulting HIL setup can execute tests with the newly integrated virtual PCU, the simulated PCU that allows

manipulation but limited features and the real PCU. The DUT in all three scenarios is the TCU as mentioned above. To

show the validity of our approach and to compare the three different implementations of the PCU, a test scenario is

executed on the HIL. A common test scenario is to use a vehicle speed profile such as the worldwide harmonized light

vehicles test procedure (WLTP) and to use a speed controller to set accelerator and brake pedals accordingly. This

approach has the disadvantage that the speed controller can mask the differences in the behavior of the PCU on the vehicle

speed level. To ensure that the differences in the behavior stay unmasked, a simple test scenario with a fixed sequence of

inputs to accelerator and brake pedal is executed on the HIL. Figure 4 shows the stimulus as well as an example of the

resulting rescaled dimensionless vehicle and engine speed.

Figure 4: Stimulus and Reference Result for Comparison

At the beginning of the sequence, the combustion engine of the vehicle is started and the gear selector lever is set to drive.

In the next step, the brake pedal is released and the vehicle starts to creep (t = 10 s). After reaching a steady creep velocity,

the accelerator pedal is set to a constant value of 30 %, which leads to a rising vehicle velocity with moderate acceleration

(t = 20 s). After a fixed wait time that is sufficient for the vehicle to reach a constant velocity, the accelerator pedal is

released and the brake pedal is set to 5 % (t = 320 s), which causes the vehicle to reduce the velocity to creep velocity

(t = 355 s). Finally, after another wait time, the vehicle comes to a stop by fully applying the brake pedal (t = 420 s).

During the phases of accelerating and decelerating the vehicle, multiple up- and downshifts are visible in the engine speed

profile. They stand out as steep decreases or increases of engine speed. The engine speed level at which a gearshift occurs

is relevant for the overall powertrain strategy, as the shift levels affect the ability of the combustion engine to produce

torque as well as its fuel consumption. The ECUs in the powertrain network negotiate the shift levels during runtime,

which makes them ideal for a comparison of the performance of simulated and virtual PCU versus real PCU.

Figure 5 shows the rescaled dimensionless vehicle and engine speed for virtual, simulated and real PCU when executing

the stimulus from above. The close matching of virtual and real PCU are visible, while the results of the run with the

simulated PCU deviate. The reasons for these deviations are in the limited functionality of the simulated PCU as well as in

a simplified variant dependent parameterization. The difference of the results with the simulated PCU become even more

apparent when comparing the shift points for upshifts while accelerating the vehicle. The reasons for the deviation in

Figure 5 lie in the simplified representation of functions for torque coordination. This can be addressed by adding more

detailed functions to the simulated PCU and parameterizing them as required for the specific variant. If this action is

carried out until no deviations occur in any scenario, the effort for implementing the simulated PCU will match the effort

for implementing the real PCU. The reuse of the code of the real PCU in a virtual PCU yields the same result with limited

effort, which makes it much more attractive.

Figure 5: Results for Virtual, Simulated and Real ECU

For the further discussion, the results acquired with the simulated PCU are set aside and we focus on the deviations

between the virtual and the real PCU. For both setups, three runs of the scenario shown in Figure 4 are carried out.

Subsequently, the recorded vehicle speed is used to compare the fluctuations between runs for the same setup to assess the

reproducibility, as well as the deviations between the setups to assess the accuracy of the representation of the real PCU by

the virtual PCU. The scope of the scenario used covers the most important functionalities in a drive train and is useful for

characterizing the accuracy of the representation. However, functionalities of the PCU software that are not active in this

scenario cannot be assessed by this analysis.

Columns two and three of Table 2 show the root mean square errors (RMSE) acquired from the three runs with real and

simulated PCU. The RMSE is calculated between first and second run, second and third run, as well as third and first run

for each setup. The results show that the RMSE representing the variations of repeated runs with real PCU is higher than

the RMSE for runs with virtual PCU. This is true both for all three calculated values of RMSEs as well as for the mean of

the RMSEs shown in the last row of Table 2. On average, the RMSE of the vehicle speed calculated with real PCU with a

value of 0.18 km/h is almost double the average RMSE of the one calculated with the virtual PCU with 0.1 km/h. This

analysis itself only shows that the setup with real PCU varies more between repeated executions than the setup with virtual

PCU. It does not give any indication of the accuracy of the representation of the real PCU by the virtual PCU.

Table 2: RMSE of Vehicle Speed for repeated Executions with Real and Virtual ECU

Run

real PCU

RMS Vehicle

Speed [km/h]

virtual PCU

RMS Vehicle

Speed [km/h]

1 vs. 2 0.22 0.09

2 vs. 3 0.18 0.09

3 vs. 1 0.13 0.11

mean 0.18 0.10

Reasons for the higher fluctuations between runs with real PCUs become apparent when comparing the nature of the two

setups. In the setup with the real PCU, the code runs on a separate processor with its own clock. Drift and jitter between

the clocks of the HIL and the PCU are one example for a source of deviation if they are not compensated for by special

methods [10], which is not the case in our setup. In addition, the communication via bus systems like CAN is not

deterministic and the dataflow between the real PCU and the TCU can vary between executions. The same is true for other

I/O interfaces. For example, analog I/O with noise can introduce additional variance in the behavior. Most of the

abovementioned effects are absent for the virtual ECU, as it runs on the HIL processor and does not possess any real I/O.

The remaining sources of variance between the runs are the CAN communication with the TCU, the loopback through the

communication controllers of the HIL, as described above, as well as the fluctuations introduced by the TCU. In summary,

the setup with a virtual PCU shows a better reproducibility than the setup with a real PCU, which satisfies the minimum

requirement that using a virtual PCU may not negatively affect the reproducibility.

Table 3 lists the RMSEs calculated between runs with real and virtual PCU and allows us to assess the accuracy of the

representation of the real by the virtual PCU. The RMSEs in this assessment are in the same range as the RMSEs for

repeated runs of the real PCU in Table 2. This shows that the error introduced by using a virtual PCU instead of a real

PCU is below the level for repeated executions of the real PCU. In other words, the difference between one test execution

with a real PCU and one test execution with a virtual PCU does not exceed the difference witnessed when executing a test

twice with the real PCU. This means, that for this specific implementation and scenario, the virtual PCU suffices the

reproducibility as well as accuracy expectations if the reproducibility with the real PCU is satisfactory.

Table 3: RMSE of Vehicle Speed for Comparison between Executions with Real and Virtual ECU

Run
real vs. virtual PCU

RMS Vehicle Speed [km/h]

1 0.22

2 0.10

3 0.19

mean 0.17

The data used for the discussions in the last paragraphs is both limited in the number of datasets and in its variation. For a

more detailed analysis, more executions with more complex scenarios are required. However, the limited analysis already

shows that a high level of reproducibility, as well as accuracy can be achieved when replacing real ECUs with virtual

ECUs.

7. Summary and Outlook

In this work, we were able to show, that virtual ECU can be reused to enhance dynamic inputs to a HIL residual bus

simulation and to thus enable a more realistic representation of the DUT environment. The results obtained with this novel

approach are not distinguishable from results obtained when using a real ECU instead. Regardless of the good results

during runtime, some drawbacks remain during the implementation phase of the HIL executable. These include the large

number of signals that have to be routed to the RBS, the workarounds necessary in order to combine the virtual ECU

signals with signals of other simulated or virtual ECUs, as well as the complex process to make the C-Code FMU

buildable in the modelling environment of the HIL simulator.

While the first two items can only be addressed by completely automated signal routing and by redesigning the model

structure, the latter requires a change in the process of the generation of the virtual ECU in a FMU container. In the most

recent version 3.0 of FMU that will be released in 2022, additional features for specifying the process for compiling and

linking of the sources will be available [11]. Furthermore, other new features like events for the triggering of sub functions

can be useful for extending the approach to virtual ECUs that are more complex. With the current tool chain, only FMUs

of the Version 2.0 are supported and the new features should be evaluated once full support for FMUs of the version 3.0 is

available.

A different approach to address the build issues discussed above can be to work with precompiled object files, which need

to be compatible to the x86-based platform and compiler of the HIL modeling environment. In addition to moving the

compile process out of the complex HIL modeling environment, this change in the process also ensures protection of

intellectual property. Particularly larger ECU software projects, where supplier and OEM software modules are combined

to create the ECU software, can benefit from this.

Acknowledgments

This project was only possible with the continuous support of a large group of engineers. Many thanks go to Muralidhar

Rajaram, who supported in commissioning the modified project on the HIL simulator and to Gyaneshwar Singh for his

support with acquiring the data for offline analysis. For the modification of the network model and their creative

approaches to the problems arising, we thank Ashutosh Singh and Felix Maier.

References

[1] A. Junghanns, R. Serway, T. Liebezeit and M. Bonin, "Building Virtual ECUs Quickly and Economically,"

ATZelektronik worldwide, pp. 48-51, 01 06 2012.

[2] C.-F. Nicolas, I. Ayestaran, T. Poggi, G. Sagardui and J.-M. Martin, "A CAN Restbus HiL Elevator Simulator Based

on Code Reuse and Device Para-Virtualization," in IEEE 20th International Symposium on Real-Time Distributed

Computing (ISORC), Toronto, Canada, 2017.

[3] I. Matheis, T. Dörsam and W. Hoffmann, "Integrating a SiL into a HiL Test Platform," in Simulation and Testing for

Vehicle Technology, 7th Conference, Berlin, 2016.

[4] A. Himmler, L. Stockmann, S. Walter and S. Laux, "Developments Targeting Hybrid Test Systems for HIL Testing,"

in AIAA SciTech Forum, Sandiego, California, USA, 2019.

[5] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T.

Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz and S. Wolf, "The Functional Mockup Interface for Tool

independent Exchange of Simulation Models," in Proceedings of the 8th International Modelica Conference,

Dresden, 2011.

[6] C. Bertsch, J. Neudorfer, E. Ahle, S. Arumugham, K. Ramachandran and A. Thuy, "FMI for Physical Models on

Automotive Embedded Targets," in 11th International Modelica Conference, Versailles, 2015.

[7] A. Himmler, A. Pillekeit, B. Loyer and V. D. Stéphane Mouvand, "Using FMI- and FPGA-Based Models for the

Real-Time Simulation of Aircraft Systems," in AIAA Modeling and Simulation Technologies Conference, Kissimmee,

Florida, USA, 2018.

[8] "Functional Mock-Up Interface for embedded systems (eFMI)," [Online]. Available:

https://emphysis.github.io/pages/downloads/efmi_specification_1.0.0-alpha.4.html. [Accessed 02 09 2021].

[9] "Requirements for the Standardization of Virtual Electronic Control Units (V-ECUs)," prostep ivip association,

Darmstadt, 2020.

[10] M. Akpınar, E. G. Schmidt and K. W. Schmidt, "Drift Correction for the Software-based Clock Synchronization on

Controller Area Network," in IEEE Symposium on Computers and Communications (ISCC), 2020.

[11] "Functional Mock-up Interface Specification, Version 848f13a," [Online]. Available: https://fmi-

standard.org/docs/3.0-dev/. [Accessed 21 12 2021].

Investigation of Scheduling Algorithms for DAG
Tasks through Simulations

Michael Schmid, Jürgen Mottok
Laboratory for Safe and Secure Systems - LaS3

University of Applied Sciences Regensburg, Germany

Email: {michael3.schmid,juergen.mottok}@oth-regensburg.de

Abstract—In the real-time systems sector, various task models
and corresponding tests exist to model and verify the schedu-
lability of task sets on the system at hand. While those models
and schedulability tests have intensively been studied from a
theoretical point of view, it is hard to make use of them to
compare the actual execution behavior of scheduling algorithms
on a real system. In contrast to schedulability tests, simulators
can help to investigate the performance of specific scheduling
algorithms. One of the most generalized task models to describe
parallel tasks is the Directed Acyclic Graph model that allows to
represent tasks as a series of subtasks that depict the potentially
parallel computations and precedence constraints that denote the
order in which the subtasks are allowed to execute.

In this paper, we investigate various scheduling algorithms for
the Directed Acyclic Graph model. For that, we first recapitulate
the examined scheduling algorithms in detail and point out
relevant differences. Subsequently, we present the evaluation
of different global and federated scheduling algorithms using
fine-grained parallel tasks. To this end, we generate random
Directed Acyclic Graph tasks and simulate their execution on
multiprocessor systems using scheduling algorithms such as
global rate-monotonic and semi-federated scheduling as well as
global scheduling policies using the thread pool model.

Index Terms—real-time, scheduling, task models, simulation

I. INTRODUCTION

As physical constraints have put an end to the ever in-

creasing processor frequencies, hardware manufacturers have

switched to parallel hardware architectures that allow to further

increase the computation capabilities of the system. This

trend has also reached the embedded real-time sector where

multicore and multiprocessor architectures have found a lot

of research attention in recent years. In order to make use

of the parallel hardware architectures, sequential task models

have cleared the way for parallel task models that allow to

reduce the response times of time critical tasks. One of the first

parallel task models analyzed in the real-time community is

the fork-join model which is well-known from the Open Multi-

Processing (OpenMP) standard. Tasks are hereby modeled as

an alternating sequence of sequential and parallel segments.

Only when all subtasks of one segment (either sequential

or parallel) have completed their execution, the subsequent

segment is allowed to execute. The parallel synchronous task

model is a generalization of the fork-join model where each

segment is allowed to have an arbitrary number of parallel

subtasks but still, subtasks of one segment are only allowed

to execute when all subtasks of the previous segment have

finished. In this paper, we consider the Directed Acyclic Graph

(DAG) task model. As the name suggests, the tasks are mod-

eled as a DAG where each node represents a computation and

the edges between the nodes depict the precedence constraints

between the subtasks. In this model, nodes that are not either

directly or transitively connected by edges can be executed in

parallel.

Various scheduling algorithms exist that try to schedule the

DAG tasks on the processors without deadline misses and

the real-time community provides many schedulability tests

to determine the feasibility of task sets beforehand. While the

acceptance ratios provided by those tests can be compared to

each other, they do not really assess the performance of the

scheduling algorithms, but rather the performance of the tests.

To this end, different performance metrics of scheduling algo-

rithms have been introduced, such as utilization and resource

or capacity augmentation bounds.

Another great tool to evaluate the actual runtime behavior of

the scheduling algorithms are simulations. This paper focuses

on the simulation of real-time scheduling algorithms. The

algorithms evaluated later on include preemptive global fixed-

priority (FP) and earliest deadline first (EDF) scheduling, both

with and without using thread pools for the execution of the

subtasks, as well as semi-federated (SFED) scheduling.

A. Motivation and Contribution

Modern embedded real-time systems have to process enor-

mous amounts of data in in a timely manner. In order to allow

modern applications1 to finish their computations in time,

parallel task models have been introduced to the embedded

real-time sector. In order to determine the schedulability

of the system beforehand, modern applications, where the

computations are broken down into many small subtasks that

are potentially executed in parallel, need to be modeled after

the aforementioned task models.

In addition, the task models also provide the means to

derive performance metrics, such as the capacity or resource

augmentation bounds, that allow to asses the performance

of different scheduling algorithms. While those bounds offer

formal guarantees that cannot be obtained from simulations,

other drawbacks arise from resorting to such performance

1The notations of applications and tasks are used interchangeably through-
out this paper.

metrics. On the one hand, the tests suffer from pessimistic

mathematical assumptions which leads to unfair comparisons.

On the other hand, the performance metrics have to be

derived individually for each scheduling algorithm. In contrast

to that, once the scheduling simulator framework has been

established, only the new scheduling algorithms and task

models have to be implemented. Furthermore, the examination

through simulations allows not only to draw estimations on the

scheduler performance, but also examine the actual runtime

behavior of the system at hand and therefore, gain insight

about various performance characteristics, e.g. the response

time distributions of the individual jobs, the number of thread

preemptions and the number of processor migrations. For

this reason, this paper presents the results of the simulations

conducted on various scheduling algorithms for the DAG task

model. As the trend in the real-time community goes towards

highly parallel hardware and software architectures, e.g. for

object detection algorithms, the evaluations will be conducted

by the use of highly parallel tasks in our evaluations. The given

results shall give insight about the design and implementation

of modern real-time systems that employ fine-grained parallel

tasks, i.e. tasks where the computations are broken down into

a large number of subtasks that are potentially executed in

parallel.

To the best of our knowledge, we are the first to consider the

comparison of the scheduling algorithms proposed in the later

section of this paper, especially on the thread pool model. For

this reason, we add the following contributions to the current

state-of-the-art:

• We perform scheduling simulations on classic as well

as modern real-time scheduling algorithms for the DAG

task model. The investigated algorithms include global

deadline monotonic (DM) and EDF for both, the classic

and the thread pool DAG model, and semi-federated

scheduling.

• We evaluate the performance of the scheduling algorithms

by investigating the feasibility of task sets, the number of

preemptions occurring during the simulation process and

the response times of the individual tasks.

• We discuss the use of the investigated scheduling algo-

rithms and their results to gain insight about the use in

actual real systems.

B. Structure

The remainder of this paper is structured as follows. Sec-

tion II introduces related work considering schedulability tests

for the DAG task model and its evaluation using simulations.

Subsequently, the task model used throughout this paper is

introduced in Section III. Section IV then explains the func-

tionality of the scheduling algorithms. The simulation results

are presented in Section V and are discussed in the following

section. Finally, Section VII concludes our work.

II. RELATED WORK

In recent years, much research has been conducted in the

scope of real-time schedulability tests for the various parallel

task models. Response time analyses for the fork-join model,

which is known from the OpenMP programming model, cover

for instance partitioned FP [1] or various task stretching

approaches as in [2], [3] where the parallel segments are turned

into sequential segments as much as possible. Schedulability

tests regarding global scheduling are provided for the parallel

synchronous task model which is a generalization of the fork-

join model and therefore, also provides the possibility of

analyzing the fork-join task sets. Maia et al. [4] as well as

Chwa et al. [5] provide response time analyses in terms of

global FP and EDF scheduling, respectively. Regarding the

DAG task model, response time analyses have been proposed

for global scheduling amongst others by Melani et al. [6],

Fonseca et al. [7] and Parri et al. [8]. In addition, Bonifaci et

al. [9] provides a schedulability test for global EDF which is

later improved by Baruah [10]. The thread pool model has also

been recently brought to the real-time sector by Casini et al.

[11]. They assign each task a number of threads equal to the

number of processors in the system and realize the precedence

constraints in the DAG with blocking mechanisms. In our

previous paper [12], we present a response time analysis for

DAGs without a blocking subtask scheduler and the possibility

of providing a limited number of threads for each task. This

model will be used in the evaluations presented in this paper.

Another approach to scheduling DAG tasks is federated

scheduling [13]. In federated scheduling, high density tasks ex-

ecute exclusively on dedicated processors whereas low density

tasks are executed together on the remaining processors. Espe-

cially, semi-federated scheduling [14] which we will present

later in short show exceptional results in their schedulability

analysis.

In terms of performance metrics, Li et al. [15] prove a

capacity augmentation bound of 4 − 2
m

for global EDF and

improve their results for large m in their subsequent paper

[13]. In the latter paper, they provide an augmentation bound

of ≈ 2.62 for global EDF, ≈ 3.73 for global rate monotonic

(RM) and 2 for a federated scheduler using implicit deadline

task sets. In terms of constrained deadlines, Sun et al. [16]

prove a capacity augmentation bound of β + 2
√
β + 1 for

global EDF where β is the largest ratio of task period to

deadline in the task set. While the capacity augmentation

bound can be used as a schedulability test, it yields fairly

poor results as shown in [14] where the authors evaluate

the resource augmentation bound of Li et al. [15] in their

experiments. As for resource augmentation bounds, Saifullah

derive a resource augmentation bound of 4 for their DAG

task decomposition method for systems with global EDF

scheduling. Bonifaci et al. [9] introduce a bound of 3 − 1
m

for global DM and both, Bonifaci et al. and Li et al. [13]

prove a resource augmentation bound of 2 − 1
m

for global

EDF for arbitrary deadline task sets.

We did not find much evaluations of the DAG task model

using simulators in the current state-of-the-art. Qamhieh et

al. [17], [18] present their scheduling simulator YARTISS to

evaluate the performance of their task stretching algorithm in

comparison with the classic scheduling of DAG tasks with

the global scheduling approaches of DM and EDF. In their

papers, they observe that their DAG stretching algorithm yields

a better acceptance ratio than the classical approach under

global DM but worse on global EDF. In contrast to the work

presented in this paper, they perform their evaluations on tasks

with low numbers of subtasks (at most 12 subtasks per task

throughout both of their papers).

III. TASK MODEL

In this paper, we consider the scheduling of sporadic DAG

tasks on a multiprocessor platform with m identical processors

with uniform memory access. Without loss of generality, all

time intervals are assumed to be multiples of the system clock

and therefore, non-negative integers.

Each task τi in the task set Γ is represented by a three tuple

τi = (Gi, Ti, Di) where Ti denotes the minimum inter-arrival

time, Di represents the relative deadline and Gi is the DAG

modeling the parallel computations of the task. The graph

Gi = (Vi, Ei) contains ni subtasks Vi = vi,1, vi,2, ..., vi,ni

which are interconnected by the edges in Ei = Vi × Vi. At

least every Ti time units apart, task τi will release a job, i.e. a

sequence of subtasks that are to be executed on the processors

in their respective order. The job released at the time instant

ri has to complete its execution before its absolute deadline

di = ri + Di. In this paper, deadlines can be either implicit

which means that deadline equals the task period, i.e. Di = Ti
or they can be constrained which denotes that the deadline is

less than or equal to the period, i.e. Di ≤ Ti.
Each subtask vi,j is characterized by a worst-case execution

time (WCET) Ci,j . The worst-case workload Wi of the task is

equal to the sum of all its subtasks, i.e. Wi =
∑

∀vi,j∈Vi
Ci,j ,

and represents the time it takes to complete the execution of

the task using a single processor. Throughout the course of

this paper, we will omit the node’s subscript i if it does not

cause confusion. Each directed edge (va, vb) ∈ Ei represents a

dependency between the predecessor va and the successor vb.

A subtask is said to be ready if and only if all its predecessors

have completed their execution and is only then allowed to be

executed. A subtask is called a source if it has no predecessors

while a subtask with no successors is called the sink of the

DAG. Without loss of generality, we assume that each DAG

has only one source and one sink. This can be achieved by

adding a dummy source and dummy sink, each with a WCET

equal to zero, to the DAG. An example of a DAG task can be

observed in Figure 1 where the nodes are represented by the

circles and the edges are shown as arrows. The number above

the subtasks denote their WCET.

As commonly defined for DAGs, we use the notation of

a path λ = (v1, ..., vni
) to describe the sequence of nodes

vj ∈ Vi such that v1 is the source of Gi, vni
is the sink of

Gi and ∀vj ∈ λ\{vni
}, (vj , vj+1) ∈ Ei. The length of a path

λ is denoted as the sum of WCETs of all nodes vj in λ, i.e.

len(λ) =
∑

∀vj∈λ Ci,j . The critical path length Li is defined

as the path with the biggest length, i.e. max∀λ∈Gi
{len(λ)}. In

the example DAG of Figure 1, the critical path is the path λ =
(vi,1, vi,4, vi,5, vi,6, vi,11) and the critical path length yields 13.

Deadline
Period

Fig. 1. Example of a DAG task with eleven subtasks.

IV. INVESTIGATED SCHEDULING ALGORITHMS

This section shortly presents the scheduling algorithms

evaluated in Section V so that subsequent deductions can be

understood with greater ease.

A. Global Scheduling

Global scheduling is one of the most straightforward

scheduling algorithms and is, especially in combination with

a RM priority assignment, frequently implemented in actual

embedded systems [19] due to their simplicity. In the se-

quential task model, the scheduler must simply maintain a

single global priority ordered queue of all ready jobs.2 At

each scheduling instant, the available processors then pop the

m highest priority jobs and execute them. In the DAG model,

all subtasks inherit the priority of their respective task. When-

ever they become ready because all their predecessors have

completed execution, they are pushed into the global queue

and the processors pop the m highest priority subtasks to

execute them. In our evaluations, we will consider preemptive

scheduling that allows to suspend running subtasks in order

to schedule subtasks of higher priority tasks. Various priority

assignment strategies exist. A simple method is to assign

priorities statically in advance. A prominent example for this

method is RM, where the priorities are assigned by the inverse

of the task period, respectively, meaning that tasks with smaller

periods, have higher priorities. In our experiments, we will use

the DM priority assignment algorithm, which works as RM

except that the relative deadline is used instead of the period to

assign priorities.3 Another example which is often considered

in real-time literature is EDF which computes the priorities

during runtime and assigns the job with the closest absolute

deadline the highest priority. In the evaluations, we consider

EDF and DM priority assignments which will be denoted as

GlobalEDF.Classic and GlobalDM.Classic, respec-

tively.

2In the sequential task model, the notation of subtasks is not used. Instead,
a job represents a single sequential computation and executes for at most Ci

units in time, where Ci represents the worst-case execution time of the task.
3Note that RM and DM are equal for implicit deadline tasks.

B. Global Scheduling with Thread Pools

In the thread pool model [12], each task τi receives a distinct

thread pool with mi threads that share the priority of the task.

In contrast to classical global scheduling, the ready subtasks

of a task are not pushed into the global queue. Instead, the

threads, which inherit the priority of the tasks, are pushed

into the global queue, while the subtasks are maintained in a

private scheduling queue of each task. The system then follows

the approach of a two-level scheduler: the m processors pop

m threads from the global queue while the executed threads

pop and execute subtasks from the task’s private scheduling

queue. It is possible that there are less than mi subtasks ready

which implies that some threads of τi will be without work. In

practice, those threads are suspended and therefore not inserted

in the global queue until new subtasks are pushed into the task

queue. This functionality is important so that processors do not

idle when they could instead process lower priority threads.

The system engineer assigns each task a certain number

of threads. In this paper, we point out two similar methods.

The first strategy follows the approach of federated scheduling

and assigns each task the minimum number of threads that is

necessary to meet its deadline:

mi =

⌈

Wi − Li

Di − Li

⌉

(1)

The aforementioned thread assignment strategy ensures that

all tasks have enough threads to complete their execution

before their deadline when executed in isolation while also

keeping the thread count in the system as low as possible,

thus, reducing preemptions and context switching overhead.

However, this method does not take into account the inter-

ference of higher priority tasks which might lead to deadline

misses for the low priority tasks.

The second method improves the schedulability for FP

systems by assigning the lower priority tasks more threads so

that they can make better use of the parallelism provided by

the system. In that case, each low priority task is assigned m
threads to increase the maximum parallelism they can exploit.

mi =

{

⌈

Wi−Li

Di−Li

⌉

, if
∑

∀k≤imk ≤ m
m, otherwise

(2)

In this thread assignment strategy, we start with the highest

priority task and assign it a minimum number of threads

according to Equation 1. We continue to assign the minimum

number of threads to each subsequent high priority task until

the thread count in the system exceeds the number of proces-

sors m. At this point, all subsequent tasks will be assigned a

number of threads equal to the number of processors in the

system. This strategy leverages the same benefits as in the

first strategy for the high priority tasks while also improving

the schedulability of low priority tasks by allowing them to

exploit the available parallelism capabilities.

In the evaluations, the respective plots will be denoted as

GlobalEDF.TP and GlobalDM.TP when scheduling the

threads according to global EDF and DM with the thread

assignment strategy shown in Equation 1. The assignment

strategy in Equation 2 will be referred to as GlobalDM.ITP.

C. Semi-Federated Scheduling

In semi-federated scheduling, tasks are divided into heavy

(Wi

Di
> 1) and light (Wi

Di
≤ 1) tasks. Each heavy task is

assigned ni dedicated processors where ni is computed by

ni =

⌊

Wi − Li

Di − Li

⌋

. (3)

As ni is less than the number of required processors to

finish before its deadline, each heavy task requires an addi-

tional container task. This container task executes workload

of subtasks for a fractional part of at most Wi−Li

Di−Li
− ni. The

container tasks are scheduled together with the light tasks on

the remaining processors using any scheduling algorithm such

as partitioned or global EDF. In this work, we use partitioned

EDF which performed best in the original paper [14] and

denote the algorithm as SemiFederated.Partitioned

in our evaluations. The interested reader is referred to the orig-

inal paper [14] for further information about the dispatching

algorithm and how to compute the deadlines of the fractional

parts computed on the container tasks.

V. SIMULATIONS

In our experiments, we evaluate the scheduling algorithms

introduced in the previous section by generating random task

sets and simulating the execution of a multiprocessor system

by use of a discrete event simulator.

A. Experimental Setup

The task set generation in this work follows the same

procedure used in various papers of real-time schedulability

analysis, e.g. in [12], [14], [20], in order to allow for a

comparison between the results of the schedulability tests and

the simulations. First, DAGs are created using the Erdös-Rényi

model G(n, p) [21]: each DAG is assigned a random number

of nodes chosen within the range [50, 250]. Each node receives

a WCET randomly selected from the range [50, 100]. Then,

for each pair of vertices an edge is created with a probability

of p = 0.1. The value of p indicates the parallelism of the

DAG where low values of p imply a low number of edges and

therefore, a high intra-task parallelism. Given the structure of

the DAG and the values of the WCET, the period of each

task is computed following the approach presented by Jiang

et al. [14]:

Ti = (Li +
Wi

0.4× Utot

)× (1 + 0.25×Gamma(2, 1)) (4)

where Utot is the predefined total utilization of the system

and Gamma represents the gamma distribution. Using the

previous method of generating a single DAG task, we generate

tasks until the predefined value of the total utilization is

exceeded. The period Ti of the last added task is then modified

so that the desired system utilization Utot is satisfied. For each

configured value of Utot, we generate and simulate 100 task

sets.

We do not evaluate typical parallel real-time applications

in this paper as many different task sets are needed for the

evaluations of the schedulability and number of preemptions.

However, by using this method of generating DAG tasks, we

obtain task sets containing various tasks with distinct graph

structures and a sufficient level of parallelism even for low

system utilizations. As an example, a fast Fourier transform

with a parallel spawn depth of seven yields 190 subtasks and

a maximum parallelism of 64. While the probability is low,

such a DAG structure could potentially be created by our

task generation procedure. In addition, comparable DAGs are

randomly produced so that typical parallel applications are

represented and a variety of different tasks are evaluated in

the experiments. Using Equation 4, valid periods are computed

while also generating a reasonable number of tasks for each

utilization step.

B. Experimental Results

The first set of experiments considers the feasibility of the

generated task sets when the system utilization varies between

1 and 8 on a multiprocessor system with m = 8. Figure 2

shows the results for implicit and constrained deadline task

sets. In Figure 2(a), we can see that the thread pool model

with a thread assignment according to Equation 1 is not

able to achieve good feasibility results compared to the other

approaches. This is caused by the low number of threads of

low priority tasks which prolongs the computation time of the

task and, in conjunction with the interference by other tasks,

leads to missed deadlines already with low utilizations. An-

other significant difference can be observed when comparing

global DM and EDF scheduling, where the latter shows great

results and is able to correctly schedule few task sets having a

system utilization of 100%. In contrast to that, semi-federated

scheduling as well as the thread pool model with improved

thread assignment perform almost equally, however, not as

well as GlobalEDF.Classic. Looking at the constrained

deadline results in Figure 2(b), we can easily observe the huge

drop of success rate for the semi-federated scheduler. This

can easily be explained by regarding the processor assignment

function in Equation 3: For smaller deadlines, the number of

processors ni becomes larger, yielding an infeasible schedule

when the tasks require more processors than available. Even

though the thread assignment strategy proposed in this work

uses a similar procedure, a feasible schedule might still be

found due to the global scheduling mechanism, even if there

are more threads than processors in the system. Apart from

that, the results are as expected and all scheduling algorithms

suffer more or less equally from the constrained deadline

setup, leading to a earlier drop of the success rate.

Figure 3 shows the second set of experiments where the

average number of preemptions per task set is shown, again for

implicit and constrained deadline task sets. Both figures clearly

show the downsides of global scheduling without the use of

thread pools. Due to the high parallelism and the resulting

processor contention, the number of preemptions is immensely

high. We can also see that semi-federated scheduling also

suffers from a lot of preemptions. These preemptions are

essentially caused by the runtime scheduler of the container

tasks which execute small portions of the subtasks on the

shared processors. Furthermore, both figures show a drop

of preemptions for semi-federated scheduling. These drops

happen for two reasons: First, the tasks can no longer be

correctly allocated to the processors. This leads to unfeasible

task sets, which are also included in the graph even though

no preemptions are accounted for in these cases. Second, for

higher utilizations the number of light tasks (Wi

Di
≤ 1) that

execute for rather long durations on the shared processors

decreases. In addition, more fractional parts of heavy tasks

are executed on the shared processors. In contrast to the light

tasks, these fractional parts are rarely preempted. Another

finding can be seen when comparing the implicit with the

constrained results. In the case of the thread pool model, the

number of preemptions rises, whereas the average number of

preemptions in the classical global scheduling model remains

equal. Again, this can be explained with the thread assignment

strategies: For smaller deadlines, more threads are assigned to

tasks according to Equations 1 and 2, and due to the higher

thread count in the system, more preemptions occur in the

execution process.

Finally, our last set of experiments shown in Figure 4

shows the response time distributions of a single task set.

The box plots depicting the response times as a fraction of

the task period can be interpreted as follows: The whiskers

illustrate the 99th percentile and all outliers are depicted as

x, the median is shown in orange and the values at 1.0
indicate the failed deadlines. For the global FP scheduling

algorithms shown in Figures 4(a) - 4(b), we can immediately

see the highest priority tasks which are never preempted and

therefore suffer no interference at all. In the thread pool model,

those tasks effectively execute on dedicated processors and

therefore, the response time does not vary. In contrast, lower

priority tasks have to contend for the free processors and thus,

suffer from interference which is especially prevalent in the

classical model shown in Figure 4(c) where already the second

highest priority task has to make way for the highest priority

task at some point in time.

In Figures 4(d) and 4(e), the graphs show wider response

time distributions which we would expect from the dynamic

priority assignments of EDF scheduling. Figure 4(e) repro-

duces the results of the schedulability evaluations and shows

only very little deadline misses for all tasks even for a system

utilization of 100%. When comparing DM with EDF in the

thread pool model, the fixed-priority algorithm misses more

deadlines (note that the number cannot be completely inferred

from the figures) but the deadline misses are limited to the

lowest priority tasks, whereas EDF scheduling misses most

deadlines on tasks with high relative deadlines.

Finally, the plots of semi-federated scheduling shown in

Figure 4(f) eminently illustrate the processor allocation: Five

heavy tasks run mostly on allocated processors and thus,

0.2 0.4 0.6 0.8 1.0
Normalized Utilization [Utot/m]

0

20

40

60

80

100

Fe
as

ib
le

 Ta
sk

 S
et

s [
%

]

GlobalDM.TP
GlobalEDF.TP
GlobalDM.Classic
GlobalEDF.Classic
GlobalDM.ITP
SemiFederated.Partitioned

(a) Implicit deadlines.

0.2 0.4 0.6 0.8 1.0
Normalized Utilization [Utot/m]

0

20

40

60

80

100

Fe
as

ib
le

 Ta
sk

 S
et

s [
%

]

GlobalDM.TP
GlobalEDF.TP
GlobalDM.Classic
GlobalEDF.Classic
GlobalDM.ITP
SemiFederated.Partitioned

(b) Constrained deadlines.

Fig. 2. Feasibility of task sets with m = 8.

0.2 0.4 0.6 0.8 1.0
Normalized Utilization [Utot/m]

0

5000

10000

15000

20000

25000

Pr
ee

m
pt

io
ns

GlobalDM.TP
GlobalEDF.TP
GlobalDM.Classic
GlobalEDF.Classic
GlobalDM.ITP
SemiFederated.Partitioned

(a) Implicit deadlines.

0.2 0.4 0.6 0.8 1.0
Normalized Utilization [Utot/m]

0

5000

10000

15000

20000

25000

Pr
ee

m
pt

io
ns

GlobalDM.TP
GlobalEDF.TP
GlobalDM.Classic
GlobalEDF.Classic
GlobalDM.ITP
SemiFederated.Partitioned

(b) Constrained deadlines.

Fig. 3. Average number of preemptions per task set with m = 8.

execute without much interference. Those five tasks are there-

fore able to meet most of their deadlines, whereas the two

light tasks are constantly preempted by the early deadline

fractional parts of the heavy tasks and therefore, miss all of

their deadlines. Note that the heavy tasks all have a very high

ratio of response time to task period, e.g. 0.92 for Task

6. This results from the processor allocation mechanism in

Equation 3, where each task is assigned as little processors

as possible, thus, prolonging the response time as much as

possible.

We did not include the response time distribution plots for

constrained deadline task sets because they do not provide new

relevant insight about the investigated scheduling algorithms.

VI. DISCUSSION

When it comes to the implementation details the classic

global scheduling algorithm with fixed priorities should be the

first choice due to its simplicity. However, different metrics,

e.g. response times, criticality and runtime behavior amongst

others, have to be considered as well when the feasibility of

the system has to be guaranteed. While classical global EDF

scheduling performs best in the evaluations of the acceptance

ratio, other effects have to be taken into account when choos-

ing a scheduler for real embedded systems. Our experiments

have shown that global scheduling algorithms are suboptimal

for fine-grained parallel applications due to their high thread

counts which leads to a large number of preemptions and

presumably to significant scheduling overhead when executed

on real hardware. Also semi-federated scheduling, which to

the best of our knowledge has one of the best performing

schedulability analysis [12], [14] in the current state-of-the-

art, suffers from huge amounts of preemptions on the shared

processors that execute the fractional parts of the high density

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

0.6

0.7

0.8

0.9

1.0

Re
sp

on
se

 ti
m

e
as

 fr
ac

tio
n

of
 ta

sk
 p

er
io

d

(a) GlobalDM.TP

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
sp

on
se

 ti
m

e
as

 fr
ac

tio
n

of
 ta

sk
 p

er
io

d

(b) GlobalDM.ITP

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
sp

on
se

 ti
m

e
as

 fr
ac

tio
n

of
 ta

sk
 p

er
io

d

(c) GlobalDM.Classic

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

0.6

0.7

0.8

0.9

1.0

Re
sp

on
se

 ti
m

e
as

 fr
ac

tio
n

of
 ta

sk
 p

er
io

d

(d) GlobalEDF.TP

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
sp

on
se

 ti
m

e
as

 fr
ac

tio
n

of
 ta

sk
 p

er
io

d

(e) GlobalEDF.Classic

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

0.92

0.94

0.96

0.98

1.00

Re
sp

on
se

 ti
m

e
as

 fr
ac

tio
n

of
 ta

sk
 p

er
io

d

(f) SemiFederated.Partitioned

Fig. 4. Evaluation of single task set with utilization Utot = 8

tasks.

On this matter, the thread pool task model model offers

the possibility of reducing the number of threads in the

system and the experiments demonstrate the desired effect:

The number of preemptions is drastically reduced compared

to the classical variant, especially in the implicit deadline

experiments. Another advantage of the thread pool model is

that it works in conjunction with global schedulers. For this

reason, it is possible to combine the classic DAG task model

and the thread pool model in the same system: the classic task

model is used for applications with low rates of parallelism

while the task pool model is employed for large-scale parallel

applications. However, better thread assignment strategies have

to be derived in order to combine the classic and thread pool

model in a system with global EDF scheduling.

While schedulability and preemptions are relevant metrics

to consider, the criticality of the tasks has sometimes to be

taken into account. Looking at the response time distributions

of Figure 4, global EDF scheduling (on both, the classical

and thread pool model) might not be a suitable candidate for

this matter as priorities are computed dynamically which leads

to widely varying response times and deadline misses might

therefore occur on most tasks. Semi-federated scheduling

favors heavy task whereas the light tasks suffer from lots

of preemptions and as a result, miss a lot of deadlines. To

this end, the fixed-priority assignment algorithms are the best

choice when the consideration of the criticality of tasks is

necessary.

A short summary of our findings is presented in Table I

where the feasibility, number of preemptions and criticality are

evaluated for the different investigated scheduling algorithms.

TABLE I
SUMMARY OF RESULTS (WORST: −− & BEST: ++).

Algorithm Feasibility Preemptions Criticality
Implicit deadlines

GDM.TP −− ++ ++
GDM.ITP + + ++
GDM.Classic − −− ++
GEDF.TP −− ++ −−
GEDF.Classic ++ −− −−
SF.Partitioned + − −

Constrained deadlines
GDM.TP −− ++ ++
GDM.ITP + − ++
GDM.Classic + −− ++
GEDF.TP −− ++ −−
GEDF.Classic ++ −− −−
SF.Partitioned −− −− −

VII. CONCLUSION

In this paper, we presented the evaluations of scheduling al-

gorithms for the classic DAG task model using simulations. In

the evaluations, we generated random task sets and measured

their performance according to their feasibility, number of

preemptions and response time distributions. We furthermore

discussed our findings of the evaluations to help with future

implementations of real-time systems that need to correctly

schedule fine-grained parallel applications.

We showed that global EDF scheduling of the classical

DAG task model yields great results in the feasibility analysis,

however, may not be a suitable fit for real systems due to

the large number of preemptions. For this reason, we suggest

the use of the thread pool task model for large-scale parallel

applications. In the thread pool task model, each task has

a limited maximum parallelism adjustable by the number of

threads assigned to each task individually. Both task models

can be easily used concurrently in the same system which

allows to exploit the benefits of both models.

ACKNOWLEDGMENTS

The research leading to these results has received fund-

ing from the Federal Ministry for Education and Research

(BMBF) under Grant 01IS18047D in the context of the

ITEA3 EU-Project PANORAMA as well as from the Center

Digitization.Bavaria under Grant 16-1541.

REFERENCES

[1] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Döbel, and H. Härtig,
“Response-Time Analysis of Parallel Fork-Join Workloads with Real-
Time Constraints,” in 25th Euromicro Conference on Real-Time Systems,
Jul 2013.

[2] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling Parallel Real-
Time Tasks on Multi-core Processors,” in 31st IEEE Real-Time Systems

Symposium, Nov 2010.
[3] F. Fauberteau, S. Midonnet, and M. Qamhieh, “Partitioned scheduling

of parallel real-time tasks on multiprocessor systems,” ACM SIGBED

Review, vol. 8, no. 3, p. 28–31, Sep 2011.
[4] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-Time

Analysis of Synchronous Parallel Tasks in Multiprocessor Systems,”
in Proceedings of the 22nd International Conference on Real-Time

Networks and Systems, 2014.
[5] H. S. Chwa, J. Lee, K. Phan, A. Easwaran, and I. Shin, “Global EDF

Schedulability Analysis for Synchronous Parallel Tasks on Multicore
Platforms,” in 25th Euromicro Conference on Real-Time Systems, Jul
2013.

[6] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-Time Analysis of Conditional DAG Tasks in
Multiprocessor Systems,” in 27th Euromicro Conference on Real-Time

Systems, Jul 2015, p. 211–221.
[7] J. Fonseca, G. Nelissen, and V. Nélis, “Improved Response Time Analy-

sis of Sporadic DAG Tasks for Global FP Scheduling,” in Proceedings of

the 25th International Conference on Real-Time Networks and Systems,
2017.

[8] A. Parri, A. Biondi, and M. Marinoni, “Response time analysis for
G-EDF and G-DM scheduling of sporadic DAG-tasks with arbitrary
deadline,” in Proceedings of the 23rd International Conference on Real

Time and Networks Systems, 2015.
[9] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-

bility analysis in the sporadic dag task model,” in 2013 25th Euromicro

Conference on Real-Time Systems, Jul 2013, p. 225–233.
[10] S. Baruah, “Improved multiprocessor global schedulability analysis of

sporadic dag task systems,” in 2014 26th Euromicro Conference on Real-

Time Systems, Jul 2014, p. 97–105.
[11] D. Casini, A. Biondi, and G. Buttazzo, “Analyzing Parallel Real-Time

Tasks Implemented with Thread Pools,” in Proceedings of the 56th

Annual Design Automation Conference, Jun 2019.
[12] M. Schmid and J. Mottok, “Response Time Analysis of Parallel Real-

Time DAG Tasks Scheduled by Thread Pools,” in Proceedings of the

29th International Conference on Real-Time Networks and Systems.
Association for Computing Machinery, 2021.

[13] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of Federated and Global Scheduling for Parallel Real-Time Tasks,” in
2014 26th Euromicro Conference on Real-Time Systems. IEEE, Jul
2014.

[14] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-Federated Scheduling of
Parallel Real-Time Tasks on Multiprocessors,” in 2017 IEEE Real-Time

Systems Symposium, Dec 2017.
[15] J. Li, K. Agrawal, C. Lu, and C. Gill, “Analysis of global edf for parallel

tasks,” in 2013 25th Euromicro Conference on Real-Time Systems, Jul
2013, p. 3–13.

[16] J. Sun, N. Guan, X. Jiang, S. Chang, Z. Guo, Q. Deng, and W. Yi, “A
capacity augmentation bound for real-time constrained-deadline parallel
tasks under gedf,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 37, no. 11, p. 2200–2211, Nov
2018.

[17] M. Qamhieh and S. Midonnet, “An experimental analysis of dag schedul-
ing methods in hard real-time multiprocessor systems,” in Proceedings of

the 2014 Conference on Research in Adaptive and Convergent Systems,
ser. RACS ’14. Association for Computing Machinery, Oct 2014, p.
284–290.

[18] ——, “Simulation-based evaluations of dag scheduling in hard real-time
multiprocessor systems,” ACM SIGAPP Applied Computing Review,
vol. 14, no. 4, p. 27–39, Jan 2015.

[19] E. Bini and G. C. Buttazzo, “Measuring the performance of schedu-
lability tests,” Real-Time Systems, vol. 30, no. 1–2, p. 129–154, May
2005.

[20] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. Gill, “Parallel
real-time scheduling of dags,” IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 12, p. 3242–3252, Dec 2014.
[21] P. Erdös and A. Renyi, “On Random Graphs I.” 1959.

SytHIL: A System Level Hardware-in-the-Loop Framework for FPGA,
SystemC and QEMU-based Virtual Platforms

A RISC-V example using AWS cloud servers

Lukas Jünger ∗, Tobias Röhmel †, Mark Burton †, and Rainer Leupers ∗,
∗RWTH Aachen University, {juenger, leupers}@ice.rwth-aachen.de
†GreenSocs SAS, {tobias.roehmel, mark.burton}@greensocs.com

Index Terms—ESL, SystemC TLM, Virtual Platforms, FPGA,
Simulation, Emulation, QEMU, Hardware-in-the-loop, HIL

Abstract—Using FPGAs to accelerate Virtual Platforms (VPs)
has bent the rule within simulation community that you cannot
have both accuracy and speed. Having the ability to run a VP
at considerable speed, and being sure that the critical IP in
question is being emulated totally accurately opens up the scope
of functional verification to include the full software stack. Only
hitherto this has typically been limited to very specialized and
expensive emulators that are often difficult to scale. Being able to
make use of this technology in a fashion conducive to continuous
integration and test would be a game changer in many embedded
systems groups.

Recently this has become more possible, due to several
developments: First, Amazon has made available their FPGA-
enabled cloud instances. They are not the only ones to go this
route, and using FPGA cards within an in-house server farm is
also becoming feasible. Second, the technology needed to make
use of these devices within the context of standard simulation
frameworks is now better understood.

In this work an activity in this domain is presented: the
SytHIL framework. Using SytHIL RTL descriptions emulated
on FPGAs, SystemC TLM models and QEMU models can be
combined into one unified simulation. This allows to accurately
emulate hardware IPs such as processors or accelerators on the
FPGA while other system components are executed at rapid speed
as simulation models. Through the SystemC layer, the SytHIL
simulation can also be connected to the physical world or other
simulated environments. In our case study, we demonstrate the
capabilities of SytHIL by emulating different RISC-V processors
on Amazon FPGA-enabled cloud instances in combination with
SystemC TLM and QEMU models via which the simulation is
connected to the host network and thus to the internet.

I. INTRODUCTION

Over the past decades, the complexity of HW/SW systems

has been steadily increasing. Also, embedded systems have

become ubiquitous in our every day life in many application.

To verify the correct functionality of everything from planes to

disc-drives early in the design cycle, full system simulators,

so called Virtual Platforms (VPs), are the de facto standard

tool.

While VPs are mainly used for functional software ver-

ification, the Register Transfer Level (RTL) description of

the components is usually verified using either RTL simula-

tion within complex test benches, Field Programmable Gate

Array (FPGA) emulation using special hardware or FPGA

prototyping. The advantage of RTL simulation is that it is,

by construction, entirely faithful to the design, not only in

Fig. 1. Overview of the SytHIL framework.

functionality but in measured performance. However, typical

RTL simulators are many orders of magnitude slower than is

required for typical software development or reasonable func-

tional verification. Emulation using special hardware or FPGA

prototyping bridges this gap by enabling the RTL description

to be executed at near real-time speeds. While this seems to be

an ideal solution, there are two main problems: The availability

of the RTL description itself early in the design cycle, and

the availability of the FPGA hardware on which to execute

the RTL. To this end, standard VP modeling techniques

are typically deployed using languages such as SystemC to

implement a model of the proposed design, sufficient for the

needs of functional verification. But again, this solution is not

without its difficulties. Models are often complex to construct,

or may not run as fast as the functional verification engineers

would like. Hence, often a hybrid approach is preferred, re-

using elements of available RTL designs while also using

some standard simulation models of components. The degree

of flexibility with which different model components can be

used in such an environment is critical, but equally important

is the availability of the FPGA hardware that will be used.

This work aims to unite the software and hardware testing

strategies into a hybrid approach. It uses the IEEE standard

language for VPs: SystemC TLM 2.0, the ubiquitous open-

source hypervisor/emulator QEMU [17], and FPGAs. Specif-

ically, and critically, the FPGAs used are available in the

cloud using the Amazon Web Services (AWS). This means

Paper Goal Emulation Simulation type Synchronization Flow SCE-MI

SytHIL Func. hardware & software verification FPGA SytemC Transaction only both No
[1] Hardware verification Emulator C-Program Clock control sw→hw No
[2] Func. co-verification FPGA C-Program / ISS Transaction only sw→hw No
[3] Func. hardware & software verification FPGA SytemC Cycle accurate hw→sw No
[4] Hardware verification FPGA C-Program Transaction only sw→hw No
[5] Func. hardware verification FPGA C-Program / ISS Transaction only sw→hw Yes
[6] Mixed-signal hardware verification FPGA Any HLA Clock control both No
[7] Hardware verification HDL simulation C++ Program Transaction only sw→hw No
[8] Hardware verification FPGA C-Program Transaction only sw→hw No
[9] Hardware verification FPGA SytemC Clock control sw→hw Yes
[10] Algorithm verification co-design FPGA C model/ISS Transaction only sw→hw No
[11] Co-design HDL simulation ISS Clock control both No
[12] Hardware & Software verification FPGA C/C++ code Clock control sw→hw No
[13] Functional verification phy. hardware C-Code Transaction only sw→hw No
[14] Simulation speed up FPGA Simple Scalar Transaction only sw→hw No
[15] Hardware verification FPGA C-Program Transaction only sw→hw No
[16] Hardware & Software verification FPGA C++ Program Clock control hw→sw No

Fig. 2. SytHIL comparison with related work.

that the methodology can be deployed at low cost, and scaled

to cover the needs of large teams without the need to buy

dedicated hardware. The integrated methodology that has been

developed in this work, which allows model components from

each of these three environments to work together, will be

referred to as the System Level Hardware-in-the-Loop (SytHIL)

framework.

The diagram in Fig. I aims to give an overview of the

technology. At the top, a VP is shown consisting of differ-

ent components, such as a CPU, a video card, an Ethernet

MAC, memory and an UART. With SytHIL this VP can be

partitioned into parts for execution inside the QEMU domain,

the SystemC domain or the FPGA domain. The components

are mapped onto these supports. Also, both the SystemC and

FPGA environment themselves are hosted within SystemC.

The FPGA environment is represented at the edge of the

SystemC environment, as there are certain aspects of the

FPGA which are not handled within SystemC, and physically

the FPGA allows to interface to the real world. The diagram

also shows a memory element that is shared between SystemC

and the FPGA domain, the extent to which this is implemented

will be examined further in this paper, as it is a critical feature

which improves simulation speed. Finally, SystemC provides

a view of the world to the simulation environment as SystemC

is in control of the notion of time, and inputs/outputs to and

from the VP. The purpose of the SytHIL framework is to

enable all of this partitioning to be carried out as simply as

possible, while all the necessary transactors and adapters are

deployed under the hood within the framework.

II. RELATED WORK

Functional hardware-software-co-verification was first pro-

posed in 1998 in [13]. In that paper the emphasis is put on

running software in the physical target environment. To do

that, a functional software simulator is augmented with an

FPGA that can interact with physical devices. The simulator

can run target software and the interactions with the outside

world are handled by the FPGA by toggling the respective

pins. The exact mechanism that allows the transfer of data

from the software simulation to the hardware simulation is the

core technology in all of the hardware-software-co-verification

approaches and will be categorized in the following. Shortly

after the first paper, [7] introduced a transaction based scheme

which increases abstraction by only keeping track of logical

transaction information, e.g. address and data to be transferred.

Compared to the older approach, where every logical level of

the physical bus had to be accounted for, the new approach

can increase throughput significantly. [7] also shifted the focus

from functional verification to hardware verification. This

means that the C simulation was used to write an abstract

test bench that would have previously been written in an

Hardware Description Language (HDL). This allowed greater

productivity for the engineers and re-usability was increased

since the test bench could be used for both a software and

an RTL model of the design. Since then most research effort

has been focused on the transaction based approach because

of the increased simulation performance. Several papers im-

proved the general mechanism in various ways like improved

abstraction [1], addition of mixed-signal simulations [6] or

exploration of the communication architecture [3] [9]. All

these approaches rely on clock cycle accurate synchronization

between the simulation and the FPGA which restricts the

overall simulation performance.

A popular approach to increase simulation performance is

to relax the timing synchronization between the software and

the hardware simulation. A simple way to implement this idea

is to omit explicit alignment of timing information and only

rely on stalling while one part of the simulation depends on

the other. To illustrate this concept, imagine a VP with an

Instruction Set Simulator (ISS) executing target software and

an FPGA attached in some way. Assume the FPGA contains

the RTL description of a peripheral that will at some point

be accessed by the target software. From the point of view

of the target software it will just access a memory mapped

register. At this point the software simulation will be stalled

until the interaction with the FPGA is completed. The ISS will

get the result of the memory access as if no time had passed.

The gain in simulation performance lies in the fact that while

the FPGA is calculating the result of the memory access it is

not synchronized with the software simulation. This approach

lets both simulation run at full speed and only stall when they

interact. This approach has been utilized often in literature (

[2], [4], [5], [7], [8], [10], [14], [15]).

Another important distinction in this space is whether or

not the design can handle transactions that are initiated by the

hardware simulation. For now only the case where data bus

masters or bus initiators are in the software simulation was

considered. This is a considerable disadvantage if peripherals

that have a Direct Memory Access (DMA) port or even

whole CPUs are to be verified. The concept of having a

device on the FPGA that can write data back through a

DMA port has been explored in [12] and [11]. [12] describes

a mechanism that allows for data to be transferred in both

directions by synchronizing hardware and software on every

clock cycle. While this approach allows the desired DMA

transfer, it suffers from low simulation performance because

of the synchronization overhead. In [6] and [3] an entire CPU

was instantiated on the FPGA to verify the interplay between

target software and RTL design. [3] ran target software for a

NIOS 2 softcore in a custom scheduler environment and con-

nected SystemC to simulate other peripherals. Cycle accurate

synchronization is taken care of by the scheduler that runs

underneath the target software, which ensures accuracy but

incurs a performance penalty as mentioned previously. The

authors of [6] rely on the HLA/RTI standard to connect all

simulations which implement it. The FPGA is connected by

controlling the Design Under Test (DUT) with a debugging

subsystem and a software layer that implements the required

HLA/RTI interfaces. This approach is also cycle accurate. A

different angle is approached by [16], which puts emphasis

on CPU design and architecture exploration. In their paper

the RTL description of the CPU is transformed in a way

that allows fine grained control of the hardware simulation

while every module’s clock is decoupled. They also provide

software adapters that transfer the logic level of peripheral

outputs to their software simulation. There is also the Accelera

Standard Co-Emulation Modeling Interface (SCE-MI) which

standardizes a modeling interface that is supposed to enable

transactor models to be easily migrated from simulation to

emulation [18]. Few of the mentioned approaches implement

this standard.

With SytHIL we propose a framework that allows the

connection of all types of peripherals and CPUs in whichever

domain, hardware or software simulation, in a transaction

based and decoupled manner. Fig. 2 provides a table which

gives a comparison of our work and previous publications.

III. THE SYTHIL FRAMEWORK

Our framework consists of two major parts, first the QEMU

integration into SystemC and second the SystemC-FPGA

integration. The QEMU domain is handled using GreenSocs’s

Qbox [19]. This allows wrapping QEMU CPUs into Sys-

temC modules that have standard Transaction Level Modeling

(TLM) ports that connect to the rest of the system. It also

allows non-CPU QEMU devices to be wrapped and similarly

exposed as SystemC modules so that it is possible to reuse

all the devices that QEMU provides. For the FPGA-SystemC

integration Xilinx’s libsystemctlm-soc library was extended

[20]. There are two types of connections, one to transfer

SystemC initiator requests to the FPGA and the other to

transfer RTL initiator requests from the FPGA to SystemC.

The main difference between the two is in which domain

the transaction initiator lies. The basic structure of both

connections is similar, there is an RTL part, which is called

the RTL bridge, and a software module interacting with it.

The RTL bridge is connected to the user RTL design on the

FPGA and the SystemC module, that acts as a user space

driver for the RTL bridge, provides a TLM interface to it. In

principle, the RTL bridge acts as a mailbox that the initiator

side can write into and the target side will read out of, once

it is ready or as soon as all relevant information has arrived.

The RTL bridge also supports the forwarding of interrupts in

both directions.

Xilinx’s library supports the RTL design to be simulated

in software with Verilator or to run it on an FPGA that

is connected via Peripheral Component Interconnect Express

(PCIe) port. To also support different bus protocols in the

RTL design, such as AXI, ACE, and CHI, the software has to

account for protocol-specific parameters. The back-end and the

protocol-specific configuration are encapsulated in different

modules to increase abstraction. The same back-end is used

in both connection directions. An overview of the general

architecture can be seen in Fig. 3. Notice that the AWS shell is

specific to the AWS setup and facilitates the conversion from

PCIe to AXI. In non-AWS setups this block can be substituted

by Xilinx’s PCIe to AXI converter which does not pose any

issues since no other features of the AWS shell are being used.

protocol
specific

back-
end

SystemC
module

RTL
bridge

RTL
module

SystemC FPGA
AWS
shell

Fig. 3. FPGA to SystemC transaction state machine.

As an example the following paragraph will explain the

sequence of a transaction from a functional point of view. To

simplify the explanation details of the back-end interactions

are neglected. The steps involved in a SystemC to FPGA trans-

action are depicted in Fig. 4. Generally, the transaction starts

with a SystemC initiator that calls the b transport function.

The meta information of the transaction is programmed into

the memory mapped registers of the RTL bridge on the FPGA.

Once all information arrives, the RTL bridge carries out the

AXI transaction according to the configuration and makes the

result available in its registers. The software counterpart reads

the results, converts them to a TLM payload, and returns them

to the TLM initiator.

The FPGA to SystemC transaction works very similarly but

is initiated on the FPGA. When a transaction arrives at the RTL

wait for
transaction

write
registers

wait for
hardware

return
result

FPGA

AXI

RTL
bridge

Periph.

read
results

SystemC

TLMTLM
initiator

Fig. 4. SystemC to FPGA transaction state machine.

TLM

wait for
hardware

read
registers

do TLM
transaction

return
result

FPGA

RTL
bridge

AXI
Periph.

SystemC

TLM
target

Fig. 5. FPGA to SystemC transaction state machine.

bridge, it notifies the SystemC module. This modules reads

the transaction information from the RTL bridge registers and

carries out the respective TLM transaction. The results are

again written to the RTL bridge registers. This is shown in

Fig. 5.

To increase the throughput of the SystemC to FPGA con-

nection a mechanism that can optionally bypass all transaction

related modules was implemented. The idea is to give the

initiator module direct access to the FPGA through a memory

pointer that is mapped to the FPGA. All accesses to that

pointer result in AXI accesses on the FPGA. This pointer

is initialized by the back-end by interacting with an AWS

specific library and is then passed on to the initiator by using

SystemC’s Direct Memory Interface (DMI) mechanism. On

the FPGA, Xilinx AXI interconnects are used to create two

paths to the RTL peripheral. The first goes through the RTL

bridge as before, while the second one bypasses the RTL

bridge and directly connects to the target RTL module. A

graphical representation of this setup is shown in Fig. 6. Since

CPU FPGA-
Bridge

AWS
Shell

RTL
bridge

FPGASystemC

Periph

Direct Memory Interface (DMI)

Fig. 6. AWS DMI setup.

the RTL bridges are still in the memory space the RTL target

peripheral needs to be mapped in a special address range.

The driving software expects the RTL bridges to occupy the

first addresses up to 0x20 0000 which means the peripheral

address needs to be bigger than that.

IV. RESULTS

In this section, an overview of the experimental evaluation

results is presented. An AWS f1.2xlarge instance was used as

the simulation host for all benchmarks. An overview of its

technical specification is provided in Table I.

First the speed of data movement between the FPGA

and the SystemC framework was evaluated using different

methodologies to identify the performance bottlenecks and

boundaries. In the first experiment, a VP consisting of a RISC-

V QEMU instance, a SystemC UART model and a memory

is partitioned using our SytHIL framework. QEMU and the

SystemC UART model are executed on the simulation host,

while the memory is placed on the FPGA and connected

using SytHIL transactors. Linux is booted on the RISC-V

core running on QEMU. A benchmark program is executed in

the RISC-V Linux that reads and writes data to the memory

located in the FPGA.

Transfer throughput is measured against wall-clock time.

A second partitioning in which the memory is placed in the

SystemC domain instead of the FPGA is used for comparison.

Two different methodologies for the connection between the

host and the FPGA were evaluated. In the first, which is the

standard approach used by e.g. [20], data is transferred via a

system of letterboxes and interrupts using SystemC’s blocking

transport interface (b transport). Note that both read and write

operations require signaling from SystemC to the FPGA and

back. Even in the case of a write transaction, the return path

is used to indicate the completion and success or failure

of the operation. In the second approach, which has been

implemented in SytHIL, a bridge between the PCIe interface

and the AXI internal bus fabric on the FPGA is used. This is

implemented using the previously described DMI mechanism,

TABLE I
F1.2XLARGE INSTANCE SPECIFICATION.

CPU Intel Xeon E5-2686 v4 (8 vCPUs)
RAM 122 GB
OS CentOS 7
FPGA 1 Xilinx Virtex UltraScale+ VU9P
Price 1.65 USD/h

SystemC FPGA

TLM axi2tlm_hw_
bridge

TLM axi2tlm_hw_
bridge

TLMMemory

TLMUART

TLM axi2tlm_hw_
bridge

TLM

TLM
DWMAC

TLM tlm2axi-hw-
bridge

Rocket
Core

reset

RTL bridge

DRAM

AXIRTL bridge

RTL bridge

RTL bridge

AXI

AXI

Fig. 7. Platform with Rocket Core and DWMAC.

which is part of the SystemC TLM2.0 standard, and also

supported by the QEMU-based CPU model. The measured

values are summarized in Table II. While the initial ’NON

DMI’-based approach is slower than the standard SystemC

TLM2.0 ’b transport’ methodology, the DMI approach is 1

order of magnitude faster. The difference between the non-

DMI and DMI approaches is stark. This improvement in

bandwidth enables SytHIL to offer a more flexible distribution

of components between the FPGA and SystemC environment,

and it does so with no loss of simulation quality. However,

when executing in ’NON DMI’ mode, all accesses to memory

from the FPGA domain can be traced, while this is not

possible in ’DMI’ mode. In terms of the DMI approach, it

can be observed that writes to the FPGA memory are 4.4x
faster than reads. This is a property of the PCIe and DRAM

memory system itself. Even though the improvements are

considerable, a pure SystemC platform outperforms the FPGA

mechanism by a factor of 18-154 depending on the access type

as moving data to and from the FPGA incurs an unavoidable

overhead. One has to keep in mind that DMI is mostly used

for memory accesses while SytHIL can perform DMI accesses

to peripherals that update their state between transactions.

Next, the results of a more complex benchmarks are exam-

ined, specifically looking at the flexibility that the framework

gives to place CPUs on the FPGA. In this case Linux boot

time is used as a measure of the simulation performance. The

first case consists of a VP containing a Rocket core [21]

RISC-V CPU and a memory, both placed on the FPGA,

and an UART in the SystemC domain, all connected using

SytHIL transactors. In the second benchmark the Rocket core

TABLE II
BANDWIDTH BENCHMARK RESULTS

Configuration Result

QEMU & FPGA memory
NON DMI

67.1 kB/s (read/write perf.)

QEMU & FPGA memory
DMI

3.796 MB/s (Read perf.)
16.6 MB/s(Write perf.)

QEMU & SystemC
memory (b transport)

0.097 MB/s(Read perf.)
0.097 MB/s(Write perf.)

SystemC memory (DMI)
276.2 MB/s(Read perf.)
276.2 MB/s(Write perf.)

was replaced with the BOOM core [22] highlighting the

adaptability of the framework. In both cases Linux boot time

was measured. Results are shown in Table III, which indicates

the boot time for the BOOM core is marginally faster than that

of the Rocket core. These preliminary result of approximately

20 s compare favourably with those found by [16] who report

equivalent BOOM core boot times of 3.68 minutes. It has to

be taken into account that their FPGA platform (ZC706) can

only run an unmodified BOOM core at 50 MHz while the

AWS FPGA runs at 125 MHz.

TABLE III
LINUX BOOT BENCHMARK RESULTS

Configuration Result

RocketCore VP 19.0 s (Linux boot time)
BOOM core VP 19.14 s (Linux boot time)

To test the framework in a more complex context a network

benchmark was conducted. To make this possible a new

platform was built that has the Rocket core on the FPGA

and a Synopsys DWMAC model in SystemC. The platform

is shown in Fig. 7.

The other components like UART and memory are used

to interact with the platform and boot a Linux kernel that

has device drivers for the DWMAC. After setting up the TAP

interface that is used by the DWMAC model the simulation

can be started and networking can take place between the

host and the Linux running on the FPGA. iPerf3 was used to

measure the network throughput in both transaction directions.

The results are shown in Table IV. The throughput from the

simulation host to the platform amounted to 29.6 kB/s while

the other direction was measured at 9.69 kB/s.

TABLE IV
IPERF3 BENCHMARK RESULTS

Direction Result

Host to Platform 29.6 kB/s
Platform to Host 9.69 kB/s

V. CONCLUSION

In this work the SytHIL framework was presented. The

framework enables the integration of QEMU models, SystemC

models and RTL hardware descriptions into one unified VP.

Therefore, SytHIL simplifies the combined testing and verifi-

cation of both the target software and the target hardware RTL

descriptions. To instantiate the RTL descriptions FPGAs are

used, as they are faster than RTL simulators. To exhibit the

capabilities of our framework relevant use case, such as Linux

boot and data transfer via network, were demonstrated and

benchmarked. All measurements were carried out using AWS

FPGA cloud servers as simulation hosts, as they provide an

inexpensive, standardized platform that is both powerful and

easily scalable.

Overall, our results show good performance, but care must

be taken when designing the VP to ensure that the distribution

of components between the various supports is optimal and

reflects the use case. One aspect of this is moving data between

the FPGA and the host which incurs an overhead. We have

shown a significant improvement on data throughput, adopting

the SystemC DMI mechanism, which provides more flexibility

and performance.

Eventhough, the SytHIL framework is already in use indus-

trially we plan to extend it. In future work we will improve

the performance of the SytHIL framework by enabling DMI

access from the FPGA to the SystemC domain. In addition,

we will address timing synchronization between the three

simulation domains, as this is currently not handled by SytHIL

in an efficient fashion.

REFERENCES

[1] S. Hassoun, M. Kudlugi, D. Pryor, and C. Selvidge, “A transaction-based
unified architecture for simulation and emulation,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 13, pp. 278–287,
2 2005.

[2] X. Zhang, F. Hui, Q. Wang, and X. Shen, “Integrated iss and fpga soc
hw/sw co-verification environment design,” vol. 2, 2008, pp. 1071–1075.

[3] M. B. Ayed and M. Abid, “A fast hardware/software co-verification
method using a real hardware acceleration,” 2012.

[4] C. Q. Li, H. C. Huang, C. Y. Xiang, A. W. Ruan, and W. Tang, “A
novel methodology for hardware acceleration and emulation,” in 2011

International Symposium on Integrated Circuits, 2011, pp. 597–600.
[5] Y. B. Liao, P. Li, A. W. Ruan, Y. W. Wang, W. C. Li, and W. Li, “Hi-

erarchy communication channel in transaction-level hardware/software
co-emulation system.” Institute of Electrical and Electronics Engineers
Inc., 2008, pp. 94–99.

[9] Y.-I. Kim, K.-Y. Aim, H. Shim, W. Yang, Y.-S. Kwon, A. Ki, and C.-
M. Kyung, “Automatic generation of software/hardware co-emulation
interface for transaction-level communication,” in 2005 IEEE VLSI-TSA

International Symposium on VLSI Design, Automation and Test, 2005.

(VLSI-TSA-DAT)., 2005, pp. 196–199.

[6] M. G. Seok, T. G. Kim, and D. Park, “An hla-based formal co-simulation
approach for rapid prototyping of heterogeneous mixed-signal socs,”
IEICE Transactions on Fundamentals of Electronics, Communications

and Computer Sciences, vol. E100A, pp. 1374–1383, 7 2017.
[7] D. S. Brahme, S. Cox, J. Gallo, M. Glasser, W. Grundmann, C. N.

Ip, W. Paulsen, J. L. Pierce, J. Rose, D. Shea, and K. Whiting, “The
transaction-based verification methodology,” Cadence Berkeley Labs,
Tech. Rep., 2000.

[8] F. Borlenghi, D. Auras, E. M. Witte, T. Kempf, G. Ascheid, R. Leupers,
and H. Meyr, “An fpga-accelerated testbed for hardware component
development in mimo wireless communication systems,” in 2012 Inter-

national Conference on Embedded Computer Systems (SAMOS), 2012,
pp. 278–285.

[10] S. Lee, M.-K. Jung, I.-C. Park, and C.-M. Kyung, “isave: a behav-
ioral emulator for in-system algorithm verification,” in Proceedings of

Second IEEE Asia Pacific Conference on ASICs. AP-ASIC 2000 (Cat.

No.00EX434), 2000, pp. 303–306.
[11] H. Shim, S.-H. Lee, Y.-S. Woo, M.-K. Chung, J.-G. Lee, and C.-M.

Kyung, “Cycle-accurate verification of ahb-based rtl ip with transaction-
level system environment,” in 2006 International Symposium on VLSI

Design, Automation and Test. IEEE, 2006, pp. 1–4.
[12] Y. Nakamura, “Software verification for system on a chip using a c/c++

simulator and fpga emulator,” in 2006 International Symposium on VLSI

Design, Automation and Test, 2006, pp. 1–4.
[13] N. Kim, H. Choi, S. Lee, S. Lee, I.-C. Park, and C.-M. Kyung,

“Virtual chip: making functional models work on real target systems,” in
Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat.

No.98CH36175), 1998, pp. 170–173.
[14] J. Shen, T. Suh, H.-H. S. Lee, S.-L. Lu, and J. Shen,

“Initial observations of hardware/software co-simulation using
fpga in architecture research,” 2006. [Online]. Available:
https://www.researchgate.net/publication/228578868

[15] P. Schumacher, M. Mattavelli, A. Chirila-Rus, and R. Turney, “A virtual
socket framework for rapid emulation of video and multimedia designs,”
in 2005 IEEE International Conference on Multimedia and Expo, 2005,
pp. 872–875.

[16] D. Kim, A. Izraelevitz, C. Celio, H. Kim, B. Zimmer, Y. Lee,
J. Bachrach, and K. Asanovicc, “Strober: Fast and accurate sample-based
energy simulation for arbitrary rtl,” in 2016 ACM/IEEE 43rd Annual

International Symposium on Computer Architecture (ISCA), 2016, pp.
128–139.

[17] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX

annual technical conference, FREENIX Track, vol. 41. Califor-nia,
USA, 2005, p. 46.

[18] “Standard Co-Emulation Modeling Interface (SCE-MI) Reference Man-
ual Version 2.4,” 11 2016.

[19] G. Delbergue, M. Burton, F. Konrad, B. Le Gal, and C. Jego, “QBox:
an industrial solution for virtual platform simulation using QEMU and
SystemC TLM-2.0,” in 8th European Congress on Embedded Real

Time Software and Systems (ERTS 2016), TOULOUSE, France, Jan.
2016. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01292317

[20] E. Iglesias, “libsystemctlm-soc,” https://github.com/Xilinx/libsystemctlm-
soc, 2017.

[21] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.
[22] C. Celio, D. A. Patterson, and K. Asanovic, “The berkeley out-of-order

machine (boom): An industry-competitive, synthesizable, parameterized
risc-v processor,” EECS Department, University of California, Berkeley,

Tech. Rep. UCB/EECS-2015-167, 2015.

Session We.4.C

Network

Wednesday 1st June

17:00

–

Room Pastel

293

294

Checking validity of the min-plus

operations involved in the analysis of a

real-time embedded network

Marc Boyer1, Pierre Roux1,
and Hugo Daigmorte2

1 ONERA / DTIS – Université de Toulouse
F-31055 Toulouse – France

2 RealTime-at-Work
F-54600 Villers-lès-Nancy – France

Abstract. The network calculus theory is

widely used to check that a network satis-

fies its real-time requirements. Such check-
ing involves a lot of computations in the

min-plus dioid. This paper shows how such
computations can be formally checked us-

ing the Coq proof assistant in a realistic

industrial context.

1. Introduction

Network calculus is a theory widely used in in-
dustry to check that a real-time network (like AFDX
or TSN) provides guaranteed latency bounds to the
real-time data flow [7, 8, 15]. When these networks
are embedded in a critical system, where faults can
lead to severe damages or injuries, a very high level of
confidence on these bounds must be provided. Since
such bounds are commonly computed by a dedicated
tool [21], the correctness of the bounds depends both
on the correctness of the algorithms and the correct-
ness of their implementation.

The correctness of the algorithms is commonly
ensured by open publication and peer-reviewing while
the correctness of the implementation is mainly en-
sured by code review and tests. More confidence in
the implementation can be insured by developing sev-
eral pieces of software and comparing on the fly that
all programs give the same result. Nevertheless, such
approach can not detect an error in the algorithm
itself [11]. Using proof assistants, such as Coq or Is-
abelle/HOL, is a way to increase the confidence in
a software: one may prove the correctness of the
algorithms and derive an implementation from the
proof [13]. One may also use a skeptical approach,

where the proof assistant is not able to check an al-
gorithm or to compute a result, but still able to check
that a result is correct. Indeed, checking a solution
is commonly much easier that solving a problem (for
example, finding vs checking the roots of a polyno-
mial, the decomposition into prime factors, matrix
inversion,...). Of course, this approach can be used
only for software used at design: if there is a mistake
in the algorithm or a bug in the implementation, it
will only be detected at runtime, while a completely
proved approach will ensure that the software is con-
form to its specification. Nevertheless, the skeptical
approach often requires significantly less effort.

Network calculus is based on the min-plus dioid
theory [3], and analyzing a network involves a lot of
operations in this theory (like physics involves a lot
of matrix manipulations). In a recent work [17], this
skeptical approach has been applied to the min-plus
dioid of real functions. This paper shows how this
approach can be used in an industrial context.

2. Network calculus

Network calculus is a theory designed to compute
upper bounds on delay an memory usage in networks.
Data transiting through the network are called flows.
A flow is modeled by cumulative curves at each point
in the considered network, A : R+ → R

+ where A(t)
represents the cumulative amount of data observed in
the flow up to time t at a given point of the network.
Possible cumulative curves are specified by envelopes
called arrival functions. A flow A satisfies an arrival
function α when: ∀t, d ≥ 0 : A(t+ d) − A(t) ≤ α(d).
For instance, a periodic flow sending frames of size L
every T time unit admits as arrival curve νL,T : d 7→
L
⌈

d
T

⌉

, where ⌈·⌉ : R+ → N is the ceiling function.
All network elements are modeled by servers. A n-
server S transforms n input flows (A1, . . . , An) into
n output flows (D1, . . . , Dn), where all Ai and Di are
cumulative curves. The performance of these servers
is specified by service curves. A n-server S admits
a strict service curve β when, for all busy interval
(t, t + d], the aggregate output is at least β(d), i.e.,
∑n

i=1Di(t+ d)−Di(t) ≥ β(d).
Among others, a result of network calculus states

that, if a server S uses a FIFO policy, if it admits a
strict service curve β and each of its incoming flow

2 MARC BOYER, PIERRE ROUX, AND HUGO DAIGMORTE

Ai admits as arrival curve a function αi, then the
delay experienced by each flow in the server is upper
bounded by

hDev

(

n
∑

i=1

αi, β

)

(1)

with hDev(f, g) = sup
t≥0
{inf {d f(t) ≤ g(t+ d)}} .

(2)

Network calculus also uses other operators, like
the the min-plus convolution ∗ and deconvolution ⊘,
defined by: ∀f, g : R+ → R

+, ∀t ∈ R
+,

(f ∗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)} ,(3)

(f ⊘ g)(t) = sup
s≥0
{f(t+ s)− g(s)} .(4)

3. Related work

To perform actual min-plus computations, one
has to settle on a given class of real functions. Two
main classes of functions are used in network calcu-
lus: the set of concave or convex piecewise linear
functions, C[x]PL [18], and the, strictly larger, set
of ultimately pseudo-periodic piecewise linear func-
tions, commonly known as UPP [6]. The data struc-
ture and algorithms for the CPL class are so simple
that they, to our knowledge, have never been pub-
lished. Nevertheless, they cannot accurately model
packetized traffic, whereas the UPP class gives more
precise results at the expense of higher computation
times [7]. The algorithms of the operators on the
UPP class are given in [6].

An open source implementation of the operators
on the C[x]PL class can be found in the DISCO net-
work calculus tool [2]. An open source implementa-
tion of the UPP class has been developed [4] but is no
longer maintained to our knowledge. The Real-Time
Calculus toolbox (RTC) does performance analysis
of distributed real-time systems [19, 20]. Its ker-
nel implements Variability Characterization Curves
(VCC’s), a class very close to UPP. None of these
implementations has been formally proved correct.

The first work on the formal verification of net-
work calculus computation were presented in [14].
The aim was to verify that a tool was correctly us-
ing the network calculus theory. An Isabelle/HOL
library was developed, providing the main objects of
network calculus and the statement of the main the-
orems, but not their proofs. They were assumed to
be correct, since they have been established in the
literature for long. Then, the tool was extended to
provide not only a result, but also a proof on how
network calculus has been used to produce this re-
sult. Then, Isabelle/HOL was in charge of checking

the correctness of this proof. The result was taking
the form of an algebraic min-plus expression, yet to
be computed.

Another piece of work, presented in [16], con-
sists in proving, in Coq, the network calculus results
themselves: building the min-plus dioid of functions,
the main objects of network calculus and the main
theorems (statements and proofs).

The tool CertiCAN [12] is able to produce Coq
proofs for some real-time analyses of the CAN pro-
tocol. These analyses are not based on the network
calculus theory.

The PROSA library also provides proofs of cor-
rectness for the response time of real-time systems,
but focuses on scheduling tasks for processors [10].

4. Existing tools

4.1. RTaW-Pegase. RTaW-Pegase is a propri-
etary tool written in Java and developed by the com-
pany RealTime-at-Work that can provide network
analyses and optimization. It can support many tech-
nology types and networks such as: automotive, aero-
space and industrial Ethernet TSN, CAN (FD,XL),
LIN, Arinc as well as wireless networks for off-board
communication.

Its first functionality is to model a network, visu-
alize it and set configuration parameters: priorities,
offsets, routing, shapers, transmission schedule, pre-
emption,... The graphical interface allows to manip-
ulate the configurations as shown in Figure 1. In this
example, the network is made of 5 switches (in blue)
and 14 end systems (in orange) and one of the flows
is shown, between ”CAM1” and ”ECU1”.

In addition to timing-accurate simulation, RTaW-
Pegase can compute guaranteed upper bounds on mes-
sage delays using a state-of-the-art analysis in net-
work calculus.

RTaW-Pegase can also generate complete traces
of its analyses. These traces contain all the computa-
tions performed during the analysis in a format both
readable by a human and that can be interpreted by
an additional RTaW tool, the Network calculus in-
terpreter. Figure 2 shows a simplified example of
such a trace. This trace gives the calculations for
two periodic flows (Flow1, Flow2) crossing the first
link of a network, arbitrated with FIFO policy. The
assert expression at last line checks that the com-
puted value is not greater than the value 156/5 com-
puted by RTaW-Pegase.

Thereby, a network calculus expert can read this
trace and check that the mathematical operations
performed correspond to the result of the network
calculus theory. Using the calculation capability of
the interpreter, it can perform other computations,

CHECKING VALIDITY OF THE MIN-PLUS OPERATIONS INVOLVED IN THE ANALYSIS OF A REAL-TIME EMBEDDED NETWORK3

Figure 1. Example of visualization in RTaW-Pegase.

1#################################

2# Time uni t : microsecond
3# Frame s i z e un i t : b i t

4#################################

5# Input f l ows

6#################################
7# Flow1 en te r ing at Node1>port−P1
8 Flow1 := s t a i r (0 ,10000 ,1360)

9

10# Flow2 en te r ing at Node1>port−P1
11 Flow2 := s t a i r (0 ,5000 ,1760)
12

13#################################
14# EndSystem : Node1>port−P1
15#################################

16# Computations at p r i o r i t y l e v e l 0
17 cumA Node1 := zero

18

19# Flow1 in Node1 −> P1
20 cumA Node1 := cumA Node1 + Flow1

21

22# Flow2 in Node1 −> P1

23 cumA Node1 := cumA Node1 + Flow2
24

25# Common s e r v i c e at l e v e l 0
26 S Node1 := a f f i n e (100 , 0)

27

28# Common de lay

29 d Node1 := hDev(cumA Node1 , S Node1)

30

31 a s s e r t (d Node1 <= 156/5)

Figure 2. Example of a trace that
can be produced by RTaW-Pegase

get more values and also plot the functions. An on-
line version is available for non-commercial academic
use [1].

4.2. Minerve. Let’s look at the last assert on
Figure 2. To perform a formal proof of this result

within the Coq proof assistant, one needs to define
the three functions Flow1, Flow2 and S Node1, state
the property hDev (Flow1 + Flow2, S Node1) ≤ 156

5
and prove this property. Such a proof is given in
Figure 3.

First, one loads our tool Minerve [17] (for MIN-
plus ExpRession VErification) providing a formaliza-
tion of the UPP class of functions and an automatic
proof tactic to check min-plus computations on those
functions. The next line simply instructs Coq to in-
terpret all subsequent numeric constants as arbitrary
precision rationals.

Then one needs to define the considered UPP
functions. The first function Flow1 is, as seen on line
8 of Figure 2, a stair function that is incremented by
1360 every 10000, starting from 0. The second func-
tion Flow2 is also a stair function, as seen on line 11
of Figure 2, whereas the third function S Node1 is,
still according to Figure 2 (line 26), a linear function
of slope 100. These functions are encoded by their
period sequpp_d, increment sequpp_c and an initial
segment sequpp_T (to allow a specific initial behavior
before the regular periodic one) and a list of linear
segments following the pattern (x, (y, (ρ, σ))) where
(x, y) are the coordinates of the leftmost point of the
segment, ρ is its slope and σ its limit on the right of x
(discontinuities are allowed on the right of x, as seen
for instance on Flow1 where the function is y = 0 at
x = 0 and immediately jumps to σ = 1360 just af-
ter 0). Not all combinations of parameters are valid.
For instance the period must be positive. Such valid-
ity of the parameters is checked by the F_of_sequpp

function.
Finally, the property to prove is expressed after

the Goal keyword and automatically proved by our

4 MARC BOYER, PIERRE ROUX, AND HUGO DAIGMORTE

1 Require Import minerve.tactic.
2 Local Open Scope bigQ.
3

4 Definition Flow1_js : @seqjs bigQ := [::
5 (0, (0%:E, (0, 1360%:E)));
6 (5000, (1360%:E, (0, 1360%:E)));
7 (10000, (1360%:E, (0, 2720%:E)))].
8 Definition Flow1 := F_of_sequpp {|
9 sequpp_T := 5000;

10 sequpp_d := 10000;
11 sequpp_c := 1360;
12 sequpp_js := Flow1_js

13 |}.
14

15 Definition Flow2_js : @seqjs bigQ := [::
16 (0, (0%:E, (0, 1760%:E)));
17 (2500, (1760%:E, (0, 1760%:E)));
18 (5000, (1760%:E, (0, 3520%:E)))].
19 Definition Flow2 := F_of_sequpp {|
20 sequpp_T := 2500;
21 sequpp_d := 5000;
22 sequpp_c := 1760;
23 sequpp_js := Flow2_js

24 |}.
25

26 Definition S_Node1_js : @seqjs bigQ := [::
27 (0, (0%:E, (100, 0%:E)))].
28 Definition S_Node1 := F_of_sequpp {|
29 sequpp_T := 0;
30 sequpp_d := 1;
31 sequpp_c := 100;
32 sequpp_js := S_Node1_js

33 |}.
34

35 Goal hDev_bounded (Flow1 + Flow2) S_Node1 (156/5).
36 Proof. nccoq. Qed.

Figure 3. Example of Coq proof

nccoq tactic [17]. This tactic is a reflexive tactic,
which means it makes use of Coq efficient computa-
tion capabilities to perform proofs. This is key in
getting a very pervasive tactic being entirely devel-
oped in Coq. Of course, the proofs automatically per-
formed by the tactic offer the same strong correctness
guarantees as any other handmade Coq proof.

It is worth noting the application of the skeptical
approach here, the horizontal deviation 156

5 is com-
puted by RTaW-Pegase but only checked with Coq.

4.3. Reading the Coq Specification. To fully
trust a Coq proof, one must inspect its statement in
order to agree that the proof is indeed proving what
the user is expecting. Indeed, whereas Coq can auto-
matically check proofs, it cannot read the user mind
to ensure the formal statement match its understand-
ing by the user.

So lets inspect our freshly proved theorem. If one
types

1Unset Printing Notations.
2Check hDev_bounded (Flow1 + Flow2) S_Node1 (156/5).
3Set Printing Notations.

Coq reprints the statement with all notations ex-
panded

1 UPP_PA_refinement.hDev_bounded (F_plus Flow1

2 Flow2) S_Node1 (bigQ2rat (BigQ.div (BigQ.Qz
3 (BigZ.Pos (BigN.N0 156))) (BigQ.Qz
4 (BigZ.Pos (BigN.N0 5)))))

in particular, one can see that + was a notation for
F plus. One can for instance inspect the latter by
asking Coq to print its definition

1 Print F_plus.

and Coq answers

1 F_plus = fun f g : F ⇒ f \+ g

By deactivating printing of notations again, one could
see that \+ is the pointwise addition of functions.

Proceeding with such investigations, one can check
that hDev_bounded indeed states that the horizontal
deviation is bounded and that the definitions of func-
tions introduced with F_of_sequpp perfectly match
what one is expecting.

Digging further, one could even look at the def-
inition of the field of real numbers R given by the
library we are using.

5. Checking RTaW-Pegase traces with

Minerve

The RTaW-Pegase tool allows to compute upper
bounds on the delays on the flows crossing a net-
work. As presented in Section 4.1, the engineer enters
into the tool the network description, the flow char-
acteristics, and the tool can apply network calculus
to check that the system satisfies its latency require-
ments. The correctness of these bounds depends on
a chain of responsibilities. The first link of the chain
is the correctness of the network calculus theorems
(for example, the result presented in (1)). In case
of mistake in the proof, the confidence in the result
collapses. Such issue have been addressed in [16]. A
second link is the correct application of network cal-
culus results by the tool: if the tool applies a result
whose hypotheses are not satisfied by the system, the
confidence also collapses. The trace generated by the
tool, illustrated in Figure 2, has been designed to al-
low proofreading by a human expert. A formal proof
can also be generated [14]. The last link is the exact-
ness of the computation: the basic operations (sum,

CHECKING VALIDITY OF THE MIN-PLUS OPERATIONS INVOLVED IN THE ANALYSIS OF A REAL-TIME EMBEDDED NETWORK5

convolution, deconvolution, hDev...) are too complex
to be checked by humans. This is the aim of Minerve,
presented in Section 4.2.

The approach presented in the current work boils
down to checking that all computations done in a
given RTaW-Pegase trace have provided a sound re-
sult, i.e., verifying that the transformations of expres-
sions into values have been performed correctly.

But the traces generated by RTaW-Pegase have
been designed to be read by a network calculus ex-
pert, to increase confidence in the operations, whereas
Minerve has been designed for proof simplicity.

To make both tools run together, we had to solve
a few issues:

(1) Function syntax: Both tools do not have the
same syntax to represent functions. In par-
ticular, the domain of the non-periodic part
(the initial prefix) of a function in Minerve is
always a right open interval [0, T), whereas
it can be open [0, T) or closed [0, T] in the
syntax of RTaW-Pegase.

(2) Single assignment: The RTaW-Pegase trace
is a script in an imperative programming
language, in which identifiers are variables,
whose value can be updated along the script
lines. On the opposite, Coq is designed to
state mathematical definitions, where a given
identifier represents the same value all along
the proof. There are several ways to solve
this problem, and we have basically chosen
to resort on a single static assignment trans-
formation.

(3) Performance tricks: While going from hand-
made examples, with dozens of operations,
to realistic examples with thousands of op-
erations, we faced some performance prob-
lems, not related to the core of the algo-
rithms but related to some details in imple-
mentations.

5.1. Function syntax. One problems is that,
although both tools represent functions as sequences
of segments and spots, RTaW-Pegase’s input language
accepts segments that can be open or closed on both
ends, whereas NCCoq always considers a sequence of
spots and open segments.

Consider a function f : R+ → R
+, defined by

(5) f(t) =

{

1 if t ≤ 2,

t if t > 2.

In RTaW-Pegase, such a function can be repre-
sented as a sequence of two segments, the first one go-
ing from point (0,0) to (2,0) with slope 0 (printed as
[(0,0)0(2,0)]) and a second one going from (2,2),

excluded, up to infinity with slope 1 (then printed
as](2,2)1(+Inf,+Inf)[). In Minerve input, such
a function is represented as a sequence of two pairs
(spot, open segment), the first one having a spot (0,0)
and a segment with origin 0 and slope 0, and the sec-
ond one having a spot (2,0) and a segment with origin
0 and slope 1. Then, the translation from RTaW-
Pegase to Minerve has to split the closed segment
into a spot and an open segment, and push the right
extremity as a spot of the second segment. Eventu-
ally, the translation can be done on a per-segment
basis, pushing spots from one segment to another.

A second problem was that RTaW-Pegase may
have no periodic part when the function ends with
an infinite segment. The transformation into Minerve
has to chose an arbitrary period value (we chose 1).

The third problem was that RTaW-Pegase ac-
cepts two expressions of the periodicity, whereas Min-
erve admits only one. In RTaW-Pegase, one may ei-
ther state that a function is pseudo-periodic when it
exists T, d, c such that: ∀t > T, f(t + d) = f(t) + c
or: ∀t ≥ T, f(t + d) = f(t) + c, whereas Minerve
only knows about the latter definition. Both condi-
tions are equally expressive, but one has to increase
the value of T in order to cast a definition from the
former format into the latter one.

Consider, for instance, the function

g : t 7→ max

(

t+ 1,

⌊

t

2

⌋)

plotted in Figure 4. In RTaW-Pegase, it can be repre-
sented by a the closed first segment [(0, 2)−1/2(2, 0)]
followed by the left-open segment](2, 1)0(4, 0)] re-
peated with periodicity 2 and increment 1, as shown
in the upper part of Figure 4. In Minerve, such a rep-
resentation is impossible, and one has to extend the
non-periodic prefix, as illustrated in the lower part of
Figure 4.

5.2. Static Single assignment. Looking at the
trace presented in Figure 2, the correctness of the
trace relies on a correct computation of the variable
cumA Node. But since this variable is assigned three
times in the trace, there is no single value to check.
We may consider the line number of the expression
as a tie-breaker, but it is somehow fragile. Then,
RTaW-Pegase can generate an enhanced trace, aug-
mented with comments giving an number identifier
to each expression to check. This enhanced trace
also contains as assertions the expected values of the
operands and results for each operation. For instance,
the line 20 in the listing of Figure 2 is replaced by the
set of lines presented in Figure 5.2.

6 MARC BOYER, PIERRE ROUX, AND HUGO DAIGMORTE

x1 2 3 4 5 6 7 8

y

1

2

3

T

c

d

x1 2 3 4 5 6 7 8

y

1

2

3

c

d

T ′

Figure 4. Prefix extention due to
translation from RTaW-Pegase to
NCCoq

MP−Coq−Check 1

a s s e r t (cumA Node1 = uaf ([(0 , 0) 0(+ I n f i n i t y , 0)
[))

a s s e r t (Flow1 = upp ([(0 , 0)] , pe r iod (] (0 , 1 3 6 0)

0(10000 ,1360)]) , 1360 , 10000))
cumA Node1 := cumA Node1 + Flow1

a s s e r t (cumA Node1 = upp ([(0 , 0)] , pe r iod

(] (0 , 1 3 6 0) 0(10000 ,1360)]) , 1360 , 10000))
Coq Check 1 : cumA Node1 = (cumA Node1 +

Flow1)

Figure 5. Example of a trace that
can be produced by RTaW-Pegase

Then a Coq file is generated with a list of defi-
nitions and proof obligations. For instance, from the
part of the trace presented in Figure the Coq code
presented in Figure 6 is generated. The idtac and
Time commands are there to log the time taken by
Coq to perform the proof.

5.3. Performance tricks. Going from simple
hand-made examples, with dozens of operations, to
realistic examples with thousands of operations, we
encountered some performance issues, not related to
the core of the algorithms but related to some details
in implementations. We sum them up here.

In a first version of the files we used Let instead
of Definition. While this was apparently inocuous
with only a few occurrences, this became a major is-
sue with hundreds or thousands of occurences as this
means the terms computed by Coq for the last check
was embedding all previous definitions, dramatically
slowing down computations. Replacing the keyword
Let by Definition was enough to fix the issue.

(* Proof for Check 1*)

(* Conversion of upp([(0,0)0(1,0)[, period

([(1,0)0(2,0)[), 0, 1) *)

Definition lop_1_js : @seqjs bigQ := [::
(0, ((0)%:E, (0, (0)%:E)));
(1, ((0)%:E, (0, (0)%:E)))]

%bigQ.
Definition lop_1 := F_of_sequpp {|
sequpp_T := 1;
sequpp_d := 1;
sequpp_c := 0;
sequpp_js := lop_1_js

|}%bigQ.
(* Conversion of upp([(0,0)0(0,0)], period

(](0,1360)0(10000,1360)]), 1360, 10000) *)

Definition rop_1_js : @seqjs bigQ := [::
(0, ((0)%:E, (0, (1360)%:E)));
(5000, ((1360)%:E, (0, (1360)%:E)));
(10000, ((1360)%:E, (0, (2720)%:E)))]

%bigQ.
Definition rop_1 := F_of_sequpp {|
sequpp_T := 5000;
sequpp_d := 10000;
sequpp_c := 1360;
sequpp_js := rop_1_js

|}%bigQ.
(* Conversion of upp([(0,0)0(0,0)], period

(](0,1360)0(10000,1360)]), 1360, 10000) *)

Definition res_1_js : @seqjs bigQ := [::
(0, ((0)%:E, (0, (1360)%:E)));
(5000, ((1360)%:E, (0, (1360)%:E)));
(10000, ((1360)%:E, (0, (2720)%:E)))]

%bigQ.
Definition res_1 := F_of_sequpp {|
sequpp_T := 5000;
sequpp_d := 10000;
sequpp_c := 1360;
sequpp_js := res_1_js

|}%bigQ.
Goal res_1 = (lop_1 + rop_1).
Proof. idtac "Check 1". Time nccoq. Qed.

Figure 6. Coq proof generated
from listing in Figure 5.2

As a first step, our automatic tactic nccoq maps
each min-plus operation, like + or ∗ introduced in
Section 2, on arbitrary functions to effective opera-
tors on UPP functions, our tactic uses the typeclass
resolution mechanism of Coq. This mechanism can
perform exponential searches and is known to eas-
ily lead to serious slow downs. After doing some
profiling, we discovered that more time was spent in
this resolution than actually performing the compu-
tation of the reflexive tactic. Putting the definitions
of the sequences sequpp_js in a separate definition

CHECKING VALIDITY OF THE MIN-PLUS OPERATIONS INVOLVED IN THE ANALYSIS OF A REAL-TIME EMBEDDED NETWORK7

(they were originally inlined) solved the issue by en-
abling the type class search procedure of Coq to find
the expected solution much earlier.

Finally, the largest computations first appeared
much slower than expected. Inspecting the interme-
diate values computed, we discovered rational num-

bers such as 17498164897827×105000

38753975857×105000 . Further investiga-
tion revealed that we were using non normalizing op-
erations on arbitrary precision rational numbers. Re-
placing them with the normalizing operations solved
the issue.

In Minerve, all functions are periodic with a given
period (c.f. d in Figure 4). For affine functions, this
means that an arbitrary period must be chosen. A
bad choice can be an issue when computing an op-
erator whose operands have wildly diferent periods.
To avoid such issues, a preprocessing was added to
change the (fake) period of affine functions in accor-
dance to the period of the other operand before any
binary operation.

When performing a proof with Coq, the proof
is first elaborated with tactics (everything between
Proof and Qed) then rechecked by the kernel of Coq
at Qed time. This means any expensive computation
performed by the tactics will be performed a second
time by the Qed. To avoid such duplications, a trick
using the abstract tactic of Coq is used1.

6. Benchmarks

We evaluated our approach on three midsize to
large case studies representative of actual industrial
use cases.

The first case study, is a medium size network
made of 8 end systems and 2 switches. It is crossed
by 57 flows, each having 1 to 5 receivers. The links
data rate is set to 100Mb/s except for the link be-
tween the two switches which is at 1000Mb/s. For
the service policy used, all the flows are distributed
between 5 priority levels, at the same level of priority
flows respect the FIFO rule. The analysis of such a
network with RTaW-Pegase as well as the writing of
the trace takes about 1 second.

In the second and third case studies, the consid-
ered network is much larger. Comprising 104 end sys-
tems and 8 switches, it is crossed by a thousand flows.
The links data rate is set to 100Mb/s. For the second
case study, all the flows have the same level of pri-
ority and are processed in a single FIFO queue. For
the third case study, the flows are now distributed in
different priority levels and are processed by 5 FIFO

1This tactic basically seals a computation into an auxil-

iary lemma (with its own Qed), then the final Qed just checks

the auxiliary lemma statement rather than completely recheck-
ing it.

queues. RTaW-Pegase analyzes these configurations
in about 4 and 8 seconds.

Checking each of these benchmarks involved ver-
ifying thousands of operations in each case. We ran
the benchmarks on an average few years old laptop
with 4 GiB of RAM. The total run time where kept
within a couple of hours thanks to checking time per
operation well below the second in most cases, with
only a handful of operations requiring a few dozen
of seconds to be proved correct by Coq. All timings
are summarized in Table 1. Note that the last bench-
mark had to be divided in eight separate Coq files to
avoid Coq running out of memory on a huge file.

Although much slower than the initial runs of
RTaW-Pegase, we consider these runtimes for veri-
fication to be perfectly acceptable considering that
they would constitute the last part of the develop-
ment or certification process of an embedded network.
The fat RTaW-Pegase can still be used without ex-
tra verification for dimensioning or development pur-
poses.

Last but not least, no bug was found in RTaW-
Pegase during the experiments.

The benchmarks, as well as detailed instructions
to reproduce those results, are available at https:

//doi.org/10.5281/zenodo.5849594.

7. Conclusion

The skeptical approach (that formally proves the
correctness of a result given by a program), is an ef-
ficient way to get a high level of confidence in the re-
sults of a program. It has been applied in the context
of the real-time performances of embedded networks:
the correctness of the min-plus operations involved
in the computation of real-time bounds can now be
checked using the Coq proof assistant. The theoret-
ical part have been presented in [17]. This paper
presents how it can be used in an industrial context.

This research experiment can be seen as a suc-
cess both in terms of development effort and scalabil-
ity of the verification. Developing a min-plus toolbox
requires about one man-year of development [5, 9],
developing our min-plus checker required one PhD
year of development [17] and plugging the min-plus
checker and RTaW-Pegase required about 1 month
of development. On run-time, analyzing a network
with the RTaW-Pegase requires typically a few min-
utes using a common laptop whereas checking the
results requires a few hours on the same hardware.
For software with such a confidence level, the over-
head in development time and running time is fully
acceptable.

As a future work, one could consider unifying the
previous works in [16], [14] and the current work in

8 MARC BOYER, PIERRE ROUX, AND HUGO DAIGMORTE

benchmark #op time time / op max time
MEDIUM SP 1923 4:44 0.15 15.23
BIG FIFO 34121 47:35 0.08 7.61
BIG SP 81333 4:19:38 0.19 20.28

Table 1. Benchmarks: “#op” is the number of operations, “Time” the total time for Coq
to check all operations (hours:minutes:seconds), “time / op” the average time per operations
(in seconds), “max time” the maximum time to check a single operation (in seconds).

a single Coq proof. This would greatly reduce the
trusted code base and avoid having a Network Cal-
culus expert check the output trace of RTaW-Pegase
and its mapping to the verified Coq file.

References

[1] RealTime-at-Work online Min-Plus interpreter for

Network Calculus. https://www.realtimeatwork.com/

minplus-playground.

[2] Steffen Bondorf and Jens B. Schmitt. The DiscoDNC v2 –

A Comprehensive Tool for Deterministic Network Calcu-
lus. In Proc. of the International Conference on Perfor-

mance Evaluation Methodologies and Tools, ValueTools

’14, pages 44–49, December 2014.
[3] Anne Bouillard, Marc Boyer, and Euriell Le Corronc. De-

terministic Network Calculus – From theory to practical
implementation. Number ISBN: 978-1-119-56341-9. Wi-

ley, 2018.
[4] Anne Bouillard, Bertrand Cottenceau, Bruno Gaujal,

Laurent Hardouin, Sebastien Lagrange, Mehdi Lhom-

meau, and Eric Thierry. COINC library: a toolbox for the

network calculus. In Proc. of the 4th int. conf. on perfor-
mance evaluation methodologies and tools (ValueTools),

volume 9, 2009.

[5] Anne Bouillard and Éric Thierry. An algo-

rithmic toolbox for network calculus. Discrete

Event Dynamic Systems, 18(1):3–49, octo-
ber 2008. http://www.springerlink.com/content/

876x51r6647r8g68/.

[6] Anne Bouillard and Eric Thierry. An Algorithmic Toolbox
for Network Calculus. Discrete Event Dynamic Systems:

Theory and Applications, 18, 03 2008.

[7] Marc Boyer, Jörn Migge, and Marc Fumey. PEGASE, a
robust and efficient tool for worst case network traversal

time. In Proc. of the SAE 2011 AeroTech Congress &

Exhibition, Toulouse, France, 2011. SAE International.
[8] Marc Boyer, Nicolas Navet, and Marc Fumey. Experimen-

tal assessment of timing verification techniques for AFDX.
In Proc. of the 6th Int. Congress on Embedded Real Time

Software and Systems, Toulouse, France, February 2012.

[9] Marc Boyer, Nicolas Navet, Xavier Olive, and Eric
Thierry. The PEGASE project: precise and scalable tem-

poral analysis for aerospace communication systems with

network calculus. In T. Margaria and B. Steffen, edi-
tors, Proceedings of the 4th International Symposium On

Leveraging Applications of Formal Methods, Verification

and Validation (ISoLA 2010), LNCS. Springer, 2010.
[10] Felipe Cerqueira, Felix Stutz, and Björn B Brandenburg.

PROSA: A case for readable mechanized schedulability

analysis. In 2016 28th Euromicro Conference on Real-
Time Systems (ECRTS), pages 273–284. IEEE, 2016.

[11] Robert Davis, Alan Burns, Reinder Bril, and Johan

Lukkien. Controller area network (CAN) schedulability
analysis: Refuted, revisited and revised. Real-Time Sys-
tems, 35:239–272, 2007. 10.1007/s11241-007-9012-7.

[12] Pascal Fradet, Xiaojie Guo, Jean-François Monin, and

Sophie Quinton. Certican: A tool for the coq certifica-

tion of CAN analysis results. In Björn B. Brandenburg,
editor, 25th IEEE Real-Time and Embedded Technology

and Applications Symposium, RTAS 2019, Montreal, QC,

Canada, April 16-18, 2019, pages 182–191. IEEE, 2019.
[13] Pierre Letouzey. Extraction in coq: An overview. In

Arnold Beckmann, Costas Dimitracopoulos, and Benedikt

Löwe, editors, Logic and Theory of Algorithms, 4th Con-
ference on Computability in Europe, CiE 2008, Athens,

Greece, June 15-20, 2008, Proceedings, volume 5028

of Lecture Notes in Computer Science, pages 359–369.
Springer, 2008.

[14] Etienne Mabille, Marc Boyer, Löıc Fejoz, and Stephan
Merz. Towards certifying network calculus. In Proc. of

the 4th Conference on Interactive Theorem Proving (ITP

2013), Rennes, France, July 2013.
[15] Lisa Maile, Kai-Steffen Hielscher, and Reinhard German.

Network calculus results for tsn: An introduction. In Proc.

of the Information Communication Technologies Confer-
ence (ICTC 2020), pages 131–140. IEEE, 2020.

[16] Lucien Rakotomalala, Marc Boyer, and Pierre Roux.

Formal Verification of Real-time Networks. In JRWRTC
2019, Junior Workshop RTNS 2019, Toulouse, France,

November 2019.

[17] Lucien Rakotomalala, Marc Boyer, and Pierre Roux. Ver-
ifying min-plus computations with coq. In Proc. of the

13th NASA Formal Methods Symposium (NFM 2021),

May 24-28 2021.
[18] Hanrijanto Sariowan, Rene L. Cruz, and George C. Poly-

zos. SCED: A generalized scheduling policy for guarantee-
ing quality-of-service. IEEE/ACM transactions on net-

working, 7(5):669–684, October 1999.

[19] E. Wandeler. Modular performance analysis and interface
based design for embedded real time systems. 2006.

[20] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus

(RTC) Toolbox, 2006.
[21] Boyang Zhou, Isaac Howenstine, Siraphob Limpra-

paipong, and Liang Cheng. A survey on network calcu-

lus tools for network infrastructure in real-time systems.
IEEE Access, 8:223588–223605, 2020.

Assessing a precise gPTP simulator with
IEEE802.1AS hardware measurements

Quentin Bailleul
IRT Saint Exupéry

Toulouse, France
quentin.bailleul@irt-saintexupery.com

Katia Jaffrès-Runser, Jean-Luc Scharbarg
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3

Toulouse, France
{kjr, jean-luc.scharbarg}@enseeiht.fr

Philippe Cuenot
IRT Saint Exupery, Seconded from Continental Automotive France

Toulouse, France
philippe.cuenot@continental-corporation.com

Abstract—TSN (Time Sensitive Networking) standards are
arousing growing interest in the critical on-board network
community because of their promise of deterministic Ethernet
networking. Among these standards IEEE802.1AS allows the
synchronization of network devices. This protocol achieves much
greater precision than other Ethernet synchronization standard
such as NTP or PTP. Thus, it paves the way for new network
mechanisms, such as the Time Aware Shaper, and allows the use
of applications that are more constrained in terms of synchro-
nization. In order to study the new mechanisms allowing to reach
this precision, precise simulations are mandatory. In this paper,
we review the different existing tools, extend the most promising
one to incorporate the most advanced features of IEEE802.1AS
and assess its behavior with respect to measurements. More
specifically, we extend an OMNeT++ simulation library, calibrate
its results following an extensive measurement campaign of
switched Ethernet devices supporting IEEE 802.1AS to assess
its performance in terms of precision.

Keywords—IEEE802.1AS, gPTP, TSN, Synchronization, Simu-
lation

I. INTRODUCTION

Critical on-board network architecture cannot cope with
the diversification of flows and their constraints. Thus, real-
time Ethernet solutions have been designed to bring much
higher bandwidth and advanced quality of service policies.
Promising solutions are the standards proposed by the IEEE
Time Sensitive Networking (TSN) working group. Among
these standards, central synchronous shapers like the Time
Aware Shaper (TAS) allow the transmission of zero-jitter time-
bounded low latency flows. Such shapers rely on a network-
wide precise and accurate synchronisation of the devices.
The IEEE TSN group has standardized the IEEE 802.1AS
synchronization protocol [1] we are investigating in this paper.

The IEEE 802.1AS protocol is a profile of the IEEE 1588
[2] synchronization standard already in use in non-critical
systems. IEEE 802.1AS has been designed with the goal of
reaching a precision of less than 1 microsecond in a linear
network setting where a master clock and an ordinary clock are
separated by 7 hops. The precision is defined as the difference

between the clock under test and the reference clock. Exper-
imental measurements [3] as well as simulation and worst-
case analysis [4] have assessed such precision. Simulation
allows the evaluation of this synchronization protocol at a
lower cost, provided that simulation assumptions are derived
from measurements. To the best of our knowledge, existing
simulation libraries have not been compared to real devices
supporting IEEE 802.1AS.

In this paper, we first review the already available simu-
lation tools for IEEE802.1AS and select the most advanced
open source OMNET++ simulation library. Then, we extend
this library to incorporate the most advanced features of
IEEE802.1AS and compare its performance to experimental
measurements of real IEEE802.1AS devices. From this step,
we propose a calibration step of the simulator and assess, after
calibration, its precision to validate its behavior in relation to
reality. Our contribution is a realistic open source simulation
model for IEEE802.1AS that reproduces the behavior of real
devices. Thanks to the improvements made to the simulation
model and the calibration of the jitter linked to the PHY layer,
the drift and the granularity of the clock using measurements
on real devices, we achieve a Root Mean Squared Error
(RMSE) of approximately 3 ns between the measured and
simulated sliding average of the synchronization precision.

This paper is organized as follows. First, we present IEEE
802.1AS and the related work on IEEE802.1AS simulation in
Section II. In Section III, we discuss our changes to an existing
library. Then in section IV, we present our experimental
protocols and discuss our results. And finally, we conclude
and present future work in section V.

II. CONTEXT

A. IEEE 802.1AS overview

IEEE 802.1AS [1] is a profile of IEEE 1588 Precision
Timing Protocol (PTP) [2] for Time Sensitive Networking.
Sometimes called generalized Precision Time Protocol (gPTP),
this protocol is used to synchronize clocks across a network
using the master slave paradigm. Each port is in one of the
following three states: master, slave, passive. Master ports

Fig. 1: Peer-to-Peer delay mechanism.

periodically broadcast time synchronization messages. Slave
ports process these messages on reception, while passive ports
ignore them to avoid loops in the distribution. The time-aware
system with all its ports in master state is called Grandmaster
and it is the time source of the network. It can be synchronized
by an external time source (GPS, NTP, ...) or use its own clock.

To determine port states, IEEE 802.1AS provides two
methods. The first one is the external port state configuration.
It statically defines the state of the ports for all the devices
involved in the synchronization. The second method is the Best
Master Clock Algorithm (BMCA). This distributed algorithm
is executed on each time-aware system to eventually determine
the state of the local ports and to elect the Grandmaster by
comparing the information received from each Grandmaster
candidate.

Synchronization itself is based on two core mechanisms:
i) the measurement of the link propagation delay using the
Peer-to-Peer delay mechanism and ii) the distribution of syn-
chronization information.

The Peer-to-Peer delay mechanism defined in IEEE
802.1AS measures the link propagation delay between two
time-aware systems that are separated by one hop. Pdelay
messages carrying timestamps are exchanged every Pdelay in-
terval (1s by default). Measurement of propagation delay needs
four timestamps as depicted in Fig. 1. t1 is measured when the
Pdelay_req is issued. t2 is obtained upon reception of this
message. t3 is measured when the Pdelay_resp is sent.
Finally, t4 is measured upon reception of Pdelay_resp.
Formula (1) calculates the delay of the link, Tprop, using the
timestamps. Moreover, with the t3 and t4 timestamps of two
consecutive Pdelay procedures, the requester can extract the so-
called neighbor rate ratio nr of Eq. (2) in order to compensate
the relative clock drift in Eq. (1).

Tprop =
(t2− t3) + nr.(t4− t1)

2
(1)

nr =
freq
fresp

=
t3i − t3i−1

t4i − t4i−1
(2)

Equation (1) assumes that the link is symetric. Existing
asymmetries can be compensated if they can be estimated,
typically in a calibration step. To smooth the effects of sources
of inaccuracies, some devices include filters for Tprop.

The distribution mechanism is based on the transmission
of Sync and Follow_Up messages that allow each time-
aware system to synchronize to the Grandmaster clock. Every
synchronization interval (typically 125ms), the Grandmaster
sends a Sync message out of its master ports, followed by a
Follow_Up message containing t0, the exact transmission
time of the Sync message, as pictured in Fig. 2. These
two messages are received via the slave ports of the device
connected to the Grandmaster. If the receiving device has at
least one port in the master state, it forwards both messages to
the next time-aware system. The Follow_Up message carries
t0, and updated values of the rate ratio r and the correction
field C. These two fields are detailed next.

The rate ratio r allows for logical syntonization of a time-
aware system to the Grandmaster rate. It is the product of
the neighbor rate ratio calculated by the receiver ports on the
path going from the Grandmaster to the time-aware system of
interest. It is initialized to 1 by the Grandmaster and is updated
on each hop with the equation (3), where i is the receiving node
and i− 1 the sending node.

ri = ri−1 ∗ nr (3)

The correction field C carries the time elapsed in the time-
aware systems and on the links on the path between the
Grandmaster and the time-aware system preceding the last hop.
At hop i, Ci is calculated using the previous correction field
Ci−1, the previous rate ratio ri−1, the neighbor rate ratio nr,
the propagation time undergone during the last hop Tprop and
the residence time Tres of the Sync in time aware system as
given in (4) :

Ci = Ci−1 + ri−1 ∗ Tprop + ri−1 ∗ nr ∗ Tres (4)

These operations are repeated at each hop, until the com-
plete set of time-aware systems is reached.

Using the two mechanisms described above, each device
can calculate the difference between its local clock and the
Grandmaster clock in order to deduce the correction to be
applied. Indeed, to deduce the Grandmaster time at the Sync
reception time, the device adds to t0, the original time of
transmission of the Sync by the Grandmaster, the correction
field carried in the Follow_Up message and the propagation
delay of the last hop Tprop measured with the Peer-to-Peer
delay mechanism.

B. Related Work

Since the first version of 802.1AS in 2011, several simula-
tion tools have been created. Garner et al. [3] proposed a simu-
lation model to evaluate a draft of 802.1AS. In order to reduce
its complexity, this discrete event simulation library only mod-
els events linked to Sync, Pdelay_Req and Pdelay_Resp
messages. It approximates operation in one-step mode. Using
this simulation, they showed that the proposed synchronization
mechanism can cope with Audio/Video application constraints
with a network having up to 7 hops. Lim et al. [5] built a
simulation model for IEEE802.1AS using OMNeT ++/INET

Fig. 2: Synchronization distribution mechanism.

in order to evaluate the performance of the standard on an
automotive Ethernet topology. This simulation model uses
passive clocks and a static configuration. They highlighted
the importance of the choice of filter to smooth out errors
in the propagation delay measurement and the improvement
in precision when a lower syncInterval is used in the first hop.
Gutiérrez et al. [4] developed a simulation library in order
to compare probabilistic and worst case precision achievable
in a 100 hop network. Their simulation model is based on
OMNET ++ / INET with a clock model using a drift that
varies over time at a bounded rate. Nevertheless, the neighbor
rate ratio is calculated from the perfect neighbor rate ratio
and the maximum error allowed by the standard, which makes
the Pdelay calculation pessimistic. However, these different
simulation libraries are not open source and haven’t been
assessed by real measurements.

A few works propose open source libraries, e.g. the
one proposed by Puttnies et al. [6]. They developed a
IEEE802.1AS simulation model, using OMNeT++ [7] with the
INET framework [8], containing the core time synchronization
and propagation delay measurements operations. The model
uses a simple clock model with constant drift. The BMCA is
not implemented because they focus on achievable precision.
Obtained results have been compared with the simulation
results of Lim et al. [5]. Wallner et al [9] also built an open
source simulation framework for IEEE1588-2008, also based
on OMNeT++/INET, with complex clock models using realis-
tic noises. This very complete simulator allows the use of many
PTP mechanisms such as End-to-End or Peer-to-Peer delay
measurement, BMCA and transparent clock mechanisms.

The simulation library of Wallner et al. [9] is of higher
complexity than the one of Puttnies et al. [6] due to the
implementation of many PTP mechanisms that are not part
of IEEE802.1AS. As such, we decided to carry out this work
on the basis of the library of Puttnies et al. [6] that supports
the core functions of IEEE802.1AS by design. In order to
compare the simulation accuracy with real measurements, we
had to extend this library with new features to better capture
all mechanisms of IEEE802.1AS. Resulting extensions are
presented next.

III. GPTP SIMULATION MODEL EXTENSIONS

In order to improve the simulation accuracy of [6], we
had to extend the simulation model to account for clock
syntonization on the one hand, and to better capture core
platform-dependant features such as clock granularity and jitter
of the link delay due to the PHY layer on the other hand.

A. Logical syntonization

As described above, logical syntonization is essential to
reach higher levels of synchronization precision. Indeed, it
allows to take into account the local drift compared to the
Grandmaster one when updating the correction field. Without
this mechanism, the relative drift between the Grandmaster
and the time aware system is not compensated for, causing a
wrong estimate of the correction to be applied to the clock.
This error is also propagated to the devices on slave ports
with the correction field. We have added this syntonization
step following the IEEE802.1AS standard to the simulator of
[6].

B. Towards a more realistic model

To better capture the real behavior of devices supporting
IEEE802.1AS, the following sources of imprecision have been
added to the simulator.

The first one is the granularity of the clock. This is the
step at which the clock ticks, for instance 10ns. Thus, when a
duration is measured between two timestamps, e.g. a duration
of the propagation delay computation or the residence time
of a Sync message, the measurement error varies between
-10ns and + 10ns. In the simulator, we round the duration
to the immediately lower multiple of 10ns to capture clock
granularity.

The second source of imprecision is the inaccuracy related
to the PHY layer that occurs at the reception device. Despite
the hardware timestamping used in devices supporting IEEE
802.1AS, which eliminates software-related jitter, the PHY
layer causes an implementation dependent jitter. As shown
by Loschmidt et al. in [10], the jitter linked to the PHY
layer depends on the protocol used. They show for instance
that the jitter is higher with 10Base-T than with 100Base-T.
Moreover, a propagation delay asymmetry may exist whose
magnitude depends on the initialization of the link PHY layer.
These two PHY layer phenomenons have significant impact on
the synchronization results since they change the propagation
delay statistics and values.

In the following we consider a 100Base-T PHY. Based on
[10], a random jitter is added to the reception timestamp of
a message. It follows a normal distribution with zero mean
and 0.286ns standard deviation. Additionally, a link delay
asymmetry may be introduced at link initialization by constant
latency. This asymmetry is rooted in the Phased Lock Loop
(PLL) system that may lock on dissimilar edges of the signal
at the RX interface on both ends of the link. If the PLLs of
the two RX interfaces at both ends of the same link lock on
dissimilar edges, then the propagation delay in both ways is
asymmetric, which causes an error in the estimation of the
propagation delay. The 5 possible edges being 8ns apart, the
worst asymmetry is therefore of 32ns which causes an error

Protocol Parameters Value

Sync Interval 0,125s

Pdelay Interval 1s

SyncLocked True

TABLE I: Protocol parameters

of 16ns when calculating the propagation delay by the time
aware system. This error leads to errors in the estimation of
the time spent by the Sync messages on the link and therefore
inaccuracies in the synchronization.

There are other sources of inaccuracy such as PLL or
oscillator noise. They can be neglected since their impact on
the delay is less than one nanosecond [10].

IV. EXPERIMENTS

In the previous section, we detailed the changes made to
improve the simulation library’s realism. This section aims to
calibrate and validate the choices made during the implemen-
tation and to identify calibration steps to improve simulation
accuracy. For this, we will measure and analyse first, on
the real TSN switch, the behavior of the switches clock.
Second, we challenge the results obtained by the link delay
measurement mechanism with the simulated ones. And finally
we compare the precision of the synchronization IEEE802.1AS
to the simulation results to validate the simulator’s accuracy.
From the first two steps, we extract calibration steps that can
be performed to adjust the simulator to a specific 802.1 PHY
technology.

A. Experimental setup

The goal is to calibrate and validate the behavior of the
simulation library using real devices. Configuration parameters
of IEEE802.1AS are given in Table I. The library is configured
with the help of the values determined in the rest of this paper
to get as close as possible to the behavior of real device.

Our experimental testbed, pictured in Fig. 3 consists of:

• 4 Fraunhofer IPMS TSN Multiport Switch Core -
TSN-SW v0.5.0 on Netleap boards,

• a netTimeLogic PPS analyer,

• 100Base-T Ethernet link.

As described in Fig. 3, the four switches are connected in a
chain topology. We capture the progress of the different clocks
using the PPS Analyzer. One of our experiments described later
requiring greater accuracy required the use of a better quality
reference clock as a reference for the PPS analyzer. For this
we used a Meinberg microSync HR slaved on GNSS time
connected to the reference input of the PPS analyzer with a
PPS link. And finally, to configure and retrieve internal switch
values, such as the result of the delay propagation calculation,
we use the serial port of the switches to communicate with a
computer.

Simulations also consider the same topology. Unlike a one-
hop topology, this multi-hop topology allows an evaluation
of the impact of the correction field. The measurements are

Fig. 3: Experimental measurement topology.

carried out by OMNeT ++ at instants following precise events,
e.g. the end of the propagation delay measurement or just
before and just after the correction of the clock.

To determine the duration of experimentation and simu-
lation necessary to obtain significant results, we studied the
evolution of the mean squared error (MSE) between the nor-
malized distribution of value obtain by the Pdelay mechanism
of a given experiment duration compared to a experiment
duration of 32h. A duration of 3600s corresponds repeatedly
to an MSE of around 10−5 % of the number of occurrences
as shown in the fig 4. Fig 5 makes it possible to observe the
small difference between the distribution of value obtain by the
Pdelay mechanism obtained after 1 hour of experience and the
distribution obtained after 32 hours. The sources of variability,
such as the granularity and the PHY jitter, do not depend on
the AS mechanism which is studied, we will therefore use this
duration of experimentation for the other mechanisms and not
only for the Pdelay mechanism. Thus, for the rest of this study,
we take measurements for 3600s.

The following sections present the three experiments that
we carried out to compare the operation of the simulator with
the operation of real devices in order to calibrate and validate
this simulation model.

B. Clock calibration

In [6], Puttnies et al. have chosen to implement a simple
constant drift clock. In order to validate this choice and adjust
the parameters of the simulator clock deviation in relation to
our real devices, we have studied the behavior of the clocks
of our switches in freerunning during one hour. To do this, we
measured with the help of the PPS analyzer the evolution of
the drift for each switch compared to the Meinberg microSync
HR slaved on GNSS when the synchronization is deactivated.
We use the Meinberg microSync HR on this experiment for
its clock quality.

Figure 6 and table II shows the results of this experiment.
These measurements were taken 10 minutes after starting the
devices, so that the temperature of the electronic components is
stable and without attempting to control the room temperature.
As indicated in the figure 7, presenting multiple results of the

Fig. 4: MSE of the distribution of the results of the Pdelay
mechanism according to the duration of the experience com-
pared to a 32 hours experience with the real switches

Fig. 5: Pdelay distribution for an 1-hour experience and a 32-
hour experience

linear regressions carried out, similar results are obtained for
the different repetitions of the measurements during 24h.

Using Fig 6 and the table II, we observe that an implemen-
tation of a constant drift clock makes it possible to simulate
the behavior of a real clock in freerunning for one hour in
an environment where the temperature variations are small.
However, by repeating the experiment during 24h, we observe
small variations in ppm within a range of 0.009 ppm , as shown
in Fig 7 caused by the temperature variation in the room. In
order to use up to date ppm value in the simulator, in the rest of
our comparison between simulation and reality, we perform a
ppm measurement in freeruning compared to the Grandmaster

Fig. 6: Grandmaster clock offset of two switches during 3600s

Switch 1 Switch 2

ppm 12.593 9.094

pvalue < 10−9 < 10−9

rvalue 0.99999995 0.99999999

TABLE II: Results of linear regression of the data presented
in Fig 6

of the experiment before performing any other measurements
on real devices.

C. Canal calibration

In order to adjust and validate the different sources of
inaccuracy that we have added to the simulator, we measure
the distribution of the values obtained by the Peer-to-Peer
delay measurement mechanism without any filter and compare
them to the value obtained with the simulator. To configure

Fig. 7: Result of linear regression of switch 1 clock drift
measured for 3600s and repeated for 24 hours.

the simulator, we use the relative drift measured before the
experiment and the mean link delay measured during the
experiment.

In order to determine the standard deviation to parameterize
the normal distribution which adds jitter to the link crossing
time in the simulator, we compared the distributions obtained
using the simulated and real Peer-to-Peer delay mechanism.
Figure 8 shows the MSE obtained between the simulated
and measured distribution of the Pdelay as a function of the
standard deviation used to parameterize the normal law which
causes the PHY jitter when crossing the link. By minizing
the MSE, we find a standard deviation of 12.5ns, which is
quite different from the 0.286ns measured by Loschmidt et
al in [10]. Indeed, our switch embeds a different PHY chip
from the one used for their measurements. In addition, our
measurement takes place much further in the chain of message
transmission. Indeed, our measurement is based on timestamps
which takes place between the MAC layer and the PHY layer
of the OSI model while their measurement takes place directly
at the PHY level using the RX DV and TX EN PINs of the
MII. Thus other source of jitter can be found between their
point of measurement and ours.

Fig. 8: MSE between the simulated and measured distribution
of the Pdelay during 32h according to the standard deviation
used to simulate the PHY jitter in the simulator

The figure 9 presents the results obtained where switches
are synchronized and exchange Pdelay messages every sec-
onds. We find there the distribution of the different values
obtained by the measurement mechanisms of the link delay
of one of the switches and of the simulation library obtained
during 32h. For this measurement, we use a measurement time
much longer than what we have previously determined to be
sure that the simulated distribution also covers rare events. The
simulation parameters such as mean link delay, granularity and
PHY standard deviation were chosen to match the experimental
distribution. By analyzing the distribution of the propagation
delays obtained by the real device, in Fig 9, we can deduce

the granularity of the clocks used by observing the difference
between the two consecutive values. Here, the difference being
5ns, the granularity is therefore 10ns, because of the division
by two in the formula (1). As can be seen with this figure, our
simulation gives a distribution very close to reality although a
little more pessimistic than reality but which does not bother
us in view of our on-board scope of application.

Fig. 9: Distribution of the results obtained by the simulated
and real Pdelay mechanisms

Fig. 10: Distribution of the results obtained during two exper-
iments with the real switches.

When the link between two measurements is reinitialized,
a variation of the mean Pdelay, as shown in fig 10, is observed.
These two distributions originate from a periodic measurement

of the Pdelay on real devices for which we trigger a link
reinitialization every hour. As described by Loschmidt et al.
in [11], the difference between the two distributions is a con-
sequence of link delay asymmetry. This asymmetry is induced
by the edges on which the PLLs of each physical interface
lock during link initialization. If the two PLLs don’t lock on
the same edge, the various messages of the Pdelay mechanism
undergo a different link propagation delay depending on their
direction on the link. As such, there is an error in the estimation
of the link delay by the Pdelay mechanism since it is based
on a symmetrical channel assumption. With the library, we
reproduce this behavior by randomly setting the edge on which
each interface is locked for each simulation.

D. Validation

In this last part, we compare the synchronisation precision
measured with the real TSN switches to the one computed by
the OMNeT ++ simulator. This steps validates the different
enhancements of the simulation library and the calibration
steps proposed in this paper.

1) Bounding the precision.: The measurements are trig-
gered by the PPS analyser every second. The SYNC messages
are sent about every 125ms. The PPS measurements aren’t syn-
chronized with the SYNC dates and as such, the measurements
may be taken at various times of the synchronization cycle.
For instance, if the previous synchronization stage takes place
a few nanoseconds before the measurement time, the precision
measured using the PPS signal is much better than if the last
synchronization stage takes place a few tens of milliseconds
before.

Unlike real measurements based on the PPS signal, we
can measure in simulation the synchronization precision at
specific times which are related to the main protocol execution
steps. The worst precision can thus be measured just before
the synchronization procedure takes place and the best one just
after it. Since we can’t compare measurements and simulation
at exactly the same dates, we leverage the track the best and
the worst synchronization by simulation, and plot the real mea-
surements in the same figure to validate whether measurements
lie in between best and worst simulation precision. Figure 11
shows the precision measured on the first hop, as well as
the simulated precision before and after sync for 3600s. With
this figure, we observe that the simulator allows to bound the
result obtained with the real device on the first hop, despite
the limitations of the PPS signal. There results are reasonable,
even though they don’t allow us to judge the accuracy of the
bounds obtained with the simulator.

2) Accuracy of simulated precision bounds: By repeating
the previous experiment, we observed gaps in the precision
measured using the PPS signal as shown in the figures 12, 13
and 14. These figures show the measured precision, as well
as the simulated precision before and after synchronization
respectively at the first, second and third hops. These PPS
gaps represent the situation where we move from measuring
precision just after synchronization takes place to measuring
precision in reality just before synchronization takes place.
Over a campaign of 200 one-hour measurements, we have
observes these PPS gaps 19 times.

Fig. 11: Offset between the Grandmaster clock and the switch
clock at hop #1 in reality and the simulator. The simulator
is configured with the granularity, mean link delay and the
standard deviation estimated in the previous experiments.
For the clock drift, we use the drift measured before each
experiment.

Fig. 12: Identification of a PPS gap in the offset measurement
between the Grandmaster clock and the switch clock at hop #1
in reality. Simulated best and worst offset are plotted as well.

Fig. 13: Identification of a PPS gap in the offset measurement
between the Grandmaster clock and the switch clock at hop #2
in reality. Simulated best and worst offset are plotted as well.

Fig. 14: Identification of a PPS gap in the offset measurement
between the Grandmaster clock and the switch clock at hop #3
in reality. Simulated best and worst offset are plotted as well.

Hop 1 Hop 2 Hop 3

Minimal RMSE (ns) 0.89 1.1 2.1

Maximal RMSE (ns) 7.1 4.8 6.2

Median RMSE (ns) 2.3 2.8 3.9

Mean RMSE (ns) 3.4 2.9 4.2

TABLE III: Result of the RMSE calculation using 10 different
simulations

Switch 2 Switch 3 Switch 4

ppm -1.850 0.817 1.997

TABLE IV: Clock drift of the different devices measured
before the simulator validation experiment

Thus, close to the PPS gap, it’s possible to determine
when the synchronization cycle takes place. In this situation,
it becomes possible to compare the bounds obtained with the
simulator with the worst and best precision measured around
the PPS gap. With the figures 12, 13 and 14, it can be seen
that the simulator makes it possible to precisely limit the
synchronization precision reachable with this Ethernet switch.
Indeed, we observe the best case, just after the synchroniza-
tion, and the worst case, just before the synchronization, in
a single measurement for the three hops. Furthermore, the
measurements and comparisons with the simulation for hop
#2 and #3 make it possible to validate the implementation of
the calculation of the correction field and thus the measurement
of the residence time. We also observe that the dispersion of
the precision values remains similar despite our pessimistic
simulation of the PHY jitter.

These observations are validated by the calculation of the
RMSE between the measured and simulated sliding average
of the synchronization precision. Sliding average is computed
over a window of 150 samples for the 500 samples preceding
the PPS gap for each one of the three hops. Due to the
progressive shift of the synchronization cycle relatively to the
PPS measurement time, we are bound to use a small window.
This small window isn’t large enough to capture all possible
variation in simulation. To compensate for this variability, we
perform an RMSE calculation over 10 different simulations.
Results are are presented in the table III. As shown in this
table, the average RMSE is approximately 3 ns. There is
also an increase in the median RMSE as the number of hops
increases. This increase in the differences between reality and
simulation is mainly caused by the pessimistic estimation of
the PHY jitter, introduced during the calibration phase of the
delay measurement mechanism.

Using the three figures, we also observe a large variation
in the precision before synchronization as a function of the
number of hops. This variation is due to the relative drift
between the Grandmaster and the device in question. Indeed,
before synchronization, the precision error is mainly caused by
the drift which has taken effect since the last synchronization,
here since 125ms. Before this measurement, we measured the
relative drift between the Grandmaster and the different devices
and observed a lower drift for switch 3 (hop #2) than for the
other devices as shown in the table IV.

V. CONCLUSION

This paper presents the enhancement of an open source
simulation library of the IEEE802.1AS synchronization proto-
col available here [12]. The integration of logical syntonization
and real hardware inaccuracies brings the simulation library
closer to reality. Our tests show the fidelity of the simulator
after calibration compared to the result obtained with real
TSN switches, as evidenced by the MSEs of the order of
4 ∗ 10−6 % of occurrence between the distribution of values
obtained by the simulated and measured link delay measure-
ment mechanisms, as well as the RMSEs of approximately
3 ns between sliding average of the precision measured and
simulated. This library now allows to study the precision of
the synchronization and its impact on the clients according
to parameters such as topology, protocol configuration, filters
for measuring propagation delay and clock servo algorithm.
In addition, we also propose a method which is repeatable to
calibrate the simulator for other switches or end stations.

Future works will investigate the impact of other PHY
layers like 1000Base-T and 10Base-T1S on precision using this
library. This work will also allow us to focus on the calculation
of the worst case precision to optimize the protocol parameters
according to the intended use.

ACKNOWLEDGMENT

The authors thank all people and industrial partners in-
volved in the EDEN project. This work is supported by the
French Research Agency (ANR) and the partners of IRT Saint-
Exupéry Scientific Cooperation Foundation: Airbus Operation,
Airbus Defence and Space, CNES, Continental Automotive,
INPT/IRIT, ISAE-SUPAERO, ONERA, Safran Electronics and
Defense, Thales Alenia Space and Thales Avionics.

REFERENCES

[1] “IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications,” IEEE Std 802.1AS-

2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.

[2] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-2019

(Revision ofIEEE Std 1588-2008), pp. 1–499, 2020.

[3] G. M. Garner, A. Gelter, and M. J. Teener, “New simulation and test
results for IEEE 802.1 AS timing performance,” in 2009 International

Symposium on Precision Clock Synchronization for Measurement, Con-

trol and Communication. IEEE, 2009, pp. 1–7.

[4] M. Gutiérrez, W. Steiner, R. Dobrin, and S. Punnekkat, “Synchroniza-
tion quality of IEEE 802.1 AS in large-scale industrial automation
networks,” in 2017 IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS). IEEE, 2017, pp. 273–282.

[5] H.-T. Lim, D. Herrscher, L. Völker, and M. J. Waltl, “IEEE 802.1 AS
time synchronization in a switched Ethernet based in-car network,” in
2011 IEEE Vehicular Networking Conference (VNC). IEEE, 2011, pp.
147–154.

[6] H. Puttnies, P. Danielis, E. Janchivnyambuu, and D. Timmermann, “A
Simulation Model of IEEE 802.1 AS gPTP for Clock Synchronization
in OMNeT++.” in OMNeT++, 2018, pp. 63–72.

[7] (2021) Omnet++ simulator version 5.2. [Online]. Available:
https://omnetpp.org/

[8] (2021) Inet framework version 3.6.3. [Online]. Available:
https://inet.omnetpp.org/

[9] W. Wallner, A. Wasicek, and R. Grosu, “A simulation framework
for IEEE 1588,” in 2016 IEEE International Symposium on Precision

Clock Synchronization for Measurement, Control, and Communication

(ISPCS). IEEE, 2016, pp. 1–6.

[10] P. Loschmidt, R. Exel, and G. Gaderer, “Highly accurate timestamping
for ethernet-based clock synchronization,” Journal of Computer Net-

works and Communications, vol. 2012, 2012.

[11] P. Loschmidt, “On enhanced clock synchronization performance
through dedicated ethernet hardware support,” Ph.D. dissertation, 2010.

[12] (2021) The simulation library. [Online]. Available: https://gitlab.amd.e-
technik.uni-rostock.de/peter.danielis/gptp-implementation

Smart Management of Virtualized Network Service Chains in 5G
Infrastructure

T. Djemai˚, P. Berthou:, O. Gremillet˚, A. Al Sheikh˚, Y. Drif˚, F. Arnal˚, A. Bergaoui˚
˚IRT Lab, 3 rue Tarfaya, 31000 Toulouse, France

:LAAS-CNRS, 7 avenue Colonel Roche, 31000 Toulouse, France

Abstract—Future 5G infrastructures promise to deliver un-
precedented Quality of Services (QoS) guarantees through ultra-
low latency and high data rate specifications that lead to handle
many critical applications and services.

Network Function Virtualization (NFV) is the paradigm that
enables the implementation of network functions and capabilities
as software components executed in virtual entities provisioned
in general-purpose hardware. This paradigm plays a pivotal role
to achieve management flexibility of 5G services and reduce
infrastructures’ investment and operational costs.

Recent advances in artificial intelligence (AI) and the large
amounts of data collected on orchestration platforms offer new
perspectives. Many recent publications advocate the use of AI in
the orchestration of virtualized networks and many algorithms
are proposed. Though, today small amount of literature works
implement or test these concepts in a real platform that considers
network service chains data.

In this work, we present a framework for Service Function
Chains’ (SFCs) profiling and management through Machine-
learning approaches. We propose an extended network orches-
tration platform based on Openstack, Kubernetes (K8s), and
Open Source Mano (OSM) orchestrator. The benefits of this
architecture are shown by an algorithm that realizes proactive
auto-scaling procedure for service chains. It considers features’
importance per service type while achieving a trade-off between
services’ stringent QoS requirements and the cost of resources
usage.

Index Terms—Quality of Service, NFV, Adaptive network,
Machine learning.

I. INTRODUCTION

The infrastructure of 5th generation mobile networks is

expected to offer distributed computation, storage and com-

munication capacities with smart and flexible management

services. This specificity will help to cope with stringent

Quality of Service (QoS) requirements and support critical

and ultra-reliable low-latency services such as autonomous

vehicle’s control and augmented reality applications.
Network Function Virtualization (NFV) [1] (along with

Software Defined Network (SDN)) is an IT-based network

paradigm aiming to replace the purpose-built proprietary net-

work equipment with software network functions consolidated

on commodity hardware. This paradigm eases the transition to

a more agile and open service provisioning and brings flexibil-

ity of network services’ operation/management. Moreover, the

NFV allows to reuse efficiently the shared physical resources

between services and handle the variation of services demand

and theirs performance with much lower capital expenditure

(CapEx) and operational expenditure (OpEx).
A survey conducted by [2] on Communications Service

Providers (CSPs), identifies the NFV/SDN usage for 5G as

the use case with the greatest revenue potential for the next

few years.
However, the NFV usage in general and more specifically

in 5G faces some issues that impact the commitment of CSPs

for concrete NFV deployment.
It has been reported in the same study that half of the

surveyed CSPs have virtualized less than 10% of their target

network functions and that 77% of the virtualized functions do

not use orchestration to automate their network and services.

The orchestration procedure aims to plan the life cycle of the

virtual functions and to control/manage their internal/external

interactions.
We can summarize the NFV drawbacks as follows:

‚ Operational complexity: the operational complexity

is considered as the biggest obstacle to an effective

SDN/NFV deployment. Which is due to the distributed

and heterogeneous aspect of the physical and the virtual

infrastructure, the high dynamicity of workload and, the

mobile aspect of users and services.

‚ Services performance degradation and unsteady Vir-

tual Network Functions (VNFs) behavior: the NFV

inherits the critical issue of IT virtualization reducing

services processing capacities. Indeed, the virtualized

network functions are easily impacted by various en-

vironmental factors such as workloads and resource

contentions. This could lead to unsteady behavior and

unpredictable performance degradation of the deployed

VNFs. This drawback is amplified, if we consider and

ordered combination of VNFs, known as Service Func-

tion chain (SFC). A Service Function chain is used to

describe the definition and instantiation of an ordered or

partially ordered set of virtual service functions, and the

subsequent steering of traffic flows through those service

functions.

‚ Lack of smart orchestration tools and full NFV

platforms: It is highlighted that without orchestration,

CSPs will not experience the levels of automation they

want and will not be ready for the 5G market. The

fact that today’s implementations are often silo projects

and not well integrated with existing operational support

systems and SDN implementations.

We believe that one efficient approach to handle the poten-

tial VNFs/SFCs performance degradation and cope with the

complexity of a NFV/5G environment shall pass by the usage

of cognitive AI-based management systems combined with

VNFs/SFCs profiling approaches as source data. The usage of

AI-based management will pave the way to future zero-touch

network architectures.

However, current orchestration/management platforms do

not support AI reasoning modules. Moreover, they can handle

only simple VNFs and does not consider the SFCs related

aspects such as traffic flow policies. A smart Management

and orchestration (MANO) requires detailed information about

Network Service (NS) behavior to react proactively and main-

tain its performances while manage efficiently its resources.

This is why the integration of profiling and AI is necessary.

The contributions of this work can be summarized as

follows:

‚ Extending the existing standardized OSM-based orches-

tration platform, Super-G, with a smart reasoning module.

‚ Extending the Super-G platform with Service function

chain (SFC) related concepts.

‚ Proposing cognitive auto-scaling algorithm for SFCs.

The remainder of this paper is structured as follows: In

section II, we present a state of the art on NFV manage-

ment platforms and proposed AI-based scaling approaches for

NFV/SFC. Section III presents the cognitive Super-G SFC

platform architecture and functionalities. Section IV presents

the proposed auto-scaling algorithm while the performance

of this last are shown through experiments in V. Finally, VI

presents some future works.

II. RELATED WORK

The following related work is divided in two parts. We first

give an overview of existent platforms for NFV orchestration

with their management services. Then, we focus on VNF/SFC

elasticity problem through auto-scaling methods proposed in

the literature.

A. SFC Orchestration and Management Platforms

The primary building blocks of an NFV platform are the

Management and Orchestration (MANO) plane, the service

plane, and the NFV Infrastructure (NFVI). In this work we

focus on the MANO plane. The MANO plane offers a central-

ized control for service provision and management. The NFVI

offers the pool of virtualized computation, storage and network

resources that are managed by a cloud operating system such

as Openstack. The service plane is a collection of VNFs that

are combined to form an end to end service chain deployed

in the NFVI and monitored via the MANO plane.

Numerous efforts have been devoted for the deployment of

NFV orchestration platforms. Some of them follow the ETSI

(European Telecommunications Standards Institute) standard-

ized requirements while others are non-standardized propo-

sitions. Those platforms still in their infancy and are far

away from proposing smart orchestration and management

services. In accordance with work [3], we divide current

MANO platforms into holistic platform that offers end to end

deployment services and specific management issue oriented

one.

Many of the existent holistic platforms focus only on the ba-

sic elements of the NFV architecture and do not consider more

complex services like Service Function chains’ management.

In addition, the collected data are insufficient to study the

behavior of SFCs. While there is a lack of holistic platforms

that propose NFV/SFC profiling services, the design choice

of the second category of MANO platforms is often based on

distinct motivations and use cases such as scheduling, scaling,

load-balancing, fail-over and can not be used for a full end to

end deployment.

For the holistic MANO platform we can cite ETSI [4],

OpenMANO [5], Open Baton [6], vConductor [7], TeNOR

[8]. All of the cited technologies have the same elementary

operation such as: manual creation and deployment of network

services through graphic interface or cli. However, to the best

of our knowledge none of them propose and AI-based module

for SFC profiling and management. Our work is based on the

ETSI Open Source MANO (OSM) platform that is extended

with an AI-based SFC management module.

B. Service Function chains’ Auto-Scaling Approaches

The management of Service Function Chains (SFCs) is

a non trivial endeavor and in contrast with single VNF

management, relatively few works try to tackle this problem.

In this work we focus on the SFC scaling operation integrated

within an AI-based extension of the ETSI OSM Platform. The

proposed AI module can be used for other management tasks

such as services’ scheduling and placement.

VNFs scaling is a fundamental management task that helps

tackling performance variations of VNFs/SFCs. In the liter-

ature, several approaches propose scaling mechanisms that

differ in the utilized techniques. Works on VNF/SFC auto-

scaling can be divided into reactive and proactive approaches.

The reactive approaches consist on defining thresholds stati-

cally or dynamically to trigger the scaling (in/out) of services.

The proactive scaling allows to scale VNFs resources based

on their future behavior or on future system state (e.g. future

workload) [9].

Most of the scaling work focuses on single network function

data to scale one particular type of VNF such as Firewall (FW)

or Deep Packet Inspection (DPI) functions.

Authors in [10] and [11] propose scaling algorithms based

on static thresholds. The reactive approach, based on fixed val-

ues, allows performance degradation then trigger the scaling.

This approach is not suitable for some applications of the 5G

system that are considered as critical ones and can not afford

any performance degradation. Moreover, the identification of

the optimum threshold for scaling (in and out) is a non

straightforward task and may depends on various parameters.

Even if these approaches are simple to implement and do

not cost a lot of computation resources, they may induce

to services oscillating behavior affecting the overall system

performances.

For the proactive approaches, work in [12] proposes an

hybrid offline/online algorithm to forecast CPU usage based

on historical data set for a time series model. While authors

in [13] and [14] addresses the problem of managing VNF

resources fluctuations by predicting resource requirements

using ML techniques and thereby enhancing the performance

of the resource allocation algorithm. In the first part of their

work, authors of [15] used the supervised learning approach

and propose two neural-networks based on Multi-Layer Per-

ceptron (a regressor and a classifier) to perform auto-scaling

by predicting the required number of virtual network function

instances based on the traffic demand. They focused on the

User Plan Network Function (UPF) use case to identify the

required number of UPFs to process incoming traffic in base

stations with an objective to either maximize QoS or minimize

cost.

We have noticed that most of the cited works focus only on

data coming from one VNF and do not consider the impact of

VNFs from the same chain or from other chains deployed on

same nodes. In addition, almost every forecasting algorithm

consider one dimension of the system at a time (such as

CPU usage, or workload) but none has multi-decision criteria

orientation. Furthermore, one of forecasting challenges in such

dynamic and heterogeneous system is to define, according to

the state of the system, on which level we should act. Which

VNFs of the SFC should be scaled and which instances of the

VNFs should be considered for that?

For works that consider SFCs, authors in [16] propose

a method for finding optimal SFC path considering the re-

source utilization of virtual network function (VNF) and VNF

placement.Work in [17] introduces a VNF resource prediction

model that maximizes the benefits of using SFCs. The model

exploits SFCs data to help predicting resource usage patterns

of VNFs.

Authors in [18] define a set of critical performance features

for each element of an NFV architecture. They introduce

Probius, an analysis system. Probius collects most possible

VNF performance related features, analyzes their behaviors

and try to detect abnormal behaviors. The work in [19]

proposes a dynamic auto-scaling algorithm called ElasticSFC.

The algorithm aims to minimize the cost of resources usage

while meeting the end-to-end latency of the service chain.

The second part of our work investigates the scaling deci-

sions of the deployed Service Function chains (the moment

of scaling, the number of replicas and the entities to scale) to

ensure the stability of their performance and reduce the scaling

and monitoring costs.

III. SUPER-G ARCHITECTURE OVERVIEW AND COGNITIVE

MANAGEMENT FRAMEWORK

In this section, we present the initial platform developed

within IRT labs [20] and its new functional components added

within the AI-based management module.

The Super-G platform is a virtualized infrastructure de-

ployed as a test-bed to study various subjects related to the

integration of Satcoms with 5G networks.

Figure 1 depicts the high level architecture of the platform

where the added AI-related modules are highlighted in green.

The physical infrastructure groups eight Dell servers and

four HPGen compute nodes with 16 CPUs, 96 GB of RAM,

Physical Infrastructure

Virtual Infrastructure Managers and Network Manager

Virtual Instances of Network Function and Services

Compute Network Storage

VNF1
VNF2

VNF3 VNF1
VNF4

AI module
(performances
management)

SFC Agent

Profiling NFV/SFC

Features Selection
per NFV/SFC

ML-based Autoscaling
Algorithms

LCM

KAFKA BUS

SFC1
SFC2

MONRO

Request
Generator

SFC
Mapping

Orchestration

OSM Components

Fig. 1: High level view of functional architecture of Super-G

platform.

and a shared storage of 34 TB. This infrastructure is aggre-

gated behind a Proxmox hypervisor. On top of this last, we

build Openstack private clouds and Kubernetes (K8s) clusters

with their respective lightweight versions, microstack and

microK8s (mK8s). Those technologies manage the physical

resources allocated to the virtual instances of VNFs/SFCs.

The platform has also an SDN controller for network resource

management.

The orchestration part and high level management decisions

are ensured by the OpenSource MANO (OSM) components.

Relevant components for our work are: (1) the Life Cycle

Manager (LCM) that is the core component of the tool and

ensure inter operation with other modules, (2) the Resource

Orchestrator (RO) that interacts with the Virtual Infrastructure

Managers (VIMs) (openstack and K8s) for resources requests,

and (3) the Monitoring collector (MON) that is responsible to

get VIMs and VNF related metrics.

In order to handle SFCs related concepts, that are not

supported by the OSM yet, we add the SFC agent that extends

the Network Services concept and objects of OSM with SFCs

specificity, such as client flow policies and Forwarding graph.

In order to generate and transmit data to the profiling module,

we use the SFC requests generator module.

The AI module has three main components: (1) the

VNF/SFC Profiler, (2) the Feature Selections and, (3) the ML-

based auto-scaling algorithms.

1) VNFs and SFCs Profiling: the VNF Profiling is the act

of acquiring deep knowledge about the behavior of a VNF

(resource consumption over time and performances metrics).

The SFC profiling is more complex than just making the

separate VNF profiling, as we need to establish the corre-

lation between VNFs behaviors of the same chain. The main

objective of the VNFs/SFCs profiling module is to cover the

relationship between resources configuration, services demand

and performances targets. This will help to estimate the

optimum network load a VNF can support and estimate its

resources (processor, memory and network) requirements to

meet its performance targets with ML techniques.
2) Data Collection, Metrics Granularity and Features Ex-

traction: this module is in charge of collecting, pre-processing

data, study relationship between various collected data and

their relevance for specific VNF/SFC. It is also in charge

of adjusting the granularity of the metrics according to the

system state, in order to avoid unnecessary features and

data collection. Preliminary experiments have shown that the

computation, network and time overhead of the monitoring

part is non negligible.

In this work, we consider two types of data: (1) Resource

Usage (RU) metrics per VNF instance and VNF type, and

(2) QoS metric per SFC. The Resource usage data collection

interval is set according to the response time requirement of

each SFC, while the QoS metric is collected whenever it is

available. Then, data cleaning operations are applied in order

to map the QoS values of an SFC with the resource usage of

its VNFs.
3) ML-based Auto-scaling Algorithms: this module is in

charge of studying various autoscaling algorithms (ML-based)

and comparing their accuracy. It chooses the adequate model

according to the context and the models are enhanced over

time by online learning.

We have implemented a set of linear, nonlinear, ensemble

and neural network based machine learning algorithms that

were proven to be efficient and adequate for time series

prediction problems. The implemented algorithms, well de-

fined in work [21], are: (1) Passive Aggressive Regression

(PA), (2) ElasticNet (EN), (3) RANdom SAmple Consensus

(RANSAC), (4) Huber, (5) Ridge, (6) Lasso, (7) least-angle

regression (LARS) (8) LassoLars (LLARS), (9) Long Short

Term Memory (LSTM).

We consider a multivariate multi-step time series forecasting

problem for QoS and Resource Usage (RU) predictions. Each

method (except the LSTM) gives a set of prediction intervals

(upper predicted values, lower predicted values and medium

predicted one). Some modifications were necessary to adapt

data for supervised learning models and to make multiple

predictions.

There are three possible approaches to make multiple steps

predictions in the literature: direct, recursive ,and multiple

outputs. The first one involves developing a separate model for

each forecast time step while the second one, used in models

(1) to (8) of this work, involves making a prediction for one

time step, taking the prediction, and feeding it into the model

as an input to predict the subsequent time step. This process

is repeated until the desired number of steps is reached.

The multiple outputs strategy, used in the LSTM model,

involves developing one model that is capable of predicting

the entire forecast sequence in a one-shot manner.

The Root Mean Squared Error (RMSE) is the metric used

to compare the performance of the deployed algorithms.

The most efficient models were LSTM and GBR that we

can briefly described as follows:

‚ Long short-term memory (LSTM) is a deep learning

algorithm based on artificial recurrent neural network

(RNN) architecture. Unlike standard feedforward neural

networks, LSTM has feedback connections. LSTMs were

developed to deal with the vanishing gradient problem

that can be encountered when training traditional RNNs.

Relative insensitivity to gap length is an advantage of

LSTM over RNNs, hidden Markov models and other

sequence learning methods in numerous applications.

‚ Gradient Boosting Regressor (GBR): Gradient boosting

is a machine learning technique used in regression and

classification tasks, among others. It gives a prediction

model in the form of an ensemble of weak prediction

models (decision trees). A gradient-boosted trees model

is built in a stage-wise fashion as in other boosting

methods, but it generalizes the other methods by allowing

optimization of an arbitrary differentiable loss function.

More details about data preparation, models parameters

selection, model performance comparison and their online

training will be given in the experiment section V.

IV. SFCS ELASTICITY THROUGH ML-BASED

AUTO-SCALING IN SUPER-G

In this section, we present the mathematical formulation

of the SFC system, the considered problem and the proposed

resolution algorithm, Super-G Autoscaling Algorithm (SAA).

A. SFC System model and Problem statement

1) A Service Function Chain: At each time step t, a service

function chain, SFCi, is represented by Vi, the set of its VNFs

types and their data dependency DP
t
i.

Each SFCi has a QoS requirement vector ~QoSit presenting

the QoS metrics and their objectives values at instant time t,
as depicted by Eq (1).

This work considers only the maximum response time

metric in seconds (s) RTmax
i and the effective RT t

i which

is the response time of the last processing flow in seconds (s)

(data flow from the user equipment to its final application and

its callback response).

~QoSit “ă pRTmax
i , RT t

i q ą (1)

From the response requirement we establish a priority

between SFCs. Each SFC has a priority γi, where the most

prior SFC is the one with the biggest value and is computed

according to Eq (2) as follows:

γi “
1

RTmax
i

(2)

According to the applications’ functional sensitivity, we

define two type of SFCs: (1) critical context SFCs, that serves

application related to safety and security and (2) non-critical

context SFCs that fall in all other areas such as advertisement

and gaming.

We define the binary variable δi, presented by Eq (3) as

follows:

δi “

#

0, non-critical context SFCi

1, critical context SFCi

(3)

2) A VNF and a VNF instance: A VNF is the intermediary

computation entity that has input data, make some functional

processing and then sends its results to the next VNF, the final

application or the end user (UE).

A VNF has a type p that identifies its functional behavior.

Some examples can be given such as Firewall and Deep Packet

inspection services.

A V NF p
i has V

p
i , its set of VNF instances at time t, where

each element V NF tp
ij represents the jth instance of the VNF

of type p from the ith SFC in the system.

Each VNF instance is identified by its maximum and

effective resources consumption (network and computation)

vector ~RU ijpt as described in Eq (4), and a set of their

predecessors VNFs Dijp within SFCi.

A resource usage vector at instant time t gives us the

processing (CPU in m), memory (RAM in MB) and bandwidth

(BW in MBps) usage of the VNF.

~RU ijpt “ă pCPUmax
ijp , CPU t

ijpq, pRAMmax
ijp , RAM t

ijpq,

pBWmax
ijp , BW t

ijpq ą (4)

3) SFC autoscaling problem: Given a time slotted system,

we consider a set of deployed Service Function Chains S and

their response time requirements.

We define ADt`τ pSFCiq, the SFC autoscaling decision

from instant time t to t`τ , as a list of pairs tpV NF p
i , nbipqu,

where V NF p
i is the VNF type to be scaled and nbip is the

number of replicas to be created.

This work aims to provide a set of SFCs autoscaling

decisions for the next τ time steps to anticipate SFCs’ QoS

degradation and maintain their response time performances.

Before explaining the proposed scaling procedure we define

some prediction related variables.

We define βi, presented in Eq (5), as the data collection

interval of an SFCi.

βi “
RTmax

i

cardpViq ` cardpDPiq
(5)

The τ defines the prediction horizon in seconds (s).

The variable ζ represents the number of QoS predictions as

is computed according to Eq (6).

ζi “
τ

βi
(6)

A QoS prediction related to SFCi is the set of predicted

response time within the time period τ , as defined by Eq (7)

PR
τ
i pQoSq “ t ~̂QoSikukPrt,t`τs “ tR̂T ikukPrt,t`τs (7)

Similarly for each V NF p
ij P V

p
i a RU prediction is a set of

predicted resources usage vectors that is defined by Eq (8).

PR
τ
ijppRUq “ t ~̂RUijpkukPrt,t`τs (8)

The RU prediction per VNF type, as defined by Eq (9), is

the average value for each resource prediction at each time

step between all the instances of V NF p
i

PR
τ
ippRUq “ avgkPrt,t`τspt ~̂RUijpkukPrt,t`τsq (9)

A resources usage prediction for an SFC, PRτ
i pRUq ,is the

set of the resources usage prediction for each of its VNF type

B. Super-G Auto-scaling algorithm for SFCs (SAA)

The SAA algorithm, described in Algorithm 1, is divided

into two main procedures: (1) the Prediction procedure and

(2) the VNFs selection replicas procedure, described respec-

tively in Algorithms 2 and 3.

The SAA is continuously executed and it takes as input the

set of current deployed SFCs, their QoS requirements and the

prediction horizon τ (the duration of prediction time).

At each iteration the prediction procedure is called for all

the SFCs and it returns a set of QoS predictions. If the SFCi is

non-critical and it its is possible, it returns the lower predicted

values. Otherwise it returns the upper predicted values.

The resultant predictions are then given as input to the

VNFs selection replicas procedure to: (1) identify SFCs that

need scaling operations and (2) choose the VNFs to be scaled

and their number of replicas.

A SFC is identified as a SFC to be scaled if one of its

predicted QoS values is greater than its maximum tolerated

response time.

A scaling ratio (SR) is computed for each SFC to be scaled.

This last is computed as the ratio between the maximum

tolerated value and the maximum predicted value.

This choice aims to reduce the number of scaling operations

while anticipating future QoS degradation as early as possible.

In order to avoid resources usage inefficiency (over-usage

of resources), the procedure does not scale all the VNFs of

the SFCs. But instead, it gets the resource usage predictions of

each VNFs of the SFCs that need to be scaled, and then select

only the VNFs that have increasing series of resource usage

values and their successors VNFs (to avoid the bottleneck

sliding effect). Finally, the number of VNFs replicas (RN)

is defined by the previously computed scaling ratio of their

SFCs.

After executed the previous procedure, the SAA sends the

scaling decision to the VIM agents and check if there are new

SFCs and add them to the SFCs set.

We would like to draw the attention of the reader that for

the online prediction aspect, we have a background procedure

that evaluates the performances after each prediction iteration

for all the models) and compares their average RMSE and it

returns the best model to use.

All the model except LSTM are trained in online fashion

and maybe updated (refit and retest) if after three consecutive

prediction iterations their RMSE increases and this augmen-

tation is greater than 30%.

V. EXPERIMENTS

This section aims to prove the benefits of using the proposed

proactive auto-scaling algorithm (SAA) against the legacy K8s

Data: S (SFCs list), τ (prediction horizon)
Ť

cardpSq
i“1 tRTmax

i }
(SFCs’ response time requirements list);

compute priorities(S,
Ť

cardpSq
i“1 tRTmax

i u);

sort by decreasing priority(S);

while True do

PR
τ Ð H;

for SFCi P S do

PR
τ
i “ Prediction procedurepQoS, SFCi, τq;

PR
τ Ð PR

τ Y tPRτ
i u;

end

ADt`τ “
VNFs selection replicas procedurepS,PRτ);

send decisions to VIMs(ADt`τ , @VIMs);

update SFCs set(@VIMS)
end

Algorithm 1: Auto-scaling main procedure

Data: Prtype, SFCi, τ (Prediction horizon)

Result: List of QoS predictions and list or RU

predictions

initialization;

if Prtype “ QoS then

modelQoS Ð best previous prediction model() ;

PR
τ
i Ð modelQoS .predictpSFCi, τq;

return PR
τ
i pQoSq;

else
PR

τ
i pRUq Ð H

modelRU Ð best previous prediction model() ;

for V NF p
i P Vi do

PR
τ
ip Ð H;

for V NF p
ij P V

p
i do

PR
τ
ijp Ð modelRU .predictpV NF p

ij , τq;

PR
τ
ip Ð PR

τ
ip Y PR

τ
ijp

end

PR
τ
ip “ avgkPrt,t`τspt ~̂RUijpkukPrt,t`τsq

tPRτ
i pRUqu Ð tPRτ

i pRUqu Y PR
τ
ip

end

return PR
τ
i pRUq

end
Algorithm 2: Prediction procedure

HPA algorithm in the case of critical applications deployed

within a K8s-based NFV infrastructure.

We first start by showing the weakness of the legacy not

tuned K8s HPA with a simple experiment and its impact

on services response time degradation and resource usage

inefficiency. In the second part, we expose some results related

to the behavior of the chosen machine learning algorithms. In

the last part, we present the comparison results of the SAA

and the K8s HPA algorithms.

Data: List of QoS predictions, list of SFCs, τ
(prediction horizon)

Result: List of Auto-scaling decision ADt`τ

StoScale Ð H set of pairs SFC to scale and its scaling

ratio (SR);

VtoScale Ð H set of pairs VNF to scale and its

number of replicas (RN);

ADt`τ Ð H set of scaling decisions ;

for SFCi P S do

prmax
i Ð maxtprtiPPRτ

i upprtiq

if prmax
i ą RTmax

i then

SRi Ð
prmax

i

RTmax
i

;

StoScale Ð tpSFCi, SRiqu Y StoScale;

else

continue;

end

end

for pSFCi, SRiq P StoScale do
PR

τ
i pRUq Ð prediction procedurepRU, SFCi, τq

for V NF p
i P Vi do

if (increase serie(PR
p
i)) and

pV NF p
i R VtoScaleq then

RNp
i Ð rpSRi ˚ cardpVt

ipqqs ` cardpVt
ipq;

VtoScale Ð VtoScale Y
tpV NF p

i , RN
p
i qu

Ť

V NF l
i PDip

tpV NF l
i , RN

p
i qu;

else

continue;

end

end

ADt`τ pSFCiq Ð VtoScale ;

ADt`τ Ð ADt`τ YADt`τ pSFCiq;

end

return ADt`τ ;
Algorithm 3: VNFs selection replicas procedure

A. Limits of the HPA K8s algorithm if not used in a proactive

fashion

In this section, we motivate the need of an ML-based

autoscaling algorithm by focusing on existent algorithms and

their failure to efficiently support an NFV/SFC context. More

specifically, we focus on the Horizontal Pod Auto-scaling

algorithm (K8s HP) of the Kubernetes platform. We present

some preliminary results of a baseline scenario. The K8s HPA

algorithm allows services to be scaled (replicated) based on

user predefined values of computation resources usage such as

the processor and the memory.

In our test, we consider one service function (php-apache

server) deployed in microK8s cluster and one client (load

generator) that queries the server. We collect CPU usage data

during 20 minutes in the K8s cluster for both no scaling policy

and using K8s HPA autoscaling algorithm with a CPU usage

limit set to 20% and a maximum number of replicas set to 4.

We also measure the average user experienced response time

for both no scale and HPA scenarios. The workload was sent

from 15:30 to 15:50 to a not scaled service ad then from 16:00

to 16:20 when the HPA algorithm was enabled.

Figures 2a and 2b show CPU usage of the microK8s cluster

for both no scaling and HPA scenarios. As expected, the CPU

usage after scaling increased from 17.56% to 22.39%. We

notice also that the monitoring part for CPU consumption is

not negligible. However, from figure 2c that shows CPU usage

of one of the service replicas, we can see that the replica

is underutilized (so as the two others). We have noticed that

replicas are created and not scaled down even if they are not

used for a certain amount of time. We can conclude that there

is an inefficient usage of resources with the K8s HPA (resource

are overused).

For the QoS aspect of the service, experiments show that the

time between creation of replicas and their ready to use state

is non negligible and during this period the user experience

response time is being negatively impacted. Indeed, we have

noticed that the average response time of service without

replicas was around 55ms while with replicas it decreases

to 45ms. However,for the first minutes before all replicas are

ready the response slightly increases to 58ms. Those few ms of

degradation can not be tolerated if we consider critical services

such as autonomous driving.

Moreover, alongside with the absence of network related

policy for autoscaling in the HPA, the definition of the optimal

values of CPU and memory to trigger the scale is let to the

administrator and need to be thoroughly studied.

B. Experiments description

1) The SFCs and the infrastructure: We emulate the be-

havior of two time-critical applications, considered as pivot

use cases within the 5G community: (1) the telesurgical

application (similarly to remote vehicle control) has stringent

response time requirements and is considered as a context

critical application, (2) the augmented reality application for

advertising (ARA), which is a time-sensitive application and is

considered as non context-critical one. Both applications run

in the same VIM and share the same physical resources.

Figure 3 (a) shows the communication schema between

elements of the telesurgical SFC (SFC1).

Base on the defined telesurgical application in work [22], we

model SFC1 as a diamond shaped diagram, where V NF 3
1 and

V NF 3
1 represent respectively the VNF types of management

agents of the robot surgery tool and the 3D camera. The

V NF 2
1 is the master decision entity that interacts directly with

the surgeon.

We consider V NF 3
1 as RAM intensive as it should get

access as fast as possible to the instructions and V NF 1
1 as

CPU intensive procedure as it should process 3D image data.

The V NF2 is both CPU and RAM intensive procedure.

According to work [23], the maximum allowed latency

for the real-time multimedia system part of the telesurgey

application should fall beneath RTmax
1 “ 150ms.

Figure 3 (b) shows the communication schema between

elements of the augmented reality advertisement (SFC2).

(a) CPU usage of cluster with no scaling

(b) CPU usage of the cluster with HPA scaling

(c) CPU usage of one service replica

Fig. 2: Time series data of CPU usage for no scaling and HPA

scaling between 15:30 and 16:15.

V NF 3
1

UE

V NF 1
1

V NF 2
1

(a) SFC1

V NF 4
2

UE

V NF 5
2

(b) SFC2

Fig. 3: SFCs communication diagrams with UEs for (a)

Telesurgery, (b) Augmented Reality Advertisement

It is composed of V NF 4
2 which is responsible of video

image preprocessing and GPS tracking and V NF 5
2 which is

responsible of augmented reality object creation, management

decisions, and image processing.

The maximum latency for this service should fall beneath

RTmax
2 “ 500mss.

In order to simulated the 5G communication between VNFs

each communication link latency should be beneath 150ms.

The VIM infrastructure is managed by K8s agent enhanced

by our algorithms. The SFCs are instantiated as argo work-

flows [24]. Each SFC has its namespace. A VNF type is a K8s

deployment and a VNF instance is represented by one pod of

the deployment.
The VNFs do not have the functional instruction of the

applications but are considered as black boxes with input and

output data. In order to mimic the functional time, we consider

CPU and RAM intensive programs (within the VNFs) that will

stress those resources for a certain amount of time, chosen

uniformly in a given interval of time at each data flow round.
For a time period of 24 hours, the SFC1 and SFC2 are

stressed and stopped.
The User Equipment (UE) of SFC1 (telesurgery) sends one

packet of data every 0.01 seconds until the packet counter

reach’s n1 packets (a value taken uniformly within r10, 5000s
and then it stops for time period of rest1, a value taken

uniformly within r1ms, 30mss.
Similarly the UE of SFC2 (ARA) sends one packet of

data every 0.05 seconds until the packet counter reach’s n2

packets (a value taken uniformly within r10, 5000s and then

it stop for time period of rest2, a value taken uniformly within

r1ms, 30mss. The shown results are the average results of 5

runs.

C. The collected Data

The dataset utilized in this work is generated for

a period of 24 hours. For each SFCi, the traces

in the dataset are in the form of p ~RU
t

i, QoS
t
i q and

we interpret this time series as a set of samples

tp ~RU
1

i , QoS
1
i qq, p ~RU

2

i , QoS
2
i qq, ..., p ~RU

n

i , QoS
n
i qqu.

To avoid unnecessary data collection and storage, the re-

source usage traces are collected on a timescale relative to

their SFC QoS requirement and defined by the βi described

in section IV. We consider a lag of 10mn for each prediction

as the preliminary tests have shown that this value allows the

algorithms to perform at their best.

D. The learning models

The implemented learning algorithms were tuned in order to

make multiple output predictions and time prediction intervals.

The models give upper, lower and middle values (except the

LSTM). According to the critical-context status of the SFC,

we will prefer to use the upper, middle or the lower values

set.
After each period τ all the models (expect the LSTM) are

being tested. If their average performance goes below 30% of

the two previous predictions, they are retrained and refitted in

background from the main algorithm.
Keras and TensorFlow are the library used for the LSTM

algorithm and the scikit-learn library is used for the rest of

the described algorithms.
Table I gives the used parameters for each model (chosen

under experiments).

E. Train and Test sets

A walk forward validation is used to backtest the ML

models. This approach gives the models the opportunity to

make good forecasts for the next time step as new data are

available to retrain.

F. Compared methods and evaluation criteria

The SAA and the K8s HPA algorithms are compared

according to the SFCs’ response time in seconds (s).

The K8s HPA algorithm has multiple possibilities of

parametrization to trigger a scaling operation, and this last

is left to the user.

In order to make a fair comparison with the SAA, our

version of the K8s HPA that considers the response time of

the SFCs can be described as follows:

‚ The QoS metrics are checked every βi seconds and are

compared to the defined QoS limit values for each SFC.

‚ If the collected QoS value is greater than the QoS limit,

then all the VNFs of the related SFC are scaled with one

replica.

G. Results analysis

1) Pre-selection of the prediction model for the SAA: In

this section, we present some results related to the training

procedure.

Figure 4a shows the RMSE values comparison for the ML

algorithms for 6 consecutive predictions. The experiments

show that the GBR is the best algorithm followed by the

LSTM.

We notice that the RMSE remains quite stable even if

it increases slightly when the number of prediction steps

increases. Even if it performs better than other methods, the

LSTM remains less efficient than the GBR. This could be

caused by the amount of data used for training that remains

insufficient for a deep learning procedure.

For the time aspect, we have noticed that one prediction

of the most time consuming algorithm takes an average time

of 0.000336 (s). Training and fitting of all algorithm (except

LSTM which takes 3mn to 5mn) takes in average 13 (s).

Figure 4b shows a sample of the QoS (response time in

seconds) prediction of the SFC1 by the GBR method. The

blue data presents the history data while the red line represents

the QoS limit of the SFC which was set to 0.075 (s). We notice

that the effective values (the green line) are included within

the prediction interval of the GBR.

2) Comparison of K8s HPA and the SAA methods: Figure

5 show the response time of the SFC1 over time when both

K8s HPA and SAA algorithms are used. As a general behavior,

we can notice that the SAA maintains the response time

under the maximum response time requirement of the SFC1.

However, in some cases the threshold is crossed, which is due

to the prediction accuracy. We can also notice that over all

the time period, the response time with the SAA is beneath

the values provided by the K8s HPA and which could be due

to the overpovisioning of replicas when using the worst case

prediction.

VI. CONCLUSION AND FUTURE WORK

This work shows the importance of an AI-based orchestra-

tion of services in 5G context that will handle critical appli-

cations with stringent QoS requirements such as autonomous

driving, health and augmented reality applications. We focus

(a) Performance comparison of learning algorithm through the aver-
age RMSE

(b) QoS prediction of the GBR model for SFC1

Fig. 4: Average ML algorithm performance and QoS predic-

tion interval

TABLE I: Table of models parameters.

Model Parameters

PA Regressor maxit “ 1000, tol “ 1e ´ 3
SGD Regres-
sor

maxit “ 1000, tol “ 1e ´ 3

GB Regressor
(Up-
per/Lower/mid)

loss “ quantile, alpha “ t0.9, 0.2, 0.5u

LSTM neurons “ 50, loss “ mae, optimizer “ adam

epochs “ 50, batch size “ 72, shuffle “
False

on the autoscaling operation of services in order to manage

their unstable behavior and maintain their performance over

time within a dynamic and uncertain network environment.

Fig. 5: Performance comparison of learning algorithm through

the average RMSE

We compared the proposed SFC autoscaling algorithm (SAA)

with legacy K8s HPA algorithm and have experimented its

lacks of features to support the new generation of 5G critical

services requirements. Results have shown that our method

enhances the average response time of the tested SFCs by

26% compared to the legacy K8s HPA.

As future work, we plan to consider the vertical autoscaling

operation, that allows to scale specific resources of a VNF.

The scaling decision will be more complex, as it will have

to choose which scale approach to use according to the

context and which resource to scale. As in edge computing

paradigm computation resource are limited, we must consider

the problem of scaling and resource usage efficiency trade-

off over time. We will also work to enhance our library

of ML methods by adding and test other literature learning

approaches, and track their monitoring and training cost (time

and resource) with more SFCs graph types.

As a long term work, we foresee to conduct a through study

on the size of the prediction window, as this last will play a

pivotal role to anticipate QoS degradation that should be made

as early as possible.

ACKNOWLEDGMENT

This work is supported by the Technological Research

Institute IRT Saint Exupery, CS34436, 3 Rue Tarfaya, 31400

Toulouse, France.

REFERENCES

1 ETSI, “Network Function Virtualization (NFV); Terminology for Main
Concepts in NFV,” European Telecommunications Standards Institute,
Tech. Rep., 2013.

2 Crawshaw, J., “SDN/NFV Pulse of the Industry: Commercial Realities,”
NetCracker Company, Tech. Rep., 2019.

3 Sousa, N., Perez, D., Rosa, R., Santos, M., and Esteve Rothenberg, C.,
“Network service orchestration: A survey,” Computer Communications,
vol. 142, 03 2018.

4 Mechtri, M., Ghribi, C., Soualah, O., and Zeghlache, D., “Nfv orches-
tration framework addressing sfc challenges,” IEEE Communications

Magazine, vol. 55, no. 6, pp. 16–23, 2017.

5 Mijumbi, R., Serrat, J., Gorricho, J.-L., Latré, S., Charalambides, M.,
and López, D., “Management and orchestration challenges in network
functions virtualization,” IEEE Communications Magazine, vol. 54, pp.
98–105, 2016.

6 Baton, O. Open baton: An extensible and customizable nfv mano-
compliant framework. [Online]. Available: https://openbaton.github.io

7 Shen, W., Yoshida, M., Kawabata, T., Minato, K., and Imajuku, W.,
“vconductor: An nfv management solution for realizing end-to-end virtual
network services,” in The 16th Asia-Pacific Network Operations and

Management Symposium, 2014, pp. 1–6.

8 Riera, J. F., Batallé, J., Bonnet, J., Dı́as, M., McGrath, M., Petralia, G.,
Liberati, F., Giuseppi, A., Pietrabissa, A., Ceselli, A., Petrini, A.,
Trubian, M., Papadimitrou, P., Dietrich, D., Ramos, A., Melián, J.,
Xilouris, G., Kourtis, A., Kourtis, T., and Markakis, E. K., “Tenor: Steps
towards an orchestration platform for multi-pop nfv deployment,” in 2016

IEEE NetSoft Conference and Workshops (NetSoft), 2016, pp. 243–250.

9 Pande, M. Aws scaling (reactive vs proactive
vs predictive). [Online]. Available: https://www.gritfeat.com/
aws-scaling-reactive-vs-proactive-vs-predictive/

10 Dutta, S., Taleb, T., Frangoudis, P. A., and Ksentini, A., “On-the-
fly qoe-aware transcoding in the mobile edge,” in 2016 IEEE Global

Communications Conference (GLOBECOM), 2016, pp. 1–6.

11 Carella, G. A., Pauls, M., Grebe, L., and Magedanz, T., “An extensible
autoscaling engine (ae) for software-based network functions,” in 2016

IEEE Conference on Network Function Virtualization and Software De-

fined Networks (NFV-SDN), 2016, pp. 219–225.

12 Bilal, A., Tarik, T., Vajda, A., and Miloud, B., “Dynamic cloud resource
scheduling in virtualized 5g mobile systems,” in 2016 IEEE Global

Communications Conference (GLOBECOM), 2016, pp. 1–6.

13 Mijumbi, R., Hasija, S., Davy, S., Davy, A., Jennings, B., and Boutaba, R.,
“Topology-aware prediction of virtual network function resource require-
ments,” IEEE Transactions on Network and Service Management, vol. 14,
no. 1, pp. 106–120, 2017.

14 Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet-Ros, P., Alarcón, E.,
Solé-Simó, M., Muntés-Mulero, V., Meyer, D., Barkai, S., Hibbett, M.,
Estrada, G., Coras, F., Ermagan, V., Latapie, H., Cassar, C., Evans, J.,
Maino, F., Walrand, J., and Cabellos, A., “Knowledge-defined network-
ing,” ACM SIGCOMM Computer Communication Review, vol. 47, 06
2016.

15 Subramanya, T., Harutyunyan, D., and Riggio, R., “Machine learning-
driven service function chain placement and scaling in mec-
enabled 5g networks,” Computer Networks, vol. 166, p. 106980,
2020. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1389128619310254

16 Lee, D., Yoo, J.-H., and Hong, J. W.-K., “Q-learning based service func-
tion chaining using vnf resource-aware reward model,” in 2020 21st Asia-

Pacific Network Operations and Management Symposium (APNOMS),
2020, pp. 279–282.

17 Kim, H.-G., Jeong, S.-Y., Lee, D.-Y., Choi, H., Yoo, J.-H., and Hong, J.
W.-K., “A deep learning approach to vnf resource prediction using correla-
tion between vnfs,” in 2019 IEEE Conference on Network Softwarization

(NetSoft), 2019, pp. 444–449.

18 Nam, J., Seo, J., and Seungwon, S., “Probius: Automated approach for vnf
and service chain analysis in software-defined nfv,” 03 2018, pp. 1–13.

19 Nadjaran Toosi, A., Son, J., Chi, Q., and Buyya, R., “Elasticsfc:
Auto-scaling techniques for elastic service function chaining in
network functions virtualization-based clouds,” Journal of Systems

and Software, vol. 152, pp. 108–119, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121219300421

20 Institute, T. R. Accelerating science, technology research & transfers to
industry. [Online]. Available: https://www.irt-saintexupery.com/

21 Sarker, I., “Machine learning: Algorithms, real-world applications and
research directions,” SN Computer Science, vol. 2, p. 160, 02 2021.

22 Thompson, J., Ottensmeyer, M., and Sheridan, T., “Human factors in
telesurgery: Effects of time delay and asynchrony in video and control
feedback with local manipulative assistance,” Telemedicine journal : the

official journal of the American Telemedicine Association, vol. 5, pp. 129–
37, 02 1999.

23 Zhang, Q., Liu, J., and Zhao, G., “Towards 5g enabled tactile robotic
telesurgery,” ArXiv, vol. abs/1803.03586, 2018.

24 “Argo workflows - the workflow engine for kubernetes,” https://argoproj.
github.io/argo-workflows/fields/, accessed: 2022-01-01.

Session Th.1.A

AI: Assurance & Testing II

Thursday 2nd June

10:00

–

Amphithéâtre

323

324

1

A testing approach for dependable

Machine Learning systems

Cyril Cappi(1), Camille Chapdelaine(2,3), Laurent Gardes(1), Eric Jenn(3,4), Baptiste Lefevre(4), Sylvaine Picard(2), Thomas

Soumarmon(3,5)

(1) SNCF, Saint-Denis, (2) Safran Tech, Magny-les-Hameaux, (3) IRT Saint-Exupéry, Toulouse, (4) THALES AVS, Toulouse and Mérignac,

(5) Continental, Toulouse

Abstract — In order to be used into a critical system, a software

or an hardware component must come with strong evidences

that the designer’s intents have been correctly captured and im-

plemented. This activity is already complex and expensive for

classical systems despite a very large corpus of verification

methods and tools. But it is even more complicated for systems

embedding Machine Learning (ML) algorithms due to the very

nature of the functions being implemented using ML and the

very nature of the ML algorithms. This paper focuses on one

specific verification technique, testing, for which we propose a

four-pronged approach combining performance testing, robust-

ness testing, worst-case testing, and bias testing.

Keywords— machine learning, testing, performance, robust-

ness, worst-case, bias, safety

I. MOTIVATION AND OBJECTIVES

How to engineer mission- or safety-critical systems embed-

ding Machine-Learning (ML) is a very hot topic raising many

challenges, in particular concerning verification, validation,

and certification activities [1] [2] [3]. Formal verification

techniques are making their way in the domain of Artificial

Intelligence (AI) and ML [4], but their applicability is still

limited to specific use cases and specific properties (e.g.,

properties around a specific input point). As of today, verifi-

cation of ML system essentially relies on the only verification

technique applicable on a large scale: testing. Hence, to reach

the required dependability level, a rigorous testing strategy is

mandatory [5]. This is particularly true for perception sys-

tems (e.g. computer vision, natural language recognition)

where the dimension of the input space is huge, making the

efficiency of testing highly arguable if no appropriate strategy

is defined. Testing ML implies to revisit classical compo-

nents of testing, such as the definition of equivalence classes

or the definition of test oracles.

From these considerations, the goals of this paper are the fol-

lowings:

 propose a testing strategy for systems of perception

based on ML

 identify the different categories of tests supporting

this strategy

 consider how test results can be used to improve the

performances of the systems.

Towards those goals, we first briefly describe the target sys-

tem chosen to illustrate our approach, which is a railway sig-

nal detection system based on image recognition (Section II).

Then, we introduce the generic elements that constitute a test

and detail our approach (Section III). In the following sec-

tions, we successively consider four categories of tests: per-

formance testing (Section IV), robustness testing (Section

V), worst-case testing (Section VI), and bias testing (Section

VII). Finally, we review related works in section VIII and

conclude our work.

II. USE CASE

To illustrate our approach, we consider a railway Automatic

Signal Processing system (ASP). The ASP is aimed at recog-

nizing the state of a light signal applicable to a train, a task

that is currently performed by train drivers. The ASP shall

remain vision-based in order to limit the impact on the infra-

structure and limit the cost of its deployment.

Figure 1 gives an overview of the actions performed by a train

driver. The ASP must locate the signal, check the integrity of

the signaling device (e.g., it is neither broken nor maliciously

modified) and determine the indication of the signal automat-

ically. As the ASP performs a critical function with potential

safety effects, it shall be certified at SIL4 level according to

EN50126 and EN50128 standards. In terms of error rate, and

according to studies carried out at SNCF on train drivers, a

maximum error rate of 10-5 per signal is a sensible objective.

For operational reasons, the ASP shall operate in environ-

mental conditions and tracks contexts that are both very com-

plex and variable. In addition, the signal can be occluded or

damaged. In our case, the ASP uses ML-based algorithm.

This use case shows two interesting properties with respect to

the objective of our study: it implements a simple task (rec-

ognizing a light signal) and it operates in an open and weakly

structured environment.

Figure 1 : Action performed by a train driver.

III. APPROACH

A. Context and hypotheses

In this study, we consider the following hypotheses.

 About the system:

 The ML system is a neural network, even if the pro-

posed approach may be applied to other ML models

2

 The learning phase is completed (offline learning)

 The architecture of the network is known

 The parameters of the model are known and are ac-

cessible.

 About the test objectives:

 Intentional faults (cybersecurity) are not considered,

even if the testing strategies proposed in this may

also be applied in that case

 Implementation faults are not considered. We esti-

mate that those faults can be addressed using classi-

cal software testing techniques.

B. What is testing

Testing aims at demonstrating empirically that a system sat-

isfies some properties.

A test may be used to reveal the presence of a fault in the

specification or the design of a system. In that case, the test

aims at activating some dormant fault and at propagating the

resulting latent error up to the interface of the system to make

it observable. In that case, the test may be targeted towards a

specific class of faults. In the hardware domain, for instance,

some tests targets stuck-at faults while, in the software do-

main, tests target incorrect coding of conditions or incorrect

handling of input domains boundaries.

A test may also be used to verify the compliance of the system

with some performance requirements. Performance may be

functional (e.g., the accuracy and precision of a decision, a

response time) or non-functional (e.g., the tolerance to some

unintentional or intentional fault).

More generally, test is used to verify the satisfaction of some

high-level properties, such as the robustness with respect to

incorrect inputs, the fairness of the decisions, the quality of

an explanation, etc.

C. Test construction

To perform testing, several elements are required: a system to

be tested (the system under test), an environment to provide

the inputs to the system, and an oracle to determine whether

the system behaves correctly or not (i.e., the test passes or

fails). In addition, a test-stopping criterion is usually defined

in order to stop the testing activity since, except for trivial

systems, the number of possible tests is usually infinite. The

criterion may be structural (e.g., to cover all requirements, all

lines of source code, all execution paths, etc.), statistical, or

simply driven by the amount of effort deemed acceptable to

perform this activity.

The quality of the test may also be evaluated. Referring to the

previous definition of testing, the quality may be measured

by the capability of the test to reveal errors. Traditionally,

several strategies are used: fault/error injection to check if the

test reveals the error, coverage analysis.

D. Operational Design Domain

The input domain depends on the purpose of the test. For per-

formance evaluation purposes, the input domain is the “Op-
erational Design Domain1” (ODD). In the automotive do-
main, the ODD is defined as the specific conditions under

which a given driving automation system or feature thereof is

designed to function, including, but not limited to, driving

1 Defined in Section 3.17 of « Taxonomy and definitions for terms related

to driving automation systems for on road motor vehicle. SAE recom-

manded practices J3016, Sept 2016 , https://www.sae.org/stand-
ards/j3016_201609/

modes. In the aeronautical domain, the ODD concept is re-

lated to the concept of foreseeable conditions, i.e., the envi-

ronment in which a system is assumed to operate, given its

intended function, including operating in normal, non-nor-

mal, and emergency conditions.

Defining precisely the ODD is extremely difficult since it

shall ideally include all the elements that may affect the func-

tion to be performed via its inputs, and all configurations (or

states) of these elements. In general, the definition of the

ODD cannot be formally “complete”, because the environ-
ment may be too complex to characterize (i.e., it involves too

many variables), or because it is simply unpredictable. There-

fore, some of the operational situations remain unknown, and

possibly unsafe [4]. As proposed in [6], the elaboration of the

ODD may combine the points of view of the various actors

involved in the operation and design of the system, e.g., the

train driver, the image processing chain designer, etc.

Considering our use case, the ODD encompasses the state of

the sensors, train, rails, signals, and, more generally, of the

complete environment of the system.

Tests exercise the system on situations sampled according to

the ODD. Therefore, missing a complete definition of the

ODD makes testing a challenge since situation not captured

by the ODD will not be considered. The next section elabo-

rates on this challenge.

E. Why is testing ML components difficult?

First, it is important to notice that testing are the primary

means to verify ML components today. For systems devel-

oped using non-ML techniques, testing may be replaced or

complemented by other means such as formal techniques

(model checking, abstract interpretation, formal proof, etc.).

But even though some successes have already been obtained

[7], those techniques are still in infancy in the ML domain.

ML components are particularly difficult to test for various

reasons:

 The input space is often extremely large (for example all

the train signal of France in all weather conditions),

which poses the problem for the stopping criteria defini-

tion.

 ML components often address problems which specifi-

cation is difficult to express in a comprehensive way.

 ML components often address problems where the envi-

ronment is very complex and difficult to predict (see sec-

tion on ODD).

 The test oracle is often a human, because the tasks per-

formed with ML usually cannot be performed with clas-

sical methods.

 Fault models are unknown (yet) which imposes empiri-

cal performance and robustness evaluations.

 Test coverage metrics used for non-ML software are not

useful since the behavior of the ML component depends

essentially on data, not on control.

Test equivalence classes are difficult to define for ML com-

ponents. A test equivalence is such that any test case taken in

a class reveals the same faults as any other test in the same

class. It is a fundamental rationale in software testing (see e.g.

[8]).

3

F. Our strategy

To cope with the ML based system particularities, we propose

a strategy based on 4 testing activities:

 Performance testing aims at verifying the performance

of the ML model against its specification.

 Robustness testing aims at verifying the behavior of the

system in the presence of invalid inputs or stressful en-

vironmental conditions" [9]. Robustness analysis can be

seen as the system behavior analysis regarding any envi-

ronmental or operating perturbation (known and un-

known). The goal is different from performance testing

in that robustness testing uses specifically perturbed in-

puts in or out the operational domain.

 Worst-case testing consists in exercising the system in

the “worst” situations of the ODD and observe its per-

formance.

 Bias testing aims at detecting that no bias is present in

the decisions of the model itself, i.e. that the model has

used relevant features to output the decisions which have

led to the recorded performances.

All these activities bring complementary point of views on

the component/system at hand. Figure 2 summarizes the test-

ing approach proposed in this paper.

Figure 2 : Testing strategy.

G. Expected Test Results Definition

In order to check whether a test is successful or not, some

pass-fail property must be expressed. The pass-fail property

takes the form of a predicate involving the output produced

by the system and, possibly, some reference value (expected

test result, oracle, ground truth ...).

The pass-fail property normally derives from the require-

ments specification. The test passes if all requirements are

satisfied. Unfortunately, requirements are sometimes very

difficult to establish for the kind of systems concerned by

ML, and so are the tests. This is why a particular care must

be taken in the tests and the test data definition and creation.

2 This may not be the case if a huge number of tests are required. See section
on performance testing.

The oracle may be another system possibly implemented us-

ing non-ML technologies (for testing, performance may be

less important than for operations2) by using a back-to-back

configuration or, more generally, any scheme that can be used

for runtime monitoring (OOD detection, explicability-based

monitoring, continuity/consistency of outputs, etc.). Here,

any triggering of the monitoring is considered as a test fail

condition.

A specific case is the one where the oracle is the human op-

erator himself/herself. This applies in the situation where the

system under test is embedded in an operational system (e.g.,

a train) and its outputs are compared with the ones of the op-

erator. In our use case, we would for instance compare the

decisions taken by the train driver with the outputs of the sys-

tem under test, and check the compatibility of the decisions

with the signal state reported by the system under test.

Another particular case is simulation. Here, the construction

of the scenarios can be performed with respect to precise

specification, and the expected output may be known a priori.

Unfortunately, simulation and reality are different, and the

effect of this difference are difficult to estimate. Therefore,

testing based on simulation only cannot be considered as an

acceptable means of verification.

Finally, some verification can still be carried out without any

oracle by leveraging some invariants of the system. This is

what is exploited by metamorphic testing techniques. See

e.g., [10] [11].

H. Test Dataset quality and bias in the Dataset

As discussed in the paragraph “Test Construction”, the qual-
ity of the actual tests must be verified. As we will see in the

next sections, testing strongly relies on datasets. Then test va-

lidity is related to test datasets quality. Datasets quality rep-

resent different aspects like a proper dataset size, data accu-

racy and a small amount of untended bias.

The notion of bias in the test dataset is closely linked with the

notion of representativeness. If the test dataset is biased, i.e.

if some features combinations are not representative of the

actual operational distribution, then the estimated perfor-

mance will not hold for the general operational use. For ex-

ample, if the system is only tested by day and never by night

while it will be operated by night, the actual performance may

significantly vary. Section IV.C proposes some strategies to

ensure representativeness of the test dataset.

Biases have been identified even in well-known datasets for

ML [12], and therefore, their representativeness has to be

questioned [13]. The work of [12] could be used as an exam-

ple to detect biases in the test dataset. Alternatively, weights

for the data can be computed through an optimization prob-

lem [14]. Another way to reduce the bias is to perform a syn-

thetic data augmentation [15].

IV. PERFORMANCE TESTING

A. Test objectives definition

The purpose of performance testing is to verify that the ML

model meets some performance requirement expressed using

some performance metrics.

1) Performance metrics

For classification problems, four basic performance metrics

are usually considered [16].

4

 Accuracy: 𝑎 = number of inputs assigned to their correct class
total number of inputs

 Precision: 𝑝 = number of inputs correctly assigned to class i
number of inputs assigned to class i

 Recall: 𝑟 = number of inputs correctly assigned to class i
number of inputs belonging to class i

 F1-score: 𝑓 = 2𝑝𝑟 / (𝑝 + 𝑟)

These performance metrics allow measuring a mean perfor-

mance on a given test dataset.

Obviously, performance metrics are application dependent.

For example in the case of depth prediction from an RGB im-

age by a Convolutionnal Neural Network, the performance

metric is Root Mean Square Error (RMSE) on the depth pre-

dictions (with respect to a ground truth) [17]. In the following

we consider only performance metrics related to a classifica-

tion task.

2) Performance requirements

To specify performance requirements, the following infor-

mation are necessary

 A scope, i.e., the conditions in which the performance

objectives must be satisfied (ex: all operating conditions,

low visibility operations, red lights, green lights…)
 One or several performance metrics (ex: accuracy, pre-

cision, recall…), as described in §1)

 One or several performance objectives expressed using

the previous metrics (ex:𝑝 ≥ 99.9%, 𝑎 ≥ 99.99% …)
 A confidence level, possibly expressed as the probability

for the actual performance of the ML component to be

greater or equal to the estimated performance (e.g. 99,9%, 99,99%).

The performance objectives may be class-dependent. For ex-

ample, in our use case, classifying red lights correctly is more

critical with respect to safety than classifying green lights

correctly. Therefore, the performance objective for red lights

will be higher than the one for green lights as far as safety is

concerned.

The performance requirements also depend on the scope. For

instance, in the railway domain, certification of systems relies

on a concept called “GAME” (Globalement Au Moins Equiv-

alent / Overall At Least Equivalent) that requires a new sys-

tem to be at least as safe as the existing system it will replace.

In our use case, this means that a misclassification may be

considered acceptable if a train driver would have also mis-

classified the signal in similar conditions. Practically, this

means that performance requirements in poor visibility envi-

ronments may be lower than in normal operating conditions.

3) Examples of performance requirements

The table below provides examples of possible performance

objectives for our use case:

 Example #1 Example #2 Example #3

Scope All operating

conditions

All signals

All operating

conditions

Red signal

Poor visibility

All signal

Metric Accuracy Accuracy Accuracy

Obj. 99,9999% 99,99999% 99,999%

Conf.

level

10-5 10-6 10-4

B. Test stopping criteria

A test campaign must stop when the performance objective

(e.g. 99,999%) is met with the target confidence level (e.g.

10-5). Statistical test stopping criteria may be distribution-in-

dependent or distribution-dependent.

Distribution-independent criteria requires no assumption on

the test dataset distribution with respect to the actual opera-

tional distribution, but are often intractable in practice,

whereas the second one requires some assumptions.

The following notations are used in the next paragraphs:

 ℙ(𝑋) denotes the probability of an event 𝑋

 𝑛 denotes the size of the test dataset

 �̂�𝑛denotes the probability of an incorrect classification

observed on the test dataset

 𝑝 denotes the actual unknown probability of an incorrect

classification

 𝛿 denotes the desired confidence level.

1) Distribution-independent criteria

Without assumption on the test dataset distribution, a gener-

alization bound can be derived as explained in the course “In-
troduction to Statistical Learning Theory”, in pages 191 and
192 in [18] : for some absolute constant 𝐶1 and 𝐶2 , the gen-

eralization bound reads [18] ℙ (𝑝 ≤ �̂�𝑛 + 𝐶1√𝑉𝐶𝑛 + 𝐶2√log(1 𝛿⁄)𝑛) ≥ 1 − 𝛿

In this formula, 𝑉𝐶 denotes the Vapnik and Chervonenkis di-

mension (VC dimension) [18].

Currently, these generalization bounds are often too loose to

be usable. For example, if we take 𝛿 = 10−5 with 𝑉𝐶 = 105

(typical order of magnitude for a Deep Neural Network made

of 10 layers and 104 weights [19]) the size 𝑛 of the test dataset

should be greater or equal to 1015 , which is impossible to

achieve. Improving these generalization bounds is an ongo-

ing research topic. Therefore, in this paper, this type of dis-

tribution-independent criteria is not retained.

2) Distribution-dependent criteria

If we assume that the samples of the test dataset:

(i) are independent and identically distributed (i.i.d)

(ii) have the same distribution as the operational distri-

bution relevant to the scope of the requirement.

Note: Relevant operational distribution is defined

with respect to the scope of the test. For example, if

the scope is “all operating conditions, red traffic
lights only”, then the relevant operational distribu-
tion is the true operational distribution of red traffic

lights, actually encountered by trains in operation.

Then the following relation holds, as given in lemma B.10 in

page 427 in [20] : ℙ (𝑝 ≤ �̂�𝑛 + √2�̂�𝑛𝑛 ln (1𝛿) + 2𝑛 ln (1𝛿)) ≥ 1 − 𝛿

This bound is much tighter than the previous one. For exam-

ple, if we take �̂�𝑛 = 10−5 and 𝛿 = 10−5, the size of the test

dataset should be 𝑛 ≈ 106, which is manageable.

But this bound requires a careful selection of the test dataset

to make sure that the assumptions (i) and (ii) are met.

C. Test dataset collection and verification

In this section, we assume that the distribution-dependent

stopping criterion is used. This choice implies a careful selec-

tion and verification of the test dataset in order to meet the

5

two assumptions: (i) the samples included in the test dataset

are i.i.d and (ii) the test dataset distribution is identical to the

relevant operational distribution [21].

1) Collection

In order to meet those two assumptions, we propose two ap-

proaches.

 Random collection. Data collected in operation are ran-

domly sampled. Data collection and sampling are per-

formed uniformly in order to reproduce the operational

distribution. The challenge with this approach is to en-

sure that randomness and uniformity are effective, with-

out bias.

Example: for a test of “all operating conditions on a spe-
cific train line”, all trains operating on the line are
equipped with cameras during the whole year, and the

test dataset is built by randomly sampling the collected

data.

 Planned collection. The operational distribution is ana-

lyzed to identify all the relevant features and their fre-

quency. Then, data collection is planned in order to

gather a dataset with the same features at the same fre-

quency as the operational distribution. The main chal-

lenge with this approach is to properly specify the oper-

ational distribution, without introducing bias in the spec-

ification.

Example: for a test of “all operating conditions on a spe-
cific train line”, the relevant features are identified: it in-

cludes weather conditions, light conditions, background

type, traffic light types… Then the frequency of each sit-
uation is assessed, and collection is planned to have sam-

ples of each situation at the expected frequency.

2) Verification

The test dataset should be verified in order to check that it

satisfies the assumptions. For the first assumption of inde-

pendent and identically distributed (i.i.d), the verification ap-

proach differs depending on the collection approach:

 Random collection. The i.i.d assumption is satisfied by

design, so the verification activity only aims at assuring

that randomness was effective during collection.

 Planned collection. The i.i.d assumption may be more

difficult to achieve with planned collection, and verifica-

tion activities should assure that independence is effec-

tive.

In both cases, various tests exist to verify the i.i.d. assump-

tion; such as autocorrelation plot, lag plot or turning point test

[22]. None of these techniques can provide certainty, but they

increase confidence.

The second assumption (consistency of the test dataset distri-

bution with the operational distribution) is verified through

an analysis of the consistency between the data collection

conditions and the expected operational conditions. This

analysis can be qualitative (expert judgement) and/or quanti-

tative (comparison of features frequency).

Notes:

 Expert judgment is used several times places in our

testing process. However, this is not a way to by-

pass more formal and less subjective solution when

available. In addition, expert selection and judg-

ment still relies on a rigorous process, as shown for

instance in [23] in the context of Assurance Cases.

 The operational distribution may evolve over time,

for example when changes on the traffic signals or

their environment happens. Therefore, the con-

sistency of the test dataset distribution with the op-

erational distribution may degrade over time. A

mechanism to monitor the evolutions of the opera-

tional distribution should be implemented to identify

such situation.

D. Test results analysis

At the end of the test, two analyses are performed on the test

results:

 Performance analysis: this first analysis is simple, as it

only consists in verifying that the ML model meets its

performance objectives. The distribution-dependent cri-

teria defined in section B.2) is applied, and the result is

pass or fail. If the result is fail, then the ML model should

be retrained, and performance testing redone, with a new

test dataset in order to avoid an iterative learning of the

test dataset that would introduce bias in the test results.

In case of reuse of the same test dataset, the distribution-

dependent criteria is no longer valid, and other bounds

should be applied, to account for the reuse.

 Failure analysis: additionally, if the ML model failed on

some samples of the test dataset, and even if the overall

performance is acceptable, each failure must be analyzed

in order to find the root cause, and ensure that the under-

lying failure condition is local and not systemic. This

failure analysis could be performed using explainability

techniques [21].

V. ROBUSTNESS TESTING

A. Test objectives definition

According to IEEE Std 610.12-1990 , robustness is the degree

to which a system or component can function correctly in the

presence of invalid inputs or stressful environmental condi-

tions.

We can see from this definition that robustness is twofold. In

machine learning, among potential stressful situations we

consider: adversarial attacks [23], worst cases or edge cases,

and invalid inputs that are defined relatively to the distribu-

tion of the training data [24]. Edge cases will be discussed in

the “Worst case section” because their study may be very spe-

cific to the application while adversarial robustness and out

of distribution robustness share a lot of common point from

one application to the other. Then we will focus on these two

last situations in the following.

Adversarial attacks consist in transformations of the original

data which are in general not visible for the human eye but

which have the ability to change the response of the system.

Synthesizing sophisticated adversarial examples and elabo-

rating defense strategies are the topics of many research

works [25] [26]. These invisible attacks, when used for ro-

bustness assessment, aim at providing a better understanding

of the algorithm behavior in the neighbourhood of the test

points. To do so, an optimization process is used to find a

perturbation that provokes a decision change in the limit of a

maximum perturbation radius is around a test data. If this pro-

cess is often successful, the model is considered not robust.

Adversarial attacks can be visually visible and constructed to

assess algorithm robustness [27] [28]. In the case of an out-

door application, like our use case, these visible perturbations

can represent realistic situations like fog or damage caused to

a signal.

Lastly, a technically very different approach but which goal

is very similar to adversarial attack based approaches are

6

based on abstract interpretation of the ML component [29].

In this approach, a theoretical perturbation ball is defined

around a testing point and is “forwarded” through a neural
network using abstract interpretation theory. This ball is

transformed by the network accordingly to its layers. At the

end the transformed ball is compared with the decision

boundaries. If it does not cross them, the network is robust to

the tested amount of perturbation at this testing point.

The other concern about robustness corresponds to data

which have not been learnt by the system, often referred as

out-of-distribution (OOD) data, anomaly, outlier, or novelty

[30] [31]. As a result, the behavior of the system on these data

is often not predictable and needs to be evaluated. Neverthe-

less, it is often critical to assess that a data is in or out of the

training distribution of the system. Consequently, it is neces-

sary to develop tools to identify out-of-distribution data for

observing the behavior of the system on these data only. The

performance degradation should be progressive with respect

to the distance between out of distribution data and in distri-

bution ones. If it is the case the ML based system is consid-

ered as robust.

B. Test stopping criteria

As explained earlier robustness testing data are designed to

explore potentially difficult situations. It is worthy to note

that, benchmarks of model robustness are proposed in the lit-

erature [32]. However, in this document we consider evaluat-

ing robustness of a particular model dedicated to a particular

use case. To do so, it is mandatory to be able to introduce a

progression of the test cases difficulty in order to be able to

measure the degree of robustness of the algorithm otherwise

robustness analysis is nonsense. This graduation is easy to

obtain in standard perturbation test cases:

 Noise gradation is based on noise level in dB,

 Signal frequency modification (e.g. blur) is controled by

the applied filter transfer function profile,

 Geometric distortion are parametrized by geometric pa-

rameters like rotation angle.

 Percentage of occultation of a targeted object in the case

of partial occultation perturbations.

It may be less obvious as for adversarial robustness testing.

The natural choice is to monitor the amount of data modifi-

cation through the attack radius ρ (the modified data must be
comprised in a distance at most equal to ρ from an actual test
set data). This idea has been extended to Wasserstein distance

in [33]. Wasserstein attacks are interesting for robustness

testing as they produce more realistic contents with respect

to the data distribution than classical attacks; When studying

the possibility of attacks in the physical world [34] and the

ratio between efficiency and realization difficulty cannot be

assessed by a radius criteria. However, we can draw some test

stopping criteria

 Stop when: the algorithm resists to a predefined list of

adversarial attacks with a radius less or equal to the nat-

ural noise amount (noise measures in the training data for

instance).

 Stop when physical sticker attacks covering less than

20% (or what ever the specification) of the object of in-

terest fail.

Concerning out of distribution (OOD) robustness, it is very

difficult to establish. OODs are in the class of the “Known
unknowns”, that is “One knows OOD may occur, but does
not know what it will be”. Moreover, the notion of progres-
sivity is very difficult to define and to obtain. However once

again we consider that it is a very important characteristic that

a robustness test must have. To fulfill this requirement we

propose two approaches.

The first approach relies on an operational domain expert’s
analysis. The expert knowing well the operational domain,

he should be able to express its limit and possible variations.

From this analysis, out of definition data can be gathered or

created through a simulation process.

The second approach computes the distance between the

nominal data distribution and some gathered OOD data dis-

tributions. To do so one can estimate the Wasserstein distance

between OOD sets and genuine distribution [35].

The test stopping criteria is based on the OODness measure

(proposed by the expert or through the Wassertein distance).

The test are stopped when the robustness limit of the system

is encountered (observed through a performance drop) or the

system performances are maintained for “far enough” OOD
data. The rigorous gradation of all robustness tests allows to

determine the ML component breaking points (similarly to

mechanical testing). These breaking points can be compared

to the system specification.

C. Test dataset collection

To evaluate robustness to data perturbation, a simple ap-

proach is to take all the available test data and to apply several

adversarial transformations on it. A good practice is to list all

the adversarial transformations that require to be tested (sim-

ple one like [23] or more complex one like [33]). A survey on

adversarial attacks can be found in [26]. Then, it is necessary

to tune their magnitude in order to make sure that the trans-

formation remains realistic with respect to the application..

Building a dataset for OOD robustness assessment involves

two steps. First, human experts may identify situations that

should not be encountered by the system in the operational

domain then that are not present in the training set. They can

also imagine some shift in the operational environment of the

system.

From these analysis the OOD datasets can be specified. OOD

data are then gathered manually to represent these situations.

Another method is to apply style transfer on the test data [36].

This allows evaluating the behavior of the system in realistic

situations but with different appearance.

D. Test results analysis

It is impossible to prove that an ML algorithm is robust to

every possible stressful situation.

To analyze the model robustness we observe the amount of

perturbation that must be injected in the datasets before ob-

serving a significant performance drop. A finer observation

of the results can enlighten in what kind of stress the system

does perform most badly.

What can we do with the results? If the tests are performed at

the final validation step, they should be compliant with spec-

ification to be considered as passed. If the tests are performed

during algorithm development, adversarial attack can be in-

troduced in the training data (adversarial training). If possible

this approach can be done with OOD data but this will make

more difficult OOD robustness assessment, new distribution

of OOD data will need to be imagined and generated.

VI. WORST-CASE TESTING

A. Test objectives definition

Worst-case testing consists in observing the performance of

the system in situations considered as being the “worst”, or
the most difficult, by experts of the operational domain. It is

7

important to note that this scale of difficulty is strongly re-

lated to human capabilities (processing, sensing, and actua-

tion capabilities) and that they may not match with the actual

“difficulty” for the ML system. For our use case, it means the
worst cases as perceived by the train drivers, but also by the

experts in Image acquisition and processing (used in the data

acquisition chain).

Because performance testing only considers an average per-

formance, and robustness testing activates the weaknesses of

the ML model mostly independently from the operational do-

main, worst-case testing is a necessary complement to specif-

ically observe the behavior of the model in difficult opera-

tional situations. Then, we are specifically interested here in

the inputs that are likely to be generated in the real world but

having the particularity of a low occurrence.

B. Test stopping criteria

Here the challenge is not to reach the exhaustiveness of the

situations that could arise (i.e. the field is infinite), we focus

on observing how the ML based system performs. It is clear

that its average performances on these situations will be

lower than what expected in the average conditions but our

goal is to track to what extent of bad situation the system can

go and if the operational limits we find are acceptable in prac-

tice.

Then stopping criterion is simple: Have all the worst cases

identified by the experts been tested ?

C. Test dataset collection

Our use case is an outdoor perception one. Then first worst

cases identified by an expert will concern weather, light con-

ditions, scene clutter and etc. More specific situations like

tunnel exit can also be identified as worst cases. Then the da-

taset must be defined from this comprehensive expert list of

situations. These situations are frequently identifiable in the

PHA (Preliminary Hazard Analysis). It is advised to also test

in the neighborhood of the specified limits. Then, we propose

a qualitative approach, which consists in classifying, based

on an expert opinion, the most problematic situations to be

managed for the train driver or the operator in general.

A non-exhaustive list could be:

 Test exceptional situations found in the ODD (with al-

most no sample in learning database)

 Based on expert knowledge, test critical situations

(weather condition, occlusion, background, speed, vibra-

tion, line of sight, curve, etc.)

 Test safety critical scenarios (where missing the recog-

nition leads to a critical situation)

 Test combination of already difficult cases, combination

of robustness tests applied to worst-case images.

As explained earlier, these situations are rare by definition,

then acquiring data representing them necessitate some ded-

icated effort. Real data will be acquired in the limit of feasi-

bility and cost. To find a solution to this limitation, simulation

based testing may be used [37] [38].

D. Test results analysis

The analysis of these tests allow determining the limit be-

tween the safe and unsafe domains. Beyond we could study

the options of safety mitigation (e.g. failure mode, redun-

dancy, etc.) and the way to monitor these critical situations,

even redefine the operational domain. Then, the worst-case

tests could provide a clue of confidence in the generalization

in the real world and will highlight the limits of the safe do-

main of ML.

Some difficulties remains in:

 limited amount of real data representing worst cases,

 difficulty to guaranty the representativity of simulations.

VII. BIAS TESTING

A. Test objectives definition

Once it is ensured that the overall performance of the ML

model is successfully tested with an unbiased test dataset, as

described in section IV, it is also necessary to ensure that no

bias is present in the decisions of the model itself. The model

shall indeed use relevant features to output the decisions that

have led to the recorded performances. In particular, the per-

formance results shall not be obtained due to some attributes

in the data (in images, color or texture, for instance) which

possibly introduce a bias in the response of the system. This

bias in the response corresponds to a flaw in the model’s rep-

resentation which is often due to a bias in the training set itself

[39].

If the ML model returns biased responses, then it may be sig-

nificantly more effective in some situations than others. This

may not be acceptable: for example, the traffic signals detec-

tion should not be degraded on some tracks whereas it per-

forms well on other tracks.

The absence of bias in the decisions of the model can be as-

sessed using fairness and explicability techniques. Fairness

techniques enable the detection of biased behavior of the

model, whereas explainability techniques allow the analysis

of the feature that most influenced the decisions made.

1) Fairness

Fairness is related to ensuring that the system applies a fair

treatment to the data whatever the values of some of its at-

tributes are [40]. The worst-case testing proposed in section

VI, or the performance testing described in section IV used

on subsamples of the dataset in order to compare the relative

performances in different situations, may contribute to the de-

tection of unfair data processing by the model.

2) Explainability

Due to bias in the training set, the ML model may also return

its outputs based on irrelevant features of the input. A famous

example is presented in [41], where a husky is classified as a

wolf based on a snowy background. Using explainability

techniques helps detecting such erroneous behaviors. Nor-

mally, such bias in a ML model should be detected through

the performance testing approach described in section IV,

with an unbiased test dataset. Additionally, explainability

techniques could be used, such as LIME [41], or an occlusion

sensitivity analysis as described in [42]. Nevertheless, cau-

tion should be taken with explainability techniques, since

most of them have hyper parameters that greatly influence

their results [43].

B. Test stopping criteria

Bias testing should be carried out on all relevant classes of

bias, and stopped when the review of all these classes is com-

pleted. It is not expected that bias testing will enable the de-

tection of unknown class of bias, because each testing tech-

niques addresses a particular class of bias. Identification of

all possible sources of bias cannot be achieved in practice.

Therefore the identification of relevant classes of bias relies

on expert judgement, in agreement with the certifying author-

ities.

8

Therefore, the following approach is suggested:

 Identification of relevant classes of bias: this activity

should involve experts with various backgrounds, in-

cluding data scientist, acquisition system expert, opera-

tor, etc.

 Bias testing: for each potential class of bias, one or sev-

eral bias detection techniques should be applied to con-

firm or infirm the bias in the ML model. Fairness or ex-

plainability techniques, as presented in A, could be used

depending on the type of bias. For each type of bias, the

number of samples tested can be chosen based on the ex-

pected confidence interval, using criteria similar to the

one described in section IV.B.2).

 Stop: bias testing stops when all known potential

sources of bias have been tested on a sufficient number

of samples.

C. Test dataset collection

The test dataset is defined by the potential sources of bias

identified. For each potential source of bias, a representative

test dataset should be collected, in a similar way as the one

described in section IV.C.

For example, if the potential source of bias to be tested is “the
ML model performs better on yellow lights than on red

lights” (fairness problem), the dataset should extract two sub-

samples from the test dataset gathered in section 4.3: one sub-

sample containing yellow lights, and one subsample contain-

ing red lights.

If the potential source of bias to be tested is “the ML model
builds its decisions on the shape of the signal instead of its

color” (explainability problem), then a dataset containing
various combinations of signal shapes and colors can be used.

D. Test results analysis

For each confirmed source of bias, its acceptability should be

checked with respect to the requirements. If the bias is con-

firmed and not acceptable, the ML model should be retrained

to remove the identified bias(es). The analysis differs depend-

ing of the type of bias:

 Fairness: some degree of unfairness may be accepted.

For example, it may be acceptable to have a ML model

that performs better on red lights than on green lights,

because it does not compromise safety. Therefore a care-

ful safety assessment may support the acceptance of un-

fair ML model.

 Explainability: if the ML model makes decisions based

on irrelevant features of the input, the ML model should

not be accepted, except if the occurrence of such situa-

tion is proven to be rare enough.

VIII. RELATED WORKS

As of today, even if there is already a large number of on-

going initiatives about the engineering of Machine Learning

in the context of critical systems, results are essentially fo-

cused on the identification of high-level challenges [1][2], or

certification-level guidance [3] [45]. Our paper proposes so-

lutions to address the challenge of verification and refines the

relevant development phases down to practical engineering

activities (definition of test stopping criteria, definition of da-

taset, etc.). However, our proposal remains partial for it only

consider verification by testing and does not cover other ver-

ification means such as, for instance, formal verification.

A survey of 144 papers in Machine Learning Testing is given

in [1]. This paper, which provides a comprehensive and struc-

tured analysis of the recent results concerning testing, identi-

fies a large set of methods and tools to support this activity.

Those methods and tools are some of the “building blocks”
that we integrate in the testing strategy proposed in this paper.

Our proposal is complementary to these papers in the sense

that it proposes to organize in a sensible and practical way the

various testing activities.

IX. CONCLUSION

To test safety-critical systems based on machine learning, we

have presented an approach divided into four activities: per-

formance assessment, robustness verification and worst-case

testing. For each of these, we have given objectives and stop-

ping criteria, and some solutions to collect the appropriate

data.

In addition, we have illustrated our propositions in our use

case of railway signal identification. As usual in machine

learning domain, data are of particular importance. To ensure

valid testing, we have underlined several considerations,

which must be taken into account like the definition of the

operational domain, or the detection of unintended biases in

the datasets or in the model’s decisions. Particularly for
worst-case testing, due to the scarcity of worst-case situa-

tions.

As it can be seen, our approach intends to use complementary

point of views of the system at hand to construct an efficient

testing strategy.

REFERENCES

[1] IRT Saint-Exupéry; ANITI, "White Paper Machine

Learning in Certified Systems," Toulouse, 2021.

[2] I. Stoica and et a., "A Berkeley View of Systems

Challenges for AI," Berkeley, 2017.

[3] EASA, "Concepts of Design Assurance for Neural

Networks (CoDANN)," 2020.

[4] 2. ISO/PAS, "Road Vehicles - Safety of the Intended

Functionality (SOTIF)," Jan. 2019.

[5] F. Maleki, N. Muthukrishnan, K. Ovens, C. Reinhold

and R. Forghani, "Machine Learning algorithm

validation : from essentials to advanced applications

and implications for regulatory certification and

deployment," Neuroimaging Clinics, vol. 30, pp. 433-

445, 2020.

[6] S. Picard, E. Jenn, C. Chapdelaine, B. Lefevre, C.

Cappi and L. Gardes, "Ensuring Dataset Quality for

Machine Learning Certification," in 10th IEEE

International Workshop on Software Certification,

2020.

[7] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barret and

M.-J. Kochenderfer, "Algorithms for Verifying Deep

Neaul Networks," Found. Trends. Optim, vol. 4, 2019.

[8] I.-2. RTCA, (DO-248C) Supporting information for

DO-178C and DO-278A, Dec. 2011.

[9] I. s. 6. IEEE, IEEE Standard Glossary of Software

Engineering Terminoloy (IEEE 610), 1990.

[10] T. Chen, F.-C. Kuo, H. Liu and P.-L. Poon,

"Metamorphic Testing: A Review of Challenges and

Opportunities," ACM Computing Surveys, 2018.

9

[11] X. Xie, J. Ho, C. Murphy, G. Kaiser, B. Xy and T. Y.

Chen, "Testing and Validating Machine Learning

Classifiers byMetamorphic Testing," Journal of system

and sofware, 2011.

[12] A. Torralba and A. A. Efros, "Unbiased look at dataset

bia," in IEEE International Conference on Computer

Vision and Pattern Recognition (CVPR), 2011.

[13] A. Paullada, I. D. Raji, E. M. Bender, E. Denton and A.

Hanna, "Data and its (dis) contents: A survey of dataset

development and use in machine learning research," in

Advances in Neural Information Processing Systems

Workshop : ML Retrospectives, Surveys & Meta-

analyses (ML-RSA), 2020.

[14] Y. Li and N. Vasconcelos, "Repair : Removing

representation bias by dataset resampling," in

Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019.

[15] N. Jaipuria, X. Zhang, R. Bhasin, M. Arafa, P.

Chakravarty, S. Shrivastava, S. Manglani and V. N.

Murali, "Deflating dataset bias using synthetic data

augmentation," in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern

Recognition Workshops, 2020.

[16] I. J. Goodfellow, Y. Bengio and A. Courville, Deep

Learning, MIT Press.

[17] M. Moukari, S. Picard, L. Simon and F. Jurie, "Deep

Multi-scale architectur for monocular depth

estimation," in ICIP, 2019.

[18] O. Bousquet, U. von Luxburg and G. Rätsch, Advanced

Lectures on Machine Learning : ML Summer Schools

2003, Canberra, Australia, February 2-14, 2003,

Tübingen, Germany, August 4-16, 2003, Revised

Lectures, Springer, 2003.

[19] P. L. Barlett, N. Harvey, Liam, C. Liaw and A.

Mehrabian, "Nearly-tight VC-dimension and

Pseudodimension Bounds for Piecewise Linear Neural

Networks," Journal of Machine Learning Research,

2017.

[20] S. Shalev-Shwartz and S. Ben-David, Understanding

machine learning : From theory to algorithms,

Cambridge University Press, 2014.

[21] D. Bau, B. Zhou, A. Khosla, A. Oliva and A. Torralba,

"Network Dissection:Quantifying Interpretability of

Deep Visual Representations," MIT, 2020. [Online].

Available: http://netdissect.csail.mit.edu/final-

network-dissection.pdf.

[22] J.-Y. Le Boudec, Performance evaluation of computer

and communication systems., EPFL Press, 2010.

[23] P. J. McGee and J. C. Knight, "Expert judgment in

Assurance Cases," in 10th IET System Safety and

Cyber-Security Conference 2015, Bristol, UK, 2015.

[24] I. J. Goodfellow, J. Shlens and C. Szegedy, "Explaining

and harnessing adversarial examples," in International

Conference on Learning Representations (ICLR),

2015.

[25] C. M. Bishop, "Novelty detection and neural network

validation," in IEE Proceedings-Vision, Image and

Signal processing, 1994.

[26] A. Athalye, L. Engstrom, A. Ilyas and K. Kwok,

"Synthesizing Robust Adversarial Examples," in

International Conference on Machine Learning

(ICML), 2018.

[27] X. Yuan, P. He, Q. Zhu and X. Li, "Adversarial

Examples : Attacks and Defenses for Deep Learning,"

IEEE Transactions on Neural Networks and Learning

Systems, vol. 30, no. 9, pp. 2805-2824, 2019.

[28] K. Pei, Y. Cao, J. Yang and S. Jana, "DeepXplore:

automated whitebox testing of deep learning systems,"

Commun. ACM, vol. 62, no. 11, p. 137–145, Oct. 2019.

[29] A. Odena, C. Olsson, D. G. Andersen and I.

Goodfellow, "TensorFuzz: Debugging Neural

Networks with Coverage-Guided Fuzzing," 2018.

[30] T. Gehr, M. Mirman, D. Drachsler-Cohen and P.

Tsankov, "AI2: Safety and Robustness Certification of

Neural Networks with Abstract Interpretation," in 2018

IEEE Symposium on Security and Privacy, 2018.

[31] R. Chalapathy and S. Chawla, "Deep learning for

anomaly detection : A survey," arXiv preprint

arXiv:1901.03407, 2019.

[32] H. Wang, M. J. Bah and M. Hammad, "Progress in

Outlier Detection Techniques : A Survey," IEEE

Access, vol. 7, pp. 107964--108000, 2019.

[33] D. Hendrycks and T. Dietterich, "Benchmarking neural

network robustness to common corruptions and

perturbations," in ICLR, 2019.

[34] K. Wu, A. H. Wang and Y. Yu, "Stronger and Faster

Wasserstein Adversarial Attacks," in ICML, 2020.

[35] K. Eykholt, I. Evtimov,, E. Fernandes, T. Kohno, B. Li,

A. Prakash, A. Rahmat and D. Song, "Robust Physical-

World Attacks on Deep Learning Visual

Classification," in CVPR, 2018.

[36] C. Villani, Optimal Transport: Old and New, Springer,

2009.

[37] L. Gatys, A. S. Ecker and M. Bethge, "Image Style

Transfer Using Convolutional Neural Networks.," in

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), (pp. 2414-

2423)., 2016.

[38] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H.

Ravanbakhsh and M. Vazquez-Chanlatte, "VerifAI: A

Toolkit for the Formal Design and Analysis of

Artificial Intelligence-Based Systems," in 31st

International Conference on Computer Aided

Verification (CAV), 2019.

[39] M. Mousavi, A. Khanal and R. Estrada, "AI

Playground: Unreal Engine-based Data Ablation Tool

for Deep Learning," 2020. [Online]. Available:

https://arxiv.org/pdf/2007.06153v1.pdf.

[40] Q. Zhang, W. Wang and S.-C. Zhu, "Examining cnn

representations with respect to dataset bias," in

Proceedings of the AAAI Conference on Artificial

Intelligence, 2018.

[41] E. del Barrio, F. Gamboa, P. Gordaliza and J.-M.

Loubes, "Obtaining Fairness using Optimal Transport

Theory," in International Conference on Machine

Learning (ICML), 2019.

10

[42] M. T. Ribeiro, S. Singh and C. Guestrin, "" Why should

I trust you ?" Explaining the predictions of any

classifier," in Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and

data mining, 2016.

[43] C.-H. Cheng, C.-H. Huang, H. Ruess and H. Yasuoka,

"Towards dependability metrics for neural networks,"

in The 16th ACM/IEEE International Conference on

Formal Methods and Models for System Design

(MEMOCODE), 2018.

[44] N. Bansal, C. Agarwal and A. Nguyen, "SAM : the

sensitivity of attribution methods to hyperparameters,"

in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020.

[45] DGA, "Guide méthodologique pour la spécification et

la qualification des systèmes intégrant des mo-dules

d’intelligence artificielle," 2020.

1

Can we reconcile safety objectives with machine
learning performances?

Lucian Alecu, Continental

Hugues Bonnin, Continental

Thomas Fel, SNCF

Laurent Gardes, SNCF

Sébastien Gerchinovitz, IRT Saint Exupéry and IMT

Ludovic Ponsolle, Apsys Airbus

Franck Mamalet, IRT Saint Exupéry

Eric Jenn, IRT Saint Exupéry and Thalès Avionics

Vincent Mussot, IRT Saint Exupéry

Cyril Cappi, SNCF

Kevin Delmas, ONERA

Baptiste Lefevre, Thalès

Lucian.Alecu@continental-corporation.com

hugues.bonnin@continental-corporation.com

thomas.fel@sncf.fr

l.gardes@sncf.fr

sebastien.gerchinovitz@irt-saintexupery.com

ludovic.ponsolle@apsys-airbus.com

franck.mamalet@irt-saintexupery.com

eric.jenn@irt-saintexupery.com

vincent.mussot@irt-saintexupery.com

cyril.cappi@sncf.fr

Kevin.Delmas@onera.fr

baptiste.lefevre@fr.thalesgroup.com

Abstract— The strong demand for more automated transport

systems with enhanced safety, in conjunction with the explosion

of technologies and products implementing machine learning

(ML) techniques, has led to a fundamental questioning of the

trust placed in machine learning. In particular, do state-of-the-art

ML models allow us to reach such safety objectives? We explore

this question through two practical examples from the railway

and automotive industries, showing that ML performances are

currently far from those required by safety objectives. We then

describe and question several techniques aimed at reducing the

error rate of ML components: model diversification, monitoring,

classification with a reject option, conformal prediction, and

temporal redundancy. Taking inspiration from a historical

example, we finally discuss when and how new ML-based

technologies could be introduced.

Keywords— machine learning, safety, certification, probabilistic

assessment, trustworthiness.

I. INTRODUCTION

Recent efforts in developing next generation transportation

systems bet on significant contributions from machine

learning-based predictive models to implement highly

automated functions. Yet, despite the impressive progress seen

in recent years, many questions remain open in regard to the

capacity of such statistical models to comply with existing

safety standards. Here we focus on one such central question:

is the error rate of current state-of-the-art ML models low

enough to allow the implementation of safety-critical

functions?

In this paper, we explore this question through two examples

from the railway and automotive industries and make the

following contributions:

- In Section II, we note that the performances of ML-based

detection systems used in each of the two use-cases is orders

of magnitude lower than that required to reach safety

objectives (or at least for now, or to reach it directly, i.e.,

without non-ML software components).

- In Section III, we describe potential directions for safe

integration of ML models: can we use several redundant ML

models in parallel? Can the ML component be monitored by

rejecting specific inputs or changing the (confidence of the)

outputs when needed? Can we improve ML performances with

temporally redundant inputs? We report experimental results

from the ML literature indicating that these solutions can be

useful, but are currently not at all sufficient to reach safety

objectives. Since some of these techniques reduce the

availability of the ML component, we also discuss the

availability-reliability trade-off that naturally appears.

- Finally, in Section IV, we take a historical perspective on

how technologies were introduced in the past and try to relate

it to (and differentiate it from) how ML-based technologies

can be introduced.

From a pedagogical viewpoint, this paper targets a mixed

audience of safety engineers and ML researchers. We hope it

can help highlight some key concepts and refocus research

efforts on relevant topics from the safety perspective.

In this document we focus our analysis exclusively on the

performance of ML models, since they have recently shown

considerable success in many complex tasks, and they

currently represent the dominant AI paradigm used in many

industrial applications. Other AI-flavored techniques are not

discussed here, even if they may partly address some of the

issues raised in this paper.

Related works. The question of ML reliability and

trustworthiness for integration to safety-critical systems has

received a lot of attention recently. Many projects, institutes or

working groups (e.g., ANITI, DEEL, SafeAI, the EUROCAE

WG-114 and SAE G-34, ISO TC22/SC32/WG14, ISO-IEC

JTC1/SC42/WG3, RISE SMILE), as well as workshops or

conferences (e.g., AAAI-SafeAI, MLCS, WAISE, ERTS,

Future Intelligence) were created to address these challenges.

Though several reports and papers have been published very

recently (e.g., white paper from DEEL [1], CoDANN II [2],

[3]), many questions remain open.

Authors from the DEEL project [3] provide a thorough review

of existing methods aimed towards the certification of ML-

based software in critical systems.

Work by authors from RISE SMILE project series [4] provides

another review of verification and validation methods that aim

to embed ML technologies into automotive critical systems.

The authors highlight the gap between current standards and

the ML-based software engineering and conclude that "ISO

26262 largely contravenes the nature of DNNs". They

enumerate and discuss several challenges and directions

towards new methods and norms for certifying critical systems

based on ML.

2

A similar assessment is provided by [5], which claims that ISO

26262 cannot appropriately manage ML-based software and

propose new measures to adapt the current norms.

From the side of ML literature, many papers have addressed

properties such as generalization, robustness, or explainability

[6], [7], [8], [9], [10], yet we argue that none of these results

alone can layout the necessary safety foundations for ML-

based critical systems, at least for now.

II. FROM ML PERFORMANCE TO SAFETY OBJECTIVES

A. ML performance and safety objectives

In ML parlance a model refers to a software implementation of

some stochastic function which provides predictions on unseen

samples from a given input domain. In the context of system

engineering, a function implements a decision to be taken,

given the available information and constraints. Its role is to

implement the necessary logic in order to alter or to maintain

the current state of the system, according to a given

specification.

Safety analysis seeks to establish causal links between the

erroneous components, the decisions taken by the system and

the foreseeable failures.

Safety objectives can be formulated in terms of acceptable

failure rates for each critical function implemented by a

system. In industrial standards the acceptable failure rates are

expressed as number of average failures per hour of operation.

In addition, assurance levels are considered: e.g., DAL (Design

Assurance Level) for aviation industry, as introduced by

ARP4754 [11] [12] [13] [14], SIL (Safety Integrity Level) for

industry in IEC 61508 standard [15], adapted for Railway

systems in EN 50126 [16] [17] [18], and tailored in ASIL

(Automotive Safety Integrity Level) in ISO 26262 [19]. Least

stringent levels of performance require less than 10-3 failures

per hour for such functions, while the strictest one generally

require less than 10-9 failures per hour on average1.

In order to assess whether an ML-based function complies

with the safety objectives it is thus essential to estimate its

failure rate. While everyone can acknowledge that there is a

close dependency between the error rate usually reported in the

ML literature and the failure rate of the system relying on ML

predictions in operation, the exact relationship is far from

obvious to describe analytically. Moreover, this relation is use-

case dependent.

In this section we consider ML-based components for which

every decision relies on a single prediction provided by the

ML model. To conduct a rigorous safety assessment of a ML-

based component it is key to estimate its error rate per hour of

operation of the system, based on some set of assumptions and

empirical observations.

We can draw here a parallel between the methods used to

compute error rates for hardware components and for ML-

based components. At first glance the comparison seems

appropriate as both types of components are characterized by

stochastic processes.

For most ML models these estimates can be computed from

observational data, by sampling the operational domain.

1 ML technologies are not completely covered by any safety

standard/norm today, even recent ones like SOTIF [53]. In this

paper, we consider that, due to its probabilistic nature, it makes

sense to allocate to the ML components some probabilistic

objectives, based on the analogy with HW components, or the

system level components.

Depending on the sampling schemes and other assumptions

used to compute it, statistical guarantees can be obtained with

respect to the gap between the empirical error rate (i.e.

computed from the sampled observations) and the true error

rate (the one that would have resulted by performing the

computation on all possible observations of the entire

operational domain).

On the other hand, error rates of hardware components are

reported after performing experiments in various regimes

(normal operation, operation under stress, accelerated aging,

etc.) and calibrating some expected distributions for the error

rates as to closely match this empirical evidence. Failure rates

of the system embedding them are then estimated according to

various failure analysis tools and methods (FTA, FMEA,

Human Factor Analysis, Functional Hazard Analysis, etc.).

Most of these methods rely on assumptions and practices that

must be used with a lot of attention for ML components (e.g.,

sub-components may not be independent as shown in

Section III.A, the error distribution in operation is unknown,

etc). Thus, in order to make accurate estimations of error rates

for ML-based functions, one must rely almost exclusively on

empirical observations (for now) of the actual behavior of

these functions in operation-like scenarios. In order for these

to be statistically significant, they require a large number of

samples to be collected in real-life scenarios. For example, this

would require at least 100 000 hours of operational testing

(obviously simulation can help to accelerate the time) to

decide whether the expected failure rate of a ML-based system

function is lower than 10-5 errors per hour, and this under the

stringent assumption that all the predictions provided by the

ML model are i.i.d. over training and operation. The further we

are from these assumptions, the more samples we would need

to gather in order to reach such conclusions. Unless prior

knowledge regarding mathematical properties of the

operational domain and / or of the ML model, we are required

to perform extensive testing in order to be able to guarantee

statistically sound estimations of the error rate. In spite of

these challenges, it can be useful to estimate the error rate

under idealized assumptions. If the safety objectives are met in

these conditions, further refinements (i.e., under realistic

assumptions) should be conducted, but if they are far from

being satisfied, the negative conclusion is a good indication

that safety objectives are difficult to prove in realistic

conditions.

B. Two examples from the railway and automotive domains

To illustrate the large gap between the performance of ML

system and the targeted safety objectives, let us consider two

examples: a computer vision system used in the railway

domain, and a weather prediction system used in the

automotive domain.

1) Railway and computer vision

Functional description. In our first example, we consider a

railway automatic signal reading system. This system aims at

recognizing the state of a light signal applicable to a train, a

task that is currently performed by train drivers.

Figure 1 gives an overview of the actions performed by a train

driver. The system shall determine the indication of the signal

automatically. The system must be able to operate in any

environmental conditions in the open world of a typical

railway infrastructure. This includes scenarios where the signal

can be partially occluded by vegetation or due to some weather

condition (fog, snow, etc.) or damaged. The recognition

system relies on a ML-based computer vision model. The

system takes in input an image (coming from a camera in front

of the train) in which the approximate location of the signal is

3

known. This allows us to use a bounding box and thus to limit

the detection effort of the signal in the complete image. In the

end, the ML model has to cope with a small image containing

only one signal that shall be classified.

This use-case features two interesting properties with respect

to the objective of our study: it implements a simple task

(recognizing a light signal) and it operates in an open and

weakly structured environment.

Figure 1 : Action performed by a train driver.

Safety objective. The analysis of the current human-operated

system leads to an average target of maximum 10-5 failures per

hour, which is the observed number of failed recognitions of a

red signal per hour of driving on average. This in turn

corresponds to 10-5 failures for red signal recognition if we

consider the number of red signals that a train driver usually

encounters during a journey, which is one red signal per hour

on average. The red signals are the most critical ones, and this

consideration determines the safety objectives that we consider

here for the ML system that shall recognize the signals, in

particular red signals.

ML performances compared with safety objective. As of today,

in the performance results carried out on test sets deemed

representative of real-world situations the best classification

models achieve on average 10-2 errors per signal.

Compared with the safety objective, the order of magnitude of

the observed performance is clearly insufficient.

2) Automotive and weather prediction

Functional description. Let us consider an assisted driving

service using weather data to enhance the safety of the driving

experience. Concretely, this service predicts the state of the

road surface (icy, wet or dry) from various weather-related

indicators (e.g., air temperature, humidity and water level on

the road surface) available at any given location. This ML-

based predictive system is used to implement an assisted speed

management system as a highly automated driving function

(HAD). The system takes control from the driver and handles

the vehicle accordingly in scenarios deemed safe, while

handling the control to the driver in the remaining situations.

Safety objective. The proposed ML-based service is expected

to introduce some risks, especially when the predictions of the

road conditions are erroneous (e.g., the road surface is deemed

dry instead of wet or icy and the vehicle moves at high

speeds). In such scenarios, due to its autonomous nature, the

HAD function reduces the controllability of the vehicle, which

potentially increases the risks of collisions. For this reason, the

expected failure rate that would qualify as minimally safe by

current automotive standards is 10-5 errors per hour2.

2 This requirement mainly arises from two assumptions: 1) as

explained in II.A a probabilistic objective is allocated to the

ML performances compared with safety objective. The

described service relies on an ML-based prediction model

which computes periodically the road conditions in the near

future based on recently observed weather-related data, for

each square tile of size S of the Earth's surface. Each vehicle

having enabled such a service would make a request for a new

prediction periodically, depending on its geographical

position. A very simplistic model in which the vehicle is

considered to move at a constant speed, a periodic tile change,

and an error rate per prediction (ML error rate) of 0.01, leads

to a failure rate of 0.5 failure per hour. Again, to reach the

required safety objectives, it would be necessary for this error

rate to be orders of magnitude lower.

C. The Gap

We concluded in the two use-cases above that the ML

performances are several orders of magnitude below those that

would be required to reach the safety objectives. Such a gap

should not be omitted by the new guidelines aiming for the

integration of ML into safety-critical systems.

In addition, neither rigorous software development efforts nor

properly documented data collection rules are sufficient to

reduce the gap between the actual performance of ML

components and the safety objectives. Even a properly coded

ML model trained on properly collected data could lead to

unacceptable error rates—at least for now.

Does this mean there are no hopes for integration of ML

components into safety-critical systems? We believe not but

urge to pursue research efforts.

III. RECONCILING SAFETY OBJECTIVES WITH MACHINE

LEARNING PERFORMANCES?

Generally speaking, the prediction performances of ML

models can be enhanced either by improving the data

management and processing or the model’s engineering.
Enhancing performances with data can be done by collecting

more data, by improving their quality, by including more

diverse sources of data (e.g., sensors), by exploiting certain

constraints or properties of the operational domain, etc.

Obviously, more data usually means dealing with more

uncertainty, therefore obtaining overall better performances is

not guaranteed.

From the model's engineering viewpoint, we can apply various

techniques to improve, e.g., robustness, generalization or

explainability of the models.

Next, we focus on possible solutions to decrease the error rate

of ML components. We first question the possibility of using

several redundant ML systems in parallel (Section A). Then,

we describe methods that either detect inputs potentially

leading to erroneous predictions (Sections B and C.1), or that

are allowed to output less precise predictions for hard-to-

classify inputs (Section C.2). We finally question the

possibility of using temporally redundant inputs (Section D).

Part of these methods reduce the ML model’s availability by,
e.g., ignoring its predictions in some situations. We thus also

discuss the availability-reliability trade-off that arises there.

A. Model diversification

Using several redundant components in parallel is a classical

way to reduce the failure rate of a system when the

ML component 2) the predicted state of the road is not the

only information used by the envisaged system, this particular

contribution being considered as ASIL C or B.

4

components' failures are independent (and when the costs

incurred by the additional components are justified from the

safety perspective). Though it is very natural to implement

redundant ML systems, it is now known that the independence

assumption is hard to ensure in practice. As an illustration,

Figure 2 below shows on the ImageNet dataset how the joint

error rate of 𝑛 ML models in parallel would decrease as a

function of 𝑛 if the models' errors were independent

(exponential decrease, in blue), and how this joint rate actually

decreases in practice (slow decrease, in red). For any value

of 𝑛 , we considered the first 𝑛 models in the list

{EfficientNet,DenseNet121,ResNet50V2,

MobileNet,VGG16models}, which are state-of-the-art deep

learning models for this dataset. We say we have a joint error

if all 𝑛 models make a prediction error simultaneously.

Figure 2: joint error rate versus number of redundant ML models

Of course, we cannot conclude from Figure 2 that it is

impossible to build independent (and accurate) deep learning

models. What if we tried to get more diverse models, such as

models trained with different hyperparameters, loss functions

or optimization procedures, models with different

architectures, or models trained on different datasets? Though

somewhat negative answers were formulated by [20] (about

standard ImageNet deep learning models) and by [21] (about

bootstrapping deep learning models), the very recent paper

[22] provides a more positive answer. The authors show that

significantly different training methodologies can in fact lead

to models with partially uncorrelated errors or, equivalently,

models that err on partially disjoint test points. More precisely,

for a pair of models, let us call "error inconsistency" the

proportion of test points for which only one model errs (while

the other is correct). On ImageNet, the authors show that two

different optimization objectives (supervised versus

contrastive learning) can yield an error inconsistency of around

13%, while it can go up to approximately 20% for models that

are trained on two different datasets.

Though the results of [22] indicate that it is possible to build

diverse models, they do not reach the diversity level that

independent models would do: for two models with around 𝑝 = 25% test error rate (as was the case in that paper), if the

two models were independent, the error inconsistency would

be of 2𝑝(1 − 𝑝) = 0.375, which is larger than the proportions

of 13% or 20% mentioned above. Nonetheless, as shown by

[22], producing diverse ensembles of deep learning models can

help increase the ensemble test accuracy. For instance, two

very diverse models trained with supervised learning on the

one hand and contrastive learning on the other hand, both with

about 75-76% test accuracy on ImageNet, were shown to

achieve about 83% after ensembling. The main reason seemed

that these diverse models specialize to two (partially) different

subdomains of the data. Note that the gain in accuracy is

however not as high as the one we could hope to get with

independent models and remains orders of magnitude worse

than that prescribed by safety objectives.

Two natural yet important-for-safety remarks should be made.

First, the fact that two ML models do not have independent

test errors is not at all surprising, since the two models are

evaluated on the same test points, with the same inputs. There

can be test points that are easy to classify with both models,

while other points can be hard to classify for both models (e.g.,

occluded images for which the ground truth is not at all

readable), even if these two models were trained on different

datasets. This indicates that their failure modes are typically

not independent. Second, if we accept to work only with

`partially independent’ models, estimating their error

correlation accurately seems at least as hard as estimating the

error rate of the ensemble itself (that is, the model after

consolidation). It is thus not obvious a priori how one could

leverage partial independence to prove safety at system level

by combining low-reliability ML components. While the

independence assumption is common in many safety analysis

methods when combining various components, and helps

prove a small system failure rate by, e.g., multiplying

individual error rates, the formula to combine individual error

rates is not known a priori when ML is involved.

B. Monitoring

Monitoring techniques are common means for detecting

unexpected inputs or conditions that could lead to erroneous

output of a system. Once those events are detected, prevention,

recovery, or passivation actions can be taken to prevent an

unsafe failure of the system. Those events may be due to the

activation of intentional (cyber attack with malicious purpose)

or unintentional errors, as shown in the following table.

Category External Internal

Intentional Spoofing,

adversarial attacks

Not relevant

Unintentional Out Of Distribution

inputs

Lack of robustness,

Inconsistent behavior

Different monitoring approaches can be used:

• ODD (Operational Design Domain) Monitoring [23]
verifies that the ML-based system is operated in its
usage domain (e.g., range of brightness, temperature,
speed…)

• OOD (Out Of Distribution) Monitoring [24] [25]
ensures that the ML Model operates in the distribution
defined during the training process. Monitoring
techniques include distance-based approaches, One-
class classification, probabilistic approaches,
reconstruction approaches, etc.

• Attacks monitoring [26] allows to detect adversarial
attacks. It can be based on Input source diversification,
properties imposed at design phase, ML adversarial
detector, prediction inconsistency, etc.

• Robustness monitoring ensures that the ML Model is
used in a stable area. Robustness can be verified using
constraint programming, abstract interpretation,
geometrical approaches, statistical approaches, etc.

• Consistency monitoring analyzes the consistency of
outputs with the inputs. In particular, inconsistent
sequences of outputs can be detected using Detection
of unstable states, Functional rules, etc.

5

In this paper, for reason of space, we will focus on OOD and

Robustness monitoring, presenting an overview of State-of-

the-Art techniques and their application for monitoring.

1) OOD Monitoring

The monitoring of Out-of-distribution (OOD) is a complex

topic, often related to the detection of anomalies and to the

underlying question of input normality. OOD inputs

correspond to samples that seem to be drawn from a

distribution different from the one used during training.

Indeed, the use of a training data distribution representative of

the real-world data is crucial for the quality of the learning

process and the adequacy with the operational domain.

However, the capabilities of the trained model to fulfill its task

and the probabilistic guarantees on the model performances

can only be ensured for the same type of data that it has seen

during training. Therefore, OOD monitoring focuses on the

detection of inputs that do not correspond to the normality

represented by this training distribution. This led to families of

OOD detection techniques relying on an estimation of the

similarity between a sample and the ones seen during training,

such as distance-based approaches [27] or one-class

classification [28]. This kind of techniques can be used for

obvious tasks like detecting major anomalies in the data, for

instance when the expected task cannot be performed on the

input (e.g., a picture of a dog given to classifier trained on

digits). However, it can be harder to specify for elements

belonging to the tail of the distribution, where we could also

expect to rely on the generalization capability of the model.

For this reason, these techniques always use a form of

threshold on the similarity to discriminate OOD from ID

inputs, and this choice of threshold will have a direct impact

on the availability of the function.

Furthermore, we also need to consider the question of the

performance of OOD detection methods, which is addressed in

a few papers [29, 30]. These articles compare the various

techniques of the literature on dedicated datasets, typically

with various images corruptions and noises, or representing

industrial defects. It is worth noting that one major result of

these comparisons is the inconsistency of most techniques,

which may perform exceptionally well on specific types of

simple corruptions (up to 100% detection) but may perform

below average on others. Moreover, on complex tasks, or in

high dimension, the average accuracy of the best methods

remains particularly low, typically below 80% for realistic

settings.

In the railway use case, we considered primarily the detection

of OOD inputs as a means to detect unreadable signals, which

could be caused by several things:

• An occlusion by an environmental element (e.g., a

pole, a bird, or a tree) which makes the signal

partially or entirely unreadable. We also consider

other environmental elements such as fog or

brightness issues, even if these could be easily

associated with other types of monitoring such as the

ones based on robustness.

• A failure in the cropping algorithm (e.g., crop of a

wrong area of the picture, an issue in the crop size, a

crop of the wrong signal, etc.), which may result in

the absence of the expected signal on the input

• A defective sensor, (e.g., a failure of the camera lens),

could be detected with a robustness monitoring, but

the resulting ML images will be unreadable, and the

OOD detection should trigger as well in this case.

In fact, most of these root causes can be monitored separately

from the ML component, but the OOD detection appears to be

valuable, as it can cover all these cases independently from the

cause. However, the rate of potential OOD inputs is an

important factor, as it is considered to be very low in our case

(less than 10-4). Moreover, it is important to remember that an

input classified as OOD does not necessarily mean that the

model will not be able to perform its task correctly, only that

the model performances cannot be guaranteed. This is

especially true for partial occlusions, for which there is no way

to define how much of the signal needs to be occluded before

considering it unreadable.

If we take into account the poor performances of OOD

detection methods, we can safely consider that a method

providing a true positive rate of 80% or 90% with a detection

threshold chosen to have 1% false alarms is an excellent

method in this realistic setting. In our use case, if we consider

an expected OOD rate of 10-4, the benefits of the OOD

detection appear to be very limited: the few OOD inputs

detected will not change significantly the accuracy of the

model, but the availability will drop from 100% to 99% due to

the false alarms. In this situation, the use of OOD monitoring

mechanism will be damaging the availability without

improving the reliability, but it should not be the same for

systems with higher expected OOD rates. A general formula

will be detailed in the following section with a numeric

analysis on Robustness monitoring for which the conclusions

are transferable to other types of monitoring.

2) Robustness Monitoring

According to the CODANN [2], two types of robustness can

be considered; either the capability of the learning algorithm to

produce “similar” models for “close” training datasets; or the
model stability e.g., if inputs, x and x’ are close then
predictions f(x) and f(x’) are also close. In this paper, we
address the runtime monitoring of a trained ML component

hence we focus the remainder of this section on the state-of-

the-art approaches enabling model stability assessment.

The model stability is classically specified w.r.t. a measure |. |
on inputs and outputs to formally capture the “closeness”, thus
a stable model ensures that for any delta-close inputs (x,x’),
predictions (f(x),f(x’)) are epsilon-close, that is:

 | 𝑥 − 𝑥′| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥′)| < 𝜖

According to [31], a poor robustness radius may indicate a use

of the component in an unstable decision area hence a potential

erroneous inference. This instability can typically be exploited

by errors adversarial attacks. For our use case this may

indicate that slight modifications of the image may change its

classification.

Numerous methods propose to perform at runtime a formal

robustness checking centered on the received input. Many of

these methods are founded on the abstract interpretation that

provides an over-approximation of the ML-component output

domain for a given input domain i.e., the studied robustness

ball. The main challenge encountered by these methods is the

computation resources and the computation time needed to

compute the output domain. We can especially consider the

works [32] proposing GPU-based implementation of the

abstract interpretation to speed-up the analysis process (less

than 1s second for MNIST). Other works like [33] promote

new abstract domains to increase both the accuracy and

efficiency of the computation (1-100s for MNIST). Such

approaches suffer from over-approximation, thus may consider

that an input is non-robust whereas it is.

6

Quite different approaches like [34] provide some statistical

robustness guarantees of local robustness. These methods

usually rely on the sampling of a set of inputs within the

studied robustness ball. Such methods could provide a quite

simple way to assess the local robustness. But as the authors of

[35] has identified, the main problem is to justify the

representativeness of the computed statistical bounds since the

sampling must be performed in conformity with the

operational input distribution.

To apply these techniques, one may specify the requested local

model stability that will be monitored at runtime. At the best

of our knowledge, very little works propose methods to

identify the requested robustness radius. One may consider

that the robustness radius should be derived from the

specifications of the ML component. Nevertheless, in many

cases the selection of a robustness radius is difficult to argue

and even more to relate to the specification. Hopefully, the

authors of [31] propose a method to identify the expected

robustness radius out of the training and test data sets. The

capability of the requested robustness radius to identify

instability areas at inference time has been assessed in their

experiments.

Just like OOD monitoring, the performance of robustness-

based runtime monitoring is paramount to ensure that a safety

benefit can be achieved with an acceptable impact on system’s
availability. To address this aspect, we propose a simple

formulation of the safety/availability tradeoff problem and

illustrate it thanks to the experiments made by [31].

3) Safety/Availability Tradeoff

Let 𝑆 be a simple system containing: 𝑚𝑙 , a ML component

(e.g., a classifier) and 𝑚 a mechanism validating (or rejecting) 𝑚𝑙 decisions (e.g., an external monitor). We consider that 𝑚

can only be triggered (i.e., the prediction of 𝑚𝑙 is not trusted)

or not (i.e., the prediction of ml is trusted).

So, for a given input the system generates three possible

outcomes:

• a correct output

• an erroneous-safe output, which covers a) the

situation where ml generates an incorrect but safe

output while m has not triggered, and b) the situation

where the monitor triggers.

• an erroneous-unsafe output.

Let us assume that the ML system is free of implementation

errors and is executed on a error-free hardware. Even with a

perfect implementation and hardware we consider here that:

a) ml can produce an incorrect output; b) the occurrence of an

error (e.g., an OOD input), denoted F, may prevent ml to

properly process the input.

In addition, we consider that m is unable to detect any failure

caused by something else than F. This assumption is

conservative since a monitoring mechanism, typically output

monitoring, may also detect other errors like implementation

or hardware errors.

The issue is to find the appropriate sensitivity level for m

allowing complying with both safety and availability

requirements. To assess the appropriate sensitivity level, one

must formalize the notion of unsafe and unavailable system.

Let us consider that ml can either produce a correct result, fail

safely or unsafely (event 𝑈𝑚𝑙) and m can either be triggered

(denoted T) or not. Let

• 𝑃(𝑈𝑚𝑙|¬𝐹) = α𝑚𝑙 be the conditional probability

that the component fails unsafely knowing the

failure F does not occur.

• 𝑃(𝐹) = 𝜆 be the probability of occurrence of F on

demand

• 𝑃(𝑇|¬ 𝐹) = 𝛿 be the false positive rate

• 𝑃(¬ 𝑇|𝐹) = 𝛾 be false negative rate.

a) General case

The scenarios leading to an unsafe failure (Unsa) are (a.1) F

occurs and (a.2) m fails to detect it and (a.3) ml fails unsafely

or (b.1) F does not occur and (b.2) ml fails unsafely and (b.3)

m does not spuriously detect F, i.e.

 𝑃(𝑈𝑛𝑠𝑎) = 𝑃(𝐹, 𝑈𝑚𝑙 , ¬ 𝑇) + 𝑃(¬ 𝐹, 𝑈𝑚𝑙 , ¬ 𝑇)= 𝑃(𝑈𝑚𝑙 , ¬𝑇|𝐹)𝜆 + 𝑃(𝑈𝑚𝑙 , ¬𝑇|¬𝐹)(1 − 𝜆)

Similarly, S is unavailable (Unav) when m is triggered.

Among these scenarios some are expected since ml must not

be used when F occurs. So, we propose to consider the

scenarios where S is unavailable even if F did not occur, that

is:

 𝑃(𝑈𝑛𝑎𝑣) = 𝑃(¬𝐹, 𝑇) = 𝛿(1 − 𝜆)

b) Simplifications

Correlation between 𝑈𝑚𝑙 and F. If ml is likely to produce an

unsafe output when F occurs that is 𝑃(𝑈𝑚𝑙 , ¬𝑇|𝐹) ≃ 𝑃(¬𝑇|𝐹), then:

 𝑃(𝑈𝑛𝑠𝑎) = 𝛾𝜆 + 𝑃(𝑈𝑚𝑙 , ¬𝑇|¬𝐹)(1 − 𝜆)

Correlation between 𝑈𝑚𝑙 , ¬𝑇 and ¬𝐹 . Additionally if we

consider that the ability of ml to produce an unsafe output

when F does not occur is similar when F does not occur and

the m confirms it, that is 𝑃(𝑈𝑚𝑙|¬𝐹) ≃ 𝑃(𝑈𝑚𝑙|¬𝑇, ¬𝐹) then: 𝑃(𝑈𝑛𝑠𝑎) = 𝛾𝜆 + 𝛼𝑚𝑙(1 − 𝛿)(1 − 𝜆)

Robustness monitoring. Let us consider that F is an input in an

unstable area for ml. We will consider that the ml component

is very likely to produce an erroneous output if F occurs.

Additionally, we assume that the robustness monitor does not

significantly reject robust data.

Hence one may use the following formula for Unsa and Unav:

 𝑃(𝑈𝑛𝑠𝑎) = 𝛾𝜆 + 𝛼𝑚𝑙(1 − 𝛿)(1 − 𝜆) 𝑃(𝑈𝑛𝑎𝑣) = 𝛿(1 − 𝜆)

Concerning abstract interpretation-based monitoring; some

numerical values can be extrapolated from the Figure 1a of

[31]. Let us consider a robustness radius of 10−2 , if we

assume that their experiments (made over 100 images) can be

generalised then we have: 𝑃(𝐹|¬𝑈𝑚𝑙) = 3.6 ⋅ 10−2 𝑃(𝐹|𝑈𝑚𝑙) = 6.3 ⋅ 10−1

The initial accuracy of the FNN-MNIST is 95.8%, let us

consider that any misclassification is unsafe we have: 𝑃(𝑈𝑚𝑙) = 4. 2 ⋅ 10−2

One may estimate 𝜆 as follows: 𝑃(𝐹) = 𝑃(𝐹|𝑈𝑚𝑙)𝑃(𝑈𝑚𝑙) + 𝑃(𝐹|¬𝑈𝑚𝑙)(1 − 𝑃(𝑈𝑚𝑙))= 6.1 ⋅ 10−2

The performance of the ML model without F can be computed

as follows: 𝛼𝑚𝑙 = 𝑃(𝑈𝑚𝑙|¬𝐹) = 𝑃(¬𝐹|𝑈𝑚𝑙) 𝑃(𝑈𝑚𝑙)𝑃(¬𝐹) = 1.65 ⋅ 10−2

Let us consider that we are using the approximate robustness

radius computation whose performance are depicted on the

Figure 1b of [31]. This monitor will compute an under-

7

approximation of the exact robustness ball (i.e., it is a

pessimistic monitor) so there are only false positives w.r.t. F

that is images that are rejected even if their true robustness is

above the threshold. So, we have 𝛼𝑚𝑙 = 1.65 ⋅ 10−2 𝛿 = 1.5 ⋅ 10−2 𝜆 = 6.1 ⋅ 10−2 𝛾 = 0

The resulting unavailability and safety measures are: 𝑃(𝑈𝑛𝑠𝑎) = 1.53 ⋅ 10−2 𝑃(𝑈𝑛𝑎𝑣) = 1.4 ⋅ 10−2

Thus, according to the experiments of [31], adding the online

robustness monitoring enhances slightly the integrity (𝑃(𝑈𝑚𝑙)

/ 𝑃(𝑈𝑛𝑠𝑎) ratio is approximately 2.7) with a one percent

availability loss. In this example, the measures quantify the

probability of misclassification (and lack of classification) per

image. Let us translate these results for the use-cases of the

section II.B. For the signal recognition system, the measures

are expressed per signal. If we assume that the errors are not

correlated to the signal’s color, we obtain an error rate of 1.53 ⋅ 10−2 per red signal that is higher than the expected 10−2 rate. For the automotive use case, the resulting error rate

with a very simple vehicle model is 7.6 ⋅ 10−1 per hour that is

not in the same order of magnitude than the expected error

rate. Note that these numerical values have been obtained

through experiments considering idealized assumptions [31]

and there is no conclusive evidence that such detection

performances could be met during the operation.

Even if the previous assessment of a robustness monitoring

technique is overly simplistic, it provides and illustrates a

simple method to assess the contribution of monitoring

techniques to the safety-availability trade-off. This illustration

shows that monitoring slightly improves the safety of the

system but also affects the system’s availability in a non-

negligible way.

C. Reject option and conformal prediction

We now describe two other mechanisms that allow to detect or

temper ML errors, by either filtering out some inputs

(classification with a reject option) or by outputting less

informative predictions (conformal prediction). From a system

architecture viewpoint, the reject option is similar to OOD

monitoring (it filters out inputs that can lead to erroneous

predictions), though the reject option is meant to be used for

typical (in-distribution) yet hard-to-classify inputs.

1) Classification with a reject option

This setting, also known as selective classification, is an

extension of the multi-class classification setting and has been

studied for many decades; e.g., [36], [37], [38].

Given a new input 𝑋 (e.g., an image), the goal is to predict the

associated label 𝑌 out of several possible labels. An algorithm

with reject option can decide to predict or not. More formally,

such an algorithm is given by a selective function 𝑔 and a

classification model 𝑓. When 𝑔(𝑋) = 1 the algorithm predicts

the unknown label 𝑌 with 𝑓(𝑋) . When 𝑔(𝑋) = 0 , the

algorithm refrains from predicting. There are two competing

objectives, which correspond to the reliability-availability

trade-off:

- minimize the selective risk, i.e., the average number

of errors when the ML algorithm predicts: 𝑃(𝑌 ≠ 𝑓(𝑋)|𝑔(𝑋) = 1)

- maximize the coverage, i.e., the proportion of inputs

for which the ML algorithm outputs a prediction: 𝑃(𝑔(𝑋) = 1)

For instance, in the railway use-case described earlier, the

algorithm could predict or not predict the state 𝑌 of the light

signal on the input image(s) 𝑋 . A small selective risk

corresponds to making few errors among the predicted light

signals. A large coverage corresponds to predicting most light

signals, leading to a large availability of the ML system.

Intuitively, there is a trade-off between selective risk and

coverage: we can reduce the selective risk by rejecting hard-to-

classify inputs 𝑥, but this also reduces coverage. This trade-off

has been studied theoretically for binary labels and sometimes

simple models (e.g., [37], [39], [40], [41]), but also empirically

for multiple labels and deep learning models. For instance, on

classical benchmarks such as CIFAR-10 or Cats vs. Dogs,

empirical results from [42], [43] typically show an

improvement of up to a factor of 2 in the risk when coverage is

reduced to around 90 – 95%, and up to a factor of 20 for

around 70% coverage. For other datasets such as CIFAR-100,

SVHN, and ImageNet, the empirical results from [42] are of

the same order of magnitude, but the trade-off is less

favorable: a smaller coverage is needed to achieve the same

risk reduction. In any case, even on CIFAR-10 for which the

SelectiveNet algorithm [43] is reported to reduce the risk from

around 6.7% at full coverage to around 0.3% at around 70%

coverage, the value of 0.3% is still orders of magnitude larger

than what would be required from a safety perspective if the

ML algorithm errors could not be compensated in a drastic

way. Therefore, the reject option is likely not a sufficient

solution to fill the gap between safety objectives and ML

predictive performances, though it should be considered as an

interesting component towards ML error reduction.

We should also note that in many safety-related applications

some errors may be considered more costly than others (i.e.

carry a higher risk). For example, in our railway use-case, if

the problem is cast as a binary classification (detect whether

the image contains a red signal or not), then the type II error

(missing a red signal) has a far higher risk than the type I error

(falsely reporting a non-existent red signal). The theoretical

formalism presented above can be extended to take into

account this distinction between the types of errors by

associating a different cost (also known as risk or loss) with

each one. The new risk minimization criterion then reads:

minimize 𝑃(𝑓(𝑋) ≠ 𝑟𝑒𝑑, 𝑌 = 𝑟𝑒𝑑|𝑔(𝑋) = 1) +𝜆𝑃(𝑓(𝑋) = 𝑟𝑒𝑑, 𝑌 ≠ 𝑟𝑒𝑑|𝑔(𝑋) = 1)

where 𝜆 is the relative cost of making a type I error as a

fraction of the cost of making a type II error. The coverage

criterion we seek to maximize remains unchanged. Statistical

guarantees for this asymmetric cost or risk formulation have

been explored in the literature and have been successfully

applied to the medical domain [39].

2) Conformal prediction

Conformal prediction is another way to reduce the risk. It

consists in post-processing an ML algorithm and predicting a

set 𝐶(𝑥) of possible labels for each new input 𝑥, instead of a

single prediction 𝑓(𝑥). Now, predictions are made at all times,

but the fact that 𝐶(𝑥) can contain more than one element is a

way to reduce the probability of making an error: 𝑃(𝑌 ∉𝐶(𝑋)).

In our railway use-case, this means we allow the ML system to

make predictions with less information (e.g., this light signal

can be this or that), but with the benefit of making fewer

errors. This can prove useful as long as labels in the predicted

set 𝐶(𝑥) do not often correspond to very different decisions.

Several algorithms have been proposed; see, e.g., [44], [45].

Typically, 𝐶(𝑥) is defined as the set of labels with highest

probability scores at the output of a deep learning model, using

8

a data-driven threshold, and possible regularization when tail

probabilities are poorly calibrated [46].

The aforementioned methods enjoy theoretical guarantees that

are typically of the following form: given a risk level 𝛼 ∈(0,1), we can tune the `size’ of 𝐶(𝑋) so that 𝑃(𝑌 ∉ 𝐶(𝑋)) ≤ 𝛼

Importantly, this guarantee relies on statistical assumptions

(i.i.d. or exchangeable data), the verification of which can be a

very difficult task. Furthermore, the probability above is an

average error which does not imply a guarantee for each

image, but a guarantee for most images (as those seen in the

calibration dataset).

The fact that virtually any ML model can be conformalized (as

a post-processing step) to yield a probabilistic guarantee as

above makes conformal prediction an appealing technique for

safety purposes. This field is currently receiving a lot of

attention from the ML community, and we hope efforts will be

made to incorporate safety-specific considerations.

D. Temporal redundancy

If we focus on the case of systems that may process sequences

of inputs (e.g., consecutive video frames), it is natural to

consider exploiting temporal redundancy to consolidate

decisions or to exclude sporadic errors. This principle is

applicable to ML-based systems, where consecutive inputs can

be fed to a single ML model. These inputs are usually

correlated; therefore independence cannot always be claimed.

Nevertheless, a gain can be expected from such approach when

consecutive inputs vary (for instance when the train is

running).

In order to understand that gain, let us denote by 𝑋𝑡 the correct

classification at time 𝑡 . Then the probability of two

consecutive failures can be decomposed as follows: 𝑃(𝑋𝑡̅̅ ̅ ∩ 𝑋𝑡+𝑑𝑡̅̅ ̅̅ ̅̅ ̅) = 𝑃(𝑋𝑡̅̅ ̅) × 𝑃(𝑋𝑡+𝑑𝑡̅̅ ̅̅ ̅̅ ̅|𝑋𝑡̅̅ ̅)

If 𝑃(𝑋𝑡+𝑑𝑡̅̅ ̅̅ ̅̅ ̅|𝑋𝑡̅̅ ̅) < 1, that is to say if the inputs are not fully

correlated, then the consideration of two consecutive inputs

instead of one single input can increase the reliability.

Considering the ML component, two categories of events can

affect single input performance:

• Extrinsic events concerning the environment of the

system as perceived by its sensor (here, a camera). A

typical example is the masking of the signal by a

pole, or a bird, etc. that lead to a reduction of the

recognition performance and possibly to an erroneous

decision. So, by considering a series of predictions

with an appropriate interval, the effects of these

events will be filtered out and the capability to take a

good decision will be improved.

• Intrinsic events concerning the capability of the

system to take a good decision for some input. In that

case, the event lasts as long as the input stays in the

domain where the ML performance is bad. Temporal

redundancy does not improve the capability to take a

good decision.

The simplest approach to take advantage of the potential gain

on extrinsic events is to use a voting scheme mechanism: the

decision resulting of a sequence of predictions is taken as the

majority vote of the single predictions.

Alternately, recurrent neural networks (LSTM or GRU [47]

[48]) can also be used and show encouraging results for taking

decision with time series. The principle is to feed over time a

Neural Network with a feedback connexion. The input can

either be the raw data (for instance the video sequence), or

features extracted from each step in the sequence. The gain in

sequence classification accuracy is of several percentage

points. For instance, [49] for an action video classification use

case obtain a 3% accuracy gain with LSTM compared to a

voting scheme.

For safety purpose, we suggest an algorithm based on Finite

State Machines (FSMs): each time a new input is received, the

output of the ML classifier is used to update the state of a

FSM, according to the logic depicted on Figure 3. This logic

requires 𝑁 (𝑁 = 4 for illustration purpose only on the figure)

consecutive consistent classifications to make a decision.

Otherwise, the output remains undefined.

Figure 3: FSM for the classification of a yellow traffic light.

Temporal redundancy suffers from a correlation bias: it is not

unusual to face situations where a ML model consistently

misclassifies several consecutive inputs that are part of the

same image sequence. Indeed, the variation of the input image

depends essentially on the variation of the train pose.

Unfortunately, if the speed of the train is low, or if the signal is

close to the track, the variation of the pose will be low too.

Additionally, the mechanism that extracts the relevant part of

the image may also filter out variations of the image since it

crops and scale it in order to keep the signal in a given

bounding box.

In order to estimate the correlation bias and its impact, a

simple testing approach is suggested. It consists in comparing

the rate of occurrence of the following two events: (1) "N

consecutive wrong outputs in the same sequence" and (2) "one

wrong output". The former measures the failure rate with

temporal redundancy, whereas the latter measures the failure

rate without temporal redundancy. A reduced failure rate

proves the added value in terms of reliability of this temporal

redundancy mechanism.

Additionally, hybridization of various mitigation techniques

could also be used. It consists in mixing the algorithm with

other methods listed in this paper, in order to compensate for

any identified weaknesses.

E. Concluding remarks

As we presented in this section, various methods can be

considered (and even combined) to attempt to fill the gap

identified between ML performances and safety requirements.

Even if most of these methods rely to a certain degree on the

independence hypothesis, which is often impossible to

guarantee, these solutions still deserve a serious attention as

their improvement and their potential combination could

become sufficient in the future.

At ML level typically, structural redundancy remains

interesting and could help exploiting the partial independence

9

of ML errors. Moreover, methods for monitoring ML

components for instance, such as robustness or OOD

monitoring, may be difficult to specify, but they also represent

a promising direction to explore. However, for now, the

variability of their performances and their poor reliability often

negatively impacts the tradeoff between safety and availability.

Other ML-based approaches may also be used, such as

selective classification, or conformal prediction, which address

the reliability-availability trade-off from a statistical viewpoint

are able to provide specific statistical guarantees on ML

predictions. Finally, when a system processes sequences of

inputs, temporal redundancy can also be leveraged either

through specific algorithms or ML architectures, to improve

the overall results. However, here again, the fact that temporal

independence cannot be guaranteed represents a serious

impediment.

IV. DISCUSSION: A HISTORICAL PERSPECTIVE

A. Typical stages in the introduction of a new technology

At first sight, the performance gap stated above seems to

indicate that ML-based systems are not able to be the core part

of a safety-critical system at least for complex tasks [50] [51].

Nevertheless, looking carefully at the history of typical safety-

critical systems, we can observe how new technologies can be

introduced smoothly in safety-critical systems.

We can distinguish these main stages:

- First, the bonus: the new technology is only used to mitigate

a risk that is not yet addressed at all, or to help address it

beside some existing solution. The risks introduced by the

technology itself are considered either negligible or mitigated

by other means.

- Second, the integration: when the technology is used in the

market, there are a lot of opportunities of feedbacks. In fact,

there are two sides for this feedback: the overall risk reduction

impact, and the adoption by the users. The feedback on the

first aspect is given by the facts that some specific new risk

could appear only during the operation phase, given that these

new risks are (hoped to be) at a low level. This phase is the

opportunity to accumulate data, in order to quantify the global

balance between risk reduction and risk introduction.

Meanwhile, the users have time to use the technology and to

adopt it, to ask for modification or to reject it. It could be that

he misuses it, too, which could generate a new type of risks,

which will be added to the overall risk impact seen before.

- Third, the acceptability change: when a technology serving

safety purposes is more and more used, it is more and more

demanded, and can at some point become mandatory. It means

that the mitigation of the risk that was an option at the

beginning, becomes a requirement, which is asked by some

norms. Afterwards, it could be that the acceptability level is

raised (i.e., the failure rate has to be lowered).

In order to figure out this three-phases safety related systems

evolution, let’s take the example of the ABS (Anti-blocking

Brake System) in the automotive field. In the last seventies,

this system was introduced as an option in the premium cars.

The market proposition was to reduce the risk of slipping

because of wheels blocking due to a too strong braking

regarding the road condition (e.g., driving on snow or very wet

road). At this moment in the car’s history, the road users
accept the fact that, in certain conditions, a car could slip when

the driver brakes too hard. Then having an equipment that has

the ability to avoid this slipping situation was really a safety

improvement, a bonus to the safety. At the same time, if this

new equipment failed by not avoiding the slipping, then it was

not less safe than the accepted current situation. Obviously, it

was introduced from the beginning by taking care at least as

safely as before to the other risks like keeping the ability to

brake or to move (i.e., not blocking or releasing the brake

unintendedly).

After this phase, it was the phase of integration, in the 80’s
and 90’. The product was more and more used, allowing to
know how it really helped the drivers to overcome slipping

situations, and what it brought as new effects, that were not

expected in the first versions of the new product. For example,

the first ABS equipments were not usable on roads with

cobblestones, because of the periodic loss of wheel-road

contact, which could be unfortunately at the same rhythm that

the ABS order to release the brake: this behavior was not

expected and was discovered with the usage on the road. More

largely, this usage phase allowed to measure the impact of the

ABS on the overall road safety, and to quantify all the

expected and unexpected benefits and losses, and their

balance.

This integration phase resulted in the acceptability change

phase. This system has clearly been adopted by the users, and

the balance of risks is positive. For this reason, for example in

Europe in 2004, the ABS equipment was made mandatory by

the regulation. The promulgation of this regulation shows that

at this time the society considered that the ABS system was

adopted by the users and had a positive risk balance. But it

shows one more thing: it was not anymore accepted by the

society that the accident due to slipping on the road because of

a too strong braking application; in other words, the

acceptability bar on the danger of slipping has been raised. It

means that the risks that were accepted as normal risk in the

early 80’s, were not anymore accepted, and need to be

mitigated, in the 2000’s.

B. Are such stages applicable to ML?

In the case of ML-based systems, it is obviously too early to

predict that this technology will follow this kind of cycle. In

particular, the current rapid evolution of these technologies

necessarily modifies the way they are integrated and adopted,

since no sooner is the technology on the market than it is

rendered obsolete by the next version. Furthermore, the nature

of the products that can embody ML is much broader than in

the case of ABS where the product is confused with the

technology.

Having said that, the interesting point is that one can envisage

ML-based products that improve overall safety in a domain,

even if it is not a safety critical product. The underlying

principle is that the new technology will not do worse than the

existing one, and therefore if the existing one is acceptable

then the new technology will be acceptable. This principle has

obvious limitations related to the fact that important changes

can also generate fears, and therefore the perceived risk could

be different from the real risk. But let's leave that aside and

take a few examples of what ML can bring today in a safety

critical context.

The anticipation aids that ML can provide are an interesting

category. They are based on two principles: it is about helping

a human operator (pilot, driver, etc.), and therefore the

operator will fully play his role as the main risk mitigation

means; it is about helping anticipation, and therefore a

potential failure of the system is far in the causal chain from

the realization of the risk, which makes it completely

legitimate to rely on the operator as a risk mitigation (i.e., he

will have time and ability to react). In this case, as in all the

others, we remind that we assume that the technology

introduced to help mitigate a risk does not increase any other

risk simultaneously. Incidentally, this category corresponds to

10

the category 1A that the EASA has identified in their recently

released roadmap [2] as the first to be addressed.

As noted above, how precisely these technologies will be

integrated into products, and even more how they will

influence their acceptability, is unknown at this time.

Typically, it seems unreasonable to think that their integration

into products will fundamentally improve their reliability to

such an extent that the orders of magnitude are changed, and

that the compatibility of this criterion with the requirements of

safety critical systems is made possible. But this conjecture is

not to be totally rejected either, because an operational life can

allow the development of a way to select training data whose

representativeness and quantity would allow to reach this

necessary reliability.

These considerations lead us to formulate a line of research. It

appears that the cycle described above is not formalized at all

today. It seems interesting to study a formalization so that

these system evolutions can be anticipated, or even

programmed, and that this would allow the identification of

clear steps for a system to become "safety-critical", or even,

why not, to obtain a continuum between non-critical systems

and critical systems.

V. CONCLUSION

In this paper we address the complex problem of integrating

ML predictive models into safety-critical systems. Through the

lens of two practical use-cases we highlight the discrepancy

between the performances of current ML models and the

acceptable failure rates required by the industrial safety

standards.

We observe that initiatives that are trying to propose

adjustments of current practices to produce safety-critical

software do not address the failure rate question. Therefore, we

present several techniques from both domains (ML and safety)

and analyze their potential application or extension to address

the challenges raised by this assessment.

Throughout our analysis we note that many of these problems

can be viewed as a reliability-availability trade-off and each of

these techniques can address it from a different perspective.

We further investigate analogies with current practices and

norms, as well as historical perspectives on the introduction of

pioneering technical innovations.

While we take inspiration from many such precedents, we

conclude that none of the enumerated techniques or norms

offer satisfactory solutions, at least for now. The introduction

of ML components in safety-critical systems remains an open

question very much.

Nevertheless, we argue that ML can still contribute to the

safety enhancement of current critical systems when

implemented as "smart assistant solutions", which address

otherwise unmitigated risks while ensuring they do not

introduce additional ones (e.g., without any negative impact on

the controllability of the system or the human capacity

required for safe operation).

In addition to these technical aspects, our aim is to bring

together the two communities (ML and safety), in order to

build a common and solid foundation for the engineering of

future intelligent safety systems. We hope that the discussions

and the research directions presented here will motivate other

contributors in this challenging endeavor.

VI. APPENDIX: DEFINITIONS OF KEY CONCEPTS

To help the reader unfamiliar with safety terminology, but also

to avoid any ambiguities, we provide definitions of key safety

concepts below. These definitions tend to be as generic as

possible in order to be field-independent and focus on

principles more than on normative (implementation) details. In

fact, this paper is mainly about transportation systems, trying

to be independent of its type (aeronautical, railway,

automotive). We also refer the reader to [52] for further

definitions.

1. Failure: Inability of a system or component to

perform required function according to its

specification and may have severe consequence on its

usage.

2. Risk: in this document we only deal with safety risk.

A safety risk is the potentiality of a system to provoke

some injuries or even death to a person, due to its

failures or insufficiencies. It is described essentially

by its severity and frequency and can be associated

to their mathematical product.

3. Severity: the impact level of a risk, in terms of

number of deaths, number or type of injuries, number

or type of other effect leading indirectly to injuries or

death. The severity is a discrete (resp. scalar) value,

on a finite (resp. bounded) set of values.

4. Frequency: the number of occurrences of the

failures associated to a risk in a given time unit. This

measured frequency is the reliability.

5. Acceptability: the fact that a society is keen to

authorize the use of a product, because the residual

risks are considered sufficiently low (i.e., under the

acceptability level).

6. Risk mitigation means: the means to decrease a risk,

by acting on its severity or its frequency. It can be

technical, organizational, or procedural.

7. Norm/Standard: a norm or a standard is a reference

document (or set of documents) where the

acceptability level is defined, and the recognized

risk mitigation means are described. This document

is written by a community of people that agree on

what they accept as risk and what they do not accept,

given the usage of a product. For example, the

International community defines through the ISO

26262 what they accept as risk regarding the failures

of the electric and electronic equipments for road

vehicles (See [11] [12] [13] [14] [15] [16] [17] [18]

[19] [53]).

8. Error: the occurrence of the state of a part of the

system which is not compliant to the specified or

intended state. An error can be the unique or the

partial cause of a failure (or causes no failure at all).

9. Exposure: one aspect of the frequency of a failure,

to help quantify operational situations for which it can

occur. It allows to treat differently the rare and the

frequent situations, from a safety point of view. This

parameter is more used in the automotive field than in

the others; the smaller the exposure, the smaller the

frequency.

10. Controllability: the ability for a user of the product

to avoid the dangerous situation provoked by a

failure, or at least to decrease its effects. This

parameter is more used in the automotive field than in

the others; the higher the controllability, the smaller

the frequency.

11

VII. REFERENCES

[1] H. Delseny, C. Gabreau, A. Gauffriau, B. Beaudouin, L.

Ponsolle, L. Alecu, H. Bonnin, B. Beltran, D. Duchel, J.-

B. Ginestet, A. Hervieu, G. Martinez, S. Pasquet, K.

Delmas and Pag, "White Paper Machine Learning in

Certified Systems," 2021.

[2] J. M. Cluzeau, X. Henriquel, G. Rebender, G. Soudain,

L. van Dijk, A. Gronskiy, D. Haber, C. Perret-Gentil et

R. Polak, Concepts of Design Assurance for Neural

Networks, 2020.

[3] F. T. Laviolette, L. Gabriel, A. Le, N. Amin, S. N. M.

Paulina, P. Yann, K. Foutse, A. Giulio and M. Ettore,

How to Certify Machine Learning Based Safety-critical

Systems? A Systematic Literature Review, 2021.

[4] M. Borg, C. Englund, K. Wnuk, B. Duran, C.

Levandowski, S. a. T. Y. Gao, H. Kaijser, H. Lönn et J.

Törnqvist, «Safely Entering the Deep: A Review of

Verification and Validation for Machine Learning and a

Challenge Elicitation in the Automotive Industry,»

Journal of Automotive Software Engineering, n° %11,

pp. 1-19, 2019.

[5] R. Salay et K. Czarnecki, Using Machine Learning

Safely in Automotive Software: An Assessment and

Adaption of Software Process Requirements in ISO

26262, 2018.

[6] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A.

Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López,

D. Molina, R. Benjamins et et al., «Explainable artificial

intelligence (XAI): Concepts, taxonomies, opportunities

and challenges toward responsible AI,» Information

Fusion, vol. 58, pp. 82-115, 2020.

[7] C. Molnar, Interpretable Machine Learning, 2019.

[8] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay et

D. Mukhopadhyay, «Adversarial Attacks and Defences:

A Survey,» CAAI Transactions on Intelligence

Technology, vol. 6, 2021.

[9] A. Mehta et S. Kumar, «A Survey on Resilient Machine

Learning,» 2017. [En ligne]. Available:

https://arxiv.org/abs/1707.03184.

[10] D. Carvalho, E. V., M. Pereira et J. Cardoso, «Machine

learning interpretability: A survey on methods and

metrics,» Electronics, vol. 8, n° %18, 2019.

[11] SAE/EUROCAE, ARP4754A/ED-79A, Certification

considerations for highly-integrated or complex aircraft

systems, 2010.

[12] SAE/EUROCAE, ARP4761/ED-135, Guidelines and

Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems and Equipment, 1996.

[13] RTCA/EUROCAE, ED-80/DO-254, Design Assurance

Guidance for Airborne Electronic Hardware, 2000.

[14] RTCA/EUROCAE, DO-178C/ED-12C, Software

considerations in airborne systems and equipment

certification, 2012.

[15] IEC, 61508, Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-

related Systems, 2010.

[16] CENELEC, EN-50127, Railway Applications - The

Specification and Demonstration of Reliability,

Availability, Maintainability and Safety (RAMS), 2017.

[17] CENELEC, EN-50128, Railway applications -

Communication, signalling and processing systems -

Software for railway control and protection systems,

2020.

[18] CENELEC, EN-50129, Railway applications -

Communication, signalling and processing systems –
Safety related electronic systems for signalling, 2020.

[19] ISO, 26262, Road vehicles -- Functional safety, 2018.

[20] H. Mania, J. Miller, L. Schmidt, M. Hardt and B. Recht,

"Model Similarity Mitigates Test Set Overuse," in

Advances in Neural Information Processing Systems 32

(NeurIPS 2019) , 2019.

[21] J. Nixon, B. Lakshminarayanan and D. Tran, "Why Are

Bootstrapped Deep Ensembles Not Better?," in ICBINB

Workshop at NeurIPS 2020, 2020.

[22] R. Gontijo-Lopes, Y. Dauphin and E. D. Cubuk, "No

One Representation to Rule Them All: Overlapping

Features of Training Methods," 2021.

[23] SAE, J3016, Taxonomy and Definitions for Terms

Related to On-Road Motor Vehicle Automated Driving

Systems, 2018.

[24] G. Pang, C. Shen, L. Cao et A. V. D. Hengel, «Deep

learning for anomaly detection: A review,» ACM

Computing Surveys (CSUR), vol. 54, n° %12, pp. 1-38,

2021.

[25] R. Lukas, R. K. Jacob, A. V. Robert, M. Grégoire, S.

Wojciech, K. Marius, G. D. Thomas et M. Klaus-Robert,

A unifying review of deep and shallow anomaly

detection, 2021.

[26] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett et M.

J. Kochenderfer, Algorithms for verifying deep neural

networks, 2019.

[27] M. Breunig, H.-P. Kriegel, R. Ng et J. Sander, Lof:

identifying density-based local outliers, ACM SIGMOD

international conference on Management of Data, 2000.

[28] J. Hansi, W. Haoyu, H. Wenhao, K. Deovrat et C. Arin,

Fast incremental svdd learning algorithm with the

gaussian kernel, AAI Conference on Artificial

Intelligence, 2019.

[29] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen et G.

Montavon, A unifying review of deep and shallow

anomaly detection, IEEE, 2021.

[30] S. Alireza, S. Mark et J. L. James, A Less Biased

Evaluation of Out-of-distribution Sample Detectors,

arXiv:1809.04729, 2019.

[31] J. Liu, L. Chen and A. Miné, "Input validation for

neuralnetworks via runtime local robustness

verification," in CoRR, 2020.

[32] C. Müller, F. Serre, G. Singh, M. Püschel et M. Vechev,

«Scaling polyhedral neural network verification on

gpus,» chez Proceedings of Machine Learning and

Systems, 2021.

[33] M. Niklas, C. Müller, G. Makarchuk, F. Serre, G. Singh,

M. Püschel et M. Vechev, «Prima: Precise and general

neural network certification via multi-neuronconvex

relaxations,» chez arXiv preprint arXiv:2103.03638,

2021.

[34] J. Cohen, E. Rosenfeld et Z. Kolter, «Certified

adversarial robustness viarandomized smoothing,» chez

International Conference on Machine Learning, 2019.

[35] A. Fromherz, K. Leino, M. Fredrikson, B. Parno et C.

Pasareanu, «Fast geometric projections for local

12

robustness certification,» chez International

Conferenceon Learning Representations, 2020.

[36] C. K. Chow, "An optimum character recognition system

using decision functions," IRE Transactions on

Electronic Computers, pp. 247-254, 1957.

[37] C. K. Chow, "On optimum recognition error and reject

tradeoff," IEEE Transactions on Information Theory, pp.

41-46, 1970.

[38] M. E. Hellman, "The Nearest Neighbor Classification

Rule with a Reject Option," IEEE Transactions on

Systems Science and Cybernetics, vol. 6, no. 3, pp. 179-

185, 1970.

[39] R. Herbei and M. H. Wegkamp, "Classification with

Reject Option," The Canadian Journal of Statistics / La

Revue Canadienne de Statistique, vol. 34, no. 4, pp. 709-

721, 2006.

[40] R. El-Yaniv and Y. Wiener, "On the Foundations of

Noise-free Selective Classification," Journal of Machine

Learning Research, vol. 11, no. 53, pp. 1605-1641, 2010.

[41] J. Lei, "Classification with confidence," Biometrika, vol.

101, no. 4, pp. 755-769, 2014.

[42] Y. Geifman and R. El-Yaniv, "Selective Classification

for Deep Neural Networks," in Proceedings of NeurIPS

2017, 2017.

[43] Y. Geifman and R. El-Yaniv, "SelectiveNet: A Deep

Neural Network with an Integrated Reject Option," in

Proceedings of ICML 2019, 2019.

[44] Y. Romano, M. Sesia and E. Candes, "Classification with

Valid and Adaptive Coverage," in Proceedings of

NeurIPS 2020, 2020.

[45] M. Cauchois, S. Gupta and J. C. Duchi, "Knowing what

You Know: valid and validated confidence sets in

multiclass and multilabel prediction," Journal of

Machine Learning Research, vol. 22, no. 81, pp. 1-42,

2021.

[46] A. Angelopoulos, S. Bates, J. Malik and M. I. Jordan,

"Uncertainty Sets for Image Classifiers using Conformal

Prediction," in Proceedings of ICLR 2021, 2021.

[47] S. Hochreiter and J. Schmidhuber, "Long Short-Term

Memory," Neural Computation, vol. 9, no. 8, p. 1735

1780, 1997.

[48] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau,

F. Bougares, H. Schwenk et Y. Bengio, «Learning

Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation,» 2014.

[49] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia et A.

Baskurt, «Sequential Deep Learning for Human Action

Recognition,» chez 2nd International Workshop on

Human Behavior Understanding (HBU), Amsterdam,

Netherlands, 2011.

[50] G. Katz, G. W. Barrett, D. L. Dill, K. Julian et M. J.

Kochenderfer, «Reluplex: An efficient SMT solver for

verifying deep neural networks,» chez CoRR, 2017.

[51] M. Damour, F. De Grancey, C. Gabreau, A. Gauffriau,

J.-B. Ginestet, A. Hervieu, T. Huraux, C. Pagetti, L.

Ponsolle et A. Claviere, «Towards Certification of a

Reduced Footprint ACAS-Xu System: A Hybrid ML-

Based Solution,» chez International Conference on

Computer Safety, Reliability, and Security

(SAFECOMP), 2021.

[52] A. Avizienis, J. Laprie and B. Randell, "Fundamental

Concepts of Dependability," 2000. [Online]. Available:

https://www.researchgate.net/publication/2408079_Fund

amental_Concepts_of_Dependability.

[53] ISO, PAS 21448, Road vehicles - Safety of the intended

functionality (SOTIF), 2019.

Session Th.1.B

Security

Thursday 2nd June

10:00

–

Room Lauragais

347

348

Hijacking an autonomous delivery drone equipped
with the ACAS-Xu system

Adrien Gauffriau∗†, David Bertoin†§, Jayant Sen Gupta‡†

∗Airbus Operations, † IRT Saint-Exupery, ‡Airbus AI Research, §Institut de Mathématiques de Toulouse

Abstract—In this paper, we want to show that automated anti-
collision systems in aeronautical industry such as ACAS-Xu are
vulnerable to hijacking threats in a urban environment which is
less controlled than conventional airspace. Using reinforcement
learning methods, we demonstrate the possibility to hijack the
mission of a delivery drone equipped with the ACAS-Xu system
in a simulated environment. Our objectives are first, to illustrate
the security (interception) vulnerabilities of autonomous system
and secondly, to enrich reinforcement learning benchmarks with
a new one that comes from an industrial aeronautical application.

Keywords—Autonomous and connected systems, Resilience,
Artificial Intelligence, Reinforcement Learning, Security, ACAS-
Xu

I. INTRODUCTION

Autonomy is one of the hot topics where the potential of

artificial intelligence, both for perception and decision making

tasks, opens new possibilities. Nevertheless, autonomous sys-

tems also raise public acceptance and certification challenges.

If autonomous cars are one of the best known examples,

we see the emergence of autonomous systems in aeronautics,

including delivery drones, autonomous air cabs, or airplanes

[16]. This paper will focus on these particular systems.

Whereas most important concerns of the aeronautic certifi-

cation are dependability and safety, the ability of a system to

resist malevolent attack is also a major issue. Our work mainly

focus on this topic with the development of an attack (inter-

ception) of an avionics system. Aviation security is mostly

focused on ensuring that airports are secured by controlling

people and goods passing through. Once the aircraft is flying,

security is obtained by monitoring specific parts of the airspace

all aircraft should respect, like airways. Airways are designed

to ensure separation between pairs of aircraft, and any aircraft

not respecting these rules is identified, tracked, and eventually

neutralized. Nevertheless, what is valid to ensure security from

malevolent attackers for standard aviation will no longer be

applicable in the urban air mobility (UAM) context. Even if

the concept of airway is extended in UAM, the distance to

the ground, the distance between airways, and the potential

number of threats will make it extremely difficult for humans

to supervise all the traffic.

Systems like autonomous avoidance systems are thus

needed to ensure, among others, the safety, and security of

UAM. Nevertheless, new methods for attacks inspired by

video game testing (for instance [2] and [18]) may change

the paradigm that was traditionally used. In this work, we

illustrate this statement by developing an attack on the ACAS-

Xu avoidance system (see [10]) that will possibly be used by

future autonomous vehicles.

We consider the following setting: an autonomous delivery

drone (target), equipped with the ACAS-Xu system for col-

lision avoidance, whose mission is to reach a predetermined

delivery area, is attacked by another drone (attacker) that tries

to hijack it and lead it to a different delivery area. When

no risk of collision is detected, it follows the heading to the

delivery area. When an aircraft (drone) enters the risk zone

around the target, its heading is updated according to ACAS-

Xu recommendation. The attacker policy (its strategy) is coded

in a neural network which is trained to bring the target to the

alternate delivery area using reinforcement learning (RL). In

this paper, we want to show how vulnerable is a drone that uses

a systematic way to avoid collisions. We limited our study to

the horizontal recommendations of ACAS-Xu as it is preferred

to deal with non-cooperative traffic (see [13]).

This paper is organized as follows. Section II presents

the ACAS-Xu avoidance system. Section III presents the

related works. Section IV introduces the principles of rein-

forcement learning (RL). Section V presents an experimental

setup demonstrating the effectiveness of such attacks. Finally,

section VII summarizes and concludes this paper on future

perspectives.

II. OVERVIEW OF THE ACAS SYSTEM

Among the family of ACAS X, the ACAS-Xu is dedicated

to drones and urban air mobility. It provides a horizontal

resolution for conflicts using in real-time a set of lookup

tables (LUT) that were computed offline. Using geometric

parameters, the ownship consults the LUT on collision’s prob-

ability for five different advisories : COC (Clear of Conflict),

WL (Weak Left), WR (Weak Right), L (Left), R (Right).

The system does not rely on the fact that the intruder (the

attacker in our setting) also applies the same avoidance system.

Therefore, this system can also be used to avoid any static

object (tower, crane) or birds as

The selected advisory is the one that minimizes the proba-

bility of conflicts. The geometry of a conflict is given in figure

1, the parameters definition stands as:

• ρ (ft): Distance from ownship to the intruder
• θ (rad): Angle to intruder relative to ownship heading
• ψ (rad): Heading angle of intruder relative to ownship

heading direction
• vown (ft/s): Speed of ownship
• vint (ft/s): Speed of intruder

Fig. 1: ACAS-Xu geometry [20]

• τ (s): Time until loss of vertical separation
• Rn−1: Last recommendation provided by the ACAS-Xu

The 23 LUT provides the transitions costs between the

previous advisory and the next advisory. When the ownship

is not in the COC state, it has to initiate the turn given by

the advisory. Otherwise it can continue its mission. More

information on the ACAS-Xu system can be found in [25].

III. RELATED WORKS

The use of RL methods to search for attack and interception

scenarios is relatively classical. The originality comes from the

use of these methods to find security weaknesses of an avionic

systems. This will be illustrated in the following state of the art

targeting the security in avionics, the safety of the ACAS-Xu

system and the use of RL for unmanned aerial vehicle.

A. Security in avionics

The interest in the security of aeronautic systems is not

new. In [39], the authors exploit vulnerabilities of the ACARS

network to upload new flight plans in the Flight Management

System (FMS) of aircraft. Nevertheless, the pilots still keep

control of the aircraft, the attack mainly leads to increases in

their workloads.

It is also possible to attack ground infrastructure like In-

strument Landing System (ILS) [35]. The authors developed

two different attacks of the ILS using radio signals. They

demonstrate a systematic success rate with offset touchdowns

of 18 meters to over 50 meters in lateral and longitudinal.

Therefore, an attacked aircraft that performs a fully automatic

landing miss the runway.

The literature is not limited to hacking the global system.

[1] [34] focus on attacking aircraft networks. Nevertheless,

most of these results remain theoretical or academic due to

the complexity and cost of deploying such attacks. Moreover,

none of these attacks enable complete control of the aircraft.

Even if there is an active research on safety in avionics, the

results obtained are often mitigated by the presence of humans

in the loop. Moreover, the popularization of drones and their

accessibility has led to the emergence of new safety issues.

In the future, the introduction of low complex autonomous

systems may change this paradigm. Our contribution aims to

make the avionic community aware of this future challenge.

B. ACAS-Xu

Detect and avoid is a task that guarantees the safety of flying

vehicles, completed by the intervention of the pilot. For large

aircraft, it is still the responsibility of the pilot that may be

helped by systems that give advisory and recommendations

for avoidance. The most famous one is the TCAS [31] that

requires both planes to be equipped. The ACAS system [10]

was developed for autonomous vehicles and mainly based on

[22]. Several methods were explored to guarantee that this

system is safe among Petri model [30] or formal methods

[17]. The memory size (more than 4 GBytes) required by the

look-up table of the ACAS-Xu system may be incompatible

with the electronics of small drones. Thus, [19] developed

training of neural networks that replace look-up tables with

a small memory footprint. This raises the question of the

safety of the neural network, which is still an open problem.

[20] [7] propose formal methods to analyze neural networks

and prove avoidance properties. Another approach [8] also

based on formal methods, demonstrates that trained neural

network behaves like the look-up table defined by the ACAS-

Xu standard.

Our contribution aims to raise the security question of the

ACAS-Xu system that differs from previous work that mainly

focus on its safety. Up to our knowledge, this has never been

done.

C. Reinforcement learning for Unmanned Aerial Vehicle

Recent successes in reinforcement learning have demon-

strated the ability of reinforcement learning agents to outper-

form humans in many tasks [29], [36], [41], [42], [47]. Several

recent works have sought to capitalize on the progress made

in RL and Deep RL for the control and navigation of UAV.

There are mainly two classical use cases of reinforcement

learning for UAVs. The first one is flying control where the RL

agents aim at providing stability and control and navigation.

The second deals with mission planning where the agent is

responsible for the high-level policy while control systems

are implemented using classical methods such as Proportional-

Integral-Derivative (PID) control systems [9].

While PID control has demonstrated excellent results in

stable environments, it is less effective in unpredictable and

harsh environments. Recently, several research projects have

explored the possibility of using reinforcement learning to

address its limitations. [49] compared the efficiency of a model

based reinforcement learning controller with Integral Sliding

Mode (ISM) control [52].

The authors of [15] trained neural-network policy for

quadrotor controllers using an original policy optimization

algorithm with Monte-Carlo estimates. The learned policy

manages to stabilize the quadrotor in the air even under

very harsh initialization, both in simulation and with a real

quadrotor.

[21] train autonomous controllers flight control systems

with state-of-the-art model free deep reinforcement learning

algorithms (Deep Deterministic Policy Gradient [23], Trust

Agent

Environment

atst+1 rt

Fig. 2: Standard RL framework

Region Policy Optimization [37], Proximal Policy Optimiza-

tion [38]) and compare their performance with PID controllers.

In [3], a sequential latent variable model is learned from

flying sequences of an actual drone controlled with PID. This

latent dynamic model is used as a generative model to learn

a deep model-based reinforcement learning agent directly on

real drones with a limited number of steps.

In [32], the authors combine a Q-learning [50] algorithm

focusing on navigation policy with PID controllers. In [45],

the navigation problem is decomposed into two simpler sub-

tasks (collision-avoidance and approaching the target), each

of them solved by a separate neural network in a distributed

deep RL framework. An active field of research focuses on

interception and defense against malicious drones. In a 1 vs

1 close combat situation, [48] demonstrates the effectiveness

of an A3C [27] RL agent versus an opponent with Greedy

Shooter policy [40]. In a multi-agent context, [51] uses a

Multi-Agent Deep Deterministic Policy Gradient algorithm

(MADDPG) [24] in an attack-defense confrontation markov

game. [26] proposes a ground defense system trained with Q-

learning to choose between high-level defense strategies (GPS

spoofing, jamming, hacking, and laser shooting). While [12]

and [5] use RL to train a drone attacker to intercept a target

drone, [6] place the agent in the defender’s position and train

it with a Soft Actor-Critic algorithm [14] to avoid capture.

Our contribution also aims at intercepting a target UAV

using an RL agent. However, it differs on two significant

points. First, it highlights the security flaws of a determin-

istic policy dictated by the ACAS-Xu system for collision

avoidance. Second, our attacker does not seek to capture the

target directly but to guide it to a specific area where it can

potentially be captured. This strategy does not require any

attack equipment directly implemented on the attacking UAV

and can easily be applied to any UAV.

IV. REINFORCEMENT LEARNING

Reinforcement Learning is a specific field of machine

learning considering sequential decision-making problems. In

RL, an agent interacts with its environment during a sequence

of discrete time steps, t = 0, 1, 2, 3, At each time step

t, the agent is provided a representation of the environment

state st ∈ S , where S defines a state space. According to

st, the agent takes an action at ∈ A, where A is the set of

all possible actions. Performing this action in the environment

causes the environment to transition from st to st+1, and as a

consequence of this transition, the agent receives a numerical

reward rt ∈ R. Figure 2 illustrates the agent-environment

interaction. The mapping of a state s to a probability of taking

each possible action in A is called the agent’s policy and

denoted π(a|s) = P[At|St = s]. Considering a discount factor

γ ∈ [0, 1], the return is defined as the discounted sum of

rewards Rt =
∑T

k=0 γ
(k)rt+k. Deep Reinforcement learning

algorithms aim at finding the policy πφ, represented by a neu-

ral network with parameters φ, that maximizes the expected

return J (πφ) = E
τ∼πφ

[R(τ)] with τ = (s0, a0, ..., sT+1) the

trajectory obtained by following the policy πφ starting from

state s0. For continuous control problems (such as motor

speed control), policy gradients methods aim at learning a

parametrized policy πφ through gradient ascent on J(πφ).
These methods rely on the policy gradient theorem [44]:

∇φJ(φ) = Es∼ρπ,a∼πφ
[∇φ log πφ(a | s)Qπ(s, a)] ,

where Qπ(s, a) = Es∼ρπ,a∼πφ
[Rt|s, a] is the action-value

function. Qπ(s, a) represents the expected return of perform-

ing action a in state s and following π afterwards.

Policy gradients methods typically require an estimate of

Qπ(s, a). An approach used in actor-critic methods consists

in using a parametrized estimator called critic to estimate

Qπ(s, a) (πφ thus represents the actor part of the agent). By

relying on this principle, [43] propose the deterministic policy

gradient algorithm to compute ∇φJ(φ):

∇φJ(φ) = Es∼pπ

[

∇aQ
π(s, a)|a=π(s)∇φπφ(s)

]

.

The DDPG algorithm [23] adapts the ideas underlying the

success of Deep Q-Learning [28] [29] to estimate Qπ with a

neural network with parameters θ. In DDPG the learned Q-

function tends to overestimate Qπ(s, a), thus leading to the

policy exploiting the Q-function estimation errors. Inspired by

the Double Q-learning [46], the Twin Delayed DDPG (TD3)

[11] addresses this overestimation by taking the minimum

estimation between a pair of critics and adding a noise to

the actions used to form the Q-learning target. These tricks,

combined with a less frequent policy update (one update every

d critic updates) result in substantially improved performance

over DDPG in a number of challenging tasks in the continuous

control setting. Algorithm 1 describes TD3’s complete training

procedure.

V. DEVELOPMENT OF AN ATTACK ON ACAS-XU

A. Notations

The following notations are used in the next sections:

• D1: Delivery area. The target’s destination objective

• D2: Alternate delivery area. The attacker destination

objective: the interception zone

• It: Initial position of the target.

• Ia: Initial position of the attacker.

• vt: Speed of the target that is constant.

• va: Speed of the attacker. vmax
a is the maximum possible

speed of the attacker

• The target corresponds to the ownship of the ACAS-Xu

Algorithm 1: TD3

Initialize critic networks Qθ1 , Qθ2 , and actor network

πφ with random parameters θ1, θ2, φ
Initialize target networks θ′1 ← θ1, θ

′
2 ← θ2, φ

′ ← φ
Initialize replay buffer B
for t = 1 to T do

Select action with exploration noise

a ∼ πφ(s) + ǫ, ǫ ∼ N (0, σ) and observe reward r
and new state s′

Store transition tuple (s, a, r, s′) in B
Sample mini-batch of N transitions (s, a, r, s′)
from B
ã← πφ′ (s′) + ǫ, ǫ ∼ clip(N (0, σ̃),−c, c)
y ← r + γmint=1,2Qθ′

i
(s′, ã)

Update critics

θi ← argmin θi
1
N

∑

(y −Qθi(s, a))
2

if t mod d then
Update φ by the deterministic policy gradient:

∇φJ(φ) =
1
N

∑∇aQθ1(s, a)
∣

∣

a=πφ(s)
∇φπφ(s)

Update target networks:

θ′i ← τθi + (1− τ)θ′i
φ′ ← τφ+ (1− τ)φ′

end

end

• The attacker corresponds to the intruder of the ACAS-Xu.

The attacker is not equipped with the ACAS-Xu.

B. Set up and objective

We consider an environment composed of two agents and

two areas. The first agent is the delivery drone that has the

mission to reach the delivery area D1. The target (T) is

equipped with the ACAS-Xu system to trigger autonomous

avoidance actions by updating its heading. The second agent is

the attacker (A) drone. The attacker aims at hijacking the target

towards an alternate delivery area D2, located in a different

position than D1 by exploiting the target’s utilization of the

avoidance ACAS-Xu system. The attacker’s policy is trained

for this purpose using Deep Reinforcement Learning. In our

setting, for the sake of simplicity, both agents can only move

in the same horizontal plan. Ascending and falling are not

allowed. The figure 3 provides a graphical representation of

the set-up.

The Xu version of the ACAS system is dedicated to drones,

and only provides horizontal avoidance recommendations.

Among the other version of the ACAS, it exists the Xa version

dedicated to large aircraft that provides vertical avoidance like

the TCAS. Thus, we restrict the interception to an horizontal

plan since ACAS-Xu does not provide vertical avoidance

recommendation. Even if, the target may have a vertical

flight plan, it is very easy to configure, without reinforcement

learning, the attacker to be always on the same horizontal plan

of the target. In a future work, we may extend the study by

considering a target equipped with the Xu and the Xa version

and train an agent for a 3D interception.

T

A

D1

D2

Ia

It

Without ACAS

advisory

With ACAS

advisory

Fig. 3: Set up

C. Training environment

We implemented our training environment with the follow-

ing settings:

a) State Space: The state of the environment is com-

pletely described by the state of the two agents (target and

attacker) and the Cartesian positions of delivery areas. Each

agent’s state is composed of P = (x, y) representing the agent

Cartesian positions and a velocity vector ~V = (vx, vy) in the

horizontal plan. The angle α of ~V is agent’s heading.

b) Action Space: The attacker’s actions at step n are

represented by two updates λVn ∈ [−200,+200] and λαn ∈
[−π

2 ,
π
2] representing respectively an update for the velocity

and heading.

c) Transitions: The target agent’s velocity is constant

during the whole episode. Its heading is updated according

to the ACAS-Xu system advisory. If the advisory provided is

different from COC, the following heading update δαn will

be used:

• WL : + 0.15 rad

• WR : - 0.15 rad

• L : + 0.3 rad

• R : - 0.3 rad

If the advisory is COC, the λα update enables the target

to reach the heading to the delivery area with a maximum

variation of 0.3 rad. We limit this variation to be more repre-

sentative of a real drone maneuverability and avoid instability

due to big turns. For both agents, the update of the speed

vector is given by

‖Vn+1‖ = ‖Vn‖+ δV n

αn+1 = αn + δαn

and position update by Pn+1 = Pn + Vn+1.

d) Reward model: The choice of the reward function

is not trivial. The training capacity and future policy of the

RL agents are deeply impacted by the reward model used

during training. The reward model design, often called reward

shaping, may lead to strange and unexpected behaviors.

Rn =

0 if n = 0

Rn−1 if Dn−1 ≥ Dn

Rn−1 + (Dn −Dn−1) if Dn−1 < Dn

with Dn = ‖PT
n −PE‖. The reward is increased for each step

that globally reduces the distance between the target agent and

the interception destination. We used the state-of-the-art Gym

[4] framework to implement our training environment.

VI. EXPERIMENTS AND RESULTS

This section presents the different scenarios of experiments

conducted. In all experiments, the target has a fixed speed of

400 ft/s and is following ACAS-Xu avoidance recommenda-

tions in case of presence of another flying object in its vicinity.

When there is no obstacle, the drone follows the direction

leading to its delivery area.

A. Training setups

We train three different agents depending on the maximum

speed we allow the attacker in order to study the influence

of the speed ratio between the attacker and the target. Three

configurations are tested:

• 300 ft/s

• 600 ft/s

• 1000 ft/s

We fix the size of the playground as a square of 100000
feet. We developed a gym environment for training purposes to

simulate the target behavior, following the ACAS-Xu function,

and train the attacker policy using our RL algorithm. For

each training scenario, we randomly draw the positions of the

delivery zone, the alternative delivery zone where the attacker

has to bring the target, the initial position of the target, and

the initial position of the attacker. At the end of this stage, we

get three trained agents designated by A300, A600 and A1000.

In every setups, we trained an RL agent using Stable-

baselines3 [33] implementations of TD3. In each experiment,

the agent is constituted by an actor and two critics. We use a

two-layer feedforward neural network of 400 and 300 hidden

nodes respectively, with rectified linear units (ReLU) between

each layer for both the actor and critic, and a final two neurons

output layer with tanh for the actor.

TD3 is an off-policy algorithm, during training transitions

(st, at, st+1, rt+1) are stored in a replay-buffer [28] and drawn

randomly in the form of mini-batches during the weight update

phase. We conducted all of our experiments using a replay-

buffer of size 50000 and a mini-batch size of 512. TD3

trains a deterministic policy in an off-policy way, which is

not favorable for exploration during training. We encouraged

exploration of the TD3 agent by adding an action noise

drawn from the Ornstein-Uhlenbeck process, as suggested in

[23]. For every scenario, we trained our agents on 6 million

steps. Table I provides a complete description of the training

parameters used during training.

Parameter Value
Training steps 6,000,000
Learning rate 0.001

γ 0.99
Policy delay 2

τ 0.005
target policy noise 0.2

Ornstein-Uhlenbeck Noise 0.01
Replay buffer size 50,000

Mini-batch size 512

TABLE I: Hyper-parameters used in TD3 agents training

B. Evaluation setups

Once the different models are learned, we evaluate their

performance by randomly sampling new testing scenarios

where we fix the positions of the delivery zone, the alternative

delivery zone where the attacker has to bring the target, and

the initial position of the target. For each of these scenarios,

we randomly draw a significant number of initial positions of

the attacker in the playground. For each of these random ini-

tializations, we run the scenario using the three trained policies

and to assert whether the attacker succeeds in hijacking the

target. For each test scenarios, we plot a map of the successful

initial attacker positions and unsuccessful initial positions and

estimate a percentage of successful attempts (success rate). We

run 1000 different scenarios with the three trained policies.

Depending on the ratio between the speed of the target

and the maximum speed of the attacker, we may theoretically

know if the interception is possible depending on the initial

geometry. We define the disc D centers on the delivery zone

with a radius of R that is computed taken into account the

distance dTD between the initial position of the target (It)
and the delivery zone (D1)and the ratio

vmax
a

vt
between the

speeds of the attacker and the target.

R =
vmax
a

vt
dItD1

(1)

When the attacker is in D, the interception is theoretically

achievable since the attacker has the possibility to reach the

delivery zone before the target and can thus interact with it.

For a given scenario where the delivery area, the alternative

delivery area and the initial position of the target are fixed, D
is also fixed for all episodes.

To evaluate the performance of the hijacking policy, we

can empirically estimate the reconstructed probability density

function of the success rate on all test scenario. We also define

following metrics:

M1: Number of successes over the number of episodes for

initial target position in playground.

M2: Number of successes over the number of episodes for

initial target position in D.

M3: Number of successes over the number of episodes for

initial target position not in D.

nstep : Mean of the number of steps when the episode is a

success

rdist : Mean of the distance covered by the target over the

initial distance from the target to the alternate delivery area

when the episode is a success.

M1, M2 and M3 are success rates depending on the initial

position of the target. nstep, and rdist are complementary

metrics that evaluate the difficulty for the attacker to hijack

the target.

C. Results

1) Step 1 Exploration of scenarios: Firstly, we generate

1000 random scenarios by fixing It and D2 as described in the

previous section. In order to ease analysis, D1 is always in the

center of the playground. This choice does not change initial

geometry exploration, although it may mask some corner

cases. For each scenario, we run for the three trained agent

A300, A600 and, A1000 1000 episodes with random position

for It. As expected during training, the agent A300 was not

able to perform interceptions. Thus, we only focus on A600

and A1000 in the rest of this section.

We present on figure 4 the distribution of the success rate for

the 1000 scenarios for agent A600 and A1000 with histograms.

We see that the maximum speed of the attacker has a huge

impact on the capacity of the attacker to intercept the target.

This is confirmed by an average success rate of 39.2% for

A600 and 91.4% for A1000.

Fig. 4: Distribution of the scenario’s success rate for A600 and

A1000

Then, in figure 5, we present D2 and It for the scenarios

that have a good success rate (> 90%) and a bad success rate

(< 10%) for trained agents A600 and A1000.

These figures highlight the impact of the initial geometry

(relative position of the different elements) on the success rate.

We recall that the D1 area is in the center of the playground

for all scenarios. When the ratio
vmax
a

vt
is high (top 2 of Figure

5), the distance ItD1 has a huge impact on the success rate

of a scenario. The closer the target is to the first delivery area

D1, the more the interception is difficult. Interpretation is not

that straightforward when the ratio is low (bottom 2 of Figure

5). It seems that the learned policy is more efficient when the

alternate delivery area D2 is between or almost between the

initial position of the target It and the initial delivery area D1.

Fig. 5: Alternate delivery areas and initial positions of the

target

2) Step 2 Exploration of selected scenarios : this section

focuses on some selected scenarios to provide a deeper look

into how behave the different policies. In Figure 6, we plot

the success rate of A1000 vs the success rate of A600. From

this graph, we select 3 scenarios S1, S2 and S3.

• S1 is a scenario where both trained agent have a bad

success rate;

• S2 is a scenario with a good success rate for A1000 and

a relatively poor for A600;

• and finally S3 where both agents have a good success

rate.

Each scenario correspond to a specific value of D1, D2 and

It.

Fig. 6: Scenarios selected for exploration

For each couple (Sx,Ay)x∈(1,2,3),y∈(1,2), we launch 10000

episodes with random Ia positions. Then we compute in table

II metrics described in VI-B. The different graphs of Figure

7 present successes and failures for all initial positions of the

attacker. We also plot D1, D2 and R, the circle inside which

the attacker should be able to hijack the target.

Scenario Agent m1 m2 m3 nstep rdist

S1
A1000 .19 .56 .16 218 1.39
A600 .06 .27 .05 346 2.21

S2
A1000 .84 .96 .73 197 1.47
A600 .46 .79 .41 423 3.16

S3
A1000 .96 .96 NA 219 1.27
A600 .86 .87 .77 370 2.15

TABLE II: Metrics for (Sx,Ay)x∈(1,2,3),y∈(1,2)

For all scenarios, A1000 performs better than A600. This

confirms the global success rate metric and highlights the

necessity for the attacker to have a higher velocity than the

target. The average ratio also shows that the task hijacking is

more accessible when the maximum speed of the attacker is

higher.

The success rate inside R (m3) is consistently higher the

than global one (m1), (even if not always equals to 100% as

we could expect).

From Figure 7, one characteristic which seems discriminant

is the distance between the initial position of the target It and

the delivery zone D1: the smallest it is, the hardest it is to

perform the hijacking. Even inside the R, the success rate

is poor, especially in S1. This can be explained by the fact

that the circle has been defined considering the attacker goes

directly to D1. In practice, the initial heading the attacker is

random so it has to change direction to head towards D1.

When there is not a lot of time, the change of heading is too

long and the attacker cannot hijack. When time is longer, the

effect is less visible, especially for A1000.

Failures inside R for S3 seem to form a pattern that would

require additional investigations. It may show that our policy

is not perfect or that our training scenarios did not explore

enough certain configurations. This is the object of next step.

3) Step 3 Exploration of trajectories : In this section, we

present some representative observed trajectories to understand

the red area of (S3, vmax
1000) and the red area that is inside R

in (S2, vmax
1000).

Figure 8 presents the trajectories for two close initial posi-

tions of the attacker for scenario (S3, vmax
1000). This corresponds

to the red area upper right of D1 on figure 7. With the first

position, the interception is not achieved. We can observe that

the attacker has a trajectory that intercepts the target after D1.

On the contrary, for the second episode, the attacker intercepts

the target before D1. Failures of the (S3, vmax
1000) scenario have

similar behaviors. The attacker tries to intercept the target after

the D1 area. This is mainly due to the reward function used

during the training of the attacker agent. We used an heuristic

that rewards the attacker when the target reduces the distance

with D2 in order to ease the learning of the policy. In order

to push the attacker to hijack before the target reaches D1, we

would need to modify the reward to alleviate this undesired

behavior. The proportion of episodes leading to such cases is

low but definitely the reward function should be updated to

avoid such phenomena.
Figure 9 shows the trajectories for two close initial positions

of the attacker for the scenario (S2, vmax
1000). This corresponds to

the red area insideR. In the first episode, the initial velocity of

the attacker is small and its acceleration is not strong enough

to be able to interact with the target before it reaches D1.

When the initial velocity of the attacker is higher, in the second

episode, the attacker is able to interact with the target almost

from the beginning, and it is able to hijack it. These situations

can occur when the attacker is opposite to the target compared

to D1. It could be solved by increasing the minimal initial

speed of the attacker, fixing the initial heading of the attacker

towards D1 or increasing the attacker maximum acceleration.

VII. CONCLUSION

This work highlights the possibility of using reinforcement

learning to train a malicious agent to hijack a delivery drone

equipped with the ACAS-Xu avoidance system. Up to our

knowledge, we are the first to demonstrate the possibility of

fuzzing the algorithm of an autonomous avoidance system.

With the current ambition in the aerospace industry for the

development of autonomous systems (specifically air taxis and

autonomous delivery drones), we are highlighting a security

breach. The acceptance of these autonomous vehicles requires

the resolution of these security issues.
As the ACAS-Xa system uses the same principle of tables,

we believe that our method also applies.
Although we have made simplifying assumptions within

the simulation environment, we believe that RL is efficient

for attacking the ACAS-Xu system. An extension could be

focused on adding complexity to the environment by adding

static and dynamic obstacles and considering the vertical

dimension. This should imply an extension of the action

state of the attacker (new dimension) and an increase of the

complexity of the reward function to handle obstacles.
In a future work, we consider training both agents with

reinforcement learning in a zero-sum two-player games (as

in [41], [42]) to produce collision avoidance system policies

robust to malicious attacks.
We believe that, in order to improve the security, a reference

use case should be provided with the ACAS-Xu. Access to

Look Up Tables is unfortunately not possible for organizations

that are not part of the RTCA/EUROCAE, the authority re-

sponsible for the normalization of the ACAS-Xu. Nevertheless,

thanks to [20], neural networks approximating ACAS-Xu look-

up tables are available. Therefore, we would like to replace

the ACAS-Xu look-up table with these neural networks inside

the gym environment and free it through our git repository

(will be available for the conference). This would enable

Reinforcement Learning and Security communities to work

on this topic with the final objective of improving security in

aeronautics.

ACKNOWLEDGEMENT

This project received funding from the French ”Investing for

the Future – PIA3” program within the Artificial and Natural

Fig. 7: Success/Failures for different initial position of the attacker among selected scenarios

Fig. 8: Analyse of trajectories in S3 scenario for vmax
1000

Intelligence Toulouse Institute (ANITI). The authors gratefully

acknowledge the support of the DEEL project1.

REFERENCES

[1] R. N. Akram, K. Markantonakis, R. Holloway, S. Kariyawasam, S. Ayub,
A. Seeam, and R. Atkinson. Challenges of security and trust in avionics
wireless networks. In 2015 IEEE/AIAA 34th Digital Avionics Systems
Conference (DASC), pages 4B1–1–4B1–12, 2015.

1https://www.deel.ai/

Fig. 9: Analyse of trajectories in S2 scenario for vmax
1000

[2] B.-C. A. S. E. Ariyurek S. Automated video game testing using synthetic
and human-like agents. arxiv, 1906.00317v1, 2019.

[3] P. Becker-Ehmck, M. Karl, J. Peters, and P. van der Smagt. Learning
to fly via deep model-based reinforcement learning. arXiv preprint
arXiv:2003.08876, 2020.

[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[5] E. Çetin, C. Barrado, and E. Pastor. Counter a drone in a complex
neighborhood area by deep reinforcement learning. Sensors, 20(8):2320,
2020.

[6] Y. Cheng and Y. Song. Autonomous decision-making generation of

uav based on soft actor-critic algorithm. In 2020 39th Chinese Control
Conference (CCC), pages 7350–7355. IEEE, 2020.

[7] A. Clavière, E. Asselin, C. Garion, and C. Pagetti. Safety Verification
of Neural Network Controlled Systems. In 7th International Workshop
on Safety and Security of Intelligent Vehicles (SSIV 2021), 2021.

[8] M. Damour, F. D. Grancey, C. Gabreau, A. Gauffriau, J.-B. Ginestet,
A. Hervieu, T. Huraux, C. Pagetti, L. Ponsolle, and A. Clavière. Towards
certification of a reduced footprint acas-xu system: A hybrid ml-based
solution. In International Conference on Computer Safety, Reliability,
and Security, pages 34–48. Springer, 2021.

[9] R. C. Dorf and R. H. Bishop. Modern control systems. Pearson Prentice
Hall, 2008.

[10] EUROCAE WG 75.1 /RTCA SC-147. Minimum Operational Perfor-
mance Standards For Airborne Collision Avoidance System Xu (ACAS
Xu), 2020.

[11] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation
error in actor-critic methods. In International Conference on Machine
Learning, pages 1587–1596. PMLR, 2018.

[12] M. Gnanasekera, A. V. Savkin, and J. Katupitiya. Range measure-
ments based uav navigation for intercepting ground targets. In 2020
6th International Conference on Control, Automation and Robotics
(ICCAR), pages 468–472. IEEE, 2020.

[13] Y. J. Guido Manfredi. An introduction to acas xu and the challenges
ahead. In 35th Digital Avionics Systems Conference, Sep 2016,
Sacramento, United States. IEEE/AIAA, 2016.

[14] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor. In International conference on machine learning, pages 1861–
1870. PMLR, 2018.

[15] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter. Control of a quadrotor
with reinforcement learning. IEEE Robotics and Automation Letters,
2(4):2096–2103, 2017.

[16] W. B. III. Airbus concludes attol project that featured world-first
automated takeoffs and landings. Aviation Today, 2019.

[17] J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner, A. Schmidt,
E. Zawadzki, and A. Platzer. Formal verification of acas x, an industrial
airborne collision avoidance system. In 2015 International Conference
on Embedded Software (EMSOFT), pages 127–136, 2015.

[18] K. T. L. G. Ì. Joakim Bergdahl, Camilo Gordillo. Augmenting automated
game testing with deep reinforcement learning. arxiv, 2103.15819v1,
2021.

[19] K. D. Julian, J. Lopezy, J. S. Brushy, M. P. Owenz, and M. J.
Kochenderfer. Deep neural network compression for aircraft collision
avoidance systems. 35th Digital Avionics Systems Conference (DASC),
2016.

[20] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks.
CoRR, abs/1702.01135, 2017.

[21] W. Koch, R. Mancuso, R. West, and A. Bestavros. Reinforcement
learning for uav attitude control. ACM Transactions on Cyber-Physical
Systems, 3(2):1–21, 2019.

[22] M. J. Kochenderfer, J. E. Holland, and J. P. Chryssanthacopoulos.
Next-generation airborne collision avoidance system. Technical report,
Massachusetts Institute of Technology-Lincoln Laboratory Lexington
United States, 2012.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra. Continuous control with deep reinforcement
learning. In 4th International Conference for Learning Representations,
2016.

[24] R. Lowe, Y. WU, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments.
Advances in Neural Information Processing Systems, 30:6379–6390,
2017.

[25] G. Manfredi and Y. Jestin. An introduction to acas xu and the challenges
ahead. In 35th Digital Avionics Systems Conference (DASC’16), pages
1–9, 2016.

[26] M. Min, L. Xiao, D. Xu, L. Huang, and M. Peng. Learning-based
defense against malicious unmanned aerial vehicles. In 2018 IEEE
87th Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE,
2018.

[27] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on machine learning,
pages 1928–1937. PMLR, 2016.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[30] F. Netjasov, A. Vidosavljevic, V. Tosic, M. H. Everdij, and H. A. Blom.
Development, validation and application of stochastically and dynami-
cally coloured petri net model of acas operations for safety assessment
purposes. Transportation Research part C: emerging technologies,
33:167–195, 2013.

[31] U. D. of transportation Federal Aviation Administration. Introduction to
tcas ii version 7. https://www.faa.gov/documentlibrary/media/advisory
circular/tcas%20ii%20v7.1%20intro%20booklet.pdf, 2000.

[32] H. X. Pham, H. M. La, D. Feil-Seifer, and L. V. Nguyen. Au-
tonomous uav navigation using reinforcement learning. arXiv preprint
arXiv:1801.05086, 2018.

[33] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dor-
mann. Stable baselines3. https://github.com/DLR-RM/stable-baselines3,
2019.

[34] R. santamarta. Arm ida and cross check: Reversing the 787’s
core network. https://act-on.ioactive.com/acton/attachment/34793/
f-cd239504-44e6-42ab-85ce-91087de817d9/1/-/-/-/-/Arm-IDA%
20and%20Cross%20Check%3A%20Reversing%20the%20787%27s%
20Core%20Network.pdf, 2019.

[35] H. Sathaye, D. Schepers, A. Ranganathan, and G. Noubir. Wireless
attacks on aircraft instrument landing systems. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pages 357–372, 2019.

[36] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al.
Mastering atari, go, chess and shogi by planning with a learned model.
Nature, 588(7839):604–609, 2020.

[37] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region
policy optimization. In International conference on machine learning,
pages 1889–1897. PMLR, 2015.

[38] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[39] P. A. Series. Aircraft hacking. 2013.
[40] R. L. Shaw. Fighter combat. Tactics and Maneuvering; Naval Institute

Press: Annapolis, MD, USA, 1985.
[41] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016.

[42] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144, 2018.

[43] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller.
Deterministic policy gradient algorithms. In International conference on
machine learning, pages 387–395. PMLR, 2014.

[44] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al. Policy
gradient methods for reinforcement learning with function approxima-
tion. In NIPs, volume 99, pages 1057–1063. Citeseer, 1999.

[45] G. Tong, N. Jiang, L. Biyue, Z. Xi, W. Ya, and D. Wenbo. Uav navigation
in high dynamic environments: A deep reinforcement learning approach.
Chinese Journal of Aeronautics, 34(2):479–489, 2021.

[46] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning
with double q-learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 30, 2016.

[47] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al. Grand-
master level in starcraft ii using multi-agent reinforcement learning.
Nature, 575(7782):350–354, 2019.

[48] B. Vlahov, E. Squires, L. Strickland, and C. Pippin. On developing a
uav pursuit-evasion policy using reinforcement learning. In 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 859–864. IEEE, 2018.

[49] S. L. Waslander, G. M. Hoffmann, J. S. Jang, and C. J. Tomlin.
Multi-agent quadrotor testbed control design: Integral sliding mode vs.
reinforcement learning. In 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3712–3717. IEEE, 2005.

[50] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

[51] S. Xuan and L. Ke. Uav swarm attack-defense confrontation based
on multi-agent reinforcement learning. In Advances in Guidance,
Navigation and Control, pages 5599–5608. Springer, 2022.

[52] K. D. Young, V. I. Utkin, and U. Ozguner. A control engineer’s guide to
sliding mode control. IEEE transactions on control systems technology,
7(3):328–342, 1999.

SUBMISSION TO ERTS 2022 1

Practical Trust×Performance Metrics for Block
Cipher Evaluation in Automotive Environments
Jacob Samuel, Keerthi K., Chester Rebeiro, Werner Schreiber, Geopeter Moothedan, and Ralph Mader

Abstract—With several interconnected Electronic Control
Units (ECUs), modern automobiles are networks on wheels
and an easy target for cyber-attacks. To achieve confidentiality,
integrity and authenticity of network communication, security
measures based on block ciphers can be employed. These block
ciphers should have sufficiently low latencies to meet the strict
requirements of the automotive environment. Most block ciphers
developed today are extensively scrutinized and provide strong
security guarantees. At a high-level, the security offered by these
ciphers are at a par. It is thus a challenge for a designer to pick
the right cipher for securing communication in the automotive
network.

This paper addresses this challenge by (a) providing a
methodology to quantify the trust in a cipher and (b) studying
the execution latencies on popular automotive platforms. The
trust metrics are based on assessing the potency of the known
attacks on a cipher, such as the threat of attacks in real-world
environments. Second, it also provides a measure that quantifies
world-wide scrutiny and adoption of a cipher based on heuristics
such as the number of citations for the cipher. Together, the trust
metrics and the execution latencies provide the designers with
a systematic approach to choose block ciphers for automotive
environments.

Index Terms—cyber-security, automotive, encryption, trust,
latencies

I. INTRODUCTION

In today’s automotive environments, mechanical actions are

governed by actuators which are controlled by a network

of Electronic Control Units (ECUs). This network provides

avenues for hackers to modify or inject malicious packets

which could greatly affect the safety and security of the car.

Several recent car hacking incidents, most notably of the Jeep

by Charlie Miller and Chris Valasek [1], have emphasised the

need to incorporate confidentiality, integrity, and authenticity

of communication between ECUs.

A considerable challenge that hampers incorporating se-

curity features in an automobile is the latency overheads.

Automotive systems are extremely time-critical [2]. Naı̈vely

incorporated security features could potentially harm overall

performance, increase communication latencies, and hamper

the real time behavior requirements of the automobile [3].

A discussion on CAN bus security and its corresponding

performance impacts can be found in [4]. Thus, automotive

software developers have to pick cryptographic primitives

that not just provide confidentiality, integrity and authenticity

J. Samuel, Keerthi K. and C. Rebeiro are with the Department of Com-
puter Science and Engineering, IIT Madras, e-mails: jacobsam29@gmail.com,
cs17d013@cse.iitm.ac.in, chester@cse.iitm.ac.in.

W. Schreiber, G. Moothedan, and R. Mader are with Vitesco Technologies,
e-mails: {werner.schreiber, geopeter.moothedan, ralph.mader}@vitesco.com

of communication, but at the same time ensure minimum

overheads considering the capabilities and the performance of

the microcontroller or microprocessor in use.
While popular microcontrollers like Infineon Aurix TC3xx

[5] contain hardware accelerators for cryptographic primitives,

medium and low performance microcontrollers (8/16 bit),

have no or limited hardware accelerators for cryptography

are still common in the automotive domain, for example in

sensor/actuator communication. While in the latter case, soft-

ware implementations of lightweight cryptography is essential,

in the former, software implementations may employed to

provide more flexibility in the protocols.
In the last few years, with global contests such as the

NIST block cipher challenge1 and the lightweight cryptog-

raphy challenge2, there are several lightweight block cipher

algorithms that are potential candidates. The security of these

new cipher algorithms are found to be mostly at a par. Most

cryptanalytic attacks discovered are theoretical and cannot be

mounted in practice. This is because cipher designers, after

several decades of extensive research, now understand the

science of designing strong ciphers. Thus, every new cipher is

designed to resist most cryptanalytic attacks including linear,

differential, related-key, and algebraic cryptanalysis. Further,

the global nature of the contests, encourages researchers

world-wide to thoroughly scrutinize new cipher designs to

identify weaknesses.
Every cipher is designed with a different structure and oper-

ations. While most designs follow the extensively researched,

Feistel [6] and Substitution Permutation [7] Networks, others

experiment with new structures such as the Add-Rotate-Exor

(ARX) [8]. The differences in the structure and operations

results in implementations that have different execution time

on different platforms. Thus, it is a challenge for an automotive

software designer to pick amongst these: a cipher that it trusts

would provide secure communication at minimum overheads

on the target platform.
In this paper we (a) provide a methodology to quantify the

trust of a block cipher algorithm. The trust metrics are based

on the potency of the attacks published and the world-wide

perception of the cipher. A more potent attack reduces trust

while a more globally accepted cipher, increases its trust. (b)

We use this methodology to evaluate and rank 9 block cipher

algorithms from most trusted to least trusted. (c) We then

evaluate the overheads of these ciphers on popular Automotive

platforms Infineon Aurix 399 Renesas R-Car M3, and the TI

1https://csrc.nist.gov/projects/cryptographic-standards-and-
guidelines/archived-crypto-projects/aes-development

2https://csrc.nist.gov/projects/lightweight-cryptography

SUBMISSION TO ERTS 2022 2

MSP 430. While the Infineon Aurix processor has six “Tri-

Core” cores. The Renesas R-Car M3 is comparatively more

powerful with multiple ARM A5x cores, typically deployed.

TI’s MSP 430 processor on the other has a small 16-bit

core and is deployed in sensor environments. The evaluation

provided in this work thus identifies the most suitable cipher

candidates for a wide range of automotive environments.

This paper is organized as follows. Sections II and III

provides a brief background on block ciphers and the related

work in evaluating security and performance overheads respec-

tively. Section IV provides the rationale for the proposed trust

metric and evaluates 9 block ciphers. Section V discusses the

performance evaluation of the ciphers on the Infineon Aurix

399, Renesas R-Car M3, and the TI MSP 430. Section VI pro-

vides caveats on the methodologies developed. The conclusion

(Section VII) provides insights on choosing ciphers.

II. BACKGROUND

Block ciphers work on fixed-length blocks of plaintext and a

secret key to generate ciphertexts that provide confidentiality.

They can be used in primitives such as Cipher-based Message

Authentication Codes (CMAC) to verify the integrity and

authenticity of messages. A popular block cipher like the AES

works with 128-bit plaintext blocks (block size) and keys

which are either 128, 192, or 256, to obtain a ciphertext block.

All block cipher algorithms designed today follow Shannon’s

theory of an iterative multiplicative cipher. Each block cipher

has multiple rounds organized either as a Feistel structure

or a Substitution Permutation Network (SPN), as seen in

Figure 1. The first round takes the plaintext as input, the

second round input is the first round’s output, and so on. The

final round output is the ciphertext. Each round has a fixed set

of operations, which perform confusion and diffusion and a

round key addition. While the round key adds randomness to

the ciphertext, the confusion breaks the relationship between

the round’s output with its input and the diffusion ensures that

a change in the input spreads to multiple bits in the output.

III. RELATED WORK

There is an urgent need for light-weight block ciphers

in applications related to the Internet of Things (IoT) and

Cyber Physical Systems (CPS). While global contests like

NIST’s Light Weight Cryptography challenge3 or DSCI’s

Light Weight Cipher Contest4 encourage the development

and evaluation of new ciphers, there is little work done to

compare trade-offs of security× performance amongst them

for application in specific environments. An effort to provide

a comparative analysis is presented in [9] which evaluated a set

of light-weight ciphers for security and overheads in Wireless

Sensor Networks. The performance evaluation is done on the

STM32F4075 micro-controller, while the avalanche effect is

considered for security evaluation. This study is limiting for

3https://csrc.nist.gov/Projects/lightweight-cryptography
4https://www.dsci.in/ncoe-light-weight-cipher-design-challenge-2020/
5https://www.st.com/en/microcontrollers-microprocessors/stm32f407-

417.html

Fig. 1: Based on the structure, block ciphers are classified as

either (a) SPN or (b) Feistel. While the AES adopts the SPN

structure, many ciphers adopt the Feistel structure because

of the rich body of research that has been done on Feistel

networks.

two reasons. First, the performance evaluation on a single plat-

form may not be sufficient as IoT and CPS environments can

have a variety of different microprocessors. The throughput

of a cipher execution on one platform may not match that on

another. Second, the strength of a cipher is often dictated by

its weakest link. The weakest link is not be easily identified.

Thus evaluating a few cipher properties is insufficient to gauge

the cipher’s security.

In this paper, we evaluate ciphers for automotive environ-

ments considering both trust and performance. We measure

trust of a cipher by carefully analyzing its structure, existing

attacks, and scale of adoption/evaluation of the cipher. The

latter is estimated by studying the citations of the cipher over

the years. For performance evaluation, we cover the full range

of automotive platforms from high end to low end. We evaluate

the ciphers on the high-end Renesas R-Car M3 platform; the

mid-range Infineon Aurix 39x; and the low end TI MSP430

micro-controller. In Section V we provides insights on the

performance observed in these platforms based on the cipher’s

structure as well as the micro-architecture of these processors.

IV. ESTABLISHING TRUST METRICS FOR BLOCK CIPHERS

During design, cipher algorithms are subjected to extensive

security evaluation. Typically this is done by testing standard

properties that are expected of a block cipher, such as, the

indistinguishability of the ciphertext from random data, the

cipher’s ability to create ciphertexts that are not correlated

to the corresponding plaintexts, and the ability to make two

ciphertexts look very different even though the corresponding

plaintexts differ in just a few bits. In addition to these tests,

SUBMISSION TO ERTS 2022 3

every block cipher is critically analyzed for their ability to

withstand a known set of cryptanalytic attacks. These attacks

assume that the adversary possesses full knowledge of encryp-

tion algorithm except for the secret key and the aim of the

attacker is to guess the right key. Due to strong assumptions

about the attacker, it may seem apparent that all new ciphers

with the same key size, provides the same levels of security.

One aspect that has changed with the wide-spread adop-

tion of the Internet, is the public scrutiny of ciphers. Re-

searchers extensively develop and publish cryptanalytic attacks

on ciphers. Similarly, optimized implementations of ciphers

on multiple platforms are published. Engineers extensively

publish applications that use specific cipher algorithms. In this

paper, we utilize the public scrutiny of the ciphers to establish

trust metrics that are based on the potency of the published

cryptanalytic attacks and global adoption of the cipher.

A. Gauging the potency of a cryptanalytic attack

A variety of cryptanalytic attacks have been developed over

the years. Some, like the linear and differential attacks on

DES could mark the end of a cipher. Other attacks, like the

recent Biclique attacks on AES [10], are developed more from

an academic perspective and would be almost impractical to

launch in practice. In this section we introduce several metrics

that are used to gauge the potency of an attack.

Adversarial Capabilities. Based on the attacker’s capabilities,

five attack models are popularly used. These models, ranked

from most powerful to least powerful, are (1) Ciphertext

only Attack (COA), (2) Known Plaintext Attack (KPM), (3)

Chosen Plaintext Attack (CPA), (4) Chosen Ciphertext Attack

(CCA), and (5) Related Key Attack (RKA). The threat of a

particular attack model depends on the application scenario.

The COA, which only requires ciphertexts is often considered

the most powerful because the attacker knows very little about

the encryption. However, in applications such as network

communication, a device can spoof packets forcing a victim

to behave in certain predictable manner, potentially leading

to KPA, CPA, and CCA attacks. Known Plaintext Attacks

(KPA) are more powerful compared to CPA and CCA attacks.

This is because, the KPA attacker is a passive listener of the

messages that are encrypted. The Chosen Plaintext (CPA) and

Chosen Ciphertext (CCA) attacks are equally potent requiring

an active attacker. In CPA attacks, the attacker coerces the

encryption of specific messages, while in CCA attacks, the

attacker chooses ciphertext that are then decrypted. Related

Key Attacks are more theoretical, and the weakest form. It

requires that the attacker study the cipher’s behavior under

different keys. Due to the huge key space, this is not easily

achieved. Since we require a trust metric that is independent

of the application, we consider the first four attack models

(COA, KPM, CPA, and CCA) to be equally potent. Related

Key Attacks (RKA), however, are less practical due strong

assumptions made, therefore less potent than the other models.

Online and Offline Attack Complexity. An attack has two

phases: online and offline. In the online phase, the attacker

would require to collect information about the encryption as

per the attack model. In a COA for instance, the attacker would

need to collect sufficient number of ciphertexts. While, in a

CPA, the attacker would need to choose sufficient number of

plaintexts and collect the corresponding ciphertexts. After the

online phase, the attacker initiates the offline phase involving

huge amounts of number crunching functions on GPUs, spe-

cialized hardware, or clusters of computers, before the secret

key can be retrieved.

The complexity of the online phase is called data com-

plexity, while the complexity of the offline phase is called

time complexity of the attack. These complexities influence

the potency of an attack. Higher complexities imply a weaker

attack. We consider the data complexity to be more critical

compared to the time complexity. This is because typical com-

munication protocols require periodic key changes. An attack

should therefore occur before a key is changed. Furthermore,

limits of today’s compute technologies restrict practical time

complexities to less than 280. This complexity implies that 280

keys need to be searched in order to identify the correct key.

In other words, one out of the 280 possible keys is correct. To

provide an intuition about the difficulty of performing such a

search, we consider optimistically that one CPU costing USD

500, can perform 3 billion key searches per second. With this

CPU, it would take 6 million years (on average) to find the

correct key. If the key search is parallelized, it would cost over

3 Billion to have sufficient number of CPUs to find the correct

key within one year. Thus any attack with a data complexity

greater than 280 can be deemed impractical.

Reduced Round Attacks. Very often, developing a full break

on the cipher is extremely difficult. Cryptographers then start

to develop attacks on simplified models. One popular simpli-

fication is to develop attacks on reduced number of rounds of

the cipher. While the reduced round attacks are not complete

breaks, they still can be used to gauge the potency of the

attack. For example, the 7 round attacks on AES is more

potent than the 5 and 6 round attacks, but less potent than

the 8 round attacks.

The cipher structure plays an important role in gauging the

power of a reduced-round attack. For example, since Feistel

ciphers typically have about twice the number of rounds as an

SPN cipher, attacks on Feistel ciphers are typically deeper than

SPN ciphers. While comparing attacks on reduced rounds, this

should be considered. For example, a 7 round attack on the

SPN structure of AES is equivalent to a 12 or 13 round attack

on the Feistel cipher, CLEFIA.

To gauge the potency of a reduced round attack, we intro-

duce a metric called Penetration Factor, defined as

PenetrationFactor =
SecurityMargin

NumberofRounds
,

where SecurityMargin is the number of rounds considered in

the attack. A higher penetration factor indicates a stronger

attack. If a cipher has an attack on 8 rounds (reduced rounds)

and the total number of round in the cipher is 12, then the

security margin is 8 and penetration factor is 8/12 = 0.66.

Similarly, a full attack has a penetration factor of 1. This is

maximum value the penetration factor can have.

SUBMISSION TO ERTS 2022 4

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

100

101

102

Ci
ta
tio

n
Co

un
t (
 L
og
 S
ca
le
)

AES
NOEKEON
MCRYPTON
CLEFIA
PRESENT
PICCOLO
PRINCE
SIMON&SPECK

Fig. 2: Number of citations per year for different Block Ciphers. (Data obtained from Google Scholar (retrieved on 22nd

December 2021). Citations taken from the following documents: AES [11], [7], NOEKEON [12], MCRYPTON [13],

CLEFIA [14], PRESENT [15], PICCOLO [16], PRINCE [17], SIMON&SPECK [8]. As can be seen, after an initial growth

phase, the number of citations per year for a cipher is almost a constant, indicating a linear growth.

B. Public Scrutiny of Ciphers

None of the ciphers in use today can guarantee security.

However, most ciphers are published online and publicly

scrutinized. Cryptographers world-wide would try their hand

at breaking the ciphers. A classic example of this is in the

standardization of the AES cipher, which was a global contest

between 15 ciphers that were extensively studied and evaluated

by cryptographers world wide, eventually resulting in Rijndael

being was chosen as the standard. Even after the contest,

which ended in October 2000, the AES has been extensively

scrutinized by a large number of researchers for about two

decades. Besides this, a large number of organizations have

adopted AES for their encryption requirements. A cipher that

is extensively scrutinized and adopted is more trustworthy than

a cipher that is less scrutinized or adopted.

While it is difficult to find accurate numbers of how many

cryptographers have tried to break a cipher or the number

of organizations that have adopted the cipher for their ap-

plications, a reasonable indication can be obtained from the

number of citations that the original ciphers have and the age

of the cipher. The number of citations is an indicator of

three aspects: (1) the adoption of the cipher in an application;

(2) an attack or analysis on the cipher; and (3) an efficient

implementation. While (2) corresponds to scrutinizing the

cipher’s security properties, (1) and (3) corresponds to users

who trust that the cipher is secure. All three give an indication

of the cipher’s trustworthiness.

Figure 2 shows the number of citations per year for the

ciphers considered. The citations were obtained from Google

scholar (retrieved on 22nd December, 2021). From Figure 2,

it is clear that each cipher’s citations/year is distinctively

different. For example, on average, the AES cipher has 350

citations per year, while a less known cipher like NOEKEON,

which is about the same age as the AES has only 22 citations.

Thus, it is evident that the AES has been either scrutinized,

adopted, or implemented much more aggressively compared

to NOEKEON, thus can be more trusted. Similarly, comparing

another pair of ciphers, CLEFIA and PRESENT, that are ap-

proximately the same age, PRESENT with over 2860 citations

is more scrutinized, adopted, or implemented compared to

CLEFIA. Thus, PRESENT is more trusted than CLEFIA.

To compare the public interest and scrutiny of a cipher, we

introduce a metric called Scrutiny Factor, defined as follows.

ScrutinyFactor =
#citations

AgeofCipher
.

The age of the cipher is taken with respect to the current year.

The metric assumes a linear growth in the number of citations

per year for a cipher. While this is observable in Figure 2, it

is not always the case. There may be exceptions, such as the

adoption of the cipher as a standard and a growth of a new

sector requiring specialized ciphers, such as light-weight or

low-latency. Ignoring such deviations, the average citations per

year for a cipher is a good indicator of the trust cryptographers

and users have on a cipher. This being said, any complete

break with time complexity less than 280 dominates public

scrutiny.

C. Evaluating Trust in Block Ciphers

We consider 9 cipher algorithms for evaluation. These

ciphers were chosen based on their popularity (for exam-

ple AES) or based on their use in standards (for example

CLEFIA [14] and PRESENT [15] are light-weight standards).

Others have been designed by reputed organizations (like

SUBMISSION TO ERTS 2022 5

TABLE I: Cryptanalytic Attack Comparisons with key size 128 bits. The acronyms in the columns refer as follows. BS:

Block Cipher, year: introduction year (first published), attacks: number of published attacks, citations: as per Google scholar

(approximate), SF: Scrutiny factor, AC: Adversary capability, DC: Data complexity, TC: Time complexity PF: Penetration

factor.

Cipher Type BS Year Attacks Citations SF Attack AC DC TC PF

AES SPN 128 2000 22 8000 380 [18] CPA 2106 2110 0.7
[10] MiTM/CCA 288 2126.1 1

PRESENT SPN 128 2007 8 2259 161 [19] CPA 260 220 0.73

SPECK Feistel 128 2013 7 625 78 [20] CPA 2113 2113 0.53
[21] CPA 263.6 289.4 0.52

SIMON Feistel 128 2013 7 625 78 [22] CPA 2127 2127 0.72
[23] KPA 2127.6 2120 0.72

PRINCE SPN 64 2012 3 598 66 [24] KPA 257.95 2126.56 0.5
[25] KPA(MiTM) 1 2124 0.66
[26] KPA 257.94 260.62 0.83

CLEFIA Feistel 128 2007 7 533 38 [27] CPA 2113 2116.7 0.6
[28] CPA 2126.83 2126.83 0.72

MCRYPTON SPN 64 2005 4 322 20 [29] MiTM 257 2115 0.75

PICCOLO Feistel 64 2011 2 63 6 [30] MiTM/CCA 224 2126.79 0.9
[31] RKA 2117.77 2118 0.67

NOEKEON Feistel 128 2000 1 86 4 [12] CPA 220.6 2108.1 0.31

SIMON and SPECK [8], designed by the NSA). The re-

maining have been chosen from a world-wide light-weight

cipher standardization contest (for example MCRYPTON [13],

PICCOLO [16], and PRINCE [17]). Although most of the

ciphers considered support multiple block sizes and key

lengths, due to space constraints, we restrict our evaluation

in this paper to versions with block size and key length 128

bits. The ciphers cover a variety of configurations, including

Generalized Feistel networks and SPN structures. We surveyed

all published cryptanalytic attacks and rated them according

to the metrics described in Section IV-A.

Table I provides a subset of the published attacks on these

ciphers ordered on the Scrutiny Factor. As can be seen, the

AES cipher is the most scrutinized, with over 8000 citations

and 22 attacks. Even though a full attack on AES is feasible

in [10], the data complexity of 288 and time complexity of

2126.1, makes the attack infeasible in practice. This makes AES

the most trusted amongst the ciphers considered. PRESENT

too has a high Scrutiny Factor, and the attacks are difficult

to mount due to the high data complexity. Thus, PRESENT

too can be trusted, but not as much as AES. PICCOLO and

NOEKEON have the least Scrutiny Factor and therefore the

least trusted, even though there are no full attacks on these

ciphers. Comparing PRINCE, SIMON and SPECK, they have

similar Scrutiny Factor, but, Prince has a powerful attack

with a low data complexity. Thus, Prince is less trustworthy

compared to Simon and Speck.

V. PERFORMANCE OVERHEADS OF CIPHER

IMPLEMENTATIONS

In real-time automotive environments, evaluation of a ci-

pher’s performance overheads is as important as the trust

estimations. When considering cipher execution, one must dif-

ferentiate between two main aspects: the overhead concerning

the CPU utilization and the additional runtime needed for

encryption and decryption in a synchronous execution with

respect to the required deadline. The latter is the more critical

as we see in applications involving a distributed network, the

cipher execution is part of critical event chains with start to

end response time, in the worst case, lower than 2ms.

Figure 3 shows a typical event chain from a smart sensor via

the control unit to the smart actuator via an automotive bus,

like CAN. To ensure a deterministic behavior of the event

chain, the tasks on the different devices are synchronized

to a common time base and the calculation sequences must

comply to the planned time window for each device. t01 to t04,

illustrate the timing overhead for decryption and encryption

of the data to ensure a secure communication. In worst case

examples, the timing windows are in the range of less then

500µs, where the phases for reading the input, computation and

triggering the output without encryption could last up to 300µs.

For the timing considerations for the control unit in the middle

of the chain, one must consider the twice the time as the data

has to be decrypted before the calculation and then encrypted

again. Depending on the interrupt load on the calculation core

and delays due to higher prior activities typically the net core

execution time of the calculation sequence shall not exceed

70% of the time window. In the example this would mean

350µs implying that the decryption and encryption shall not

take longer than 25µs. This example shall give the order of

magnitude and will differ from case to case, depending on

the problem to solve. Therefore, the target is to have to cipher

with the least execution time while guaranteeing an acceptable

level of trust. Energy consumption of the micro-controller

was not evaluated as in power-train applications it is of less

importance, compared to the energy consumption of the power

stages used to drive the sensors and actuators.

To understand the tradeoffs between performance and trust,

we evaluate the ciphers on three platforms: the Infineon

Aurix TC399, Renesas R-Car M3, and TI MSP430. These are

SUBMISSION TO ERTS 2022 6

Control

Smart Read

Compute

Response Time

Actuator

Unit

Sensor

Smart Prepare
Input Encrypt

Trigger
Send

Input
Trigger
Send

Input
Control

EncryptDecrypt
Read

Decrypt

t01

t02 t03

t04

Fig. 3: Event chain for a control flow from a smart actuator via a control unit to a smart actuator.

TABLE II: Feature comparison of the three platforms used in the evaluation. The platforms cover a wide range of common

processors. From the 16-bit Texas Instruments MSP430 processors, which are typically deployed in sensors, to the high-end

platform Renesas R-Car M3 that run embedded Linux.

Feature TI MSP430 Infineon Renesas R-Car M3
Aurix TC399 Cortex A53 Cortex A57

Size 16-bit 32-bit 32-bit
Architecture RISC (vonNeumann) RISC (Tricore) RISC (ARM v8.0)

Pipeline 3-stage inorder 4-stage superscalar 8-stage inorder 15-stage OoO
Cache Memory Not present 32KB L1-Instruction 32K L1-Instruction 48K L1-Instruction

16KB L1-Data 32K L1-Data, 512K L2 32K L1-Data, 2MB L2
Clock 16MHz 300MHz 1.2GHz 1.5GHz

Operating System none none Embedded Linux

Fig. 4: High level core partitioning of an AURIX TC39 used

in an automotive powertrain application.

popular microprocessors for automotive applications chosen to

cover a range of platforms from high-performance to sensor

networks. Table II compares important parameters in the

three platforms. The Infineon Aurix TC399 microcontroller

comprises of six symmetrical processing cores, each with a

maximum clock frequency of 300Mhz, program flash memory

of up to 16MB and over 6MB of integrated RAM.

Figure 4 shows a typical partitioning of the software on an

Infineon AURIX TC39x [32]. The basic software is distributed

on multiple cores and each driver can be accessed from any

core by the application software [33] [34]. The communication

relevant software parts are located on those cores which

are equipped with lock step cores and the communication

stacks are distributed to meet the performance requirements in

high loaded projects[35]. On these cores the encryption and

decryption of security relevant is executed especially for the

data which are part of a time critical event chain as shown in

Fig. 3. Although the TC39x is equipped with hardware accel-

erators, practical experience showed that encryption, using the

accelerator hardware, takes in total even more time compared

to the software algorithm executed on a computational core.

This is caused by the communication overhead when triggering

the hardware accelerator and the resolving of accesses to this

shared resource, if triggered from more than one core.

A large number of factor affect the execution time of block

ciphers. Figure 5 shows that Noekeon, SPECK, and PRINCE

block ciphers provides the highest throughput on the TI

MSP 430, Infineon Aurix TC399, and the Renesas R-Car

M3 respectively. We list the important factors that influence

execution time and hence the throughput. In all measurements

the ECB mode of encryption was used on randomly generated

plaintext messages.

• The execution time of a cipher depends on the cipher

algorithm as well as its implementation. A cryptographer

may design an algorithm that abets efficient implemen-

tations, however, a badly coded realization of the cipher

may negate the cryptographer’s objectives. Alternatively,

implementations may be optimized for memory footprint

rather than performance. We have used open source

software written in C for all the cipher implementations.

Further optimisations may be possible by hand-crafted

assembly.

• It is observed that Feistel Networks (SPECK, SIMON

PICCOLO and CLEFIA) based block cipher algorithms

are in general faster compared to SPN based block

ciphers. This is because the operations in each round

are fewer in Feistel networks as they work with half the

SUBMISSION TO ERTS 2022 7

(a) TI MSP430 clocked at 16 MHz (b) Infineon Aurix TC399 clocked at 300MHz

(c) Renesas R-Car M3 clocked at 1.2GHz and 1.5GHz

Fig. 5: Throughput for various cipher implementations on the three evaluation platforms.

input at a time. The instructions are thus more easily

cached. For example, AES operates on 16 bytes of data

per round. The operations modify and perform confusion

and diffusion operations on all the 16 bytes. However,

an equivalent cipher like CLEFIA, has a Feistel structure

and operates on 8 bytes per round. These 8 bytes and the

corresponding operations are more easily cached even on

the small Aurix processor. Thus, even though, CLEFIA

has 18 round (compared to 10 rounds of AES), it executes

much faster.

• Some ciphers, like the popular light-weight cipher

PRESENT, are well studied by the research community

and expected to be small and fast. However, as we see

from our results PRESENT is one of the slowest ciphers

in the set. This is because ciphers like PRESENT are opti-

mized for hardware and not for software. Their diffusion

layer (permutation functions) in each round comprises

of bit-operations. While bit-operations are very efficient

in hardware, performing bit-operations in software is

considerably expensive.

• Cipher implementations mainly comprise of load-store

and integer ALU operations. Processors that can ef-

ficiently schedule these instructions perform well. For

instance, the Infineon Aurix TC399 processor is super-

scalar with two pipelines – one dedicated for load-store

operations while the other is used for ALU operations.

This structure is ideal for cipher execution. Load-store

operations can be executed in parallel with the ALU

operations, leading to a performance much better than

one would expect.

• Cipher implementations are extensively data intensive,

thus most implementations suffer from the Von-Neumann

bottleneck. TI MSP430 has a unified memory and no

cache. Thus throughput of ciphers on the TI platform is

several times lower compared to the other platforms. Data

cache memory in processors, can help boost performance.

However, extensively large cache memories are not very

useful. This is because, data used by ciphers is localized,

SUBMISSION TO ERTS 2022 8

for example within 512 bytes. A lightly-loaded system

would therefore not benefit from a large cache.

• A significant contribution to the Von-Neumann bottleneck

is due to the cipher’s SBoxes. These provide the non-

linearity in the results and typically implemented using

lookup tables. Ciphers such as SPECK and SIMON,

do not have SBoxes, but depend on other arithmetic

operations to provide the necessary non-linearity. Thus,

these ciphers are faster compared to the others that use

lookup tables.

• Cipher algorithms are mostly sequential. Operations in

a round cannot be performed until the results of the

previous round is available [36]. Thus, not much benefits

are gained from Out-of-order processors. This is evident

from the Renesas R-car M3, where the out-of-order

Cortex A-57 core does not have much benefits compared

to the inorder and simplified Cortex A-53 CPU core in

spite of the higher clock frequency, and a longer pipeline.

• It is not easy to generalize a cipher’s performance across

platforms. For instance, the PRINCE cipher which has

the highest throughput on the Renesas R-Car M3 with

respect to the ciphers, has one of the lowest performance

in the Infineon Aurix TC399. This also motivates such

multi-platform evaluation to understand performance of

ciphers across processors.

VI. CAVEATS

• The use of citations to compute the Scrutiny Factor of a

cipher assumes that a large proportion of the attacks and

applications of a cipher are published. For instance, an

unpublished full break on a cipher will not be considered

in the trust metrics.

• The value of 280 is fixed as the practical limits for the

time complexity. This is a widely acceptable value given

given today’s computing capabilities. This limit would

need to be revisited periodically with new computing

technologies, for example quantum computing.

• The methodology to evaluate trust is based on heuristics

and the state-of-art. Trust would need to be evaluated

periodically to take into consideration new attacks and

trends.

VII. CONCLUSION

There seems to be an inverse relationship between trust

and execution overhead. The safest ciphers like AES and

PRESENT have the worst performance on execution. There

are two approaches to select a cipher. The first is to choose

any of the trusted ciphers, viz-a-viz AES or PRESENT,

and extensively optimize it for the given execution platform.

This would involve hand written assembly code, hardware

specific optimizations, and use crypto-accelerators present in

the hardware. The second option is to choose a cipher that has

a good trade off between performance and security. We feel

SPECK meets that requirement. After AES and PRESENT,

SPECK has the highest Scrutiny factor. The attacks too have

a Penetration factor of 0.6 to 0.7, which is much better than

many of the other ciphers. Execution overheads too are low.

REFERENCES

[1] A. Greenberg, “Hackers remotely kill a jeep on the highway—with me in
it,” 2015. [Online]. Available: https://www.wired.com/2015/07/hackers-
remotely-kill-jeep-highway/

[2] V. Kalirajan, R. Mader, and S. Kastner, “Exploration of the real
time behavior of event chains by simulation and measurement of
“in-vehicle networks”,” in Symposium on International Automotive

Technology. SAE International, sep 2021. [Online]. Available:
https://doi.org/10.4271/2021-26-0490

[3] D. Schwartzberg, “In-vehicle data latency: Fast or furious,” 2019.
[4] O. Pfeiffer and C. Keydel, “Can security: how small

can we go,” 2019. [Online]. Available: https://can-
newsletter.org/uploads/media/raw/48cedb145acf731e6d8481e787416d5c.pdf

[5] [Online]. Available: https://www.infineon.com/cms/de/product/microcontroller/32-
bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/

[6] K. Nyberg, “Generalized Feistel networks,” in International conference

on the theory and application of cryptology and information security.
Springer, 1996, pp. 91–104.

[7] J. Daemen and V. Rijmen, The design of Rijndael. Springer, 2002,
vol. 2.

[8] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks,
and L. Wingers, “The simon and speck families of lightweight
block ciphers,” Cryptology ePrint Archive, Report 2013/404, 2013,
https://eprint.iacr.org/2013/404.

[9] C. Pei, Y. Xiao, W. Liang, and X. Han, “Trade-off of security and
performance of lightweight block ciphers in Industrial Wireless Sensor
Networks,” EURASIP Journal on Wireless Communications and Net-

working, vol. 2018, no. 1, pp. 1–18, 2018.
[10] A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique

cryptanalysis of the full aes,” Cryptology ePrint Archive, Report
2011/449, 2011. [Online]. Available: https://eprint.iacr.org/2011/449

[11] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” 1999.
[12] M. R. Z’aba, H. Raddum, M. Henricksen, and E. Dawson, “Bit-pattern

based integral attack,” in Fast Software Encryption, K. Nyberg, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 363–381.

[13] C. H. Lim and T. Korkishko, “mcrypton - a lightweight block cipher for
security of low-cost rfid tags and sensors,” in WISA, 2005.

[14] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, “The 128-
bit blockcipher clefia (extended abstract),” in Fast Software Encryption,
A. Biryukov, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 181–195.

[15] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-
lightweight block cipher,” in CHES, 2007.

[16] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and
T. Shirai, “Piccolo: An ultra-lightweight blockcipher,” in CHES, 2011.

[17] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R.
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen, and T. Yalçin, “Prince - a low-latency block cipher for
pervasive computing applications - extended abstract,” IACR Cryptology

ePrint Archive, vol. 2012, p. 529, 2012.
[18] H. Mala, M. Dakhilalian, V. Rijmen, and M. Modarres-Hashemi, “Im-

proved impossible differential cryptanalysis of 7-round aes-128,” 12
2010, pp. 282–291.

[19] B. e. a. Collard, “A statistical saturation attack against the block cipher
present,” in Proceedings of the The Cryptographers’ Track at the RSA

Conference 2009 on Topics in Cryptology, ser. CT-RSA ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, p. 195–210. [Online]. Available:
https://doi.org/10.1007/978-3-642-00862-7 13

[20] I. Dinur, “Improved differential cryptanalysis of round-reduced speck,”
in Selected Areas in Cryptography – SAC 2014, A. Joux and A. Youssef,
Eds. Cham: Springer International Publishing, 2014, pp. 147–164.

[21] F. Abed, E. List, S. Lucks, and J. Wenzel, “Cryptanalysis of the speck
family of block ciphers,” Cryptology ePrint Archive, Report 2013/568,
2013. [Online]. Available: https://eprint.iacr.org/2013/568

[22] N. Wang, X. Wang, K. Jia, and J. Zhao, “Differential attacks
on reduced simon versions with dynamic key-guessing techniques,”
Cryptology ePrint Archive, Report 2014/448, 2014. [Online]. Available:
https://eprint.iacr.org/2014/448

[23] H. Chen and X. Wang, “Improved linear hull attack on round-
reduced SIMON with dynamic key-guessing techniques,” Cryptology
ePrint Archive, Report 2015/666, 2015. [Online]. Available:
https://eprint.iacr.org/2015/666

SUBMISSION TO ERTS 2022 9

[24] H. Soleimany, C. Blondeau, X. Yu, W. Wu, K. Nyberg, H. Zhang,
L. Zhang, and Y. Wang, “Reflection cryptanalysis of prince-like
ciphers,” J. Cryptol., vol. 28, no. 3, p. 718–744, Jul. 2015. [Online].
Available: https://doi.org/10.1007/s00145-013-9175-4

[25] A. Canteaut, M. Naya-Plasencia, and B. Vayssière, “Sieve-in-the-middle:
Improved mitm attacks,” in Advances in Cryptology – CRYPTO 2013,
R. Canetti and J. A. Garay, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 222–240.

[26] A. Canteaut, T. Fuhr, H. Gilbert, M. Naya-Plasencia, and J.-R.
Reinhard, “Multiple differential cryptanalysis of round-reduced prince
(full version),” Cryptology ePrint Archive, Report 2014/089, 2014.
[Online]. Available: https://eprint.iacr.org/2014/089

[27] Y. Li, W. Wu, and L. Zhang, “Improved integral attacks on reduced-
round clefia block cipher,” in Proceedings of the 12th International

Conference on Information Security Applications, ser. WISA’11. Berlin,
Heidelberg: Springer-Verlag, 2011, p. 28–39.

[28] C. Tezcan, “The improbable differential attack: Cryptanalysis of
reduced round clefia,” Cryptology ePrint Archive, Report 2010/435,
2010. [Online]. Available: https://eprint.iacr.org/2010/435

[29] Y. Hao, D. Bai, and L. Li, “A meet-in-the-middle attack on
round-reduced mcrypton using the differential enumeration technique,”
Cryptology ePrint Archive, Report 2013/756, 2013. [Online]. Available:
https://eprint.iacr.org/2013/756

[30] Y. Wang, W. Wu, and X. Yu, “Biclique cryptanalysis of reduced-round
piccolo block cipher,” 04 2012, pp. 337–352.

[31] M. Minier, “On the security of piccolo lightweight block cipher
against related-key impossible differentials,” in Proceedings of the 14th

International Conference on Progress in Cryptology INDOCRYPT 2013

- Volume 8250. Berlin, Heidelberg: Springer-Verlag, 2013, p. 308–318.
[Online]. Available: https://doi.org/10.1007/978-3-319-03515-4 21

[32] D. Claraz, F. Grimal, T. Ledier, R. Mader, and G. Wirrer, “Introducing
multi-core at automotive engine systems,” in ERTS2, 2014.

[33] R. Mader, G. Winkler, and A. Graf, “Autosar based multicore software
implementation for powertrain applications (2015-1-0356),” SAE World

Conference, 2015.
[34] A. Göbel and D. Claraz, “A multi-core basic software as key enabler of

application software distribution,” in ERTSS, 2018.
[35] S. Kastner and T. Galla, “Unleashing the power of multi-core mcus by

communication stack software distribution,” in EMCC - Munich, 2019.
[36] C. Rebeiro, D. Mukhopadhyay, J. Takahashi, and T. Fukunaga,

“Cache timing attacks on clefia,” in Progress in Cryptology -

INDOCRYPT 2009, 10th International Conference on Cryptology in

India, New Delhi, India, December 13-16, 2009. Proceedings, ser.
Lecture Notes in Computer Science, B. K. Roy and N. Sendrier,
Eds., vol. 5922. Springer, 2009, pp. 104–118. [Online]. Available:
https://doi.org/10.1007/978-3-642-10628-6 7

Session Th.1.C

Logical Execution Time

Thursday 2nd June

10:00

–

Room Pastel

369

370

A dynamic Reference Architecture to achieve
planned Determinism for Automotive Applications

Denis Claraz∗, Max J. Friese†, Hermann von Hasseln† and Ralph Mader‡
† Mercedes-Benz AG Stuttgart, Germany
∗ Vitesco Technologies Toulouse, France

‡ Vitesco Technologies Regensburg, Germany

Abstract—With the evolution of modern cars towards more
distributed architectures, considering also an increase of the data
volume, we see the clear need of increased determinism in all
types of communications: inter-tasks, inter-core, inter-partitions,
inter-ecus. In parallel, to master the classical cost/quality/time-
to-market tryptic, platform approaches are needed more than
ever, to allow standardization. Our purpose in this document is
to describe how to combine standardization and determinism, in
the automotive domain, and what should be put in place in term
of architecture and design patterns.
Therefore, we describe our vision and experience of a dynamic
reference architecture, as a ”real-time framework” for easy
development and integration of functions on one side, and
for projects configuration on the other side. We explain the
different levels of detail required by different users, the variability
management required to support different classes of applications.
Then, we introduce the need for determinism, and clarify what
level of determinism we are talking about and which different
approaches used can be used. In particular, we present a new
approach that provides determinism not only at runtime, like
Logical Execution Time (LET), but also throughout successive
development cycles.
In a next section, we present a deterministic reference archi-
tecture, that combines the two above mentioned objectives of
standardization and determinism. We explain its main principles
and the underlying constraints on the design of the functions.
Following such an approach, we can achieve a certain degree of
planned determinism (in opposition to an ”inherited” one).
Finally, we illustrate our proposal with practical cases taken from
industrial projects, mostly from powertrain domain controllers.

I. INTRODUCTION

From their early days in basic engine control, powertrain

electronics have evolved into sophisticated computers for

precise combustion management, exhaust after-treatment and

drivetrain control. Yet, that forty-year evolution pales in com-

parison to the transformation of the entire vehicle’s electronics

and software architecture over the coming decade.

Over the years, new features for improved emission control,

vehicle safety and comfort were incrementally introduced into

the vehicle via new electronic control units (ECUs). The

modern car now already contains as many as 150 ECUs which

communicate with each other over in-vehicle networks such

as CAN, Ethernet or FlexRay. This incremental expansion of

the E/E landscape in a “distributed architecture” has, over the

years, become the state of the art at most carmakers. As a

result, the amount of software in the car continues to increase

exponentially, with some estimates placing the number of lines

of code in a premium car at over 700 million between 2025-

2030, compared to an already massive 100 million lines of

code in 2015.

Architects imagine a simple E/E constellation borrowed from

the IT-world as a ”North Star”: a few centralized servers

for computation, and distributed smart actuators for real-time

mechatronic control. However, most established car companies

have a long legacy of car platforms which must be maintained

in parallel with the desire to introduce new features via simple

E/E architectures. A single leap from the current distributed

architecture of as many as 150 ECUs, towards a server-based

architecture centered around a handful of high-performance

computers is done most often in intermediate steps, via domain

(Powertrain, Chassis, Body, Interior) or and cross domain

controllers, which we call master controller. [1]

A. Repartitioning of Functions

While cross-domain integration in a master controller, e.g.

responsible for vehicle motion, reduces the number of ECUs

in the car, it greatly increases the complexity of software

inside the device. The master controller is not only the

home of existing functions like energy management, torque

management and vehicle stability functions, but also contains

a slew of new functions to manage electrification, connectivity,

and the impacts of autonomous driving.

This E/E architectural trend affects the partitioning of the

functionalities: They are divided in a low level sensing and ac-

tuation part and a high level computational part. The low level

part will be still in a control device close to the corresponding

sensors and actuators with hard real-time requirements, nec-

essary for controlling a brush-less DC motor or a valve, just

to mention some prominent examples. The algorithm part will

move up to a higher architectural level in the E/E Architecture,

like the Vehicle Motion Master Controller. The exchange of

the sensor values, set point, etc. between low and high level

ECUs will be realized with bus systems like CAN, CAN-FD

and FlexRay.

B. Dynamic behaviour

Let us have a brief look on the architecture of automotive,

especially powertrain, applications. They are typically based

on an AUTOSAR Classic real-time operating system according

to the OSEK standard. The configuration of the OS is done in a

way that there are several recurring tasks with different periods

from 1ms up to 1000ms which are distributed on several cores

of a micro controller. These tasks call runnables subsequently

according to the need of the data flow demanded by the causal

chain of the function.

Fig. 1. Number of cores, tasks and runnables of different automotive
applications

As one can see in Fig.1 the integration complexity with

respect to the dynamic behavior of the system is different

across various automotive applications. Typically the number

of tasks and runnables increase with the size of the application

and reaches its maximum for master-controller, battery man-

agement and engine-management-systems.

When distributing functions of these applications over multiple

ECUs one needs to carefully consider the timing behaviour of

the event chains of the controlled system. Fig.2 illustrates the

basic principle of a distributed functionality with an ECU 1,

responsible for reading the sensor values and transmitting them

via CAN to the Master-Controller.

The higher level algorithmic portion located in the Master

Controller will receive the sensor values and use this in-

put to compute a setpoint for the actuator controlled by a

transmission- or engine-controller, called ECU2. The setpoint

Fig. 2. Schematic of a control flow from a sensing ECU1 via the Master
Controller to the acting ECU2, connected via CAN

is transmitted via CAN to the acting ECU which will use this

to apply the latest setpoint value to the actuator. The timing

between reading the sensor value and applying the setpoint

for the actuator must fulfill the requirements of the overall

function which needs to be realized in the timing constraints

given by the physics or the mechanics.

C. System integration and validation

These distributed functions will be developed by inde-

pendent teams, working on software for the different ECUs

with different update and release cycles. From one release

to another the desire of the System Integrators is to have

a control on the changes and best be able to reduce the

systems test cases to a minimum while still guaranteeing

the correct functional behaviour and a safe operation of the

system. Therefore mechanisms are needed which implement

a deterministic behaviour to reduce the necessary tests for

the validation and enable the release of subsystems. In the

following chapters we will manly focus on mechanisms which

can be applied for a single device in the communication

network to ease integration in the more complex devices like

master controller or engine management systems, which are

typically based on multi core controllers supporting different

safety partitions.

II. DETERMINISM

The software technologies used in this context need to

support this deterministic behaviour for static and dynamic

aspects of the software system architecture. In the last years

AUTOSAR Classic platform has been enriched in this direc-

tion. For the control of freedom from interference (FFI) safety

partitions have been introduced in the AUTOSAR Classic

standard. More recently, the release 20-11 [2] introduced the so

called software clusters (SWCL) as independent development

and build units with a defined interface layer: the software

cluster connect to the rest of the system. This allows the

development, validation and update of one software cluster,

independently from the rest of the system. From a static

architectural point of view the development and release of

subsystems is covered by these approaches. Concerning the

real-time behaviour of the system, an independence of the

clusters needs also to be ensured: the update of a cluster

should not impact the dynamic behavior of the others. This

concerns not only the task behavior itself, but also the data

communication between the clusters. In addition, different core

to cluster mappings are considered: 1:1, 1:n, m:1, m:n, as

shown in Fig.3

Fig. 3. Actual distribution of Clusters on Cores

A. What is determinism in the dynamic behaviour

In such distributed context, our main interest is the

inter-task data communication, when a data is transmitted or

received (written, read). In case of multi-core architecture, we

want to avoid 2 types of problems: concurrent accesses to the

same data (consistency), and unstable data age (determinism).

The first problem happens when the two competing tasks

attempt “simultaneously” to write (on one side), and read (or

write, on the other side) the same data or data set. This “data

consistency” issue (in the sense of stability and coherency)

is solved by a buffering strategy, similar to AUTOSAR

RTE/IOC [3] [4], and is not in the focus of this paper.

The second problem happens when the relative positions

of the tasks jitters over the time, generating an instability of

the number of writes between two successive reads, or vice-

versa. For instance, in Fig.4, the 2 communicating tasks have

a same period of 5ms, and also a deadline of 5ms: They can

execute anywhere inside the shaded area (within the period),

depending on the local situation on CPU load, interrupts,

blocking semaphores, other tasks running, etc... Therefore their

relative order is not guaranteed, and by consequence, the

actuator function (blue task) may respond with an unstable

delay to an input signal variation (yellow task):

Fig. 4. Impact of Task jitter on determinism of flow, and response time of
function

This ”non-deterministic” data age can be solved by

applying different scheduling and inter-task communication

strategies, that will be detailed in the next chapter. As shown

here, our main goal is to remove this uncertainty on the tasks

communication paths, i.e. to ensure a correct sequence of

causal chains.

As added benefits of deterministic communication, we can

mention 2 aspects:

• Possibility to parallelize independent parts of algorithms,

setting “rendez-vous” where data communication hap-

pens before the next parallel slot (chains of ”fork join”

patterns.) [5]. In particular, the Logical Execution Time

paradigm (LET, see II-B3) has been foreseen as a mean

to enable multi-core introduction in automotive systems

already in 2016 [6] and in 2018 [7]. Furthermore, it was

introduced in AUTOSAR Timing Extension [8] in 2020.

• Mean to set time-budgets to tasks and to increase the

decoupling between parts of the SW: as long as a task

stays within his pre-defined time-interval, there is no

impact on the other ones.

In our case (AUTOSAR OS, online scheduling), determin-

istic scheduling is not used to control the worst case execution

time (WCET) of the task (avoiding concurrent access to shared

resources like busses, memory, peripherals, . . .), like required

in offline scheduling strategies.
Finally, there can be different points of view on

determinism, and on implementation level, independently of

the chosen strategy, an uncertainty remains at what absolute

point in time a given data is transmitted or received.

B. Different implementation strategies

In this paragraph, we describe different implementations of

determinism, that may fit to the requirement, depending on

the needed precision. These strategies (applied on successive

projects, as described in section V) are:
1) Strategy 1: Short deadlines (Fig.5):

A basic and simple determinism can be reached by setting Task

deadlines, periods, and offsets in a way that the communicating

tasks will never overlap. For instance, 2 Tasks of period 5ms

on different Cores can have a deterministic communication if

they have a short deadline (e.g. DL=2ms) and an offset (e.g.

O=2.5ms) between them. Their execution domains (shaded

areas) do not overlap each other, and therefore an order is

guaranteed. One has just to ensure that each Task fits to

its timing requirements, by setting the appropriate system

configuration (priority, . . .).

Fig. 5. Short deadline tasks with offsets ensure a deterministic flow

2) Strategy 2: Time Determinism (TD) algorithm (Fig.6):

In the overall schedule of the TD tasks, data communication

of each task is done in a gap left empty before its next period

starts. The deadline of a TD-task is therefore shorter than its

period: At maximum, it is equal to its period minus a fixed

gap reserved for the bi-directional communication. A periodic

task is created to communicate the data for all TD tasks. Inside

each TD task, local buffers are used (similar to AUTOSAR

implicit communication), instead of directly reading the global

data. Each communication task publishes the buffers of the

preceding TD task into the global data (”Terminate”), and

copies the global data into local buffers of the succeeding TD

task (”Release”). Therefore, the real position of the task within

its deadline does not matter. What matters is the position of

the communication gaps vs. each other. With such principle,

the jitters of the 2 functional tasks have no impact on the data

age, as long as they finish before the communication task: a

data computed in the cycle N of a task will be available for

the other task in the cycle N+1.

Fig. 6. TD communication done in end of cycle task. A terminate (T) driver
publishes the data (computed in the previous cycle) to the global memory,
and a release (R) driver fetches the data from the global memory for the next
cycle computations. This example shows clearly that the flow between the fast
(yellow) task & the slow one (blue) is perfectly deterministic, independently
of the jitters of the tasks in their respective intervals.

3) Strategy 3: Logical Execution Time (LET) paradigm

(Fig.7):

In the LET paradigm [9], tasks execute anywhere within their

designed time-interval (like in previous strategies), and the

communication between them is done at the limits of the inter-

val, using dedicated tasks (called ”Release” and ”Terminate”).

The real determinism of the communication depends on how

precise is the execution of these communication tasks. In the

LET theory, the communication is done at each interval border,

in a ”zero time”. But in the real implementation, the runtime

for the data communication needs to be considered, and it

must be ensured that the communication is done at the limits

of - but inside - the interval. This constraint requires a careful

planning of the intervals: For instance, enough margin needs to

be reserved in the interval for the task (considering its WCET),

but also for the communication (release + terminate) [10] [11].

Also, conflicts (overlaps) between releases and terminates of

different intervals shall be avoided, as they may end-up in

conflicting accesses to the same data, with the resulting loss

of determinism and coherency.

Fig. 7. LET communication: Different intervals/tasks on different cores.
Communication is done at limits of each interval in the Release & Terminate
drivers.

TD and LET principles are very similar: In both cases,

dedicated tasks are in charge of the inter-task communication.

In both cases, an interval is defined for each functional task,

which represents the time slot inside which the task is allowed

to execute. In TD, the intervals are in practice nearly equal

to the periods, whereas it should not be necessarily so. In

LET, the intervals are much shorter than the period, and

several intervals are set for the same period, whereas it should

not be necessarily so. In TD, the actual communication of

the data is done outside of the task frame, when the next

(periodic) communication tasks executes. In LET, the actual

communication of the data is done at the limit (inside) the

interval.

4) Strategy 4: Planned LET (Fig.8):

The objective of this strategy is to ensure determinism of the

communication between different tasks of different clusters.

It also ensures a stability of this communication along the

project development cycle, despite the successive upgrades:

the communication between clusters is kept as planned.

The LET communication described above ensures determin-

ism of communication between tasks at runtime. But in case

of distinct clusters, each one with its own tasks, it cannot

be ensured that the communication is still done at the same

position, when one of the 2 clusters gets updated (e.g. re-

flashed). Even if the architectures (number of tasks, periods,

offsets, lengths) of all clusters are frozen (which might not

be the case), it is possible that in the new upgrade of cluster

B (e.g. on core 3), the production of the inter-cluster data

is moved from the 1st to the 2nd interval. Consequently,

the behavior of the cluster A (on cores 1 & 2) would be

affected by this modification of cluster B, if the tasks of

the different clusters would directly communicate. Here, LET

alone would bring a certain determinism at runtime, but would

not offer any determinism over development cycles. To avoid

this effect, cross-cluster communication tasks are created, that

define communication channels between the clusters, and that

are fixed on system design level, in term of position, and data

to be transmitted. In other words, we have a component model

for the dynamic aspects of the architecture. In the example

Fig.8, we show that for cluster A distributed on 2 cores, that

the (green) importing task (“XccIn”) can even be implemented

on a different core than the (red) exporting task (“XccOut”).

Finally, this concept has 2 additional benefits:

First, it compensates one weakness of the LET paradigm:

its single interval scope: With LET, each interval is treated

as an own execution container, for which a high degree of

data integrity is ensured (determinism, stability, coherency).

But in reality, a complete system is based on several - or

even many - intervals. and some of them consume the same

information. Then, LET does not answer to the question of

data integrity for a complete set of tasks. For instance, one

might have the need that all intervals of same period (e.g.

10ms) share the same value for a data coming from another

period (e.g. 10ms) or cluster. We might even need to define,

in a series of successive intervals, which one should work

with the latest value, while the others may work with an older

information (”fast causal chain”). With Xcc communication,

the producer cluster decides at which instant it communicates

certain information to all consumers, and each consumer

decides for itself at which instant it imports the information.

There is a total decoupling between the actual computation/use

of the data and its communication.

As second side effect, the Xcc communication reduces the

conversion overhead between the clusters, compared to a direct

task-to-task communication: The import of a data from another

cluster is done only once, even if this data is used in many

tasks (intervals).

Fig. 8. Cross cluster communication: Clusters A & B communicate at pre-defined & fixed points (Xcc tasks), which are independent of the internal details
of each cluster. The Xcc tasks are in charge of distributing (respectively collecting) the inter-cluster data to the different consuming (resp. producing) tasks
inside the cluster. LET communication is applied for the internal flow of the cluster.

This strategy is in use in our newest program, which is

described further in the chapter V.

C. For which data?

As seen in the previous paragraph, our motivation for

determinism is the removal of the uncertainty of the data com-

munication path between tasks, due to task jitters. Achieving

a fixed age is a clear advantage of such scheduling, like LET,

but there is a price to pay: First, the CPU utilization is not

as optimized as it could be in a conventional system; Then,

the duration of the Release/Terminate at the limits of the LET

interval may become significant in proportion to the interval

duration, in case of big data flows.

Therefore, there is a need of a selective approach, where

determinism is applied only on a subset of critical data. For the

other data, classical data integrity (e.g. stability, or coherency)

approach is sufficient, and more optimized.

For instance, the LET approach could be limited to safety

critical data, or for signal flows where the instability has

system impact. Typically, it may depend also on the nature

of the data. Control data (booleans, state machines, indexes,

counters, ...) may have a stronger negative impact on the

functional behavior in case of non-determinism, than more

”continuous” data, which have low gradients. Finally, this

is the consumer function of the signal, which knows better,

whether a non-deterministic behavior of its inputs may have

or not a negative effect on the strategy.

In the case of Xcc communication, the objective is rather to

concentrate the communication flow between the clusters in a

few a-priori and stable defined channels, to reduce the impacts

of upgrading one cluster. The challenge is here to properly

map the exchanged data on the right Xcc communication

tasks. On the consumer-cluster side, the different intervals

and frequencies where the imported data is used have to

be considered, together with the availability and location of

XccIn Tasks. The idea is to have one single point of import,

even if there are several consuming tasks/frequencies. On the

producer-cluster side, a similar approach has to be followed,

and finally the flow cross clusters has to be designed on overall

system level, ensuring a coherency of the communication

channels between the clusters.

For sure, such an approach is easier when the clusters are

decoupled, and exchange few information. In case of highly

coupled clusters with several hundreds of interfaces, the a pri-

ori definition of all communication channels seems impossible,

and in this case, a mixture between top-down & bottom-up

approaches need to be applied.

III. REFERENCE ARCHITECTURE

Objectives of a reference architecture:

To facilitate the SW reuse, it is necessary that the reusable

components and the reusing projects are developed according

to a common framework. This framework comprises many

facets, like a functional partitioning, a layered architecture,

design patterns, coding rules, and more. One particular facet

of this framework is a dynamic reference architecture, that

ensures a correct real-time behaviour of the functions and

projects.

Technical content:

This reference architecture defines standard events, operating

system tasks, as well as some transverse configuration items.

Events are abstract artifacts that define timing properties

like periods, deadlines, activation pattern (sporadic, periodic,

aperiodic, ...), available phases (abstract way of specifying

a sequence constraint [12]), the behavior in case of system

(core synchronous) transition [13] [5], and other behavioral

details. Tasks are concrete artifacts that define not only the

basic OS configuration (core, priority, multi-activation, use of

cooperative resource, . . .), but also extensions like chaining

to other tasks (if any), detailed LET configuration, memory

section, asil level and more implementation details. Tasks

are linked to events by a n:1 relationship, in the sense that

n different tasks can implement the same event, while one

event is implemented by at least one task. If different tasks

implement the same event, then they comply individually and

collectively to the event’s constraints. For instance, if 2 tasks

of the same event are chained, the complete chain fulfills

the timing constraints of the event (in particular period &

deadline).

In total, the complete definition of an event requires around

10 parameters, and even some more for a task (Fig.9).

Fig. 9. Parameters of events and operating system tasks. They are defined
centrally in the reference architecture, to ensure a good synergy between
functions and projects.

Functional content:

Functionally, the reference architecture contains different cat-

egories of events and related tasks:

• Angle based events and tasks are necessary for engine

control applications, which have the most complex ar-

chitectures. We can find here events of different periods

(top dead center, engine rotation, camshaft rotations, ...),

different phasing (different angular phases vs. top dead

center). These events can be periodic or aperiodic, in

all cases depending on the engine rotation speed. There

are also engine related transitions, like engine stalling or

cranking events, which require specific function initial-

ization.

• Time based events and tasks are ranging from 1ms

to 1000ms. For some of them, different deadlines are

provided. For instance, most of 10ms calculations use a

10ms deadline, but for some other, a short deadline of e.g.

3ms is necessary. For this, different events, and different

sets of tasks are provided in the reference.

• Kernel events and tasks for the infrastructure / Basic

Software (BSW), as well as some function dedicated tasks

(communication, watchdog, safety, background, CPU

load, etc...). These tasks are also part of the reference, but

are in general not open for Application Software (ASW)

integration.

• Finally, initialization events and tasks are provided, that

correspond to transitions between different ECU modes:

reset, shutdown, entry or exit into RUN or POST-RUN

modes, etc ...

At the end, the complete reference for a four core engine

control system contains 80 events & 200 tasks.

How to use for functions:

Function developers refer to standard events to specify the

timing requirements (therefore integration constraints) of their

functions. They cannot refer to standard tasks for the same,

as it would tight them too much to a dedicated project config-

uration, and therefore reduce their re-usability. As mentioned

above, if a project implements different tasks for the same

event, any of these tasks is guaranteed to respect the timing

constraints of the event. Therefore, the timing properties of

a function will be respected in the project as long as it is

integrated in a task implementing the specified event.
In particular, core allocation is not a requirement of the

function. Eventually, an affinity versus a certain core property

(availability of double precision FPU, lock-stepped core, ...)

or versus other functionality (”be on the same core than ...”)

might be a valid requirement, but has to be used carefully as

it might end-up in a non solvable situation.
Seen from function development perspective, the refer-

ence architecture provides sufficient information to allow the

specification of the function’s integration constraints. These

constraints are precise enough to ensure a correct dynamic

behaviour of the function, and abstract enough to comply

with diverse integration project, based on different micro-

controllers (therefore available cores), integrating different

functions (thereof customer plugins), having different system

configurations (hybrid vs. pure combustion engines vehicles,

diesel vs. gasoline, engine control vs. domain controller,etc..),

etc...
How to use for projects:

Considering the high number of tasks required (up to 200

on a 6 cores application), and the need of overall coherency,

configuring such a project is a significant effort, even if it has

just to select into a large library of existing tasks described

in all implementation details.

Therefore the reference architecture provides a series of

architecture variants (”reference architecture projects”), which

correspond to our main use cases, like e.g. 3 & 4 cores engine

management system, 3 cores transmission systems, or single

core selective catalyst reduction system. The left pie-chart

in Fig.10 shows the percentage of projects using one or the

other variant, over a selection of 70 projects in development.

We see, for instance, that only 21% of the projects are not

based on any variant, due to their atypical architecture.

In addition to the case-relevant event and tasks, each of

these variants comprises transverse configurations, that can

only be set at multi-task or multi-event level. This is the

case, for instance, of sets of tasks that need to be enabled or

disabled at once at given phases of the ECU life.

Therefore, a project architecture is based (reuse by refer-

ence) on the variant, which is closest to its configuration. From

this variant, the project can:

• reuse any artifact from the reference as is

• ignore any artifact of the reference (not needed)

• adapt any artifact of the reference (deviation)

• create its own artifact w/o restriction.

In any of these cases, the project is responsible to ensure

that the timing requirements of the events are respected, for

any of the underlying tasks.

Finally, the most usual case is that the project at Vitesco

Technologies reuse one variant and all embedded artifacts with

very few specializations, as shown in Fig.10: Nearly 80% of

all tasks used by our selection of projects are reused from the

reference architecture without any modification.

IV. REFERENCE ARCHITECTURE FOR DETERMINISM

A. Reference Architecture for Time Determinism

The reference architecture described in the previous chapter

is a living practice, and fits to a well-established product group

such as combustion engine control. With the introduction of

electrification and new domain-oriented architectures, where

more determinism is required, this reference needs to be

adapted. The new reference architecture will be simpler in the

sense that there will be less complex events (related to engine

rotation), but a simple timing event previously described by a

period, offset and deadline, will now in addition be split into

a series of LET intervals each one defined by an additional

offset and a duration.

The challenge is then to define a priori, w/o the full knowledge

and background of potential user functions, a standardized

organization of these intervals, that is kept stable over the

development loops and across projects.

This proceeding is contrary to most of the current LET

projects, where the architecture has to be regularly re-

adjusted to satisfy fast communication chains (a bottom-up

approach where the architecture is adapted to the functions,

and not vice-versa).

Below are listed some principles of this LET reference

architecture, that we believe can satisfy our upcoming projects.

1) Distribution over the period: In order to balance the

CPU load, the intervals are not ”grouped” at the beginning

of the period, but rather mostly equally distributed over the

complete period. For instance in case of 5 intervals of 2ms

length and 1000ms period, instead of concentrating them in a

reduced slot of approximately 10 to 20ms, they are distributed

over the complete 1000ms period. This principle provides

flexibility in the later evolution of the architecture, as it gives

space for moving or expanding existing intervals, or adding

new ones, without reworking the complete scheduling.

2) Ratio interval length vs. WCET of task: We know that

we need a minimum margin between the WCET of the task,

and the length of its interval, to let enough time for interrupts,

higher priority tasks, and for the release & terminate oper-

ations. But ensuring a minimum margin does not mean that

this minimum value has to be applied: any longer interval is

also valid. Therefore, the ratio between the interval length and

the WCET of the task has to be above a minimum threshold,

but does not have a maximum. Having a long interval, even

if we know the WCET of the task will be much shorter is

not an issue, and reduces the ”stress” of the scheduling, by

letting time for other tasks to execute. The important point

here is that the position of data transfer, at the limits of the

interval, is fixed, and in accordance with the communication

needs between tasks. For sure, this ratio depends also on the

number of intervals for the given period.

3) Minimum length of interval: A very fine granularity of

intervals lengths requires a high resolution of the LET system,

and therefore a high CPU load overhead. Finally, this concerns

not only the lengths of the intervals, but also the offsets, and

the periods.

4) Maximum number of intervals: The number of intervals

for a given period and core has to be limited. For instance,

even on small periods like 100 or 1000ms, we limit ourselves

to a reduced set of intervals, even if we could introduce a lot.

The reason here is to limit the integration possibilities, keep

the architecture relatively simple, and reduce the OS overhead.

5) Overlap between intervals of different periods: In gen-

eral, for a given core, the intervals are organized to avoid

overlapping situations. Nevertheless, keeping this principle for

all periods is particularly problematic when periods are quite

different. For instance avoiding overlap between a 1000ms

interval and a 5ms -even 1ms- interval introduces the high

constraint that even for tasks of slow period, therefore relaxed

deadlines, the interval length must be kept very short to

avoid such overlaps. To avoid such constraints 3 groups of

periods are defined, inside which no overlap can occur. On the

opposite, cross different groups, an overlap is fully possible.

Therefore, a 5ms interval will overlap a 1000ms interval. This

is not contradicting the LET paradigm, and the communication

between both tasks will be done at each intervals limits.

6) Core independence: Having identical architectures on

different cores have different advantages. First, it simplifies

the overall architecture. Second, it allows the design of the

functions independently of the core, providing an important

flexibility at integration time. Another advantage is the possi-

bility to implement ”fork-join” patterns, where necessary. For

this reason, we have designed a reference architecture with 2

types of clusters/cores: fast and slow clusters, to cover different

use cases. But 2 fast (respectively slow) clusters have exactly

the same architecture.

7) Cohabitation with non-LET tasks: The LET architecture

must reserve sufficient empty space for non LET tasks, from

the kernel, or from non-deterministic application SW. This

non-LET part of the SW usually has more relaxed timing

constraints, and will get executed in the ”holes” of the LET

scheduling.

8) Constraints vs. Xcc tasks: For most of the periods,

one XccIn and one XccOut are reserved, for inter-cluster

communication. In some cases (fast frequencies), no cross

cluster communication will be done. In some other (highly

loaded frequencies), a double Xcc communication is planned,

to allow the insertion of fast communication paths. By default

the Xcc communication tasks are added at the begining (for

XccIn) and at the end (XccOut) of the period (”chain of LET

intervals”).

As result of these principles, we defined a standard archi-

tecture, for which we give an abstract in Fig.11.

Fig. 10. Comparison of OS tasks priorities between a selection of 70 projects and the reference architecture. Each line represents a task from the reference.
Each column represents a project. The green column gives the priority defined in the reference. A red cell indicates that the project deviates from the reference.
A grey-shaded cell indicates that the task is not used.

Fig. 11. A simplified LET-RA shown with two flavors: “Fast” and “Slow”. Each flavor can be mapped onto a core, and be used to implement a Software-
Cluster, or parts of a Software-Cluster. On the “Slow” flavor there are two sets of LET intervals with their own Xcc-tasks, which can be used for different
functional causal chains. On the B0 cluster, Xcc “communication channels” (i.e. extra Xcc tasks) are inserted in the middle of the 10ms and 20ms chains, to
satisfy some short causal chains. Note that this is a gross simplified picture.

B. Requirements for, and impact of RA on function design

As described in the next chapter ‘Practical Example’, the

strategy up to now was in essence to adapt existing static and

dynamic architectures to legacy functions and their software

architecture. The drawbacks of such an approach have been

outlined above, and a more planning is in need here.

With the introduction of a Reference Architecture for Time

Determinism it is clear that some restrictions and rules on

the functions design level are necessary. This is by no means

something new, as for example the Autosar component model

also puts some constraints on the function design. For Time

Determinism and the introduction of LET, which results in a

component model for the dynamic aspects of the architecture,

similar constraints needs to be formulated.

As already stated, without the full knowledge of potential

user functions, it is a real challenge to define the Reference

Architecture. But, there is a lot of implicit information con-

tained in legacy projects and from foreseeable development

of user functions, which can be used to derive some minimal

assumptions and constraints for function design.

Some fundamental basics of a function design include:

1) In the case of a periodic functions, the frequency with

which these functions shall be called. It is helpful to avoid

frequency dividers, because these would unnecessarily

enlarge LET intervals and might lead to a waste of time

resources. Although, to minimize complexity, it is also

of importance to confine the number of task (or LET

interval) periodicities. This is a tradeoff, and depends

clearly of the kind of software project and user functions.

In our experience there is generally enough information

available to decide for a set of periodicities.

2) In the case of event-triggered functions, the information

on a worst case response time of a causal chain in which

these functions are embedded is needed. If planned to

embedd event-triggered functions into LET-intervals, it

should be coordinated with the overall set of periodicities,

and if over- or undersampling is appropriate.

3) In general, the embedding of functions in one or more

causal chains, together with minimal latencies require-

ments these causal chain have to fulfil,

4) or, at least, the predecessor and successor relations of

functions which define execution order constraints.

5) The description of the dependency of functions on other

functions in order to build up a data dependency graph.

Such data dependency graph are used to optimize im-

plementations of causal chains or resolve concurrency

issues on the LET-interval structure. The data dependency

graphs is not only needed in order to verify require-

ments of causal chains in a Software-Cluster, or among

Software-Clusters, but may also be necessary in cases

where a Software-Cluster has to be mapped onto more

than one core (parallelization).

6) A classification to which SW-Cluster functions are as-

signed to.

7) An estimate of the resource consumption of functions.

These include memory consumption, the the amount

of data to be buffered for determinism (in or among

SW-clusters: therefore a detailed analysis of the data

dependency graphs are necessary, see (5)), estimates of

(worst-case) execution times in order to map functions

onto LET-intervals. It is also of crucial importance to have

information on the volatility of the runtime of functions.

In most practical cases, static WCET analyzes are not

feasible, but information on the functional content often

helps to classify these functions.

8) There are also a number of non-functional requirements

which have to be considered. Among them are a classifi-

cation of functions according to ASIL-levels. This might

lead to restrictions on the mapping fo ASIL-relevant

functions to cores of multi-core controller which a have

Lock-Step core behind. Another important restriction is

the placement of functions related to signal mappings

and network diagnostics (middleware), which should be

placed with respect to the capability to distribute basic

software functions onto cores. There is also an important

restriction coming from the Autosar Software architec-

ture: atomic Software components must be mapped onto

one core, i.e., the runnables are not allowed to be dis-

tributed among cores.

This list has to be understood as a minimal set of user func-

tion properties, or properties of a given Software architecture.

On the other hand, this list can be used as a minimal set of

impact properties for the design of user function.

Depending on the Software architecture of user functions

it might be appropriate to define several ”flavors” of task

structures of a Reference Architecure, which then can be used

on different cores of a target multi-core controller. With this

basic information at hand, the following required information

can be gathered:

1) which ”flavour” of the RA should be instantiated on each

core of the target controller,

2) an analysis and mapping of functions onto tasks or

LET intervals of a SW-Cluster (e.g., corresponding to

existing dynamical concepts), to fulfil inter-SW-Cluster

communication,

3) an analysis and placement of intra-Cluster-

Communication (Xcc tasks), in order to fulfil causal

chain requirements.

V. PRACTICAL EXAMPLE

In this section we give a brief history of how multi-core

architectures have become part of the development for the

central powertrain controller at Mercedes-Benz Cars. Follow-

ing this, we discuss the demands of the upcoming generations

and finally we give an outlook for future generations which

provides additional motivation to pursue LET reference archi-

tectures.

In the following, we refer to five different generations of

central powertrain controllers: GenA (launched around 2012),

GenB (launched around 2016), GenC0 (launched around

2020), GenC1 (launched around 2020), and GenD (to be

launched around 2024).

A. Evolution of the Dynamic Architecture of the Central

Powertrain Controller

The development of the dynamic architecture of the central

powertrain controller has been influenced by multiple factors.

Firstly, the hardware architecture has an impact as it deter-

mines the number of available cores and the communication

between software allocated on these cores. Secondly, the

software architecture plays an important role. A monolithic

architecture (cf. [14]) can not be freely distributed, wheres a

component-based architecture with well-defined interfaces also

gives more flexibility for the scheduling. It stands to reason

that the amount of signals exchanged via the interfaces also

impacts the scheduling and therefore the dynamic architecture.

The more signals are communicated, the more scheduling con-

straints potentially exist. In Fig.12 the increase in the amount

of signals exchanged within the OEMs application software is

depicted. More precisely, the figure shows signals exchanged

with high frequencies between generations of the central pow-

ertrain. Please note, that GenC1 is installed in electric vehicles

(EV) and therefore has less signals as no combustion engine

is controlled. Starting from GenB , the determinism is used

0.005 0.01 0.02

0

2,000

4,000

6,000

8,000

Frequency [s]

#
o
f

si
g
n
al

s
w

ri
tt

en

GenA GenB GenC1 GenC2

Fig. 12. Signals Written with Frequency 5, 10, and 20ms in the ASW of
different generations of the Central Powertrain Controller

for the communication of 5 and 10ms signals. Finally, there

are external factors influencing the scheduling. An example is

development of connected cars [15] as it indirectly influences

the dynamic architecture because it imposes new demands,

e.g. for service-oriented communication.

1) GenA: This is the first generation taking the role of a

domain controller. It was using a single-core controller with a

multi-task system which was scheduled using a priority-based

preemptive algorithm. For this, basic data consistency methods

were introduced.

2) GenB: In this generation, tasks are still scheduled using

a priority-based preemptive scheduling. Since it is the first

generation with a multi-core controller, in GenB the first

cautious utilization of multi-core was introduced. Tasks were

distributed on the different cores with limited use of task

chaining techniques. These techniques allow rule out any

overlap of certain tasks across two cores. See also page 3

strategy 1.

3) GenC0: In GenC0 the use of multi-core scheduling

has been developed further. To cope with the arising chal-

lenges different mechanism for time determinism have been

introduced. While still using the same priority-based preemp-

tive scheduling, and mostly reusing existing OS-tasks from

the previous generation, but implementing data determinism

mechanism for tasks with fast periods. Although this is not

strictly following the LET approach, it was the first time

communication mechanisms following the LET semantics

were implemented. Furthermore, synchronization of the clocks

of some of the powertrain ECUs has been implemented

to orchestrate network communication with other controllers

within the domain. See also page 3 strategy 2.

4) GenC1: In this generation, time determinism was rolled

out for almost all application-level tasks. For the first time a

LET-based scheduling for the application software was used

in this ECU to ensure for data determinism, enable load better

balancing by parallelization, and implementation of causal

chains by design. To achieve this, a detailed data dependency

analysis for the design of causal chains was developed [6].

See also page 4 strategy 3.

5) GenD: With GenD a cluster-concept is introduced al-

lowing more flexible development. This also comes with

more sophisticated methodologies for architectural work for

both, the static software as well as the dynamic software

architecture. On the static as well as on the dynamic side, ar-

chitects are working with component models. While the static

side architects can rely on the well-established AUTOSAR

component model, for the dynamic side new concepts have

been developed. More precisely, a reference architecture with

SL-LET-like [16] is implemented on the dynamic side, which

we call planned LET. The primary objective is to further

improve stability of the development process during different

phases of a project. See also page 4 strategy 4.

B. Future of the of the Central Powertrain Controller

As depicted in Fig.12, the amount of signals communicated

with fast frequencies steadily increases with every generation

of the central powertrain controller. This is also expected to

happen from GenC to GenD. In addition, the introduction of

the cluster-concept allows to configure different configurations

consisting of varying clusters. In the maximum configuration

we expect an increased demand of deterministic communica-

tion by 25 to 30 percent compared to GenC1. A considerable

share of this increases comes from the EV part in GenC2,

however, it is also possible that more functionalities are

integrated in new clusters.

VI. CONCLUSION AND OUTLOOK

In the paper we have shown the evolution of deterministic

scheduling and data communication approaches of the past

decade in the powertrain domain. From single core to multi

core, from a project architecture to a reference architecture.

We have shown how a reference architecture for the dynamic

aspects of an embedded automotive system is applied in

practice at Vitesco Technologies.

The evolution of the central power-train controller at

Mercedes-Benz Cars clearly shows the gradual establishment

of LET-based data determinism mechanisms. Initially, the goal

was to utilize multi-core architectures in a safe manner, With

LET now being successfully implemented, we strive for an

independent dynamic software architecture with LET frames

as the components.

Especially the application of a dynamic reference architecture

in combination with the AUTOSAR Flexibility concept will

enable an independent development and release of SW-clusters

and so it will help to manage complex embedded automotive

software systems. As a next step these approaches can be

extended to in-vehicle networks in the sens of a System Level

LET.

REFERENCES

[1] R. Mader, G. Winkler, T. Reindl, and N. Pandya, “The cars electronic ar-
chitecture in motion: The coming transformation,” in 42nd International

Vienna Motor Symposium, 2021.
[2] AUTomotive Open System ARchitecture. (2020, 11)

Requirements on system template. [Online]. Avail-
able: https://www.autosar.org/fileadmin/user upload/standards/classic/
20-11/AUTOSAR RS SystemTemplate.pdf

[3] D. Claraz, F. Grimal, T. Ledier, R. Mader, and G. Wirrer, “Introducing
multi-core at automotive engine systems,” in ERTS2, 2014.

[4] AUTomotive Open System ARchitecture. (2017, 12) Specification of rte
software. [Online]. Available: https://www.autosar.org/fileadmin/user
upload/standards/classic/4-3/AUTOSAR SWS RTE.pdf

[5] R. Mader, “Design pattern in automotive multi-core embedded realtime
environment and their support by scheduling strategies,” in Parallel

Heidelberg, 2017.
[6] J. Hennig, H. von Hasseln, H. Mohammad, S. Resmerita, S. Lukesch,

and A. Naderlinger, “Poster abstract: Towards parallelizing legacy
embedded control software using the LET programming paradigm,”
in 2016 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), Vienna, Austria, April 11-14, 2016. IEEE
Computer Society, 2016, p. 51. [Online]. Available: http://ieeexplore.
ieee.org/xpl/mostRecentIssue.jsp?punumber=7460013

[7] A. Biondi and M. D. Natale, “Achieving predictable multicore
execution of automotive applications using the LET paradigm,” in IEEE

Real-Time and Embedded Technology and Applications Symposium,

RTAS 2018, 11-13 April 2018, Porto, Portugal, R. Pellizzoni, Ed.
IEEE Computer Society, 2018, pp. 240–250. [Online]. Available:
https://doi.org/10.1109/RTAS.2018.00032

[8] AUTomotive Open System ARchitecture. (2020, 11)
Specification of timing extensions. [Online]. Avail-
able: https://www.autosar.org/fileadmin/user upload/standards/classic/
20-11/AUTOSAR TPS TimingExtensions.pdf

[9] C. M. Kirsch and A. Sokolova, “The logical execution time paradigm,”
in Advances in Real-Time Systems (to Georg Färber on the occasion of

his appointment as Professor Emeritus at TU München after leading

the Lehrstuhl für Realzeit-Computersysteme for 34 illustrious years).,
S. Chakraborty and J. Eberspächer, Eds. Springer, 2012, pp. 103–120.
[Online]. Available: https://doi.org/10.1007/978-3-642-24349-3 5

[10] R. Mader, “Implementation of logical execution time in an autosar based
embedded automotive multi-core application,” in Dagstuhl Seminar

18092, 2018.
[11] M. Alfranseder, S. Kuntz, M. Kardos, and R. Mader, “Logical execution

time in the automotive environment,” in Embedded Software Engineering

Conference - Sindelfingen, 2018.
[12] D. Claraz, S. Kuntz, U. Margull, M. Niemetz, and G. Wirrer, “De-

terministic Execution Sequence in Component Based Multi-Contributor
Powertrain Control Systems,” in ERTSS 2012, 2012.

[13] M. Alfranseder, R. Mader, T. Krapf, M. Niemetz, J. Mottok, and
C. Siemers, “An efficient partitioning strategy for runnables in weakly
dependent tasks on embedded multi-core systems,” in ERTS2, 2014.

[14] M. Staron, Automotive Software Architectures. Springer International
Publishing, 2017, vol. 1. [Online]. Available: https://doi.org/10.1007/
978-3-319-58610-6

[15] R. Coppola and M. Morisio, “Connected car: Technologies, issues,
future trends,” ACM Comput. Surv., vol. 49, no. 3, pp. 46:1–46:36,
2016. [Online]. Available: https://doi.org/10.1145/2971482

[16] K. Gemlau, L. Köhler, and R. Ernst, “Efficient run-time environments
for system-level LET programming,” in Design, Automation & Test

in Europe Conference & Exhibition, DATE 2021, Grenoble, France,

February 1-5, 2021. IEEE, 2021, pp. 749–754. [Online]. Available:
https://doi.org/10.23919/DATE51398.2021.9474257

The synchronous Logical Execution Time paradigm

Fabien Siron∗†, Dumitru Potop-Butucaru†, Robert de Simone†, Damien Chabrol∗ and Amira Methni∗
∗Krono-Safe, Massy, France

†Université Côte d’Azur, Inria, France
∗firstname.lastname@krono-safe.com

†firstname.lastname@inria.fr

Abstract—Real-Time industrial systems are not so much of
those that have to perform tasks incredibly fast, but in a time-
predictable manner; they rather focus on meeting previously
specified timing requirements in a provable way. Consequently,
time must be taken into account from the very start of the design.
However, exact timing constants may not be available yet in
early design stages as they may depend on the target. In answer,
formalisms based on the Multiform Logical Time have been
introduced to abstract real-time durations. The Synchronous-
Reactive (SR) approach introduced a discretized abstraction of
time on which computations happen logically instantaneously.
Contrary to SR, Logical Execution Time (LET) mandates to
specify the actual logical duration a task has to fulfill. This
allows a more efficient compilation, at the price of a lower
expressiveness. Classical LET (i.e. as introduced in Giotto/TDL)
sticks to uniform pseudo-physical time, i.e. based on one logical
clock mapped to the real-time. In this paper, we introduce a
new paradigm called synchronous Logical Execution Time (sLET)
that builds upon both SR and LET paradigms. It keeps the
idea of logical durations coming from the LET paradigm, while
having logical instants based on logical clocks. This extends the
expressivity of LET, as time is totally abstracted as sequences
of events. The various schedulings provide physically timed
versions that, while having distinct non-functional properties
(in terms of performance mostly), remain mutually functionally
equivalent (in the logical time realm). A particular instance,
where computations are executed ”in a single instant”, and then
time is advanced (as in classical event-driven simulation), can
lead to a direct translation into synchronous formalisms (in our
case Esterel). We started inquiring how this could open new ways
of verification and analysis on PsyC programs.

I. INTRODUCTION

The design of embedded control software calls for stringent

real-time constraints due to their permanent interaction with

the physical environment. Such real-time systems are usually

safety-critical because of the context in which they are used

(avionic, automotive . . .). Therefore, their designs should be

verified with the highest possible level of confidence. Various

formalisms based on the concept of Multiform Logical Time

have been introduced to abstract real-time durations which are

usually not known at the design phase, as they might be target-

dependent. Then, specific analysis, called schedulability analy-

sis (or time safety analysis) ensure that physical computations

satisfy their logical time constraints.

Among those formalisms, the Logical Execution Time (LET)

paradigm [1] brings a compromise between the strong ex-

pressiveness of the synchronous-reactive approach (SR) [2]

and the efficiency of traditional task scheduling. Contrary to

the SR model, computation takes time and is bounded by a

fixed logical duration usually known before the computation

happens. However, in SR model, because computations are

considered instantaneous, time can be refined using multiple

logical clocks. LET is usually based on a unique clock repre-

senting the progress of time. Consider the following temporal

interval where the bounds are described by sync:

sync 1 ms; f(); sync 1 s;

Depending on the semantics of the language, the interval might

last one second or up to the next second tick. The former

semantics, usually used by LET based languages, would mean

that both ms and s refer to the same clock (i.e. 1 s being just

a short for 1000ms) while the latter semantics, corresponding

to synchronous languages, mean that both ms and s are logical

clocks related with an affine relation.

In industrial projects, while classical synchronous languages

such as Lustre or Scade fit perfectly the need to describe the

functional behavior of the system, Synchronous LET, which

is implemented by the industrial language PsyC [3], actually

focus on a different level of the system life-cycle, namely, the

software integration level. This approach is quite classical (see

[4], [5] and[6]) and divides the functional design of the system

from its non-functional design, that is, how different functional

components (either designed with synchronous languages or

manually) are integrated. This multilayer approach is depicted

in figure 1. This is, however, still a challenge today to

verify that properties specified at system-level (i.e. in the

specification) still holds at integration level.

System-Level Specification (e.g. SysML)

Functional Design (e.g. Scade)

Integration level (e.g. PsyC)

Fig. 1: Typical Software Life-Cycle of industrial real-time

systems

In this paper, we introduce a new paradigm called syn-

chronous Logical Execution Time (sLET) that builds upon both

the SR model and LET. It keeps the idea of logical durations

coming from the LET paradigm while having logical instants

based on logical clocks. This extends the expressivity of LET

as time is totally abstracted as sequences of events. Thus, it

inherits 1) the simple compilation and fine-grained schedu-

lability analysis coming from LET and 2) the synchronous

semantics that is well-suited for formal verification.

After an overview of existing Multiform Logical Time

models, we introduce sLET as an extension of LET in section

II. To illustrate sLET, we then give an overview of the formal

semantics of a subset of the industrial language PsyC [3] in

section III, developed by the company Krono-Safe, and then,

we give translation rules to the synchronous language Esterel

in section IV. While PsyC is compiled using techniques similar

to the ones of LET, formal verification techniques coming

from synchronous languages such as Esterel could then be

re-used. Such approach is illustrated in section V where PsyC

and Scade interact in a classical use-case showing a flight

control system.

II. MULTIFORM LOGICAL TIME MODELS

Synchronous languages introduce the notion of Multiform

Logical Time, through logical clocks, so they could better

be called Polychronous time. A logical clock counts the

successive ticks of any relevant event. Still, their operational

semantics expands the behaviors in terms of a grandmother

clock, the discrete reaction step measuring the instant. On

the other hand, initial LET formalisms rely on such a totally

ordered discrete time, and introduce quantitative durations

measured in it; although they may use pseudo-physical unit

names (milliseconds, nanoseconds,...) for it, the compliance

with actual physical implementation is only a wish (or a

requirement), that will have to be checked later when the

latter becomes available. We now extend on these notions, and

the abstraction they allow for fast and human-legible logical

design, cleanly split from the later physical implementation

(and without back and further adjustements hopefully, a main

purpose of these formalisms). The purpose is to position the

sLET formalism as combining multiform logical time and the

ability of user-defined logical clocks, together with quantitative

durations in which a certain amount of computation can be

spread in any instants of a given interval, providing it does

not overflow it.

A. The Synchronous-Reactive Model (SR)

The Synchronous-Reactive model, implemented by syn-

chronous languages [2], totally abstracts execution time to

focus on logical instants, allowing both determinism and

concurrency. For that, computations react simultaneously and

instantaneously with the tick of a global common logical

clock as shown in figure 2a, which can be further refined

to give multiple logical clocks. The synchronous hypothesis,

then, ensures that if every computation is bounded by the next

reaction, then physical time can be safely ignored as shown

in figure 2b. Combining synchrony and concurrency allows

a very expressive formal model while keeping it very simple

[2]. Hence, SR model is well adapted for formal verification.

SR model has been introduced in languages such as Esterel

[7] which is mainly imperative and Lustre [8] which is declar-

ative. The compilation of synchronous languages is, however,

quite complex. First, instantaneous communication makes the

compilation for parallel platforms (i.e. multicore, distributed)

quite hard and can produce causality issues. Secondly, execu-

tion time is usually limited to the reaction time of the system.

Thus, applications with non negligeable execution time (i.e.

also called the long period problem) can be rejected during

the schedulability analysis. Nonetheless, languages based on

the synchronous model such as Prelude [6], can adress this

problem, but are usually limited to specific patterns such as a

multi-periodic synchronous model.

B. The Logical Execution Time Model (LET)

The Logical Execution Time paradigm abstracts physical

time through a sequence of instants, similarly to the syn-

chronous approach. However, contrary to the latter, compu-

tation takes time and is not considered instantaneous. For

that, each computation must fit in a logical interval, called

LET interval [1]. Furthermore, communications are only made

on the boundaries of LET intervals. Inputs are read at their

beginning and outputs are made visible to other tasks at their

termination (see Figure 2c). As communication is only done

on predefined instants, computations behave like they always

take the same time, which is the LET interval duration (see

Figure 2d). As such, the determinism property is ensured.

The LET paradigm has been initially introduced in the

Giotto [1] language in which each task correspond to a peri-

odic LET interval. The language can also express global modes

that allows to change from a given set of task frequency to an

other. Timing Definition Language (TDL) [9] extends Giotto

via a decomposition in concurrent modules. Each of them

defines a set of task and their frequency, similarly to Giotto,

but a module can also change its local mode independently

of other modules. Giotto has also been extended with events

in the xGiotto language [10] through the mechanism of event

scoping. In all these approaches, the bounds of LET intervals

are either defined using chronometric pseudo-physical dura-

tions or events (i.e. in xGiotto). This paper proposes a more

abstract and homogeneous model of time, that is, the use of

multiple logical clocks.

In a way, LET extends logical time with the concept of

logical durations. This allows a precise schedulability analysis

due to an increased execution time variability. In turn, this

also makes compilation to parallel platforms easy and causality

issues of the SR model are avoided. However, as LET forbids

(a) Physical view of the Synchronous-Reactive model
(b) Logical view of the Synchronous-Reactive model

(c) Physical view of the (synchronous) Logical Execution Time model
(d) Logical view of the (synchronous) Logical Execution
Time model

Fig. 2: Multiform Logical Time models: physical vs logical views

instantaneous communications, its theoretical expressivity is

reduced compared to the SR model.

C. sLET as a synchronous extension of LET

Synchronous Logical Execution Time (sLET) extends the

classical LET paradigm with the concept of logical clocks. As

such, interval bounds can be triggered by clock ticks while

in classical LET, interval duration is usually defined by a

constant fixed duration. However, as in LET, communication

can only happen on interval bounds, which ensure temporal

determinism. Being closer to the SR model, sLET is actually

fully compatible with the synchronous hypothesis, that is,

computations can happen instantaneously on the activation

date of the interval as long as outputs are delayed to the end

of the interval. This model is actually a generalization of the

Psy model introduced in the OASIS framework since the 90’s

[3].

A logical clock, in the sense of Lamport [11], abstracts

time through a series of events called clock ticks. The sLET

paradigm adds to LET a finite set of logical clocks C on which

LET interval boundaries can be based. We will call clock event

an event of the form n × c where n ∈ N
∗ and c ∈ C. This

event basically means that we have to wait n ticks of the clock

c. An interval termination is then defined with a clock event

which may also define the activation of a next interval. As an

example, if an interval termination is defined with nt×ct, then

after its activation, it should wait for nt ticks of the clock ct.
Note that if all intervals use the same clock, then clock events

actually express fixed constant durations with respect to that

clock which is similar to the classical LET model.

sLET keeps with the LET idea of imposing at an early

phase of logico-functional design some fixed interval dura-

tions at which boundaries the I/O external behaviors will be

supposed to occur. Then there is flexibility on when exactly

computations are scheduled, as long as they remain inside

these bounds. Next, we will introduce the PsyC languages

foundations, bringing syntax to the sLET view. In particular,

PsyC allows conditional durations, in alternative “if-then-

else” behaviors. Note however that classical LET, as defined

in Giotto, can actually be expressed easily with sLET, that

is, using only one logical clock mapped to real-time. The

converse is not true. Indeed, even considering that all logical

clocks are derived using affine relation from a unique global

clock, sLET interval might have different duration depending

on the current global state.

III. THE PSYC LANGUAGE: ABSTRACT SYNTAX AND

FORMAL SEMANTICS

A. Language description

In this section, we give a brief description of PsyC, a

language developed by the company Krono-Safe, as an illus-

tration of the sLET paradigm. This language is implemented

in the ASTERIOS product which provides a set of tools

to design safety-critical real-time software. Such applications

can then be certified at the highest level of criticity for the

avionic domain (DAL-A, DO-178C). ASTERIOS and PsyC

are inherited from the OASIS and PharOS projects coming

from the CEA. Initially, PsyC (for Parallel SYnchronous),

in OASIS, was presented as a timed-triggered approach for

safety-critical real-time software under a model called Psy [3].

This model is actually very close to LET, and synchronous

LET generalize both of them. The modern version of PsyC is

actually better characterized with synchronous LET due to the

existence of multiple logical clocks.

A PsyC application is composed of a fixed set of tasks

called agents that are formed of sLET intervals. The content

of agents is composed of C code that is extended with

special instructions like advance n with c which specifies the

boundaries of sLET interval. Informally, its semantics is to

advance the logical time of n ticks of a clock c. Such clocks

have to be defined in the application as an affine relation with

respect to another clock. They are actually two kinds of logical

clocks in PsyC, sources, which are defined externally, and

clocks, which basically refine sources. In practice, most of the

applications define only one source called realtime which is

mapped on real time. The Figure 3 shows an example of an

agent using multiple clocks and a conditional computation in

the PsyC language. A possible timeline is shown in figure 4.

Such pattern with multiple clocks allowed by sLET couldn’t

be expressed, as is, in the classical LET model.

source realtime;
clock c2 = 2 * realtime;
clock c3 = 3 * realtime;

agent Ag(uses realtime, starttime 1 with c2)

{

body start /* infinite loop */

{

/* computation A */

advance 1 with c3;

if (/* condition */) {

/* another computation B */

advance 1 with c2;

}

}

}

Fig. 3: Example of a PsyC agent

Inter-agent communication is performed through a dedicated

channel called Temporal Variable. Multiple agents can read a

temporal variable but only one can write into it. According

to sLET, inputs and outputs in a sLET interval can only be

made on sLET interval bounds. Hence, data emitted by an

agent is made visible (i.e. the temporal variable is updated)

on the instant described by the next advance instruction.

Futhermore, Temporal Variables also have another layer of

sampling (defined with a clock) and values are read with the

expression $[n]var which denotes the nth last sampled value.

The Figure 5 describes the abstract syntax of a subset of

PsyC which is necessary to introduce the formal semantics

described in the next section. Only specific PsyC constructions

are described and the syntax of C expressions is omitted for

simplicity. Also, we add a specific statement skip that does

nothing (i.e. in the C syntax, this could represented as a semi-

clock c2

clock c3

agent Ag

0 2 3 6 9 10

Fig. 4: Possible timeline of example in fig 3. A Red frame

represent computation A while a blue frame represent com-

putation B.

application ::= decl∗

decl ::= source c
| clock c1 = n1 ∗ c2 + n2
| temporal id = value with c
| agent

agent ::= agent id body∗

body ::= body id stmt
stmt ::= id := exp

| skip

| advance n with c
| stmt1 ; stmt2
| if (exp) stmt2 else stmt3
| . . .

Where n, n1 ∈ N
∗, n2 ∈ N, v is the initial value of the

temporal variable and ci are clock identifiers.

Fig. 5: Abstract syntax of our PsyC subset

colon). This will be helpful in the semantics to express that a

statement doesn’t have any work left to do. Futhermore, both

the starttime and the source parameter of the agent are

omitted because the former could be defined as an advance

and the latter could be deduced from the clocks. However, we

assume that an agent could only use clocks that are derived

from a unique source. Nonetheless, different agents might use

different sources.

B. Formal Semantics

In this section, we introduce the formal semantics of a

subset of the PsyC agents thanks to term rewriting. Basically,

a term can be rewritten sucessively, with respect to a given set

of formal rules, to form a symbolic execution that serves as

an oracle. The rules are given using the Structural Operational

Semantics (S.O.S.) approach introduced by Plotkin [12] and

later adapted to synchronous languages [7]. The idea behind

S.O.S. is to give the rewriting relation of a term with respect

to the rewriting of its parts. This is usually defined through

a set of inference rules. The behavioral semantics of Esterel

extends S.O.S. through the use of an integer encoding the type

of the transition, i.e. whether the transition takes time or is

instantaneous [7] (i.e. fits entirely inside an instant reaction).

As described above, the semantics of PsyC is described in

this paper using two relations, one that makes time progress,

and one that is not explicitely timed, and should be considered

as conceptually guaranteed to fit in the time interval closed by

the next time-progress behavior. This vision can be considered

as borrowed from discrete-event simulation models. While the

semantics allows many later schedules for the internal behav-

iors before next time advance (a property exploited by the

PsyC compiler to optimize their time allocations according to

other criteria), one may also consider the (valid) interpretation

where all computations are made in the initial instant, than

will allow the translation to synchronous languages of the next

section.

Consider that the configuration of an agent (i.e. its state)

can be described as a pair 〈E, T 〉 where E is the assignements

of its local variables and T the assignments of its displayed

temporal variables (i.e. its outputs). Based on this, we define

an instantaneous transition as following:

〈E, T 〉 ⊢ s −−−→< E′, T ′ >⊢ s′

This transition denotes that a statement s can be rewritten

in s′ instantaneously while the configuration < E, T > is

updated to < E′, T ′ > with respect to s. Based on this

definition, we can define the semantics of the first basic

statement, the assignation:

〈E, T 〉 ⊢ x := exp −−−→ 〈E′, T 〉 ⊢ skip (assign)

where E′ = Update(E, v, exp).

The assign rule evaluates its expression and updates its

local variables accordingly using a function that we call

Update(). This statement is logically instantaneous because it

is executed at the beginning of a sLET interval to read the cor-

rect input values. Also, it is reduced to skip as there is no work

left to do. The advance rule is a little bit more complicated as

this statement makes time progress. Recall however that clocks

used in an agent by advance statements are all derivated from

a unique source. Thus, we first instantaneously rewrite the

advance statement with respect to its parameters (i.e. number

of ticks and clock) to a counter of source ticks that we define

with the pseudo statement Remains. This pseudo statement

takes an absolute duration in parameter (with respect to the

agent source) that is computed with the function Duration
with respect to the advance parameters, and the current source

date.

〈E, T 〉 ⊢ advance n with c −−−→ 〈E, T 〉 ⊢ Remains(N)
(advance)

where N = Duration(n, c, date)

The Remains pseudo statement defined above can then be

used to make time progress. For that, we define a new transi-

tion that takes one time unit of the agent source (symbolized

by the double arrow shape):

〈E, T 〉 ⊢ s ====⇒< E′, T ′ >⊢ s′

Remains is then defined with two different rules. The first

one, Remains-1, decreases the counter when its greater than

1. When the counter is equal to 1, Remains is rewritten to

skip as there is no work left to do and temporal variables are

updated. As other agents can only read the latter (and not the

agent local environment), this actually means that outputs can

only be made visible at the end of a sLET interval, which is

actually the semantics of the sLET paradigm.

〈E, T 〉 ⊢ Remains(N) ====⇒ 〈E, T 〉 ⊢ Remains(N − 1)

(Remains-1)

if N > 1

〈E, T 〉 ⊢ Remains(1) ====⇒ 〈E, T ′〉 ⊢ skip (Remains-2)

where T ′ = UpdateOutputs(T,E).

The rules defined above can be composed quite easily. First,

when there are executed in sequence, multiple instantaneous

transitions can be represented with one big instantaneous

transition and when they are followed by a non instantaneous

transition, they can be represented with a big non instantaneous

transition. In other words, the semantics of an agent can

be represented with only big non instantaneous temporal

transitions, which is interesting to show the expected temporal

behavior of the agent. Second, the rules defined above only

show simple statements, but actually, this can be extended

very easily to control flow statement (e.g. condition statement)

given that the type of transition is propagated correctly.

To illustrate a little bit the semantics above, we show a

very basic example of a sLET interval with an output vari-

able called tv. Let’s consider the following PsyC statements:

tv := 2 ; advance 2 with c2 Let’s assume that c2 is a strictly

periodic clock with period 2 and offset 0, and the current date

of the agent is odd. Then, with respect to the semantics rules,

we have the following execution:

〈tv =?, tv =?〉 ⊢ tv := 2 ; advance 2 with c2

−−−→ 〈tv = 2, tv =?〉 ⊢ advance 2 with c2

−−−→ 〈tv = 2, tv =?〉 ⊢ Remains(3)

====⇒ 〈tv = 2, tv =?〉 ⊢ Remains(2)

====⇒ 〈tv = 2, tv =?〉 ⊢ Remains(1)

====⇒ 〈tv = 2, tv = 2〉 ⊢ skip

This execution shows that the communication is correctly

updated at the end of the interval and its duration is actually 3
as it depends on the current date (e.g. if the date was even, then

the interval should have lasted 4 ticks). Also, one can notice

that such pattern is not possible in classical LET languages

(e.g. Giotto, TDL) as they usually can only represent duration

on a single clock.

Construction PsyC syntax Esterel Translation

Clock clock c = n1 ∗ cp + n2 await immediate n2;
loop
emit c

each n1 cp
Temporal Variable temporal tvar = init with c signal tvar = init in

run Sampler[tvar/In, tvar0/Out, c/Clk] ||
...

endsignal
Local Variable int var = init; var private var := init in ...

Assignation/expression tvar = exp; private tvar := exp;
Temporal variable reading $[0]tvar tvar0

Condition if (exp) s1 else s2 if (exp) s1 else s2
Advance advance n with c await n c; emit tvar(private tvar)

Body (cyclic case) body p loop p end
Agent composition agent ag1 ...agent ag2 ... run ag1[...] || run ag2[...] || ...

Fig. 6: Some Esterel translation patterns (var is a private variable and tvar is a (shared) temporal variable)

IV. CONSEQUENCES

A. Synchronous semantics of sLET via Esterel translation

To show the direct relation between sLET and the SR model,

we can encode the semantics of PsyC into a synchronous

language like Esterel. We choose Esterel because its syntax

is quite close to PsyC, that is, both languages are control-

flow and imperative. Basically, the approach is to focus on the

logical behavior of synchronous LET and to totally abstract ac-

tual executions, i.e. to consider them (logically) instantaneous.

Thus, of course, this kind of simulation is not representative of

the actual operational behavior where each computation takes

time. Nonetheless, sLET (similarly to classical LET) allows

multiple valid schedules that are mutually equivalent, that is,

that form an equivalence class with respect to logical clock

ticks. The synchronous semantics is then actually a particular

instance where in a sLET interval:

1) all computations are executed during the first instant,

thus inputs are read synchronously to the start of the

interval;

2) time is advanced to the end of the interval;

3) outputs are produced synchronously to the end of the

interval.

This abstraction should be sufficiant to express properties at

the model level as actual computations should not impact

temporal properties of a sLET design. While this approach

focus on synchronous LET, as the latter is a generalization

of the classical LET model, this approach could be adapted

easily to other LET languages.

Esterel is an imperative synchronous language control-flow

based. In particular, it allows imperative concurrency, that is,

handling multiple instruction pointers at a same instant and

preemption where a computation can be aborted when a given

signal is present. The only communication means available

in Esterel is through instantaneous signals which can have a

status, present or absent, and a value. A signal which only has

a status is said to be pure, otherwise, it is said to be valued. The

instructions are basically divided into two categories similarly

to PsyC:

• the instantaneous instructions, like emit s which emits a

given signal s;
• and temporal instructions, like pause or await s which

respectively wait for the next instant and for the next

instant where signal s is present.

For a full definition of the Esterel language, we invite the

reader to consult [7].

In a PsyC application, different elements are actually com-

posed in a synchronous parallel fashion. Assuming that PsyC

clock ticks are represented as Esterel pure signals (i.e. either

the clock ticks or not), we have to represent clock generation,

temporal variable sampling and agent behavior. As explained

at the beginning of section III, a PsyC source clock is actually

an external logical clock, and is thus represented as an Esterel

pure signal input. Clock generation basically refines a clock

tick, i.e. a pure signal, based on an affine relation. A temporal

variable is represented as a persistent valued signal (i.e. which

is always present) and is sampled on the signal corresponding

to its clock. And finally, an agent is almost translated as is. The

control-flow is translated in its equivalent form in Esterel and

basic body patterns can be translated either to sequence or to

infinite loop depending on the next body to be executed. We do

not cover advanced body patterns in this paper for simplicity

but this could be adapted with some more advanced Esterel

control-flow patterns. All variables of an agent, either local

to the agent or temporal variables, are translated to Esterel

Fig. 7: The Flight Control System use-case

variables. The advance statement is translated to the await

statement followed immediately by an update of the temporal

variables, that is, the valued signal of each temporal variable

in output of the agent is updated with its local variable value.

This is actually the main difference from the synchronous

model, communication cannot be updated instantaneously. All

the translation patterns described above are sketched in the

table 6.

B. Synchronous Observers and Formal Verification

The main interesting consequence of the Esterel trans-

lation is to apply techniques and tools coming from the

synchronous community. Among them, formal verification

has been successfully applied on the synchronous approach

due to two main things: 1) the synchronous composition

semantics, the state space is usually quite reduced comparing

to asynchronous approaches and 2) symbolic model-checking

allows to scale verification techniques even more, using BDD

or SMT techniques. Futhermore, in synchronous languages,

properties that are usually modeled using temporal logics,

can also be modeled directly in the language using the so-

called synchronous observer approach [13]. Observers only

observe the state of the application and defines which state is

acceptable or not. Classicaly, a signal Error is emitted if an

error is detected and verification is reduced to a reachability

analysis on this signal.

In PsyC, the typical kind of property that we might want

to check applies on the different temporal variables rhythms.

Typically, due to the sampled buffered semantics of temporal

variable, if the producer and the consumer are not at the

same rhythm, produced values can be lost or consulted values

might be duplicated. While the second scenario is usually not

a problem, the first one might be one. Of course, this kind

of property is quite simple, but this opens the possibility to

more evolved properties like freshness constraints of temporal

variables or end-to-end latencies.

V. USE-CASE

A. Description

As highlighted in the introduction, languages based on

LET, such as PsyC, focus on the architecture description

at integration level of real-time systems. In other words,

they allow to express how multiple functional components

connect and what is their real-time behavior. In particular,

it is possible to express multi-rate behavior. Typically, in

industrial applications, a synchronous language such as Scade,

is used to design the functional components of the system and

a language like PsyC can be used to specify the real-time

software integration of these components.

To reflect this approach, the following use-case is based on

an example found in the Scade Suite software. Consider a basic

Flight Control Software in which you expect the following

behavior:

• given an altitude and a speed command, a flight controller

implements control laws for altitude and speed with

respect to altitude and speed sensors;

• depending on the flight mode, i.e. AutoPilot or Manual,

the commands given to the flight controller is either the

input commands or the commands of the previous instant;

• regulation alarm is raised if the altitude sensor (respec-

tively the speed sensor) is too far from the altitude

command (respectively the speed command).

The system architecture is shown in the figure 7. Basically,

each component correspond to a function detailed above. Each

functional component can either be implemented manually or

with a Scade sheet. To illustrate a little bit more this approach

we show in figure 8 the Scade sheet corresponding to the

mode handling. The mode handling is modeled with a finite

state machine with only two states, the AutoPilot state and

the Manual state corresponding to the AutoPilot mode and

Manual mode described at the beginning of the section. The

control laws are based on PID controllers but we will not dive

into the details as it is beyond the scope of this paper.

Fig. 8: Mode Controller of FCS

For simulation purpose, the example also contains a plane

simulation that takes throttle and elevation commands (from

the controller), simulates the actuator response as well as the

aerodynamics behavior and yield updated speed and altitude

sensors values (i.e. to the controller). Running such a sim-

ulation in Scade typically ignores real-time constraints and

every components run at the same rate. While this is totally

justified for simulation, it’s is not necessarily the case for

compilation. Indeed, in practice, different components might

have different real-time behaviors, depending on available

resource, as well as different mapping constraints (typically for

multicore target). Thus, in the next section we will show how

PsyC can be used to integrate seamlessly multi-rate functional

components.

B. Architecture Description in PsyC

We choose a very simple mapping where each components

described above are directly mapped to an individual agent.

Futhermore, each communication signal is mapped to an

individual temporal variable. Of course, while only one agent

can write a temporal variable, multiple agents can read it.

Thus, a temporal variable is not duplicated for each reader

component. The temporal behavior of a component in an agent

is the following:

• The reset function of the component generated from

Scade is executed once with a given phase constraint (not

specified here) and;

• The cycle function of the component generated from

Scade is executed indefinitely after the reset function,

on a given rate.

As an illustration, the code in 9 describes the temporal

behavior of the controller component. The inputs and outputs

of the cycle function are transfered with the help of global

variables which is the usual calling convention with code

generated from Scade.

agent FlightController(starttime 1 with clk_starttime)

{

body start {

next cycle;

FlightController_reset_FlightControl();

advance 1 with clk_10000_0 ;

}

body cycle /* infinite loop */ {

altSensor = $[0]temporal_altitude;

speedSensor = $[0]temporal_speed;

speedSTarget= $[0]temporal_speedTarget ;

altTarget= $[0]temporal_altitudeTarget ;

FlightController_FlightControl();

temporal_throttleCmd = throttleCmd;

temporal_elevatorCmd = elevatorCmd;

advance 1 with clk_150000_0 ;

}

}

Fig. 9: Agent corresponding to the FlightController compo-

nent

Chosing the right clocks is primary in the integration flow.

First, the clocks should be sufficiently fast to ensure the

stability of the different functional behaviors (typically control

laws). Second, the clocks should be not too fast to ensure

that the platform has enough resource to execute the system.

The expected clock periods are described in the figure 7. We

consider that FlightController is a heavier task and hence, has

a period three times bigger (e.g. 150ms) than the other tasks

that run with a period of 50ms.

As explained in section III, PsyC also allows more advanced

control flow patterns. As an example, the agent FlightMode

may need to relax the deadline when the AutoPilot mode is

disabled as specified in 7. This is illustrated in the listing 10.

This kind of pattern doesn’t have any impact on the functional

behavior (i.e. commands are unchanged in manual mode),

except during mode transition, and this allows to relax the

cpu load.

agent FlightMode(starttime 1 with clk_starttime)

{

body start {

next cycle;

FlightMode_reset_FlighControl();

advance 1 with clk_10000_0;

}

body cycle /* infinite loop */ {

/* From sensors */

altitude = $[0]temporal_altitude;

speed = $[0]temporal_speed;

/* From user commands */

AutoPilot = $[0]temporal_AutoPilot;

MCPspeed = $[0]temporal_MCPspeed;

MCPaltitude = $[0]temporal_MCPaltitude;

FlightMode_FlightControl();

temporal_speedTarget = SpeedTarget ;

temporal_altitudeTarget = AltitudeTarget;

if (AutoPilot) {

advance 1 with clk_50000_0 ;

} else {

advance 1 with clk_200000_0 ;

}

}

}

Fig. 10: Agent corresponding to the FlightMode component

with conditional deadline

C. Esterel Translation

The PsyC architecture given above allows efficiant com-

pilation. However, as illustrated, the right clocks has to be

used to respect the temporal behavior. For that, one can use

the synchronous semantics of PsyC, that is, its translation

to Esterel to analyze the application’s behaviors. Of course,

theorically, such analyze could be made in the Scade appli-

cation simulating the multi-rate behavior. However, we think

that such approach should be made at the integration level.

Futhermore, the whole application might not be available

in Scade, i.e. either coming from different teams or written

manually.

The listing 11 shows the translation of the Mode agent.

We remove the function calls for simplicity but not the

communication mechanism. In the main loop, altitude is

read instantaneously then, some computation is made and the

AltitudeTarget is set to a private variable. Finally, after the

advance, that is, the await here, this private variable is

made visible through the emit statement. Special commu-

nication events are also added to show when communication

is read and when communication is produced in this module.

This will be needed later for verification.

module FlightMode:

[

await clk_starttime;

/* FlightMode_reset_FlightControl(); */

await 1 clk_10000_0;

loop

emit FlightMode_Read;

altitude := ?temporal_altitude_0;

speed := ?temporal_speed_0;

AutoPilot := temporal_AutoPilot_0;

MCPspeed := temporal_MCPspeed_0;

MCPaltitude := temporal_MCPaltitude_0;

/* FlightMode_FlightControl(); */

private_altitudeTarget := AltitudeTarget;

private_speedTarget := SpeedTarget;

if autoPilot then

await 1 clk_50000_0;

else
await 1 clk_200000_0;

emit temporal_altitudeTarget(

private_altitudeTarget);

emit temporal_speedTarget(

private_speedTarget);

emit FlightMode_Write;

end loop

]

Fig. 11: Translation of FlightMode agent in Esterel

D. Synchronous Observers

The typical properties we might want to check with syn-

chronous observers on such system are clock tick event order-

ing and clock tick event synchronizations. Typically, in PsyC,

if the ticks of two tasks are alternating, and assuming temporal

variable is at the speed of the producer, then, no value is lost.

In a clock algebra such as CCSL, the predicate c1 ∼ c2 states

that the ticks of the logical clocks c1 and c2 alternate. Such

constraints can be easily implemented in Esterel observers as

shown in [14]. Thus, verification of such properties is then

reduced to a reachability analysis on a signal representing an

error state that we will call Error in this section.

In our example, let’s consider that we want to ensure

that all commands values are taken into account once by

the Alarm agent. This functional chain is thus composed of

the FlightMode agent, the SpeedTarget and the AltitudeTarget

temporal variables, and the Alarm agent. Considering that the

corresponding tick events have the same name, we have the

following constraints to check to ensure that no values are lost:

FlightMode Write ∼ SpeedTarget ∧
FlightMode Write ∼ AltitudeTarget ∧

SpeedTarget ∼ Alarm Read ∧
AltitudeTarget ∼ Alarm Read

Based on [14], an Esterel observer for Alternate can be

derivated. To fit our purpose, alternation strictness (whether

two synchronous tick events could be synchronous or not)

should be adapted to our communication mode. That is, the

transition from event A to B in A ∼ B can be instantaneous

but not the transition from B to A. The verification of the

constraints described above can be written in instanciating the

Alternate observer for each of the constraint with the help

of parallel composition:

run Alternate[signal FlightMode_Write / A,

SpeedTarget / B,

Error/Error]; ||

run Alternate[signal SpeedTarget / A,

Alarm_Read / B,

Error/Error]; ||

run Alternate[signal FlightMode_Write / A,

AltitudeTarget / B,

Error/Error]; ||

run Alternate[signal AltitudeTarget / A,

Alarm_Read / B,

Error/Error];

In our scenario, this property is verified only when the

AutoPilot mode is set as the Alarm agent might read mul-

tiple times the same values of the FlightMode agent when

AutoPilot is disabled. The observer could be adapted easily

to enforce alternation only when the mode is set. Also, note

that this property does not enforce that all clocks should be

synchronous (i.e. at the same rate). In fact, the agent Alarm

might have some offset with FlightMode still without losing

any value.

VI. CONCLUSION

This article presents a new paradigm called sLET that builds

upon both the synchronous and the LET paradigm. Such unifi-

cation allows to re-use formal analysis techniques coming from

synchronous languages while keeping the simple compilation

and efficient schedulability analysis of LET. sLET (as the

classical LET paradigm) allows multiple valid schedulings

that are mutually equivalent (in the logical time realm), as

long as all of the computations fits in their sLET intervals

(the PsyC compiler actually using one of these solutions also

satisfying actual physical computation durations). The syn-

chronous semantics is then actually a particular instance where

computations are executed “in a single instant” and outputs are

delayed. Consequently, this shows that one can use analysis

based on the synchronous approach to reason on languages

based on LET (e.g. Giotto, xGiotto, TDL) at the logical level;

in particular, it unveils the possibility to re-use synchronous

formal verification techniques for these languages. The sLET

paradigm is implemented by the PsyC language which is part

of the ASTERIOS framework, produced by KRONO-SAFE.

This work opens twofold perspectives: firstly, express more

advanced properties, such as end-to-end latencies or data

freshness, in a simpler way; secondly, synchronous verification

techniques should be adapted more thoroughly to be efficient.

In particular, (s)LET intervals are composed of instants that

only make time progress and thus, can be optimized for ver-

ification. Finally, while our main focus is formal verification,

other well known techniques can be adapted to languages

based on (s)LET, such as model-in-the loop simulation, au-

tomatic test generation or test coverage.

REFERENCES

[1] C. Kirsch and A. Sokolova, “The logical execution time paradigm,” in
Advances in Real-Time Systems, 2012.

[2] A. Benveniste and al, “The synchronous languages 12 years later,”
Proceedings of the IEEE, vol. 91, pp. 64 – 83, 2003.

[3] V. David and al, “Safety properties ensured by the oasis model for safety
critical real-time systems,” in SAFECOMP, 1998.

[4] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert,
“From simulink to scade/lustre to tta: a layered approach for distributed
embedded applications,” ACM Sigplan Notices, vol. 38, no. 7, pp. 153–
162, 2003.

[5] S. Bliudze, X. Fornari, and M. Jan, “From model-based to real-time
execution of safety-critical applications: Coupling scade with oasis,” in
Embedded Real Time Software and Systems (ERTS2012), 2012.

[6] J. Forget and al, “A Multi-Periodic Synchronous Data-Flow Language,”
in 11th IEEE High Assurance Systems Engineering Symposium, 2008.

[7] G. Berry, The Constructive Semantics of Pure Esterel, 1996.
[8] D. Pilaud, N. Halbwachs, and J. Plaice, “Lustre: A declarative language

for programming synchronous systems,” in 14th Annual ACM Sympo-

sium on Principles of Programming Languages, vol. 178, 1987, p. 188.
[9] W. Pree and J. Templ, “Modeling with the timing definition language

(tdl),” in Automotive Software Workshop. Springer, 2006, pp. 133–144.
[10] A. Ghosal, T. Henzinger, C. Kirsch, and M. Sanvido, “Event-driven

programming with logical execution times,” vol. 2993, 2004.
[11] L. Lamport, “Time, clocks, and the ordering of events in a distributed

system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.
[12] G. Plotkin, “A structural approach to operational semantics,” J. Log.

Algebraic Methods Program., 2004.
[13] N. Halbwachs and P. Raymond, “Validation of synchronous reactive

systems: From formal verification to automatic testing,” in 5th Asian

Computing Science Conference on Advances in Computing Science,
1999.

[14] C. André, “Verification of clock constraints: CCSL Observers
in Esterel,” INRIA, Research Report, 2010. [Online]. Available:
https://hal.inria.fr/inria-00458847

Session Th.2.A

Formal Methods & Certifification

Thursday 2nd June

11:30

–

Amphithéâtre

393

394

A Bottom-Up Formal Verification Approach for
Common Criteria Certification: Application to

JavaCard Virtual Machine

Adel Djoudi, Martin Hána, Nikolai Kosmatov,
Milan Křı́ženecký, Franck Ohayon

Thales

France & Czech Republic

Patricia Mouy,
Arnaud Fontaine

ANSSI

France

David Féliot

CEA-Leti

France

I. INTRODUCTION

The quality and security of critical software have become nowadays a major concern. The Common Criteria

(CC) for Information Technology Security Evaluation [1] provide an international standard for computer security

certification. Its highest assurance levels EAL6–EAL7 require a formal Security Policy Model (SPM) and an

associated mathematical proof of security properties (i.e. confidentiality, integrity). Thales recently conducted a

formal verification of a JavaCard platform module [14] in a novel EAL6 certification project of a smart card

product. This certification project was evaluated by CEA-Leti (an evaluation center, or ITSEF) with the supervision

of ANSSI (the French national cybersecurity agency, and the French certification body).

Historically, since the verification of real-life code was not feasible for large industrial projects, the certification

usually followed a top-down approach, where a separate abstract model was used to verify the specified security

properties, and then refined to the code. A classical approach of applying formal verification on a JavaCard platform

consists in building a high-level formal model of target sub-modules. The need to bridge the gap between the formal

model and the implementation and to provide stronger guarantees for the real-life code was reported by experts [2].

In our work, we adopt a novel bottom-up methodology relying on verification of the real-life code of a JavaCard

Virtual Machine using the Frama-C verification platform [3]. We expressed all specified features and properties as

annotations in a formal specification language, called ACSL (ANSI C Specification Language), inserted directly in

the source code. We annotated over 7,000 lines of C code in ACSL, and over 50,000 proof goals were generated

and formally proved by the tool. An earlier paper [4] focused on technical and scalability issues of the proof

without addressing the certification methodology. In this paper, we focus on methodology aspects: we describe this

bottom-up approach, discuss its benefits and challenges and compare it to previous top-down approaches.

II. COMMON CRITERIA CERTIFICATION PROCESS

A. Overview of Common Criteria Evaluation

The international standard ISO/IEC 15408—which defines the Common Criteria (CC)—is an international agree-

ment on security evaluation of IT products. It contains a Common Evaluation Methodology (CEM) describing the

general evaluation process from EAL1 up to EAL5. SOG-IS1 is the European mutual recognition agreement that

was concluded in 2010 and involves ten countries. For EAL6 and EAL7, formal methods have to be used, but the

CEM does not detail how to use them to demonstrate the respect of the security properties. For this reason, the

CEM is completed by an additional interpretation by the National Certification Body. Within the SOG-IS, only three

countries mutually emit and recognize certificates up to EAL7: France, Germany and Netherlands. Each of them

defines its own interpretation for EAL6 and EAL7 (AIS-34 in Germany and Note 12 [5] in France). Recognition

agreements beyond the EU (between more than 30 countries) are defined in the Common Criteria Recognition

Arrangement (CCRA).

1See https://www.sogis.eu/

A Common Criteria evaluation is initiated by the owner of the product to evaluate. The product owner (generally,

an industrial) establishes a contract with an approved evaluation center (ITSEF) and registers the evaluation with

the Certification Body. At the end of the evaluation, an Evaluation Technical Report (ETR) is produced by the

ITSEF to be reviewed by the Certification Body.

The national certification bodies recognized to deliver EAL6–EAL7 certificates do not prescribe the use of any

particular formal method or tool [6]. Up to now, only methods relying on high-level models in B and Coq were

recognized by ANSSI in the Common Criteria context. A guidance document about the use of formal methods was

published by ANSSI [7]. A more recent guidance written by ANSSI and INRIA research teams was published but

with a focus on Coq [8] with a dedicated paper [9], which details the rationale of the guidelines and requirements

from ANSSI. The respect of these guidelines has to be verified during the evaluation process.

The adoption of a new formal method or tool requires a pilot evaluation. It implies a tripartite work between the

developer, the ITSEF and the certification body, and additional effort to inspect formal assurance.

For an evaluation, the developer has to supply the following evidence:

• the source code of the Formal Security Model (SPM),

• an explanatory document presenting a description of the model, a complete list of the associated hypotheses

(explicit ones but also implicit ones due to modeling choices), their justification and their consistency,

• explicit links between the model, the security target and the security properties (further discussed below),

• a clear justification of the level of confidence for the method and tools used, and

• all the necessary information to allow the evaluator to reproduce the proof(s).

B. Security Specification

A Common Criteria certification of a product helps the customer to determine whether the security of a product

is sufficient to meet their needs and to ensure that the security properties are satisfied. For the product owner, the

Common Criteria help to identify security issues, define security objectives, establish security requirements relying

on a standardized catalog and then define a precise Target of Evaluation (TOE) that is usually only part of the

entire IT product. The security specification plays an important role in the certification process.

The Common Criteria offer a catalog of Security Functional Requirements (SFRs) and Security Assurance

Requirements (SARs) [1]. The SFRs define the TOE security characteristics. The SARs define confidence degree

in the enforcement of the security objectives of the TOE. The assurance level is increased by increasing the scope,

depth and rigor of the evaluation effort in six assurance classes: Security Target Evaluation (ASE), Development

(ADV), Guidance (AGD), Life Cycle Support (ALC), Tests (ATE) and Vulnerability Assessment (AVA). At EAL6–

EAL7 levels the ADV assurance requirement class mandates to build a formal security policy model (SPM) as the

most rigorous way to identify and eliminate ambiguous, inconsistent, unenforceable or contradictory security policy

elements [1]. For instance, the Common Criteria Action Element ADV SPM.1.1D mandates the developer to identify

the security policies that should be formally modeled. Note that the National Certification Body provides guidance

for the interpretation of such statements [10] in order to satisfy the target security objectives. The identification of

the security policy implies a list of SFRs to be formally modeled.

C. Application to JavaCard

JavaCard system is a well-known security-critical product. Many JavaCard products have been subject to Common

Criteria evaluation. The Security Target Evaluation class (ASE) enforces the definition of a Security Target (ST)

for an identified product (e.g. a particular JavaCard product). A Security Target is an implementation-dependent

statement of security needs. It states what is to be evaluated before the evaluation is performed (and thus helps to

understand after the evaluation what was actually evaluated). The Security Target may claim conformance (strict

or demonstrable) to a Protection Profile for a generic TOE type (such as a JavaCard system) [11]. A protection

profile provides a standardized statement of Security Policies to be tailored according to the defined scope of

evaluation in Security Targets. Over the years, the JavaCard System Protection Profile has established as one

of the most recognized smartcard industry reference and is typically mandated in tenders or requested explicitly

by customers. For instance, the Open Configuration Protection profile of JavaCard systems defines the Firewall

Security policy/aspect [11] as follows:

”#.FIREWALL: The Firewall shall ensure controlled sharing of class instances, and isolation of their

data and code between CAP files (that is, controlled execution contexts) as well as between CAP files

and the JCRE context. An applet shall not read, write, compare a piece of data belonging to an applet

that is not in the same context, or execute one of the methods of an applet in another context without its

authorization.”

The protection profile also instantiates this security aspect with a security objective (O.Firewall) and provides a

rationale for the list of SFRs to be satisfied in order to meet this objective. The Security Target of a product may

then instantiate the Common Criteria requirement ADV SPM.1.1D as follows:

”ADV SPM.1.1D: The developer shall provide a formal security policy model for the Firewall Security

Policy.”

and provide a rationale (according to Common Criteria security components ASE OBJ and ASE REQ) for the

(sub)set of SFRs that are formally modeled in order to meet this requirement. In the sequel of this document, we

consider the two following (simplified) SFRs for illustration purposes:

SFR1 The Target of Evaluation Security Functions shall enforce the Firewall access control policy to provide

restrictive default values for security attributes that are used to enforce the security policy. The objects’

security attributes of the access control policy are created and initialized at the creation of the objects.

Afterwards, these attributes are no longer mutable.

SFR2 The Target of Evaluation Security Functions shall enforce the following rule to determine if an operation

among controlled objects is allowed: the Currently Active Context may freely perform any memory

access operation upon any object whose Lifetime attribute has value ”Persistent” only if the object’s

owning Context attribute has the same value as the Currently Active Context.

Further details about the interpretation of these SFRs are provided in the following sections. In particular, we

illustrate the mapping of these SFRs to our formal model in Section V.

III. BOTTOM-UP APPROACH BASED ON DEDUCTIVE VERIFICATION

A. JavaCard Virtual Machine

Fig. 1. Top-down/bottom-up approaches.

JavaCard applets are compiled to bytecode, which is executable

in the JavaCard Virtual Machine (JCVM). A binary file (called CAP

file), loadable to the platform, encapsulates mainly the bytecode

together with class definitions. It may contain several Java packages

and applets. A unique context is associated to each CAP file during

loading to the card. Prior to loading a CAP file, a ByteCode

Verifier (BCV) is run off-card to perform a static analysis (type-

level abstract interpretation) of the applets [12]. This ensures that

the code does not attempt to perform ill-typed operations that

may bypass security protections ensured by the JCVM. Indeed, the

virtual machine ensures bytecode interpretation and offers higher-

level, more secure abstractions of data than the hardware processor,

such as object references instead of memory addresses. Memory

access operations on the stack, heap or code area are performed

by the JCVM for each interpreted bytecode.

The JCVM firewall enforces runtime-protection of applet secu-

rity properties against major security concerns: developer mistakes

and design oversights allowing sensitive data ”leakage” from the

applet owning the data to another applet without explicit permis-

sions [13]. In general, the firewall blocks access to the data in one CAP file to an applet in another CAP file

(having different execution contexts), except some well-defined exceptions (such as global arrays, ArrayViews or

class variables).

B. Target of Evaluation

The target of evaluation (TOE) of our project includes a set of Security Functions (TSF) that support the

O.Firewall Security Objective enforcement. The implementation of these Security Functions in our project

consists in a large subset of C functions of the JCVM. This subset features all possible functionalities of a single

JCVM run that ensures the execution of any applet being selected. The JCVM specification [14] describes the data

life cycle of an applet: transient deselect data is erased during owning application deselection, transient reset data

is erased only when the smart card is reset, and persistent data is preserved anytime. Data and the associated life

cycle of an undefined number of applets are carefully considered in our Security Policy Model (SPM) in order

to ensure isolation properties. The SPM is deemed to comply with security functional requirements (SFRs) of the

O.Firewall security objective defined in the JavaCard System Protection Profile [11], according to which “an

applet shall not read, write, compare a piece of data belonging to an applet that is not in the same context, or

execute one of the methods of an applet in another context without its authorization”.

C. Formal Security Policy Model (SPM)

Before this work, ANSSI’s requirements for formal methods in the context of Common Criteria evaluations

were only successfully fulfilled using B and Coq methods. This project was part of a pilot evaluation due to

the adoption of a new formal method based on Frama-C [3], a verification platform for C code. Frama-C uses

ACSL (ANSI C Specification Language) [15], a formal specification language for C programs. It allows the user

to specify annotations that express the expected program properties. The Frama-C/WP plugin can then be used to

prove them for each function of the code: this technique is called (modular) deductive verification. In order to build

the formal security policy model (SPM), we follow a bottom-up approach, in which the C code implementation is

enriched with annotations instead of merely making a separate model and a formal representation of a set of SFRs

being claimed (see Fig. 1). The security properties are proved to be enforced by the actual implementation design.

Examples of ACSL annotations and security properties are given in the next section.

IV. FORMAL SPECIFICATION OF CONTRACTS AND SECURITY PROPERTIES

A. Function Contracts

Deductive verification with Frama-C/WP requires that each C function be annotated with a (function) contract

expressed in ACSL language. Such a contract contains preconditions (in requires clauses), which express

properties of program variables that must be respected before the function is called, and postconditions (in ensures

clauses), which express properties that must be ensured after the function terminates. A special kind of postconditions

is expressed by assigns clauses, which give the list of variables that the function is allowed to modify. All other

variables cannot be modified by the function. Each function should then be proved by Frama-C/WP to respect its

contract.

1 /*@ requires \valid(p1) && \valid(p2) && \separated(p1,p2);

2 ensures \old(*p1) == *p2 && \old(*p2) == *p1;

3 assigns *p1, *p2; */

4 int swap(int *p1, int *p2){

5 int tmp = *p1;

6 *p1 = *p2;

7 *p2 = tmp;

8 }

Fig. 2. A C function swap which permutes the values referred to by two given pointers p1 and p2, and its ACSL contract.

All functions in our Formal Security Policy Model are annotated by ACSL contracts (see [4] for detailed

examples). For lack of space, we illustrate an ACSL contract in Fig. 2 for a very simple C function swap that swaps

the values *p1 and *p2 referred by the two pointers given as function arguments. Line 1 expresses a precondition

stating that input pointers p1 and p2 must refer to valid memory locations, that is, locations that can be safely

accessed, and that these locations are separared, that is, the underlying bytes are disjoint. The validity is necessary

here to ensure the absence of runtime errors, also known as undefined behaviors. The separation assumption is

necessary to avoid overwriting some bytes of *p2 when modifying *p1, and vice versa. Line 2 expresses a

postcondition: the values after the function returns are swapped. Keyword \old(e) used in a postcondition allows

1 /*@ // === A security property: object headers remain intact ===

2 predicate object_headers_intact{L1, L2} =

3 \forall integer i, off; 0 <= i < \at(gNumObjs,L1) &&

4 \at(gHeadStart[i],L1) <= off < \at(gHeadStart[i],L1) + 8 ==>

5 \at(ObjHeader[off],L1) == \at(ObjHeader[off],L2); */

Fig. 3. Example of a security-related predicate expressing that object headers are not modified between program points L1 and L2.

1 /*@ // === Metaproperties: persistent object data written/read only by the object owner ===

2 meta \prop,\name(persi_objects_integrity),\targets(\ALL),\context(\writing),

3 (\forall integer i; 0 <= i < gNumObjs && !gIsTrans[i] && ObjHeader[gHeadStart[i] + 0] != JCC ==>

4 \separated(\written,PersiData+(gDataStart[i]..gDataEnd[i])));

5

6 meta \prop,\name(persi_objects_confidentiality),\targets(\ALL),\context(\reading),

7 (\forall integer i; 0 <= i < gNumObjs && !gIsTrans[i] && ObjHeader[gHeadStart[i] + 0] != JCC ==>

8 \separated(\read,PersiData+(gDataStart[i]..gDataEnd[i]))); */

Fig. 4. Metaproperties for integrity and confidentiality of persistent object data.

one to refer to the value of expression e before the call. Finally, line 3 states that *p1 and *p2 are the only

memory locations the function is allowed to modify.

B. Security Properties Expressed as Predicates

Some security properties (typically, for integrity) can be specified in ACSL as invariant properties maintained

by relevant functions and directly proved by Frama-C/WP. We illustrate one of such properties, expressed by

predicate object_headers_intact shown in Fig. 3, stating that object headers are not modified between

program points L1 and L2. For lack of space, we give here only the main ideas of this definition and refer the

reader to [4] for detailed explanations. This predicate states that for any allocated object (represented by its index

i) and for any offset off within the object header, the byte at offset off in the object header of object i has

the same value in program points L1 and L2. A typical usage of this predicate is to include the postcondition

ensures object_headers_intact{Pre, Post}; in the contract of every function. This postcondition

ensures that the object headers are not modified by the function between program points Pre and Post, which

refer to the states before and after the function call.

C. Security Properties Expressed as Metaproperties

Other properties (for confidentiality or some cases of integrity) are stated as metaproperties [16]. The main

principle of a metaproperty is to state a global property for a specified set of target functions and a specified

context. Two examples of key metaproperties are shown in Fig. 4. Again, we give here the main ideas of their

definition, a more detailed presentation being available in [4]. Metaproperty persi_objects_integrity

states that the data of a persistent object (represented by its index i) cannot be modified unless the current

context (JCC) is the object owner (which is stored at offset 0 in the object header). Similarly, metaproperty

persi_objects_confidentiality states that the data of a persistent object (represented by its index i)

cannot be read unless the current context is the object owner.

Each metaproperty is instantiated by the Frama-C/MetAcsl plugin into assertions in relevant program points

in all target functions. For example, the first metaproperty has the writing context, therefore the corresponding

property must be checked each time when a memory location is modified. So an assertion is automatically added

by the Frama-C/MetAcsl plugin at all those memory locations, where the metavariable \written is replaced

by the written memory location. The proof of the resulting assertions ensures that the metaproperty is globally

respected by the code.

The proof of real-life code in our project requires a careful combination of several ingredients (see Fig. 6):

macros, companion ghost code, global preservation properties in addition to lemmas and proof scripts. Macros

reduce redundancy in specifications and facilitate updates and maintenance. Ghost code is mainly used to describe

the memory model and to offer an alternative encoding of low-level operations, amenable to automatic provers. This

combination made it possible to efficiently reason about non-trivial code fragments involving bitwise operations

without the use of external interactive tools (e.g. Coq) with a high level of automatic proof.

V. TRACEABILITY BETWEEN CC REQUIREMENTS AND IMPLEMENTATION

a) General Approach: As described in Section II, Security Objectives and related Security Functional Re-

quirements are summarized in a Protection Profile describing a particular product type. In this project, the Security

Target is related to the Protection Profile for JavaCard System [11]. To establish a correspondence between formal

(SPM) and informal concepts (ST), the developer must establish and describe the links between them, as mandated

by [10]. In fact, ANSSI and BSI (the German national certification authority) have driven the use of formal methods

in Common Criteria evaluations with the publication of guidance for developers and evaluators (Note-12 [10] and

AIS34 [17]). Formal analyses in CC context consist in giving a proof that the TOE Security Functions correctly

implement the expected security objectives. Several “representations” of the TSFs are provided as shown in Fig. 5:

• SPM: the Security Policy Model contains only the mechanisms directly supporting Security Objectives en-

forcement,

• FSP: the Functional Specification of the implementation where low-level details are abstracted away,

• TDS: the TOE design or a simplified version of the implementation,

• IMP: the most concrete representation.

SPM Security Policy Model

FSP Functional Specification

TDS TOE Design

IMP Concrete implementation

R
efi

n
em

en
t A

b
st

ra
ct

io
n

Fig. 5. Representations of the TSFs

The CC Assurance Development (ADV) components : Security Policy Model (ADV SPM), Functional Specifi-

cation (ADV FSP), Target of evaluation Design (ADV TDS), Implementation representation (ADV IMP) provide

a list of requirements to be fulfilled by each of the Security Function representations. Developers are also expected

to establish a “formal equivalence” of these various representations of the TSF. The primary objective is to formally

establish the correctness of the SPM w.r.t. security objectives. The rationale is to authorize reasoning at an abstract

level (SPM) and to propagate the result toward the implementation (IMP).

The lack of proof of refinement until the implementation is the rub with the top-down strategy [18], [19], [20].

This is all the more unfortunate since most of the time the formal model is provided a posteriori, only for CC

evaluation, and is not used to guide the design of the implementation.

Since our verification approach is based on formal properties written in ACSL annotations directly on the

implementation, we link all informal concepts to formal ACSL annotations. Fig. 6 summarizes how the CC

Assurance Development (ADV) components (Implementation representation (ADV IMP), Target of evaluation

Fig. 6. Structure of the SPM with respect to CC requirements.

Design (ADV TDS), Security Policy Model (ADV SPM), Functional Specification (ADV FSP)) are structured

with respect to the actual product source code.

The proposed bottom-up approach intrinsically encompasses the refinement from the functional specification

through the design to the implementation that is usually required in top-down methodologies.

b) Mapping Security Objectives and Requirements: The Security Objective defined in the Security Target (in

our case, O.FIREWALL) is mapped to global ACSL annotations expressing the required isolation properties (either

as ACSL predicates used as invariants, or as metaproperties for Frama-C/MetAcsl). A second mapping is then

done for Security Functional Requirements (SFRs), describing the characteristics of the model (i.e. the contained

functionality) for which the Security Objective is proved. Both mappings (Security Objectives and SFRs) are helpful

to clearly articulate the security behavior chosen to be modeled, in other words, to clearly define the scope of the

Security Policy Model (SPM). Security Functional Requirements are linked against some ACSL annotations in the

SPM, it can be for example the contract of the firewall function or assignment specification of important variables

decisive for firewall result (current context or context of objects). To make the mapping easier to evaluate, separate

tables are provided to “translate” the Common Criteria terms of low granularity (e.g. Sharing, Currently Active

Context) into their counterparts inside the Security Policy Model. It helps the evaluator to check the correctness of

the mappings for particular SFRs based on these terms. For instance, SFRs introduced in II-C are mapped to their

formalization in ACSL (depicted in Fig. 3 and 4) as follows:

SFR1 As sensitive security attributes are stored in object headers, global invariants are used to prove that the head-

ers of objects are intact during the entire VM run. The predicate object_headers_intact{Pre,

Post} used in a function contract, ensures that the content of object headers is the same at the end of the

function as it was before executing the function. Thus, preserving this predicate throughout all relevant

function calls during the VM run ensures the integrity of sensitive security attributes.

SFR2 Metaproperties persi_objects_integrity and persi_objects_confidentiality target

integrity and confidentiality of object data respectively. In case the owner of a persistent object is different

from the active context (JCC), any accessed memory location must be separated from the body of this

object (see also Section IV-C).

VI. SPECIFICATION EFFORT AND PROOF RESULTS

Fig. 7. Specification effort for real-life code.

Applying deductive verification on large real-life industrial code requires a lot of care in order to avoid or at

least mitigate scalability issues. In this project, we managed to ensure the scalability of our approach despite of

the big size of the analyzed C code (7014 lines of C code split into 381 functions). As low-level operations are

difficult to handle by automated provers, it was necessary to make abstraction of such low-level operations in a

sound way. For that purpose, we introduced 162 lines of ghost code, carefully chosen to help automatic provers.

As shown in Fig. 7, 35,480 lines of user-provided ACSL annotations were required in order to formally specify the

security policy of the targeted virtual machine. However, we succeeded to reduce this effort up to 13,432 lines of

ACSL annotations thanks to the usage of parameterized macros that gather redundant annotations. The effort is still

considerable. 396,603 lines of ACSL annotations were automatically generated from 36 metaproperties (written in

350 lines of ACSL) only by Frama-C/MetAcsl. 2,290 lines of ACSL annotations were automatically generated

by Frama-C/RTE.

Our proof scales reasonably well with an increasing number of proof goals. In particular, thanks to the translation

of metaproperties into annotations that do not overload proof contexts, the metaproperty-based approach scales very

well, despite a great number of generated annotations. Overall, it takes almost 3h30m to prove 52,198 proof goals.

99% of proof goals are automatically discharged by automatic provers. However, an important manual effort is

required to maintain the proof of remaining proof goals when the code or the formal model are updated.

VII. RELATED WORK

A classical approach of applying formal verification on a JavaCard platform relies on a high-level formal model

[18], [19], [20]. Several case studies have adopted this approach. An executable formal semantics of the JavaCard

Virtual Machine (JCVM) and the ByteCode Verifier (BCV) is proposed in [21] with 15,000 lines of specification

in the Coq proof assistant. An operational semantics of a language modeling the JCVM behavior is proposed in

[22], [23]. Authors of [24] describe a refinement-based approach, relying on the Coq proof assistant, to show that

a native JavaCard API function fulfills its specification. In general, in such approaches, the traceability of formally

proven properties may require an important effort to be justified because of the gap between the formal model

and the source code [2]. Among tools designed and/or used for the purpose of providing formal guarantees about

JavaCard platform security properties (but not in a Common Criteria context) we can list: Key [25], KRAKATOA

[26] and Caduceus [27].

This work is also broadly related to other projects in which real-world software is verified. For instance, formal

verification of the seL4 microkernel (comprising 8700 lines of C and 600 lines of assembly) was performed in

a certification context [28]. Heitmeyer et al. [29] report on evidence for a Common Criteria evaluation of an

embedded software system, which uses a separation kernel (of over 3,000 lines of C and assembly code). Although

the separation kernel enforcing data separation was annotated with pre- and postconditions in the style of Hoare and

Floyd, the machine-checked proof is not directly applied on the C code. A mechanized formal proof is performed

on a Top Level Specification (TLS) of the separation-relevant behavior of the kernel. A correspondence between

the annotated code and the TLS was established separately.

In general, while the usage of formal methods is, indeed, a costly validation technique, it is often seen as

counterproductive to the current industrial development processes, even for having an advantage over competitors.

Especially when the obtained certificates need to be renewed regularly, in order to try to cope with the dynamic

landscape of a product’s life-cycle [30]. We believe that our approach is well-suited to optimize, albeit still high,

the investments to reach EAL7 certifications using formal methods. Further enhancements of our approach for

automatic generation of Common Criteria documentation like in [32], [33], [34], may be a step further for a better

integration in current industrial development processes.

VIII. DISCUSSION AND LESSONS LEARNED

A. From the Developers’ Point of View

An important drawback of top-down certification approaches, based on a high-level model (e.g. in Coq) is the

traceability issue: the difficulty to relate the model with the real-life code. It can be complex to ensure that the

model faithfully represents the behavior of the code. Another issue is the maintainability of the model for the

developers: changes can be difficult to integrate and can require a very significant review of the whole proof.

a) Benefits: The presented bottom-up approach facilitates traceability since the SPM in that case is (a subset

of) the real-life code, with the same structure (same functions, variables, data structures, etc.). Another benefit of

the proposed approach is a better maintainability (in particular, in case of minor code updates or scope extensions)

and a more straightforward extension from EAL6 to EAL7. Compared to a top-down approach, where significant

model and proof changes are often required for more complex properties or a larger scope, integration of new

properties or functions for an EAL7 certification in the presented approach can more significantly rely on the proof

performed for the EAL6 level. Small design changes can easily be integrated in order to check if the security

properties are affected.

The proposed bottom-up verification approach strongly benefits from automation, which is particularly important

for a large industrial product. The link between the SPM and the real-life code in our project is explicit and can be

automatically exploited by various tools. For example, they include syntactic code comparison and identification of

possible differences—code transformations—between the SPM and the real-life code. It is important to efficiently

identify and review such transformations (used in the verified code of the SPM e.g. to avoid some tool limitations or

to realize some scope restrictions). Construction of a control-flow graph can help to identify the function hierarchy,

in particular, to automatically distinguish fully verified functions (with a contract and a body), functions that are

included as stubs (with a contract and a declaration but without a body) and excluded functions.

Furthermore, most security-related ACSL annotations in our approach are generated automatically from a few

high-level security properties (stated as metaproperties [16]) by the Frama-C/MetAcsl plugin and then verified

by Frama-C/WP. In this project, over 22,000 assertions are automatically generated by Frama-C/MetAcsl from

(only!) 36 manually written metaproperties. Similarly, properties on the absence of runtime errors (RTE, also known

as undefined behaviors) are generated automatically by another plugin, Frama-C/RTE, before being verified by

Frama-C/WP.

Another major advantage of the approach is that it strongly relies on automatic proof. In the presented project,

about 99% of proof goals are proved automatically by the Alt-Ergo solver or by the Frama-C/WP plugin (and its

internal simplification engine Qed). A huge effort would be required to prove them interactively (that is, basically,

manually) in a proof assistant. Finally, the proposed approach is suitable for a continuous integration process and

it is planned to use it in the future in a continuous integration environment.

b) Challenges and Points of Attention: Those benefits also come with challenges for developers. An EAL6

certification with a bottom-up approach takes a more significant effort, already going closer to the implementation

than actually required by the Common Criteria. Source-code level formal verification can be sensitive to tool

scalability issues. Indeed, the tool has to deal simultaneously with high-level program properties and low-level

properties (such as absence of runtime errors, presence of casts and bit-level operations), that can lead to a large

number of relatively complex properties. A specific expertise and a good understanding of the capacities of the

chosen verification tools and automatic solvers are required for the developers. Advanced tools like Frama-C/WP

offer interactive proof features (proof scripts) that help the developer to finish most complex proofs.

A significant effort of manual annotation of the code is another challenge. In the presented project, ∼12,000

lines of annotations were written manually for ∼7,000 lines of C code (i.e. a factor of 1.7). Some of them rely

on carefully chosen macros to avoid annotation redundancy, without using it the developers would have to write

∼35,000 lines of annotations (i.e. a factor of 5 compared to the C code). Another challenge is an efficient and

meaningful organization of annotations and global properties—sometimes not obvious in modular verification—that

can have an impact both on the capacity to prove and to define the mapping (see Section V).

B. From the Evaluators’ Point of View

a) Benefits:

1) the main benefit of the bottom-up approach for an evaluator is the immediate understanding of the formal

entities, such as the modeling of the heap and the stack in a JCVM, because the program2 has the same

representation as the JCVM implementation, which has already been evaluated (ADV IMP);

2) as SFRs are directly represented in the program as formal annotations, the correspondence from the SFRs to

the model can be easily understood by the evaluator, in particular to check that SFRs are modeled precisely

enough to allow the verification of the security objectives;

3) only a single model needs to be reviewed because all the security and functional properties can be verified

by the same model built on top of the implementation;

4) there is no refinement, no abstract level, no relation between multiple models to be evaluated;

5) the formal modeling of the subsystems is implicitly provided by the program;

6) apart from code transformations, the verified program has been written by a separate team (i.e. not the

modeling team) which makes the relevance of the model easier to evaluate than when properties are verified

on a dedicated model (in particular, a purely logical model);

7) the evaluator can directly check that well-known attack paths (e.g. type confusions) are not ignored by the

model;

8) the bottom-up approach perfectly fits into the continuation of the evaluation process, unlike the top-down

approach that involves a new (formal) design, which is more difficult to evaluate because of the traceability

issue (as mentioned in Section VIII-A).

2The term “program” refers here to the C code part of the model, without the ACSL annotations and metaproperties.

b) Limitations and Points of Attention: The limitations of the bottom-up approach are caused by the code

complexity which is directly transferred to the model making the whole proof too complex to be fully reviewed by

the evaluator. However, deductive verification ensures that properties are correctly propagated between functions in

the callgraph. If a property is verified in the contract of a caller, deductive verification ensures that the contracts

of the callees are complete enough to verify the property at the caller level. Therefore, the evaluator can have

confidence in the proof, as long as the properties are correctly defined, and the program is correctly modeled in

terms of code transformations, ghost code, and hypotheses. Hence, the main points of attention are the following.

• Properties: The bottom-up approach may make the properties more complex to evaluate because they directly

rely on the implementation. Metaproperties, which are defined globally and whose number is limited, can be

reviewed more easily but their statement remains as complex as the low-level annotations.

• Code transformations: In some cases, the real-life code complexity cannot be fully supported by the existing

tools, and requires manual transformations of the code. While some bugs in code transformations can be

detected by the logical part of the model, some other bugs can lead to missing states and be hard to detect.

An exhaustive manual review of the code remains difficult. Therefore, code transformations should rigorously

follow a precise methodology even for the (apparently) simple cases.

• Ghost code: Companion ghost code increases the complexity of the model, but also helps the evaluator to

understand how the proof is conducted. The evaluator should detect non-companion ghost code that is used

to create new concepts in the model either to express properties that cannot be directly expressed with the

concepts of the implementation, or to simplify the model. The evaluator needs to check that these new concepts

are valid and consistent with the implementation.

• Hypotheses: Hypotheses can be introduced as preconditions of the entry point function, or contracts of

stubs (whose code is not provided so their contracts are admitted). Stubs can include functions from the

implementation removed for simplification, or new functions, specifically declared to introduce some local

hypotheses at some points in the program. Local hypotheses make the understanding of the chain of reasoning

and the detection of contradictory hypotheses more difficult. Additional tool-related hypotheses (like memory

model assumptions in Frama-C/WP) also require specific attention of the evaluators.

C. Conclusion

The bottom-up approach brings many benefits to the certification process in terms of model understanding

and confidence in verified properties. It helps to reduce the gap between the formally proved properties and the

implementation, and should facilitate the step from EAL6 to EAL7 for the developers. Modern verification tools like

Frama-C/WP and Frama-C/MetAcsl are capable to deal with real-life code after only a limited number of code

modifications. The application of bottom-up approaches can require some adjustments in the existing terminology

and certification guidelines (e.g. [10]) released by certification bodies. Indeed, historically, they were designed with

top-down approaches in mind, and their application on the bottom-up approach requires some clarifications. The

existing evaluation methodology has to be extended with additional tasks for a careful analysis of properties, code

transformations, ghost code and hypotheses.

REFERENCES

[1] “Common criteria for information technology security evaluation. part 3: Security assurance components,” CCMB-2017-04-003, Tech.
Rep., 2017. [Online]. Available: https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf

[2] B. Beckert, D. Bruns, and S. Grebing, “Mind the gap: Formal verification and the common criteria (discussion paper),” in Proc. of the

6th International Verification Workshop (VERIFY 2010), ser. EPiC Series in Computing, vol. 3. EasyChair, 2010, pp. 4–12.
[3] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski, “Frama-C: A software analysis perspective,” Formal Asp.

Comput., pp. 1–37, 2015.
[4] A. Djoudi, M. Hána, and N. Kosmatov, “Formal verification of a JavaCard virtual machine with Frama-C,” in the 24th Int. Symp. on

Formal Methods (FM 2021), vol. 13047. Springer, 2021, pp. 427–444.
[5] SGDN, “Application note: Target evaluation’s security policies formal modelling,” 587/SGDN/DCSSI/SDR - NOTE/12.1, Tech. Rep.,

2008. [Online]. Available: https://www.ssi.gouv.fr/uploads/2014/11/NOTE-12-Modelisation-formelle-SPM-EN.pdf
[6] C. Lavatelli and G. Tétu, “Formal models for high assurance: why and how,” in International Common Criteria Conference, 2020.

[Online]. Available: https://www.internetoftrust.com/wp-content/uploads/2021/02/ICCC-2020-SPM v1.0 20201118.pdf
[7] SGDN, “Remarques relatives à l’emploi des méthodes formelles (déductives) en sécurité des systèmes d’information,”

SGDN/DCSSI/SDS/LTI[1], Tech. Rep., 2008. [Online]. Available: https://www.ssi.gouv.fr/uploads/2014/11/ssi formelle.pdf

[8] ANSSI-INRIA, “Requirements on the use of Coq in the context of common criteria evalua-
tions,” SGDN/ANSSI/SDE/DST/LSL, Tech. Rep., 2020. [Online]. Available: https://www.ssi.gouv.fr/uploads/2014/11/
anssi-requirements-on-the-use-of-coq-in-the-context-of-common-criteria-evaluations-v1.0-en.pdf

[9] Y. Bertot, M. Dénès, V. Laporte, A. Fontaine, and T. Letan, “The use of Coq for common criteria evaluations,” The Sixth International

Workshop on Coq for Programming Languages (CoqPL 2020), part of POPL 2020, 2020.
[10] SGDN, “Note d’application : Modélisation formelle des politiques de sécurité d’une cible d’évaluation,” 587/SGDN/DCSSI/SDR -

NOTE/12.1, Tech. Rep., 2008. [Online]. Available: https://www.ssi.gouv.fr/uploads/2014/11/NOTE-12-modelisation-formelle.pdf
[11] Oracle, “Java Card system – open configuration protection profile, version 3.1,” Oracle, Tech. Rep., 2020. [Online].

Available: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/ReportePP/pp0099V2b pdf.pdf;jsessionid=
6C3F5A7FB5FA0D928A1C310C1C0EF1CE.internet462? blob=publicationFile&v=1

[12] X. Leroy, “Bytecode verification on Java smart cards,” Software: Practice and Experience, vol. 32, no. 4, pp. 319–340, apr 2002.
[13] Oracle, “Java Card Platform: Runtime Environment Specification, Classic Edition, Version 3.1,” Oracle, Oracle, Tech. Rep., feb 2021.

[Online]. Available: https://docs.oracle.com/javacard/3.1/related-docs/JCCRE/JCCRE.pdf
[14] ——, “Java Card Platform: Virtual Machine Specification, Classic Edition, Version 3.1,” Oracle, Oracle, Tech. Rep., feb 2021.

[Online]. Available: https://docs.oracle.com/javacard/3.1/related-docs/JCVMS/JCVMS.pdf
[15] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto, ACSL: ANSI/ISO C Specification Language, 2021.

[Online]. Available: https://www.frama-c.com/download/acsl.pdf
[16] V. Robles, N. Kosmatov, V. Prevosto, L. Rilling, and P. Le Gall, “Methodology for specification and verification of high-level properties

with MetAcsl,” in 9th IEEE/ACM International Conference on Formal Methods in Software Engineering (FormaliSE 2021). IEEE,
2021, to appear.

[17] BSI, “Application notes and interpretation of the scheme (AIS), AIS 34, version 3,” Bundesamt für Sicherheit in der
Informationstechnik (BSI), Bundesamt für Sicherheit in der Informationstechnik (BSI), Tech. Rep., 2009. [Online]. Available:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS 34 pdf.html

[18] B. Chetali and Q.-H. Nguyen, “About the world-first smart card certificate with EAL7 formal assurances,” The 9th International

Common Criteria Conference, 2008.
[19] ——, “Industrial use of formal methods for a high- level security evaluation,” in Proc. of the 15th International symposium on Formal

Methods (FM 2008), 2008.
[20] D. Bolignano, “Formal proof of a secure OS full trusted computing base (invited paper),” in Proc. of the 2nd International Workshop on

Enabling Trust through OS Proof and Beyond (Entropy 2019), co-located the 4th IEEE European Symposium on Security and Privacy

(EuroS&P 2019), 2019.
[21] G. Barthe, G. Dufay, L. Jakubiec, B. P. Serpette, and S. M. de Sousa, “A formal executable semantics of the JavaCard platform,” in 10th

European Symposium on Programming on Programming Languages and Systems, (ESOP 2001), Held as Part of the Joint European

Conferences on Theory and Practice of Software (ETAPS 2001), ser. LNCS, vol. 2028. Springer, 2001, pp. 302–319.
[22] I. A. Siveroni, “Operational semantics of the Java Card Virtual Machine,” The Journal of Logic and Algebraic Programming, vol. 58,

no. 1-2, pp. 3–25, jan 2004.
[23] M. Éluard, T. Jensen, and E. Denne, “An operational semantics of the Java Card firewall,” in Smart Card Programming and Security,

International Conference on Research in Smart Cards (E-smart 2001), ser. LNCS. Springer, 2001, vol. 2140, pp. 95–110.
[24] Q.-H. Nguyen and B. Chetali, “Certifying native java card API by formal refinement,” in The 7th IFIP WG 8.8/11.2 International

Conference on Smart Card Research and Advanced Applications (CARDIS 2006), ser. LNCS. Springer, 2006, vol. 3928, pp. 313–328.
[25] W. Mostowski, “Fully verified Java Card API reference implementation,” in Proceedings of the 4th Interenational Verification Workshop

in connection with CADE-21. CEUR Workshop Proceedings, Vol-259, 2007.
[26] C. Marché, C. Paulin-Mohring, and X. Urbain, “The KRAKATOA tool for certification of Java/JavaCard programs annotated in JML,”

The Journal of Logic and Algebraic Programming, vol. 58, no. 1-2, pp. 89–106, jan 2004.
[27] J. Andronick, B. Chetali, and C. Paulin-Mohring, “Formal verification of security properties of smart card embedded source code,” in

International Symposium of Formal Methods (FM 2005), ser. LNCS, vol. 3582. Springer, 2005, pp. 302–317.
[28] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,

T. Sewell, H. Tuch, and S. Winwood, “seL4,” Communications of the ACM, vol. 53, no. 6, pp. 107–115, jun 2010. [Online]. Available:
https://dl.acm.org/doi/10.1145/1743546.1743574http://web1.cs.columbia.edu/\simjunfeng/09fa-e6998/papers/sel4.pdf

[29] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean, “Formal specification and verification of data separation in a separation
kernel for an embedded system,” in Proc. of the 13th ACM conference on Computer and communications security (CCS 2006). ACM
Press, 2006, pp. 346–355.

[30] S. P. Kaluvuri, M. Bezzi, and Y. Roudier, “A quantitative analysis of Common Criteria certification practice,” in TrustBus 2014:

Trust, Privacy, and Security in Digital Business, 2014, pp. 132–143. [Online]. Available: https://www.eurecom.fr/fr/publication/4438/
download/rs-publi-4438.pdf

[31] “The common criteria - certified products list - statistics.” [Online]. Available: https://www.commoncriteriaportal.org/products/stats/
[32] P. Heck, M. Klabbers, and M. van Eekelen, “A software product certification model,” Software Quality Journal, vol. 18, no. 1, pp.

37–55, 2010. [Online]. Available: https://link.springer.com/article/10.1007/s11219-009-9080-0
[33] F. Tuong and B. Wolff, “Deeply integrating C11 code support into Isabelle/PIDE,” Electronic Proceedings in Theoretical Computer

Science, vol. 310, pp. 13–28, dec 2019. [Online]. Available: https://arxiv.org/pdf/1912.10630.pdf
[34] S. Bezzecchi, P. Crisafulli, C. Pichot, and B. Wolff, “Making agile development processes fit for V-style certification procedures,”

arXiv preprint arXiv:1905.06604, may 2019. [Online]. Available: http://arxiv.org/abs/1905.06604

Obtaining DO-178C Certification Credits by Static Program Analysis

Daniel Kästner, Markus Pister, Christian Ferdinand

AbsInt Angewandte Informatik GmbH. Science Park 1, D-66123 Saarbrücken, Germany

Abstract

Static analysis has evolved to be a standard method in the soft-

ware development and verification process. Its formal method,

Abstract Interpretation, is one of verification methods covered

by the Formal Methods Supplement DO-333 of the DO-178C

standard. Static program analysis can contribute to numerous

verification goals of DO-178C at various stages of the devel-

opment process. The main focus of static analysis methods are

non-functional software quality hazards, e.g., violations of cod-

ing guidelines, violations of software architecture constraints,

violations of resource bounds such as stack overflows and real-

time deadlines, runtime errors, and data races. This article gives

a brief overview of abstract interpretation and its applications

to detect different classes of safety hazards. We will review

the requirements of DO-178C/DO-333, from High-Level Re-

quirements to requirements for verification of Executable Ob-

ject Code, and pinpoint aspects that can be covered by static

analysis methods. The article concludes with illustrating the

relevant requirements for DO-330-compliant tool qualification

of static analysis tools.

Keywords: DO-178C, DO-330, DO-333, certification, static analysis,

abstract interpretation, tool qualification

1 Introduction

Some years ago, static analysis meant manual review of pro-

grams. Nowadays, automatic static analysis tools have been

established in modern software development processes as they

offer a tremendous increase in productivity by automatically

checking the code under a wide range of criteria. Here, the term

static analysis is used to describe a variety of program analy-

sis techniques with the common property that the results are

only based on the software structure. No execution of the pro-

gram under analysis is needed. Static analysis can be applied

to any kind of program representation, from the model level or

the source code level to the executable object code level.

An important distinction of static analysis methods is the

complexity of the program properties they aim at determining

and the level of rigor at which they operate. In the simplest

form, static analysis is focused on the program syntax: purely

syntactical methods can be applied to check syntactical cod-

ing rules as contained in coding guidelines, such as MISRA C

[39], SEI CERT C [44], or the Common Weakness Enumera-

tion (CWE) [46]. They aim at a programming style that im-

proves clarity and reduces the risk of introducing bugs. Com-

pliance checking by static analysis tools has become common

practice.

Syntactic rules play an important part in coding standards as

they are easy to take into acccount while implementing code,

and easy to check. However, ultimately, the objective is to pre-

vent code defects which means that semantical properties have

to be considered. To that end semantics-based static analyzers

are needed which focus on the program semantics and com-

pute invariants about variable values, pointer targets, etc. This

is also relevant for coding standard compliance checking, since

all commonly used coding guidelines also include semantical

rules.

Depending on the level of rigor, semantics-based methods

can be grouped into unsound and sound approaches, the es-

sential difference being that when a sound method reports the

property under analysis – such as freedom of runtime errors – as

satisfied, this is guaranteed to be true. Abstract interpretation

is a formal method for sound semantics-based static program

analysis [9]. It supports formal correctness proofs: it can be

proved that an analysis will terminate and that it is sound in

the sense that it computes an over-approximation of the con-

crete program semantics. Abstract interpretation always pro-

vides full data and control coverage.

As of today, abstract interpretation-based static analyzers are

most widely used to determine non-functional software quality

properties [20, 17]. On the one hand that includes source code

properties, such as compliance to coding guidelines, compli-

ance to software architectural requirements, as well as absence

of runtime errors and data races [24]. On the other hand also

low-level code properties are covered such as absence of stack

overflows and violation of timing constraints [21, 28].

Violations of non-functional software quality requirements

often either directly represent safety hazards and cybersecurity

vulnerabilities in safety- or security-relevant code, or they can

indirectly trigger them. Hence they are invariably addressed

by verification obligations in current safety and security norms,

such as DO-178C [40], IEC-61508 [13], ISO-26262 [14], and

EN-50128 [8].

In this article we will focus on the DO-178C standard [40], its

formal method supplement DO-333 [41], and the DO-330 [42]

which details the tool qualification requirements to be taken

into account. We will review the software requirements and

verification goals that are amenable to static analyses and hence

identify the certification credits that can be obtained by apply-

ing different static analysis methods at different levels of the

development process. Sec. 2 walks through the DO-178C norm

and highlights the relevant software requirements and verifica-

tion objectives. Sec. 3 illustrates the methodology of static pro-

gram analysis and presents the fundamentals of its application

1

to compute various non-functional software properties. Sec. 4

then summarizes the verification goals supported by the vari-

ous applications of static analysis. A brief overview of the tool

qualification requirements relevant to static program analysis

tools is given in Sec. 5, and Sec. 6 concludes.

2 DO-178C / DO-333

The DO-178C [40], published in December 2011, is a revision

of DO-178B to take progress in software development and ver-

ification technologies into account. In general, the DO-178C

aims at providing “guidance for determining, in a consistent

manner and with an acceptable level of confidence, that the

software aspects of airborne systems and equipment comply

with airworthiness requirements.” It specifically focuses on

model-based software development, object-oriented software,

the use and qualification of software tools and the use of for-

mal methods to complement or replace dynamic testing. Each

of these key aspects is addressed by a dedicated supplement

which modifies, complements, and completes the DO-178C

core document. The supplements “should be used with and in

the same way” as the core document [40]. In this overview we

will specifically focus on the DO-178C core document and DO-

333 (Formal Methods Supplement to DO-178C and DO-278A)

[41].

The DO-178C first discusses general system aspects which

are relevant for software development and defines the software

life cycle processes, which then are addressed in turn: the soft-

ware planning, development, and verification processes, as well

as the configuration management, quality assurance, and certi-

fication processes. The norm also details the software life cy-

cle data and addresses additional considerations, such as tool

qualification requirements. In this section we will follow that

structure and pinpoint the respective requirements and verifi-

cation objectives amenable to static analysis techniques. Con-

siderations for formal methods are addressed at the end of this

section, tool qualification is addressed in Sec. 5.

2.1 System Aspects

System aspects relevant for software development include

functional and operational requirements, performance require-

ments and safety-related requirements, including design con-

straints and design methods, in particular partitioning (cf.

Sec. DO.2.1 of DO-178C [40]). The norm emphasizes that

timing and performance characteristics require special atten-

tion since they affect the system software and the software-

hardware boundaries and have to be included in the respective

information flows.

The DO-178C defines five software levels (criticality levels)

ranging from Level A (most critical) to Level E (least critical).

According to Sec. DO.2.3 only partitioned software compo-

nents can be assigned individual software levels by the system

safety assessment process. Sec. DO.2.4, Architectural Consid-

erations, states that “if partitioning and independence between

software components cannot be demonstrated, all components

are assigned the software level associated with the most severe

failure condition to which the software can contribute”. The

standard defines partitioning as a “technique for providing iso-

lation between software components to contain and/or isolate

faults and potentially reduce the effort of the software verifi-

cation process”. Among others, a partitioned software compo-

nent “should not be allowed to contaminate another partitioned

software component’s code, input/output, or data storage ar-

eas”, and it “should be allowed to consume shared processor

resources only during its scheduled period of execution”. Thus,

freedom of interference, both in the spatial and the temporal

domain, is recognized as an important architectural property.

2.2 Software Planning & Development Process

In Sec. DO.4.4.2, Language and Compiler Considerations,

the DO-178C points out that the software verification process

needs to consider particular features of the programming lan-

guage and compiler. In Sec. DO.4.5 the use of Software De-

velopment Standards is demanded which include Software De-

sign Standards and Software Code Standards. One of the goals

is to “disallow the use of constructs or methods that produce

outputs that cannot be verified or that are not compatible with

safety-related requirements”. The defined Software Develop-

ment Standards have to be taken into account during software

design and coding (cf. Sec. DO.5.2.2 and Sec. DO.5.3.2).

The Software Design Standards are defined to focus on al-

gorithmic constraints like exclusion of recursion, dynamic ob-

jects, or data aliases (cf. Sec. DO.11.7e). They should also

include complexity restrictions like maximum level of nested

calls, use of unconditional branches, or number of entry/exit

points of code components (cf. Sec. DO.11.7f).

The Software Code Standards focus on the programming

language. They identify the programming language to be

used and should define a safety-oriented language subset (cf.

Sec. DO.11.8a). To improve readability (and hence verifiabil-

ity) they should cover style rules like length restrictions, in-

dentation, and documentation rules (cf. Sec. DO.11.8c), and

impose further constraints on code complexity, e.g., regard-

ing the complexity of logical and numerical expressions (cf.

Sec. DO.11.8d).

2.3 Software Verification Process

Like the DO-178B, the DO-178C addresses the incompleteness

of testing techniques: “Verification is not simply testing. Test-

ing, in general, cannot show the absence of errors”. Since for-

mal methods are sound they can completely satisfy some verifi-

cation objectives while for others additional verification such as

complimentary testing may be necessary. Purpose and objec-

tive of the software verification process are defined in the same

way as in the DO-178B: The purpose of the software verifica-

tion process is to detect and report errors that may have been in-

troduced during the software development processes. Removal

of the errors is an activity of the software development pro-

cesses. The general objectives of the software verification pro-

cess are to verify that the requirements of the system level, the

architecture level, the source code level and the executable ob-

ject code level are satisfied, and that the means used to satisfy

these objectives are technically correct and complete.

As described in Sec. 2.1 non-functional software properties

can affect the system and the software level, and consequently,

2

they are addressed at all levels of the software verification pro-

cess. Design constraints may apply to ensure verifiability of the

software.

The software verification process comprises reviews and

analyses of high-level requirements, low-level requirements,

the software architecture, the source code, and requires testing

or formal analysis of the executable object code. One common

verification objective at all levels is to demonstrate the compli-

ance with the requirements of the parent level. As the system

requirements include performance and safety-related require-

ments non-functional aspects like timing or storage usage can

impact all stages. Consequently, the compatibility with the tar-

get computer is a verification objective among the high-level

requirements, the low-level requirements, and at the software

architecture level.

According to Sec. DO.6.2 the software verification activi-

ties have to address the “accuracy, completeness, and verifia-

bility of the software requirements, software architecture, and

Source Code”. In particular objective 6.3.2.d for reviews and

analysis of low-level requirements demands to ensure that each

low-level requirement can be verified. Objective 6.4.3.e de-

mands to ensure that the Software Design Standards were fol-

lowed during the software design process and that deviations

from the standards are justified. Also during review and analy-

ses of source code (Sec. DO.6.3.4) the Software Development

Standards have to be addressed. Objective 6.3.4.c which aims

at verifiability demands to ensure that no statements and struc-

tures that cannot be verified are contained in the Source Code.

Objective 6.3.4.d demands to show conformance to the Soft-

ware Code Standards defined, e.g., that complexity limits have

been considered. Deviations from the standards have to be jus-

tified.

In Sec. DO.6.3 of [40] the system response time is given

as an example of target computer properties relevant for

high-level requirements and low-level requirements. Com-

puting the response time requires the worst-case execution

time to be known. At the source-code level the objective

accuracy and consistency explicitly includes determining the

worst-case execution time, the stack usage, and runtime er-

rors (memory usage, fixed-point arithmetic overflow and reso-

lution, floating-point arithmetic, use of uninitialized variables).

All these characteristics can be checked using formal analysis

(cf. Sec. FM.6.3.4 of [41]).

The data and control flow of the software is of crucial im-

portance for the verification of functional and non-functional

correctness properties. In the DO-178C, the verification goal

6.3.3.b (Consistency) demands that “a correct relationship ex-

ists between the components of the software architecture. This

relationship exists via data flow and control flow.” It is comple-

mented by the verification goal of Sec. DO.6.3.4.b (Compliance

with the software architecture) which demands to “ensure that

the source code matches the data flow and control flow defined

in the software architecture”. Obviously the data and control

flow of the implemented software must match the intended data

and control flow as specified in the software architecture, and

unintended data and control flow must be avoided. In particu-

lar, this implies demonstrating freedom of interference between

software components in mixed-criticality software. In addition,

the data and control flow also determines the required effort for

functional testing. In DO-178C, Objective 8 of Annex A Table

A-7 requires that “Test coverage of software structure (data and

control coupling) is achieved”, referencing Sec. DO.6.4.4.2.c

which states that structural coverage analysis should “confirm

that the requirements-based testing has exercised the data and

control coupling between code components”. An in-depth dis-

cussion of data and control coupling analysis is given in [25].

Worst-case execution time and worst-case stack usage have

to be considered at the Executable Object Code level. The rea-

son is that the impact of the compiler, linker, and of hardware

features on the worst-case execution time and stack usage has

to be assessed. Both can be checked by formal analyses at the

Executable Object Code level (cf. Sec. FM.6.7 of [41]). Run-

time errors also can be addressed at the Executable Object level,

e.g. to deal with robustness issues like out-of-range loop values

and arithmetic overflows (cf. Sec. FM.6.7.b of [41]), or to ver-

ify the software component integration. The latter implies, e.g.,

detecting incorrect initialization of variables, parameter passing

errors, and data corruption.

At the Executable Object Level complimentary testing is still

required, e.g., to address transient hardware faults, or incorrect

interrupt handling (cf. Sec. DO.6.4.3. of [40]). Formal analysis

performed at the source code level can be used for verification

objectives at the executable object code if property preservation

between source code and executable code can be demonstrated

(cf. Sec. FM.6.7.f of [41]).

2.4 Formal Methods (DO-333)

[41] defines formal methods as “mathematically based tech-

niques for the specification, development, and verification of

software aspects of digital systems”. It distinguishes three cat-

egories of formal analyses: deductive methods, such as theorem

proving, model checking, and abstract interpretation. The com-

putation of worst-case execution time bounds and the maximal

stack usage are listed as reference applications of abstract in-

terpretation. The importance of soundness is emphasized: “an

analysis method can only be regarded as formal analysis if its

determination of a property is sound. Sound analysis means

that the method never asserts a property to be true when it is

not true.”

Regarding the applicability of formal methods, the DO-333

states that “formal methods provide comprehensive assurance

of particular properties only for those aspects that are formal-

ized in the formal model, so defining the limits of the model is

essential.” Formal analyses at the source code level have to be

based on a formal source code semantics. For formal analyses

done at the object code level, the object code becomes a for-

mal model the semantics of which are treated as they are by the

target hardware. When formal analysis is used to meet a veri-

fication objective, it has to be ensured that each formal method

used is correctly defined, justified, and appropriate to meet this

verification objective (cf. Sec. FM.6.2.1 of [41]):

• all notations used for formal analysis should be formal no-

tations

3

• the soundness of each formal analysis method should be

justified

• all assumptions related to each formal analysis should be

described and justified; for example assumptions associ-

ated with the target computer or about the data range lim-

its.

At the Executable Object Level, coverage analysis depends

on whether formal methods are used to complement or to re-

place dynamic testing methods. When any low-level testing is

used to verify low-level requirements for a software component

then the entire software component will be subject to test cover-

age analysis consisting of requirements-based coverage analy-

sis and structural coverage analysis. Requirements-based cov-

erage analysis establishes that verification evidence exists for

all of the requirements of the system. Structural coverage anal-

ysis is necessary since no exhaustive testing is achievable and

used to ensure that the testing performed is rigorous and suf-

ficient (cf. Sec. DO.6.4. of [40], Sec. FM.6.7.1 of [41], and

Sec. FM.12.3.5 of [41]).

When only formal methods are used to verify requirements

for a software component, a different coverage analysis for that

component has to be performed, consisting of the following

steps (cf. Sec. FM.6.7.2 of [41]):

• requirements-based coverage analysis to determine how

well the implementation of the software requirements has

been verified.

• complete coverage of each requirement to ensure that all

assumptions made during the formal analysis are verified.

If the assumptions are all verified then the formal analysis

can give complete coverage of each requirement.

• completeness of the set of requirements

• detection of unintended dataflow relationships

• detection of extraneous code, including dead code and de-

activated code

• review and analyses of the formal analysis cases, proce-

dures, and results for the executable object code.

3 Static Analysis & Abstract

Interpretation

Static analysis often is perceived as a technique for source code

analysis at the programming language level, but it can also be

applied at the binary machine code level. In that case it does

not compute an approximation of a programming language se-

mantics, but an approximation of the semantics of the machine

code of the microprocessor.

The theory of abstract interpretation [9] is a mathematically

rigorous formalism providing a semantics-based methodology

for static program analysis. The semantics of a programming

language is a formal description of the behavior of programs.

The most precise semantics is the so-called concrete semantics,

describing closely the actual execution of the program. Yet in

general, the concrete semantics is not computable. Even under

the assumption that the program terminates, it is too detailed to

allow for efficient computations. The solution is to introduce an

abstract semantics that approximates the concrete semantics of

the program and is efficiently computable. This abstract seman-

tics can be chosen as the basis for a static analysis. Compared

to an analysis of the concrete semantics, the analysis result may

be less precise but the computation may be significantly faster.

Abstract interpretation based static analyzers have been demon-

strated to scale up to industry-size software projects containing

millions of line of code [27, 30].

In the remainder of this section we will describe how static

analysis, and abstract interpretation in particular, can be ap-

plied to code guideline checking, software architecture analy-

sis, runtime error analysis, and to determine worst-case stack

usage and worst-case execution times. Code guideline check-

ing, software architecture analysis and run-time error analysis

operate at the source code level. Worst-case stack usage anal-

ysis and worst-case execution time analysis are performed at

the binary level, because they have to take the instruction set

and hardware architecture into account. As explained above, a

sound analysis computes a safe over-approximation of the con-

crete semantics and reports any potential defect of the defect

classes under analysis:

• For worst-case execution time analysis soundness means

that the reported WCET is never below the actual exe-

cution time in some execution environment. Overestima-

tions may occur.

• In the same way, the computed stack height must never be

below the stack usage in any concrete execution. Overes-

timations may occur.

• For run-time error analysis soundness means that the anal-

ysis never omits to signal an error that can appear in some

execution environment. False alarms may occur.

3.1 Code Guideline Checking

Coding guidelines aim at improving code quality and can be

considered a prerequisite for developing safety- or security-

relevant software. In particular, obeying coding guidelines is

strongly recommended by all current safety standards. The

norms do not enforce compliance to a particular coding guide-

line, but define properties to be checked by the coding stan-

dards applied. As an example, the ISO 26262 gives a list of

topics to be covered, including enforcement of low complex-

ity, enforcing usage of a language subset, enforcing strong typ-

ing, and use of well-trusted design principles (cf. [15], Table

1). The language subset to be enforced should exclude, e.g.,

ambiguously defined language constructs, language constructs

that could result in unhandled runtime errors, and language

constructs known to be error-prone. As discussed in Sec. 2 the

DO-178C is less prescriptive, but mandates coding guidelines

nontheless.

There is a variety of code guidelines, in particular for C and

C++, which are widely used in industry. The most prominent

guidelines for C are MISRA C:2012 [39], ISO/IEC TS 17961

4

[16], the SEI CERT C Coding Standard [44], and the MITRE

Common Weakness Enumeration CWE [46]. Prominent cod-

ing standards for C++ include MISRA C++:2008 [38], the SEI

CERT C++ Coding Standard [43], the C++ Core Guidelines

[7], the Adaptive AUTOSAR C++ Coding Guidelines [4], and

the Joint Strike Fighter Air Vehicle C++ Coding Standards [34].

However, as of 2021, the discussion which C++ language fea-

tures should be admitted to which extent for safety-critical soft-

ware projects, is in full swing, and there is no clear consensus

yet [19].

Most coding guidelines try to make coding rules easy to fol-

low for programmers, and easy to check by automatic tools,

hence, many coding rules are formulated at the syntactic level.

They can be addressed by static analyzers operating purely on

the program syntax.

However, obeying syntactic coding guidelines can reduce the

risk of programming errors but not prevent them. Hence, all

coding standards also explicitly contain semantic rules. These

rules require a deeper understanding of the code as they fo-

cus on semantical properties which requires knowledge about

variable values, pointer targets etc. To address such rules, and,

in consequence, identify semantical code defects, semantics-

based static analyses can be applied. Many semantical rules

are associated with runtime errors due to undefined or unspeci-

fied behaviors of the programming language used (cf. Sec. 3.5).

All safety norms, including DO-178C, consider demonstrating

the absence of such runtime errors explicitly as a verification

goal. They typically address general runtime errors (e.g., di-

vision by zero, invalid pointer accesses, arithmetic overflows),

and additionally consider corruption of content, synchroniza-

tion mechanisms, and freedom of interference in concurrent

execution. This is reflected, e.g., in MISRA C:2012, e.g., by

Rule 1.3. (goal: preventing undefined or critical unspecified

behavior) and Directive 4.1 (goal: minimization of run-time

failures)). Rule 1.3 and Directive 4.1 are examples for seman-

tical guidance.

In contrast to other coding standards, MISRA C provides a

clear classification which rules are based on semantic proper-

ties: typically such rules are labeled as system/undecidable.

This is important since – due to their inherent undecidability

– for semantical rules there cannot always be a correct and pre-

cise ”yes” or ”no” answer. As discussed above, there can al-

ways be false alarms (false positives), and, in case of unsound

analyzers, also missed defects (false negatives). Therefore, de-

velopers have to be aware of the class and the operational con-

text of the static analysis tool in use.

3.2 Software Architecture Analysis

All current safety norms require determining the data and con-

trol flow in the source code and making sure that it is compliant

to the intended control and data flow as defined in the software

architecture. In traditional static code analysis, data accesses

via pointer variables and control flow by function pointer calls

might be missed.

Using sound static analysis based on abstract interpretation, it

is possible to guarantee the absence of runtime errors that could

cause memory corruption and control flow corruption. Further-

more, it is possible to guarantee that in the analysis, all data

and function pointer targets are considered and that the possi-

ble data and control coupling is fully captured. This way, a safe

approximation of the data and control coupling between soft-

ware components can be determined. That makes it possible to

detect critical data and control flow errors and allows to com-

plement traditional code coverage criteria by the degree of data

and control coupling covered by the testing process, helping

to identify relevant previously untested scenarios. In addition,

freedom of spacial interference between software components

can be demonstrated at the source code level [25].

3.3 Stack Usage Analysis

In safety-critical systems, stack overflows can cause catas-

trophic damage. The run-time stack (often just called “the

stack”) typically is the only dynamically allocated memory

area. It is used during program execution to keep track of the

currently active procedures and facilitate the evaluation of ex-

pressions. The maximal stack usage has to be statically known:

at configuration time of the system sufficient stack space has to

be reserved for each task.

However, the stack height cannot be easily determined from

the source code, since it depends on the dynamic call depth

of functions, on compiler optimizations, and on link-time op-

timizations. Overestimating the maximum stack usage means

wasting memory resources. Underestimation can lead to stack

overflows where memory cells from the stacks of different tasks

or other memory areas are overwritten. This can cause crashes

due to memory protection violations and can trigger arbitrary

erroneous program behavior, if return addresses or other parts

of the execution state are modified. In consequence stack over-

flows are typically hard to diagnose and hard to reproduce, but

they are a potential cause of catastrophic failure. One exam-

ple is the series of accidents caused by unintended acceleration

of the 2005 Toyota Camry: the expert witness’ report commis-

sioned by the Oklahoma court in 2013 identifies a stack over-

flow as most probable failure cause [6, 47].

For safe stack size analysis, it is important to work on fully

linked binary code, since the effects of code generation – in-

serting padding bytes, register allocation, etc. – or link- time

optimizations have to be taken into account. Hence the static

stack usage analysis cannot be based on the source code but

must work on the executable machine code. It approximates the

semantics of the machine code of the microprocessor by using

an abstract model of the processor architecture. The abstract

model does not need to cover the entire state of the micropro-

cessor, only the parts affecting the stack space are needed. The

hardware state relevant for worst-case stack analysis includes

the processor registers and the memory cells. For a naive anal-

ysis, only the stack pointer register is needed, but for precise

results it is important to perform an elaborate value analysis on

the contents of processor register and memory cells.

In the following we will give an overview of the structure

and analysis phases of StackAnalyzer [2], which is an example

tool from this category. First, the control-flow graph is recon-

structed from the input file, the binary executable. Then a static

value analysis computes value ranges for registers and address

5

ranges for instructions accessing memory. StackAnalyzer re-

ports computed branch and call instructions in case their tar-

gets cannot be automatically resolved by its value analysis, as

well as unbounded recursions. Missing information such as re-

cursion bounds and call targets can be manually specified in a

formal annotation language, AIS [21]. Function pointer targets

can also be automatically imported from an Astrée analysis.

By concentrating on the value of the stack pointer during value

analysis, StackAnalyzer computes how the stack increases and

decreases along the various control-flow paths. This informa-

tion can be used to derive the maximum stack usage of the en-

tire task. StackAnalyzer takes the entire application into ac-

count and interprocedurally analyzes each call site with its pre-

cise stack height. The results of StackAnalyzer are presented

as annotations in a combined call graph and control-flow graph.

It shows the critical path, i.e., the path on which the maximum

stack usage is reached which gives important feedback for op-

timizing the stack usage of the application under analysis. Ex-

perimental results show that the analysis is fast and precise so

that only few explicit annotations are needeed [21].

3.4 Worst-Case Execution Time Analysis

In real-time systems the overall correctness depends on the cor-

rect timing behavior: each real-time task has to finish before its

deadline, hence, reliable bounds of the worst-case execution

time (WCET) of real-time tasks have to be determined.

With end-to-end timing measurements timing information is

only determined for one concrete input. Due to caches and

pipelines the timing behavior of an instruction depends on the

program path executed before. Therefore, usually no full test

coverage can be achieved and there is no safe test end crite-

rion. Techniques based on code instrumentation modify the

code which can significantly change the cache and pipeline be-

havior (probe effect): the times measured for the instrumented

software do not necessarily correspond to the timing behavior

of the original software.

One safe method for timing analysis is static analysis by Ab-

stract Interpretation which provides guaranteed upper bounds

for WCET of tasks. Static WCET analyzers are available for

complex processors with caches and complex pipelines, and, in

general, support both single- and multi-core processors. A pre-

requisite is that good models of the processor/System on-Chip

(SoC) architecture can be determined. However, there are mod-

ern high performance SoCs which contain unpredictable and/or

undocumented components that influence the timing behavior.

Analytical results for such processors are unrealistically pes-

simistic.

A hybrid WCET analysis combines static value, loop and

path analysis with measurements to capture the timing behav-

ior of tasks. Compared to end-to-end measurements the advan-

tage of hybrid approaches is that measurements of short code

snippets can be taken which cover the complete program under

analysis. Based on these measurements a worst-case path can

be computed.

In the following we will focus on applications of static anal-

ysis to WCET computation and illustrate the basic principles to

establish their contribution to verification goals of DO-178C.

For an overview of methods and tools for WCET analysis we

refer to [48] , and recommend [33] for a general survey on

methods for timing analysis on multi-core processors.

3.4.1 Timing Predictability

In general, a system is predictable if it is possible to predict

its future behavior from the information about its current state

[5]. The primary sources of uncertainty in execution time of an

instruction sequence are the program input and the hardware

state in which its execution begins. Hardware-related timing

predictability can be expressed as the maximal variance in exe-

cution time due to different hardware states for an arbitrary but

fixed input. Analogously, software-related timing predictability

corresponds to the maximal variance in execution time due to

different inputs for an arbitrary but fixed initial hardware state.

Even in single-core processors timing predictability is com-

promised by performance-enhancing hardware mechanisms

like caches, pipelines, out-of-order execution, branch predic-

tion and other mechanisms for speculative execution, which can

cause significant variations in timing depending on the hard-

ware state. On multi-core architectures, in addition the inter-

core parallelism becomes relevant. To interconnect the several

cores, buses, meshes, crossbars, and also dynamically routed

communication structures are used. In that case, the interfer-

ence delays due to conflicting, simultaneous accesses to shared

resources (e.g. main memory) are the main cause of impreci-

sion.

3.4.2 Fully Static WCET Analysis

Static analysis by Abstract Interpretation can provide guaran-

teed upper bounds for WCET of tasks. Over the past decades,

a standard architecture has emerged [10, 12] which neither re-

quires code instrumentation nor debug information and is com-

posed of the following major building blocks:

Decoding: The instruction decoder identifies the machine in-

structions and reconstructs the call and control-flow graph.

To ensure safety of later analysis results, this graph itself

must be safe, i.e., all possible paths that can occur during

execution of the program must be represented.

Value analysis: Value analysis aims at statically determining

the contents of the registers and memory cells at each pro-

gram point and for each execution context. The results of

the value analysis are used to predict the addresses of data

accesses, the targets of computed calls and branches, and

to find infeasible paths caused by conditions that always

evaluate to true, or always evaluate to false in a specific

context.

Micro architectural analysis: The execution of a program is

statically simulated by feeding instruction sequences from

the control-flow graph to a micro-architectural timing

model which is centered around the cache and pipeline ar-

chitecture. It computes the system state changes induced

by the instruction sequence at cycle granularity and keeps

track of the elapsing clock cycles.

6

Path analysis: Based on the results of the combined

cache/pipeline analysis the worst-case path of the ana-

lyzed code is computed with respect to the execution tim-

ing. The execution time of the computed worst-case path

is the worst-case execution time for the task.

A tool which implements this architecture is the static WCET

analyzer aiT [45]. It is available for a variety of microproces-

sors including multi-core processors which can be configured

in a timing-predictable way to avoid or bound inter-core inter-

ferences like Infineon AURIX TC27x [1].

3.4.3 Hybrid WCET Analysis

Hybrid WCET analysis tools combine static context-sensitive

path analysis with real-time instruction-level tracing to provide

worst-case execution time estimates. By its nature, an analysis

using measurements to derive timing information is aware of

timing interference due to concurrent execution and multi-core

resource conflicts, because the effects of asynchronous events

(e.g. activity of other running cores or DRAM refreshes) are

directly visible in the measurements.

An example tool is the hybrid WCET Analyzer TimeWeaver

[29, 3], which builds on non-intrusive instruction-level tracing:

the probe effect is avoided since no code instrumentation is

needed. The computed estimates are safe upper bounds with

respect to the given input traces, i.e., TimeWeaver derives an

overall upper timing bound from the execution time observed

in the given traces. Thus, the coverage of the input traces on the

analyzed code is an important metric that influences the quality

of the computed WCET estimates.

The trace information needed for running TimeWeaver is

provided by embedded trace units of modern processors, like

NEXUS IEEE-ISTO 5001, Infineon TriCore MCDS, or ARM

CoreSight. They allow the fine-grained observation of a pro-

gram execution on single- and multi-core systems.

The main inputs for TimeWeaver are the fully linked exe-

cutable(s), timed traces and the location of the analyzed code

in the memory (entry point, which usually is the name of a task

or function). The analysis proceeds in several stages: decod-

ing, loop/value analysis, trace analysis, and path analysis, most

of which are shared with aiT [45]. The main difference is that

micro-architectural analysis is replaced by the trace analysis

stage:

Trace analysis: The given traces are analyzed such that each

trace event is mapped to a program point in the control-

flow graph and the trace points and segments are defined.

In case a preemptive system has been traced, interrupts

are detected and reported. The extracted timing informa-

tion, i.e., the clock cycles which have been elapsed be-

tween two consecutive trace points are annotated to the

CFG in a context-sensitive manner [29].

3.5 Run-Time Errors and Data Races

In this section we focus on source-level runtime errors due to

undefined or unspecified behaviors of the programming lan-

guage used. Examples are faulty pointer manipulations, numer-

ical errors such as arithmetic overflows and division by zero,

data races, and synchronization errors in concurrent software.

Such errors can cause software crashes, invalidate separation

mechanisms in mixed-criticality software, and are a frequent

cause of errors in concurrent and multi-core applications. At

the same time, these defects also constitute security vulnera-

bilities, and have been at the root of a multitude of cybersecu-

rity attacks, in particular buffer overflows, dangling pointers, or

race conditions [23].

Runtime errors are one important cause of software-induced

memory corruption in safety-critical systems. The other two

main causes are stack overflows, and miscompilation, where

the compiler silently generating erroneous code from a correct

input program. As described above, with abstract interpreta-

tion, the absence of runtime errors and stack overflows can be

proven; when using a formally proven compiler like CompCert

[22, 18] no miscompilation is possible, hence all main sources

of software-induced memory corruption can be covered.

In the following we will give a brief overview of the Astrée

analyzer as an example of sound static runtime error analysis

tools [31][37]. To achieve high precision Astrée provides a va-

riety of abstract domains covering, e.g. , intervals, octagons,

digital filters, finite state machines, and interpolations. The

memory domain empowers Astrée to exactly analyze pointer

arithmetic and union manipulations and to perform a type-safe

analysis of absolute memory addresses. Floating-point compu-

tations are precisely modeled while keeping track of possible

rounding errors. Astrée also implements a low-level concur-

rent semantics [35] which provides a scalable sound abstraction

covering all possible thread interleavings. The interleaving se-

mantics enables Astrée, in addition to the classes of runtime

errors found in sequential programs, to report data races, and

lock/unlock problems, i.e., inconsistent synchronization. The

set of shared variables does not need to be specified by the user:

Astrée assumes that every global variable can be shared, and

discovers which ones are effectively shared, and on which ones

there is a data race. Since Astrée is aware of all locks held for

every program point in each concurrent thread, Astrée can also

report all potential deadlocks. The abstract domains are param-

eterized, which enables users to fine-tune the precision of the

analyzer to the software under analysis to minimize the number

of false alarms.

In its data and control flow analysis module, Astrée tracks

accesses to global, static, and local variables in case those ac-

cesses are made outside of the frame in which the local vari-

ables are defined (e.g., because their address is passed into a

called function). The soundness of the analysis ensures that all

potential targets of data and function pointers are taken into ac-

count. Function pointer targets are automatically resolved and

can be exported in AIS format to support binary-level static an-

alyzers. Astrée’s data and control flow reports show the number

of read and write accesses for every global, static, and out-of-

frame local variable, lists the location of each access and shows

the function from which the access is made. All variables are

classified as being thread-local, effectively shared between dif-

ferent threads, or subject to a data race. Astrée also suports data

and control coupling analysis [26], and can check compliance

to commonly used coding guidelines such as MISRA C/C++,

7

CWE, SEI CERT C/C++, Adaptive Autosar C++, etc. Further-

more, Astrée includes a program slicer, and a user-configurable

taint analysis [24].

Practical experience on avionics and automotive industry ap-

plications are given in [31][36][32]. They show that industry-

sized programs of millions of lines of code can be analyzed in

acceptable time with high precision for runtime errors and data

races.

4 Coverage of Verification Objectives

In this section we give an overview of the verification objec-

tives of DO-178C to which static analysis methods can be ap-

plied. The relevant verification objectives are summarized in

Annex-A of [41]. We will explicitly list the sections of the

DO-178C and the DO-333 that address verification objectives

to which sound static analysis for WCET (worst-case execution

time), WCSU (worst-case stack usage), and RTE (runtime er-

rors), as well as simple unsound code guideline checking (CG)

can contribute. The section names of the DO-333 match the

corresponding sections in the DO-178C, e.g. Sec. FM.6.3.1.c

of DO-333 corresponds to Sec. 6.3.1.c of DO-178C, so in the

following we will just use the numbering from [41] for simplic-

ity.

In general, worst-case execution time analysis, worst-case

stack usage analysis and runtime error analysis contribute to

all objectives related to the target environment. Stack usage,

response times and execution times are determined by the tar-

get computer. They can cause violations of high-level require-

ments, violations of low-level requirements, incompatibility of

the software architecture with the target computer, and they can

affect the accuracy and consistency of the source code. Sound

static source code analysis enables sound data and control flow

analysis which is required to demonstrate consistency between

software architecture level and source code level. Detecting

runtime errors is required to deal with robustness issues like

out-of-range loop values and arithmetic overflows, or to verify

the software integration. The latter implies, e.g., detecting in-

correct initialization of variables, parameter passing errors, and

data corruption.

The sections Sec. FM.6.3.1.c, FM.6.3.2.c, and FM.6.3.3.c ad-

dress the compatibility with the target computer, hence, sound

static analyses for WCET, WCSU, and RTE are relevant for all

of them. The timing aspect is emphasized as response times

and is explicitly listed as an example in Sec. FM.6.3.1.c and

Sec. FM.6.3.2.c. Sound analyzers for WCET, WCSU and RTE

can report unreached code and dead code, thus also contribut-

ing to Sec. FM.6.3.3.a, Sec. FM.6.3.4.a, and Sec. FM.6.3.4.e.

Compliance to low-level requirements (Sec. FM.6.3.4.a) also

necessitates the absence of programming defects as reported

by sound RTE analysis. The data and control flow analysis

provided by sound RTE analysis relates to Sec. FM.6.3.3.b and

FM.6.3.4.b. Subsequently, Sec. FM.6.3.4.f explicitly lists de-

termining worst-case execution time, stack usage, and absence

of runtime errors as verification objectives.

Sec. FM.6.7 addresses the formal analysis of the executable

object code. Sound analysis of WCET and WCSU both con-

tribute to Sec. FM.6.7.e by computing safe bounds to the worst-

Obj. Ref. WCET WCSU CG RTE

Table FM.A-3

3 FM.6.3.d
FM.6.3.1.c

X X X

Table FM.A-4

3 FM.6.3.d
FM.6.3.2.c

X X X

5 FM.6.3.f
FM.6.3.2.e

X X

8 FM.6.3.3.a X* X X

9 FM.6.3.c
FM.6.3.3.b

X* X* X

10 FM.6.3.d
FM.6.3.3.c

X X X

11 FM.6.3.e
FM.6.3.3.d

X* X* X X

12 FM.6.3.f
FM.6.3.3.e

X* X* X X

13 FM.6.3.3.f X X X

Table FM.A-5

1 FM.6.3.a
FM.6.3.4.a

X X X

2 FM.6.3.a
FM.6.3.4.b

X

3 FM.6.3.e
FM.6.3.4.c

X X

4 FM.6.3.f
FM.6.3.4.d

X X

5 FM.6.3
FM.6.3.4.e

X X

6 FM.6.3.b
FM.6.3.c
FM.6.3.4.f

X X X X

7 6.3.5.a X X X

Table FM.A-6

1 FM.6.7.a
FM.6.7.c

X X X**

2 FM.6.7.b
FM.6.7.c

X X X**

3 FM.6.7.d
FM.6.7.c

X X X**

4 FM.6.7.b
FM.6.7.c

X X X**

5 6.4.e
FM.6.7.e

X X X**

* Leveraging the built-in value analysis
** Using CompCert to ensure semantic preservation

Table 1: Coverage of DO-178C verification objectives by sound static

WCET analysis (WCET), sound static stack usage analysis (WCSU),

static code guideline checking (CG) and sound static runtime error

analysis (RTE).

8

case execution time or stack consumption of the software under

certification. The possibility to deeply investigate the behavior

of the analyzed software on the assembly level allows to derive

information about timing contribution of specific parts of the

software but also to trace back contents of memory cells and/or

register values to the corresponding source code. Hence sound

static binary code analysis as needed for WCET and WCSU

also contributes to the paragraphs a till d in Sec. FM.6.7.

As specified in Sec. FM.6.7.f, relevant properties can also be

verified on source code level if property preservation between

source and object code level is ensured. For the language C,

this can be achieved by using the formally verified compiler

CompCert [22]. The code it produces is proven to behave ex-

actly as specified by the semantics of the source C program.

Leveraging this, sound static RTE analysis is relevant for all

points in Sec. FM.6.7 and also contributes to Sec. FM.6.6.a:

program slicing and taint analysis, e.g. , as available in Astrée,

support identifying program parts contributing to run-time er-

rors, and program parts affected by data corruption, respec-

tively, hence possibly pinpointing flaws in the Data Item File.

Furthermore a type-safe analysis of absolute addresses at the

source code level as available in Astrée can detect incorrect

hardware addresses, and also reports memory overlaps. The

value analysis component of sound binary-level analyzers for

WCET and WCSU supports proving that memory accesses are

made to the expected memory regions at the Executable Ob-

ject Level. These analyses contribute to Sec. FM.6.3.5.a which

deal with review and analyses of the output of the integration

process.

Code guideline checkers, either as standalone tools, or

included in sound RTE analyzers such as Astrée typically

also compute code metrics, and provide checks to demon-

strate conformance to thresholds defined. These capabili-

ties support requirements of the Software Design Standards

(e.g., recursion, dynamic objects, call nesting levels) and

of the Software Code Standards (e.g., style rules, expres-

sion complexity). They also support traceability requirements

by appropriate coding rule checks. In summary, they con-

tribute to various verification objectives, in particular the ob-

jectives Sec. FM.6.3.3.d, Sec. FM.6.3.3.e, Sec. FM.6.3.4.c,

Sec. FM.6.3.4.d, and Sec. FM.6.3.4.e, in general supporting to

check the verifiability of software design and implementation.

5 Tool Qualification

Whenever the output of a tool is either part of a safety-critical

system to be certified or the tool output is used to eliminate or

reduce any development or verification effort for such a system,

that tool needs to qualified. DO-178C regulates when a tool

qualification is to be applied and DO-330 [42] gives guidance

on the tool qualification requirements.

5.1 Relevant Tool Qualification Levels (TQL)

First, the necessary qualification activities and results have to

be identified. For this, DO-330 defines the so-called tool qual-

ification level (TQL). There are five different levels, from the

most critical level TQL-1 down to TQL-5.

The TQL is determined by the potential tool impact and the

software level. There are three tool impact categories where

Criteria 1 denotes the highest impact and Criteria 3 the low-

est. Criteria 1 does not apply to static verification tools since

it is associated with tools whose output is part of the airborne

software. Analysis and verification tools are subject to Criteria

2/3. The difference between the latter two categories is whether

the output of the tool is used to justify the elimination or reduc-

tion of other verification or development activities or not. The

following table illustrates how the TQLs are assigned based on

Criteria and Software Level.

Software Level
Criteria

1 2 3

A TQL-1 TQL-4 TQL-5

B TQL-2 TQL-4 TQL-5

C TQL-3 TQL-5 TQL-5

D TQL-4 TQL-5 TQL-5

To summarize, the tool qualification levels relevant for static

analyzers are TQL-4 and TQL-5. TQL-4 applies when the soft-

ware under analysis is Level A/B and the tool categorized as

criteria 2. In all other cases, TQL-5 applies. In the follow-

ing, we summarize the qualification material that is required

for a TQL-4 qualification, and outline a well-proven example

on how this can be supported.

5.2 Tool Qualification Requirements

The tables T-0 to T-10 in DO-330 define requirements (called

objectives) to the tool qualification. Each table addresses a dif-

ferent process associated with the life cycle of the tool under

qualification in order to cover the relevant aspects of the af-

fected processes.

Summarizing the objectives in these tables, the qualification

data to be provided for a TQL-4 verification tool boils down

to the following. First, tool (operational) requirements have to

be specified, i.e. , the intended tool behavior must be defined

in an explicit and detailed manner. Second, test cases have to

be created which cover all those functional requirements. This

includes providing descriptions of test case objectives, execu-

tion procedures, expected results, and records of their execu-

tion. Unique identifiers for requirements and test cases allow

to establish trace data between those data elements which in

the end allows to claim coverage of all requirements by suc-

cessfully passed test case executions. For the static analyzers

described in Sec. 3 these requirements are fully covered by so-

called Qualification Support Kits (QSKs).

In addition to the tool behavior, the qualification material

needs to address certain aspects of the tool development pro-

cesses. The Tool Qualification Plan (TQP) gives an overview

to the tool qualification as a whole. The Tool Development Plan

(TDP) includes the objectives, standards, and tool life cycle(s)

to be used in the tool development processes. The Tool Veri-

fication Plan (TVP) is a description of the activities to satisfy

the tool verification process objectives. The Tool Configuration

Management Plan (TCMP) establishes the methods to be used

to satisfy the objectives of the TCM process throughout the tool

life cycle. The Tool Quality Assurance Plan (TQP) establishes

the methods to be used to satisfy the objectives of the tool qual-

ity assurance process. The execution of all activities defined in

9

these plans needs to produce evidence records that are archived

and part of the qualification data. AbsInt provides these evi-

dences about the applied tool life cycle activities as part of the

QSKs.

Typically, static analyzers are categorized as so-called Com-

mercial Off-The-Shelf (COTS) tools, basically meaning that

the tool developer is different from the tool user. To qualify

COTS tools, the tool developer provides the basis for the re-

quired qualification material from a “tool developers” perspec-

tive. The tool user then needs to either adapt the material or to

describe how its tool use maps to the data provided by the de-

veloper. For example: the tool user might needs to define how

the tool is used and which functionality (from the provided op-

erational requirements) is used.

To provide high confidence in the correct functioning of a

tool it is necessary to demonstrate that the tool works correctly

in the operational context of its users. This is a common re-

quirement of most current safety standards. The correct func-

tioning of a tool might be affected by the OS version, system

libraries installed, software patch levels, etc. For the tools listed

in Sec. 3 there is dedicated support for tool users to automat-

ically execute the QSK test cases and automatically create all

data required for the certification package.

6 Conclusion

Static analysis has evolved to be a standard method in the soft-

ware development and verification process. It can be applied to

various verification activities required for DO-178C certifica-

tion, in particular by performing code guideline checking, data

and control coupling analysis, interference analysis, worst-case

stack and execution time analysis, and runtime error analysis.

In this article we precisely identified the verification require-

ments and objectives that can be covered by static analysis and

its formal method, abstract interpretation. For each application

of static analysis mentioned above we summarized the underly-

ing analysis concepts and illustrated them with practical exam-

ples. We also summarized the required tool qualification activi-

ties, and illustrated them with a well-proven example approach

to tool qualification.

References

[1] AbsInt GmbH. aiT WCET Analyzer Website. http://www.

AbsInt.com/ait.

[2] AbsInt GmbH. StackAnalyzer Website. http://www.

AbsInt.com/sa.

[3] AbsInt GmbH. Timeweaver website.

[4] AUTOSAR. Guidelines for the use of the C++14 language in

critical and safety-related systems, 2018.

[5] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan,

B. Jonsson, P. Marwedel, J. Reineke, C. Rochange, M. Sebas-

tian, R. von Hanxleden, R. Wilhelm, and W. Yi. Building timing

predictable embedded systems. ACM Transactions on Embedded

Computing Systems, 2013. Accepted.

[6] M. Barr. Bookout v. Toyota, 2005 Camry software Analysis

by Michael Barr. http://www.safetyresearch.net/

Library/BarrSlides_FINAL_SCRUBBED.pdf, 2013.

[7] H. S. Bjarne Stroustrup. C++ Core Guidelines. https:

//isocpp.github.io/CppCoreGuidelines/

CppCoreGuidelines [retrieved: Jan. 2020].

[8] CENELEC EN 50128. Railway applications – Communication,

signalling and processing systems – Software for railway control

and protection systems, 2011.

[9] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approxi-

mation of fixpoints. In Proc. of POPL’77, pages 238–252. ACM

Press, 1977.

[10] A. Ermedahl. A Modular Tool Architecture for Worst-Case Exe-

cution Time Analysis. Phd thesis, Uppsala University, 2003.

[11] C. Faure and V. Delebarre. Automatic proof of freedom from

interference with iffree. In Proccedings of the 10th European

Conference on Software Architecture Workshops, Copenhagen,

Denmark, November 28 - December 2, 2016, page 36, 2016.

[12] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,

M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reli-

able and precise WCET determination for a real-life processor.

In Proceedings of EMSOFT 2001, First Workshop on Embed-

ded Software, volume 2211 of LNCS, pages 469–485. Springer,

2001.

[13] IEC 61508. Functional safety of electrical/electronic/pro-

grammable electronic safety-related systems, 2010.

[14] ISO 26262. Road vehicles – Functional safety, 2018.

[15] ISO 26262. Road vehicles – Functional safety – Part 6: Product

development at the software level, 2018.

[16] ISO/IEC. Information Technology – Programming Languages,

Their Environments and System Software Interfaces – Secure

Coding Rules (ISO/IEC TS 17961), Nov. 2013.

[17] D. Kästner. Applying Abstract Interpretation to Demonstrate

Functional Safety. In J.-L. Boulanger, editor, Formal Methods

Applied to Industrial Complex Systems. ISTE/Wiley, London,

UK, 2014.

[18] D. Kästner, J. Barrho, U. Wünsche, M. Schlickling, B. Schom-

mer, M. Schmidt, C. Ferdinand, X. Leroy, and S. Blazy.

CompCert: Practical Experience on Integrating and Qualifying a

Formally Verified Optimizing Compiler. In ERTS2 2018 - Em-

bedded Real Time Software and Systems, Toulouse, France, Jan.

2018.

[19] D. Kästner, C. Cullmann, G. Gebhard, S. Hahn, T. Karos,

L. Mauborgne, S. Wilhelm, and C. Ferdinand. Safety-Critical

Software Development in C++. In A. Casimiro, F. Ortmeier,

E. Schoitsch, F. Bitsch, and P. Ferreira, editors, Computer Safety,

Reliability, and Security. SAFECOMP 2020 Workshops, pages

98–110, Cham, 2020. Springer International Publishing.

[20] D. Kästner and C. Ferdinand. Efficient Verification of Non-

Functional Safety Properties by Abstract Interpretation: Tim-

ing, Stack Consumption, and Absence of Runtime Errors. In

Proceedings of the 29th International System Safety Conference

ISSC2011, Las Vegas, 2011.

[21] D. Kästner and C. Ferdinand. Proving the Absence of Stack

Overflows. In SAFECOMP ’14: Proceedings of the 33th Inter-

national Conference on Computer Safety, Reliability and Secu-

rity, volume 8666 of LNCS, pages 202–213. Springer, September

2014.

10

[22] D. Kästner, X. Leroy, S. Blazy, B. Schommer, M. Schmidt, and

C. Ferdinand. Closing the gap – the formally verified optimizing

compiler CompCert. In SSS’17: Developments in System Safety

Engineering: Proceedings of the Twenty-fifth Safety-critical Sys-

tems Symposium, pages 163–180. CreateSpace, 2017.

[23] D. Kästner, L. Mauborgne, and C. Ferdinand. Detecting Safety-

and Security-Relevant Programming Defects by Sound Static

Analysis. In J.-C. B. Rainer Falk, Steve Chan, editor, The

Second International Conference on Cyber-Technologies and

Cyber-Systems (CYBER 2017), volume 2 of IARIA Conferences,

pages 26–31. IARIA XPS Press, 2017.

[24] D. Kästner, L. Mauborgne, S. Wilhelm, and C. Ferdinand. High-

Precision Sound Analysis to Find Safety and Cybersecurity De-

fects. In 10th European Congress on Embedded Real Time Soft-

ware and Systems (ERTS 2020), Toulouse, France, Jan. 2020.

[25] D. Kästner, L. Mauborgne, S. Wilhelm, and C. Ferdinand. Static

Data and Control Coupling Analysis. Submitted to the 11th Eu-

ropean Congress on Embedded Real Time Software and Systems

(ERTS 2022), March 2022.

[26] D. Kästner, L. Mauborgne, S. Wilhelm, and C. Ferdinand. Static

Data and Control Coupling Analysis. In ERTS2 2022 - Em-

bedded Real Time Software and Systems. To appear, Toulouse,

France, Mar. 2022.

[27] D. Kästner, A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot,

A. Schmidt, H. Hille, S. Wilhelm, and C. Ferdinand. Finding All

Potential Runtime Errors and Data Races in Automotive Soft-

ware. In SAE World Congress 2017. SAE International, 2017.

[28] D. Kästner, M. Pister, G. Gebhard, M. Schlickling, and C. Fer-

dinand. Confidence in Timing. Safecomp 2013 Workshop: Next

Generation of System Assurance Approaches for Safety-Critical

Systems (SASSUR), September 2013.

[29] D. Kästner, M. Pister, S. Wegener, and C. Ferdinand.

TimeWeaver: A Tool for Hybrid Worst-Case Execution Time

Analysis. In S. Altmeyer, editor, 19th International Workshop on

Worst-Case Execution Time Analysis (WCET 2019), volume 72

of OpenAccess Series in Informatics (OASIcs), pages 1:1–1:11,

Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik.

[30] D. Kästner, B. Schmidt, M. Schlund, L. Mauborgne, S. Wilhelm,

and C. Ferdinand. Analyze This! Sound Static Analysis for In-

tegration Verification of Large-Scale Automotive Software. In

Proceedings of the SAE World Congress 2019 (SAE Technical

Paper). SAE International, 2019.

[31] D. Kästner et al. Finding All Potential Runtime Errors and Data

Races in Automotive Software. In SAE World Congress 2017.

SAE International, 2017.

[32] D. Kästner et al. Analyze This! Sound Static Analysis for In-

tegration Verification of Large-Scale Automotive Software. In

Proceedings of the SAE World Congress 2019 (SAE Technical

Paper). SAE International, 2019.

[33] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and

R. I. Davis. A survey of timing verification techniques for multi-

core real-time systems. ACM Comput. Surv., 52(3), jun 2019.

[34] L. Martin. Joint strike fighter air vehicle c++ coding standards

for the system development and demonstration program, 2005.

[35] A. Miné. Static analysis of run-time errors in embedded real-

time parallel C programs. Logical Methods in Computer Science

(LMCS), 8(26):63, Mar. 2012.

[36] A. Miné and D. Delmas. Towards an Industrial Use of Sound

Static Analysis for the Verification of Concurrent Embedded

Avionics Software. In Proc. of the 15th International Confer-

ence on Embedded Software (EMSOFT’15), pages 65–74. IEEE

CS Press, Oct. 2015.

[37] A. Miné et al. Taking Static Analysis to the Next Level: Proving

the Absence of Run-Time Errors and Data Races with Astrée. In

8th European Congress on Embedded Real Time Software and

Systems (ERTS 2016), Toulouse, France, Jan. 2016.

[38] MISRA (Motor Industry Software Reliability Association)

Working Group. MISRA C++:2008 Guidelines for the use of

the C++ language in critical systems, 2008.

[39] MISRA (Motor Industry Software Reliability Association)

Working Group. MISRA-C:2012 Guidelines for the use of the

C language in critical systems. MISRA Limited, Mar. 2013.

[40] Radio Technical Commission for Aeronautics. RTCA DO-178C.

Software Considerations in Airborne Systems and Equipment

Certification, 2011.

[41] Radio Technical Commission for Aeronautics. RTCA DO-333.

Formal Methods Supplement to DO-178C and DO-278A, 2011.

[42] Radio Technical Commission for Aeronautics. Software Tool

Qualification Considerations, 2011.

[43] Software Engineering Institute SEI – CERT Division. SEI CERT

C++ Coding Standard.

[44] Software Engineering Institute SEI – CERT Division. SEI CERT

C Coding Standard – Rules for Developing Safe, Reliable, and

Secure Systems. Carnegie Mellon University, 2016.

[45] J. Souyris, E. Le Pavec, G. Himbert, V. Jégu, G. Borios, and

R. Heckmann. Computing the worst case execution time of an

avionics program by abstract interpretation. In Proceedings of

the 5th Intl Workshop on Worst-Case Execution Time (WCET)

Analysis, pages 21–24, 2005.

[46] The MITRE Corporation. CWE – Common Weakness Enumer-

ation. https://cwe.mitre.org [retrieved: July 2019].

[47] Transcript of Morning Trial Proceedings had on the

14th day of October, 2013 Before the Honorable Patri-

cia G. Parrish, District Judge, Case No. CJ-2008-7969.

http://www.safetyresearch.net/Library/

Bookout_v_Toyota_Barr_REDACTED.pdf, October

2013.

[48] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,

D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,

F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström.

The worst-case execution-time problem—overview of methods

and survey of tools. ACM Transactions on Embedded Computing

Systems, 7(3):1–53, 2008.

[49] B. Zimmer, C. Dropmann, and J. U. Hanger. A systematic ap-

proach for software interference analysis. In 25th IEEE Inter-

national Symposium on Software Reliability Engineering, ISSRE

2014, Naples, Italy, November 3-6, 2014, pages 78–87, 2014.

11

Session Th.2.B

Assurance By Design

Thursday 2nd June

11:30

–

Room Lauragais

419

420

Architecture-Supported Audit Processor: Interactive,
Query-Driven Assurance

Sam Procter
sprocter@sei.edu.edu

Software Engineering Institute, Carnegie Mellon
University

Pittsburgh, Pennsylvania

Jerome Hugues
jjhugues@sei.edu.edu

Software Engineering Institute, Carnegie Mellon
University

Pittsburgh, Pennsylvania

ABSTRACT

Establishing that safety-critical systems are actually safe
requires a large effort and involves a range of tasks, from
conducting preliminary hazard analyses to creating detailed
assurance cases. This paper introduces the Architecture-
Supported Audit Processor, or ASAP, which generates a num-
ber of safety-specific system views that deeply integrate a
system’s architecture and arguments about its safety. These
views are generated interactively and automatically using
safety-specific extensions to the Architecture Analysis and
Design Language (AADL). Though use of the tooling and
views do not require the use of any particular process, they
align well with a system-theoretic approach. This paper dis-
cusses the background and use of ASAP on a demonstrative
example.

KEYWORDS

Model-Based Engineering, System Safety, Hazard Analysis,
Architecture Analysis and Design Language (AADL)

1 INTRODUCTION

Safety-critical systems, i.e., those systemswhose failurewould
result in death, injury, or unacceptable financial losses, are
becoming increasingly sophisticated and software reliant
[10]. Developing confidence in the safe and reliable behavior
of these systems requires efforts to assure them. The cost and
time required for these assurance efforts is significant, and
it has been argued that they are a bottleneck that prevents
the rapid deployment of new and improved versions [5]. Ad-
ditionally, many assurance practices were not designed for
modern systems and do not consider the impact of software
on safety [10], nor do they take advantage of model-based
engineering techniques for the traceability of safety artifacts
to system elements.

In this paper, we report on a tool-supported approach that
addresses these shortcomings. We propose contextualizing
assurance evidence in an environment that supports mod-
ern system development practices, and that explicitly links
assurance evidence to safety argumentation. We present

the Architecture-Supported Audit Processor (ASAP), an inter-
active tool which follows this strategy and supports com-
mon assurance activities in an architecture-centric, model-
based system development environment. The tool provides
an assurance-specific view of a system that builds on pre-
vious work on merging modern safety analysis and system
architecture [15].

(1) Research Context We identify three research ideas
from the safety and argumentation communities and
discuss how they illuminate a path forward for next-
generation hazard anlaysis.

(2) SAFE Improvements We propose an approach for
performing safety analysis that builds on the System-

atic Analysis of Faults and Errors (SAFE) hazard analy-
sis technique, which supports model-based, composi-
tional safety argumentation.

(3) ToolWe describe the inputs, use cases, and outputs of
the ASAP tool.

In order to better explain the use of ASAP, we also orient
its inputs and outputs in the process of a popular hazard
analysis technique:

(4) Mapping to STPAWe establish an example mapping
to STPA [13], a popular system-theoretic hazard analy-
sis. Our mapping leverages system development tasks
that are already performed in a typical development
and presents safety information in an interactive, nav-
igable format that can be queried.

The remainder of the paper is organized as follows: Section
2 surveys three research topics which informed the design
of ASAP. Section 3 describes background concepts, includ-
ing languages, tooling, and theory this work directly builds
on. Section 4 describes ASAP and its application to a small
system. Section 5 presents related work. We discuss future
work in Section 6 and conclude in Section 7.

2 SURVEY: THREE CHALLENGES TO
ASSURANCE

In addition to the technical background, covered in the next
section, this work has been informed by three challenges to
system assurance, which we describe here.

Sam Procter and Jerome Hugues

2.1 Assurance evidence should be
contextualized with explicit safety
arguments

One of the challenges that makes assurance difficult is that
the evidence produced by some assurance strategies may
not be what is most relevant for actually determining the
safety of a system. Take for example hazard analysis ś a
common way of assessing the safety of a system [4]. Many
hazard analyses consist of a series of steps to be performed
at one or more stages in the system development lifecycle
(e.g., preliminary design, detailed design, system test, etc.).
The outcome of the analysis’s steps is evidence that the
system is either free from the types of safety issues that the
technique is designed to detect or those issues have been
mitigated to a point where residual risk is acceptable in
light of the system’s benefits. Some safety standards rely on
this evidence for certification of a system’s worthiness for a
particular mission.
Rushby, however, has argued that the claims and argu-

ments which rely on that evidenceÐand upon which those
standards are builtÐare sometimes based on reasoning that
is left implicit [18]. He continues by noting that while ap-
proaches based on standards aswell as structured-argumentation
like safety cases (also referred to more generally as assurance
cases) both have their strengths and weaknesses, standards-
based approaches are łslow-moving and conservative.ž This
aligns, to some extent, with arguments made by Leveson,
who writes that many hazard analyses and system safety
standards are fundamentally outdated in their approach [12].
In Leveson’s view, a common error is to evaluate a system’s
reliability and use that as a stand-in for the system’s safety.
This approach, she continues, was more valid when safety-
critical systems were largely hardware based: individual com-
ponent failures were much more likely to be the ultimate
cause of a system failure before the addition of software sig-
nificantly increased the variety of component configurations
[10]. As a consequence, we undertake the following:

Our Goal: Assurance evidence should be contextualized,
and that context should be explicit safety argumentation.

2.2 Assurance argumentation should be
hierarchical

A second challenge to system assurance efforts stems from
the competing goals of assurance documentation: it should
be both easily understood yet completely accurate. System
descriptions which are brief and abstract may be easily under-
stood, but lack the technical precision and depth necessary
to convey a complete understanding of a system. Complete
and precise system descriptions, on the other hand, can take
a significant amount of time to understand. This problem can
be addressed, to an extent, through standardization: when

assurance documentation is packaged in an expected for-
mat, familiarity with the standard can aide in understanding.
But this leads to institutional inertia; i.e., Rushby’s criticism
of standards-based approaches as slow-moving [18] or Es-
pinoza et al.’s more pointed criticism that standards can be a
barrier to innovation [5].
We note that there is an interesting parallel here to an-

other field where arguments are designed to convince human
experts of their correctness: that of mathematical proof. In
that domain, Lamport has argued for the utility of hierar-
chically structured, hypertext-enabled proofs [9]. An initial,
high-level argument can be presented at an abstract level, but
the reader can expand portions that are unclear as necessary;
in this way technology and argument structure can be used
to address the competing goals simultaneously. Therefore,
we also undertake the following:

Our Goal: Assurance evidence should be initially pre-
sented at a high level, but a viewer should be able to expand
argumentation as desired.

2.3 Assurance evidence should be modular
and composable

A third challenge stems from the discrepancy between the
way systems are built (compositionally, as aggregates of com-
ponents) and how safety argumentation is structured (mono-
lithically). That is, because critical systems are designed for
operation in particular environment, safety argumentation
rarely composes as easily as software or hardware elements.
This mismatch can lead to inconsistency in guidance for as-
suring seemingly related systems [7] or system updates that
are either postponed or avoided altogether to avoid the costs
of (re)certification [5]. However, fully compositional safety
is an enduring challenge because it requires successfully
pursuing one of two very challenging strategies:

(1) Anticipating the environment and role of a component:

This was the approach taken by ISO 26262’s concept
of a łSafety Element out of Contextž [8], ISO 14971’s
concept of łIntended Usež [1]), and SAFE’s concept of
a component’s role [15].

(2) Completely describing all aspects of the component: This
description would have to analyze all possible uses in
all possible contexts.

Recognizing that this goal may not be achievable, we
nonetheless advocate its pursuit because progress towards it
will still reduce the burden of creating assurance argumen-
tation and speed the development of critical systems. Thus,
our final objective is:

Our Goal: Assurance argumentation should be composi-
tional.

ASAP: Interactive, Query-Driven Assurance

3 TECHNICAL BACKGROUND

This section introduces the background of the modeling tech-
nologies, example, and safety methodologies used in the
paper.

3.1 AADL and OSATE

The Architecture Analysis and Design Language (AADL)
is an internationally standardized architecture description
language [19]. AADL, which has both a textual and graph-
ical syntax, is supported by the Open Source Architecture

Tool Environment1 (OSATE), which is a development envi-
ronment based on the Eclipse IDE. System designers can
use OSATE and AADL to model their system’s software
elements (e.g., thread, process, subprogram), hardware el-
ements (e.g., processor, memory, bus), and the connections
and bindings between them [6]. Annexes extend the core
language to address different, non-architectural aspects of
system design, such as behavior or data modeling.
One such extension that this work relies heavily upon is

the error modeling annex [20], which includes mechanisms
for specifying error types, which are errors that can be in-
stantiated and propagated as tokens between components
(similar to Wallace’s Fault Propagation and Transformation
Calculus [26]). For example, a sensor that produces a reading
that may be higher than the actual value would be modeled
as being a source propagation for tokens of the Value

High error type. Error propagations represent the broadcast
or reception of error tokens from/into components, typically
via ports. This is used to represent a component producing
erroneous output or receiving erroneous input, and can be
used to trace the path that errors take through a system, e.g.,
a flawed sensor value is transformed by a software controller
into an inappropriate command, which is transformed into a
potentially unsafe actuation by a servo. The error modeling
annex comes with a user-extensible library of error types,
which is organized hierarchically into broad categories of er-
ror [16]. The type system is quite flexible, and can be used by
a modeler to represent arbitrary error conditions, potentially
including, e.g., the state of the system’s environment.

3.2 An Example System: PulseOx
Forwarding

To illustrate the features of ASAP, we use an illustrative,
open-source2 example from the medical domain. In addition
to a control loop with multiple inputs and outputs, it has a
single safety concern, which is the failure to issue a necessary
alert. It consists of the following elements:

• Hardware Devices ś Represented as AADL devices

1https://osate.org/
2https://github.com/osate/osate2-asap/tree/main/org.osate.asap.examples

1package PulseOx_Forwarding_Logic

2public

3 -- Import statements elided for space

4

5 process PulseOx_Logic_Process

6 features

7 LogicSpO2 : in data port

PulseOx_Forwarding_Types::SpO2;↩→

8 LogicDerivedAlarm : out event port

9 {MAP_Properties::Output_Rate => 200 ms .. 400

ms;};↩→

10 properties

11 MAP_Properties::Process_Type => logic;

12 MAP_Properties::Component_Type => controller;

13 annex EMV2 {**

14 use types PulseOx_Forwarding_Errors;

15 error propagations

16 LogicSpO2: in propagation {SpO2ValueHigh,

SpO2ValueLow, EarlySpO2, LateSpO2,

NoSpO2, ErraticSpO2};

↩→

↩→

17 LogicDerivedAlarm: out propagation

{MissedAlarm, BogusAlarm};↩→

18 end propagations;

19 **};

20 end PulseOx_Logic_Process;

21 process implementation PulseOx_Logic_Process.imp

22 subcomponents

23 CheckSpO2Thread : thread CheckSpO2Thread.imp;

24 SpO2Val : data PulseOx_Forwarding_Types::SpO2

25 {MAP_Error_Properties::Process_Variable => true;};

26 connections

27 outgoing_alarm : port CheckSpO2Thread.Alarm ->

LogicDerivedAlarm;↩→

28 end PulseOx_Logic_Process.imp;

29

30 thread CheckSpO2Thread

31 features

32 Alarm : out event port;

33 properties

34 Thread_Properties::Dispatch_Protocol => Periodic;

35 end CheckSpO2Thread;

36 thread implementation CheckSpO2Thread.imp

37 end CheckSpO2Thread.imp;

38

39end PulseOx_Forwarding_Logic;

Listing 1: An example of AADL’s textual syntax, show-

ing the specification of a software controller.

ś pulseOx: A pulse oximeter device, which measures
the blood oxygen saturation (SpO2) of a patient via
a non-invasive fingerclip.

Sam Procter and Jerome Hugues

Figure 1: The PulseOx Forwarding System, in AADL’s graphical syntax

ś electronicHealthRecord3:An adapter for the electronic
health record, which records the patient’s SpO2.

• Software Processes śRepresented as AADL processes
ś appLogic: Simple application logic that triggers an
alert if the patient’s SpO2 is too low.

ś appDisplay: Simple logic to display both the alert (if
present) and the patient’s SpO2.

• Humans ś Represented as AADL abstracts
ś clinician: A clinician who monitors the display and
treats the patient.

ś doctor: A doctor who advises the clinician but does
not directly treat the patient.

ś patient: The patient who provides SpO2 readings (via
the PulseOx) and receives treatment.

Figure 1 shows the overall system in AADL’s graphical
syntax. This system is not complex, but has two aspects
which make it ideal for demonstrating ASAP’s features: it
shows multiple control loops, i.e., circular paths through the
system which involve both sensing and actuating; and some
components (i.e., the processes) decompose cleanly into
subcomponents (in this case a collection of communicating
threads). Some of these components would be already be
modeled as part of a normal system engineering process,
while others (i.e., the humans) would typically need abstrac-
tions created specifically for safety analysis, e.g., to represent
particular execution or interaction scenarios. Exactly which
ones would need to be created for ASAP is impossible to
specify without knowing what other analyses are being run
on the system: modelers are typically encouraged to add
only as much detail as required by the analyses they want
to perform.

3We recognize that this is not how electronic health records are typically

used, here we use the term for a more generic data store.

3.3 STPA and SAFE

The System Theoretic Process Analysis (STPA) is a hazard anal-
ysis that is designed to address many of the criticisms found
with more reliability-oriented, hardware-focused analysis
techniques [11, 13]. It has been adapted to work with AADL
models without significant modification to the process [17].

The Systematic Analysis of Faults and Errors (SAFE) is a haz-
ard analysis technique that is heavily derivative of STPA, but
contains a number of modifications, including a formal defi-
nition of hazard [15]. This, along with additional specificity
available with low-level architectural specifications such as
AADL models, enables the new automation discussed in be-
low. We discuss it, STPA, and SAFE in more depth as we
explore ASAP in Section 4.

4 THE ARCHITECTURE-SUPPORTED
AUDIT PROCESSOR

The Architecture-Supported Audit Processor (ASAP) is a
plugin to OSATE that enables three łviewpointsž of a sys-
tem. These viewpoints are diagrams and tables which are
dynamically generated (i.e., in response to user input) and
designed to support activities performed by system safety
auditors. ASAP’s viewpoints are generated from the system
architecture as modeled in OSATE and supplementary safety
information, entered by the system designer or analyst.
The first viewpoint is somewhat abstract and presents

high-level fundamental aspects of the system (or compo-
nent’s) safety. The second presents elements in their imme-
diate context, and the third focuses narrowly on the causes
(and potential compensations) of errors within a component.
This progression from abstract to specific is typical of both
model-based system design in AADL and hazard analysis
techniques such as SAFE and STPA. This progression means
that more shallow analyses can be performed using less time:
a simpler model and less ASAP-specific annotations will
produce less rich diagrams and information. Alternatively,

ASAP: Interactive, Query-Driven Assurance

different portions of the system can be modeled to different
depths: a subcomponent whose behavior should be more
deeply analyzed can be richly annotated while others are left
essentially unspecified as łblack boxes.ž This lets designers
focus on the portions of the system that are relevant to partic-
ular stakeholders without getting bogged down in creating
sophisticated models solely for the purpose of enabling tool
functionality.

4.1 Viewpoint 1: Fundamentals

In order to orient the analysis towards particular safety is-
sues, STPA and derivative analyses such as SAFE make ex-
plicit the links between low-level faults and errors and high-
level safety concerns such as death or injury to a human.
This is done by creating a fundamentals hierarchy, a structure
that relates safety problems, and their solutions, to specific
and general notions of accidents / losses. At the top of the
hierarchy are accident levels, which are broad categories of
harm that can be prioritized. A typical system might have
death or injury to a human as the highest-ranked accident
level, followed by damage to or destruction of mission equip-
ment. Accidents are losses that can be caused by the system;
any number of accidents can be linked to a single accident
level. That is, there might be multiple specific accidents that
would each result in harm to a human. A diagrammatic view
of a fundamentals hierarchy is shown in Figure 2(a).

Linking concrete losses resulting from system failure (ac-
cidents) to the specific ways they occur (hazards) is a signifi-
cant open challenge in designing architecturally-integrated
safety analysis techniques. The difficulty comes in concisely
specifying which system elements could be involved in caus-
ing a particular accident, and how the failure of those ele-
ments would cause the loss. Specifying the links between
accidents and the system elements involved in their causa-
tion is necessary as these links form the context required to
both understand the impact of system design choices and to
construct coherent argumentation.

Hazards have a two-part definition in SAFE (which formal-
izes STPA’s definition4) as a combination of one system and
one environment state that will cause an accident; note that
multiple hazards can lead to a single accident. Intuitively,
this two-part definition results from the notion that certain
system behaviors are rarely always unsafe, but rather only
unsafe given a particular state of the environment. Leveson
uses the example of a train: it is only unsafe for train’s doors
to be open while the train is moving [11]. In ASAP, hazards
are modeled using the condition that causes them5; i.e., as

4STPA’s full definition is łA system state or set of conditions that, together

with a particular set of worst-case environmental conditions, will lead to

an accident (loss).ž [11, pg. 184]
5Note that in STPA, hazards can be either states or conditions (Leveson has

discussed their equivalence [11]) but in ASAP they must be conditions.

the arrival of an error type at a component via its interface
(e.g., a port), see Figure 2(b).

Figure 3 shows the fundamentals viewpoint in ASAPwhich
supports STPA’s first step. As shown by the lower portion,
hazards contain a number of references to model elements
including: a) Accident: The accident the hazard’s occurrence
would cause, b) Environment Element: The component whose
state is the environmental łhalfž of the hazard, c) System
Element: The component whose state is the system half of
the hazard, d) Error Type: The AADL error type representing
the system element’s deviation from intended or acceptable
behavior, and e) Hazardous Factor A human-readable name
of what is being transmitted from the system element to the
environment element6. Note that five of the nine elements
linked to from the hazard (i.e., all those with icons other than
) are semantic objects in either the AADL or ASAP model,

as opposed to plain text. By semantic objects, we mean that
these refer to actual elements in the model, represented in
OSATE as rich data structures with links to other elements.
This helps keep the documentation synchronized with the
model, and enables the query-driven behavior of the other
viewpoints.

4.2 Viewpoint 2: Connected Neighbors

In hierarchically-organized system models of any useful size,
it can be difficult to understand how a particular component
fits into the larger system. Even the relatively simple PulseOx
Forwarding system can be difficult to quickly understand:
there aremultiple cyclic control flow paths as well asmultiple
levels of abstraction; we use model slicing to reduce the
complexity [24]. AADL is purpose-built for hierarchically
specifying system details.

STPA uses scoped control flow diagrams to present compo-
nents in context in its second step, however, so we developed
the Connected Neighbors viewpoint to show a given compo-
nent, its immediate neighbors (i.e., those components that
either produce input for the component or use its output),
their neighbors, and any connections between the displayed
components. AADL models contain all of this information al-
ready, the ASAP tooling extracts it automatically rather than
requiring the diagrams to be constructed manually. Figure 4
shows an example of this viewpoint centering on the app-
Logic component of the PulseOx Forwarding system. Note
that some elements, such as the electronicHealthRecord
or doctor, are too distant7 from the focused element, and
thus are not displayed.

6see, e.g., Ericson’s text for the role of hazardous factors in accidents [4].
7Distance here is the number of łhopsž from a given component, i.e., those

which intransitively interfere according to van der Meyden’s definition [25].

Sam Procter and Jerome Hugues

Accident Level 1

Accident 1-1 Accident 1-2 Accident 1-l…

Hazard 1-1-1 Hazard 1-1-2 … Hazard 1-1-m

Constraint 1-1-1-1 Constraint 1-1-1-2 … Constraint 1-1-1-n

Connectio
n

Hazard = System State + Environment State

(Error Type + Port) + (Component)

Application

(a) (b)

Sensor
Environment

Constraint

(Error Type + Port)

Figure 2: Part (a): A diagrammatic view of the fundamentals hierarchy. Part (b): How hazards and constraints are

modeled in AADL.

Figure 3: A fundamentals hierarchy (i.e., an instantia-

tion of Figure 2a) in the ASAP tool.

Figure 4: The Connected Neighbors view of the app-

Logic component in the ASAP tool. The primary ele-

ment is shown in grey, immediate neighbors are blue,

and the immediate neighbors of the neighbors are red.

Connections represent the flow of data or commands.

Note that this is a subgraph of Figure 1

Our goal with this view is not to replace system-level views
like what AADL presents, but rather to support analyst intu-
ition and rapid understanding of a particular component’s

łpoint of viewž of a system. For example, any input from the
doctor that affects the application logic would first have to
be understood by the clinician, which would affect the treat-
ment administered to a patient, which would be detected by
the PulseOx, at which point it would be received by the app-
Logic. Put another way, the doctor’s impact on the appLogic
is mediated by three different system elements and thus may
not be immediately relevant for gaining quick understanding,
so the doctor does not appear as a neighbor of the appLogic
in Figure 4.

4.3 Viewpoint 3: Unsafe Control Actions

ASAP’s third viewpoint displays information on how sys-
tem hazards might come to occur, and how they could be
prevented.

4.3.1 Preliminaries: Causes, Compensations, and Guidewords.

In any non-trivial system, there are a large number of ways
that things can go wrong; in a safety-critical system these
are documented as violations of the system’s safety con-
straints. We refer to these violations as causes, i.e., ways that
hazards (and associated losses) are caused. When thinking
about a cause, the solution may or may not be apparent. If
it is, a safety analyst should document it, we refer to these
solutions (which may be partial, or conditioned on some
other system behavior) as compensations. There is again a
challenge in organizing and presenting a large amount of
highly contextual information: a simple listing of causes and
compensations is much harder to use than one organized, for
example, around the system architecture or a taxonomy of
system error types. These error types are equivalent to guide-
words in hazard analysis techniques, which can be thought
of as generic causes that are designed to prompt (i.e., guide)
the thinking of analysts to consider various ways in which
system elements might fail.

In addition to the manually-specified causes and compen-
sations, however, a second form of loss scenario specification

ASAP: Interactive, Query-Driven Assurance

emerges naturally from a fully specified EMV2 model of a
system. Given a specification of how an error can come about
(i.e., an error source), be transformed by various compo-
nents (error transformations), and its final result (error
sink), analysts can gain a fairly clear description of how a
failure might occur. Because this form of scenario specifica-
tion is machine-readable, tooling can also interpret these loss
scenarios for various purposes such as building fault trees or
calculating failure rates. This view is not present in ASAP,
but it is available from other safety analyses in OSATE [2].

4.3.2 A Hierarchical Table. STPA’s third step involves iden-
tifying control actions that could be unsafe. Typically, this
identification is performed as analysts fill in a table where
each row is a control action and there are four columns, one
for each way STPA suggests a control action could be unsafe
[13].

ASAP’s version of this table is shown in Figure 5, note that
there is an X for a connection (row) in the ItemTimingError
(column). This denotes that documentation exists regarding
the cause of a safety constraint violation involving the speci-
fied connection and the timing of messages being sent across
it. A second table, from the same viewpoint can be gener-
ated that displays the same set of communication channels
(i.e., rows) but the columns changed to show only the timing
family of errors in the given component: here the full cause
description (as well as optional compensation description) is
shown. Identifying these scenarios where accidents / losses
can occur is the fourth and final step of STPA.

The information required for these tables is pulled directly
from both the system model (i.e., its error propagations), and
the ASAP-specific fundamentals model, completing the deep
integration of system model and hazard-analysis data. That
is, there are two sources that are queried for each cell in the
table: the łFundamentals,ž which were created for ASAP’s
first viewpoint as well as the error propagations specified
in the AADL model itself. If analyst-provided cause and / or
compensation information is available, it is displayed; if only
an error propagation indicates the presence of a problem, the
text łUndocumented error propagationž is displayed instead.
Note that while the rows in the second, refined Unsafe

Control Action table are the same as in the overview table,
the columns can be errors from any error family, i.e., any
of the abstract guidewords used in the model. While these
column headings could be the guidewords from STPA, they
could also be from AADL’s Error Library (as in Figure 5)
or any other set of guidewords / error collection. That is,
while ASAP’s Unsafe Control Actions viewpoint (i.e., the top-
level table shown in Figure 5 and the refined version of the
table) are usable for STPA’s third and fourth steps, it has two
enhancements.

First, the rows are not restricted to just control actions,
but instead include all connections in the selected system /
component. This change was made because some problems
can be associated with non-control actions (sensor readings
can be incorrect, electrical or hydraulic power can be over-
or under-supplied, etc.) Recognizing and documenting these
potential problems directlyÐinstead of only when they man-
ifest as unsafe control actionsÐis more concise. Additionally,
distinguishing between a control action and sensor feedback
is difficult to do consistently: it depends on the analyst’s
judgment and the component’s role within the system.
Second, as ASAP is not directly tied to any particular

hazard analysis process, the columns are generic: they are
derived from the top-level error types used in the AADL
model, rather than being unchangeable. An analyst could
certainly choose to use STPA’s set of guidewords, or they
could use error types from the AADL Error Library, a custom
set, or one derived from / aligned with a particular safety
standard required by their company or the domain they are
working in. Several such sets of system errors exist; Proc-
ter and Feiler have described AADL’s Error Library and its
relationship to guidewords used in hazard analyses [16].

4.3.3 A Hierarchical Taxonomy. Building a taxonomy of
guidewords is rarely the primary goal of a research effort,
however; typically guidewords are created as part of develop-
ing a new hazard analysis method. It is a challenge, though,
to balance the goals of being both sufficiently expressive (so
analysts do not miss potential causes) while also not being
overly prescriptive (which can make the analysis unwieldy
and verbose). In ASAP, we addressed this problem by defin-
ing two levels of tables which can be generated for every
component, but this relies on a hierarchical organization of
guidewords / error types.
The two-level approach taken by ASAP relies on a hier-

archical specification of system error, i.e., a generic error
type must be refinable into a set of more specific error types.
AADL’s EMV2 supports just such an approach [20]; using it,
system modelers or safety analysts can define custom error
types, and then refine those into more specific types. Alter-
natively, the EMV2 standard comes with a predefined Error
Library, which contains a straightforward decomposition of
standard system errors [16]. Typically, users combine the
two approaches: they begin with the Error Library’s set of
error types and refine those to align with their domain or sys-
tem. These custom error types are supported by the Unsafe
Control Actions tables, so domain-specific extensions to the
model will be fully incorporated. See Figure 6, which shows
a graphical view of the EMV2 library’s hierarchy of timing-
related errors, extended with custom error types specific to
the PulseOx Forwarding application described in Section 3.2.

Sam Procter and Jerome Hugues

Figure 5: Unsafe Control Actions table generated on the PulseOx Forwarding System.

Item Timing
Error

Early
Delivery

High
Rate

Late
SpO2

Babbling
PulseOx

Late
Delivery

Service Timing
Error

Sequence Timing
Error

Timing Related
Error

Early
Service

Delayed
Service

Low
Rate

Rate
Jitter

Figure 6: Hierarchy of timing errors, adapted from [16].

4.4 Tying it together: Focus

A common feature in diagrams used for safety analysis is
a way to highlight a particular component or fundamental
as well as those related to it, i.e., some way to call attention
to system elements related to a specific hazard, accident,
component, error etc. For fundamentals, this task is straight-
forward: we simply highlight the higher-level fundamentals
which contain the focus target (i.e., move up the tree from
Figure 2(a)) as well as all the lower-level fundamentals it con-
tains (i.e., the subtree rooted at the focus target). Handling
a focused Hazard or Constraint requires additional effort,
though: recall that those fundamentals contain references
to the system model, i.e., to error propagations occurring at
specific component ports. Thus we include predecessors and
successors, which are the components that might cause or
be affected by the associated error propagation.
Thus, focusing on an error propagation or system com-

ponent is significantly more complex than focusing on an
Accident or Accident Level. We note that there is a related
challenge in static analysis of software: it is often necessary

to determine which program statements could have affected,
or have been affected by, the program’s state at a specific
point in the source code. This issue is typically addressed
through the use of program slicing, which Silva describes as
ła technique for decomposing programs by analyzing their
data and control flowž [23]. There are a number of program
slicers available, we use one that has been built to run on
AADL models [24].

A backward slice finds system elements (or error propa-
gations) which could potentially affect the focused system
element (or cause the focused error propagation). Corre-
spondingly, a forward slice finds system elements (or error
propagations) which could potentially be affected by the fo-
cused system element (or have been caused by the focused
error propagation).

4.5 Discussion

A safety analyst who wishes to use ASAP today, i.e., given
existing regulatory regimes, will find it most useful to use

ASAP: Interactive, Query-Driven Assurance

Figure 7: TheConnectedNeighbors view of the Patient, which has been selected as the current focus. Red elements

are reachable from the focused element only via a backwards traversal. Blue elements are reachable only via a

forwards traversal. Purple elements are reachable via both.

the tool while developing the argument for certification au-
thorities. They might begin by specifying metadata about
her system using Viewpoint 1, check the inputs and out-
puts of a high-criticality component using Viewpoint 2, and
then explore undocumented causes and compensations us-
ing AADL’s EMV2 and Viewpoint 3’s tables. In the longer
term, we envision safety processes that support the interac-
tive, query- / view-driven approach explored in this work
directly.

5 RELATED WORK

There is a large body of work that considers how the creation
of systems and safety documentation should be automated.
We differentiate the approaches into two groups, thosewhose
automation is independent of a system’s hierarchical decom-
position and those who integrate with it more deeply. We
discuss these groups with representative technologies.

5.1 Automated Assurance Cases

AdvoCATE [3] is software developed by NASA that brings
considerable automation to the creation of assurance cases,
i.e., structured arguments that follow a defined, logical for-
mat. They incorporate both arguments and evidence, but are
typically not as deeply integrated into a system’s architec-
ture as the arguments in ASAP. The methods of argument
traversal are, however, similar to ASAP in that AdvoCATE
supports, e.g., hierarchical abstraction and queries / views.
However, these are queries and views of the argument itself
rather than the system under analysis as was our goal.

5.2 Hierarchical Safety Analysis

Hierarchically Performed Hazard Origin and Propagation
Studies (HiP-HOPS) [22] takes into account system hierar-
chy and supports compositionality. Compared to ASAP, it
uses a more traditional (i.e., not system-theoretic) model of
safety and accident causality, and it operates on systems in
MATLAB rather than AADL / OSATE. HiP-HOPS’ primary
goal is the generation of hazard analysis reports, rather than

deeply integrating safety information and argumentation
into a system’s architecture.

6 FUTUREWORK

6.1 Autogenerating Causes and Impacts

As discussed in Section 4.3 a fully-specified EMV2 descrip-
tion of a system encodes a machine-readable error path /
event chain. In addition to the analyst-supplied narrative
now visible in the unsafe control actions table, we are in-
terested in transforming these event chains into something
human readable. These causal event chains can be calculated
using AWAS’s backward slicing functionality [24] (starting
from either a constraint violation or an arbitrary error oc-
currence), though how these chains are best displayed to the
user remains an open question.
AWAS’s forward slice calculates the errors and failures

resulting from an error’s occurrence. These impacts could
also be useful, though work would need to be done to align
them with existing safety notions from, e.g., academic lit-
erature and / or safety standards. Once aligned, the best
format for their presentation to the user would also need to
be determined.

6.2 Alignment with Requirement
Specifications

The goals and activities involved in safety engineering over-
lap to some extent with those involved in specifying a sys-
tem’s requirements. We expect requirement specification
may evolve, somewhat, with the use of ASAP and are in-
terested in exploring ways of supporting and automating
more rigorous requirement specifications. However, we rec-
ognize that specifying functional and safety requirements
simultaneously is not a straightforward task. There is re-
search in this area from both system theoretic safety [21]
and architecture-centric perspectives [14]; we are interested

Sam Procter and Jerome Hugues

in seeing the extent to which ASAP’s viewpoints can be ex-
tended or supplemented with additional requirement detail
or traceability information.

7 CONCLUSION

In this paper we presented the Architecture-Supported Audit
Processor, or ASAP, tool as well as its motivation and under-
lying theory. We applied it to a small example, demonstrated
how it aligns with and improves upon a popular system-
theoretic hazard analysis, and discussed possible avenues for
future improvements.

ACKNOWLEDGEMENTS

Copyright 2022 Carnegie Mellon University.
This material is based upon work funded and supported by

the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded
research and development center.
NO WARRANTY. THIS CARNEGIE MELLON UNIVER-

SITY AND SOFTWARE ENGINEERING INSTITUTE MATE-
RIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE
MELLON UNIVERSITY MAKES NOWARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANYMAT-
TER INCLUDING, BUT NOT LIMITED TO, WARRANTY
OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EX-
CLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPY-
RIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distri-
bution. DM22-0095

REFERENCES
[1] Association for the Advancement of Medical Instrumentation. 2000.

ANSI/AAMI/ISO 14971: Medical devicesÐApplication of risk management

to medical devices. Technical Report. ANSI/AAMI/ISO.

[2] Julien Delange and Peter Feiler. 2014. Architecture Fault Modeling with

the AADL Error-Model Annex. In 2014 40th EUROMICRO Conference

on Software Engineering and Advanced Applications. IEEE, Verona, Italy,

361ś368.

[3] Ewen Denney and Ganesh Pai. 2018. Tool support for assurance case

development. Automated Software Engineering 25, 3 (2018), 435ś499.

[4] Clifton A. Ericson II. 2016. Hazard Analysis Techniques for System

Safety (second ed.). John Wiley & Sons, Inc., Fredericksburg, Virginia,

United States of America. 1ś640 pages.

[5] Huáscar Espinoza, Alejandra Ruiz, Mehrdad Sabetzadeh, and Paolo

Panaroni. 2011. Challenges for an open and evolutionary approach to

safety assurance and certification of safety-critical systems. In Proceed-

ings - WoSoCER 2011 - In Conjunction with ISSRE 2011. IEEE, Hiroshima,

Japan, 1ś6.

[6] Peter Feiler and David Gluch. 2012. Model-Based Engineering with

AADL (1st ed.). Addison-Wesley Professional, Upper Saddle River, NJ.

iś468 pages.

[7] Brendan Hall, Jan Fiedor, and Yogananda Jeppu. 2020. Model Inte-

grated Decomposition and Assisted Specification (MIDAS). INCOSE

International Symposium 30, 1 (jul 2020), 821ś841.

[8] International Organization for Standardization. 2018. ISO 26262-10:

Road vehiclesÐFunctional safetyÐPart 10: Guidelines on ISO 26262. Tech-

nical Report.

[9] Leslie Lamport. 2012. How to write a 21 st century proof. Journal of

Fixed Point Theory and Applications 11, 1 (mar 2012), 43ś63.

[10] Nancy Leveson. 1995. Safeware: System Safety and Computers. Addison-

Wesley.

[11] Nancy Leveson. 2011. Engineering a Safer World: Systems Thinking

Applied to Safety. MIT Press.

[12] Nancy Leveson. 2020. Are you sure your software will not kill anyone?

Commun. ACM 63, 2 (jan 2020), 25ś28.

[13] Nancy Leveson and John Thomas. 2018. STPA Handbook. Technical

Report. 1ś188 pages.

[14] Anitha Murugesan, Sanjai Rayadurgam, and Mats Heimdahl. 2019.

Requirements reference models revisited: Accommodating hierarchy

in system design. In Proceedings of the IEEE International Conference

on Requirements Engineering. 177ś186.

[15] Sam Procter. 2016. A Development and Assurance Process for Medical

Application Platform Apps. Ph.D. Dissertation. Kansas State University.

[16] Sam Procter and Peter Feiler. 2018. The AADL Error Library : An

Operationalized Taxonomy of System Errors. In HILT 2018. Boston,

MA.

[17] S. Procter and J. Hatcliff. 2014. An architecturally-integrated, systems-

based hazard analysis for medical applications. In MEMOCODE 2014.

[18] John Rushby. 2010. Formalism in Safety Cases. In Making Systems

Safer: Proceedings of the Eighteenth Safety-Critical Systems Symposium.

Springer, London, Bristol, UK, 3ś17.

[19] SAE AS-2C Architecture Analysis and Design Language Issuing Com-

mittee. 2017. Architecture Analysis & Design Language (AADL).

[20] SAE AS-2C Architecture Description Language Subcommittee. 2015.

SAE Architecture Analysis and Design Language (AADL) Annex Volume

1: Annex E: Error Model Language. Technical Report. SAE Aerospace.

[21] Andrea Scarinci, Amanda Quilici, Danilo Ribeiro, Felipe Oliveira,

Daniel Patrick, and Nancy Leveson. 2019. Requirement Generation for

Highly Integrated Aircraft Systems Through STPA: An Application.

Journal of Aerospace Information Systems 16, 1 (jan 2019), 9ś21.

[22] Septavera Sharvia and Yiannis Papadopoulos. 2015. Integrating model

checking with HiP-HOPS in model-based safety analysis. Reliability

Engineering & System Safety 135 (2015), 64ś80.

[23] Josep Silva. 2012. A Vocabulary of Program Slicing-Based Techniques.

Comput. Surveys 44, 3, Article 12 (June 2012), 41 pages.

[24] Hariharan Thiagarajan, John Hatcliff, and Robby. 2020. Awas: AADL

Information Flow and Error Propagation Analysis Framework. In Eu-

ropean Conference on Software Architecture (ECSA20). Springer, Cham,

L’Aquila, Italy, 294ś310.

[25] Ron Van Der Meyden. 2007. What, Indeed, Is Intransitive Noninterfer-

ence?. In Proceedings of ESORICS 2007: 12th European Symposium On

Research In Computer Security. Springer Berlin Heidelberg, Dresden,

Germany, 235Ð-250.

[26] Malcolm Wallace. 2005. Modular Architectural Representation and

Analysis of Fault Propagation and Transformation. In FESCA 2005,

Vol. 141. 53ś71.

Automated Generation of Requirements for the
Highly Fault-Tolerant System Behaviour of a
Distributed and Integrated Avionics Platform

Robert Wipperfürth∗†, Thorben Hoffmann∗, Christoph Kurz∗, Tim Belschner∗ and Reinhard Reichel∗
∗ Institute of Aircraft Systems

University of Stuttgart

Stuttgart, Germany
† robert.wipperfuerth@ils.uni-stuttgart.de

Abstract—Fully autonomous Unmanned Aerial Vehicles, Re-
motely Piloted Aircraft, Air Taxis, as well as advanced CS-23
aircraft require numerous complex and safety-critical system
functions, such as vehicle management and utility functions,
automatic take-off and landing or flight control. The development
and qualification of the related avionics systems are characterised
by a very high effort. The Institute of Aircraft Systems at
the University of Stuttgart, in close cooperation with Aviotech
GmbH, aims at a highly automated development and verification
process for such fault-tolerant avionics systems to significantly
reduce development effort, time, and risk and thus costs. For
this reason, the Flexible Avionics Platform was developed. It
enables the implementation of integrated fly-by-wire platform
instances and is characterised by the following key aspects. (1) A
platform-based development approach featuring an integrated,
distributed, and highly redundant avionics architecture. (2) The
platform management, a high-level abstraction layer providing a
full abstraction towards integrated applications regarding the
distribution, fault-tolerance, and redundancy of a fly-by-wire
platform instance including redundant peripherals. (3) The AAA
process, a comprehensive automation process for the highly auto-
mated generation of development and qualification artefacts, such
as an instance of the Platform Management, the corresponding
specification at the system and software level, and related test
cases and test scripts. This paper presents the basics for the
automated requirements generation at the system level with a
focus on the specification of the highly fault-tolerant system
behaviour of fly-by-wire platform instances based on the Flexible
Avionics Platform.

Index Terms—Flexible Avionics Platform, AAA process,
platform-based development, model-driven development, auto-
matic requirements instantiation, requirements reuse

I. INTRODUCTION

A. Motivation

Future aircraft require numerous complex and safety-critical

system control functions. This is especially true for fully

autonomous Unmanned Aerial Vehicles (UAVs) and Remotely

Piloted Aircrafts (RPAs) that are certified and operated in non-

segregated airspace. Such aircraft must be able to react in a

semi- or fully-automated manner to all critical situations as, for

instance, the loss of the command and control data link or the

This research was funded by the German Federal Ministry for Economic
Affairs and Energy (BMWi) within the LuFo V-2 and LuFo V-3 program.

loss of an engine. Furthermore, standard operational functions

like take-off and landing or the entire vehicle management and

utility functions must be automated as well.

Accordingly, the implementation of the related avionics

systems is characterised by a very high effort. An imple-

mentation based on avionics platforms with highly integrated

architectures is a first step to reduce system costs. While this

approach enables the integration of a high number of systems

within a single instance of such an avionics platform, adequate

safety, up to failure rates of 10−9/h, has to be ensured. To

enable an affordable usage of such integrated avionics plat-

forms, especially within the CS-23 domain, a new approach

is required that reduces development and qualification effort

significantly while maintaining a high safety level.

B. State of the Art

In the avionics domain, Integrated Modular Avionics (IMA)

represents the state of the art regarding platform-based de-

velopment approaches as well as integrated and distributed

architectures [1], [2], [3]. The hardware is based on standard-

ised modules connected via an Avionics Data Communication

Network (AFDX®). Concerning the software architecture, the

hardware and communication are abstracted towards integrated

applications (see Fig. 1). This includes inter-partition com-

munication, even if the partitions are allocated to different

hardware modules. There are comprehensive automation ap-

proaches for the automated instantiation of these IMA abstrac-

tion layers [4], [5], [6], [7].

Due to these features, IMA represents a significant advance

in the realisation of avionics systems, their development, and

their qualification. However, despite all process automation

approaches, the development and qualification of avionics sys-

tems based on IMA still require a high effort. The reason for

this is the low abstraction level provided by IMA. IMA does

not provide an abstraction of system management aspects such

as the management of redundant sensors, redundant actuators,

and the failure and redundancy management of distributed

modules ensuring consistency in a distributed architecture.

Thus, this extremely complex part of the system management,

especially with highly redundant avionics systems, has to be

network

I/O-module
Computing-

Module I/O-module

RTOS

Drivers

App.

A

App.

B

RTOS

Drivers

App.

C

App.

D

RTOS

Drivers

App.

E

App.

F

sensors,

A/C-systems
sensors,

actuators

Fig. 1. Integrated Modular Avionics architecture.

implemented as part of the integrated applications. Conse-

quently, the most challenging tasks of the system management

are not part of the IMA development automation. This is

the key difference to our approach of the Flexible Avionics

Platform with its associated process automation.

C. The Flexible Avionics Platform [8]

The Flexible Avionics Platform (apf) is a platform-based

development approach in the sense of Di Natale et al. [9]

and features an integrated, distributed, and highly redundant

architecture. It consists of standardised hardware components

as well as a library of generic software components, i.e. a Real

Time Operating System (RTOS), drivers, and small software

bricks called basic services. Each specific avionics system is

generated as an instance of this Flexible Avionics Platform.

The apf is characterised by a high-level abstraction layer

realised as a middleware, the so-called Platform Management

(plama) (see Fig. 2). It covers the entire system management

for all distributed and redundant modules (internal and exter-

nal) as well as redundant peripherals, for example, redundant

sensors and redundant actuators. Thus, it manages tasks such

as fault-tolerant intra-module and inter-module communica-

tion, communication to other systems, the redundancy of all

modules and peripherals, and reconfigurations in the event

of failure. Furthermore, it controls the system-wide operation

phases such as normal operation, pre-flight built-in test, and

interactive system operation during maintenance. These sys-

tem management tasks are handled by plama in a distributed

manner and are executed on all modules of a Flexible Avionics

Platform Instance (apfi). Each plama instance is implemented

as a composition of specialised basic services.

Due to the high degree of abstraction provided by plama,

integrated applications are executed in a failure-free virtual

simplex environment and are not required to perform any

system management tasks. Hence, applications are reduced to

their cybernetic control law.

D. The AAA Process

The apf is complemented by a comprehensive automation

process for the development and qualification of an apfi, the

AAA process. It consists of the following subprocesses:

• Axx subprocess – Automated design and parameter in-

stantiation [10]: Based on a high-level system specifica-

tion a high-level system design model is implemented

network

I/O-module
Computing-

Module I/O-module

RTOS

Drivers

law

A

law

B

RTOS

Drivers

law

C

law

D

RTOS

Drivers

law

E

law

F

sensors,

A/C-systems
sensors,

actuators

plama plama plama

Fig. 2. Flexible Avionics Platform architecture.

manually. It is expressed with a domain-specific mod-

elling language developed by the Institute of Aircraft

Systems (ILS). This model describes the basic hardware

structure, connected sensors and actuators, interfaces to

other systems, a placeholder for the applications, the

degree of redundancy, the basic reconfiguration strategy,

and the scheduling of the apfi-wide operation phases.

In a first automation step, the implemented system design

model is refined by synthesis rules into a software archi-

tecture model containing the key software components

and their coupling. In a subsequent automation step,

the software architecture model is further refined into

a model of the software components’ Parameter Data

Items (PDIs). The PDI model defines the selection of

suitable basic service, their functional specialisation, and

their data and control coupling. In addition, it defines

the configuration data for all drivers and the RTOS. As

a last step, this model is automatically transformed into

source code. This PDIs source code together with the

source code of the selected basic services, drivers, and

the RTOS as well as the hardware modules form an apfi.

• xAx subprocess – Automated document generation [11]:

The approach of the automatic generation of requirements

is based on requirement classes describing characteristic

behaviour that can be realised with the apf. Require-

ment classes are modelled once in terms of character-

istic patterns, defining aspects such as their instantiation

condition, representation, and the structure of possible

instances. The corresponding models are automatically

transferred into synthesis rules. Executing these synthesis

rules, the xAx tool suite automatically analyses the apfi

design models, generated in the Axx subprocess, with

regard to the characteristic patterns of each requirement

class. The match of a single or a group of patterns leads

to the automatic generation of a requirement instance, i.e.

the specialisation of the related requirement class with the

apfi specific information of this match.

In this way, all apfi requirements are generated automat-

ically for system-level, software high-level and software

low-level. In general, a requirement instance is expressed

in the form of a natural language representation and a

formal representation. The natural language representa-

tions are human-readable descriptions of the requirements

and include information on traceability and versioning.

They conform to the relevant aeronautical standards

ARP4754A and DO-178C and represent a large part of

the entire apfi specification documents that are used for

an apfi certification process. The formal representations

feature corresponding and consistent models of the apfi

behaviour and are further processed by the xxA subpro-

cess.

• xxA subprocess – Automated generation of verification

artefacts [12], [13]: Based on the formal representations

the xxA tool suite automatically generates associated

test cases and test procedures respectively test scripts

using a dedicated test oracle. During the integration and

verification processes for an apfi, these test scripts can be

automatically executed on an apfi-in-the-loop testrig.

E. Automated Requirements Generation for Plama’s High-

Level Management Layer

A first approach for the automated generation of require-

ments focused on plama’s communication layer (low-level

management) which manages the fault-tolerant intra-module

and inter-module communication as well as the monitoring

and data fusion [11].

This paper presents the enhancement of the approach for

the system specification of the high-level management layer

of plama, i.e. the layer managing reconfigurations and the

operation moding of an apfi. The strategy for an automated

generation of requirements is based on the following consid-

erations. The automatically generated instances of the require-

ment classes have to enable a meaningful apfi specification that

can be used for validation processes and that is comparable

to a manual specification. In addition, the set of existing

requirement classes has to cover the entire usage domain of the

apf. Especially at the system level, these requirement classes

should describe the main characteristics. Furthermore, the

effort considering the manual implementation of requirement

classes must be justifiable.

For this reason, the behaviour of an apfi at the system

level must be characterised by a limited number of generic

requirement classes valid for all apfis. The central question

resulting from this is how these requirement classes are to be

defined. This is the focus of our article.

F. Paper Structure

First, we set the context by showing central architectural

and operational aspects of an apfi in section II. While section

III analyses what must be specified for an apfi at the system

level, section IV elaborates on how the system-level behaviour

is specified using requirement classes. Finally, section V

summarises the key results and provides an outlook on our

ongoing and future research.

II. FLEXIBLE AVIONICS PLATFORM

The section is intended to clarify the framework of the apf.

For this purpose, the architecture of the apf is presented and

important operation principles are explained.

iom(R,1)
net(R)

net(B)

motor

clutch
S

S

co
n

tr
o

l
su

rf
a

ce

motor

clutch
S

S

SSS

SS

SS

SSS

 cpm core processing module

 iom input output module

 sam smart actuator module

 s sensor

dual-lane

module

dual-lane

module

sam(B,1)

sam(R,1)

iom(R,2)

iom(B,2)

iom(B,1)

cp
m

(R
,1

)

cp
m

(B
,1

)

cp
m

(R
,2

)

cp
m

(B
,2

)

Fig. 3. Hardware structure of an exemplary instance of the apf.

A. Architecture

Figure 3 shows the hardware structure of an exemplary

instance of the apf consisting of input output modules (ioms),

core processing modules (cpms), smart actuator modules

(sams), as well as the networks (net). An iom provides

necessary input/output interfaces to connect system-specific

peripheral units such as sensors, actuators, human-machine in-

terfaces, or other systems. Measured Signals are preprocessed

and transmitted to the cpms. A cpm is a dual-lane module.

Each lane operates cyclically and all tasks are executed in

parallel and frame synchronously with the other lane. A cpm

features a fail/passive behaviour. This is realised by the cross-

comparison mechanisms of plama, which ensure the required

consensus [14] between the lanes. Cpms have two main

tasks. First, they plan and execute the central management

decisions within an apfi. Second, they execute the laws of

integrated applications, i.e. integrated system function laws.

Control commands for the operation of the control surfaces of

an aircraft are transmitted to the sams. A sam operates and

monitors a control surface. It features a dual-lane architecture

including the power electronics for an electric actuator with an

optional clutch. All modules communicate via two indepen-

dent networks, which can provide further internal redundancy.

As shown, each module is logically assigned to one network

side red S(R) or blue S(B). For example, cpm(R,1) with

module ID 1 is assigned to network side S(R).

B. Apfi Operation

The apfi including connected peripherals and all integrated

system functions must operate correctly in numerous operation

phases as well as numerous apfi configurations. Here, an

apfi configuration describes the state of an apfi regarding the

dynamic configuration of the resources taking part in the apfi

operation. It is not to be confused with the PDI generated

by the Axx tool suite. If the apfi operation is affected by a

failure, apfi reconfiguration measures are required. Likewise,

the operation phase must be adjusted if the apfi operation con-

ditions change. The decision making regarding such actions is

designed strictly hierarchically [15], [16]. The corresponding

decision hierarchy is as follows:

1) Determination of the membership (membership determi-

nation).

2) Allocation of multi-application (mapp allocation).

3) Allocation of the master-slave engagement (master-slave

allocation).

4) Scheduling of the operation phases (operation moding).

In general all apfi modules, as well as the connected peripheral

units, are considered within this hierarchy. However, the

following sections focus on the apfi core which comprises all

cpms of the distributed apfi.
1) Membership Determination: The basis for consistent

distributed decisions of the cpms is the so-called membership.

It ensures that only non-faulty cpms participate in the apfi

operation.

The membership determination is a two-step process. First,

each cpm determines the membership of its own module

locally (module membership). Based on this, each cpm de-

termines the membership of the other cpms (inter-cpm mem-

bership). For the inter-cpm membership consensus between all

correct cpms is required.
2) Mapp Allocation: The apfi features a dynamic in-flight

reallocation of integrated system function laws (sfls) between

cpms thus allowing for an efficient use of the cpm hardware.

For this, several sfl of the same criticality level are grouped to a

multi-application (mapp). Mapps are prioritised according to

their criticality. For example, mapp(1) contains the absolute

safety-critical system functions flight control, braking, and

steering while mapp(2), with the lower priority, comprises

functions such as flight guidance or flight management. Al-

though each cpm has loaded the software for all mapps, it

executes only a single mapp at a time.

The assignment of which cpm executes which mapp is

called mapp allocation. Mapps are allocated only to such cpms

for which membership is given. The mapp allocation is based

on apf generic mapp allocation rules. If the rules are met,

the mapp allocation is correct. If the rules are violated, the

corresponding incorrect mapp allocation is changed to a new,

correct mapp allocation. This mapp reconfiguration may take

place in flight. For the mapp allocation, consensus is required

between all cpms with a given membership.
3) Master-Slave Allocation: If the same mapp is allocated

to multiple cpms, i.e. if there are multiple replicas of a mapp,

an active-hot-standby replication strategy is applied. Only data

provided by the active mapp-replica, i.e. the mapp engaged

as master, is processed by other mapps, ioms, or sams. The

data provided by the hot-standby mapp-replica, i.e. the mapp

engaged as slave, is transmitted via the network but is ignored

by all recipients1. If there are further mapp-replicas, these are

operated as cold-standby replicas. In our article, this so-called

shadow engagement is not considered any further.

The selection of which mapp-replica is to be operated as

master or slave is called master-slave allocation. As with the

mapp allocation, the master-slave allocation is also based on

an apf generic ruleset. These rules ensure that the mapp-

replica with the best performance execution level2, regarding

1If the master-slave allocation changes, this enables a transient-free usage
of data from the new master by the recipients.

2The performance level accounts for the state of sensors and actuators being
part of the execution of the system functions.

the implemented sfls of a mapp, is selected as the master. For

the master-slave allocation, consensus between all replicas of

a mapp is required.

4) Operation Moding: During a mission, the system of

integrated systems, i.e. the apfi with all its integrated system

functions including connected peripheral units, undergoes var-

ious operation phases. For each operation phase, the required

behaviour can change. Examples are the normal operation

during flight, the execution of all test steps of a pre-flight

built-in test before dispatch, or the interactive activation of

built-in tests during maintenance.

Each operation phase is associated with an apfi specific

set of hierarchically structured operation modes that can be

specified in the high-level system design model for the Axx

subprocess. These operation modes define the behaviour of

the entire system of integrated systems. The scheduling of the

operation modes, which mainly depends on the apfi operation

conditions, is performed centrally by the master replica of

mapp(1) (mapp(1,ma)). Other replicas of mapp(1) simply

adopt the current operation modes determined by mapp(1,ma)

which ensures consensus.

5) Examplary Apfi Reconfiguration: To provide an insight

into the apfi operation, a failure induced mapp and master-

slave reconfiguration is presented exemplarily. The initial state

is shown in Fig. 4(a). The module membership of each cpm,

as well as the inter-cpm membership on all other cpms, is set

to ON. Thus, membership is given for all cpms. The shown

mapp and master-slave allocation is correct.

Starting from this state, there is a failure in one lane of

cpm(R,1). Due to the dual-lane architecture, this failure is

detected by the other correct lane of cpm(R,1), which then

passivates the cpm. To do this, the correct lane changes its

module membership to OFF and stops the transmission of

messages over the network.

The passivation of cpm(R,1) which executed mapp(1,ma)

affects the other cpms of the apfi. They cannot communicate

with cpm(R,1) any more. Hence, the remaining correct cpms

consistently set the inter-cpm membership about cpm(R,1) to

OFF. However, the mapp and master-slave allocation of the

cpms with given membership violate the allocation rules:

1) Although the priority of mapp(1) is higher than the

priority of mapp(2), it is allocated to only one cpm.

2) There is no master replica of mapp(1).

Consequently, the mapp allocation and the master-slave al-

location have to be reconfigured. In a first step, cpm(B,1)

reconfigures from mapp(1,sl) to mapp(1,ma). In a second step,

cpm(R,2) reconfigures from mapp(2,sl) to mapp(1,sl). The

state illustrated in Fig. 4(b) represents the resulting, correct

allocation. Since the apfi operation condition did not change,

the new mapp(1,ma) maintains the operation modes adopted

from the previous master-replica.

III. OVERVIEW OF THE SPECIFICATION OF AN APFI AT

SYSTEM LEVEL

This section aims to illustrate what must be specified at

the system level. For this purpose, the classification of the

iom(R,1)
net(R)

net(B)

motor

clutch
S

S

co
n

tr
o

l
su

rf
a

ce

motor

clutch
S

S

 ma master

 sl slave

dual lane

module

dual lane

module

sam(B,1)

sam(R,1)

iom(R,2)

iom(B,2)

iom(B,1)

cp
m

(R
,1

)

cp
m

(B
,1

)

cp
m

(R
,2

)

cp
m

(B
,2

)

mapp

(1,ma)
mapp

(1,sl)

iom(R,1)
net(R)

net(B)

SSS

SS

SS

SSS

dual lane

module

dual lane

module

sam(B,1)

sam(R,1)

iom(R,2)

iom(B,2)

iom(B,1)

cp
m

(R
,1

)

cp
m

(B
,1

)

cp
m

(R
,2

)

cp
m

(B
,2

)

a) b)

mapp

(1,ma)

mapp

(2,ma)

mapp

(2,sl)
mapp

(2,ma)

mapp

(1,sl)

Fig. 4. Mapp and master-slave reconfiguration due to a failure in cpm(R,1).

specification is explained and details on each specification

domain are provided.

A. Basics

Most of the time, the apfi operates in a steady-state. A

steady-state is characterised by a steady apfi configuration

and a steady operation phase. Hence, all allocation rules are

met and the required behaviour of the system of integrated

systems is stationary. However, failures or changes in the

aircraft operation condition can lead to the transition of one

steady-state to another. Based on this, the apfi specification

at the system level is divided into the following specification

domains:

1) The specification of the steady-state operation.

2) The specification of transitions between steady-states.

B. Specification of the Steady-State Operation

The requirements of this domain specify the correct opera-

tion of an apfi for all steady-states. A correct operation of a

steady-state is characterised by

• the data flow,

• the operation features.

Considering the data flow, data required for the execution of a

system function must be correctly transferred from the input of

the apfi (e.g. sensors) to the application programming interface

of the sfls integrated on each cpm. Furthermore, data must be

transferred between sfls and from an sfl to the output of the

apfi (e.g. actuators).

Regarding the operation, key features such as the cyclic

operation, synchronicity, and consensus, have to be ensured.

C. Specification of Transitions between Steady-States

This specification domain defines the system-level transi-

tions from one steady-state to a new steady-state, due to fail-

ures or changes in the aircraft operation condition. Thus, the

requirements of this domain specify the reconfigurations and

operation moding of an apfi at the system level. Based on the

decision hierarchy presented in section II-B, the specification

domain is further divided into subdomains.

• The intra-module subdomain specifies the reconfiguration

behaviour of single modules.

• The inter-module subdomain specifies the reconfiguration

of sets of modules. This includes reconfigurations of

the inter-cpm membership, the mapp allocation, or the

master-slave allocation.

• The peripheral subdomain specifies reconfigurations af-

fecting the operation of sensors and actuators as part of

the execution of system functions.

• The operation moding subdomain specifies the scheduling

of operation modes for the system of integrated systems.

For each of these specification subdomains, there is a dedicated

set of requirement classes, which together cover all possible

aspects of that subdomain. This facilitates a focused and

expressive specification of the related behaviour. The sum

of all requirement classes covers the overall reconfiguration

and operation moding behaviour for all possible apfis. In the

following, exemplary requirement classes for an apfi reconfig-

uration are presented.

IV. REQUIREMENT CLASSES AT SYSTEM LEVEL

This section exemplarily describes how the requirement

classes of apfi reconfigurations at the system level are defined.

For this, the basic reconfiguration principle of the apf is shown.

This is followed by exemplary requirement classes covering

different aspects of a reconfiguration.

A. Basic Reconfiguration Principle

Figure 5 illustrates the basic reconfiguration principle valid

for each apfi. An apfi features a large number of possible

failure events such as a power interruption, CPU failures,

or sensor failures. If a failure event evi is monitored by

a dedicated failure detection mechanism, the corresponding

particular indication zI,i is set. Particular indications are then

fused to so-called categorical indications zCI,x which are

confirmed in time. While the events and the particular indica-

tions are mostly apfi specific, the set of possible categorical

indications is generic for the apf. Because of the large usage

fusion

reconfiguration

measuring

monitor1

monitor2

monitor3

1ev

2ev

3ev

,2Iz

,3Iz

fusion1

fusion2

fusionn-1

monitor3

1

,1

,2

,

,

CI

CI

CI

CI n

n

z

z

z

z

fusionn
,4Iz

reconfiguration

step

,1Iz

4ev

apfi

specific

apf

generic

 apfis

Fig. 5. Illustration of the basic reconfiguration principle of the apf.

domain of the apf, in general, only a subset of all possible

categorical indications is needed for a specific apfi3.

Necessary reconfiguration steps for the current apfi configu-

ration sapfi are planned exclusively based on these categorical

indications. The steps are executed over a short period until the

overall reconfiguration is completed, i.e. until a new steady-

state of the apfi configuration is re-established. As each apfi

reconfiguration is associated with a categorical indication,

the set of all possible reconfigurations is generic for the

apf as well. In the following, the requirement class for the

fusion of particular indications is introduced, which enables

the specification of the categorical indications as the basis for

each apfi reconfiguration4. Then, the requirement class for the

mapp reconfiguration is presented.

B. Requirement Class for the Fusion of Particular Indications

The requirement class related to the fusion of particular

indications describes transformations of the type

ffusion : {zI,i} → {zCI,x} (1)

within a single module. Using an if-then-else construct, the

requirement class can be expressed as follows5. Values that

need to be specialised during instantiation are coloured and

marked with #.

REQ - fusion of particular indications

Let ZI,#nameCI#,(#M(x)#) := {zI,#nameI#}(#M(x)#).

If there is a zI,i,(#M(x)#) ∈ ZI,#nameCI#,(#M(x)#)

with zI,i,(#M(x)#) = true for #confirmTime# ms,

then zCI,#nameCI#,(#M(x)#) = true.
Else, zCI,#nameCI#,(#M(x)#) = false.

EndOfREQ

3The apfi specific subset is defined in the high-level system design model
for the Axx subprocess.

4Although, strictly speaking, this requirement class does not describe a
reconfiguration, it serves to clarify basic mechanisms.

5In addition to the actual requirement text, a requirement class comprises
further attributes, such as a rationale, assumptions or the allocation to apfi
functions assigned to a specific Design Assurance Level (DAL).

Here, ZI,#nameCI#,(#M(x)#) is the set of all particular

indications zI,#nameI#,(#M(x)#) that are mapped to the cat-

egorical indication zCI,#nameCI#,(#M(x)#) within a specific

module #M(x)#.

The basic pattern for the instantiation condition related to

the requirement class is illustrated in Fig. 6(a) using an UML

syntax6. The pattern corresponds to the generic structure of

ffusion extended by the confirm time.

Specific instances of this pattern are searched for in the

generated apfi design models, which result from the Axx sub-

process. These models comprise the information about every

existing instance of ffusion for a specific apfi. Figure 6(b)

exemplifies the relevant part of the design model for cpm(R,1).

The matches of the instantiation pattern are outlined with a

dashed line.

All matches with the same categorical indication are

grouped at which each group triggers the instantiation of

a corresponding requirement. With regard to the example

in Fig. 6(b), two requirement instances are generated. The

requirement instance or its textual representation7 for the

categorical indication zCI,BIT
8 is as follows:

REQ - fusion of particular indications

Let ZI,BIT,(cpm(R,1)) :=
{zI,Partition(1)Fail, zI,CrossCompareFail}(cpm(R,1)).

If there is a zI,i,(cpm(R,1)) ∈ ZI,BIT,(cpm(R,1)) with

zI,i,(cpm(R,1)) = true for 20 ms,

then zCI,BIT,(cpm(R,1)) = true.
Else, zCI,BIT,(cpm(R,1)) = false.

EndOfREQ

6For the implementation into the xAx tool suite, the patterns are modelled
using a dedicated domain-specific language. Details can be found in [11].

7The formal representation of the requirement classes is not considered in
this paper but will be part of future publications.

8zCI,BIT leads to the execution of a module built-in test (BIT). If a fatal
failure is found during this BIT, the module is passivated for the rest of the
mission.

+name : string

categorical indication

+name : string

particular indication

+confirm time

confirm

a) basic instantiation pattern

b) apfi design model

+name: string = Xlane

Synchronism Failure

particular indication

+name: string =

Partition(1) Failure

particular indication

+name: string = Cross-

Comparison Failure

particular indication

+name: string = restart

categorical indication

+name: string = BIT

categorical indication

Match 1

Match 2

Match 3

+name : string

module

+name: string = cpm(R,1)

module

+confirm time: 10[ms]

confirm

+confirm time: 20[ms]

confirm

Fig. 6. (a) Basic instantiation pattern for the requirement class of the fusion
of particular indications as well as (b) the relevant part of an exemplary apfi
design model.

C. Basics of the Reconfiguration Requirement Classes

Compared to the requirement class of the fusion of par-

ticular indications, the following has to be considered for the

reconfiguration requirement classes. While all reconfigurations

are based exclusively on categorical indications, these categor-

ical indications are only software-based quantities. However,

states such as a power-off of all lanes of a module cannot be

detected by the affected module and thus cannot be expressed

by its categorical indications. For this reason, the physical

health state zs of each apfi hardware resource is introduced.

Within the scope of the specification, the categorical indica-

tions are extended with these physical health states to so-called

extended categorical indications. The vector of the extended

categorical indications is defined as zECI := (zs, zCI)
T
ECI .

Based on the presented reconfiguration principle and the

extended categorical indications, all possible system-level re-

configurations of each apfi can be generically described by the

transformation:

freconfig :

sapfi
(

zs
zCI

)

ECI

→ {sapfi}. (2)

Consequently, freconfig is the basis for all reconfiguration

requirement classes at the system level. As an example, the

requirement class related to the mapp reconfigurations of apfis

with two mapps and up to four cpms is presented in the

following section.

D. Requirement Class for the Mapp Reconfiguration

The requirement class in Fig. 7 describes mapp reconfigura-

tions due to the passivation or activation of cpms9. Therefore,

it enables the specification of each transition from a mapp

allocation for q correct cpms to the mapp allocation for r
correct cpms. A correct cpm implies that the membership

is given for this cpm. For a passivation transition, there is

q ∈ {2, 3, 4} and r = q−1. In contrast to this, for an activation

transition q ∈ {1, 2, 3} and r = q + 1.

To express the requirement class based on freconfig , the

vectors sxcpm,mapp,q and sxcpm,mapp,r as well as the vector

zECI,xcpm,mapp,q 7→r are introduced.

• sxcpm,mapp,q describes the initial steady-state apfi config-

uration, i.e. the apfi-wide mapp allocation for q correct

cpms.

• Starting from q correct cpm, zECI,xcpm,mapp,q 7→r de-

scribes the apfi wide view of the passivation or activation

of an arbitrary cpm to r correct cpms.

• sxcpm,mapp,r describes the resulting steady-state mapp

allocation for r correct cpms.

Using these vectors, the mapp reconfiguration requirement

class is illustrated in Fig. 7. The used variables can be

described as follows:

• smapp,(cpm(i)) describes the mapp currently allo-

cated to an arbitrary cpm(i), with smapp,(cpm(i)) ∈
{mapp(1),mapp(2), nil}. Nil is a state in which cpm(i)

failed passive and thus no mapp is allocated.

• zs,(cpm(j)) is the physical health state of an arbitrary

cpm(j). It applies that zs,(cpm(j)) ∈ {c, fp}, where c is a

correct state of cpm(j) and fp is a state in which cpm(j)

failed-passive. Accordingly, zs,(cpm(j)) is used to describe

the passivation or activation of a cpm(j).

• Such a passivation or activation can be monitored by

other, correct cpm(i) using the categorical indication

zCI,comm,(cpm(i),cpm(j)). It describes the opinion of

cpm(i) about cpm(j) regarding their overall communi-

cation, with zCI,comm,(cpm(i),cpm(j)) ∈ {ok,¬ok}. For

example, if a cpm(j) failed-passive no messages are

transmitted via any communication network to other

cpm(i) which thus set zCI,comm,(cpm(i),cpm(j)) = ¬ok.

For the indices that define the assignment of these variables

to the cpms the following applies.

• Considering sxcpm,mapp,q , the network side indices

x, y ∈ {R,B}, with x 6= y. For the corresponding

module ID indices, there is i, j, k, l ∈ {1, 2}, with i 6= j
and k 6= l.

• Analogously, considering zECI,xcpm,mapp,q 7→r and

sxcpm,mapp,r, the network side indices a, b ∈ {R,B},
9Note that the temporal aspects of this requirement class are neglected in

the context of the paper.

REQ - Mapp reconfiguration due to a change from #q# to #r# correct cpms
(

#sxcpm,mapp,q#
#zECI,xcpm,mapp,q 7→r#

)

7→ (#sxcpm,mapp,r#)

=

#

(

smapp,(cpm(S(x),i)) smapp,(cpm(S(x),j))

smapp,(cpm(S(y),k)) smapp,(cpm(S(y),l))

)

q

#

#

zs,(cpm(S(a),m))

zCI,comm,(cpm(S(a),m),cpm(S(a),n))

zCI,comm,(cpm(S(a),m),cpm(S(b),o))

zCI,comm,(cpm(S(a),m),cpm(S(b),p))

zs,(cpm(S(a),n))

zCI,comm,(cpm(S(a),n),cpm(S(a),m))

zCI,comm,(cpm(S(a),n),cpm(S(b),o))

zCI,comm,(cpm(S(a),n),cpm(S(b),p))

zs,(cpm(S(b),o))

zCI,comm,(cpm(S(b),o),cpm(S(a),m))

zCI,comm,(cpm(S(b),o),cpm(S(a),n))

zCI,comm,(cpm(S(b),o),cpm(S(b),p))

zs,(cpm(S(b),p))

zCI,comm,(cpm(S(b),p),cpm(S(a),m))

zCI,comm,(cpm(S(b),p),cpm(S(a),n))

zCI,comm,(cpm(S(b),p),cpm(S(b),o))

q 7→r

#

7→
(

#

(

smapp,(cpm(S(a),m)) smapp,(cpm(S(a),n))

smapp,(cpm(S(b),o)) smapp,(cpm(S(b),p))

)

r

#

)

EndOfREQ

Fig. 7. Requirement class for the mapp reconfiguration due to the passivation or activation of cpms.

with a 6= b. Furthermore, the related module ID indices

m,n, o, p ∈ {1, 2}, with m 6= n and o 6= p.

There is a major difference between the instantiation of the

requirement class for the fusion of particular indications and

the requirement class for the mapp reconfiguration. Here, the

aforementioned mapp allocation rules for apfis with two mapps

and up to four cpms are a part of the requirement class. All

correct cpms have to meet these rules, which are as follows:

1) The number of replicas of mapp(i) per network side is

at most 1: i ∈ {1, 2}, x ∈ {R,B} : Nmapp(i),(S(x)) ≤ 1.

2) The number of replicas of mapp(1) is equal to or at

most greater than 1 compared to the number of replicas

of mapp(2): Nmapp(1) − 1 ≤ Nmapp(2) ≤ Nmapp(1).

The first rule is based on a design decision related to the

communication architecture of the apf. The second rule en-

sures that each mapp is executed for as long as possible while

taking into account the mapp prioritisation.

Using these rules, the requirement class itself generically

describes each mapp reconfiguration due to a passivation or

activation. Consequently, the number of mapps and cpms is

the only characteristic required for the generation of the re-

quirement instances. The associated basic instantiation pattern

is shown in Fig. 8(a). If an apfi does show this characteristic,

all requirement instances of this class are generated, i.e. one

requirement instance for each possible specific activation and

passivation transition for the apfi specific number of cpms and

mapps. The instantiation is illustrated in the following.

The apfi design model contains the information about the

number of mapps and cpms of an apfi. An exemplary model

for an apfi with two mapps and four cpms is illustrated in

Fig. 8(b). The depicted mapp to cpm relation results in a

single match for the class’s instantiation pattern. Accordingly,

requirement instances for the activation transitions q 7→ r ∈
{1 7→ 2, 2 7→ 3, 3 7→ 4} have to be generated. Furthermore,

requirement instances for the passivation transitions q 7→ r ∈
{4 7→ 3, 3 7→ 2, 2 7→ 1} have to be generated. In the following,

the instantiation steps carried out for each requirement instance

are described using the example of a passivation transition

from q = 4 to r = 3 correct cpms.

First, the value of sxcpm,mapp,q is determined based on q =
4 and the apf generic mapp allocation rules. The resulting

a) basic instantiation pattern

b) apfi design model

+name: string = cpm(R,1)

cpm

+name: string = afcs

+priority: int = 1

mapp

Match 1

+name: string = cpm(R,2)

cpm

+name: string = cpm(B,1)

cpm

+name: string = cpm(B,2)

cpm +name: string = utility

+priority: int = 2

mapp

+name : string

+priority: int

mapp

+name: string

cpm

Ncpm ≤ 4 Nmapp = 2

Fig. 8. (a) Basic instantiation pattern for the requirement class of the mapp
reconfiguration as well as (b) the relevant part of an exemplary apfi design
model.

correct mapp allocation for four correct cpms is

sxcpm,mapp,4 =

(

mapp(1) mapp(2)
mapp(1) mapp(2)

)

4

. (3)

Second, the apfi-wide view on the passivation of a cpm

is expressed using zECI,xcpm,mapp,q 7→r. In our example, the

passivation of an arbitrary cpm(S(b),p) is represented by

zECI,xcpm,mapp,4 7→3 =

c
ok
ok
¬ok

c
ok
ok
¬ok

c
ok
ok
¬ok

fp
−
−
−

4 7→3

. (4)

REQ - Mapp reconfiguration due to a change from 4 to 3 correct cpms

(

smapp,(cpm(S(x),i)) = mapp(1) smapp,(cpm(S(x),j)) = mapp(2)
smapp,(cpm(S(y),k)) = mapp(1) smapp,(cpm(S(y),l)) = mapp(2)

)

4

zs,(cpm(S(a),m))

zCI,comm,(cpm(S(a),m),cpm(S(a),n))

zCI,comm,(cpm(S(a),m),cpm(S(b),o))

zCI,comm,(cpm(S(a),m),cpm(S(b),p))

=

c
ok
ok
¬ok

zs,(cpm(S(a),n))

zCI,comm,(cpm(S(a),n),cpm(S(a),m))

zCI,comm,(cpm(S(a),n),cpm(S(b),o))

zCI,comm,(cpm(S(a),n),cpm(S(b),p))

=

c
ok
ok
¬ok

zs,(cpm(S(b),o))

zCI,comm,(cpm(S(b),o),cpm(S(a),m))

zCI,comm,(cpm(S(b),o),cpm(S(a),n))

zCI,comm,(cpm(S(b),o),cpm(S(b),p))

=

c
ok
ok
¬ok

zs,(cpm(S(b),p))

zCI,comm,(cpm(S(b),p),cpm(S(a),m))

zCI,comm,(cpm(S(b),p),cpm(S(a),n))

zCI,comm,(cpm(S(b),p),cpm(S(b),o))

=

fp
−
−
−

4 7→3

7→
(

smapp,(cpm(S(a),m)) = mapp(1) smapp,(cpm(S(a),n)) = mapp(2)
smapp,(cpm(S(b),o)) = mapp(1) smapp,(cpm(S(b),p)) = nil

)

3

EndOfREQ

Fig. 9. Requirement instance for the mapp reconfiguration due to the passivation of an arbitrary cpm, from q = 4 to r = 3 correct cpms.

Third, with r = q − 1 the value of sxcpm,mapp,r is deter-

mined based on the aforementioned mapp allocation rules, i.e.

sxcpm,mapp,3 =

(

mapp(1) mapp(2)
mapp(1) nil

)

3

. (5)

The resulting requirement instance for the passivation of an

arbitrary cpm from one of q = 4 correct cpms is shown in

Fig. 9.

Note that a single requirement instance specifies the pas-

sivation transition from q = 4 to r = 3 correct cpms for

all possible permutations. Here, a permutation is a specific

configuration of how the mapps are allocated to the cpms

of an apfi as well as of the cpm that failed-passive. Thus,

a permutation is a specific selection of the indices that define

the assignment to the cpms10.

Regarding the verification of such a requirement instance,

the following has to be considered. First, the transition must be

verified for all specific permutations for a complete verification

of the required behaviour. Second, to our understanding,

performing the related tests based on the stimulation of the

categorical indications is not sufficient for a verification at the

system level. In order to verify the entire end-to-end system

behaviour, the composed transformation

fmoni ◦ ffusion ◦ freconfig (6)

is considered, with fmoni : {evi} → {zI,i}. This means that

to verify a reconfiguration, not the categorical indication is

stimulated but an actual exemplary failure event associated

with the categorical indication. In the given example, such a

failure event could be the power interruption of a cpm.

V. CONCLUSION

For a significant reduction of the costs related to the devel-

opment of fault-tolerant real-time avionics systems, the Flexi-

ble Avionics Platform (apf) and an associated comprehensive

automation process, the AAA process, were developed. The

apf is characterised by a high-level abstraction layer, the Plat-

form Management, providing a full abstraction of distribution,

fault-tolerance, and redundancy towards integrated system

functions. The associated AAA process combines the high

flexibility of this platform-based approach with a high degree

of automation. Therefore, the generation of the development

10The passivation transition illustrated in Fig. 4 is a specific permutation
of this requirement instance, with x = R, y = B, i = k = 1, j = l = 2,
a = B, b = R, m = p = 1, and n = o = 2.

and qualification artefacts of each Flexible Avionics Platform

Instance (apfi), such as the system-level specification and the

verification artefacts, is largely automated.

This paper focused on the automatic generation of the

system-level specification for the high-level Platform Man-

agement. The presented approach with its specification subdo-

mains is made possible by the systematic and clear structuring

of the apf [15]. Each of the named subdomains is dedicated

to specific apfi behaviour. These are the intra-module recon-

figurations, inter-module reconfigurations, peripheral reconfig-

urations, and an apfi’s entire operation moding. Our article

describes the definition of the requirement classes for the

apfi reconfigurations which can be expressed based on an apf

generic set of categorical indications that classify all possible

failure events of an apfi. On this basis, a limited number

of requirement classes were defined. They are sufficiently

generic to cover the apf’s entire usage domain while still

being expressive and comprehensible. This facilitates a manual

validation as part of a certification process. In addition to the

presented actual requirement text of a requirement class, other

attributes can of course be added according to the applied

requirements standard. The developed requirement classes for

the high-level Platform Management were integrated into the

AAA tool suite and thus enable the automatic instantiation

of reconfiguration and operation moding requirements. This

further completes our overall approach for a cost-efficient

development and qualification of fault-tolerant, distributed and

integrated avionics systems such as fly-by-wire systems.

The apf approach was successfully demonstrated within

multiple projects up to an in-flight demonstrator featuring

automatic take-off and landing [17], [18], [19]. Our ongoing

research in the LuFo V-3 research project Secured System

for Manned Multicopter (SESYMM) focuses on optimising

the generated artefacts with regard to DAL A conformity.

Moreover, the AAA tool suite is used for the development of

a fly-by-wire platform for a remotely piloted aircraft system

based on a CS-23 aircraft for operation in the non-segregated

airspace without an onboard safety pilot.

GLOSSARY

apf The Flexible Avionics Platform is a platform-based

development approach featuring an integrated, dis-

tributed, and highly redundant architecture. It is

characterised by a high-level abstraction layer, the

Platform Management, enabling integrated applica-

tions to be executed in a failure-free virtual simplex

environment. Thus, applications can be reduced to

their cybernetic control law.

apfi An instance of the Flexible Avionics Platform.

cpm Core processing modules plan and execute the central

management decision within an apfi. In addition, they

execute the applications for the integrated system

function laws.

mapp A multi-application comprises several integrated sys-

tem function laws of the same criticality level. A

dynamic in-flight mapp reallocation between cpms

enables an efficient use of the cpm hardware.

REFERENCES

[1] J.-B. Itier, “A380 integrated modular avionics—the history, objectives
and challenges of the deployment of ima on a380,” in Proceedings of the

ARTIST2 Meeting on Integrated Modular Avionics, Roma, Italy, 2007,
pp. 12–13.

[2] B. Annighöfer and E. Kleemann, “Large-scale model-based avionics
architecture optimization methods and case study,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 55, no. 6, pp. 3424–3441,
2019.

[3] T. Gaska, C. Watkin, and Y. Chen, “Integrated modular avionics-past,
present, and future,” IEEE Aerospace and Electronic Systems Magazine,
vol. 30, no. 9, pp. 12–23, 2015.

[4] B. Kornek-Percin, B. Petersen, M. Reichle, and J. Bader, “New ima
architecture approach based on ima resources,” in 2015 IEEE/AIAA 34th

Digital Avionics Systems Conference (DASC). IEEE, 2015, pp. 6A2–1.
[5] M. Halle and F. Thielecke, “Evaluation of the ashley seamless tool-chain

on a real-world avionics demonstrator,” in 2017 IEEE/AIAA 36th Digital

Avionics Systems Conference (DASC). IEEE, 2017, pp. 1–9.
[6] B. Annighoefer, M. Brunner, J. Schoepf, B. Luettig, M. Merckling, and

P. Mueller, “Holistic ima platform configuration using web-technologies
and a domain-specific model query language,” in 2020 AIAA/IEEE 39th

Digital Avionics Systems Conference (DASC). IEEE, 2020, pp. 1–10.
[7] J. Yin, B. Lawler, and H. Jin, “Application of model based system

engineering to ima development activities,” in 2017 IEEE/AIAA 36th

Digital Avionics Systems Conference (DASC). IEEE, 2017, pp. 1–7.
[8] S. Görke, Eine flexible Plattform für Fly-by-Wire-Systeme-

Spezialisierbarkeit als Schlüssel zur effizienten Entwicklung

sicherheitskritischer Avionik. Verlag Dr. Hut, 2013.
[9] M. Di Natale and A. L. Sangiovanni-Vincentelli, “Moving from fed-

erated to integrated architectures in automotive: The role of standards,
methods and tools,” Proceedings of the IEEE, vol. 98, no. 4, pp. 603–
620, 2010.

[10] F. Kraus, Verfahren zur weitgehend automatisierten Erzeugung der

Middleware für hoch ausfallsichere, integrierte Avioniksysteme mittels

Model-Integrated Computing. Verlag Dr. Hut, 2018.
[11] T. Belschner, A Method for the Automated Generation of Requirements

and Traceability for a Distributed Avionics Platform. Verlag Dr. Hut,
2020.

[12] P. Müller, Automated Test Artifact Generation for a Safety-Critical

Integrated Avionics Platform. Verlag Dr. Hut, 2021.
[13] C. Block, S. Dikmen, and R. Reichel, “Automated test case generation

for the verification of system and high-level software requirements for
fly-by-wire platforms,” in AIAA SCITECH 2022 Forum, 2022, p. 0254.

[14] V. Hadzilacos and S. Toueg, “A modular approach to fault-tolerant
broadcasts and related problems,” Cornell University, Tech. Rep., 1994.

[15] T. Hoffmann, R. Wipperfürth, and R. Reichel, “Enabling the automated
generation of the failure and redundancy management for distributed
and integrated fly-by-wire avionics,” in 2021 IEEE/AIAA 40th Digital

Avionics Systems Conference (DASC). IEEE, 2021, pp. 1–10.
[16] F. Cake, Supervisor für eine komplexe verteilte Avionikplattform. Verlag

Dr. Hut, 2016.
[17] L. Dalldorff, R. Luckner, and R. Reichel, “A full-authority automatic

flight control system for the civil airborne utility platform s15-lapaz,”
Euro GNC, 2013.

[18] R. Kueke, P. Mueller, S. Polenz, R. Reichel, F. Pinchetti, J. Stephan,
A. Joos, and W. Fichter, “Fly-by-wire for cs23 aircraft-core technology
for general aviation and rpas,” in Aviation in Europe Innovation for

Growth-7th European Aeronautics Days, 2015.
[19] S. Görke, R. Riebeling, F. Kraus, and R. Reichel, “Flexible platform

approach for fly-by-wire systems,” in 2013 IEEE/AIAA 32nd Digital

Avionics Systems Conference (DASC). IEEE, 2013, pp. 2C5–1.

Session Th.2.C

Space applications

Thursday 2nd June

11:30

–

Room Pastel

441

442

ESA UNCLASSIFIED - For ESA Official Use Only

Page 1/10

Digital transformation in the European Space Industry

• Category: Regular Paper

• Author: Jean-Loup Terraillon, Software System Lead Engineer, European Space Agency, Software
System Department, Noordwijk, The Netherlands

• Keywords: Model-based system engineering, digitalisation, space, spacecraft

Abstract
Digitalisation is a trend in most industrial domains. The Space domain has embarked on it a couple of years ago.
Starting from a Model Based for System Engineering initiative, the discussion between Space Agencies and
Industry has intensified with several topical working groups. The scope has been enlarged, from MBSE, to full
engineering digitalisation, aiming at producing the enablers that will allow to develop digital twins.
The paper describes and positions the ESA digitalisation project, as a joint Space Community endeavour,
proposing a development approach, and giving programmatic elements as well as the initial panorama of MBSE
deployment in Space projects.

1. CONTEXT

The ESA Agenda 2025 [1] is a document prepared by the European Space Agency Director General when he
took up duty, and indicating to the Space Community, and in particular the ESA Member’s States Delegations,
the directions for the next four years. It says in particular:

• “In Europe, ESA has the unique ability to implement, together with industry, complex and ambitious space
missions and programmes on an equal footing with other leading space agencies worldwide. We will
ensure that this ESA strength and value is further reinforced.”

• "ESA will therefore digitalise its full project management, enabling the development of digital twins, both
for engineering by using Model Based System Engineering, and for procurement and finance, achieving
full digital continuity with industry.”

Digitalisation is the process of representing all the artefacts of space systems under a (structured) digital
representation, on which computers can reason and elaborate. The most explicit example of such digitalisation
process is the Model Based technique, where the information, traditionally contained in the form of documents, is
instead expressed in a set of data, structured into a model. Computers can be programmed to navigate and
search into the models, and create relations between associated data, allowing to discover more properties, and
to derive added value such as traceability, optimisation, technical budgets, trends, and knowledge.

Digitalisation includes also e.g. databases or excel sheets, or any format where data is structured, curated and
associated to a semantic that allows to unambiguously understand it with a computer. This transformation relies
on common standards and new infrastructures that facilitate the exchange of data but also the collaboration along
the whole supply chain.

2. THE DIGITAL SPACECRAFT

2.1. General Concept

Digitalisation is under way in many domains: automotive [2], railways [3], aircraft [4], construction [5], airports
(Schiphol twin) [6], medical [7], Eurocontrol [8].

The Digital Spacecraft is a concept derived from these similar initiatives, and introduced in ESA to cover the digital
transformation of space, ground, launcher segments development and operation, as a new way to collaborate
within the space ecosystem throughout the full project lifecycle. It is based on digitalisation and combines as an
umbrella a wide spectrum of topics like MBSE, digital transformation, digital twins and full data integration into a
single consistent concept covering all aspects related to a spacecraft.

Digitalisation is already ubiquitous in the engineering domain. It allows expressing the concept of operations,
structuring the requirements, and tracking them through design and manufacturing up to testing. It is intended to
support the optimisation of the design, to make informed trade-offs and to clarify the interfaces. It allows the
systems engineers and the project teams to master the complexity of the space system, relying on an authoritative

source of truth of the system, communicating knowledge and exchanging data in an unambiguous way. It enables
quick access to key parameters via dashboards, understanding the impact of changes and managing those,
building knowledge from lessons learned for optimisation and/or for future reuse. It also allows maintaining a
continuous and homogeneous flow of information between the different disciplines of the system, along its life
cycle, and across its supply chain.

Besides engineering, project management and product assurance are also transitioning to digital, supporting the
workflows related to schedule, changes, deviations and non-compliances in an automated, traceable and
searchable way. Finally, procurement complements the picture with the digitalisation of the steps included in the
preparation of the Invitation To Tender (ITT) package, management of the resulting contract, deliverables, contract
change process and the contract closure, associated to adequate legally compliant processes.

2.2. Space domain characteristics

Producing spacecraft would not appear a priori much different from producing aircraft or cars. The overall life
cycles are similar (specification, design, manufacturing, tests). However:

• the number of items produced is different: most satellites are one-off (science) or a few are produced
(earth observation). The Galileo constellation is the largest, with 24 satellites and 6 spares. Europe is not
yet involved in large constellations like Starlink.

• The way to test them is different, as you cannot test-drive or flight-test a spacecraft or a launcher. The
overall development process is ruled by specific Standards called European Cooperation for Space
Standardisation (ECSS) [9].

• Although Newspace may trigger some changes, supported by ESA Director General, the current
spacecraft procurement is specific, generally done by the various European Space Agencies, through a
Supply Chain, using ESA Member States budgets distributed according to specific rules.

• These budgets would not allow partnerships like the one signed between Airbus aircraft and Dassault
Systèmes to co-engineer the future aircraft and its digital development environment. They would not either
allow ESA to impose specific digital technology to the Space industry without consideration of their
valuable heritage in the domain.

Therefore, the Space domain must deploy digitalisation in a context constrained by contractual rules, processes,
organisation and technological heritage. This boils down to an essential need: interoperability of all the tools,
across disciplines, along the life cycle, and through the Supply Chain. This need appeared in 2018 during a
workshop organized by the French Space Agency (CNES) on MBSE [10], where it appeared clearly that industry
had internally matured some digital technology, but was facing issues in the collaboration between the
stakeholders of a project. ESA had therefore a harmonisation role to play.

2.3. A Joint European Vision

Digital transformation of space systems is an ESA Member States endeavour.

Digitalisation is a change process. The key of its efficiency is the digital continuity in the three dimensions of space
systems development: disciplines, life cycle and supply chain. This means that all space actors are essential for
digitalisation.
Space actors are not progressing at the same pace, though: some are more advanced in functional system
engineering, other in manufacturing, disciplines are not evenly digitalised, and principally,
The success of the change process will be as strong as its weakest link. Consequently, a widespread, staged
development and incremental implementation approach is of strategic importance to bring all industrial actors at
the same level, and this is where ESA and its Member States have a role to play.

The most important change lies on the new “ways of working” even more than on evolving the processes and
tools. Digitalization is not about doing what we are currently doing better or in a smarter way, it is about changing
what we do and the way we do it. The Digital Spacecraft is a way to change drastically the way Agencies, primes
and supply-chain work together, switching from a 100% customer/supplier relation to a mix between co-
engineering approach and contractual relation. This mind-set change is the key enabler for future European
success and digitalization is its enabler. Digital engineering come along with higher transparency, trust,
partnership and objectives alignment.

2.4. A multi-level harmonisation forum

Digitalisation involves the space European community through a number of European joint agency-industry
working groups led by ESA:

• the MB4SE Advisory Group [11],

This group has been established in 2019 with the objective to deploy Model Based System Engineering
in Space projects. It includes five space agencies (ESA, CNES, DLR, ASI, and UKSA) and four Large
Systems Integrators (ADS, TAS, OHB, and ArianeGroup). It advises ESA on the technical aspects of
MBSE research and development, and mainly on interoperability of tools, through the seamless exchange
of the associated data.

The MB4SE AG serves as Steering Group of the OSMoSE Governance [12] group. The “Overall Semantic
Modelling for System Engineering” initiative arises from the need of enhancing the way information and
knowledge is exchanged among the stakeholders involved, enabling efficient interoperability among
model-based infrastructures used. The OSMoSE initiative addresses interoperability at semantic level,
merging all stakeholder’s concepts into a global conceptual data model resulting in the so-called Space
System Ontology (see 3.1).

• the Digital Spacecraft Think Tank [13]
This multidisciplinary group has been established in December 2020, with ESA and Industry (i.e. Airbus
Defence and Space, Thales Alenia Space, Ariane Group, RUAG and OHB/MT Aerospace). It was
established by ESA’s Executive Board to engage in identifying and harmonizing the steps to be
undertaken for the digital transformation of the end-to-end space mission development and operation,
with the aim to be beneficial for all stakeholders in terms of technical efficiency, schedule and
consequently costs. This team was mandated to prepare a detailed plan for the progressive deployment
of the Digital Spacecraft approach across the Agency in close cooperation with industry.

The Think Tank is steered by a Digital Spacecraft Steering Committee gathering higher managerial levels
of stakeholders in view of endorsing the plans and empowering the teams.

Figure 1 depicts the digitalisation as a rocket, where the stages and boosters are the working groups of industry
and agencies, delivering the Digital Spacecraft in orbit… IT platform and Data Management are addressed in 3.3
and 3.4.

Figure 1 A systematic, multilayer, collaboration

In the Digital Spacecraft Think Tank, several discussions were held on the definition of the Digital Spacecraft and
on the support of the “Digital Transformation”, which is a myriad of new thinking and development in the areas of
data and lifecycle management, throughout the entire ecosystem, and that can present many unforeseen
challenges.
The term “Digital Spacecraft” represents a concept for an end-to-end digital continuous way of working on space
missions in the European ecosystem. The Digital Spacecraft is more a set of digitalisation enablers, than a single
product, or a particular technology. It includes a number of technologies such as Model Based System
Engineering (MBSE), Computer Aided Design (CAD), simulation techniques, Augmented, Virtual and Mixed
Reality (AR/VR/MR), Artificial Intelligence (AI) and various communication, collaboration and project control and
management technologies at infrastructure level.

Leveraging the new breakthroughs on coupling the simulation results with physical data in continuous synch
(digital twin technologies), the Digital Spacecraft allows for feedback and learning (e.g. from operations back to
development, and among projects). The Digital Spacecraft therefore enables understanding, learning, reasoning
and dynamically recalibrating models, for an improved decision-making.

3. DIGITALISATION IMPLEMENTATION

3.1. Principle

The goal is to identify the digital threads occurring in Space projects, such as to ensure the digital continuity in
three dimensions.

• The data shared between disciplines should be defined and understood the same way by everyone, and
exchanged continuously between engineers.

• The Spacecraft data state reached at a particular milestone of the life cycle should be propagated in the
next phase, in order to ensure traceability and avoid distortion along the development.

• The relationship Customer-Supplier should be based on exchanges of models and data rather than of
documents.

To identify the data threads, it is necessary to identify the processes followed by these data, as well as the overall
data model. The processes indicate the exchanges between the disciplines or the stakeholder, i.e. the point where
we want to be interoperable. Defining process and data at the global level of a spacecraft will fail. Instead, applying
the concept of divide and conquer, the identification of processes and data models is first done at discipline level,
for which relevant experts can support the local digitalisation of the discipline that they know.

In a second step, putting together the data models shows that some data are shared between disciplines. For
example, the system product tree is used by Product Assurance, the centre of gravity of the CAD tool is used by
the control system, etc. It is essential that the two disciplines have the same understanding of the shared data:
same meaning (dry mass, wet mass), same referential, same units, same structure, same financial reference (for
cost data), etc. This means that each data must have a unique semantic for everyone.

Defining the common semantic of data is done at the level of an ontology, which is commonly discussed and
agreed in the OSMoSE group [12]. Indeed, a set of data can have a physical representation (e.g. XML), a logical
representation (e.g. a meta-model), and a conceptual representation (an entity-relation concept, called here
ontology). The ontology language selected is ORM [12],[14]. ORM allows to define the agreed entity-relationship
of the data set, as well as (thanks to the specific mechanism of “derivation”), any semantically equivalent
expression preferred by one or another stakeholder. This semantic equivalence allows generating automatically
a physical representation of the data set appropriate for each stakeholder, as well as the tool that translates one
format into another one. This allows achieving what is called “semantic interoperability” (Figure 2).

It is therefore key that the data sets identified by each disciplines are abstracted into an ontology, all ontologies
are harmonised into a single “Space System Ontology (SSO), allowing for semantic interoperability of the tools
between the disciplines. This applies in the same way to the exchanges between customer and supplier.

Figure 2 Semantic interoperability

3.2. Application

Figure 3 and Figure 4 illustrate the first steps enabling digital continuity through the development of digitalisation
enablers, and in particular

• formalisation of the processes, artefacts and data models of each engineering discipline,

• alignment of the data models with help of the Space System Ontology

• deployment in the Supply Chain to exchanges between each level of the Customer Supplier relationship.

Figure 3 Illustrative example of Digitalisation of each discipline, then digital continuity, then data exploitation

Some disciplines are illustrated here; they need (1) to increase their level of digitalisation, using model-based or
other techniques, (2) to identify where are the data in the process, (3) to identify their own set of tools that will
later be connected to achieve digital continuity. When these digitalisation enablers are available, data are
exploited (4) to optimise and reuse designs, to produce digital twins, to verify test coverage, to make model
correlations with the actual data of the physical items. The “as operated” twin is the ultimate achievement allowing
managing efficiently the operations of the real spacecraft. Design2Produce is an ESA R&D programme.

Figure 4 Artist impression of the propagation of digital
continuity along the supply chain

The digitalisation enablers are connected through the Supply

Chain, generally between the same discipline, allowing

experts to work together. Depending on the metier of the

Supplier, only some disciplines need to be connected.

3.3. The IT Platform

The next issue is the one of the informatics environment
supporting the digitalisation. At ESA, it is called “IT Platform”. It
should ultimately be similar to an (Extended) Enterprise
Architecture. This paper will not address the “corporate” part of
it dedicated to management, contractual or financial aspects.

 Figure 5 is an attempt to understand which tools, presently
used in ESA, should be connected to ensure digital continuity.
The main interest of the figure is its complexity that illustrates

the difficulty to implement such a platform. In this figure, all discipline tools are connected to a central exchange
tool called “data hub”, making sure that everyone has the right value of the right data at the right time.

Figure 5 status of spacecraft engineering tools to be included in an IT platform

At the bottom are the system tools: requirement engineering, functional, mechanical, and electrical. The discipline
tools come as an umbrella around the central Data Hubs (early phase, later phase, and ground segment specific).
The data hub is connected to the IT Platform and the (extended) Entreprise.

This architecture is inspired by the ESA IT platform of the Concurrent Design Facility [15] called COMET [16]

COMET is used in early phases of spacecraft development (called phase 0/A/B1) to centralise all the data of the
discipline involved in the concurrent design. Data refreshed by one discipline are immediately pushed to the
others. This allows converging quickly during the early mission and spacecraft concept definition. COMET is also
used in an activity called Digital Engineering Hub Pathfinder (DEHP) [17], where it intends ultimately to connect
all the tools depicted in Figure 6.

Figure 6 The spoke wheel concept of the Engineering Hub (courtesy Rhea)

This wheel shows that, up to phase B1, the number of tools is “relatively” limited. The complexity arrives in later
phases, where the complete workshop of engineering, operations, product assurance and management tools are
deployed. ESA is running some activities (not yet completed) to develop Data Hubs for future phases.

3.4. Data management

Digitalisation is not yet fully achieved once data threads are identified and IT Platform is available... Other issues
appear such as:

• data ownership and visibility: in the relationship between customer and supplier, the exchange of
documents has traditionally allowed the supplier to control the visibility that he wanted to give to his
customer on the design. However, “you cannot hide behind the data”. Delivering the supplier model can
expose a lot of information, including some know-how, to the customer. ESA observes more and more
industry reluctance to deliver some models, whereas ESA needs it to perform his tasks. It is important to
establish a relation of trust, of course supported in a legal frame, allowing the supplier to know which data
are needed by the customer and to do what.

• this applies not only to the verification performed by ESA projects teams on industry design and tests, but
also to the ESA reviews. Reviews are milestones in the life cycle where the status of the project is

analysed, is compared to an expected maturity at that stage, and results into mitigation actions to palliate
the potential weaknesses. ESA reviews are often done by independent reviewers, working for ESA, but
not directly in the project team. This raises the question of visibility that the reviewers should get on the
models. It should be enough for them to detect flaws, but less than the one given to the project team.
Another issue is the ability of the reviewers to understand models, and the appropriate packaging of these
data for reviewers. For example, reviewers could have only a web interface access to the model,
supported by documents giving the context of the model, the “user story”.

• security: even with the best trust relationship, informatics exchanges are subject to security threats, and
it is vital for companies to implement security measures at all levels. This requires a threat analysis, in
order to decide where the protections must be placed. The design of the IT platform is generally necessary
to understand where the threats are.

These topics need to be addressed at a different level than the pure technical level. They are discussed in the
space community in the Data Management working group, a sub-group of the Digital Spacecraft Think Tank
(Figure 1).

4. STATUS IN ESA PROJECTS

To date, digitalisation is mainly deployed in ESA projects through the Model Based System Engineering (MBSE)
techniques. It addresses the functional part of the system with some links to physical architecture. But the link
with the physical world (CAD, testing, etc.) is not yet achieved. Figure 7 shows the ESA projects implemented
with MBSE.

Figure 7 Status of MBSE introduction in ESA projects

MBSE was first introduced in Euclid, thanks to the presence in the team of a SysML guru who needed to solve a
particular problem: the payload operation planning. He shared a preliminary model with the scientist community,
and they found beneficial to collaborate on it. The model was further developed to include the payload architecture,
then the platform/payload interface, etc.

MBSE is now introduced in the beginning of the life cycle, as early as the CDF study in phase 0. Supported by
ESA, models are then developed, by ESA or industry, in phase A and B1 and then propagated to phase B2.

ESA is working with Large System Integrators, which uses different MBSE technologies. Tools like Capella,
Cameo, Entreprise Architect or Genesys are used for similar purpose of functional description. As said before, it
is impossible to impose the same tool to all. For its own purpose, ESA will favour SysML (with a particular profile
called “MBSE Space”) and Cameo, although Science projects like Euclid and Plato are based on Entreprise
Architect. However, ESA is able to work with any of these tools. A competence centre has been established to
provide licences, tool support and training to projects.

In order to prepare the digitalisation of projects, a large R&D plan over 5 years has been established, in a
Harmonisation process within Member States, addressing methodology, ontology, tooling, and project
deployment. A low Technology Readiness Level call for ideas [18] has been made, resulting in the funding of 22
activities. The difficulty resides in the mandatory coordination of all the R&D activities of ESA and industry towards
the same goal of interoperability and digitalisation.

5. TOWARDS DIGITAL TWINS

The availability of digitalisation enablers open the way to the exploitation of data. System engineers have access
to dashboards of key parameters offering a synthetic view of the system, allowing design optimisation, traceability
to reply to such questions as “What if this equipment is not compliant?” or “what if I introduce this change?”.

Further, the measure of the real values of the data on the physical items can be fed back into the models used
for the design (this is called “model correlation”), allowing to sue better models in the next project (thermal models,
structural models, environmental models, control models, etc.).

The same applies to simulators, which –when fed with the real data of the physical item measured during operation
– becomes dynamically representative of the physical item, and are called digital twins. Twins of avionics
equipment may be used to anticipate software verification before the availability of the hardware. With proper
mechanical sensors inserted in the structure (e.g. with use of Advanced Manufacturing methods), a twin of the
structural model can be produced. Finally, the connexion of the operational simulator to the real telemetry
downloaded from the spacecraft allows having a spacecraft twin, representative in real time of the real one, and
much closer to the one located at hundreds or millions of kilometres… Failure investigation and operation
optimisation and prediction are example of capabilities enabled by the digital twin.

Beside the Spacecraft related twins, ESA (through the Earth Observation directorate), has launched the Digital
Twin Earth [19]. It will help visualise, monitor and forecast natural and human activity on the planet. The model
will be able to monitor the health of the planet, perform simulations of Earth’s interconnected system with human
behaviour, and support the field of sustainable development, therefore, reinforcing Europe’s efforts for a better
environment in order to respond to the urgent challenges and targets addressed by the Green Deal.

Similar twins for e.g. scientific data of the universe, or human data of astronauts, are investigated.

6. CONCLUSIONS AND RECOMMENDATIONS

Empowered by the Director General, in line with the strategic technology objectives, ESA has embarked in the

change process to digitalisation. ESA is not alone. The change is supported by, and performed together with, the

whole space community, national Space Agencies, and Industry.

Aiming at the digital continuity in space projects thanks to the interoperability of tools, a step-wise approach is

planned. Many local progresses have been made, but the dots need to be connected. Several discussion forum

are organized, allowing Agencies and Large System Integrators to progress together within industrial or

programmatic constraints. The next step is to involve better the low end of the Supply Chain.

The main challenges are to maintain the synchronisation of the whole process, to keep awareness by

dissemination, to convince gradually all the community without imposing, to ensure the communication of the

progress and difficulty between all the actors such that we can solve the problems together, and to survey any

opportunity to introduce digitalisation.

Beside the technological challenges, data management and governance is an essential topic to be addressed

together, without which the whole initiative could fail.

But the success already observed, and the positive feedback received by project managers and industry, indicates

that we are in the right direction. Let us get digital!

7. REFERENCES

[1] ESA AGENDA 2025: Make space for Europe -
 https://download.esa.int/docs/ESA_Agenda_2025_final.pdf
[2] https://www.futurebridge.com/industry/perspectives-mobility/digitalization-in-automotive-industry/
[3] https://www.thalesgroup.com/en/germany/magazine/digital-transformation-railway-industry
[4] https://www.aerosociety.com/news/aerospace-digital-transformation/
[5] https://www.designingbuildings.co.uk/wiki/Digitalisation_in_Construction
[6] https://www.esri.com/about/newsroom/arcuser/digital-twin-helps-airport-optimize-operations/
[7] https://www.incose.org/incose-member-resources/working-groups/Application/healthcare
[8] https://www.eurocontrol.int/digitalisation-and-information-management
[9] https://www.ecss.nl
[10] https://www.comet-cnes.fr/evenements/journee-mbse
[11] https://mb4se.esa.int
[12] https://mb4se.esa.int/OSMOSE_Main.html
[13] https://mb4se.esa.int/DtSC_Main.html
[14] http://www.orm.net/
[15] https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Concurrent_Design_Facility
[16] http://products.rheagroup.com/comet
[17] Digital Engineering Hub Pathfinder - Extending the ECSS-E-TM-10-25 Tool Ecosystem
A. Vorobiev1*, S. Gerené2, N. Smiechowski1 , S. Jahnke3, J. Knippschild3, S. Weikert4, M. Becker4, S. Paquay5,
J-P. H. Vogt5, I. Fontaine5 1RHEA Group, Diegem, Belgium; a.vorobiev@rheagroup.com 2RHEA Group, Leiden,
The Netherlands 3OHB System AG, Bremen, Germany 4Astos Solutions, Stuttgart, Germany 5Open Engineering,
Angleur, Belgium https://indico.esa.int/event/386/contributions/6290/attachments/4286/6498/1645%20-
%20digital%20engineering%20hub%20pathfinder.pdf
[18]
https://ideas.esa.int/servlet/hype/IMT?documentTableId=45087661363758399&userAction=Browse&templateN
ame=&documentId=a1fecb3f3789ea0eabe29e23c846fbfd
[19] https://www.esa.int/Applications/Observing_the_Earth/Working_towards_a_Digital_Twin_of_Earth

Space organisations landscape

Space Agencies

ESA European Space Agency https://www.esa.int

CNES Centre National d’Etudes
Spatiales

https://cnes.fr

DLR Deutsches Zentrum
für Luft- und Raumfahrt

https://www.dlr.de

ASI Agenzia Spaziale Italiana https://www.asi.it

UKSA United Kingdom Space
Agency

https://www.gov.uk/government/organisations/uk-
space-agency

Space Industry

ADS Airbus Defence and
Space

https://www.airbus.com/en/products-
services/space

OHB Otto Hydraulik Bremen https://www.ohb.de

RUAG Rüstungs Unternehmen
Aktiengesellschaft

https://www.ruag.com

TAS Thalès Alenia Space https://www.thalesgroup.com/fr/espace

Impact of environment on the execution of a
real-time Linux process on a multicore platform

Thomas Beck∗, Frédéric Boniol†, Jérôme Ermont‡ and Luc Maillet∗
∗Airbus Defence and Space, Toulouse, France

Email: thomas.t.beck@airbus.com luc.maillet@airbus.com
†ONERA, Toulouse, France

Email: frederic.boniol@onera.fr
‡IRIT-ENSEEIHT, Toulouse, France

Email: jerome.ermont@toulouse-inp.fr

I. INTRODUCTION

A. Space context

In the embedded systems industry there are not environ-
ments more hostile than space. In fact, a spacecraft is alone
in the void without direct human interactions. Its only way
to communicate and receive orders is through antennas. In
such a context, consequences of software failures can lead
to the loss of the spacecraft or even worse. For example, if
the AOCS (Attitude and Orbit Control System) software does
not work, the solar panels will not always be facing the sun
and the battery will not be able to produce enough power for
the whole spacecraft. In order to reduce those risks, on-board
software applications have a criticality level which represents
the consequences of their failures. Therefore, a failure in a high
criticality level software will result in worse consequences. In
the space context, criticality level for software is defined in
the ECSS (European Cooperation for Space Standardization)
standards as follows:

• A Catastrophic consequences: loss of human life or
environment disaster.

• B Critical consequences: loss of the spacecraft and/or
the mission.

• C Major consequences: major mission degradation.

• D Minor consequences: minor mission degradation.

The development of a software with a high level of criticality
is more constrained and thus more expensive. Usually, to
prevent that a software failure propagates to a software with
a higher level of criticality, software applications are executed
on different hardware platforms. Most of the time, on-board
software applications with the same level of criticality are
not made by the same software team, and are separated on
different hardware platforms as well. With this approach,
software failures are contained by the hardware and software
behavior does not affect execution of others software. Clearly
this one-software on one-hardware-platform strategy has a non
negligible cost considering the size, weight and power of an
on-board computer.

B. Problem statement

This article aims at studying the cohabitation of two or
more software applications on the same multi-core hardware

platform. These two software applications are designed and
developed according to the space context described in the pre-
vious section, thus each software application has a criticality
level and is produced by a different developers team. Once
they are executing on the same hardware platform, we want
to assure two fundamental properties:

• Execution interferences: the perturbation made by
one software on to others should not be greater than
ϵ. This ϵ can be an execution time or a response time
depending on the case. This epsilon is defined for each
application and is part of its specification.

• Failure propagation: a software failure should not
propagate to software with a higher criticality level.
The functional failure propagation, being application-
specific is not in the scope of this work.

Along with these properties we assume the following hypoth-
esis: all software should be developed and executed on Linux.
It means that Linux is used as the embedded operating system
of our spacecraft. In order to ensure these two properties, our
objective is to use space and time isolation of applications
running on a Linux operating system. The use of Linux is
motivated by its recent evolution that makes it useful for
embedded systems.

C. Related work

In 2000, [1] presented core issues of IMA (integrated
modular avionics) which was new at that time. In this tech-
nical report, John Rushby laid the groundwork of avionics
partitioning showing that a strict isolation is a solution for
resolving the IMA problematic. Many years later, solutions
have been found to adapt this resolution in space avionics as
shown in [2]. Hypervisors such as Xtratum and VxWorks 653
have been developed to respond to the needs of an IMA for
space. Isolation proposed by this kind of hypervisor is strict,
secure and with a temporal predictability. The disadvantage of
those isolation properties is that it makes the whole system less
modular. Scheduling is fixed , developers coding libraries are
specific and not widely known and the development process is
more complex. A performance comparison of these real time
solutions is presented in [3].

Linux could be the perfect solution to the problems pre-
viously cited and it is used in many space mission as de-
scribed in [4]. However, Linux is not a hypervisor designed to

strictly isolate and to schedule real-time software applications.
Linux and its PREEMPT-RT patch is able to provide real-
time features. For hard real-time software applications, a co-
kernel solution named Xenomai is available. The performance
differences between native Linux and Xenomai are presented
in [5]. However Linux is not deterministic and its behavior can
introduce latency in the system. A lot of studies measured this
latency with the PREEMPT-RT patch ([6] [7] [8]). Moreover,
some studies worked on the scheduling model of Linux to
reduce these latencies ([9] [10] [11]).

The other aspect of using Linux in a critical real time
system is to ensure an isolation of the different applications
running on it. This concurrency problem is explained in [12]
where they try to reduce the impact by implementing an RCU
mechanism. Others studies try to address the problem from
the memory point of view and thus work on the hardware
memory system ([13] [14] [15]). Containerization is a powerful
feature of Linux which helps when an isolation is required.
[16] presents a way to modify the Linux scheduler to use
container and real-time scheduling at the same time.

Linux is a powerful operating system and is useful in a
lot of industries. In the space industry the interest has recently
grown with the new space. The last Linux space known project
was made by NASA. They sent a helicopter on Mars with an
avionic partially based on Linux [17]. As explained in [18]
Linux is also an academic subject to study.

Finally, our approach presented in this paper is based on
the measurements like in [19]. We want to study Linux with
the less customised configurations to take the more advantages
of the open-source world offered by Linux.

D. Contribution of the paper

The main objective of this paper is to evaluate the ro-
bustness of Linux in a critical real-time context. This paper
aims at producing tests results of the Linux behavior and its
processes when using an embedded space scenario. We are
studying the impact of Linux upon real time processes by
varying configurations of the system (cf sections VI-B, VI-C
and VI-D). We will also focus on the impacts of running Linux
real-time processes upon each other (cf section VI-A).

II. SPACE SOFTWARE USECASE AND PLATFORM

Software applications we study exchange data between
physical sensors, physical memory and the ground station.
Those software can be real-time, i.e with a deadline and/or
a period, depending on the requirements of the sensor they
communicate with. Since all software will be executed on
top of a Linux operating system, a software application is
represented by a Linux process. We took one space specific
use-case software to study its isolation when it is executed
with others processes on the same hardware platform.

A. AOCS: attitude and orbit control system

In a satellite, the AOCS software is responsible of control-
ling the attitude i.e orientation and the orbit of the spacecraft.
Inputs of AOCS algorithm are attitude and orbit positions com-
ing from sensors such as Star trackers. The AOCS algorithm
generates commands sent to actuators such as gyroscopes and

thrusters. These commands aim at correcting the attitude and
orbit of the spacecraft. In the scope of this article we study
a simple AOCS algorithm doing a flyby i.e approaching a
stellar object without entering any orbit. The AOCS software
application implementing the algorithm is a periodic Linux
process running at a 8Hz frequency. It takes its inputs from
a pipe and writes its outputs in another pipe. This software
consists of 16000 calculus steps. Each steps doesn’t have the
same behavior as the others. However, if the inputs stay the
same the behavior of the same step in two different execution
of the software will have the exact same behavior. The AOCS
process has two children processes described below:

• A non periodic Linux process reads inputs from the
input file and writes it to the input pipe.

• Another non periodic Linux process reads outputs
from the output pipe and compares it to the expected
outputs from the output file.

The input and output files are located on the file system. The
AOCS process is thus only responsible of computation which
is its true behavior in the spacecraft. By forking the AOCS
process and thus creating two children processes it creates an
isolation between I/Os accesses and calculus code. Moreover,
memory accesses made by the I/Os processes and the AOCS
process are different. Reading and writing to a file imply
loading memory pages from the disk to the main memory. This
operation along with every others one related to the virtual
memory are handled by the operating system and are slower
than accessing the main memory. In another hand, reading
and writing to a pipe is faster as it doesn’t need memory page
management because pipes are located in the operating system
area.

B. Hardware platform

Due to the hostility of the space environment, spacecraft
embedded computers and electronic devices must be adapted.
Those modifications have non negligible costs on satellites
production. Recently, the space industry introduced COTS
(commercial off-the-shelf) hardware components to be used
in the next generation of satellites. Experiments presented in
this paper are made on a Zynq Ultrascale+ made by Xilinx
which is one of the COTS hardware platforms considered by
the space industry for the next generation of satellites.

The SoC has two main processing units (application and
real-time) along with a PMU (platform management unit), a
CSU (configuration and security unit) and a GPU (graphical
processing unit). The Zynq ultrascale+ also contains an FPGA
which can be accessed by all I/Os and processing units.
This SoC architecture is interesting for the space industry,
the application processing unit can run COTS software (such
as Linux) while the real-time processing unit handles more
critical software or monitors the entire system. Moreover,
FPGA is useful for handling communications between I/Os
and processing units and is becoming an essential electronic
component for satellites.

As described in the previous paragraph, in the context
of space systems the real-time processing unit is envisaged
to take measures. This unit is made of an ARM Cortex-R5
implementing the ARMv7-R architecture. It is a dual-core

2

with one L1 cache per core and a L2 shared cache. To ensure
reliability it can be used in lock-step, i.e the two cores execute
the same instructions and their outputs are compared.

Besides, the application processing unit will run Linux.
This processing unit is made of an ARM Cortex-A53 processor
with a frequency going up to 1.5 GHz, which implements the
ARMv8-A architecture. It is a quad-core, with instruction and
data L1 cache along with a shared L2 cache and an MMU
(memory management unit). The L2 cache is a 1MB 16 way
set-associative cache with ECC shared between the CPUs. It
means that it’s containing 15 625 lines of 64 bytes. The L2
cache is unified i.e it contains both data and instruction from
the L1 memory system. The L1 instruction cache is a 32 KB
2 way set-associative cache with ECC independent for each
CPU. It’s containing 500 lines of 64 bytes. The L1 data cache
is a 32 KB 4 way set-associative cache with ECC independent
for each CPU. It can contain 500 lines of 64 bytes. In the
scope of this paper, all software applications are executed on
the processing unit.

III. PROBLEM FORMALISATION

Our work is focused on analyzing perturbations between
software applications on the same hardware platform and
respecting the properties described in the introduction of this
paper. All software applications will be executed in a Linux
process and processes will only contain one thread.

First of all, Linux hasn’t been created to be a real-time
operating system. As our software applications are connected
to complex sensors they sometimes need to be executed pe-
riodically and respect a deadline. Linux developers developed
real-time mechanisms for Linux. The central question of our
work is to ask if real-time constraints of our use-cases can be
respected with or without Linux real-time mechanisms. In this
paper, we will provide some elements answering this question.

Second of all, the hardware part of our usecase is very
important, as execution time can be modified by a memory
response delayed by shared caches or busy busses. Interactions
between software and hardware is made by two channels:
systems calls and drivers. System calls allow software to use
special features provided by the operating system. A complex
operating system such as Linux proposes many different sys-
tem calls and some of them might not be suitable for space
avionics. In order to measure and then control interference
caused by system calls the first step is to list system calls
usable in a satellite avionic. Once the list is complete an
analysis of the memory impact of each system call will be
made. For example, if one software uses shared pipes they can
be accessed by others software. These accesses can generate
interference, thereby a space isolation of resources accessed
through system calls is needed. In the scope of this paper, we
consider all systems calls related to the file system, specifically
the write and read system calls. In fact, using files is a useful
feature for an on-board software.

The main purpose of drivers is to abstract the handling of
devices. Drivers code runs in kernel mode like the operating
system and can thus access the physical memory. As they are
closely related to device characteristics most of the time drivers
are written by the company who developed the device. This
detail poses a problem in our context, the fact that a non trusted

component is running inside the kernel is a clear breach of the
isolation sought in this work. The last question of our work is,
how to isolate shared software resources such as drivers in a
Linux system. This question won’t be addressed in this paper.

IV. LINUX BASED SOLUTION

Linux is a widely used operating system. Created in the
mid 90s Linux is developed by software engineers all around
the world. A lot of companies invest time and money in the
development of Linux. Nowadays, Linux is used by a lot of
people and deployed on many different kind of hardware. It
can run on desktop computers, servers, supercomputers but
also on IoT and embedded devices. Most of developers learn
to use Linux and its development environment which make
it a standard in the computer industry. One of most power-
ful advantages of Linux is its reusability. The open-source
philosophy allows to reuse libraries and drivers developed
for Linux on different hardware. All these advantages make
Linux useful in an embedded devices context. However, it is
not conceived for critical applications and the development
process of Linux is far from those used in real-time/critical
operating system. Critical embedded industries want to be part
of the Linux adventure and get all the benefits of using it
in their products. Medical, aerospace, automotive, and indus-
trial automation are considering the use of Linux for critical
sections. This new approach of critical software asks a lot
of questions due to the fact that qualification or certification
of open-sourced Linux is certainly impossible. Thereby the
embedded operating system verification paradigm has to be
changed. In this section, configurable characteristics of Linux
will be presented. These characteristics are appropriate for
ensuring the properties described in the introduction.

A. Real-time scheduler: SCHED DEADLINE

For Linux to be used in a critical embedded systems context
it need to have real time properties. Thus, process needs
to respect their deadline and period cannot be fulfilled with
the default Linux scheduler. Nevertheless, Linux has multiple
scheduling policies. Each Linux process can have a different
scheduling policy and many of them are real-time oriented.
In this article we will target the SCHED DEADLINE policy.
It allows a process to have a period and a deadline. Its
implementation uses GEDF (Global Earliest Deadline First)
in conjunction with CBS (Constant Bandwidth Server). To
ensure an optimal scheduling, the scheduler needs to know the
process runtime (cf figure 1). This runtime must be greater than
its average computation time (or WCET for hard real-time).
These 3 properties will be used by the scheduler to ensure the
scheduling policy. CBS throttles threads attempting to over-run
their runtime to guarantee non-interference between tasks.

arrival/wakeup absolute deadline

| start time |

| | |

v v v

-x--------xooooooooooooooooo--------x--------x--

|<-- Runtime ------->|

|<----------- Deadline ----------->|

|<-------------- Period ------------------->|

Fig. 1. Parameters of a SCHED DEADLINE Linux process (man sched(7))

3

In the Linux system, SCHED DEADLINE threads have
the higher priority. In other words, if one SCHED DEADLINE
thread is runnable it will preempt threads scheduled by another
policy.

B. Real-time kernel

Scheduling is not the only characteristic needed for an
operating system to be considered as real-time. In Linux the
PREEMPT-RT patch has been created to adapt the kernel to a
real-time context. This patch is now merged into the upstream
Linux stable version. As presented in the previous section, the
Linux scheduling can be real-time and implement rt-throttling
to ensure that no tasks hang the system. The PREEMPT-RT
patch also enables the priority inheritance mechanism in the
Linux scheduler. It allows a task with a low priority to take an
higher priority if it is blocking a mutually exclusive resource.
Thereby, the high priority task waiting for the mutually exclu-
sive resource will be executed as soon as possible.

One important aspect of the Linux PREEMPT-RT patch is
the preemption model. In the mainline kernel, plenty of the
code is non preemptible which can delay the tasks execution
time. To reduce the impact of this, it is possible to make
the kernel in a fully preemptible mode. It means that all
kernel code is preemptible (except a few critical parts). Large
preemption disabled sections are split with locking constructs.
Threaded interrupts handlers are forced i.e interrupts han-
dlers run in a threaded context and new mechanisms are
implemented such as rt mutex and spinlocks which allows
preemption in mutexes and raw spinlocks.

V. METHODOLOGY

A. Protocol

In this section we describe the protocol used to get the
results presented in this paper. For each metric we want to
retrieve two measurements. One measurement before calling
the calculus function and one measurement after. Then, the
difference between those two measurements is made to obtain
the value of the metric during the execution of the calculus
function. For example, to retrieve the number of L2 cache
refill made by one execution of the AOCS calculus function,
we measure the value of the L2 cache refill before calling
the function and after calling the function. Then we can take
the difference between those two values to get the number
of L2 cache refill made during one execution of the AOCS
calculus function. Note that the measurements are only taken
on the AOCS process and not on the I/Os processes. It means
that writing and reading from the pipes is not considered in
the measurements. Also all measurements are taken on one
process only which is considered the victim of the experiment.
All others processes (users and kernel ones) and all kernel
activities are considered the attackers of the system. In the
ARM Cortex A53 used in these experiments performance
counters registers are 32 bits wide. As we are running an
AOCS process running at a frequency of 8Hz for 16 000 steps,
the entire execution takes around 33 minutes. During such a
long time, the 32 bits registers can overflowed, in this case
the counts restart at zero. In most cases this is not a problem
as we are taking the difference between two values. However,
when the overflow happens during the execution of the calculus

1 f o r (i = 0 ; i < nbStep ; i ++) {
2 c l o c k g e t t i m e (CLOCK REALTIME, . . .) ;
3 r e a d (p ipe , . . .) ;
4 . . .
5

6 r e a d c o u n t e r (i) ;
7 c l o c k g e t t i m e (CLOCK PROCESS CPUTIME ID , . . .) ;
8 Aocs s t ep () ;
9

10 r e a d c o u n t e r (i) ;
11 c l o c k g e t t i m e (CLOCK PROCESS CPUTIME ID , . . .) ;
12 c l o c k g e t t i m e (CLOCK REALTIME, . . .) ;
13 . . .
14 }
15

Fig. 2. C code of the measure point inside the AOCS process

function, the value of the difference is not correct. To repair
those values we add 232 to each non valid value. The only
measure taken before reading the input pipe is from the clock
because one important metric to analyze is the wake up date
of the process. The code of the measurements is shown in the
figure 2.

We collected a lot of data from the performance counters,
mostly on hardware memory events (bus accesses, cache
accesses, cache refills, ...). In the scope of this paper, data
such as context switches or core migration during the execution
of an AOCS process could be interesting. Unfortunately, we
weren’t able to retrieve those data precisely enough. This is
due to the fact that there is no way to know when a process is
migrated or preempted. It is possible to get the number of the
core the process is executed on, but nothing assures you that
this won’t change in the next moments. Thus, we aren’t enable
to get information about context switches or core migrations
by retrieving hardware data.

In all these experiments we consider a “light” Linux distri-
bution made with Yocto. The Linux kernel used in this paper
is a 5.4 version of the Xilinx Linux kernel found in the official
Xilinx Github [20]. According to Xilinx recommendations
([21]) we used the Yocto zeus version from the official Yocto
repository ([22]). Using Yocto allows a complete theoretical
control of what’s inside the Linux operating system. In the
scope of this article, each application is modelled by a Linux
process and each Linux process have exactly one thread i.e
threads = processes.

B. Measures impacts

Measure methods affect the experiment and therefore mod-
ify the results. Removing measure impacts is difficult and most
of the time impossible. Therefore, the question is are those
impacts negligible in these experiments ?

Every measures described in the scope of these experiments
are taken inside a period of execution. It means that every code
outside of the periodic loop isn’t considered in the measures
results. In particular, the loading and initialization phases of
the application are not in the measures scope.

Measures presented in this article are coming from two
different sources. The first one is clocks, managed by the
operating system and used to measures execution time, relative

4

wake up time and processing time i.e time passed on the CPU
between the beginning and the end of a cycle. Retrieving the
value from those clocks takes approximately the same amount
of time each time. The time value is encoded with two 64 bits
integers, one for the nanoseconds and the other one for the
seconds. Impacts of retrieving a timing value is then constant.
The second source for the measures is performance counters.
The activation of those counters doesn’t modify the execution
of the code. Retrieving the value of those counters imply
reading CPU registers which aren’t in the main memory. As
for the clocks, the impacts of retrieving performance counters
values are constant through the time. For both measures
sources impacts of retrieving data are constant and don’t affect
the main memory i.e no memory accesses are performed.
To be analyzed, those retrieved data need to be stored and
made available after the experiment. The storage procedure
can induce huge impacts on the measures, as the results have
to be stored on the main memory. For example, the complete
AOCS application has around 16 000 cycles which means
that if all 6 performance counters and 2 clocks are used a
storage space of 16000 ∗ (6 + 2) ∗ 64bits = 1MB will be
needed. Accessing this space requires accessing memory pages
which will generates memory accesses, page faults and other
events related to the virtual memory which will be handled by
the operating system. To reduce the effects of those memory
accesses on the experiment, measures data is placed in local
variable placed on the stack of the process and then copy to
the memory outside of the measured section. This method will
generate less impacts on the executed code but will alter a little
the memory hardware state.

Finally, impacts of retrieving measures are constant and
storage of the results is made outside the periodic loop.
Therefore, to decide if measures impacts are negligible in this
context we need to measure the constant part of the impacts.
Figure 3 shows the results when no code is executed between
two measures points. This chart represents the execution time
induced by the measure itself which comprised between 7, 5µs
and 9, 0µs. As the WCET of the AOCS process is around
1ms we can conclude that the impact of the measurements is
negligible.

0 100 200 300 400 500

7.5

8

8.5

step

Ex
ec

ut
io

n
tim

e
(in

µ
s)

Fig. 3. Measurement of execution time with no code

VI. EXPERIMENTS

Experiments presented in this paper aim at finding Linux
configurations suitable for our context. Linux have a multitude
of configurable points which can vary. To find suitable Linux
configurations we will focus on varying those configurable
points. For example, real time and isolation mechanisms such
as the PREEMPT-RT patch or the Linux namespaces are
configurable points which can vary from disabled to enabled.

In this section we present 4 experiments making measure-
ments on different configurable points. The first experiment
aims at comparing the use of same or different files by the
same processes. The second experiment measures an impact
of the Linux stock kernel on the execution time of an AOCS
process. The third experiment measures a drift in the scheduler
wake up date of a periodic process. The last experiment, is the
same as the last two but with the PREEMPT-RT patch enabled.

A. Mono file versus multiple files

Files take an important place in our experiments. Not only
they are used to store inputs and outputs of the AOCS applica-
tion, they also contain instruction data. In fact, executables are
files stored in the disk (SD card in our specific case). The file
management is completely handled by the operating system,
through multiple system calls, which try to optimize these
accesses. In this context, accessing files is a source of interfer-
ence from the operating system on applications but also from
other applications. For example, two different applications
trying to read to the same file will generate interference and
the behavior will be different as if the application was alone
on the system. The first experiment presented in this paper
aims at exhibiting the differences between applications using
the same files and applications using completely different files.
This configuration could happen when using shared libraries
as it is very common is the Linux development world.

In this experiment, two groups of applications were created
based on the AOCS code. The first group is composed of
AOCS applications using the same executable file and the
same I/Os files. For the second group each executable and I/Os
files are duplicated. For each group the same experiment was
performed and is described as follows. The experiment begins
by executing one AOCS application and measuring execution
time, process time, wake-up time and performance counters
related to memory such as L2 cache refill or bus accesses. The
results from this first step is used for comparison and must be
equivalent in both groups. The next step of the experiment is
to increase the number of parallel execution. The maximum
number of launched applications is 30 which represents 90
processes on the operating system (30 AOCS processes, 30
input processes and 30 output processes). In the context of
this experiment, measurements are taken on only one AOCS
process considered as the victim whereas all others AOCS and
I/Os processes are considered attackers.

In the results of this experiment we observed that when
the files are the same the performance are better on average.
The worst performance is better than for the other group of
processes. The figure 4 shows the average execution time for
the AOCS process when others AOCS processes are executed
in parallel. There is one curve for the first group and the other
curve is for the other group. In these curves we can notice

5

aberrant points as for example, the point 3 of the mono file
curve. Linux isn’t deterministic and induce a lot of variability
in the system, this is why we may have these points. In
this paper we are focusing on the curves trends and not the
particular values. Note that we did repeat those experiments a
few times and these aberrant points aren’t always at the same
spot. Although, we do not have enough data to make statistics
which could lead to removing these points.

This chart shows us that in average the group using
the same files is executed approximately two times faster.
Moreover, both curves can be separated in two phases. The
first phase is between 1 and 4 AOCS parallel while the second
phase is from 5 to 30 AOCS in parallel. In the first phase,
both curves are increasing and in the second phase they seem
constant. The hypothesis behind these observations is that the
pivot point of 4 AOCS processes in parallel is related to
the cores number of the ARM Cortex A53 the processes are
executed on. In fact, many memory hardware resources are
shared between the 4 cores of the processor (buses, L2 cache,
memory controller, RAM,...). When 2 processes are executed
in parallel, they both need to access those resources and thus
hardware resources aren’t always ready to respond to the cores
requests. When executing more than 4 processes in parallel,
cores are always occupied. If it’s not by AOCS processes
they will be by inputs or outputs processes. This means that
there is always 4 processes running at the same time and thus
memory hardware resources are busier than if there were less
than 4 processes in the system. Parallel use of the hardware
resources can explained this observation, but these are not the
only hardware interference possible in the system.

0 5 10 15 20 25 30

150

200

250

300

350

400

Number of AOCS in parallel

Ex
ec

ut
io

n
tim

e
(in

µ
s)

Mono file
Multi files

Fig. 4. Measurement of execution time in average comparison of the two
processes groups

Modifying the state of a shared memory hardware device
is another kind of interference. The figure 5 shows the number
of L2 data cache refill i.e the number of times a cache line
has to be loaded from the main memory, from the same two
groups of processes. As for the previous curve, it has been
obtained by executing the AOCS processes in parallel during
16 000 steps at a frequency of 8Hz. The curve is similar to
the previous one, but the form of it around the pilot point
is smoother. As a matter of fact, we can observe a behavior

change around the point 4 but the transition between the two
phase is not abrupt. In this case, we still can see an increasing
between the point 4 and 8 in both curves but the slope of
the curves is smaller and the shape of the curves changed
from exponential to logarithmic before becoming constant. In
other words the first phase of the curves (between 1 and 4) is
similar to the previous curves and thus induces the shape of
the execution time curves. In fact, if there are more L2 data
refill the execution time of the process will increase. Then,
the second phase shows a smaller rise of the curves because
increasing the number of parallel processes means increasing
accesses and more accesses means more L2 cache refill. The
last question raised by those charts is why is the second phase
constant ? At first, it does not seem logical that the impact
on an AOCS process is the same when there are 10 others
AOCS processes executed in parallel and when there are 30
AOCS processes executed in parallel. An hypothesis that could
explain this behavior is that the cache could be filled up or at
least all the ways accessed by the AOCS process are filled
up with other data. In this case, each time the AOCS process
is scheduled its data from the last execution has been evicted
from the cache.

0 5 10 15 20 25 30

0

1,000

2,000

3,000

4,000

Number of AOCS in parallel

N
um

be
r

of
L2

da
ta

ca
ch

e
re

fil
l Mono file

Multi files

Fig. 5. Measurement of L2 data cache refill in average, comparison of the
two processes groups

Now that the shape of the curves is described, let us focus
on the differences between the two groups of processes. In
both charts we can see a non negligible difference between
the mono file curve and the multi files one. The mono file
curve shows less L2 cache refill with a maximum of 1000
while the maximum of data cache refill for the multi files
curve exceeds 3000. This means that when using the same
files, there is a better re usability of the data which can be
found in the caches. But address space of different processes
in Linux are completely separated. In other words, data from a
process A cannot be shared with a process B and thus process
B cannot use data from the cache already loaded by process
A. Then how can we explained the previous results?

When accessing a file in Linux a process uses system calls.
All actions related to a file is then handled by the operating
system. Even if there are 30 different processes executing in
parallel with different address space, they are all taking their

6

data from the same file. All reads and writes are performed
by the operating system from the kernel address space. Which
means that all processes reading or writing to the same file
can used the same cache line without needs to refill it.

To conclude, using the same files both as executable
and data I/Os for parallel processes change drastically the
performance we observed. We showed in this sub section that
the impact of using or not the same files in parallel execution
of processes is impacted by two distinct phenomenon.

B. Periodic interference peaks

During the first experiment we observed that when an
AOCS process was executed alone on the system its execution
time was impacted by interference. In fact, periodic peaks are
present in the execution time curve as shown in the figure
6. We investigated to know if those peaks comes from the
application code itself or if it is interference generated by the
operating system. In this experiment, there are no difference
between mono or multi files as we are only considering one
AOCS process.

0 625 1 250 1 875
100

200

300

400

Time of the experiment (in seconds)

Ex
ec

ut
io

n
tim

e
(in

µ
s)

Fig. 6. Measurement of execution time for each step of an AOCS application
with a period of 125 ms without any other application running in parallel

To determine the origin of those peaks two observations
were made. First, the peaks don’t appear at the same steps for
every execution of the AOCS process. We know that the AOCS
code we use doesn’t have the same behavior for each step but
one step will always execute the same code if its inputs are
the same. In the scope of these experiments, I/Os files aren’t
modified. After this observation, the hypothesis that the peaks
do not come from the AOCS code itself seems plausible. To
assure that we had the right hypothesis we try to redo the
measurements with a modified period. In this case, the period
of the peaks didn’t change. The figure 7 shows the results for
a period of 50ms. In fact, there are 20 peaks in 625 seconds
in both curves.

It is clear that the period of those peaks isn’t based on the
steps of the AOCS application. Therefore, we can now assure
that those peaks come from the operating system. Note that
these peaks also appear in the figure 2 which also confirm that
the interference don’t come from the AOCS algorithm.

0 250 500 750

100

200

300

400

Time of the experiment (in seconds)

Ex
ec

ut
io

n
tim

e
(in

µ
s)

Fig. 7. Measurement of execution time for each step of an AOCS application
with a period of 50ms without any other application running in parallel

One other simple hypothesis could be that those peaks
come from a context switch. To answer this question an ana-
lyze of the difference between processing time and execution
time can be made. The execution time counts the time spent
by the processor when executing only the AOCS code. The
processing time is the difference between the end date and the
beginning date of the process. Therefore, if a context switch
occurred during the execution of the process, the processing
time will be greater than the execution time. We observed that
there is no correlation between this difference and the peaks
observed in the execution time chart. In fact, the processing
time is not greater when there is a peak in the execution time
curve. The figure 8 shows the result of the difference between
processing time and execution time. Therefore, this hypothesis
can be excluded because there are no peaks in this curve.

0 5,000 10,000 15,000

0

100

200

300

400

Step

T
im

e
di

ffe
re

nc
e

(in
µ

s)

Fig. 8. Measurement of the difference between processing time and execution
time.

Now the question is to find where the peaks come from. We
can note that there are two types of peaks. There are smaller
peaks with smaller period and bigger peaks with bigger period.

7

We could also note that there are exactly 9 small peaks between
two big peaks. It seems that 2 periodic phenomena impact
the AOCS process. There are 2 hypothesis for the second
phenomenon with the bigger peaks. Either it is a particular
execution of the first phenomenon occurring each 10 peaks.
Or it can be from a completely different source and the 2
phenomena are synchronised for some reasons.

The measures taken from the performance counters are
difficult to analyze because the AOCS algorithm doesn’t have
the same behavior at each steps. In particular, it doesn’t make
the same amount of memory accesses and doesn’t access the
same data in the main memory. Thereby, it is hard to know if
the AOCS algorithm play a role in the value of those peaks or
if they are only induced by the environment.

This questions lead to create another algorithm to help us
find the source of the observed peaks. The new application is
reading from an integers array stored in memory. To ensure
that the compiler won’t remove those unused accesses a sum
of each integer of the array is performed. Moreover, this sum
is repeated periodically at a frequency of 8Hz and uses the
SCHED DEADLINE policy from the Linux scheduler. We
also implemented the same measurements techniques as for the
AOCS process. The measures from this new algorithm give the
same peaks in the execution time data. This confirmed once
again that the operating system is altering the behavior of the
process. What’s interesting in this case is that the memory
accesses and the L1 data accesses are constant at each steps.
Each new refill from the L1 and L2 data cache can then
be considered an interference from the operating system. As
shown in the figure 9 there are also peaks in the L2 data cache
refill. Those peaks occur at the same steps as the one observed
in the execution time curve.

0 5,000 10,000 15,000

0

1,000

2,000

3,000

Step

N
um

be
r

of
L2

da
ta

ca
ch

e
re

fil
l

Fig. 9. Measurement of L2 data cache refill for the AOCS application

At this point the main hypothesis is that Linux or a
hardware component is flushing all the memory hardware
system (L1, L2 and TLB), either because it makes a lot of
accesses to the memory or because it performs a hardware flush
(for example because of security reasons). After this action is
performed the process is woken up and have to refill all its
data in the memory system which takes time and generates

the peaks we observed. This hypothesis also explains why
the curve which shows the difference between processing and
execution time presented in the figure 8 is not constant. In fact,
as the process as to access the main memory the CPU has to
wait, when the CPU is waiting the real time clock is running
but not the one counting the time passed in the process. Note
that these peaks are observed even for very small array. It
means, that even when the process has only a small amount of
data in the caches, the operating system ejects it. This also
confirms the hypothesis of an entire flush of the hardware
memory system.

Actually kernel code responsible of this flush phenomenon
hasn’t yet been identified. An analysis of the behavior of the
system with the Linux Ftrace tool has been made but no
correlation has been found.

C. Scheduler wake-up drift

In the embedded space system the wake up date of the peri-
odic process is an important metric to measure. If the scheduler
wakes up the process a little later or a little sooner it can induce
a drift which will result in a desynchronization of the process
and the sensors sending input data. This desynchronization
could become a problem, especially since satellites are running
for years without being rebooted. We measured the wake up
date of the AOCS process with the CLOCK MONOTONIC
of Linux which is a system wide clock. The chart presented in
figure 10 shows the relative wake up date (in ns) at each step.
The first wake up date is taken as a reference. The rest of the
curve is obtained by subtracting step∗1.25∗108 at each wake
up date. It shows that after 15 000 steps the wake up date is
40 µs sooner that it should have been if the scheduler used an
exact period of 125.00 ms.

0 5,000 10,000 15,000

-40

-30

-20

-10

0

Step

R
el

at
iv

e
wa

ke
up

da
te

(in
µ

s)

Fig. 10. Measurement of the wake up date for each step relatively to the
first wake up date

The first observation made on that curve is that the
scheduler seems to induce a drift in the wake up date. One
hypothesis to explain this drift could be a desynchronization
between the internal scheduler clock and the clock monotonic
used in this experiment.

8

The second observation is that the peaks presented on the
section B also appears on the wake up date curve. Those peaks
are similar in the figure 10 and in the figure 6 even though
they came from different execution. The scheduler drift seems
to be linear but can be impacted by the same phenomenon
than the AOCS process itself. We observe that on the same
execution measures the peaks appear exactly at the same steps
on both curves.

To help find what can induce this drift we look at the
difference between two consecutive wake up dates. The figure
11 shows for each step the difference between the wake up
date of this step and the wake up date of the step before minus
1.25 ∗ 108. In other words, a value of 1 at the step 50 means
that the difference of the wake up date between the step 50
and the step 49 is 125ms + 1 µs.

0 5,000 10,000 15,000

-10

-5

0

5

10

15

Step

W
ak

e
up

da
te

di
ffe

re
nc

e
(in

µ
s)

Fig. 11. Measurement of the wake up date difference for each step

In this curve we can remark that there are also peaks.
As for the other curves, the peaks appear on the same steps
in all different curves. This means that the two phenomenon
producing those peaks both in the scheduler and the AOCS
process are correlated. Moreover in the figure 11, the positive
peaks seem to be correlated to negative ones. The figure 12
shows the same curve but only the first 100 steps. At the
step 61 we could see a positive peak of around 8 µs. This
peak is followed right after by a negative one at the step 62
of around -6.5 µs. The hypothesis behind this observation is
that the scheduler try to catch up its delay at the step 61 by
scheduling the next step a little earlier. But the positive delay
at the step 61 is greater than the negative delay at the step
62. As a result the scheduler induces a positive delay at the
step 63. By looking closely at the figure 11 we observe that
this phenomenon is reproduced for each positive and negative
peak. Another hypothesis could be that the time spent at
executing the operating system code isn’t taking into account
for calculating the next period.

We can then generalise the rationale for the steps 61 and
62. Thus the scheduler induces a positive delay for each
peak which should result in a positive delay in the entire
measurement. However, the figure 10 shows that globally there
is a negative delay.

Finally measuring wake up dates of the AOCS process
showed two things. First, the phenomenon impacting the
execution time presented in the last sub section also impacts
the scheduling of the process. This impact induces a positive
delay in the wake up dates. Second, the wake up date are
globally drifting and the process at the step 15 000 is scheduled
sooner than it should have been.

0 20 40 60 80 100

0

5

-5

7

2

-2

-7

9

Step
W

ak
e

up
da

te
di

ffe
re

nc
e

(in
µ

s)

Fig. 12. Measurement of the wake up date difference for each step for the
first 100 steps

As explained in the introduction of this sub section, this
drift could be a problem if the system is not rebooted very
often. This raises the followed question: does the phenomenon
result from a desynchronisation between two internal clocks or
a software behavior of the scheduler itself?

D. Impact of PREEMPT-RT

One of the first question when Linux is proposed in a
critical embedded context is: is the PREEMPT-RT patch of
Linux necessary ? We reproduced the 2 last experiments
with PREEMPT-RT to find out if the real time patch reduces
the observed phenomenon. The next paragraphs describe the
obtained results for each experiment.

For the periodic peaks experiment adding PREEMPT-RT
doesn’t change the actual behavior. The peaks still appear in
the execution time curve and are correlated to the peaks in the
L2 cache refill curve. However, our observations are described
as follows:

• The average execution time is the same with and
without the PREEMPT-RT patch enabled. Globally,
for each step the execution time isn’t modified by
PREEMPT-RT. We measured an average execution
time of 145 393 nanoseconds without PREEMPT-RT
and an average execution time of 146 429 nanoseconds
with the PREEMPT-RT patch. This means that there
is a difference of around one microsecond between the
two average execution time.

• The bigger peaks have the same value with and
without the PREEMPT-RT patch enabled.

9

• The smaller peaks are higher with PREEMPT-RT than
without.

The first observation means that the PREEMPT-RT patch
doesn’t add any overhead to the execution time. However,
it seems that the PREEMPT-RT patch induces a phenomena
which results in a higher impact on the AOCS process. We
don’t have any hypothesis at this time of what causes this
impact since we aren’t sure of what causes the peaks in the
first place.

For the scheduler wake up date drift the curves from both
cases seem to have the same characteristics. In fact, the drift is
still there and its slope is the same. The patch PREEMPT-RT
doesn’t have any impact on the wake up date drift.

Finally, in these two experiments, adding the PREEMPT-
RT patch doesn’t seem to modify the behavior except a small
change in the heights of the smaller peaks in the execution
time curve. In fact, using the SCHED DEADLINE scheduling
policy from Linux makes the AOCS process a high priority
process. Without a lot of external interruptions the AOCS
process isn’t bothered very often. The scheduling policy is
then enough for our process to be efficient.

VII. CONCLUSION AND PERSPECTIVES

A. Conclusion on the observation

The goal of this paper was to observe how the Linux kernel
impacts the execution of real-time processes.

The first experiment showed us that system calls provided
by Linux to access files seem to be optimised to increase
the performance when multiple processes want to access the
same files. In our experiment, using shared files produces less
interference than using different files when reading the files
even if the address space of processes are completely isolated
by the operating system.

The next two experiments presented the impacts of the
stock Linux kernel on the AOCS process. In the first experi-
ment, we have periodic impacts increasing the execution time.
In the second one, we found a drift in the wake up date of
periodic processes. Both of these phenomena can be a problem
depending on the chosen ϵ mentioned in the introduction.
For instance, in the AOCS figure 6 shows that perturbations
induced by Linux double the execution time. In this case,
if ϵ (i.e margin associated with AOCS) is lower than the
isolated execution time then this Linux-based implementation
doesn’t meet the requirements. However, the impacts described
in those two experiments is constant and predictable through
time. In fact, in all the measurements we made we found the
same impact in both experiments. The execution time peaks
are periodic with a constant period. For the scheduler wake up
date drift, the slope is constant and around -40 microseconds
for 16 000 steps (3̃3 minutes).

Finally, we did the same two experiments with another
variation of our Linux kernel. In this case, we enabled the
PREEMPT-RT patch to find if it has an impact on the two
observed phenomenon. Only a small change in the value of
the small peaks has been spotted but the global behavior didn’t
change. Thus, the PREEMPT-RT patch doesn’t seem to impact
the observed phenomenon.

B. Future work

For the future, the first thing we want to do is find the root
cause of the two observed phenomena. In order to do that,
we could add statistics tools to help understand the measured
data and extract information on the phenomena. In this paper
we focused on a qualitative rationale, introducing statistics
will help for producing a more quantitative rationale. Another
approach to find the root cause could be to use tools provided
by the kernel itself such as ftrace. This tool will provide kernel
information on what is actually executed by the kernel. Using
kernel tools could also give information on core migrations
and context switches.

The SCHED DEADLINE policy used in this paper is
based on the EDF algorithm. A future work could be to find a
link between the scheduler wake up date drift and the formal
equations used to code the SCHED DEADLINE scheduler.

In this paper, we focused on the AOCS algorithm, in the
future using other space applications will be useful to find
other interference and characterize the already observed ones.

Finally, we would like to introduce containerization con-
figuration in our kernel such as namespaces and cgroups. In
fact, the goal of our work is to reduce interference between
multiple applications and their environment in a Linux context.
Linux provides isolation configuration and we would like to
find if these tools could help seeking a certain isolation in our
context.

REFERENCES

[1] J. Rushby, “Partitioning in avionics architectures: Requirements, mech-
anisms, and assurance,” SRI INTERNATIONAL MENLO PARK CA
COMPUTER SCIENCE LAB, Tech. Rep., 2000.

[2] J. Bredereke, “A survey of time and space partitioning for space
avionics,” 2017.

[3] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and
C. Taliercio, “Performance comparison of vxworks, linux, rtai, and
xenomai in a hard real-time application,” IEEE Transactions on Nuclear
Science, vol. 55, no. 1, pp. 435–439, 2008.

[4] H. Leppinen, “Current use of linux in spacecraft flight software,” IEEE
Aerospace and Electronic Systems Magazine, vol. 32, no. 10, pp. 4–13,
2017.

[5] J. H. Brown and B. Martin, “How fast is fast enough? choosing between
xenomai and linux for real-time applications,” in proc. of the 12th
Real-Time Linux Workshop (RTLWS’12), 2010, pp. 1–17.

[6] D. Bristot de Oliveira and R. Oliveira, “Timing analysis of the preempt
rt linux kernel,” Software: Practice and Experience, vol. 46, pp. n/a–n/a,
05 2015.

[7] D. Bristot de Oliveira, D. Casini, R. Oliveira, and T. Cucinotta,
“Demystifying the real-time linux scheduling latency,” 07 2020.

[8] C. Emde, “Long-term monitoring of apparent latency in preempt rt linux
real-time systems,” 2010.

[9] T. Cucinotta, “An efficient and scalable implementation of global edf
in linux,” 01 2011.

[10] D. Faggioli, F. Checconi, S. Superiore, S. Anna, M. Trimarchi, and
C. Scordino, “An edf scheduling class for the linux kernel,” 01 2009.

[11] P. Mckenney and D. Sarma, “Towards hard realtime response from the
linux kernel on smp hardware,” 01 2005.

[12] J. Alglave, L. Maranget, P. E. McKenney, A. Parri, and A. Stern,
“Frightening small children and disconcerting grown-ups: Concurrency
in the linux kernel,” SIGPLAN Not., vol. 53, no. 2, p. 405–418, mar
2018. [Online]. Available: https://doi.org/10.1145/3296957.3177156

10

[13] J. Kim, P. Shin, S. Noh, D. Ham, and S. Hong, “Reducing mem-
ory interference latency of safety-critical applications via memory
request throttling and linux cgroup,” in 2018 31st IEEE International
System-on-Chip Conference (SOCC), 2018, pp. 215–220.

[14] J. Kim, P. Shin, M. Kim, and S. Hong, “Memory-aware fair-share
scheduling for improved performance isolation in the linux kernel,”
IEEE Access, vol. 8, pp. 98 874–98 886, 2020.

[15] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A software
memory partition approach for eliminating bank-level interference in
multicore systems,” in Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
367–376. [Online]. Available: https://doi.org/10.1145/2370816.2370869

[16] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time
scheduling in the linux kernel,” ACM SIGBED Review, vol. 16, no. 3,
pp. 33–38, 2019.

[17] H. Grip, J. Lam, D. Bayard, D. Conway, G. Singh, R. Brockers,
J. Delaune, L. Matthies, C. Malpica, T. Brown, A. Jain, A. Martin,
and G. Merewether, “Flight control system for nasa’s mars helicopter,”
01 2019.

[18] B. B. Brandenburg and J. H. Anderson, “Joint opportunities for real-
time linux and real-time systems research,” 2009.

[19] L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole, “A measurement-
based analysis of the real-time performance of linux,” in Proceedings.
Eighth IEEE Real-Time and Embedded Technology and Applications
Symposium, 2002, pp. 133–142.

[20] (2021) The github repository of the xilinx linux kernel. [Online].
Available: https://github.com/Xilinx/linux-xlnx/tree/xlnx rebase v5.4

[21] (2021) Xilinx wiki on yocto. [Online]. Available: https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto4

[22] (2021) Yocto zeus version repository. [Online]. Available:
http://layers.openembedded.org/layerindex/branch/zeus/layers/

11

Session Th.4.A

Autonomy

Thursday 2nd June

14:00

–

Amphithéâtre

465

466

Efficient Use of Systems Theoretic Process Analysis

for Automated Driving Systems

Rolf Johansson

Astus AB

Mölndal, Sweden

rolf@astus.se

Abstract— This paper describes how to use Systems Theoretic

Process Analysis (STPA) for the purpose of being part of a safety

case of an Automated Driving System (ADS). A central

contribution is the proposed control structure following a decision

hierarchy. This enables the generation of a list of efficient unsafe

control actions (UCA) and corresponding controller constraints,

for which it is possible to cover a complete list of loss scenarios.

These results can master the general problem of reaching

completeness with respect to all potential unsafe scenarios. In

particular this solves some problems highlighted in ISO 21448

(SOTIF), like the so-called Area 3 problem and the problem of

triggering conditions. The most important outcome of this paper

is that it enables reaching completeness in the verification strategy

without running into the problem of “billion miles of driving”,

which can be the case when the set of loss scenarios leading to

UCAs is potentially infinite. Even the “smart miles”

argumentation is avoided this way, as the definition of the

scenarios related to the UCA of the respective controllers is not

formulated such that an enormous number of test miles is

required.

Keywords— Autonomous driving, STPA, Safety, ADS

I. INTRODUCTION

It is a very hard problem to provide a safety case for an
Automated Driving System, ADS, for several reasons (extreme
complexity of traffic behaviour, implicit task to solve, in
principle infinity number of critical scenarios, etc.). The
differences compared to many other applications are significant,
which means that using experiences and best practices from
other domains will still call for specific innovations to also cover
the ADS cases. In this paper we focus on how to make System
Theoretic Process Analysis, STPA, efficient when having an
ADS of level 3 and 4 in scope.

The STPA methodology consists of four steps: “Define
purpose of the Analysis”, “Model the Control Structure”,
“Identify Unsafe Control Actions”, and “Identify Loss
Scenarios” [1]. One of the most important properties of STPA
needed for a successful application is to identify a control
structure efficient for the purpose. This shall depict a dynamic
control structure being able to include all causes of failure. What
“all” really implies here is one of the central challenges. One of
the implications of “all” is that a safety case for an ADS shall
have a predictive power, meaning that all root causes that could
jeopardize safe traffic behaviour shall be covered. For an ADS

this means on the one hand that the very complex environment
needs to be captured in the control structure, such that the
interaction with other traffic actors can be covered. On the other
hand, it shall also capture the essence of what it takes to act
autonomously in terms of a decision hierarchy and complex
relations to a user.

In this paper, we show how to instantiate the STPA
methodology for an ADS, where the connotation of an ADS is
following the SAE definition [2]. A central contribution is a
control structure built around the decision hierarchy of
strategical, tactical, and operational decisions, which can be
used to structure both the relations to the user and the relations
to the environment, including all other traffic actors. This way,
on the one hand we cover the problem denoted “triggering
condition” in ISO 21448 [3] and on the other hand we also cover
what is denoted the “area 3” problem of hazardous unknown
scenarios. It is important to remember that the control structures
to be used in STPA are abstract models [1] and should not
directly depict any implemented controller functions. There is a
recommended by [1], to use a perspective of a dynamic control
problem rather than a failure prevention problem, or an
insufficiency prevention problem. By applying this
recommendation to our problem, we reach the advantage of
STPA, showing how to reach a proactive analysis method.

The paper is organized as follows: Sections II-V go through
the four steps of the STPA methodology and show how each of
them can be adapted to ADS. Section VI describes how the
proposed approach to use STPA for ADS relates to the state of
the art. Section VII explains how the problems, specifically
considered hard for ADS, are mastered by the proposed
approach. Finally, section VIII contains a summary and
conclusions.

II. SCOPE FOR STPA FOR ADS

The first step of the STPA methodology is to define the
purpose of the analysis. In our case it is about a safety case for
an ADS, which means that this step is very closely related to the
definition of what “Safe” shall mean in the safety case of an
ADS. There is so far no agreed global consensus on this, which
is not so surprising, as what is considered as a loss depends on
what is “unacceptable to the stakeholders” [1], p16. Different
ADSs having different use cases being deployed on different
markets, may consequently also meet different stakeholders
with different understanding of what is (un)acceptable.

One way to formulate what is acceptable in a very distinct
way, still leaving flexibility for different use cases, is the
formulation of positive risk balance as criteria for what is
acceptable: “diminution in harm compared with human driving,
in other words a positive balance of risks” [4]. As further
elaborated and explained in [5], the important conclusion from
this report is that “it agrees with balancing risks against one
another rather than with ruling out any calculation at all”.
Applying this to the STPA sub step of Identify Losses means that
what the stakeholders today consider as an unsafe outcome in a
given traffic environment, should be the base in the formulation
of what are the losses to consider.

The outcome of the first STPA step is to produce: System-
level hazards, System-level constraints, and Sub-hazard
constraints. When applying this to an ADS, it is very important
to identify hazards in an efficient way. From the STPA
handbook, a hazard in the context of this methodology is to be
understood as: “a system state or set of conditions that, together
with a particular set of worst-case environmental conditions,
will lead to a loss”[1], p 17, which is essentially the same as in
the functional safety standard for road vehicles, ISO 26262:
“potential source of harm caused by malfunctioning behaviour
of the item”[6]. In both these definitions the intent is to identify
something that can be the responsibility of the system itself to
avoid. The system design can then get input requirements to be
performed such that the hazards are avoided.

In most safety standards, the hazard analysis and risk
assessment (HARA) is the prescribed method to identify what
are applicable hazards and their related system-level constraints.
In ISO 26262, the latter are denoted safety goals. When
specifically having ADS in scope, it is possible to make an
increase in responsibility of the system itself, compared to how
an Item in general can be analysed according to ISO 26262. In a
classical HARA, we leave outside of the responsibility of the
system to restrict the “particular set of worst-case environmental
conditions [that] will lead to a loss”[1], p17. In this paper, we
propose to rather include this responsibility to the ADS itself,
which means that the hazards as expected for the STPA will
directly become the loss scenes (or “crash scene” according to
terminology of [2]). This fits very well to the control structure
following a decision hierarchy of responsibility, explained in the
following section. In [7], there is a detailed description about
how to identify system-level safety requirements for an ADS,
i.e. generating the assumed outcomes for this first step of the
STPA methodology. The quantitative approach presented there
is also fully compliant with the recommendation of [4] and [5]
as discussed above.

III. CONTROL STRUCTURE

A. The Second STPA Step in General

The second step of the STPA methodology is to “Model the
Control Structure”. It is important to understand that this is not
about representing the implementation of the system, but to
identify a control structure efficient for the given purpose. More
specifically, the handbook says: “A hierarchical control
structure is a system model that is composed of feedback control
loops. An effective control structure will enforce constraints on
the behavior of the overall system”[1], p 22. To get the

efficiency of STPA, it is critical to identify “multiple interacting
control loops [which] can be modeled in a hierarchical control
structure”[1], p23, such that the purpose is supported. In our
case, this means that we shall define a control structure where
the feed-back loops together can enforce the increased
responsibility as suggested in the previous section.

B. The Decision Hiearchy of ADS

A basic conceptual control structure applicable for an ADS
is the decision hierarchy used in [2], and inherited from [8]:
strategical, tactical, and operational decisions. A higher-level
decision controls a lower-level decision in the sense that it
defines what the lower-level controller shall aim for. A major
result from our STPA pattern is that any lower-level controller
shall give continuous feedback concerning its capabilities to
fulfil control actions from the higher-level controller. This is a
major means to identify controller constraints such that unsafe
control actions can be sufficiently avoided. By this way of
identifying the constraints on the unsafe control actions (UCA),
we can also reach completeness in describing the loss scenarios
as further elaborated below.

A general challenge for STPA is to show completeness with
respect to all loss scenarios of concern. This is also a major issue
in ISO 21448, where all overlooked important scenarios are
denoted area 3 [3]. We use the inherent advantage of STPA,
avoiding putting the chain-of-failure (capability limits) events as
the fundament for the analysis and instead use a conceptual
controller structure on a logical level of abstraction. This way
we can master the area 3 problem in general, as well as the
problem of reaching completeness w.r.t. triggering conditions.
A key is to identify what are the constraints on the different
levels of control to be able to safely “control” both the ADS user,
and all relevant traffic actors. Please note that in the STPA
context, to “control” does not imply obedience [1], p26. It is the
normal case for STPA that control structures often include
components for which executable models do not exist, which
obviously is the case when human actors (and animals etc) are
part of the controlled process. Still, by separating the
responsibilities among the controllers, and putting appropriate
controller constraints, we can reach completeness w.r.t.
situations of more or less infinite variants of human behaviour.

The general high-level control structure we have identified
as being efficient for analysing an ADS, is as depicted in Figure
1. Each of these controllers can then be further functionally
decomposed to a more fine-grained controller structure. An
example of this is shown in Figure 2.

In this paper we list what is the task of each controller level,
and what then becomes the corresponding unsafe control
actions. We also explain how this control structure can be used
for identifying a set of unsafe control actions, and how the this
enables a fairly limited set of loss scenarios. A major outcome
of this control structure, is that the corresponding set of loss
scenarios can be expressed in a limited way, which is a very
valuable result when solving the classical verification problem
of an ADS: how to argue that the used set of scenarios is large
enough. This is how the area 3 problem is avoided, without
running into the trap of calling for a “billion miles of test

driving”. A more exhaustive description and analysis how these
properties are reached are found in section VII below.

C. Strategical Controller

The main task of the strategical decision-level controller is
to define the goal of the trip. This includes a negotiation with the
Mobility-as-a-Service (MaaS) / Transport-as-a-Service (TaaS)
customer, but it also includes the alternatives of never to start,
and of interrupting a trip changing its strategical decision to a
minimal risk condition, MRC. This means that the MaaS/TaaS
customer might come with preferred trip destinations, but it is
the ADS strategical controller that makes the decision of what is
a safe strategical control action on this level, i.e. formulates the
safe control action for the tactical decision level controller to
execute. It is important that the final strategical-level controller
decision lay with the ADS (and not with the human customer),
to be able to avoid any unsafe control action. It is fundamental
to formulate constraints on the strategical decision level
controller, not to accept any strategical decision that cannot be
guaranteed to be able to reach safety. As this is a control-loop
responding to feed-back, the strategical decision needs to be
reassured constantly, which for example may lead to either
suggesting the passenger in the driver’s seat to take back the
control (both level 3 and 4), request the fallback-ready user to

take back the control (level 3), or to change the ADS strategical
decision to an MRC (level 4). In section IV below, we show a
full set of unsafe control actions for the strategical controller,
and how these can be connected to a finite set of loss scenarios.

D. Tactical Controller

The main task of the tactical decision level is to decide how
to reach the given strategical goal. This includes decisions like
for example: what vehicle speed to aim for, what distances to
keep to other actors and objects, what lanes to use, when to
initiate an overtake, etc. A critical controller constraint is to
guarantee that any future scenario will be able to be handled
safely. This way of formulating the problem puts the focus on
the power of the tactical decisions, as they are part of creating
the scenarios. A major means to handle critical scenarios can be
to avoid them in the first place. By formulating controller
constraints restricting some possible critical scenarios, the ADS
safety argumentation problem can be mastered. In section IV
below, we show what this implies in terms of unsafe control
actions and how to formulate such controller constraints. We
also discuss how this enables the limited set of related loss
scenarios. In summary, the unsafe control actions can be
formulated as either providing trajectory setpoints outside the
constraints as communicated by the operational controller, or by

Destination and waypoint requests

Ready to drive

Request to take over

Operational

Capability

Process Values

Destination and waypoint setpoints

(including MRC as possible setpoint value)

Tactical controller

Operational controller

Traffic environment Ego vehicle

Trajectory

Setpoints

World Model

Process Values

Actuator commands:

Accelerate / Brake / Steer
Ego Vehicle

Process Values

Strategical controller

Destination and

waypoint capabilities

Driving mode status

Request to take over

Human User

(fallback-ready driver,

passenger in driver’s seat,

human driver)

MaaS/TaaS Customer

Acceptance status of destinations and waypoints

Figure 1 Control Structure of ADS

defining trajectory setpoints not being shown as (recursively)
safe. This latter property is the very most specific for
autonomous driving, and this controller constraint is explained
in more detail in section IV below.

E. Operational Controller

On the operational decision level, we find the traditional
controller model, that for an ADS is to execute a given
trajectory. The controller constraints to avoid unsafe control
actions include what it takes to be sufficiently close to the given
trajectory. Whether this trajectory is safe or not, is not a question
for the operational level controller for which the only task is to
execute a trajectory that is deemed safe by the controller on
higher level. As for all the controllers, this is a continuous
process where new decisions are given and new feed-back from
the controlled process appears all the time. The important thing
is that the controller constraints are identified such that the feed-
back loops of the controllers can guarantee the ADS to stay safe.
By limiting the task for the operational controller to what is
complementary to the two other controllers, it is possible to limit
the set of loss scenarios, and thus to formulate a feasible
verification strategy avoiding the ‘billion miles problem’.

Please note that this controller then can be further refined
and depicted as the composition of a set of cascaded controllers,
which are following the traditional pattern of cascaded
controllers. It is important not to mix up the controller hierarchy
emphasized in this paper with the identification of a traditional

cascaded controller as further detailing the operational decision
level controller. The operational decision level controller has the
task of fulfilling both position and speed in both longitudinal and
lateral directions. The longitudinal control part can be regarded
as similar to an adaptive cruise control function, with the set
points for distance and velocity, respectively, coming from the
tactical decision level controller. Such an ‘ACC controller’ can
then be depicted with a traditional cascaded controller hierarchy
with the distance controller on top of the velocity controller as
shown in Fig. 2.

IV. UNSAFE CONTROL ACTIONS

A. The Third STPA Step in General

In STPA, the term Unsafe Control action (UCA) is defined
as: “a control action that, in a particular context and worst-case
environment, will lead to a hazard”[1], p35. By identifying a
complete set of UCAs, safety can be achieved by assuring
controller constraints guaranteeing the absence of all the UCAs.
In other words, “A controller constraint specifies the controller
behaviors that need to be satisfied to prevent UCAs”[1], p40. It
is also important to remember that the UCA is only there to make
sure that completeness can be reached when identifying a set of
controller constraints. It is only about necessary conditions to
cause a hazard, not to identify sufficient conditions (an UCA
does not guarantee that a hazard will always result [1], p18).

 Figure 2 Some Controllers Inside Operational Level

Identifying the UCAs for the respective controllers gives a
guide how to design a safe system. An efficient pattern for
identifying UCAs for an ADS, is the one that both assures
completeness and is feasible to implement.

In the previous, we say that we increase the responsibility of
the ADS, compared to a general feature, to also include the task
of making sure that the scenarios that may occur can also be
handled safely. This means that we need to include this broader
responsibility when determining what is a complete set of UCAs
for the controller structure of the ADS. Doing so is not a
problem, but rather what are the expected safety requirements
on the controllers higher up in the decision hierarchy. A central
task for the strategic and tactical controllers, respectively, is to
make sure that only such scenarios may appear, which can be
safely handled. More specifically, the UCAs and their
transformations into controller constraints can be formulated for
each of the controllers as detailed in the following sub sections.

Please note that in the STPA methodology, the control
actions of concern include the possible outputs on all the
interfaces of each controller. This is important to remember for
a complex structure with interacting controllers. As specifically
noted in the STPA handbook, when discussing the possible
reasons for a UCA to occur: “Unsafe control inputs from other
controllers can also cause UCAs. These can be found during the
previous step when identifying Unsafe Control Actions for other
controllers”, [1], p 46. This implies that it is important to include
UCAs of a controller in relation to all other possibly affected
controllers, when identifying all possible interfaces and their
control actions as candidates for UCA.

B. Strategical Controller

As mentioned in section III, the task of the strategical
controller is to determine the (current) destination of the trip. As
depicted in Fig. 1, there are two main possible interfaces where
the strategical controller has the potential to perform an Unsafe
Control Action (UCA):

• Setpoints to Tactical controller

• Status info and takeover request to Human User
(fallback-ready driver, passenger in driver’s seat,
human driver)

A mistake from the strategical controller to act in any of
these two interfaces may cause the ADS to become unsafe.
Failure in the third interface may highly irritate and confuse the
MaaS/TaaS Customer of the ADS, but there will be no safety
consequences:

• Acceptance status to Maas/TaaS Customer

As a general guideline, the STPA handbook recommends
using classical Hazop guidewords to derive the UCAs from the
control actions expected on each interface, [1], p 36. However,
the applicability of this advice is dependent on the “data type”
of the control action to consider. For the controllers on the higher
levels of the proposed ADS control structure, this Hazop
technique is found less applicable, and formulating the UCAs of
the strategical controller can be listed as follows (including a
short discussion of each):

- UCA_S_1: Prescribing a destination (including MRC)
or waypoint to the tactical controller, not possible to
reach safely.

This is the main responsibility of the strategical controller in
relation to the other controllers in this control structure. The
responsibility for the tactical controller is conditional on the
assumption that the strategical decisions are possible to reach
safely.

- UCA_S_2: Providing driving mode information to the
human user (fallback-ready driver, passenger in driver’s
seat, human driver), causing mode confusion.

- UCA_S_3: Providing request to take over in a tactical
complicated situation, causing unfair transition.

- UCA_S_4: Failing to timely follow the protocol for
request to take over, causing a stuck in transition.

All these three UCAs are in relation to the I/F to the human
user (fallback-ready driver, passenger in driver’s seat, human
driver). It is outside the scope of this paper to analyse how this
interface can cause the ADS to become unsafe. How all these
three UCAs of mode confusion, unfair transitions, and stuck in
transition, relates to safety of ADS, are further elaborated in [9].

C. Tactical Controller

The tactical controller has, according to the control structure
depicted in Fig. 1, two interfaces for which UCAs are possible:

• Setpoints to Operational controller

• Capability information to Strategical controller

A mistake from the tactical controller to act in any of these
two interfaces may cause the ADS to become unsafe.
Formulating the UCAs of the tactical controller can be listed as
follows (including a discussion of each):

- UCA_T_1: Prescribing a trajectory to the operational
controller, not possible to follow safely.

This is the main responsibility of the tactical controller in
relation to the operational controller. The responsibility for the
operational controller is conditional on the assumption that the
tactical decisions are possible to execute safely. Please note that
the implication of this UCA when it comes to formulation of
controller constraints guaranteeing absence of UCAs, should be
done in a non-trivial way to serve as efficient guidance in the
ADS design. Even if it is outside the scope of this paper to go
into these details, in short it can be described as that one pattern
for related controller constraints can be formulated as
prescribing a trajectory that is all of: reachable, updatable, and
recursively safe, as further elaborated below.

Reachable is directly requiring that the trajectory prescribed
to the operational controller shall be inside what is declared
possible to reach from the operational controller. Updateable,
relates to the feedback process in the controller, requiring that
continuous updating of the trajectory has to respect what are
possible update changes in each step. Finally, recursively safe,
requires that neither the current path, nor its updates, shall
describe an unsafe scene. Directly avoiding prescribing a
trajectory containing a loss scenario might be considered as

trivial. However, the key task for the tactical controller is to
constantly update the trajectory as a consequence of the feed-
back loop structure, and it hence needs to constrain the
prescribed trajectory set-points such that it guarantees itself to
perform all these updates safely. Hence, the above UCA_T_1 is
to be covered by the triple of controller constraints guaranteeing
the properties of reachable, updatable, and recursively safe,
respectively.

- UCA_T_2: Providing capability information to the
strategical controller, enabling unsafe destinations.

This is the main responsibility of the tactical controller in
relation to the strategical controller. The responsibility of the
tactical controller is conditional on the assumption that the
strategical decisions are possible to reach safely. However, to
enable the strategical controller to perform its part, it is critical
for the tactical controller to tell the limits of what it can control
itself.

D. Operational Controller

When coming down to the operational controller, this is a
level where many descriptions of STPA has been done before.
To a large extent, these still apply in this proposed ADS solution.
The major difference is the responsibility for the operational
controller in its relation to the tactical controller.

According to the control structure depicted in Fig. 1, there
are two interfaces for which UCAs are possible:

• Actuator commands to Ego Vehicle

• Capability information to Tactical controller

A mistake from the operational controller to act in any of
these two interfaces may cause the ADS to become unsafe.
Formulating the UCAs of the operational controller can be listed
as follows (including a short discussion of each):

- UCA_O_1: Prescribing an actuator command leading to
an unsafe scene.

In a detailed STPA for an ADS, the pattern recommended in
the STPA handbook of using Hazop guidewords for each
detailed control action, is applicable on this operational level
controller. The above UCA can hence be expanded to a large set
of UCAs. However, for the scope of this paper it is sufficient to
summarize these to one generic UCA as above.

- UCA_O_2: Providing capability information to the
tactical controller, enabling unsafe trajectories.

This is the main responsibility of the operational controller
in relation to the tactical controller. The responsibility for the
operational controller is conditional on the assumption that the
tactical decisions are possible to reach safely. However, to
enable the tactical controller to perform its part, it is critical for
the operational controller to tell the limits of what it can control
itself.

V. LOSS SCENARIOS

The main purpose with the fourth and final step of the STPA
methodology is to identify why any UCA can occur, which
includes why control actions may be improperly executed. It is

about finding general answers to these questions applicable on
this abstraction level, not trying to identify single
implementation causing factors, which would rather become a
traditional FMEA [1], p51. Once again, the main point is to
reach completeness to be able to efficiently use this
methodology. For each controller, the question is how to
describe its relation to the controlled process such that it can be
analysed under what conditions the UCAs may cause unsafe
consequences. The expected outcome of this step is twofold:

• Identify scenarios that lead to an UCA

• Identify scenarios for a control action improperly
executed or not executed

As for the previous step, the major contribution in this paper
is related to the higher-level controllers, but also for the
operational controller there is a significant value in the proposed
solution.

The scenarios for a given controller is to be expressed in the
context of that controller, which means that the controlled
process is to be separately identified for each controller. For the
operational controller, the controlled process is the traditional
one covering the behaviour of ego vehicle and the entire traffic
system as depicted in Fig. 1. For the tactical controller, the
controlled process is the operational controller and for the
strategical controller the controlled process is the tactical
controller plus the behaviour of the human user (fallback-ready
driver, passenger in driver’s seat, human driver). The way these
contexts are defined makes it possible to reason about the
scenarios in a general way, which would be very, very hard
otherwise.

For the operational controller, the responsibility is to execute
the trajectories it has dynamically claimed itself that it can
execute. This means that it has full freedom in its
implementation to be conservative in its dynamic claim of
possible scenarios to handle, then leaving to the tactical
controller to ensure that the resulting scenarios are restricted
accordingly. Instead of having the very complex problem of
walking through all possible traffic scenarios, in this context the
identification of scenarios is related to the possibility for the
operational controller to claim (near-time predict) its own
capabilities. It is still a hard problem, but it can be decoupled
from the much more complex problem of analysing all possible
complex scenarios of the traffic system.

For the tactical controller, the scenarios of the controlled
process can be transformed to the problem covered by the
control constraints as above of reachable, updatable, and
recursively safe trajectories executed by the operational
controller.

For the strategical controller and the controlled process
being the human user (fallback-ready driver, passenger in
driver’s seat, human driver), the problem can be transformed to
always guaranteeing absence of mode confusion, unfair
transitions, and stuck in transition, as described above and
further elaborated in [9]. For the controlled process being the
tactical controller, the problem of identification of all affected
scenarios can be transformed to the problem covered by the
control constraints as above of guaranteeing a destination

(including MRC) or waypoint that is possible to safely reach by
the tactical controller.

Another way to express the consequence of the control
structure and their corresponding controller constraints is to say
that they become non-sensitive to a detailed description of
scenarios in the total traffic environment. We can directly use
the set of controller constraints identified in the third step,
without further needing to put each of them in a certain scenario
context. We do not need to constrain the UCAs to be considered
under only certain scenarios, but can claim them to be valid in
all scenarios. For a conventional system this is not considered as
efficient enough for the purpose of this fourth STPA step. But
for an ADS with the suggested increased responsibility, and
when applying the proposed control structure and corresponding
controller constraints, it is still efficient. For the upper-level
controllers, this follows from the limited ways of expressing
scenarios in the local context of the respective controller. For the
operational controller, this follows from the limited
responsibility for the operational controller, as a consequence of
the responsibilities put on the high-level controllers. As the
operational controller can assume that it will only run into
situations it can handle safely, the problem of linking UCAs to
possible scenarios can be mastered.

VI. RELATION TO STATE-OF-THE-ART

The way to apply STPA for ADS presented in this paper
goes beyond the state of the art by addressing how a carefully
chosen control structure together with corresponding controller
constraints, can master all the problems mentioned above in the
introduction. This proposed STPA control structure focuses on
the hierarchical decision structure that is specific of ADS, as
depicted in [2], which in turn is building on previous
characterizations of the driving task [8].

It is clearly stated in the STPA handbook [1] that the
intention of identifying a control structure for STPA is not to
depict any real implemented controller, but to conceptually
cover the essence of the functional model.

For levels of automation lower than an ADS, i.e. level 0-2,
the focus for safety analysis lies inside the operational level of
decisions. When applying STPA for such systems this means
that the focus is on identifying a control structure within the
operational level. An example of an STPA of such ADAS
function can be found in [10]. This is still the state of the art for
lower levels of automation.

To apply STPA on ADS has been done by [11] which
propose to decompose the problem in three levels of abstraction
of the architecture. The reason for introducing these abstraction
levels is to comply with the ISO 26262 prescribed abstraction
levels. However, the decision hierarchy aspect is not covered in
this approach and consequently all the suggested architecture
levels are applied to the analysis of the operational decision
problem, meaning that the task of generating a feasible set of
loss scenarios is not addressed.

The aim for the safety analysis in [11] can be seen as rather
to show compliance to the at that time defined safety standards
than to argue for predictable power of an analysis covering all
causes. This is the same as in other attempts, e.g. [12] to describe

how STPA fits into safety analysis of ADS. What has happened
after these publications is that there is a new proposed
application standard for safety of ADS (ISO TS 5083), which is
to cover all causes of becoming unsafe, including security. This
standard aims to explain how evidence of a complete safety case
of an ADS is to be collected from both particular existing
standards like for example ISO 26262, or ISO 21448, and by
other means. The proposed control structure of this paper can be
seen as to address safety of ADS covering all root causes at the
time, without needing to separate the problem as a set of
different compliances. This way, it goes beyond the earlier
publications on STPA for ADS and it is aiming for fitting
compliance of the ISO TS 5083, yet to be defined.

Even if the automated driving of a road vehicle differs from
an autonomous ship, the essence of modelling autonomous
vehicle control is the same. A recent publication elaborating
how to use STPA for autonomous ships is [13]. There is a very
ambitious control structure of more than 20 controllers.
However, there is a clear indication of three main controllers in
a decision hierarchy: Shore-based control centre, Autonomous
ship controller, and Autonomous Navigation systems. These
could intuitively be identified as corresponding to the decision
hierarchy as used in [2] and applied in this paper. However, there
is no strict analysis of what constitute the unsafe control actions
from the perspective of complementary responsibilities of the
controller levels. Instead of reaching the completeness by
definition, using the role separation between the different
decision levels, they have used experienced personnel to
describe what they consider as important for a certain level. In
this paper we go one step beyond [13] by proposing a division
of responsibility between the controllers such that an
identification of unsafe control action can be made complete by
definition.

A control structure somewhat similar to the one proposed in
this paper can be found in [14]. Instead of identifying the
decision hierarchy as in [2], they denote their two upper levels
of controllers: Global path planning, and Local path planning,
respectively. Below that, there is not just one controller but
three: Kinematics models, Obstacle detection classifier, and
Localisation, respectively. To a certain extent, they also identify
the need for lower-level controllers to inform the higher-level
controllers about their capability limitations. However, this is far
from completely performed and there is no argumentation that
by consequently applying this pattern, the set of unsafe control
actions (UCAs) can be deemed complete and also that the set of
loss scenarios this way can be identified as a limited set. A major
reason for that paper not going so far could be their proposed
control structure which does not represent the responsibilities of
the decision hierarchy. The middle controller of Local path
planning looks as a mixture of tactical decisions and operational
decisions, which is not surprising as this is what a standard
trajectory planner does. This is a reason to once again emphasis
the importance of proper abstraction, efficient for their purpose,
when identifying the control structure to use in STPA.

 Instead of solving the problem of completeness by applying
the decision hierarchy, the authors of [14] address the problem
of a non-finite number of loss scenarios by introducing “smart
number of miles”. Instead of identifying the role of predictors
and of prescribing the sensing capabilities in a complete way,

they address all these in one large problem of identifying a large
enough set of loss scenarios. In contrast to [14], in this paper, the
large problem is decomposed in the control structure and the
responsibilities between the controllers is strictly formalized
such that the set of UCAs can be shown complete and the set of
loss scenarios can be limited.

VII. DISCUSSION

A basic problem in safety argumentation for an ADS is how
to address completeness in different ways. It is about
completeness w.r.t. both the aspects of:

• root causes

• traffic scenarios to consider

Completeness here is not to be interpreted in an absolute
manner, but rather complete enough for the purpose. As safety
is about showing a low enough remaining risk, completeness
here implies avoiding that the claimed remaining risk is
significantly underestimated because of something not
considered. This means that when generating a safety case, the
claims shall have a predictive power with a precision and
granularity high enough for the order of magnitude for the
claimed remaining risk.

None of the existing safety standards gives guidance how to
master these two aspects of completeness. One of the reasons for
introducing ISO 21448, was that it identified ISO 26262 as
lacking completeness w.r.t. to root causes.

The problem of reaching completeness w.r.t. root causes is a
complex issue, especially if all the root causes are assumed to be
separately handled when performing the identification of the
system-level safety requirements. None of ISO 26262 or ISO
21448 are claiming to cover the full root-agnostic scope. The
two standards are seen as complementary w.r.t. root causes, but
still there are several root causes not considered in any of them,
as for example security.

In both these two safety standards for road vehicles, the
problem for their users to reach completeness w.r.t. traffic
scenarios is well articulated, but none of them gives a clear
guidance how to master it (only requiring the user to solve the
problem).

In ISO 26262 there is a requirement to show that the
completeness w.r.t. all possible traffic scenarios is achieved in
the HARA, and the hidden assumption is that this can be done
because the limited dependency on the complexity of the traffic
scenarios for the feature (Item) in scope. However, in principle
ISO 26262 could be applicable for very complex features, which
would call for a methodology addressing how to reach
completeness w.r.t. complex traffic scenarios.

In ISO 21448 the completeness problem w.r.t. traffic
scenarios is addressed and denoted Area 3. The task for the user
of that standard is to argue that the set of hazardous unknown
scenarios (Area 3) is sufficiently enough transformed to
hazardous known scenarios (Area 2). Which is the traditional
task for any hazard analysis. ISO 21448 has a bit more
complicated way to analyse to what extent the frequency of
different traffic scenarios has an impact to the resulting risk. In

the ISO 26262 framework there is just one assumed frequency
measurement of scenarios, and that is the estimation of the
exposure frequency to be used in the HARA. In ISO 21448 there
are two separate scenario frequencies: the occurrence of
triggering conditions and the exposure of scenarios where a
hazard cand lead to harm. The formal explanation of the
triggering conditions is: “specific conditions of a scenario that
serve as an initiator for a subsequent system reaction
contributing to either a hazardous behaviour or an inability to
prevent or detect and mitigate a reasonably foreseeable indirect
misuse”. The total effect of how to address the completeness
problem w.r.t. traffic scenarios in the ISO 21448, is that it
becomes a bit complicated if the aim of the user is to further
refine the problem and collect evidence to safety case inside the
system design.

Similarly to ISO 26262, in ISO 21448 there is no general
guidance how to master this completeness problem w.r.t. traffic
scenarios. It is easy to get the impression that the only way to
show that area 3 is sufficiently small, is by extensive exposure
of the complete system in its operational environment (showing
fulfilment of the validation target), even if this is not explicitly
formulated that way.

Anyhow, the dominating problem for efficiently generating
a safety for generating a safety case for an ADS is how to avoid
this “billion miles of driving” as a necessary piece of evidence.
This is especially important in an industrial context of
continuous deployment, where the ADS is to be updated at a
high pace assuming a similar pace for generating safety cases. A
necessary condition is then to master the completeness issues
already in the higher-level analysis. This paper gives a solution
how this can be done by means of the adapting the STPA
methodology to ADS.

A first observation is that the STPA methodology very well
suits to cover the problem of completes w.r.t. all root causes. It
is rather the case that STPA requires to be root-cause agnostic
as discussed above in section V.

Regarding the completeness w.r.t. all traffic scenarios, what
is shown in this paper is how to use all the steps of the STPA
methodology. This means firstly to challenge the responsibility
and the system-level constraints such that the ADS gets an
increased responsibility compared to traditional automotive
features. It gets the role to itself address in runtime the problem
of restricting itself to situations it can safely handle. Then
secondly the STPA is modelled on a conceptual abstraction by
means of a controller hierarchy implementing a decision
hierarchy. By separating the roles of these three controllers, the
complete responsibility of the ADS is divided such that what are
the possible unsafe control actions, UCAs, for each of these can
be expressed with significantly less dependencies on possible
individual traffic scenarios. On the one hand the control
structure and its related controller constraints completely solves
the responsibility of the ADS. On the other hand, the UCAs and
the corresponding controller constraints can be analysed
individually in their local context, which means that they can be
decoupled from all being dependent on a full description of all
possible traffic scenarios, to argue completeness.

The resulting controller constraints then can serve as a
backbone in the argumentation structure of the ADS safety case.

Because their limited dependency to describing all possible
traffic scenarios, the full ADS safety case can rid of the “billion
miles of driving” as a necessary piece of evidence.

VIII. SUMMARY AND CONCLUSIONS

We describe a general control structure as depicted in Figure
1 which enables us to generate a list of Unsafe Control Actions
(UCA) listed in Section IV. For each controller, the listed UCAs
and corresponding controller constraints enables the generation
of a complete list of scenarios possibly leading to these UCAs.
This way, we master the problem of Area 3 as well as of the
problem of triggering conditions, as formulated in ISO 21448
[3]. The most important outcome of this analysis pattern is that
it enables reaching completeness in the verification strategy
without running into the problems of “billion miles of driving”,
as can be the case when the set of scenarios leading to a UCA is
potentially infinite. Even the “smart miles” argumentation is
avoided this way as the definition of the scenarios related to the
UCA of the respective controllers is not formulated such that a
large number of miles is required, smart or not.

The decomposition of controllers according to the decision
hierarchy, as is depicted in SAE J3016 [2], directly leads to a set
of UCAs for each of the controllers, decomposing the otherwise
extremely large situations space for UCA to a limited set of
situations for each of the controllers. As a pattern for defining
controller constraints guaranteeing the absence of the UCAs,
there is the ability for a lower-level controller to express its
current capabilities to the higher-level controller. This enables
the decomposition of responsibilities between the controllers.
By allocating a significant part of the responsibilities on the
higher-level controllers, the remaining responsibility of the
lowest level, operational controller, can be analysed without
needing an extremely large set of scenarios when challenging
how to reach any of the UCAs.

REFERENCES

[1] N.G. Leveson, J.P. Thomas, 'STPA Handbook, MIT, March 2018,
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pd
f

[2] ‘SAE J3016:APR2021, Taxonomy and Definitions for Terms Related to
Driving Automation Systems for On-Road Motor Vehicles’, April 2021

[3] ‘ISO/PAS 21448:2019 - Road vehicles— Safety of the Intended
Functionality’, January 2019

[4] Ethics Comission, 'Automated and connected driving', German Federal
Ministry of Transport and Digital Infrastructure, Report, June 2017

[5] C. Luetge, 'The German Etics Code for Automated and Connected
Driving', in Philosophy & Technology · September 2017

[6] 'ISO 26262:2018 - Road vehicles - Functional safety’, December 2018

[7] F. Warg et al, 'The Quantitative Risk Norm - A Proposed Tailoring of
HARA for ADS', in 50th Annual IEEE/IFIP Int. Conference on
Dependable Systems and Networks Workshops (DSN-W). IEEE, 2020,
pp. 86–93.

[8] J. A. Michon, 'A Critical View of Driver Behavior Models: What Do We
Know, What Should We Do?' In Evans, L. and Schwing, R.C. (Eds.).
Human behavior and traffic safety (pp. 485-520). New York: Plenum
Press, 1985.

[9] R. Johansson, et al, 'Safe Transitions Between a Driver and an Automated
Driving System', International Journal on Advances in Systems and
Measurements, vol 10 no 3 & 4, 2017.

[10] S. M. Sulaman, et al, 'Hazard Analysis of CollisionAvoidance System
using STPA’, in Proceedings Information Systems for Crisis Response
And Management (ISCRAM) , 2014

[11] A. Abdulkhaleqa, et al., ‘A Systematic Approach Based on STPA for
Developing a Dependable Architecture for Fully Automated Driving
Vehicles’, 4th European STAMP Workshop, 2016.

[12] K. Czarnecki, ‘On-Road Safety of Automated Driving System (ADS)
Taxonomy and Safety Analysis Methods’, Technical Report · July 2018,
Waterloo Intelligent Systems Engineering (WISE) Lab University of
Waterloo Canada.

[13] M. Chaal et al., ‘A framework to model the STPA hierarchical control
structure of an autonomous ship’, in Safety Science, Volume 132,
December 2020.

[14] S. Khastgir et al. 'Systems Approach to Creating Test Scenarios for
Automated Driving Systems', in Reliability Engineering & System
Safety, volume 215, November 2021.

1

Software fault propagation patterns for model-based safety

assessment in autonomous cars

Yandika SIRGABSOU1*, Claude. BARON1 , Laurent PAHUN2, Phillipe ESTEBAN1

1LAAS-CNRS, Toulouse, France

2Renault Software Factory, Toulouse, France

*Yandika.sirgabsou@laas.fr

Keywords:

MBSA, MBSE, Safety analysis, Embedded software, Fault propagation pattern

Abstract:
The development of driver assistance and autonomous driving systems for vehicles has started to revolutionize the

transportation sector, promising comfort, and safety. While significant technological progress has already been made

in this area, many challenges remain. Among these challenges, ensuring safety has become even more critical due to

the increasing use of complex, communicating, and reconfigurable embedded software. Current solutions to address

safety include the use of model-based approaches for safety analyses instead of the traditional document-based safety

analysis that is both informal and inefficient when faced with complexity. To this end, and in the context of

automotive embedded software, we propose to rely on the use of fault patterns to improve the construction of

software models used to conduct safety analyses. This paper makes a methodological proposal that improves current

practices in terms of facilitated model construction and reusability, and that has been validated on the study of an

automotive software component.

I. Introduction
The rapid development of embedded systems has led to numerous innovations in various systems in our modern

society such as autonomous vehicles and highly computerized systems in airplanes. The technological challenges

related with complexity and societal needs for guaranteeing safety induced by this trend opened new avenues for

research in systems engineering but also exacerbated existing problems as they relate to the use of critical software

and its contribution to systems safety.

To cope with these issues, industrials developing safety critical systems are looking for new methods and tools

for designing and sharing design ideas more efficiently while ensuring system safety as required by standards and

regulations. In the past decades, most of systems and software engineering development processes relied on

document-based methods that relied on informal design documents to convey design ideas and artefacts from one

development stage to the other. The informal aspect of these practices (such as manual analysis based on informal

documents that are subject to the interpretation of the safety analyst) makes them prone to errors and less efficient in

regard of the complexity of today’s systems architectures. Although they are still widely used, these methods are

now being challenged and model-based are more and more favored. In this context, embedded systems

manufacturers are turning towards model driven engineering as part of both their systems and software development

as well as systems safety assessment. In Systems Engineering (SE), this had led to the adoption of MBSE (Model-

Based Systems Engineering), a systems engineering practice aimed at describing both a problem (need) and its

solution through models, concepts and languages [1]. Its adoption can now be considered a success story as we

witness that more industrials developing safety critical systems are turning towards the MBSE approach in Systems

and Software Engineering. Examples include Dassault with its integrated 3DS MBSE solution or SIEMENS that

integrates MBSE within its Product Lifecycle management (PLM) solution. In Systems safety, a similar trend has

led to the development of Model based Safety Assessment (MBSA), a practice that enables the capture, through

specific formalisms and languages, of a systems safety related model (that describes the failure behavior and unifies

all the safety property of a system in a single model), on the basis of which different safety analyses can be made.

However, despite the discipline being an early pioneer in the use of models, the wide adoption of model-based

approaches for safety assessment has remained embryonic. In automotive, the ISO 26262 standard [2], titled "Road

vehicles – Functional safety", requires performing safety analyses not only at system level but also at software level,

2

to ensure the safe behavior of the embedded software. Moreover, in the context of autonomous driving, embedded

software assumes various critical safety functionalities. Unfortunately, today, the currents practices in safety analyses

do not focus enough on embedded software even though the software implements the logic of some of the critical

safety mechanisms. As a result, in the software context, safety analyses are either not performed or if performed,

only done through traditional document-oriented approaches. Therefore, there is a need for more focused and

rigorous methods for safety analyses at software level.

This paper aims to propose a methodology, specially aimed at improving the practice of automotive embedded

software safety analysis thought the use of fault patterns within the MBSA approach. In the next section, a state of

the art of current MBSA approaches is presented. In section 3, a methodological proposal based on the use of fault

pattern is made and applied to a case study in section 4. The results are discussed in section 5 and a conclusion in

made in section 6.

II. State of the art
In systems safety, safety assessment has been dominated by document-centric methods and processes since the

60s. Classical methods such as Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA) have

been complementarily used by experts in the industry for systems safety analyses. In these classical approaches,

safety analyses are manually performed based on paper-style artefacts such as systems drawings or spreadsheets that

are found in design documents. While these practices use a sort of well-defined semantics (such as Boolean operators

and FTA symbols), their representation is often very far from the systems they describe.

With the introduction of Model-Based Safety Analysis (MBSA) starting around early 90s, through the earliest

model-oriented safety analysis techniques such as FPTN [3], Figaro [4] or the AltaRica [5] language, the focus has

shifted to model-based approaches that no more base safety analyses on paper-style documents, but on a formal

model of the system under design. This move has led, nowadays to an academic trend that seeks to address the

interdisciplinarity and the consistency of the use of broad models through MBSE and MBSA throughout Systems

Engineering and Systems Safety. In this trend one possibility is to directly associate the MBSA safety models with

the MBSE system models. This allows conducting safety analysis directly on an extended version of the MBSE

model. Examples of methods that are based on this extended approach include the approach included in the

xSAP/Nu-SVM [6] [7] safety analysis tool. Another example is the Hierarchically Performed Hazard Origin Studies

[8] based on extended SIMULINK models [9]. Although a clear advantage of the extended approach resides in the

consistency (between system design and safety) it enables through the use of a shared system and safety model, it is

argued that basing safety analysis on an extended model can lead to false assumptions and thus leading to hidden

safety flaws (despite this claim not being shared by all systems engineering and safety practitioners). Furthermore,

the safety analysis resulting from such model could be difficult to exploit because of the complexity of the extended

model. In practice, safety assessment models are primarily used for mathematical or probabilistic calculations such

as minimal cuts or monté carlo simulations. The more complex the model, the more computing power is required to

effectively perform these calculations. Furthermore, the result of the safety analysis can be difficult to exploit due to

the source models being blurred and overloaded (making them lose their ability to support a seamless

communication) while the generated formal models are incomplete and uselessly complex [10].

As an alternative to the described first approach, a more appealing trend in academic research is to build a

separate MBSA model that needs to be kept consistent with the MBSE model through additional measures such as

model synchronization [11]. This last approach is often based on dedicated safety modeling languages such as

AltaRica [12], Figaro [4] or SAML [13]. These safety focused languages allow unambiguous representation of

systems for the needs of safety analysis using well defined syntax and semantics. However, early experiments

feedback suggests that, in the case of the dedicated model approach, the MBSA model construction can be

challenging for safety analysts especially for complex systems. In such case, it is imperative to find the right level of

details in modeling for fear of having a model too complex that may well be at the limit useless or irrelevant.

Furthermore, some analysts don’t necessarily see the advantage and gain in time of modeling a separate
dysfunctional architecture for safety analyses. However, as argued by Rauzy and Haskins in [10], systems

description and safety analysis models are different by nature and efforts to unify such models in one single super

model remains unrealistic. Based on this argument, the right direction is to keep a consistent separate MBSA model

but make its construction easier. Nevertheless, the separate model construction can be challenging for large systems

(what details, what modeling strategy etc.).

To ease the construction of dysfunctional models to conduct safety assessment, efforts have been done mostly

using generic libraries of system elements that exhibit some safety properties. An example is the Safety Architecture

Pattern(SAP) approach proposed by Kheren in [14]. In this approach, a library of SAP (components that highlights

useful system’s attributes from a safety point of view) are developed and coded using the AltaRica language. The

3

generic library is then reused to easily prototype safety-oriented systems architectures that can be reused to perform

safety analysis using tools such as the OCAS Workshop[15]. Nevertheless, the proposed approaches are mostly

aeronautic systems oriented. The developed libraries are often dedicated to avionics systems (such as pumps,

electrical motors, valves, or control units). While these libraries can be used for modeling physical systems at system

level in automobile, they are less suitable for modeling dedicated safety architectures of the embedded software.

Moreover, although there are ongoing works that aim to apply the MBSA approach to automobile at system level,

less focus is being put on embedded software. However, in the automotive context, ISO 26262 recommends

conducting safety analyses not only at system level, but also at software level[2]. In this context, if the model-based

approach is to be used for safety analysis at software architecture level as the commended by ISO26262, safety

analyses can be made easier if patterns or libraries of safety related components (such as safety mechanisms used in

software) can be developed drawing from the same principles as those described in the case of systems SAP-oriented

approach.

III. Methodological proposal
The goal of the methodological proposal is to construct a fault library of reusable software safety mechanisms

that are commonly found in safety related software components, drawing form the SAP library-oriented approach

described in the state of the art and given the need for improving safety analysis practices at software level in the

automotive context. Our choice has been to use the dedicated model approach coupled with dedicated languages such

as AltaRica as described in [16]. However, as stated earlier, building a dysfunctional model can be challenging

especially for complex systems. To address this concern, our solution has been to focus on selecting and including in

the dysfunctional model only components that are safety-related as described in our previous work [17]. Even then,

the failure propagation logic of these components must be manually written by the modeler (which can be time

consuming for large systems).To address this concern, our first hypothesis is that making the MBSA model

construction easier can both benefit its adoption by companies and improve the quality of safety analysis. A second

hypothesis is that limiting the MBSA model to safety related components is sufficient to carry out meaningful safety

analysis and can improve both efficiency and the quality of safety analysis. Therefore, the position of this paper is to

make less painful for safety analysist the construction of MBSA models by proposing a set of predefined reusable

libraries of software fault models to ease the dysfunctional model building process and improve the quality and

consistency of the analyses. Its scope is limited to the context of automotive safety analysis at software level

consistently with ISO 26262. Our methodology proceeds in 3 basic steps. The first one is to identify the safety

mechanisms and their related software failure modes. The second step is to write the failure propagation logic

through the safety mechanisms based on their functions and the identified failure modes; and to store the components

in a library. The last step consists in reusing the elements stored in the library to build a dysfunctional model and

conduct safety analyses.

In the first step we proceed by identifying the software failure modes and associated safety mechanisms found in

automotive software architectures. In automobile, these failure modes and associated safety mechanisms are well

defined by IO 26262 [13, Annex E, Annex D]. They are further detailed by two annexes in AUTOSAR [18] [19].

These failure modes are clustered into 4 categories. They include “data integrity, initialization & configuration data”
“data exchange”, “timing & control flow” and “data processing”. The “data Integrity” category summarizes all
failure modes related to corrupted memory or initialization and configuration data related to the corruption of

software data at one memory address such as the corruption of memory content, memory partitioning fault or

memory access fault. The “Data Exchange” category covers failures related to data transmission between sender and

receiver such as between different ECUs (Electronic Control Units) or software components. The “Timing and
Control Flow” category covers failure modes related to the timing of execution and scheduling. To model these fault

categories, we start by describing the software components’ behavior through a generic abstract template using states

and transitions. An example of such a template consisting of a software component with generic failure modes is

provided in in Figure 1. It shows 4 states (Inactive, Nominal, Erroneous and Failed), representing the execution

status of the software component linked by several possible transitions (Minor fault, Major fault, Recovery etc.). The

inactive state is the idle or initial state preceding the initialization where the software component is not solicited or

does not provide its function. From this state, the 3 outgoing transitions labeled “Activation”, “Major fault” and

“Minor fault” will lead the component to the “Nominal”, “Failed”, or “Erroneous” states respectively. In the nominal

state, the software component executes and delivers its intended function. From this state, the component can revert

to the Inactive state as indicated by the transition label “Deactivation” or move to the “Failed” or “Erroneous” states

if a major or minor fault occurs as indicated by the transitions. In the erroneous state, the software component

provides erroneous results while, in the “Failed” state, it fails to provide its intended function. From the generic

pattern, more specific patterns related to specific fault categories as described by ISO 26262 can be easily derived.

4

As an illustrative example, let us consider a piece of software that reads some critical data from memory, performs

some critical calculations, and stores the result back to memory. Based on its function, the failure modes of this

software component could include memory access related faults (such as read and write errors) as well control flow

and timing related failure modes (such as execution failure, or untimely execution). Depending on the exact safety

requirement, safety mechanisms to prevent the failure of this software component’s function could include a
protection against unwanted writing and a watchdog timer. Based on this information, the elements that will be

necessary to model the safety related behavior of this software component, are the failure mode related to the

memory access and the two safety mechanisms that will be modeled though states and transitions within this

software component.

Figure 1. Failure modes of a generic software component

The second step focuses on writing failure propagation logic of the identified safety mechanisms knowing their

function and considering the associated failure modes identified in the first step. To do so, we first need to study the

safety mechanism and identify their basic behavior, what their inputs are, and the result they produce in normal or

faulty execution. Once done, we can write the failure propagation logic of the identified safety mechanisms. To this

end we use Failure Truth Tables (FTT) that we introduced in our early work [16]. FTTs are dysfunctional failure

propagation tables consisting of discrete input and output variables whose possible values are defined depending of

the failure behavior of the components function. FTTs can be used to capture the dysfunctional logic of a function

based on its inputs. Depending on the expression of the safety requirements that the identified mechanisms are to

fulfill, logical operators such as “or, and” and program control structures such as “if-then-else” can be useful to
express the function or the combination of several mechanisms within a software component. Therefore, we also

need to write and add to the library, the failure propagation logic through theses operators and control structures.

This will result in a library of safety mechanism, operators and control structures that will be used in the last step to

construct the dysfunctional model of a system.

The last step consists in using the elements stored in the library to construct the dysfunctional model. This step

requires having a tool that offers library support. Using the elements stored in the library in an appropriate MBSA

tool, one can easily model the dysfunctional architecture of a systems through drag and drop. This is possible since

the safety mechanisms self-contain their propagation logics as well as the associated fault modes. Therefore, there is

no need to write the failure propagation logic code in this step.

IV. Implementation in SimfiaNeo and case study
The objective of the case study was to first develop a library of safety mechanisms and used it to model the

dysfunctional architectures. To this end, we are using SimfiaNeo [20] , an MBSA modeling tool based on the

AltaRica language and developed by APSYS-Airbus. It offers a graphical modeling interface based on Eclipse and

implements the dataflow version of the AltaRica language. SimfiaNeo allows to graphically build the AltaRica

model of a system and to directly perform various safety analyses based on minimal cuts or in the form fault trees

and FMEAs directly from the AltaRica model. Furthermore, the tool in its latest version offers library features that

make it suitable for our proposal. It allows the modeling, storing and instantiation of custom components in a library.

In the context of Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD), we aim to

apply the proposed methodology on a practical case study, the longitudinal control software component. The

longitudinal control is a function of the ADAS technology. It is a software component whose purpose is to ensure

speed and braking control in autonomous driving mode. It is built around the ACC (Adaptive Cruise Control), a

speed and distance control system that calculates how fast the vehicle can travel while remaining in a safe situation

5

with respect to certain predefined events (turns, traffic jams, stop signs, etc.). To ensure its safe activation, the

longitudinal control relies on an internal monitor (a subcomponent called supervisor that manages its states) and a

failsafe controller (a subcomponent that places the longitudinal control in some predefined safe states when some

faults occur). Safety requirements associated with the longitudinal control are documented in a safety concept

through safety goals that are declined to Unwanted Software Events (UWSE) at the software level. In this case study,

we focus on one single UWSE related to the occurrence of an unintentional acceleration above the permissible

acceleration limit (defined by ISO 22179) during travel (v ≠ 0 km/h) entailing longitudinal control. Other constraints

also exist (e.g., the user must be able to deactivate the ACC at all times).

1. Pattern prototyping and dysfunctional model construction with SimfiaNeo
Using our described approach, we modeled the basic structures of software components using the previously

described fault categories and safety mechanisms. First, we declared the necessary AltaRica domains in SimfiaNeo.

To this end, we declare 5 domains with different literals encompassing data integrity, Data exchange, Safety

mechanism, generic state, and generic data. Using these 5 domains we modeled bricks of components representing

the elements of a software safety architecture including elements such as generic software components, generic

safety mechanisms, Boolean operators, and program control structures.

Description the fault patterns
In automobile, software fault modes and associated safety mechanisms are clustered into 4 categories. Including

include “data integrity, initialization & configuration data” “data exchange”, “timing & control flow” and “data
processing”. In this subsection we present a fault pattern related to the data exchange as an illustrative example and a

generic behavioral pattern for safety mechanisms.

As described by ISO 26262 in the software scope, the “Data Exchange” category covers failure modes related

data transmission between sender and receiver such as between different ECUs or software components. The pattern

presented on Figure 2 shows how the execution of a receiving software component subjected to this category can be

affected. Like the pattern shown in Figure 1, it has 4 states: “Init,” “Nominal”, “Erroneous”, and “Failed”. From the

initial state (blue state on Figure 2), the function will either move to the “Nominal” or “Erroneous” states as

indicated by the outgoing transitions depending on a successful or unsuccessful data transmission initialization. In

the nominal sate, the software component executes normally and fulfils its function. If a data transmission

initialization fault has led the function to the “Erroneous” state, an execution of a safety mechanism can bring the

function to nominal if successful or to the “Failed” state (red state on Figure 2) if unsuccessful. The function can also

move to from the nominal state to the “Erroneous” state with the occurrence of inconsistencies of the transmitted

data (such as corruption, incorrect data value, out of range data values or incorrect sequence of data). In the “Failed”

state, the software component fails to provide the expected function due to missing or loss of transmitted data or due

to the safety mechanism failure to recover from the “Erroneous” state. As it can be seen in Figure 2, this pattern is

built on the generic pattern presented in Figure 1. However, it differs by the specificity of its failure modes expressed

in the transitions that are specific to “Data Exchange” fault category. Based on this pattern, another related pattern

was derived to cover the specificity of other data exchange related faults such as delayed data transmission that will

cause the function’s execution to be delayed. It such case, the “Erroneous” state was further split into several states

depending on the specificity of the software component.

Figure 2. Data exchange fault pattern

The next pattern aims to capture the behavior of a generic software safety mechanism. The 4 states (Nominal

Inactive, Nominal Active, Misleading and Failed) represent the execution state of the safety mechanism. In the

“Nominal inactive” state, the safety mechanism is in its nominal execution state with no fault detected. When a fault

6

is detected, it moves to the “Nominal active” state. In this state, the safety mechanism is successful in reacting and

correcting the effect of the fault. From this states, an erroneous or failed reaction will lead the safety mechanism to

“Misleading” or “Failed” states respectively.

Figure 3. Generic safety mechanism fault pattern

The behavior of the safety mechanism is completed with writing failure propagation logic knowing their function

and considering the associated fault modes identified earlier. To do so, we first need to study the safety mechanism’s
function and identify their basic behavior, what their inputs are, and the result they produce in normal or faulty

execution. Once done, we can write the failure propagation logic of the identified safety mechanisms. Depending on

the expression of the safety requirements that the identified mechanisms are to fulfill, logical operators such as “or,
and” and program control structures such as “if-then-else” can be useful to express the function or the combination
of several mechanisms within a software component. While these operators are already part of the AltaRica

semantics and can be expressed in assertions, modeling them in virtual bricks allows to graphically associate the

components without rewriting the propagation logic. Therefore, we also need to write and add to the library, the

failure propagation logic through theses operators and control structures. This will result in a library of safety

mechanism, operators and control structures that will be use in the last step to construct the dysfunctional model of a

system.

Modeling
Having opted for an approach based on a dedicated model, we must first identify the information necessary for its

construction, starting with the software architectural design documents and the Technical Safety Concept (TSC)

resulting from the system level safety assessments. The TSC is an aggregation of safety requirement specifications

(often in textual and tabular format) from the system, as well as their allocations to hardware and software

components and associated information (text, diagrams or sketches), which justify that safety measures and

mechanisms are in place. Based on the TSC and the definition of the items, we can identify the safety-relevant

components and interfaces to model, as well as the requirements and safety mechanisms to evaluate in the context of

the dysfunctional architecture. In this way, we can represent in the dysfunctional architecture only those components

that impact the safety goals, which are high-level safety requirements resulting from the preliminary risk analysis at

the vehicle level (see ISO 26262-1 3.139). This will also avoid overloading the dysfunctional model with elements

unnecessary for safety.

We used the readily available model bricks to model the patterns and their states in the tool, assigning the

previously created domains to them. An overview of the modeled system along with the fault patterns is presented in

Figure 4. Depending on the function of the pattern, different domains were used. Through the creation of AltaRica

events in SimfiaNeo, we then modeled the transition firing conditions using the events identified in the state

machines previously presented in the methodological proposal section. An AltaRica transition is characterized by a

guard (condition to fulfill before triggering the effect), an effect (action resulting from the state change), and

potentially a distribution (exponential, Dirac etc.) associated to the event. For each event, the SimfiaNeo tool allows

to specify a probability that will be used during calculations. However, given in the context of software faults, such

values are irrelevant and a probability of 1 was used instead. For each pattern, we wrote fault propagation logic

linking the corresponding inputs (if they exist), internal states and outputs. We described the states of the inputs and

outputs using the AltaRica domain that we named “Generic Data” and that incorporates four states: Nominal, Lost,

Delayed, Erroneous. Using these states, we were then able to model the dysfunctional information flows between

components trough AltaRica expressions. Using the elements stored in the library in an appropriate MBSA tool, one

can easily model the dysfunction architecture of a systems through drag and drop. This is possible since the safety

7

mechanisms self-contain their propagation logics as well as the associated fault modes. Therefore, there is no need to

write the failure propagation logic code in this step. We constructed the model presented on Figure 4 using the

elements stored in the library as shown by the library icon in some of the components (e.g., component identified as

ETH at the bottom left of the models). As an examples the components labeled CAN and ETH in Figure 4 were both

modeled thorough an instantiation of the data exchange fault pattern described earlier as well as some internal

components in the “vehicle-status-input” component that receive these data. Similarly, the “memory” component

shown on Figure 4 as well as some subcomponents in the “longitudinal controller” component that read data from
the memory were modeled though the instantiation of the data integrity fault pattern. Through these reusable

libraries, we are able to model the dysfunctional behavior and failure propagation without having to manually rewrite

their AltaRica code.

Figure 4. Pattern prototyping and dysfunctional model construction with SimfiaNeo

2. Safety Analyses
Using the SimfiaNeo Tool, we performed various safety analyses including step by step simulations, minimal

cuts, FTA and FMEA based on the dysfunctional model constructed using the previously developed fault patterns.

Having completed the modeling of the longitudinal control software component and the components that interact

with it, the objective was to perform safety analyses from the dysfunctional model. For this purpose, we set up

AltaRica observers on the outputs we were interested in (as shown in Figure 4). An AltaRica observer is an indicator

that can be associated with a failure condition or feared event that we wish to capture. For example, let us consider,

the UWSE that we have chosen for our case study related to an “unintended Acceleration > ISO 22179 acceleration

limit while travelling (v ≠ 0 km/h) requested by the longitudinal control feature”. In our model, we identified that

the acceleration target and request in the speed controller subcomponent (Speed-Ctrl) are limited to 0.2G until

vehicle speed vehicle is above 10 km/h. We also identified that the final value of the acceleration target is

transmitted to the engine through the engine management command ‘PWTWheelTorqueCmd’ (Powertrain Wheel

Torque Command). Thus, any erroneous value of ‘PWTWheelTorqueCmd’ can result in the violation of the safety
goal and the occurrence of the UWSE. Therefore, the observers predicate to capture the occurrence of this UWSE

can simply be ‘PWTWheelTorqueCmd =Erroneous’. Having added the expression of the observer to the model, the
objective was to verify, by means of the simulation, FMEAs, minimal cuts and fault trees, whether we could

Domains

Fault patterns

Observer

8

determine the events or failures that could lead to the transmission of this erroneous command that can result in the

violation of the chosen UWSE.

Simulations
Having run a series of simulations, we observed the propagation of failures to observers through the visualization

of components in different colors (red: in the presence of a failure; orange: in error state; green: in nominal state), as

shown in Figure 5. However, hierarchical components (consisting of blocks containing several subcomponents)

appeared without color during the simulation. This step—although not overly formal—allows the model to be

verified as it is being built. The analyst can then use it to quickly evaluate the dysfunctional architecture by

visualizing how all the components and observers react to the presence of one or more failures at specific locations.

The simulation can be used to confirm and demonstrate (for communication purposes) the feared scenarios identified

with the classic methods (FMEA and fault trees) that we will discuss in the following subsections.

Failure Mode and Effects Analysis
We used SimfiaNeo to generate the FMEA tables from the dysfunctional model we had built. The FMEAs list all

the events resulting in the violation of a safety goal (or of a created observer), doing so for each component of the

model. Figure 6 shows an excerpt from an FMEA, containing a certain number of elements typically found in these

tables. The first column (Event) lists the events causing the violation. In the following columns, we can find the

Local Effect (effect of the event on the output of the initial component), the Intermediate Effect (effect of the event

on all intermediate components between the initial component and the final observer), and the Final Effect (effect on

the output of the model; in here, the effect on the observers described previously). For instance, in relation to our

chosen UWSE, the excerpt from Figure 6 shows how faults in the vehicle status input component related to vehicle

speed can affect other components and the final observer.

Figure 6. FMEA

SimfiaNeo can export this document as an Excel spreadsheet, allowing for better data processing and sharing.

This is an important asset of the tool, considering that MBSA tools are not necessarily used by many but every

engineer manipulates Excel files. Note, however, that Figure 6 represents only a very small excerpt from the initial

FMEA, which has more than 18,000 lines. Therefore, if the goal is to obtain usable details or to make a synthesis,

this representation is not ideal.

To analyses the usefulness of this FMEA, a comparison with a manually performed FMEA would have been

interesting. However, in the context of current practice in our case, there are no software FMEAs performed using

Figure 5. Simulation

9

the traditional approach. In contrast to fault trees that focus on one feared event, FMEAs are systematic and

constitute a great way of showing that all failure modes have been accounted for within the system. This remains a

difficult task for the safety analyst especially in the software context where failure modes can be plethoric. Despite

the absence of a comparison with a manually performed FMEA, we argue that our approach allows performing this

type of analysis that is otherwise difficult to perform manually.

Minimal cut set and fault tree
The generation of the minimal cuts is achieved through the configuration of the cut set and sequence calculation

engine for a given observer. Thus, for an observer we can choose the maximum order of the cuts, the filter type

(minimal cut or minimal sequence) and the generation type (combination, permutation or stochastic) which will be

used during the cut set or sequence calculations. The maximum order corresponds to the maximum number of

primary events in a sequence. To choose the maximum order, we experimented with values ranging from 2 to 5. We

observed that SimfiaNeo load on the processor and memory consumption remained relatively constant (respectively

close to 30% and 700 Megabyte) regardless of the maximum order value, while the computation time increased

exponentially from under 2 minutes for order 2 to 7 hours for order 5. Meanwhile the maximum order in the resulting

minimal cut set remained equal to 3 even if we consider sequences of size 4 or 5. We chose order 3 for our case

study—the higher the order, the longer the generation of the cut will take. An order of 3 is therefore a good tradeoff

between computation time and accuracy. The choice of the filter type is also important; we have chosen the “minimal
cuts” option since it makes fault tree generation possible. Lastly, the choice of the generation type specifies the

combinatorial or stochastic sequence (based on random simulations) used during the generation of the cut.

Figure 7. Minimal cut

As an example, we considered the chosen UWSE linked to the transmission of an erroneous torque command to

the engine. For this UWSE, we generated a minimal cut by choosing “order 3” as value of the maximum order, the
“minimal cut” filter and “permutation” as the generation type. The generated minimal cut is shown in Figure 7. It

shows combinations (of order 1, 2) of basic events that could cause the specified UWSE, as well as their associated

probabilities (added by default). We can see that the cut highlights the events and the hierarchical components,

enabling traceability of the components at high level (as shown in Figure 7). For dysfunctional models where several

subcomponents have identical nomenclature, this traceability allows to clearly identify the origin of each event.

During the execution of these calculations, however, several compilation errors occurred, some of them due to the

presence of loops in the failure propagation chain. This is a known issue related to the dataflow version of the

AltaRica language. To solve this problem, we modified the assertions of the failure propagation involved in these

loops. In the case of a redundant evaluation of a variable (where one of the assertion is part of the loop), removing

the redundant evaluations of the involved variable allowed to break the loop. For this purpose, we considered a loop

and identified the self-dependent variables in the chain of assertions constituting this loop. One possibility was to

remove this variable from one of the assertions if it was already considered in another assertion. If this was not

possible without modifying the validity of the assertion, the second possibility was to remove the dependency link

10

and successively assign to the state variable all possible values and perform the calculations with each scenario. In

the latter case, it was necessary to manually change the value of the variable to include the scenarios which were

excluded by assigning it a fixed value. In both cases, the dysfunctional logic of the assertion remains valid.

For a defined feared event, SimfiaNeo allows the generation of FTAs from the equivalent minimal cut. Through

its tree structure and logical combinations, FTAs illustrate how basic events (located at the bottom of the tree) can

lead to the feared event (at the top of the tree). In other words, FTAs highlight the causal chain between the basic

events at the component level (at the bottom of the tree) and the high-level feared event (at the top of the tree)

through a tree structure represented in graphic form. In SimfiaNeo, it was possible to generate an equivalent reduced

fault trees from minimal cuts for a defined feared event. Nevertheless, we did not identify any added value through

this generation as the minimum cuts in our opinion present the same information in a more concise and readable

format. Furthermore, generating FTAs from minimal cuts can be considered counter intuitive as in practice safety

engineers use the reverse process (they use FTAs to compute minimal cuts).

V. Discussion
The results obtained from the application to the case study shows that using fault patterns and the adequate tool,

the dysfunctional model construction is made easy and safety analyses can benefit from this alternative new analysis

method. The specificity of the case study demonstrates that the use of software-oriented fault patterns can benefit the

application of MBSA in the automotive software safety context. Furthermore, tools such as SimfiaNeo relieve the

safety expert of manual calculations while allowing him to concentrate on modeling. The benefits are reflected in

terms of reusability of the models. Once the fault patterns are built, they can be reused to build the dysfunctional

model and make it possible to conduct analyses with different parameters for many UWSEs based on the same

model. In the traditional approach, the safety analyst spends much of their effort interpreting various design

documents to manually construct classical model’s safety models such as FTAs or FMEAs. The analyst would need

to manually construct as many FTAs as there are feared events. If the design evolves, they will need to individually

update all the fault trees and the FMEAs. Through our proposal, the dysfunctional model is easy to construct. If the

system design evolves, the dysfunctional model can be updated, and updated safety analyses can be automatically

derived. In addition, representing the behavior of the system without ambiguity is possible through the formal

semantics of AltaRica, turning it into a possible candidate in a certification context. All these elements make this

safety analysis method an interesting alternative that has the potential not only improve current practices but to

contribute to the adoption of the model-based approach. Nevertheless, we noted some limitations on the method. One

of the difficulties brought about by a dedicated dysfunctional model is maintaining its consistency with the design

model when the latter evolves; this problem was already true when working on analyses based on fault trees and is

not addressed by our proposal. Implementing additional measures is therefore necessary to guarantee consistency.

Another limitation, related to the AltaRica dataflow, is the inability to natively manage loops; our solution was to

modify some assertions in order to remove these loops. Finally, as the case study involves a system of reduced

complexity, the scaling up of our methodological proposal is yet to be evaluated and we will need to perform a

comparison with safety analyses results obtained through the traditional manual approach to fully evaluate the

proposed approach.

VI. Conclusion
This paper made a methodological proposal based on fault patterns that can be used to build a dysfunctional

model, and from which it is possible to derive classic safety models. Using the SimfiaNeo tool and the AltaRica

language, the methodology was applied on a case study, building a dysfunctional model of a software from which we

were able to generate FMEAs and minimal cuts. These results are encouraging and demonstrate the usefulness of

patterns to facilitate MBSA model construction. More generally, they show that it is possible to apply an MBSA

approach to evaluate software safety, especially in automotive applications. They also highlight the benefits of

generating safety analyses from a dysfunctional model (time saving and reusability). Building on these results, the

study must now continue to evaluate the complexity of the systems for which the methodology and the tooling can be

reasonably applied. Since the proposal of this paper is based on a dedicated dysfunctional model, it will also be

essential to supplement the method with a mechanism that ensures consistency between the design models and the

safety models.

11

Reference
[1] C. Baron and V. Louis, “Towards a continuous certification of safety-critical avionics software,” Comput. Ind.,

vol. 125, p. 103382, Feb. 2021, doi: 10.1016/j.compind.2020.103382.

[2] ISO, ISO 26262 2018 Ed2 — Road vehicles — Functional safety. ISO, 2018.

[3] P. Fenelon and J. A. McDermid, “An integrated tool set for software safety analysis,” J. Syst. Softw., vol. 21, no.

3, pp. 279–290, Jun. 1993, doi: 10.1016/0164-1212(93)90029-W.

[4] M. Bouissou, H. Bouhadana, M. Bannelier, and N. Villatte, “Knowledge Modelling and Reliability Processing:
Presentation of the Figaro Language and Associated Tools,” IFAC Proc. Vol., vol. 24, no. 13, pp. 69–75, Oct.

1991, doi: 10.1016/S1474-6670(17)51368-3.

[5] A. Arnold, G. Point, A. Griffault, and A. Rauzy, “The AltaRica Formalism for Describing Concurrent Systems,”
Fundam. Informaticae, vol. 40, no. 2,3, pp. 109–124, 1999, doi: 10.3233/FI-1999-402302.

[6] M. Bozzano and A. Villafiorita, “Improving System Reliability via Model Checking: The FSAP/NuSMV-SA

Safety Analysis Platform,” in Computer Safety, Reliability, and Security, vol. 2788, S. Anderson, M. Felici, and

B. Littlewood, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 49–62. doi: 10.1007/978-3-540-

39878-3_5.

[7] B. Bittner et al., “The xSAP Safety Analysis Platform,” in Tools and Algorithms for the Construction and

Analysis of Systems, vol. 9636, M. Chechik and J.-F. Raskin, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2016, pp. 533–539. doi: 10.1007/978-3-662-49674-9_31.

[8] Y. Papadopoulos and J. A. McDermid, “Hierarchically Performed Hazard Origin and Propagation Studies,” in
Computer Safety, Reliability and Security, Sep. 1999, pp. 139–152. doi: 10.1007/3-540-48249-0_13.

[9] N. Jiang, G. Li, and B. Liu, “Model-based safety analyses of embedded system using stateflow,” in 2016 11th

International Conference on Reliability, Maintainability and Safety (ICRMS), Oct. 2016, pp. 1–6. doi:

10.1109/ICRMS.2016.8050084.

[10] A. B. Rauzy and C. Haskins, “Foundations for model-based systems engineering and model-based safety

assessment,” Syst. Eng., vol. 22, no. 2, pp. 146–155, 2019, doi: 10.1002/sys.21469.

[11] A. Legendre, A. Lanusse, and A. Rauzy, “Toward Model Synchronization Between Safety Analysis and System
Architecture Design in Industrial Contexts,” in Model-Based Safety and Assessment - 5th International

Symposium, IMBSA 2017, Trento, Italy, September 11-13, 2017, Proceedings, 2017, vol. 10437, pp. 35–49. doi:

10.1007/978-3-319-64119-5_3.

[12] G. Point and A. Rauzy, “AltaRica: Constraint automata as a description language,” 1999. Accessed: Nov. 28,
2019. [Online]. Available: http://www.altarica-association.org/ressources/ARBib/PointRauzy1999-

AltaRicaConstraintLanguage.pdf

[13] M. Gudemann and F. Ortmeier, “A Framework for Qualitative and Quantitative Formal Model-Based Safety

Analysis,” in 2010 IEEE 12th International Symposium on High Assurance Systems Engineering, Nov. 2010,

pp. 132–141. doi: 10.1109/HASE.2010.24.

[14] C. Kehren et al., “Architecture Patterns for Safe Design,” AAAF 1ST COMPLEX SAFE Syst. Eng. Conf. CS2E

2004 21-22 JUIN 2004, [Online]. Available:

http://130.203.136.95/viewdoc/summary;jsessionid=AF8F5506E5BFE636FDEC5DACA3E7DD02?doi=10.1.1.

77.488

[15] P. Bieber, C. Bougnol, C. Castel, J.-P. H. Christophe Kehren, S. Metge, and C. Seguin, “Safety Assessment with
Altarica,” in Building the Information Society, Boston, MA, 2004, pp. 505–510. doi: 10.1007/978-1-4020-8157-

6_45.

[16] Y. Sirgabsou, C. Baron, C. Bonnard, L. Pahun, L. Grenier, and P. Esteban, “Investigating the use of a model-
based approach to assess automotive embedded software safety,” presented at the 13th International Conference
on Modeling, Optimization and Simulation (MOSIM20), Nov. 2020. Accessed: Feb. 01, 2022. [Online].

Available: https://hal.laas.fr/hal-02942695

[17] Y. Sirgabsou, C. Baron, L. Grenier, L. PAHUN, and P. Esteban, “L’ingénierie dirigée par les modèles pour
assurer la sécurité des logiciels embarqués en automobile,” Grenoble, France, May 2021. Accessed: Sep. 29,
2021. [Online]. Available: https://hal.laas.fr/hal-03232108

[18] “Overview of Functional Safety Measures in AUTOSAR.” [Online]. Available:
https://www.autosar.org/fileadmin/user_upload/standards/classic/43/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf

[19] “Safety Use Case Example.” [Online]. Available:
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_SafetyUseCase.pdf

[20] M. Machin, L. Sagaspe, and X. de Bossoreille, “SimfiaNeo, Complex Systems, yet Simple Safety,” in 9th

European Congress on Embedded Real Time Software and Systems, 2018, p. 4.

"Pave the way for connected & autonomous driving

at level crossings"

Virginie TAILLANDIER1, Romain DEMARETS2, Richard DENIS3, Brouk WEDAJO4

1. SNCF, Innovation and Research department, France, virginie.taillandier@sncf.fr

2. VALEO, Autonomous Driving department, France, romain.demarets@valeo.com

3. VALEO, Autonomous Driving department, France, richard.denis@valeo.com

4. VALEO, Autonomous Driving department, France, brouk.wedajo@valeo.com

Abstract

France has among the highest number of level crossings in Europe (more than 15 400), representing 1% of road
fatalities and more than 37% of railway fatalities (excluding suicide).
As increasingly intelligent, connected & automated vehicles are emerging on the roads, the SNCF (French Railway
Operator) and VALEO (automotive equipment supplier) have joined forces to study how to prepare the arrival of such
automated/autonomous vehicles at level crossings.
To enable a safe driving in such level-crossing areas by these automated/autonomous vehicles, impacts on both
vehicle and infrastructure sides have been studied & demonstrated succesfully.
In particular :
- Wireless communications between vehicles & level crossings (called "V2X" communications) have been used in
combination with exteroceptive sensors (e.g. camera, etc.)
- Railway & automotive functional safety and cybersecurity approaches have been mixed.
This article aims at :
- presenting some of the use cases & scenarios that need to be addressed by the automated vehicles in level
crossing areas
- describing examples of countermeasures on both vehicle and infrastructure (level crossing) sides, that contribute to
a safe automated driving at level crossing areas, and the general methodology to derive such countermeasures.

Key words :

Connected & Autonomous Vehicles, Autonomous Driving, Smart Level Crossing, Vehicle-to-Everything (V2X),
Internet of Things (IoT), Cooperative Intelligent Transport System (C-ITS)

1. Introduction

1.1. Highly automated & autonomous vehicles are upcoming!

There are 6 different levels of driving automation (from level 0 to level 5), according to SAE (Society of Automotive
Engineers). A step-by-step deployment from driving assistance to autonomous driving is expected.
As of today, many cars on the road offer a level of partial automation that allows the driver to delegate control of
speed and/or steering (e.g. adaptative cruise control "ACC", ACC coupled with lane centering, etc.).
Cars with a higher level of automation are upcoming or even start being deployed, in which the "driver" may read a
book (while the car is driving by itself), but still has to remain ready to take back control at any moment (only if
requested by the car).
Moreover, vehicles with no driver inside, such as autonomous shuttles or robotaxis, are also being experimented and
are expected to be deployed in a close future.

1.2. Level crossings : a quite complex type of intersection to handle

In France, the infrastructure managed by SNCF Réseau accounts for more than 15,400 level crossings (LC) on the
operated railway lines (source : SNCF Réseau, 20191).
France is one of the countries with the highest number of level crossings in Europe.

Figure 1 : Total number of level crossing in Europe, 2014 (ERA 2016)

On average, each year on the National Rail Network (NRN) of SNCF Réseau, there are 100 to 150 collisions (involving
a train), leading to 25 to 30 fatalities.
Accidentology at level crossings has characteristics similar to accidentology on other roads, both in terms of driver
profile (18-25 year old; those over 70; men) and in terms of cause (in particular, excessive speed or violation of traffic

1 https://www.prevention-ferroviaire.fr/page/les-differents-passages-niveau

"Semi-Autonomous" vehicles are already

on the road !

TODAY TOMORROW!

Driver in charge of driving

(and supervising the car at all times)

Driver NOT in charge of driving

Driver in charge

of driving

only if

requested by

the car

Possibly NO DRIVER

inside the car

Vehicles with higher automation

are already pre-deployed or experimented !

e.g. adaptative

cruise control

e.g. adaptative

cruise control

+ lane centering

e.g. lane

departure

warning

e.g. robotaxi

(set zones)

e.g. robotaxi

(everywhere)

e.g. traffic jam

chauffeur

rules). Typology and configuration of level crossings (LC) does not appear as a particular factor of accidents :
indeed, statistically 1% of accidents at LCs occur in LC registered in the national safety program (PSN)2 each year.
Moreover, whereas less than 6% of accidents out of LCs result in injuries and just 0,02% of them in fatalities, from
30% up to 50% of accidents at LCs (collisions with a train) lead to death.
The high probability of fatality in case of collision with a train currently discourage most car-makers to include the
level crossings in the scope of operation of their automated vehicles (called "Operational Design Domain, ODD").
In a constant concern to ensure the safety of all road users who navigate at level crossings, SNCF started in 2018 a
collaboration with VALEO to tackle accidents of conventional vehicles (ie manually driven), most of them being
caused by voluntary or involuntary violation of traffic rules, human driving mistakes or distraction. For that purpose,
V2X communications between the vehicle and the level crossing were investigated to enable driver warnings.
Faced with the rise of automated vehicles, a new collaboration between SNCF and VALEO started in 2020 to
address these types of vehicles, and explore how to ensure their safe automated driving at level crossings.

1.3. State of the art (level crossings vs automated & connected vehicles)

Different projects or standardization initiatives that involve intelligent vehicles navigating at level crossings have been
identified :
1) In 2018, Valeo and SNCF investigated V2X communications between a level crossing and a connected vehicle
(manually driven), in order to provide information and/or warning to the driver (e.g. about a risk of collision with a
train). This work was presented at the ILCAD conference and the at ITS European Congress in 2019.
2) Rail2X is a project launched in 2019 in Germany with members such as Siemens, Deutsche Bahn or DLR.
A target use case is to enable connected vehicles (manually driven) to request automatically the opening of a
particular type of level crossing (with inverted operation) via a V2X communication. For this particular LC, barriers
are closed by default and only open on road user's request, after validation by a remote supervision center if no train
is on approach.
3) SNCF joined in 2019 the C-ROADS France consortium as an associated partner. SNCF has then led the
specification of the "level crossing" use cases, in which the infrastructure communicates with vehicles (in V2X) for
driver information & warning purposes.
As a summary, automated driving at level crossings is a topic not targeted yet by the C-ITS ecosystem (Cooperative
Intelligent Transport System), which is rather focusing currently on conventional (manually driven) connected
vehicles.

2 “The list of LCs registered in the national security program” is the term that replaced in 2014 the “list of LCs of concern”. This list was created in
1997 following the Port Ste Foy accident to list the most “accident-prone” LCs, namely LCs with 3 collisions and more, or 15 collisions and more, or
1 collisions and 11 collisions minimum, or 2 collisions and 10 collisions minimum over 10 years or a time greater than 1,000,000.

2. Assumptions of this study

2.1. Assumptions on the level crossings (LC)

In France, the ministerial decree of March 18, 1991 defines 4 categories of level crossings3:

 1st category comprising automatic level crossings with 2 half-barriers or 4 half-barriers (10,327), and
guarded level crossings (757)

 2nd category comprising unguarded level crossings ("St Andrew cross LC" with or without STOP sign) and
SAL 0 (traffic lights only) (2 806)

 3rd category: pedestrian level crossings (681)
 4th category: private level crossings (834).

Each year, around 60% of collisions with a train occur at active/automatic LCs equipped with 2 half-barriers, where
rail and road traffic is much more dense than at passive/St Andrew cross LCs. Such active LCs represent 60% of
LCs.
In this project, we thus considered active level crossings in France (equipped with an automatic luminous signaling
system with half-barriers).
To be noticed :
- even if the Geneva Convention aims at ensuring a certain homogenization in terms of level crossings equipments
(e.g. fixed or flashing red lights, traffic signs, etc.), there are still differences between countries regarding their
physiognomy (e.g. red & white barriers in France/Germany but yellow & red in Norway/Sweden) or their modes of
operation (e.g. various flashing frequency for the traffic lights, various closing time, etc.)
- The delimitation of responsabilities between the managers of road and railway infrastructures
differs depending on the country. In France, the railway infrastructure manager is in charge of the level crossing
facilities and its position signage, but the early signage (e.g. signs announcing a LC at 150 meters) is under the
responsibility of the road infrastructure manager.

(a) active LC with 4 half-barriers & red flashing lights (b) passive LC with STOP sign (in France, from left to right)

2.2. Assumptions on the automated vehicles

In this study, we considered :
- level 3 and level 4 automated vehicles, capable to cross an active level crossing
- level 3 automated vehicles, NOT capable to cross an active level crossing (because not designed for that purpose
or because affected by a problem).
We also assumed the below preliminary technical architecture, in which the automated vehicle can interact with the
infrastructure (including the level crossing) through 2 interfaces :
- IF1 : interface between its exteroceptive sensors and the physical infrastructure elements (eg road signs, etc.)
- IF2 : connectivity interface, through which information can be exchanged via a wireless communication.

3 Source 2019

2.3. Expected behavior of the Automated Vehicle at a level-crossing

In level crossing areas, the automated vehicle is expected to obey traffic rules and have a careful behavior, as
recommended in the following leaflet from the UIC (International union of railways).

INFRASTRUCTURE

(including LEVEL

CROSSING)

AUTOMATED VEHICLE

SUBSYSTEMS of :

- Perception (fusion)

- Localization

- Decision

- Control

- Supervision

Exteroceptive

sensors

Camera(s)

Thermal
camera(s)

Radar(s)

Lidar(s)

Ultrasonic
Sensor(s)

Microphone(s)

…

Digital map

(client)

Connectivity
(V2X communication,

Cellular, etc.)

HD

SD

Other sensors
(eg IMU, GNSS, etc.)

Vehicle actuators
(ex : steering, braking,

propulsion, lighting, etc.)

HMI
(ex : displays,

loudspeakers, cameras,
etc.)

Connectivity
(V2X communication,

Cellular, etc.)

IF1

IF2

Other vehicle

subsystems
(ex : driver monitoring,

etc.)

Infrastructure

physical

components

Traffic signs

Traffic lights

Barriers

Gantry

Bell

Etc.

Road marking

3. Approach used to design a safe automated driving system

In order to design an automated driving system (ADS) capable to navigate safely at level crossings, the following
approach has been followed :
1) An initial "Preliminary Hazard Analysis" (PHA) has been conducted to identify all hazardous behaviors (called
"undesired events") of the ADS
2) Then 3 different types of dependability studies have been done in parallel :
A "functional safety" study, a "safety of the intended functionality (SOTIF)" study and a "cybersecurity" study, whose
goals were to :
- identify & evaluate risks due to hazardous behaviors of the ADS that are caused by (respectively) random hardware
failures, performance limitations of subsystems (especially sensors)4, and cyber-attacks/malicious human behaviors
- define countermeasures that allow to reduce such risks at a "reasonable" level.
A focus has been done in this project on dysfunctions of the ADS perception of road & level crossing.
The methodology framework used for these 3 studies are based on (respectively) ISO 26262, ISO 21448 and ISO
21434 standards.
3) A conciliation phasis has finally been done between these 3 types of countermeasures, to ensure that they were
consistent/not contradictory/complementary between each other.

This approach has been "vehicle-centric" : countermeasures have been investigated first on vehicle side, then
complementary assistance from road infrastructure (especially from level crossings) has been explored.
In parallel, a functional safety analysis has been done in order to protect specifically the level crossing against new
risks carried by the V2X connectivity.

This paper shows a non-exhaustive list of identified risks & associated countermeasures.

4. Hazardous behaviors of the automated driving system

Among all hazardous behaviors of the ADS ("undesired events") identified in the PHA, we propose to focus on the 2
below ones :

ID
Undesired Event

(at the Automated Driving System level)
Effect on vehicle level
(in Level Crossing area)

ASIL
ranking

UE-01
Cross the level-crossing when inappropriate
(eg level-crossing is closed, exit not cleared, etc.)

Collision with train
ASIL A

UE-02
Cross the level-crossing with an inappropriate
trajectory

- Run-off-road accident
- Head-on collision or Side-collision
with other road users

ASIL B

4 SOTIF also addresses other causes of hazardous behaviors (e.g. misuse, etc.), not considered in this project.

Final

Countermeasures

Undesired Events

& Safety Goals

Preliminary Hazard

Analysis (PHA)

Functional Safety (FuSa)

study

Cybersecurity study

Safety of the Intended

Functionality (SOTIF)

study

Conciliation between

FuSa/SOTIF/Cyber studies

FuSa

countermeasures

SOTIF

countermeasures

Cybersecurity

countermeasures

Review between
functional safety/SOTIF

experts from railway &
automotive

Review between
all railway & automotive

experts (FuSa/SOTIF/Cyber)

Review between
cybersecurity experts

from railway & automotive

5. Identified Risks

Among all hazardous scenarios and threats (cyber-attacks or malicious human behaviors with harmful intent) that
may trigger a hazardous behavior of the ADS, especially due to performance limitations or vulnerabilities of the ADS
perception of road & level crossing, the following ones have been selected.

5.1. Hazardous scenarios & SOTIF triggering conditions related to level crossing areas

ID
Hazardous scenarios / SOTIF

triggering conditions
Effect

(at ADS perception level)
Effect

(at vehicle level)

TE_01 Crossing a level-crossing
/
Rail tracks with
high contrast compared to road
pavement

Rail tracks misinterpreted by cameras
as road boundaries
(due to high contrast with road
pavement)

Cross the level-crossing with
an inappropriate trajectory (UE-
02)
=> Run-off-road accident or
Head-on collision or Side-
collision with other road
users

TE_02 Crossing a level-crossing
/
Traffic lights specific to Level-
Crossings
("R24" traffic light)

R24 traffic lights not detected by
cameras
(due to specific physiognomy
compared to conventional traffic
lights)

Cross the level-crossing while
inappropriate (UE-01)
=> Collision with train

TE_03 Crossing a level-crossing
/
Phenomenons masking the level
crossing traffic signs, warning &
protection systems

Level crossing presence not detected
or Level crossing status
misinterpreted
(due to phenomenons masking the
level crossing equipments eg traffic
lights/traffic signs/barriers/etc.)

Cross the level-crossing while
inappropriate (UE-01)
=> Collision with train

Illustration of hazardous scenarios in level crossing areas (from left to right) :

(a) rail tracks with high contrast compared to the pavement (b) R24 traffic light (c) parked vehicle masking R24 traffic
light & barrier (d) vegetation masking the traffic sign

5.2. Threats to automated vehicles

ID Threat

TH_01 Attack on integrity & availability of information received via V2X communication from the level crossing
TH_02 Attack on integrity & availability of information returned by the exteroceptive sensors

For illustration of the threat TH_02, McAfee managed in 2020 to spoof cameras of Tesla vehicles5 by using
"adversarial stickers", so that a "STOP" sign was misclassified as an "ADDED LANE" sign.
This kind of attack is known as "adversarial attacks" and exploit vulnerabilities of machine learning/deep learning
algorithms.

Illustration of an adversarial attack (source : McAfee)

5 https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Source : Google Maps Source : Google Maps

Source : ALAMY

6. Countermeasures

6.1. Countermeasures on vehicle side

ID Countermeasure (example)
Risk addressed

FuSa SOTIF Cyber
CMV_001 Improve capability of cameras to :

- detect the road boundaries in the presence of rail tracks with high contrast
compared to the road pavement
- detect the level crossing (presence/status) despite phenomenons masking
the level crossing signs & systems (eg traffic lights/traffic signs/barriers/etc.) or
despite particular physiognomies (eg R24 traffic light vs conventional tricolor
traffic lights, etc.)
(ex : algorithm improvement, etc.)

 x

CMV_002 Protect exteroceptive sensors against attacks on integrity & availability of
information returned by the exteroceptive sensors
(ex : protect cameras against machine-learning/adversarial attacks)

 x

CMV_003 Protect V2X communications against attacks on integrity & authenticity of the
received V2X information
(ex : check signature & certificate of V2X information received from level-
crossing)

 x

CMV_004 Use redundancy for the perception of road & level crossing
(ex : use multiple sensors with diverse technologies, use V2X communication,
use a digital map, etc.)

x x x

CMV_005 Detect a non-capability of the automated driving system (ADS) to cross a level
crossing and :
- (if the ADS not activated yet) do not allow the ADS activation when
approaching a level crossing
- (if the ADS is activated) request the driver "early enough" to take back control
when approaching a level crossing (for a L3 system)
or stop the vehicle in a safe area before the level crossing or use an itinerary
circumventing level crossings (for a L4 system)

x x x

6.2. Countermeasures on infrastructure side (e.g. level crossing)

ID Countermeasures (example)
Risk addressed

FuSa SOTIF Cyber
CMI_001 Ensure that the road marking (eg edge lines) is present with a sufficient

quality within the level crossing area
 x

CMI_002 Provide to automated vehicles :
- information about presence & status (eg open/closed/etc.) of the level
crossing
- detailed description of the road within the level crossing area
(ex : via V2X communication, digital map, etc.)

x x x

CMI_003

Protect V2X communications against attacks on integrity & authenticity of the
emitted V2X information
(ex : use signatures & certificates in V2X messages sent to automated
vehicles)

 x

7. Demonstrations

2 demonstrations were carried out in 2021 on a level crossing to validate the relevance of the previously described
analysis and studies.

7.1. Set-up

The demonstrations took place at the level crossing "PN 449" in Brec’h (in Brittany, France), which is an active LC
equipped with flashing lights and two half-barriers.
The level crossing management system was connected to a "Road Side Unit" (RSU), in charge of sending
information about the level crossing area ("V2X messages") to the automated vehicle, via a wireless communication
("V2X communication"), standardized according to the ETSI ITS communication protocol stack.
The automated vehicle was also equipped with V2X connectivity, and could detect in particular the level crossing by
using its exteroceptive sensors (e.g. camera) and a digital map in addition of such V2X link.

Figure 2 Level crossing "PN 449" of Brec’h

7.2. Target scenarios

A first set of scenarios were demonstrated, in which the "level 3" or "level 4" automated vehicle (AV) was
assumed to be capable to cross the level crossing (i.e. without any driver's intervention or even without need of a
driver) :

SMART LEVEL CROSSING
 Automatic with 2 half barriers &

flashing lights
 Equipped with V2X connectivity

AUTOMATED VEHICLE
 Equipped with V2X connectivity
 Equipped with sensors (e.g. lidar, camera,

radar, ultrasonic, GNSS, etc.)
 Detects the level crossing by using its

sensors, digital map and V2X

Wireless communication

("V2X") :

DENM & MAPEM messages

Valeo LIDAR Valeo RADAR
Valeo Front

CAMERA

Valeo Surround

View CAMERA

Valeo Telematics

Module (V2X)

V2X Message (EU) Information provided Standard

DENM "Decentralized Environmental
Notification Message"

Level crossing presence & status (open, closed,
abnormal state, in maintenance)

ETSI EN 302 637-3

MAPEM "MAP extended message" Digital map of the level crossing area
(road boundaries, level crossing entry/exit boundaries,
etc.)

ISO TS 19091

- Scenario 1 : cross an "open" level crossing

- Scenario 2 : cross a "closed" level crossing

- Scenario 3 : cross an "open" level crossing while a traffic jam

- Scenario 4 : cross an "open" level crossing with obstacles blocking the way

A second set of scenarios was also demonstrated, in which a "level 3" automated vehicle was assumed NOT to
be capable to cross the level crossing, either because the automated driving system :
- is not designed for such purpose
- or is affected by a major dysfunction, e.g. sensor loss (before entering in the level crossing)

- Scenario 5 : stop before the level crossing in case of non-capability

UN TRAIN PEUT

EN CACHER UN

AUTRE

UN TRAIN PEUT

EN CACHER UN

AUTRE

SIGNAL

AUTOMATIQUE

SIGNAL

AUTOMATIQUE

AV approaches a
LC and slow down if

necessary

1
AV enters in the

LC

2
AV crosses

the LC

3

UN TRAIN PEUT

EN CACHER UN

AUTRE

UN TRAIN PEUT

EN CACHER UN

AUTRE

If LC is closed, AV
stops at the LC

entry

1

UN TRAIN PEUT

EN CACHER UN

AUTRE

UN TRAIN PEUT

EN CACHER UN

AUTRE

AV then
crosses
the LC

AV waits until the
complete

reopening of the
LC barriers

2

3

UN TRAIN PEUT

EN CACHER UN

AUTRE

UN TRAIN PEUT

EN CACHER UN

AUTRE

AV does not
cross the LC

until the road is
clear on the
other side

1

UN TRAIN PEUT

EN CACHER UN

AUTRE

UN TRAIN PEUT

EN CACHER UN

AUTRE

AV crosses
the LC (once
the road is

clear on the
other side)

2

UN TRAIN PEUT

EN CACHER UN

AUTRE

UN TRAIN PEUT

EN CACHER UN

AUTRE

In case of obstacle, the AV :
- does not cross the LC and remains
stopped at the entry
- reports this obstacle to the LC manager
- waits until the road is cleared

7.3. Demonstration results

The target scenarios could be fulfilled by the automated vehicle with the expected performance in terms of
functionality & safety (i.e. no hazardous behavior).
In particular, the assistance brought by the level crossing via the V2X communication link turned out to be especially
useful to ensure the redundancy of the level crossing perception.
Indeed, the R24 traffic lights were not detected by one of the cameras of the automated vehicle6.
Moreover, the use of already existing V2X standards (DENM/MAPEM), with a profile adjusted to the level crossing
use case (i.e. selection of the relevant data fields & values among all offered by the DENM/MAPEM standards)
allowed to manage all the target scenarios.
In particular, the range of such V2X communication (>300m during the demonstations) was sufficient to handle the
minimum risk maneuver (MRM) scenarios, considering a "takeover request" duration of 10s and a deceleration at -
4m/s².

8. Conclusion & Perspectives

This study has highlighted the need of redundancy for the automated vehicle perception of the level crossing, to
ensure a safe driving at such level crossings, robust to both random hardware failures, sensors/systems limits of
performance and cyber-attacks/malicious human behaviors.
In particular, the assistance from the level crossing via a V2X communication link to support the automated driving
operations (both for the crossing and the minimum risk maneuver) is strongly recommended to speed up the
deployment of automated vehicles at level crossings (by decreasing the implementation effort to be done on sensors
and thus their cost). Indeed, reception of information about the level crossing and the road in the area offers
perception redundancy to the automated vehicle, enabling them to compensate possible performance limitations of
sensors (e.g. no R24 traffic light detection by cameras, etc.) or by reducing the probability of cyber-attack/malicious
human behaviors (by increasing the level of complexity of the attack necessary to affect the ADS).
However, to be useful, the authenticity and integrity of this V2X communication (in particular the quality of the
content of V2X messages broadcasted) must be protected.

Possible perspectives of this study could be :
- to iterate this complete safety analysis (as the technical architecture taken as input may have to be updated
following this 1st round of analysis), until risk is reduced under a "reasonable" threshold
- to investigate the applicability of this study results to other countries than France. Indeed, even if the Vienna
Convention ensures some consistency between a large number of countries, national differences in the signage of
level crossings can be noticed. This point of attention must be taken into account for reasons of interoperability,
especially in border areas
- to expand the list of possible countermeasures (both on the automated vehicle & level crossing sides), enabling to
reduce the risk due to additional hazardous scenarios or attacks (taking into account national specificities)
- to investigate the different level of assistance that may be brought by the infrastructure/level crossing to support
automated driving operations : indeed, depending on countries, the will of infrastructure/level crossing managers
may differ (due to cost/benefit ratio of implementation of such assistance)
- to investigate how to conciliate two possibly contradictory points of view : providing assistance without exposing
itself to liability risks / transfers of responsibility (from infrastructure managers' perspective), and receiving assistance
from infrastructure with a sufficient level of quality to reduce the cost of automated driving systems (from automotive
industrials' perspective).

6 The level crossings of the SNCF network have 3 light technologies (diode module, LED lamp and filament lamp, currently being replaced by LED lamp).
Brec’h's LC 449 was equipped in March (Demo 1) with filament lights and in June (Demo 2) with LED lights. Before testing at Brec’h, Valeo carried out pre-tests on an
LC from Bobigny fitted with diode module lights. It turned out that one of the automated vehicle cameras did not detect the R24 traffic lights with filament lamp nor LED
lamp, but detected those equipped with diode module lights.

UN TRAIN PEUT

EN CACHER UN

AUTRE

UN TRAIN PEUT

EN CACHER UN

AUTRE

SIGNAL

AUTOMATIQUE

AV
approaches

the LC

0 AV requests the driver
to take back control
(early enough for an
effective takeover)

1
If the driver does not

respond, the AV performs
a "minimum risk

maneuver" (MRM) to stop
the vehicle

2

The AV gets stopped
before the LC, at a

distance :
- enabling the driver

to get aware of the LC
- while providing a

safety margin in case
of projection due to a

rear-end collision

3

Session Th.4.B

Multicore

Thursday 2nd June

14:00

–

Room Lauragais

501

502

MASTECS Multicore Timing Analysis
on an Avionics Vehicle Management Computer

Raúl de la Cruz⋆, Philip Harris⋆, Samuel R. Thompson†, Christos Evripidou†,

Tim Loveless§, Juan M. Reina‡, Mikel Fernandez‡, Enrico Mezzetti‡, Francisco J. Cazorla‡
⋆Collins Aerospace Applied Research & Technology, Ireland

†Rapita Systems L.t.d, UK
§Lynx Software Technologies, UK

‡Barcelona Supercomputing Center, Spain

Abstract—Driven by the increasing compute performance
required by modern autonomous systems, high-integrity ap-
plications are moving to multi-core processors as their main
computing platform. Using multi-core processors in avionics is
particularly challenging since the timing behavior of the software
is not only affected by its inputs but also by software running
simultaneously on other cores. To address this challenge the
MASTECS project has developed a methodology for multicore
timing analysis together with a supporting toolset. In this work
we show the results of evaluating this methodology and tools on
a representative avionics use case.

Index Terms—Multicore Timing Analysis, Airborne Software,
Robust Partitioning, CAST-32A

I. INTRODUCTION

Autonomy features such as Advanced Air Mobility, Single

Pilot Operation, and others, are driving commercial avionics

systems towards multicore processors (MCPs) in pursuit of

higher compute performance. MCPs are increasingly the cen-

tral element of computing platforms for commercial avionics

systems [15], [20]. As described in the CAST-32A position

paper [6]1 and DOT/FAA/TC-16/51 report [11], significant

MCP-related challenges such as software timing analysis have

to be addressed before MCPs can be fully embraced. The key

challenge with MCPs is the timing behavior of a piece of

software is not only affected by its inputs but also by the

software running simultaneously on other cores.

The development process of modern avionics systems is

a very costly and time-consuming activity, taking as long as

5 years from requirements to the final certification [9]. To

meet safety certification, the deterministic timing behavior of

newly-developed avionics systems must be extensively proven

to airworthiness authorities (e.g. FAA, EASA). Software certi-

fication is a time-consuming and largely manual process whose

cost dwarfs the typical embedded development process. The

long process to generate evidence exacerbates the burden of

certifying MCP products for aerospace suppliers.

The MASTECS project [1] has developed a structured

analytical approach (methodology and tools) to produce ev-

idence about multicore timing behavior. The MASTECS test

methodology is specifically designed to capture the impact of

multicore contention on application behavior. It hinges on the

1In 2022, CAST-32A will be supplemented/superseded by AMC 20-193, a
joint effort by EASA and the FAA. See Notice of Proposed Amendment [5].

use of micro-benchmarks (highly-targeted qualifiable interfer-

ence generators) to simulate configurable resource contention,

while using built-in performance monitoring functionality on

the processor to capture application response. Tests are carried

out on-target using the RapiTime timing analysis tool, with

automation of test execution and analysis from the RapiTest

tool. The test framework incorporates the capability to trace

tests and results back up to specific verification goals.

In this work we present the application of the MASTECS

Multicore Timing Analysis (MTA) methodology and some

specific tools matured during the project to an avionics use

case provided by MASTECS partner Collins Aerospace. The

use case, which runs on an NXP T2080 platform with the

LynxSecure Separation Kernel Hypervisor, is an adaptable-

baseline DAL-A (flight-critical) Vehicle Management Com-

puter (VMC) able to host third party and legacy applications.

Specifically, we show the results of making an iteration of

the MASTECS seven-step testing process based on a V-

shaped verification model. This includes multicore Critical

Configuration Settings (CCS), Interference Channels (ICH),

and Hardware Event Monitor (HEM) analysis; identification

of timing requirements; test case design; implementation of

test procedures; evidence gathering (testing); results analysis;

and results validation and generation of documentation.

The rest of this work is structured as follows: Section II

introduces the commercial state of the art in MTA and intro-

duces some relevant academic works. Section III develops the

MASTECS approach to address MTA challenges. Section IV

introduces the main elements of the MASTECS tool chain

used in each step of the proposed methodology. Section V de-

scribes the roles of each partner during the project. Section VI

introduces the use case and its timing requirements, shows how

the toolchain has been applied to address those challenges, and

show the results obtained. Section VII performs a retrospective

TRL analysis on the MTA tooling and its potential application

on industrial cases. Section VIII presents the main conclusions

of this work.

II. POSITIONING

MCPs, along with other accelerators integrated on the same

System on Chip, can in theory provide increased compute

performance, power efficiency, and space efficiency, as re-

quired in future avionics systems. However, tasks executing on

different cores can slow each other down due to competition

for shared resources like caches, interconnection transactions

and bandwidth, and hardware accelerator utilization. This

situation is even worse when deriving worst-case execution

time estimates as allowance must be made to account for worst

case scenarios which are unlikely but feasible.

One of the challenges for MTA lies in quantification,

demonstration, and documentation of the impact of multicore

contention. This entails the definition of an analysis and testing

approach that produces evidence of the timely execution of

the software on the multicore platform. However, mitigation

mechanisms can have a large overhead, so there is a delicate

balance to be struck between demonstration of high determin-

ism and detrimental loss of performance.

Recent works focus on providing a certification framework

that helps applicants to prepare their CAST-32A certification

activities [4]. The proposed framework uses graphical notation

diagrams to organize the argumentation. It also proposes

developing evidence via automated analysis.

Typical successful approaches to timing analysis of single-

core systems are based on either static analysis or test-driven

on-target measurement. However, scaling these to complex

MCPs has proven challenging. The complexity of current and

upcoming MCPs has been acknowledged to present a com-

plexity wall for static timing analysis solutions [19]. On the

software side, increasing complexity, for example to promote

autonomous features [18], challenges structural and syntactical

analyses. On the hardware side, hardware complexity and

opaque IP conspire to render derivation of accurate timing

models intractable. Measurement-based tools also present spe-

cific challenges for multi-core timing analysis [2]. Those are

related to developing a methodology, producing the required

evidence and traceability, and generation of stress scenarios to

derive trustworthy timing bounds. In this line several works

focus on improving platform observability. That is, they pro-

pose measurement environments with low-intrusiveness that

allow collecting detailed information about event monitors

with support for visualization [10], [12]. This requires tight

interaction with the RTOS or the debug technologies available

in the underlying hardware [12].

To the best of our knowledge, no available tool in the mar-

ket provides these capabilities, namely, analyzing the timing

behavior of applications running in a multicore and capturing

the needs of safety standards and certification requirements.

III. MASTECS MTA METHODOLOGY

MASTECS’ goal is to deliver an industrial MTA solution for

safety-critical embedded systems. In this Section we introduce

the MASTECS methodology for MTA and in Section IV how

it is implemented via the MASTECS toolchain. Throughout

this paper we use several terms that we introduce in Table I.

A. Platform Analyses

Building a solid understanding of the underlying hardware

platform is instrumental as the first step in any MTA project.

It helps gain insight on the existing ICHs and potential

TABLE I: Terms, acronyms, and their definition.

Term Definition

AMP Asymmetric Multi-Processing
CCS Crtical Configuration Setting
COTS Common Off The Shelf
CSP Certification Support Package
DMA Direct Memory Access
GPU Graphic Processing Unit
HEM Hardware Event Monitor
ICH Interference Channel
IFC Intended Final Configuration
MCP Multicore Processor
MPSoC Multi-Processor System on Chip
MTA Multicore Timing Analysis
SBC Single Board Computer
SoC System on Chip
QoS Quality of Service
RVD RVS Database
RVS Rapita Verification Suite
TCM Task Contention Model
TRM Technical Reference Manual
VMC Vehicle Management Computer
VM Virtual Machine

mitigation actions that can be implemented to control the

impact applications can suffer due to contention on those ICH.

Platform analysis mainly builds on the available Technical

Reference Manuals (TRMs) for the board, the System on Chip

(SoC), and any other I/O controller that can be used by the

target application. Besides the TRMs, some hardware vendors

provide Certification Support Packages (CSPs) that provide

specific information useful from critical domains from more

detailed descriptions of hardware blocks to hardware fault

related information. It is noted that CSPs might not be free of

charge, indeed they can be quite expensive, and require signing

specific NDAs. Also some hardware vendors also provide

consultancy support to solve specific questions that may arise

during the platform analysis as long as it does not reveal any

protected information on the hardware behavior.

There are three main elements to be identified in the

analysis: CCS, ICH and HEMs.

CCS analysis. It aims to determine the set of platform

control registers that hold configuration data such that an

unintended modification can result in the hosted software

not to comply with its functional, performance and timing

requirements. The goal is to use mechanisms to protect them

from unintended modifications or propose appropriate means

of mitigation if CCS are inadvertently altered.

HEM analysis. It captures the observability of the plat-

form’s ICH. This step aims to determine the particular HEMs

that help understand how applications exercise different ICH.

These allow the measurement of the load an application or

micro-benchmark puts on the ICH, to show whether an ICH

is mitigated by means of specific measures that may be in

place. It is worth mentioning that HEMs are used as a main

building block to provide evidence that micro-benchmarks

work as expected, i.e. to validate micro-benchmarks. However,

HEMs should not be automatically trusted to work according

to their described behavior in the corresponding TRM. Some

work [3] already reports mismatches between the definition

of some monitors in the corresponding TRMs and the values

observed for specific experiments in the NVIDIA Jetson and

Xavier MPSoCs, and the A53 in the Xilinx Zynq UltraScale+

MPSoC. Also errata documents [16] capture scenarios for

the NXP iMX6 architecture in which certain performance

monitors may not count events with precision. For the ARM

A53 implementation in the Xilinx UltraScale+, some issues

have also been reported with the instruction retired, store

retired, and unaligned load/store retired event counters (among

others) [21].

ICH analysis. MPSoC platforms in embedded critical do-

mains already incorporate complex, high-performance, and

Commercial Off-The-Shelf (COTS) hardware components

including decentralized and distributed interconnects, deep

shared cache hierarchies, DMAs, GPUs and other specialized,

vendor-specific accelerators. Shared hardware resources are

the root cause of multicore interference and so are the focus of

timing analysis. ICH analysis builds on available technical in-

formation to first identify the main hardware shared resources

in the platform (e.g. caches, interconnects, memories) and

develop a description of the potential ICHs that exist in those

shared resources.

The challenge lies in the fact that critical information for

timing characterization is either not fully disclosed (to protect

IP) or scattered across several documents. Furthermore, such

data as is available can be relatively unclear and sometimes

subject to errata. As a result, the list of potential ICHs

identified have to be validated and characterized empirically.

Platform Analysis, i.e. CCS, HEM, and ICH analysis, drives

the whole experimentation performed when following steps

of the MTA process including the assessment of the impact

CCS change on the application, the proposal of an ICH

quantification plan, and the proposal of a HEM validation plan.

B. IFC Seclection

A smart selection of values for the identified CCS can

both mitigate many ICHs while optimizing the performance of

applications. As the hardware platforms become increasingly

complex integrating more components, the number of CCS

increases in every MPSoC generation. Also the variety of hard-

ware features that can be controlled is wide. As representative

examples, in the NXP T2080 [7], [8] the user can control the

number of ways each core is allowed to use in the shared

L2 cache, while the Xilinx Zynq UltraScale+ CCS allow

control of quality of service (QoS) features that prioritize and

route requests [17]. In the former case, deploying cache way

partitioning prevents some of the ICHs in the L2 cache. In the

latter request prioritization and routing prevents conflicts on

the paths between different sources (e.g. computing elements

application processing unit and the real-time processing unit)

to a target (e.g. memory).

While intuitively cache partitioning, for instance, helps

mitigate contention, it also can cause an application running in

a core and confined to use a subset of the L2 cache to increase

its number of L2 misses. As a result, the particular number

of ways to assign to each core – which is configured via

control registers (CCS) – depends on the particular application

under consideration. Fixing CCS involves an iterative process

in which several values are empirically evaluated until a

good balance between isolation and performance is found. In

MASTECS, we built on micro-benchmarks and the TCM to

automate this process as covered in Section IV-C.

C. V Model

MASTECS methodology follows the standard V-model for

software development life cycle with a well-defined set of

analysis and test design activities, on the left side of the V,

matched with corresponding verification and validation steps,

on the other side. The fundamental steps in MASTECS MTA

process model are summarized in Figure 1.

Fig. 1: Steps proposed by MASTECS for MTA in the V-model

software development process.

➀ Firstly, the user timing requirements are identified, which

allows the remainder of the MTA process to be scoped

appropriately. These can range from validating that a given

cache partitioning mechanism prevent data evictions between

applications to show that a micro-benchmark puts the desired

level of load on a given ICH.
➁ The second step entails identifying ICHs through which

interference between cores can take place. Also at this stage,

the HEMs necessary for the analysis are identified, as are the

CCS present in the platform. Note that Section III-A builds the

knowledge on the potential ICHs in the platform, while this

step specifically focuses on those ICH related to the timing

requirement being addressed. It also leverages HEM analysis

to restrict the analysis to the HEMs that capture the load on

the ICHs identified as relevant.
➂ The third step in the MASTECS methodology is to

develop test cases to verify hypotheses supporting the user

requirements, which includes defining the micro-benchmarks

that will be used to exercise the ICH. Alongside ICHs, and

HEMs, micro-benchmarks are the main elements in the test

case argument.
The ➃ fourth and ➄ fifth steps focus on the implemen-

tation of the test procedures and their automated execute

on the platform to gather test evidence. MASTECS exploits

the Rapita Verification Suite (RVS) framework, from project

partner Rapita Systems Ltd (RPT), to automate the execution

of large batches of tests and the collection of raw information

from the execution of the program under analysis on the real

platform and configuration.

Fig. 2: MASTECS Toolchain.

In step ➅, raw numbers are analyzed by technical expert

to assess whether they prove (or otherwise disprove) the

verification requirements. While the analysis step is only

partially automated, it greatly benefits from RVS framework

capability of providing different views and statistics of the

gathered data.

The last step ➆ involves a review of requirements, genera-

tion of certification artifacts to support the safety argument of

the system. A characteristic feature of MASTECS MTA is that

the whole analysis process is oriented towards fulfilling qual-

ification and certification requirements as defined by domain-

specific standards and regulations. Raw numbers and analysis

results are presented as fundamental evidence to support a

domain-specific certification arguments.

A key theme in the MASTECS MTA approach is the

combination of the efforts of software timing analysis experts

and hardware experts. This allows provision of the required

insights into the behavior of modern complex MCPs running

complex software. Hardware experts identify the ICH in the

different hardware shared resources and any configuration

options that may affect them – CCS according to CAST-

32A. When it is determined than an ICH can be exercised

by an application under test, hardware experts propose suit-

able HEMs to track contention in those ICH and a micro-

benchmark design to put load on ICHs.

IV. MASTECS MTA TOOLCHAIN

The MTA toolchain supports the MTA methodology. It

builds on the combination and integration of the RVS and

Barcelona Supercomputing Center (BSC) Multicore Micro-

Benchmark technology (MµBT) and multicore hardware

knowledge. As shown in in Figure 2, Rapita’s RapiTest lets

the user to define the tests to carry out that usually involve

the software under test (i.e. the application) and a micro-

benchmark 2. Rapita’s RapiTime takes care of instrumenting

the application according to user specification that captures

2The Surrogate Applications (SurApps) are a type of micro-benchmarks
that aim to copy the load that a reference application puts on the ICHs. In
this work we do not assess SurApps.

the points of instrumentation and the specific HEMs to record

at each point. The data collected from the execution is loaded

in to an RVS Database (RVD). The RVS Exporter queries

the RVD to provide information according to user’s desired

views. Information from the RVD is also provided as feedback

on demand to BSC tools like the TCM and the Surrogate

(Application) Generator that work iteratively.

A. Hardware Analysis

The hardware analysis process presented in Section III-A

cannot be automated, that is, it is not possible to process TRMs

to automatically extract CCS, HEM and ICH information.

Hardware analysis is to be performed manually by hardware

experts who should be providing insightful information about

the hardware behavior.

Assessing the accuracy of the analysis is also difficult.

Not only does it depend on the information made available

to the hardware experts via the TRMs, CSPs, and consul-

tancy support from the hardware provider, but also different

hardware experts can produce slightly different conclusions

in terms of ICHs. This risk can be mitigated by perform-

ing the analysis by different set of hardware experts which

then combine their analyses into a single hardware analysis

document encompassing CCS, ICH, and HEM analysis. It

is also the case that robust guidelines on how to perform

the analysis and reference analysis documents derived from

previously analyzed processors can significantly help.

It is worth mentioning that, excepting the CSPs, none of

the information used for ICH, HEM, and CCS analysis is

intended for the purpose for which it is used in MTA. For

instance, no section in the TRM captures ICH specifically.

Instead, TRMs provide descriptions of how different hardware

blocks interact. This description is provided to the level needed

by software engineers to optimize the average performance

of its applications or provide some QoS, as such, the TRM

description is insufficient to provide all the details needed for

ICH analysis.

This can be mitigated by performing a solid set of ex-

periments to complement the analyses. HEMs are intended

for general performance analysis and debugging purposes and

usually lack descriptive information on exactly what events

they track [3]. Previous experience and experimentation is

needed to consolidate a set of trusted HEMs to use in the

rest of the MTA process.

B. Multicore Micro-Benchmark Technology

MµBT is a suite of software tools that cover the low-level

(hardware) aspects of MTA. In this section we cover micro-

benchmarks, which are some of the main building blocks for

MTA. Micro-benchmarks are single-behavior pieces of code

that stress a specific ICH (shared resource), see Figure 3. By

running the micro-benchmark against an application, one can

assess the sensitivity and aggressiveness of the application to

contention in a given ICH. Micro-benchmarks are specifically

tailored to the hardware/software target configuration (IFC),

and are a key tool to determine the bounds on the impact

of ICHs and for assessing the effectiveness of interference

mitigation techniques.

Fig. 3: Micro-benchmarks.

HEMs are used to assess the load micro-benchmarks put

on ICHs and in general to validate the correct behavior of

the micro-benchmark. Besides HEM-based validation a test

harness is performed for the functional validation of each

micro-benchmark under different scenarios.

PMUlib is a low-level library for configuring and reading

of performance monitor counters serving as an access point

to the available HEMs. It also supports an interface with trac-

ing/debug units where present in processors (e.g. MultiCore

Debug Solution in the Tricore AURIX TC39xx family) or

external (Lauterbach). Reading HEMs can be performed in-

band, i.e. from the software system under evaluation or via out-

of-band debugger facilities [12] to prevent any probe effect.

C. Task Contention Model

The profiling information collected over the application

in isolation can be conveniently exploited to provide early

bounds on multicore timing interference incurred by the same

application when deployed in a specific multicore scenario

and under a given process schedule. The TCM exploits in-

formation on both the target HW and task model run-time to

build a conservative analytical model for computing multicore

contention. The model is not meant to provide exact estimates

of multicore contention but early figures that can steer design

and deployment decisions. The model, which is parametric

on tasks’ profile and schedule, allows fast exploration of any

possible system configuration in view of reducing interference

and optimizing the system makespan. The TCM aims at

identifying a subset of candidate system configurations on

which to focus the verification and validation efforts.

Fig. 4: Task Contention Model.

More in detail, the TCM builds on a timing estimate in

isolation Cisol
i of a given task τi to derive a estimate of τi’s

execution time (Cmcp
i) when deployed in a specific multicore

workload derived as Cmcp
i = Cisol

i + ∆i. The latter addend,

∆i, is the composition of two elements, see Figure 4, (i)

the longest contention different request types can suffer when

accessing a shared resource ri, Lmaxi,which is derived via

execution of micro-benchmarks; (ii) the maximum number of

requests, ni, performed by τi and its contenders running in

the other cores that are derived using PMULib (note that

Ni is the maximum number of access of task τi to each

resource, i.e. Ni = {ni,0, ni,1, ..., ni,k}, where k is the number

of shared resources. For instance, for a two task workload

and one shared resource, the number of requests from τi that

collide with co-runner τj in the access to the resource r0
is defined as min(ni,0, nj,0). Hence, we can derive ∆i as

min(ni,0, nj,0)× Lmax0. The interested readers are referred

to [13] for more information details on the fundamentals of

the TCM.

D. RapiTest

RapiTest is a test-harness generator, capable of generating

and driving both unit tests and system tests on-host and on-

target.

For the MASTECS case studies, RapiTest was used to

generate test harnesses and perform the necessary code in-

jections to execute micro-benchmarks and collect timing data

and HEMs as defined in the input interference tests.

RapiTest supports a range of native test input formats, in

addition to automatic converters for a range of widely-used

test formats. For the work documented here, RapiTest was

configured to use two test formats designed explicitly for

multicore testing. These formats allow simple description of

locations at which micro-benchmarks should be injected to

generate contention, the functions and call-trees that should

be instrumented, and the data that should be collected at these

locations.

E. RapiTime

RapiTime is an on-target timing measurement tool, which

integrates static analysis of source code with on-target instru-

mentation for both timing and resource usage into a single

hybrid timing analysis tool. Using RapiTime, it is possible

to configure the automatic injection of instrumentation based

on one or more pre-selected instrumentation profiles into

certain functions, syntactic structures, or even whole call-trees.

The instrumentation can be tightly controlled to minimise

overhead, for example by only instrumenting certain locations,

or by minimising the number of instrumentation points that

make higher-overhead resource-usage measurements.

Many targets (including the T2080 used in this study) have

a hardware limitation on the number of HEMs that can be

collected at a time. To support this, RapiTime incorporates

the concept of metric groups. A metric group is a selection

of HEMs that can be collected simultaneously. If more than

the maximum supported number of metrics is required, then

RapiTime can split these resources into metric groups, repeat

tests per metric group, and aggregate the data into a single

report database.

RapiTime results are stored into an RVD database, which

can be graphically interrogated using the RVS report viewer,

or programmatically using the Python API. Custom text-based

reports can be generated by the accompanying rvsexporter tool

using a simple combination of Markdown and Python.

F. RVS Reporting Tools

All the RVS tools generate report files as RVD databases.

To allow these databases to be interrogated, a few reporting

tools are provided.

1) RVS Report Viewer: RVS Report Viewer features an

interactive user interface that allows the user to explore the

test results stored in an RVD database. For RapiTime reports,

the report viewer gives access to (among other things):

• Execution time: Statistics for the maximum, average,

minimum, and high watermark execution time for each

instrumented function.

• Contribution time: The contribution to the overall exe-

cution time of the nominated roots made by each of the

instrumented functions.

• Invocation Timeline: Per-invocation execution time data

for each instrumented function.

• Execution Time Profile: Histograms showing the distri-

bution of observed execution times for each instrumented

function.

• Metrics: A range of visualizations for metrics collected

from any available HEMs.

• Coverage: While RapiTime doesn’t give the depth of

information that RapiCover does, RapiTime instrumen-

tation allows determination of which instrumented func-

tions were executed and which were not.

• Report Comparison: Two reports containing measure-

ments of the same thing can be compared. For example,

a RapiTime report containing data from a test run when

nothing was executing on the other cores of a system

could be compared with another report when the same

software was executed, but interference generators were

running on the other cores.

From the RVS Report Viewer, it is possible to generate

generic exports using the built-in default exporters. It’s also

possible to copy data tables directly into other software (e.g.

a spreadsheet) for further analysis.

2) RVS Exporter: RVS Exporter is a means to generate

custom report exports. RVS exporter takes an input template as

a markdown file. This markdown report can contain embedded

Python code that is evaluated when the template is processed

by RVS Exporter. This embedded Python code has access to

all the data in the results database, and the API also provides

useful utility functionality to make accessing, processing,

tabulating, visualising, and reporting on the data as simple

as possible.

If some tests are repeated, it is a simple matter to run the

RVS Exporter tool again to re-generate the report using the

latest data. The modular structure of the reports also facilitates

reuse of report fragments or processing algorithms between

reports without unnecessary duplication.

V. MASTECS PARTNERS

The MASTECS consortium comprises two technology

providers (BSC and RPT) and two end users (Collins

Aerospace and Marelli Europe) in avionics and automotive

who assessed the readiness the MASTECS MTA technology

by evaluating it on their corresponding use cases. While it is

not a partner of MASTECS, Lynx Software Technologies is

also listed below as they contributed to the study presented in

this work.

Barcelona Supercomputing Center (BSC) (Coordinator)

is a leading research center in high-performance counting and

embedded systems. BSC led the hardware analyses and ma-

tured the micro-benchmark technology, including the PMUlib

and the TCM, to reach a high level of industrial readiness. In

order to ensure a clear exploitation path of its technologies

BSC created a spin-off company, Maspatechnologies S.L.,

during early stages of the project.

Rapita Systems Ltd. is a leading provider of software veri-

fication tools and services globally to the embedded aerospace

and automotive electronics industries. Rapita has lead the

productization of the technologies by developing tooling,

processes, DO-178C documentation, tests and commercial

infrastructure to bring a whole solution to an exploitable

position within the market.

Collins Aerospace Applied Research & Technology

(Collins-ART) is the innovation organization of Collins

Aerospace, a Raytheon Technologies company, leader in pro-

viding advanced solutions for the global aerospace and defense

industry. Collins-ART has actively participated in MASTECS

as end-user for the aerospace industry. Its main role was on

setting avionics requirements; providing a representative aero

case study; and demonstrating the effectiveness and soundness

of the MTA toolchain during the evaluation.

Marelli Europe SpA. Marelli is one of the world’s leading

global independent suppliers to the automotive sector. With a

strong and established track record in innovation and manufac-

turing excellence, Marelli’s mission is to transform the future

of mobility through working with customers and partners to

create a safer, greener and better-connected world. Marelli

has actively participated in MASTECS as end-user for the

automotive industry. Its main role was on setting automo-

tive requirements; providing a representative automotive case

study; and demonstrating the effectiveness and soundness of

the MTA toolchain during the evaluation.

Lynx Software Technologies specializes in real-time em-

bedded safety-critical software. Lynx’s contribution to the

project was the LynxSecure product – a type 1 (bare-metal)

hypervisor – as well as design, integration and support assis-

tance. Such a hypervisor provides robust space partitioning

without needing an RTOS, thus reducing HEM noise and

allowing ICH (time partitioning) to be studied with higher

fidelity. MASTECS used LynxSecure to partition the T2080

SoC’s RAM, cores, peripherals and L2 cache hardware into

bare-metal VMs.

VI. VMC CASE STUDY

This section provides a summary of the case study evaluated

including the platform where it runs, the particular instantia-

tion of the MASTECS tool chain to cover the case study’s

requirements, and the results obtained.

A. Introduction to the Case Study

The case study builds on a redundant Flight Control System

designed to replicate workload reduction applications at differ-

ent levels of the system architecture: integration unit (VMC)

and Single Board Computer (SBC). Each SBC board runs the

system in an Asymmetric Multi-Processing fashion (AMP),

and is able to deploy and run simultaneously mixed-criticality

applications with different assurance levels (DAL-A/C).

Figure 5 shows the software architecture implemented for

the VMC. Core 0 runs a process dedicated to I/O scheduling

and data marshalling using FIFO queues and shared memory

regions. The remaining cores of the SBC are dedicated to host

applications accessing I/O through the queues provided by

Core 0. Tasks are fully virtualized and executed on a Virtual

Machine (VM) by the LynxSecure hypervisor, providing task

domain isolation. The hypervisor allows the T2080’s cores

to be oversubscribed to host the 16 VMs of our case study.

Each hosting core runs a VCPU manager (blue circle) that

orchestrates and schedules computational tasks (green circles)

in a pre-defined order to enforce data flow consistency. Lynx’s

Z-Scheduler is used on each VCPU manager to implement

Fig. 5: Software architecture for each SBC of the VMC.

custom VM scheduling via time donation and as a convenient

integration point for the HEMs and RapiTime tool.

B. The Target Platform

The use case runs on an NXP T2080 processor [8], see Fig-

ure 6 which comprises 4 cores each its own private instruction

and data cache. The L2 cache, CCF and DDR memory are

shared among cores.

The LynxSecure hypervisor configures L2 cache using the

T2080’s hardware support for cache partitioning so that each

core gets access to one fourth of the 16 cache ways (i.e.

4 ways). To that end the proper values are set to registers

L2PIRn, L2PARn, and L2PWRn. In Figure 6 in the array in

the L2 block, rows represent cache sets and columns represent

cache ways.

Note that the CoreNet Coherence Fabric (CCF) is the main

SoC interconnect and along with and the memory controller

the focus for VMC case study. Interference caused by I/O

activity is not included in this study.

Fig. 6: Block Diagram of the main path from the cores to the

DDR memory in the T2080. D$ and I$ stand for data and

instruction caches, respectively; cci for core-cluster interface;

and CCF for CoreNet Coherency Fabric.

C. Tool Chain Instantiation

Below we summarize how the MASTECS toolchain has

been instantiated to address the VMC requirements.

➀ Hardware analysis: Hardware experts from BSC analyzed

the T2080 processor [14]. Since the L2 cache is partitioned

among cores it was concluded that it is not the main source

of contention. The main sources are the CCF and main

memory. Next, HEMs were identified to track activity on those

resources and specific micro-benchmarks were designed to

stress those resources. These include several counters in the

L2 cache and in the Bus Interface Unit.

➁ Verification requirements: The particular requirements

addressed in the scope of the evaluation include:

• REQ1. Determine whether idle cores may generate some

noise: baseline time characterization experiments require

a pristine configuration. Such default configuration (CCS)

must ensure that no accesses are produced from unused

devices to any shared resources.

• REQ2. Determine the overhead of HEMs reading: an

accurate profiling of the tasks under analysis is fun-

damental to avoid incurring excessive probe effect and

to discard any potential outliers in the computation of

WCETs. The LynxSecure hypervisor, the PMUlib, and

RVS components are assessed and configured to provide

accurate instrumentation.

• REQ3. Assess the increase in execution time and HEM

values due to contention triggered by well-designed

micro-benchmarks: for this purpose, the taskset must be

instrumented and monitored both in isolation, to capture

application timing baseline, and under stress scenarios

where multicore timing interference arises.

• REQ4. Obtain early estimates of the impact of multicore

contention on the application timing behaviour: the TCM

shall allow the generation of task scheduling schemes

where interference and makespan are reduced.

➂ Test Cases: In order to capture REQ1 and REQ2 we

designed test cases in which the task under analysis is run in

isolation. REQ3 and REQ4 also require experiments in mul-

ticore scenarios, which specific micro-benchmarks running in

different cores with or without the application under analysis.

➃ Test procedures and their execution: an executable test

procedure is generated for each test case allowing automated

execution of the test cases and collection of the results.

➄-➅ Test Results: The raw results are analyzed to assess

verification requirements incrementally. Results for REQ1 let

us assess whether idle cores generate noise due to any back-

ground activity. REQ2 results enable calibration that the HEMs

readings are accurate and a trustworthy building block for

MASTECS analyses. Finally evidence for REQ3 and REQ4

provides insight on the impact of contention.

D. Results

In the following we report the results from applying MAS-

TECS technology to fulfill verification requirements REQ1-4.

All experiments build on the use of RVS tool to collect timing

and relevant hardware events on the final VMC hardware

and software configuration. The RVS tool gathers information

at the desired granularity whilst the program under analysis

executes. In the scope of this case study, we instructed the

tool to automatically insert software instrumentation points for

all 16 processes. Since each process consists of distinct Read,

Computation and Write steps, information is collected at the

granularity of each step.

1) REQ1: In order to fulfill REQ1 we prepared an exper-

iment using the same same VM workload configuration used

in the final setup and a much simpler experimental setup in

which we execute a single micro-benchmark in one of the cpu

cores while the remaining ones are left idle. We run several

micro-benchmarks:

• RO1B. Micro-benchmark accessing and hitting one bank

of the L2 with read operations.

• WO1B. Micro-benchmark accessing and hitting one bank

of the L2 with write operations.

• RO4B. Micro-benchmark accessing and hitting in all

banks of the L2 with read operations.

• WO4B. Micro-benchmark accessing and hitting in all

banks of the L2 with write operations.

• RO. Micro-benchmark accessing and missing in the L2

and going to memory where it generates read operations.

• RW. Micro-benchmark accessing and missing in the L2

and going to memory where it generates read and write

operations.

We leverage the per-core (per-thread) counters in the L2

cache. By comparing the per-core, also known as local, HEMs

in the L2 with global counters we can assess whether the

other cores are generating additional activity. In particular, we

read the following global/per-thread hardware event pairs: L2

hits (456-global and 465-local), L2 misses (457-global and

466-local), L2 store allocates (460-global and 468-local), and

L2 data accesses (462-global and 470-local). In Table II we

present the results of the differences between each pair of

global and per-thread HEMs. As it can be seen the local

and global activity matches quite well which shows that the

only activity generated in the cache is that coming where the

micro-benchmark runs. The differences between global and

per-thread HEMs are lower than 0.69%, which shows that

noise from idle cores is negligible in the tested configuration.

TABLE II: Ratio between global and per-thread HEM pairs.

HEM L2Hit L2Miss L2StAlloc L2DataAcc
RO1B 0.20% 0.01% 0.00% 0.20%
WO1B 0.45% 0.13% 0.05% 0.56%
RO4B 0.03% 0.00% 0.00% 0.03%
WO4B 0.42% 0.29% 0.15% 0.68%
RO 0.21% 0.20% 0.06% 0.40%
RW 0.42% 0.30% 0.16% 0.69%

2) REQ2: To fulfill REQ2, we instructed RVS to collect

execution information on timing, instructions, and memory

accesses through local (per thread) and global (per plat-

form) hardware counters. In particular we instrumented a

dummy function on which we expect no activity and assessed

RVS+PMULib instrumentation overhead against a reference

scenario with minimal HEM manipulation (PMU only). At the

beginning and end of the function we read 6 on-core HEMs

gathered on the T2080 platform during the profiling exper-

iments. These are per-core HEMs Processor cycles (CYC,

001), Instructions completed (INS, 002), SGB promotions

(SGBP, 230), DLINK requests (DLINKR, 443) that are per

core HEMs; and the L2-related HEMs L2 misses per thread

(L2Mt, 466), L2 store allocates per thread (L2STAt, 468),

L2 Data accesses per thread (DL2At), and L2 Data misses

per thread (DL2Mt). Those were specifically selected as they

provide information on the instruction mix with emphasis on

the memory operations, requests to the DL1, L2, and memory.

Table III shows the values observed. With manual instru-

mentation using PMULib on top of LynxSecure we observe

minimal instruction overhead and no memory request. With

the automation provided by the RVS infrastructure we observe

very low absolute values that become negligible in relative

terms as soon as the instrumented function is in the order of

hundred of thousands of cycles, translating into micro-seconds.

TABLE III: Probe effect analysis. Instrumentation noise using

PMULib on top of different setup layers.

HEM CYC INST SGBP DLINKR L2Ht L2Mt L2STAt DL2At DL2Mt
.ID 1 2 230 443 465 466 468 470 472

.PMULib 21 5 0 0 0 0 0 0 0

.RVS 1129 1562 85 85 71 2 3 57 4

3) REQ3: In order to capture REQ3 we use RapiTime

to generate WCET estimates for each processes under both

isolation (cycles solo) and contention scenarios with the

RO and RW micro-benchmarks (RO sld and RW sld, re-

spectively). This involves executing tasks against tailored,

memory-aggressive micro-benchmarks, which are automati-

cally stubbed by RVS. We also report the slowdown captured

by RVS when the process is executed in the IFC, that is, with-

out micro-benchmarks and with the other processes running in

parallel (Parallel sld). Results are reported in Table IV.

We observe that the slowdown generated by the RO micro-

benchmark is generally low. In fact, most of the times, the

suffered interference is smaller than that observed in the IFC

(see Observed slowdown in Table V). The contention impact

of the RW micro-benchmark, instead, is always higher than

taht in the IFC, effectively upper bounding it.

In general, the slowdown generated by the micro-benchmark

is limited for the processes lasting longer and vice-versa. At

the extremes of the spectrum we find PROC6 that lasts millions

of cycles (10e6) and suffers a slowdown of only∼1.10 for both

core1 an core2; and PROC8 that lasts dozens of thousands

of cycles (10e4) and suffers slowdowns around 5.5x when is

contended against RW. As PROC8 has high density of access

to memory, it suffers high slowdown against the RW micro-

benchmark. However, PROC8 seems not to suffer contention

from the other running processes in the IFC. Finally, all

processes with a duration in the order of hundreds of thousands

of cycles (10e5) display slowdowns that range from 1.40 to

3.00x against the RW.

4) REQ4: A TCM tailored to VMC hardware and software

configuration has been developed and assessed in MASTECS.

In particular, the tool has been integrated together with a

scheduling and mapping optimization framework to provide

an early assessment of different deployment configurations and

identify those schedule scenarios that are not jeopardized by

multicore timing interference.

TABLE IV: Core 1 and 2 results under contention scenarios.

A single-core is activated with the process under analysis along

with RO and RW micro-benchmarks on Core 3.

Core 1 Core 2
Process Cycles in RO RW Cycles in RO RW

ID isolation slowdown slowdown isolation slowdown slowdown
PROC1(10e5) 733925 1.01 2.63 737283 1.01 2.57
PROC2(10e5) 370678 1.00 1.40 371201 1.00 1.40
PROC3(10e5) 746765 1.00 2.45 796911 1.00 2.41
PROC4(10e5) 160812 1.05 3.00 159425 1.05 2.98
PROC5(10e5) 736484 1.01 2.12 748450 1.01 2.06
PROC6(10e6) 3785988 1.00 1.10 3786251 1.00 1.09
PROC7(10e5) 740612 1.01 2.47 749216 1.00 2.44
PROC8(10e4) 57404 1.16 5.52 56599 1.16 5.51

In the following we evaluate the TCM bounds on an

example deployment scenario and schedule. The profiling

information on the VMC processes in isolation has been fed

to the TCM and the obtained analytical bounds on multicore

timing interference are assessed against maximum observed

slowdown in real experiments.

TABLE V: TCM bounds against observed values.

Core 1 Core 2
Process Time in Observed TCM Time in Observed TCM
ID Isolation Slowdown Bound Isolation Slowdown Bound
PROC1 733925 1.06 1.06 737283 1.07 1.06
PROC2 370678 1.01 1.17 371201 1.00 1.17
PROC3 746765 1.00 1.06 796911 1.00 1.06
PROC4 160812 1.06 1.67 159425 1.06 1.66
PROC5 736484 1.06 1.06 748450 1.07 1.06
PROC6 3785988 1.02 1.06 3786251 1.03 1.06
PROC7 740612 1.05 1.06 749216 1.06 1.06
PROC8 57404 1.03 2.62 56599 1.02 2.65

Table V reports the (maximum) observed and computed

relative slowdown suffered by each VMC process because of

contention. Results show the TCM results are generally upper-

bounding the impact of contention, modulo a ⑦1% tolerance

threshold due to unaccounted negligible activity on the VMC

Manager. While bounds are generally tight, in few cases the

TCM bound seem to be overly pessimistic (see PROC4 and

PROC8 in both cores). It should be noted, however, that

pessimism is only apparent as it is generally difficult to hit

the worst-case contention scenthose cases, namely PROC8 in

both cores, correspond to short, memory intensive tasks (with

∼10% of instructions being memory accesses) where relative

impact of memory accesses is extremely large and so is the

maximum impact of contention, which is not easy to trigger

with simple observations.

VII. PERSPECTIVE

The MASTECS project partners have achieved success in

bringing the technologies to a good commercial position and

technical maturity, providing a foundation for deployment of

the MASTECS methodology in support of certification of

emerging aircraft systems.

The key to achieving industry-wide benefit from these tools

and techniques is to ensure that the technology and commercial

models enable the manufacturers and users to build on and

share best practice. For example, using a standardized process

that is familiar to certification authorities reduces risk of failing

to achieve certification, repeatable automation abstracts from

the challenges of low-level testing making it economic, and

reusable IP designed and tested/qualified for use in high-

integrity systems means a faster time to market.

The automotive and aerospace case studies were highly

valuable in providing feedback to the technologies and guiding

the process of “productization”, helping to steer the technology

partners in meeting the needs of real aerospace and automotive

projects - this is an example of sharing best practice to benefit

the whole industry.

The significant challenges of building safety-critical systems

on multicore technology will continue. As new platforms

appear with new performance enhancing features (such as

multi-level caches, DMA, decentralized interconnects, GPU

and other accelerators) the technology required to support

them will continue to develop too, building on the baselines

in this paper. Expect many more developments in this area.

VIII. CONCLUSIONS

The pursuit of increased performance in critical domains

is relentless, and the avionics domain is not an exception.

Advanced increased-autonomy related features like Advanced

Air Mobility and Single Pilot Operation, require unprece-

dented levels of computing performance. The use of multicore

processors is the main path followed to provide the required

performance. The other side of the coin is that multicores

bring their own challenges including software timing analysis.

In this work we have presented the MASTECS Multicore

Timing Analysis methodology and tools. We also showed its

application to an avionics case study. Both help assessing how

MASTECS technology helps achieving CAST32-A/A(M)C20-

193 requirements.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry of

Science and Innovation under grant PID2019-107255GBC21/

AEI/10.13039/501100011033 and the European Unions Hori-

zon 2020 Framework Programme under grant agreement No.

878752 (MASTECS).

REFERENCES

[1] MASTECS: Multicore analysis service and tools for embedded critical
systems. https://mastecs-project.eu/.

[2] Jaume Abella, Carles Hernández, Eduardo Quiñones, Francisco J. Ca-
zorla, Philippa Ryan Conmy, Mikel Azkarate-askasua, Jon Pérez, Enrico
Mezzetti, and Tullio Vardanega. WCET analysis methods: Pitfalls and
challenges on their trustworthiness. In 10th IEEE International Sym-

posium on Industrial Embedded Systems, SIES 2015, Siegen, Germany,

June 8-10, 2015, pages 39–48. IEEE, 2015. doi:10.1109/SIES.

2015.7185039.
[3] Javier Barrera, Leonidas Kosmidis, Hamid Tabani, Enrico Mezzetti,

Jaume Abella, Mikel Fernández, Guillem Bernat, and Francisco J.
Cazorla. On the reliability of hardware event monitors in mpsocs
for critical domains. In Chih-Cheng Hung, Tomás Cerný, Dongwan
Shin, and Alessio Bechini, editors, SAC ’20: The 35th ACM/SIGAPP

Symposium on Applied Computing, online event, [Brno, Czech Re-

public], March 30 - April 3, 2020, pages 580–589. ACM, 2020.
doi:10.1145/3341105.3373955.

[4] Frederic Boniol, Youcef Bouchebaba, Julien Brunel, Kevin Delmas, and
Alfonso Mascarenas Gonzalez. PHYLOG certification methodology: a
sane way to embed multi-core processors. In 10th European Congress

Embedded Real Time Systems, ERTS 2020, Jan-Feb 2020, 2020.
[5] European Union Aviation Safety Agency. Notice of Proposed Amend-

ment 2020-09. https://www.easa.europa.eu/sites/default/files/dfu/npa
2020-09 0.pdf, 2020.

[6] Federal Aviation Administration, Certification Authorities Software
Team (CAST). CAST-32A Multi-core Processors, 2016.

[7] Freescale semicondutor. e6500 Core Reference Manual. https://www.
nxp.com/docs/en/reference-manual/E6500RM.pdf, 2014. E6500RM.
Rev 0. 06/2014.

[8] Freescale semicondutor. QorIQ T2080 Reference Manual, 2016. Also
supports T2081. Document Number: T2080RM. Rev. 3, 11/2016.

[9] Scott Gerhold, Mike Dunham, and Branden Sletteland. Alternative
multi-core processor considerations for aviation. In AHS International

74th Annual Forum & Technology Display, Phoenix, Arizona, USA, May

14-17, 2018, 2018.
[10] Sylvain Girbal, Jimmy Le Rhun, and Hadi Saoud. METrICS: a

Measurement Environment For Multi-Core Time Critical Systems. In
9th European Congress Embedded Real Time Systems, ERTS. Jan-Feb

2018, 2018.
[11] Laurence H. Mutuel, Xavier Jean, Vincent Brindejonc, Anthony Roger,

Thomas Megel, and E. Alepins. Assurance of multicore processors in
airborne systems. DOT/FAA/TC-16/51, Federal Aviation Administra-
tion, 2017.

[12] Xavier Palomo, Mikel Fernández, Sylvain Girbal, Enrico Mezzetti,
Jaume Abella, Francisco J. Cazorla, and Laurent Rioux. Tracing
hardware monitors in the GR712RC multicore platform: Challenges and
lessons learnt from a space case study. In 32nd Euromicro Conference on

Real-Time Systems, ECRTS 2020, July 7-10, 2020, Virtual Conference,
volume 165 of LIPIcs, pages 15:1–15:25, 2020.

[13] Xavier Palomo, Enrico Mezzetti, Jaume Abella, Reinder J. Bril, and
Francisco J. Cazorla. Accurate ilp-based contention modeling on
statically scheduled multicore systems. In 25th IEEE Real-Time and

Embedded Technology and Applications Symposium, RTAS 2019, Mon-

treal, QC, Canada, April 16-18, 2019, 2019.
[14] Roger Pujol, Hamid Tabani, Jaume Abella, Mohamed Hassan, and

Francisco J. Cazorla. Empirical evidence for mpsocs in critical systems:
The case of NXP’s T2080 cache coherence. In 2021 Design, Automation

Test in Europe Conference Exhibition (DATE), pages 1162–1165, 2021.
doi:10.23919/DATE51398.2021.9474078.

[15] David Radack, Harold G. Tiedeman, and Paul Parkinson. Civil certifica-
tion of multi-core processing systems in commercial avionics. Technical
report, Rockwell Collins, 2018.

[16] NXP Semiconductors. Chip Errata for the i.MX 6SLL. Document
Number: IMX6SLLCE, 2019.

[17] Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico
Mezzetti, and Francisco J. Cazorla. Leveraging hardware qos to
control contention in the xilinx zynq ultrascale+ mpsoc. In Björn B.
Brandenburg, editor, 33rd Euromicro Conference on Real-Time Systems,

ECRTS 2021, July 5-9, 2021, Virtual Conference, 2021.
[18] Hamid Tabani, Leonidas Kosmidis, Jaume Abella, Francisco J. Ca-

zorla, and Guillem Bernat. Assessing the adherence of an industrial
autonomous driving framework to ISO 26262 software guidelines. In
Proceedings of the 56th Annual Design Automation Conference 2019,

DAC 2019, Las Vegas, NV, USA, June 02-06, 2019, page 9. ACM, 2019.
doi:10.1145/3316781.3317779.

[19] Reinhard Wilhelm. Mixed feelings about mixed criticality (invited pa-
per). In Florian Brandner, editor, 18th International Workshop on Worst-

Case Execution Time Analysis, WCET 2018, July 3, 2018, Barcelona,

Spain, volume 63 of OASICS, pages 1:1–1:9. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/OASIcs.

WCET.2018.1.
[20] Frank Wolfe. EASA and FAA to issue further guidance

on multicore certification this year. Aviation Today, February
2020. URL: https://www.aviationtoday.com/2020/02/28/easa-and-faa-
to-issue-further-guidance-on-multicore-certification-this-year/.

[21] Xilinx. Zynq UltraScale+ MPSoC, APU - PMU Counter Values Might
Be Inaccurate When Monitoring Certain Events. Document Number:
AR# 68878, 2017.

Embedded Real Time SYSTEMS

30-31 MARCH 2022, TOULOUSE - FRANCE

Regular Paper

Using AI to estimate Memory Interference
Impact on Avionics Software on Multicore

Platform.
Florent Chenevier, Florence de Grancey, THALES, Joshua Salort, SII

Abstract: Characterization of memory interferences on multi-core platform is a complex and hot challenge in

avionics. Instead of a fine and complex explicit modeling of all the contributors to this phenomenon, we

propose an original methodology to perform this characterization, using a data/machine-learning approach.

In a first step, we analyze the binary of avionics applications to extract Memory Access Pattern and compute

statistical features about the usage of memory by the application. Secondly, we generate a representative

dataset of applications using Bandit-based algorithm, which accelerates space exploration and allows limiting

the training dataset size. The analysis of our first results reveals interesting trends concerning software

behavior understanding and modeling ability.

Keywords: Memory Interferences, Multicore, Bandit & Good UCB algorithm, Space filling, Machine learning,

I. Context

A. Multicore platform for avionics platform, a challenge.

Multicore platforms begin to be used in the avionics domain, for several reasons. First, the promises of

performances increase combined with a Size Weight and Power footprint reduction on the other hand. Besides,

the need for performances is ever growing to serve new functions. Finally, the foreseen lack of single-core

platform available in the future for industrial application. However, when it comes to using these platforms to

implement critical avionics applications, difficult challenges remain to be addressed. Among those, we can name

their high level of integration reducing both observability and implementation capability of partitioning

mechanisms on internal shared resources, and the complexity of their design leading to strong difficulties to

build behavior prediction models [1].

One of the main issues is the memory interferences (or contentions) phenomenon, which occurs on the SDRAM

access bus shared by all the cores of the processor [2]. The concurrent memory bus solicitations by Software

Applications are managed by internal arbitration mechanisms, which can induce a slow-down of all applications.

This slow-down, sometimes eliminating the whole performance gain provided by additional cores, is hard to

predict, as it results from the independent but concurrent executions of the Software Applications running on

each core. It is even quite unpredictable when we cannot make any assumption on other hosted applications.

When no assumption can be made, we can at least characterize the Application’s contributions to this
phenomenon, and the impact this one has on the considered applications.

B. Notion of Software Aggressiveness & Sensibility

As a software application both contributes to the memory contention phenomenon and is a “victim” impacted
by it (depending on its own SDRAM bus solicitations and the platform arbitration with those of other

applications), we need to quantify these contributions and impact. A common approach [19] for measuring this

impact is to use the ratio of execution time Tiso measured when running in isolation (a single core used on the

platform) and execution time Tcont measured “in a contention situation”. The overhead is defined as = (Tcont -

Tiso)/Tiso

In order to be able to compare measures done between several applications, a reference measure frame is

necessary. For this, we will consider two Reference Software Applications:

- A reference Sensible application (aka “Etalon”) designed to be a reference “victim” of memory
contentions, without contributing to the phenomenon. Its Overhead measured when running alongside

with Ai will then define Sensibility S(Ai).

- A Reference Stress Application (aka “RSA”) designed to be a reference “generator” of memory
contentions, without being affected by the phenomenon. The Overhead measured on Ai running

alongside with RSA will define the Aggressivity A(Ai).

C. Estimation of contentions footprint using machine learning

An Avionics software developer needs to establish the worst-case execution time (WCET) of his Application Ai in

operational conditions. In a multicore context, estimating the contention footprint of Ai (i.e.: Aggressivity A(Ai)

& Sensibility S(Ai)) is plainly part of this activity.

To avoid a complex modeling that would use explicit hypotheses on both platform and application; we will try,

as C. Courtaud et al. [19], to predict this contention footprint on our Avionics Platform using machine learning.

This approach raises the following three challenges:

- The relevant input features has to be identified. They have to contain appropriate level of information

to represent application Sensibility and Aggressivity.

- A representative dataset of the operational distribution of features has to be built.

- A model has to be built to capture the nonlinear behavior of Aggressiveness and Sensibility.

II. Previous work on Memory Contentions
The problem of memory contentions has been a study case since the availability of multicore CPU (therefore

since more than a decade). Various approaches have been developed, either to analyze and/or reduce the off-

chip (direct SDRAM) accesses, or to improve the performances of those accesses. Many analyses or mechanisms

have been proposed regarding memory controller or cache controller ([9], [13], [14], [15]). Some approaches use

a global modeling of both software task and platform's memory & cache management mechanism ([9], [10], [11],

[18]). Some Linux-based solutions have been proposed implying several mechanisms such as memory bandwidth

allocation (memguard) per core ([12], [16], [17]), bank page coloring for DRAM bank allocation per core ([15],

[16], [17]) and bank page lockdown mechanism upon their access frequency, to avoid their cache eviction ([16],

[17]). Finally, a few approaches focus on the way a software application accesses the memory and its impact on

memory contention ([10], [13], [19] & [20]).

C. Courtaud et al. Approach ([19] & [20]) appears to be quite adaptable to our situation, as it does not rely on a

fine knowledge of the platform (it's behavior is de facto "learned" during machine learning training phase) but

only relies on the way the software addresses the memory (with introduction of Memory Address Pattern and

associated metrics). It is also evolutionary (if new relevant metrics are discovered) and allows the analysis of

existing software (directly from the binary executable file). At last, it is the most adaptable to our context.

A. Memory Access Pattern and statistical features

Courtaud et al. introduced in [19] the notion of Memory Access Pattern (MAP) in order to capture the use of

memory by the software application. This pattern contains the sequence of all Assembly instructions accessing

the memory (either to write or to read a value), established while going through a software branch. This can be

captured either by monitoring the software execution on target, or by symbolic execution, using some dedicated

tools such as angr [21]. The Figure 1 hereunder (from [19]) provide a clear idea of the MAP:

Figure 1: Representation of Memory Access Pattern (MAP)

In this MAP, we also store some context information associated to each instruction:

- The mnemonic and its type (R/W: Read or Write)

- The address in memory where the instruction read or write

- The number of “local” instructions (i.e.: instructions that only use CPU registers and do not use memory)
that follow the considered R/W instruction.

From this MAP, we extract some statistical characteristics that Courtaud et al identified as relevant to analyze

the memory interferences phenomenon:

- Memory intensity: the ratio of Read & Write instructions versus the total number of instructions

(including Local instructions) This ratio is in [0;1].

- R/W ratio: the number of Read instructions versus the number of Write and Read instructions. This ratio

trends to 0 when the Sw writes much more often than it reads, and to 1 on the contrary.

- Access type interleaving ratio: the number of switching from Read to Write (and reverse) in the MAP. It

is a way to quantify the mixing of Read & Write operations. This ratio is in [0;1], and trends to 1 when

Sw switch between Read & Write operation each time it accesses memory.

- Access pattern Entropy: an application of Shannon entropy used to quantify randomness of the memory

accesses in the MAP:

where j is a jump in memory (i.e. : the distance between two memory addresses accessed consecutively)

III. Platform & Methodology: Our proposal
Our current work implies the following activities:

1) identify relevant features on application software regarding memory contention issues.

2) Build the pipeline to generate simulated applications Ai and measure A(Ai) and S(Ai).

3) Generate an optimized set of test applications covering the widest range of situations.

4) Perform real measures campaign.

5) Build a tool able to extract the pertinent features from a real Avionics application.

6) Train an estimator to make it able to predict A(Ai) and S(Ai) from the input features.

In this paper, our main contributions cover the first five activities listed above. Training an estimator and its

evaluation is left as future work.

A. Defining Memory Access Pattern (MAP) and features for Contentions

analysis.

As detailed in [19], the effects of the memory contentions on any application can be determined by analyzing

the way the application sequentially accesses the memory during its execution. We will here use the notion of

Memory Access Pattern (MAP) introduced in [19]. We extract the MAP using angr’s Control-Flow Graph (CFG)

recovery and symbolic execution capabilities. Once built, we extract from the MAP the four features detailed in

§ II.A “Memory Access Pattern and statistical features”.

Another approach would be to skip this feature extraction step, and to consider directly the MAP (or maybe the

full sequence of all assembly instructions –not only those which access memory- in their order of execution) as

an entry for an NLP-based estimator. In such a case, we would consider the CPU assembly as a language, the

sequences of instructions as texts, and the estimation of Aggressivity & Sensibility as NLP sentiment analysis of

a text. However, we discarded such a deep-learning/NLP approach until now, as it might be quite heavy: training

from scratch a (Transformer-like) NLP model may need a considerable amount of patterns. Furthermore, the

analysis of explicit features provides useful keys (to eventually correct or adapt a software to lower its contention

footprint), better than a black-box deep learning model.

B. Building the dataset for estimator training

For the training of an estimator (step 6 in figure below), the main challenge is to build a representative training,

validation & test dataset which captures both MAP & its features plus Aggressivity & Sensibility (A&S) measures.

That means (step 1 and 2), building a set of simulated software applications (each one is a sequence of assembly

instructions). Then, we run each application on target in parallel with the Etalon and RSA applications to get its

footprint (A&S) by measuring execution times (step 3), and we also extract the MAP and its associated features

(step 4). The capitalized measures, MAPs and features constitute our machine-learning database (step 5).

Figure 2: Principle of the dataset generation process for ML training

As we may repeat all these operations several thousands of times, we shall automatize and optimize this pipeline:

minimize each step’s duration and optimize the number of test applications to reach adequate precision of
estimator. This optimization process is described in §IV “Optimizing the data collection”.

C. Optimizing the dataset construction

A representative dataset should capture the diversity of both the MAP extracted features and of the measured

outputs (Aggressivity and Sensibility). The construction of this dataset raises several challenges: the industrial

necessity to limit the measures on target (and so the number of items in ML database), and the need to explore

the widest range of instruction sequences to capture a diversity of application behavior.

D. Inference Process Extracting the MAPs from real software and footprint

characterization

After training, the next phase is to use the trained estimator to get the Aggressiveness and Sensibility (A/S)

footprint for any Avionics Application. For this, given the binary of an Application, we use angr’s symbolic

execution to go through the different branches of CFG and extract the corresponding MAPs (step 1 in figure

below). Currently, this symbolic execution only supports linear CFG (i.e.: without branch). We will extend it to

real cases in a second phase. Each MAP and its features are submitted to estimator (step 2). The collection of

Aggressiveness and Sensibility provided by estimator for each MAP constitutes the A&S footprint of the

Application (step 3).

Figure 3: Principle of real software footprint estimation

IV. Optimizing the data collection
A representative dataset should capture both the diversity of the four inputs metrics and the diversity of the

measured outputs (A/S). The construction of this dataset raises several challenges: a combinatorial explosion to

explore all possible sequences, the feasibility of only a few experiments, and the necessity to introduce software

expertise to explore the pertinent sequences.

A. The failure of random Monte Carlo generation

As a first step, to evaluate the complexity of the dataset creation task, we performed naïve data collection using

random Monte Carlo exploration. Sequences are built using a random uniform selection of instructions from the

CPU dictionary. First experiments (see details hereunder) show that the metrics of these sequences are quite

close to those induced by the repartition of Read, Write & Local instructions in the dictionary. We can explain

that by the fact that hundreds of random selections preserve the distribution of instructions in the dictionary.

On 1400 sequences of 1500 instructions (randomly picked in a 200-instructions dictionary), we get the following

metrics distribution:

Therefore, a more relevant approach should be find using space exploration methods.

B. Previous work on space exploration

The question of collecting enough representative data to model application can be compared with the

problematic of space exploration / space filling designs for computer simulation experiments. Several methods

exist, based on random sampling, geometrics criteria [3], maximin design [4] or latin hypercubes [22] & [23].

These methods proposed a way to sample the input space to be representative using few points. Few studies in

space exploration also present methods to maximize exploration of output space [5] using bi-level objective

criteria. After analysis, we move aside those algorithms, as we cannot introduce in them any kind of expertise

concerning the design of input sequences.

The question of collecting enough representative data in few experiments is also close to the problematic of

multi-armed bandit’s algorithms. Such algorithms are designed to maximize a cumulated reward while

performing a limited combination of arms. Several state of the art algorithms exist such as multi-armed UCB [6],

contextual multi-armed bandits [7]. We found that these algorithms are not suitable to our use case, as we

cannot define a unique reward to orient the algorithm search.

A third alternative for space exploration was found in the work of S.Bubeck et al, considering a Good UCB

algorithm where several experts are used and a good Turing algorithm is used to select the expert which propose

a better exploration [8]. This specific kind of multi-armed bandit algorithm appears as the most suitable algorithm

to solve our problem compared to space filling methods, as it uses the notion of “experts” (implementing domain

knowledge) to guide exploration.

C. Informed sequence Exploration: Good UCB algorithm

1. Principle

The Good UCB algorithm proposed in [8] uses a set of K Experts {I1,… Ik} to explore sequentially space Ω of
elements X, in order to find specifics discrete elements A. At each time t, a played experts Ik observes an element

X(k,t) which can belong or not to the subset A. The aim of the algorithm is to select at each time step t, the expert

Ik which maximizes the number of elements X(k,1..t) belonging to A discovered by the expert and only him.

For that, at each time step t, the algorithm uses for each expert k: {1…K} its “missing mass” Ri, that is the number

of elements of A non-discovered by the expert. In practice, this value is not measurable, so a missing mass

estimator is built as follows:

�̂�(𝑘, 𝑛𝑘,𝑡−1) = 1𝑛𝑖,𝑡−1 ∑ 1 {(∑ 1{𝑋𝑘,𝑠 = 𝑥}) = 1 𝑛𝑖,𝑡−1
𝑠=1 𝑎𝑛𝑑 (∑ ∑ 1{𝑋𝑗,𝑠 = 𝑥}) = 1𝑛𝑗,𝑡−1

𝑠=1
𝐾

𝑗=1 }𝑥∈𝐴
With 𝑛𝑖,𝑡 = ∑ 1{𝐼𝑘 = 𝑖}𝑠<𝑡 number of times the expert Ik is selected during the time horizon {1…t}. The right
part of the bracket represents the number of times the expert Ik observed the element x during the timeline

{1...t-1}. The left part represents the number of times the element x is observed by all experts. The missing mass

is incremented when the expert Ik was the only one to observe an element x.

The optimal expert is selected by choosing the expert that maximizes the missing mass. We introduce a penalty

factor C to enhance exploration at the first stages of the process.

𝐼𝑡 = arg max �̂�(𝑘, 𝑛𝑘,𝑡−1) + 𝐶. √4 log(𝑡) 𝑛𝑘,𝑡−1⁄

2. Application

To apply the good UCB algorithm to our use case, we made the following assumptions :

 An “expert” is a builder of instruction sequences, which can be a random builder (eg. picking randomly

instructions in the instruction dictionary) or a rules-oriented builder using a specific algorithm to select

instructions.

 The desired discrete set of elements A is design such way: The p-dimension metrics space is discretized,

an element A is a “p-boxes” in this space. A new element of discrete set A will be considered as

discovered if the measured metrics fall into one p-box of discrete space.

We also made the following choices:

 We decided to design three instance of Good UCB algorithm, where the missing mass is computing 1)

with respect to the aggressivity metrics only (ie. The missing mass is incremented when a new value of

aggressivity is discovered), 2) with respect the sensibility metrics only, 3) and the combination of

aggressivity and sensibility only (ie. The missing mass is incremented when a new 2D box of a

aggressivity/sensibility table is discovered).

 We decided to modify the missing mass estimator by introducing a new hyper parameter ObsMax that

is the maximum “allowed” number of (re)discoveries of an element by all experts. Indeed, we

considered that the space explored by each expert may not be disjointed.

𝑅𝑘, 𝑛𝑘,𝑡−1 = 1𝑛𝑖,𝑡−1 ∑ 1 {(∑ 1{𝑋𝑘,𝑠 = 𝑥}) = 1 𝑛𝑖,𝑡−1
𝑠=1 𝑎𝑛𝑑 (∑ ∑ 1{𝑋𝑗,𝑠 = 𝑥}) = 𝑂𝑏𝑠𝑀𝑎𝑥𝑛𝑗,𝑡−1

𝑠=1
𝐾

𝑗=1 }𝑥∈𝐴
3. Experts Design

The definition of used “experts” mainly shapes the performance of Good-UCB algorithm. An expert is

characterized by an accessible exploration space, which, ideally, should contain some elements of the discrete

set of elements A. In our case, ideally, the union of the accessible exploration space of each expert shall recover

the complete metric space. So a specific attention is provided on expert design in order to favor exploration.

As experts are instruction-sequences builders, several choices are possible. First, as demonstrated in § IV.A, we

do not select random instruction builders, as they build sequences with MAP metrics (RW ratio, interleaving,

intensity & entropy) quite close from instruction dictionary mean values. We favor the design of “metrics
oriented experts” which aims to build instruction sequences with a target value for one or several features of the

MAP (RW ratio, interleaving, intensity & entropy). We design experts with uniform repartition of targeted value

to allow complete 4-metrics space exploration.

In addition to this target metric, we perform some checks during the sequence building to verify that the built

sequence succeeds in compiling and does not present typical software errors such as divisions by zeros or

attempts to access unauthorized memory areas.

V. Preliminary Exploration Results
We performed several generation campaigns of 200 generated sequences, each sequence composed of 1500

instructions picked in a 206 instructions dictionary, and accessing a 12 Mbytes Memory area. We always used

the same 27 experts, in order to evaluate the algorithm behavior depending on the hyper-parameter values.

A. Exploration tuning

We first explore the impact of an exploration based on Missing Mass computed on Sensibility or computed on

Aggressivity (Figure 4 below):

Figure 4: Exploration with Missing mass computed on Sensibility vs Agressivity

The Expert selection trends are different in both cases: for instance, the most selected experts in “sensibility
exploration” are not the same as for the “aggressivity exploration” and the distribution of generated sequences

in the A & S plan are different. The exploration orientation depending on the measure used for missing mass has

an impact on the exploration.

In a second step, we explore the influence of hyper-parameter C: Figure 5 hereunder provide the evolution of

missing mass and the number of selection for each expert during campaign (200 sequences generated). A low

value of C (C=0.1, left graph) will lead to select more often some Experts, while a higher value of C (C=6.0, right

graph) will lead to a more distributed use of experts.

Figure 5: Impact of C Hyper-parameter on Missing Mass & Expert selection

When exploring the impact of ObsMax Hyper-parameter, the Figure 6 hereunder, comparing expert selection for

Obsmax value 1, 3 & 5 shows that allowing more observations (e.g.: 5) of the same discrete element of the search

space will lead to use a wider subset of experts, while allowing less (e.g.: 1) will lead to overuse one specific

expert.

Figure 6: Comparison of influence of ObsMax (1, 3, 5), for C=0.1

B. Analysis & Modeling

The first results, provided in Figure 7 & 8 hereunder, shows that current experts have a quite low “exploration
capability” (actually, they generate sequences with metrics quite close to the targets they were given). This limit

the global exploration capability of UCB algorithm. Further generation campaigns will be launch in the future

with less constrained targets provided to experts.

Figure 7: Aggressivity & Sensibility versus intensity, entropy & R/W ratio

Figure 8 : projection of Aggressivity & Sensibility on a (rw_ratio, entropy*intensity) plane

However, the first measurement campaigns already present interesting trends on measure interpretation, shown

in Figure 7 & 8 above and Figure 9 below. We first observed that data are split into two “families”: one with

Aggressivity value below 1% and Sensibility below 30%, and a second one with higher values. The first family

contains mainly sequences with few read or write instructions (low intensity), or with high intensity but with very

low entropy. The second family contains sequences with higher intensity of memory access or with more entropy

in these accesses. A second trend reveals that we reach high A&S values for high intensity and entropy values. A

third trend shows the influence of R/W ratio: the sequences with a “Write profile” (i.e: R/W ratio close to 0) are

more aggressive, when those with a “Read profile” (R/W ratio close to 1) are more sensible. This confirms analysis
performed by other software engineering teams.

Figure 9: Repartition of each metrics on the Aggressivity/Sensibility plane

We decided to confirm our intuitions by building regression trees for prediction of Aggressivity and Sensibility.

The built regression tree effectively shows that intensity and entropy are the more discriminant features. A first

split is performed using a threshold value of 0.5 for intensity. Sequences with intensity below this threshold are

mainly “low sensitive and low aggressive” sequences. For high intensity values, a second split concerns entropy

with a threshold of 3 or 5, depending from aggressive or sensitive point of view. R/W ratio and interleaving occurs

only at third or fourth stages of splits. These regression trees offer simple rules to estimate the behavior trends

of sequences.

Figure 10: Example of regression tree for sensibility metrics build with around one thousand measurements.

VI. Conclusion and Next steps
We elaborate a framework to easily generate Test Software applications and relevant measurements dedicated

to the analysis of memory contention phenomenon. Based on concepts elaborated in previous works (MAP and

associated features), we provide a way to efficiently generate a database of software sequences with known

characteristics and their associated measured contention footprint (Aggressivity & Sensibility).

This database will allow testing different type of machine-learning estimators to get a better model of software

behavior regarding contention phenomenon.

Furthermore, the analysis of our first results reveals interesting trends concerning software behavior

understanding, to be completed with complementary analyses.

In the next steps, we will:

- Enhance the generation of sequences by refining the values of UCB hyper-parameters

- Train several type of estimators and compare their performances on generated Test sequences.

- Test the estimators on real avionics software applications

VII. Bibliography
[1] R. Wilhelm, C. Ferdinand, C. Cullmann, D. Grund, J. Reineke, and B. Triquet, ‘Designing predictable multi-core

architectures for avionics and automotive systems’, in Workshop on Reconciling Performance with Predictability

(RePP), 2009, vol. 10, pp. 2–3. Accessed: Oct. 19, 2016.

[2] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar, ‘Bounding and reducing memory
interference in COTS-based multi-core systems’, Real-Time Syst., vol. 52, no. 3, pp. 356–395, May 2016

[3] Welch, WJ, ACED: Algorithms for construction of experimental designs, The American Statistician, 1985

[4] Van Dam, E. R., Husslage, B., Den Hertog, D., & Melissen, H. (2007). Maximin Latin hypercube designs in two

dimensions. Operations Research, 55(1), 158-169.

[5] Chen, Q. & Paulavičius, R. & Garcia-Munoz, S. & Adjiman, C. (2018). An Optimization Framework to Combine

Operable Space Maximization with Design of Experiments. AIChE Journal. 64. 10.1002/aic.16214.

[6] Wei Chen, Yajun Wang , Yang Yuan Combinatorial Multi-Armed Bandit: General Framework, Results and

Applications

[7]Langford, John; Zhang, Tong (2008), "The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits",

Advances in Neural Information Processing Systems 20, Curran Associates, Inc., pp. 817–824

[8] S. Bubeck, D. Ernst, A. Garivier, Optimal Discovery with Probabilistic Expert Advice: Finite Time Analysis and

Macroscopic Optimality, 2013, Journal of Machine Learning Research 14 (2013) 601-623

[9] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir and T. Moscibroda, "Reducing memory interference

in multicore systems via application-aware memory channel partitioning," 2011 44th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2011, pp. 374-385.

[10] B. M. Tudor, Y. M. Teo and S. See, "Understanding Off-Chip Memory Contention of Parallel Programs in

Multicore Systems," 2011 International Conference on Parallel Processing, 2011, pp. 602-611, doi:

10.1109/ICPP.2011.59.

[11] Liya Liu and O. Hasan and S. Tahar, "Formal Analysis of Memory Contention in a Multiprocessor System",

SBMF, 2013

[12] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo and L. Sha, "MemGuard: Memory bandwidth reservation system

for efficient performance isolation in multi-core platforms," 2013 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS), 2013, pp. 55-64, doi: 10.1109/RTAS.2013.6531079.

[13] J. Marandola, S. Louise, L. Cudennec, J. Acquaviva and D. A. Bader, "Enhancing Cache Coherent Architectures

with access patterns for embedded manycore systems," 2012 International Symposium on System on Chip (SoC),

2012, pp. 1-7, doi: 10.1109/ISSoC.2012.6376369.

[14] Dakshina Dasari and Vincent Nelis and B. Akesson, "A framework for memory contention analysis in multi-

core platforms", Real-Time Systems, 2015, V.52, pp 272-322

[15] Lei Liu, Z. Cui, Mingjie Xing, Y. Bao, M. Chen and Chengyong Wu, "A software memory partition approach for

eliminating bank-level interference in multicore systems," 2012 21st International Conference on Parallel

Architectures and Compilation Techniques (PACT), 2012, pp. 367-375.

[16] Muhammad Ali Awan and P. Souto and B. Akesson and K. Bletsas and E. Tovar, "Uneven memory regulation

for scheduling IMA applications on multi-core platforms", Real-Time Systems, 2018, V.55, pp 248-292

[17] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo and L. Sha, "MemGuard: Memory bandwidth reservation system

for efficient performance isolation in multi-core platforms," 2013 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS), 2013, pp. 55-64, doi: 10.1109/RTAS.2013.6531079.

[18] D. Casini, A. Biondi, G. Nelissen and G. Buttazzo, "A Holistic Memory Contention Analysis for Parallel Real-

Time Tasks under Partitioned Scheduling," 2020 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2020, pp. 239-252, doi: 10.1109/RTAS48715.2020.000-3.

[19] C. Courtaud, J. Sopena, G. Muller and D. Gracia Pérez, "Improving Prediction Accuracy of Memory

Interferences for Multicore Platforms" 2019 IEEE Real-Time Systems Symposium (RTSS), 2019, pp. 246-259, doi:

10.1109/RTSS46320.2019.00031.

[20] Cédric Courtaud. Caractérisation de la sensibilité aux interférences mémoire dans les systèmes temps réels

embarqués sur des plateformes multi-coeurs. Systèmes embarqués. Sorbonne Université, UPMC University of

Paris 6, 2020. Français. tel-03022017

[21] Shoshitaishvili Yan, Wang Ruoyu, Salls Christopher, Stephens Nick, Polino Mario, Dutcher Audrey, Grosen

John, Feng Siji, Hauser Christophe, Kruegel Christopher,Vigna Giovanni, “SoK: (State of) The Art of War: Offensive
Techniques in Binary Analysis”, 2016, IEEE Symposium on Security and Privacy

[22] Tang, B. (1993). Orthogonal array-based Latin hypercubes. Journal of the American statistical

association, 88(424), 1392-1397.

[23] Leary, Stephen & Bhaskar, Atul & Keane, Andy. (2003). Optimal orthogonal-array-based Latin hypercubes.

Journal of Applied Statistics. 30. 585-598. 10.1080/0266476032000053691.

Modelling and analyzing multi-core COTS
processors

Frederic Boniol, Julien Brunel, Kevin Delmas, Claire Pagetti
ONERA, Toulouse, France

Victor Jegu
Airbus, Toulouse, France

Abstract—To embed multi-core COTS processors in an avionic
product, the platform must be thoroughly analyzed from two
perspectives: the worst case real-time behaviours and the safety
impact of internal failures. Both activities are very complex and
error-prone for large size systems. Moreover, the frameworks for
both perspectives (real-time and safety) are completely decoupled,
leading to independent and possibly incoherent analyses.

Our purpose is to unify both worlds and help designers in their
certification process. To this end, we have formalized and unified
as much as possible the different perspectives of multi-core
analysis. We have also proposed a simple description language
for the platform, which contains the minimal concepts needed by
both perspectives, as well as an automatic translation to the two
analysis frameworks.

I. INTRODUCTION

Aeronautical safety critical systems are subject to certi-

fication, meaning that a certification authority assesses the

compliance of the product with a set of adequate standards.

a) Certification of multi-core COTS – CAST 32A:

The CAST32-A position paper [1] provides a set of guid-

ance for software planning and verification on multi-core-

based systems. Indeed, multi-core chips, i.e., chips integrating

several cores interconnected by a shared bus, face important

challenges for their integration in safety critical environment.

There are two main types of analysis to perform: worst case

real-time analysis and safety analysis.

Real-time and interference As a matter of fact, it is very

difficult to ensure time predictability [2], [3] for multi-core

COTS, one of the key elements requested by certification.

Time predictability is the capability to compute a safe and

tight upper bound of the number of cycles required to execute

a piece of software in the worst case. For multi-core COTS, the

problems come from the intensive resource sharing, the lack

of documentation and the complex internal behaviour (e.g.

cache coherence) to increase the average performance. For

mastering the worst case behaviour, the CAST32-A promotes

the computation of interferences – situation where several

applications execute in parallel and encounter a serious timing

delay compared to when executing in isolation – and interfer-

ence channels – shared resource of the platform.

Internal failures and safety effect The classical approach

was to consider the processor as a whole such that any failure

leads to the complete failure of the system. Such an approach

is considered as a bit naive and pessimistic for multi-core.

Indeed, if a core fails, the rest of the platform can still

work correctly and the global system can still be safe. Thus,

making a sharper analysis decreases the pessimism. On the

other hand, modern processor architectures integrate many

components and intelligence such that they can be seen as

systems themselves. Identifying the failure modes, their effects

and their failure rates is rather challenging. Some works,

such as [4], propose to emulate a component failure and

observe the reaction of the platform. Others, such as [5], [6],

propose to deduce abstract failure modes from the functional

services in pragmatic reasoning approach. Some, e.g. [7], try

to quantify the failure rate with real platform experiments. For

mastering the failure propagation, the CAST32-A promotes the

identification of internal failures and their containment within

the equipment (integrating the multi-core) not to polute the

avionics.
b) Objectives and contribution.: Practically, the appli-

cant must argue that they have identified the interference and

the safety effect for their platform and their specific use. The

analyses are applied on the platform which includes the hyper-

visor or RTOS (real-time operating system) if any. By specific

use, the CAST32-A speaks of configuration settings, i.e. the

way the processor is used. This includes the description of

which components are used and how (with which parameters).

Memory Subsystem

MPAX

C66x
CorePac

MMU

ARM
A15

L2 SRAM

L1P
SRAM

L1D
SRAM

L1P L1D

TeraNet

EDMA

PLL

Power Mgt

Semaphors

Boot ROM

G
P

IO

I2
C

U
S

B
3
.0

U
A

R
T

S
P

I

P
C

Ie

S
R

IO

MSMC
Controller

MSMC
SRAM

64-bit
DDR3
EMIF

DDR
Memory

AXI Bus

Fig. 1. KEYSTONE platform

Let us consider as an example the KEYSTONE TCI6630K2L

[8] from Texas Instruments, which is depicted in Figure 1.

The configuration settings include which cores are running

and with which frequency; the peripherals that are used, how

the memory is configured and so on.
Once the configuration settings have been clearly described,

the applicant must then identify the interferences, i.e., compute

altitude hold0

vz control0

az filter0

vz filter0

h filter0

q filter0

va filter0

va control0

ARM1

ROSACE/COM

ARM0 DSP0

private in DDR B0 private in DDR B0 private in L2SRAM

elevator0

A/C0

engine0

δe0

T0

h c0

Va c0

h f0

vz c0 az f0

vz f0

q f0

va f0

δ ec0

δ thc0

vz0

h0

az0

q0

va0

period = 40 ms period = 20 ms period = 10 ms period = 5 ms

altitude hold1

vz control1

az filter1

vz filter1

h filter1

q filter1

va filter1

va control1

ARM3

ROSACE/MON

ARM2 DSP1

private in DDR B1 private in DDR B1 private in L2SRAM

elevator1

A/C1

engine1

δe1

T1

h c1

Va c1

h f1

vz c1 az f1

vz f1

q f1

va f1

δ ec1

δ thc1

vz1

h1

az1

q1

va1

period = 40 ms period = 20 ms period = 10 ms period = 5 ms

SPI

EDMA

h c

Va c

MSMC SRAM B0

az f0, vz f0, h f0, q f0, va f0

a0, vz0, h0, q0, va0

h c0, Va c0, δ ec0, δ thc0

MSMC SRAM B1

az f1, vz f1, h f1, q f1, va f1

a1, vz1, h1, q1, va1

h c1, Va c1, δ ec1, δ thc1

CheckA – DSP2

sections in L2SRAM

period 40ms

L2SRAM

r A, δ thc0A, δ thc1A,

δ ec0A, δ ec1A, h0A

CheckB – DSP3

sections in L2SRAM

period 40ms

L2SRAM

r B, δ thc0B, δ thc1B,

δ ec0B, δ ec1B, h1B

IO Server – DSP4

sections in L2SRAM

period 40ms

L2SRAM

r AIO, r BIO,

h0IO, h1IO

r AIO

r BIO

h0IO

h1IO

Fig. 2. Adapted RROSACE application

how software could access the different resources in parallel.

The basic solution is to compute all transactions – accesses

from a core to a shared resource – and enumerate all combi-

nations with a solver [6].

In parallel, the applicant must also identify the failure modes

of each internal component of the platform and determine how

these failure modes would impact the transactions. For in-

stance a non acceptable transaction (outside the configuration

settings) can occur in the presence of some failure. The basic

solution is to make a dysfunctional model and analyze the

safety effect [9] with a safety framework, such as [10].

Both perspectives deal with the notion of transaction and

how the platform is solicited. However, they are analyzed via

independent tools and techniques. Our objective is to unify

them as much as possible to factorize the modelling work

and reduce the divergence between the perspectives. To do

so, we have formalized the notion of transaction, interference

and erroneous transaction. We have defined a multi-core-based

system description framework to 1) describe thoroughly the

platform with the common concepts needed by the analyses;

2) translate the description to each perspective and in a format

that is compliant with the analysis tools. This framework was

developed within the project PHYLOG1.
c) Outline of the paper.: To help illustrate the concept,

we have defined a complete use case based on the KEYSTONE

in Section II. Section III provides the formalisation of the

multi-core transactions and the common description language

named PML. Section IV presents the interference analysis and

how such an analysis is possible from PML. In a similar way,

Section V presents the safety perspective. We then detail the

related works in Section VI before concluding.

II. USE CASE

To help present the contribution, we will rely on a real use

case that consists in executing a simplified longitudinal flight

control system (see Figure 2) on the KEYSTONE.
a) KEYSTONE.: The platform, shown in Figure 1, runs

in bare-metal (i.e. without any RTOS and hypervisor) and

is composed of: 1) an eight C66 DSP pack, in which each

core comes with dedicated L1 and L2 caches, and a memory

extension and protection unit (MPAX); 2) a four ARM pack,

in which each core comes with dedicated L1 caches, and

a memory management unit (MMU); 3) a central memory

1https://w3.onera.fr/phylog/

system that gives access to the platform’s SRAM (MSMC

SRAM), and an external DDR. Each of the these two memory

systems is composed of 8 Banks, which are denoted Bx in

the sequel. The memory access management is performed by

the Multicore Shared Memory Controller (MSMC); 4) a set

of IO peripherals (e.g. GPIO, UART), and utility peripherals

(e.g. Boot, Semaphores); 5) a memory transfer peripheral

(EDMA); 6) an ultra speed bus (TERANET) connecting the

peripherals, the memory systems, and the cores.

b) Applications: We consider a COM/MON longitudinal

flight controller which is an adaptation of RROSACE (for

redundant ROSACE) [11], [12]. The purpose is to execute two

parallel ROSACE– an open source longitudinal flight controller

– and to perform regular verification that both copies, named

COM/MON for COMmand and MONitoring, agree on the

computed orders. To do so, the orders are usually compared

in the MON duplicate. Our purpose is slightly different from

[11], which goal was to offer a safe COM/MON strategy.

Instead, we want to implement a representative use case that

will stress several hardware components of the multi-core.

Moreover, we have embedded the aircraft models to increase

the size of the footprint and to be close to the real behaviour.

The overall use case is described in Figure 2. To allow

the communication with the cockpit to receive pilots orders

(required altitude h c and required Va c), we implemented

a communication with the SPI (Serial Port Interface). We

use the same medium to display the results. This results in

implementing 5 functions:

1) ROSACE COM which has been allocated on several cores.

The environment is on DSP0 which is configured with a

L2SRAM such that the execution is contained locally, except

for the data that is exchanged with the controller. Those global

variables are stored in MSMC SRAM B0. The controller has

been split in two parts: one executing on ARM0 and the second

on ARM1. All the private sections are stored in DDR B0.

The ARM caches are activated. The controller receives orders

(h c0, Va c0) from the pilot and computes the orders δ ec0

and δ thc0.

2) ROSACE MON works in the same way except that the

aircraft model is on DSP1, the controller is on ARM2 and

ARM3, the private sections are on DDR B1 and the global

variables are in MSMC SRAM B1. The controller receives the

same orders as COM and they are stored as h c1 and Va c1;

and computes the actions δ ec1 and δ thc1.

3) CheckA executes on DSP2. Its L2 is configured as L2SRAM

and contains all the sections and data. CheckA reads several

data in the MSMC SRAM B0 (δ ec0, δ thc0, h0, Va c0)

and MSMC SRAM B1 (δ ec1, δ thc1, h1, Va c1). It then

checks whether the orders computed by COM and MON

are close, e.g. by verifying whether |δ ec0 − δ ec1| and

|δ thc0 − δ thc1| are small, and CheckA stores the result

in the Boolean variable r A (which is true if COM and MON

agree, and false otherwise).

4) CheckB works as CheckA and computes r B.

5) IO server executes on DSP4. Its L2 is configured as L2SRAM

and contains all the sections and data. The IO server is in

charge of communicating with the outside of the multi-core

via the SPI. More precisely, it configures the EDMA to receive

the pilot orders from the SPI and copy them on MSMC SRAM

B0 and MSMC SRAM B1. It also periodically reads the outputs

of CheckA and CheckB directly in their L2SRAM and copy

them locally in its L2SRAM. It configures the EDMA to send

those to the SPI.

III. MODELLING MULTI-CORE ARCHITECTURE: PML

To prepare the certification documentation required by the

CAST32-A, the applicants must analyze the platform from the

two perspectives, real-time and safety. Even if they differ in

terms of framework, they both rely on an accurate represen-

tation of the platform itself. Such a representation is derived

from hardware documents and expert knowledge.

A. Components

The software are hosted by hardware components. When

a software requests some resource, it initiates a transaction

within the platform. This transaction consists of a path of

physically connected components. According to their role in

a transaction, components are classified as follows, taking

inspiration from the initiator-target model introduced in [13],

[14], [15], [6].

Definition 1 (Initiator-target model): A multi-core is com-

posed of three types of components:

Initiator: a component which initiates a transaction

(e.g. ARM, DSP and EDMA);

Target: an end-component which is targeted by initiators

(e.g. MSMC SRAM and SPI);

Transporter: any intermediate component between initiators

and targets (e.g. TERANET and AXI BUS).

Example 1: The components of the KEYSTONE illustrated

in Figure 1 are colored according to their type, the color code

being: red for Initiators, blue for Transporters and green for

Targets.

The mapping of the (software) applications to the platform

components defines the configuration of the platform and

induces which components / transactions are active.

Example 2: The set of RROSACE software components and

their allocation are defined in Figure 2. In particular, DSP 5-7

are turned off, several peripherals are disabled, several DDR

and MSMC SRAM Banks are unused. Figure 3 shows the final

configuration.

B. Transactions and services

The interaction between software and platform is abstracted

away through the notion of service. Indeed, when a software

initiates a transaction within the platform, e.g. to retrieve

data, each component along this transaction plays its role by

providing a service. Components offer many services such

as execute or address translation. But in the context of this

article, we focus on the minimal services that are needed for

the interference and safety perspectives, i.e., LOAD and STORE.

Example 3: Let us consider again the KEYSTONE with

the configuration described in II. Application az filter 0 may

need to read data stored in the MSMC SRAM B0 memory.

This is expressed as a LOAD service call and consists in a

transaction propagated through internal components until the

DDR is reached. Besides, each of these components provides

a LOAD service. Figure 3 shows an extract of the service-

oriented KEYSTONE architecture.

Memory Subsystem

MPAX

C66x
CorePac

MMU

ARM
A15

L2 SRAM

L1P
SRAM

L1D
SRAM

L1D L1P

TeraNet

EDMA

SPI

MSMC
Controller

B0 B1

64-bit
DDR3
EMIF

B0

B1 AXI Bus

ld

ld

ld

ldld

ld

Fig. 3. Example LOAD transaction

Definition 2 (Platform service): A platform offers a set

of services that can be called upon by the Initiators and

that generate transactions. We have identified the following

services:

• LOAD: retrieval of some data from a given target by an

initiator.

• STORE: writing of some data to a given target by an

initiator.

Definition 3 (Component service): We consider that all

components offer both services (LOAD and STORE). In par-

ticular for a component c, we will use the notation c l (resp.

c s) to represent the LOAD (resp. STORE) service offered by

the component c. For a component service s, cp(s) is the

component that provides s.
Example 4: The component service ARM0 l is provided by

the component cp(ARM0 l) = ARM0.

Definition 4 (Transaction): A transaction is initiated by an

initiator and follows a pre-defined path to connect the initiator

to the final target. We denote a LOAD (resp. STORE) transaction

tr that represents the initiator i reaching the target t as i→l t
(resp. i→s t).

Remark 1: We make the distinction between LOAD and

STORE transactions for two main reasons: firstly, for some

platforms (not for the KEYSTONE), LOAD and STORE may

use different paths; secondly they induce different effects

on both interference and safety analyses. Indeed, LOAD and

STORE transactions induce completely different temporal ef-

fects. Moreover, the propagation of a failure along a LOAD

transaction goes from the target to the initiator whereas it goes

the other way around in the case of a STORE transaction.

Remark 2: Note that the path has no specific direction.

Indeed, a transaction actually represents a sequence of inter-

actions, which can go a one way or the other. For instance, a

LOAD consists in sending a request from a core to the DDR

and then the data is sent back from the DDR to the core.

Remark 3: The KEYSTONE verifies the so-called unique

path property. Indeed, any transaction tr = i →X t with

X ∈ {l, s} always follows a unique path (both for resquest

and data). For other types of platform, making an X from i to

t could lead to several paths. In such a situation, the notation

i→X t should be enriched. In order to take this into account,

we would need to introduce the concept of single transaction,

satisfying the unique path property and we would define a

transaction as a set of single transactions.

Definition 5 (Copy): DMAs (such as the EDMAs) make

copies from one memory area to another one. Thus we denote

the copy transaction as DMA →copy [Mem1,Mem2]. We can

see such a transaction as the pipeline of the two transactions

DMA →l Mem1 and DMA →s Mem2.

Definition 6 (Path): A transaction tr = i →X t with X ∈
{l, s} follows a path of components denoted by cp path(tr),
which is a chain of Transporters, except the last component,

which is a Target. Let p = c1 ↔ . . . ↔ ck be a component

path, then two successive components cj and cj+1 in p are

physically connected.

Each component along cp path(tr) contributes to the trans-

action tr by providing the service X . The resulting path of

services is denoted by path(tr). Thus if cp path(i →X t) =
c1 ↔ . . .↔ ck, then path(i→X t) = c1 X ↔ . . .↔ ck X .

Example 5 (Path): For instance, the transaction tr1 =
ARM0 →l MSMC SRAM B0 shown on the Figure 3 follows:

cp path(tr1) =ARM0 ↔ ARM0 L1D ↔ MMU0 ↔ AXI ↔
MSMC CTRL ↔ MSMC SRAM B0 and path(tr1) =ARM0 l ↔
ARM0 L1D l ↔ MMU0 l ↔ AXI l ↔ MSMC CTRL l ↔
MSMC SRAM B0 l.

C. PML metamodel

The purpose of PML (for Multi-Core Meta-Model) is to

describe the common description of a multi-core needed for

both perspectives. Figure 4 provides a graphical representation

of PML.

A platform is composed of several physical connected

components, each with a type (Initiator, Transporter, Target).

We represent the link between an initiator and the transactions

it initiates through the association issued by. Each transac-

tion tr relies on the path of services path(tr) (association

along) targeting a specific service among them (association

targets). Each service (which can be of type LOAD or STORE)

is provided by a component (association provides). Finally,

instead of representing the allocation of software to hardware

components, we consider an abstraction of it, simply represent-

ing the transactions that are made possible by this allocation

(association from software to transaction).

1..*

connected

0..*

provides

1..*

*

issued by

1

*

along 1

targets 1
1..*

platform

component

initiator

software

target

transporter

service

path

transaction

storeload

Fig. 4. Overall PML overview

D. Tooling support

The construction of an PML model is supported through a

Scala API provided in the PML analyser2. The detailed codes

of the experiments presented in this paper are provided as

examples of the API usage.

The API offers a programmatic way to instantiate the

physical components and applications of a platform. The

description of the transactions used by the applications can be

cumbersome and error-prone. Therefore, thanks to the API,

one can simply specify software/hardware and data/hardware

allocations from which the transactions can be automatically

derived.

Validation strategy: The API also contains a set of graphi-

cal exporters that can extract specific views of the model. Such

exports can be very useful during the design and the validation

of the PML model. Among the possible extracts, there are:

• the physical/service connection graph of the platform;

• the physical/service connection graph restricted to the

connections used by at least one transaction;

• the transactions used by a given application.

The API also provides the automatic generation of the

interference model and the safety model, as detailed in the

next sections.

IV. INTERFERENCE ANALYSIS

One of the analyses required by the CAST32-A is the

identification of all interferences and interference channels.

An interference happens when two or more transactions occur

simultaneously and when they use either a common service or

services offered by the same component.

A. Interference calculus overview

Let us first explain what is exactly the interference calculus.

The idea is to enumerate all the simultaneous transactions that

can lead to a timing alteration on the application execution.

Definition 7 (Simultaneous transactions): tr1|| . . . ||trj de-

notes the situation where the transactions tri with i ∈ 1..j

2available at https://w3.onera.fr/phylog/

can occur simultaneously. This is only possible when the

initiators are distinct: ∀k, l ∈ 1..j, k 6= l ⇒ Initiator(trl) 6=
Initiator(trk).

Example 6 (Simultaneous transactions): For instance, let us

consider tr1 = ARM0 →l MSMC SRAM B0 and tr2 = ARM2

→s MSMC SRAM B1. tr1 is a LOAD transaction and tr2 is

a STORE one. Initiator(tr1) =ARM0 and Initiator (tr2) =
ARM2. Then we can have tr1||tr2, i.e. these two transactions

can be initiated simultaneously.

PML captures the minimal concepts that are needed by all

analyses. When focusing on a given analysis, the correspond-

ing view may have to be enriched. The default semantics of

PML assumes that 1) two services belonging to two different

components do not share any resource and thus do not interfere

(i.e. they can simultaneously serve different transactions); 2)

two services offered by the same component cannot execute

in parallel since each of them needs all the resources of the

component. However, some processors contain components

powerful enough to provide several services at the same time.

For instance, crossbars allow for parallel communications. To

take this knowledge into account, we have to extend the PML

model with a new relation specifying the services that can run

in parallel without producing an interference.

Definition 8 (Parallel services): Let us introduce the relation

parallel, which represents the pairs of services s1 and s2 that

can run in parallel without conflicting on any resource.

(s1, s2) ∈ parallel⇐⇒ s1 and s2 do not interfere

This input information must be given by the designer. Such a

knowledge could come from a deep analysis of the processor

datasheet or from precise benchmarks exploring the behaviour

of each component of the plateform.

Example 7 (Parallel services): The documentation of the

KEYSTONE processor states that the ultra speed bus (i.e., the

TERANET component) enables LOAD and STORE transactions

in parallel without any interference. For instance, if two DSPs

access the DDR Banks simultaneously, one with a LOAD

transaction and the other with a STORE, then they should not

interfere on the TERANET. This is encoded as

parallel = {(TERANET l, TERANET s)}

Note that for the KEYSTONE, the parallel relation does not

include any other pair of services. This means that all the

components, except the TERANET, are only able to provide

one service at a time. For instance, the AXI bus cannot be

simultaneously crossed by a LOAD transaction and a STORE

one.

Definition 9 (Interference channel): An interference channel

is a component c, more precisely a Transporter or a Target,

such that there exist two simultaneous transactions conflicting

on this component. By conflict, we mean that this will generate

an interference and thus a timing effect.

Formally, we say that c is an interference channel iff there

are two distinct transactions tr1 and tr2 such that:

(a) either ∃s ∈ path(tr1)∩path(tr2) such that cp(s) = c, i.e.

the two transactions use the same service s of component

c,
(b) or ∃s1 ∈ path(tr1) and ∃s2 ∈ path(tr2) such that

cp(s1) = cp(s2) = c and such that (s1, s2) 6∈ parallel.

If one of the two conditions above holds, we say that tr1 and

tr2 interfere and they conflict on c.
Example 8 (Interference channel): Considering tr1||tr2 of

Example 6. As tr1 is a LOAD and tr2 is a STORE, they

do not use any common service: path(tr1) ∩ path(tr2) =
∅. However, they cross two common components: cp path

(tr1) ∩ cp path(tr2) = {AXI, MSMC CTRL}. tr1 uses the

LOAD service of AXI, i.e. AXI l ∈ path(tr1), while AXI s ∈
path(tr2).

According to Example 7, (AXI l,AXI s)6∈parallel. Thus,

condition (b) of Definition 9 holds. tr1 and tr2 conflict on

the AXI and similarly on MSMC CTRL.
Definition 10 (Interference): An interference itf is a sit-

uation where several transactions occur simultaneously and

conflict on some interference channel(s), i.e. itf= tr1|| . . . ||trn
such that ∀i, j ∈ 1..n, if i 6= j then

1) either tri and trj interfere,
2) or there exists a subset {tr′1, . . . , tr′k} ⊆ {tr1, . . . , trn}

such that tri and tr′1 interfere and ∀l < k, tr′l and tr′l+1

interfere and tr′k interferes with trj .

We moreover denote by trans(itf)={tr1, . . . , trn} the set of

transactions of itf. And we say that tr1|| . . . ||trn is an n-ary

intererence, or simply an n-ary itf.3

The conditions above mean that trans(itf) must form a

connected graph (where the edges are the pairs of transactions

that interfere). In other words, for each pair (tr1, tr2) in

trans(itf) either tr1 and tr2 interfere, or there is a ”path” of

interfering transactions in trans(itf) from tr1 to tr2.
Example 9 (Interference): Let us consider again the trans-

actions tr1 and tr2 of Example 6. tr1||tr2 is a 2-ary itf that

conflicts on AXI and MSMC CTRL.
Example 10 (Interference): Let us now consider the transac-

tions tr3 = DSP3 →l MSMC SRAM B1 and tr4 =EDMA→l SPI.

As shown in Figure 5, tr1, tr2 interfere; tr3 interferes with tr1
and tr2 on MSMC CTRL; tr4, tr3 interfere on TERANET. Thus

{tr1, tr2, tr3, tr4} is a connected graph, even if tr4 does not

interfere directly with tr1 and tr2. tr1||tr2||tr3||tr4 is then a

4-ary itf.
Definition 11 (Interference channel associated with an itf):

For a given interference itf= tr1|| . . . ||trn, an interference

channel associated with itf is an interference channel that

appears between at least two transactions of itf. The set

chan(itf) of the interference channels associated with itf is

defined as follows:

chan(itf) = { c ∈ Transporter ∪ Target|∃trj 6= trk ∈ trans(itf)

such that trj and trk interfere on c}
Example 11 (Interference channel associated with an itf):

As a last example, let us consider again the 4-ary itf depicted

3Note that we use itf either to denote a specific interference or to abbreviate
the term ”interference”.

Memory Subsystem

ARM0

L1

MMU

ARM2

L1

MMUMPAX3

DSP3

L2 SRAM

L1P
SRAM

L1D
SRAM

TeraNet

EDMA

SPI

MSMC
Controller

B0 B1

64-bit
DDR3
EMIF

B0

B1 AXI Bus

ld

ld

ld

ld,stld,st

ld ld,st

st

st

st

ld

ldld

ld

ld

Fig. 5. Example of 4-ary itf: tr1||tr2||tr3||tr4

Figure 5: itf = tr1||tr2||tr3||tr4. The associated set of interfer-

ence channels is chan(itf) = {AXI,MSMC CTRL, MSMC SRAM

B1,TERANET}.
Complementary to definition 10 which defines n-ary itf,

i.e., a simultaneous transaction tr1|| . . . ||trj which interfere

by forming a connected graph, we can now define the set of

interference-free simultaneous transactions :

Definition 12 (Interference-free): A simultaneous transac-

tion s = tr1|| . . . ||trj is an n-ary interference-free iff ∀i, j ∈
1..n, if i 6= j then tri and trj do not interfere.

As shown below (paragraph Experiments), identifying

all the simultaneous transactions that are supposed to be

interference-free is a way to explicit the hypotheses hidden

in the model.

B. What is generated from PML?

Method 1 (Interference identification): The CAST32-A asks

for the identification of all interferences. This means that we

need first to determine the transactions and their path. Then,

with n = 2|initiators| (|initiators| being the number of initiator

components), we enumerate all n-ary itf, i.e. all the combi-

nation of n simultaneous transactions that may interfere. And

finaly we enumarate all the associated interference channels.

The way to compute the interference is then left to a solver. In

our case, we use IDP [16] or MONOSAT [17]. The constraints

are hard coded and are independent from the platform model.

Thus, from PML, we need to generate automatically the

transactions and their paths.

Example 12 (Generation of simple transactions): For the

use case, the model is composed of 54 transactions, each of

them being defined by its path of components. Transactions

tri i = 1 . . . 4 in Figure 5 are examples of these 54 possible

transactions. This model is then enriched with the parallel

relation as defined in Example 7.

C. Experiments

The interference analyser generates for each n ∈ 2..N
(where N is the number of initiators)

1) the set IFn of n-ary interference-free simultaneous trans-

actions;

2) the set In of n-ary itf.

Validation strategy: IFn is interesting to check the correct-

ness of the model. Indeed, as any combination tr1|| . . . ||trn ∈
IFn is supposed not to generate any interference, the idea is

to measure the behaviour of tr1 . . . trn in isolation and to

check that it does not change when running them in parallel.

The sets In provide the answer of the CAST32-A certification

objective.

Example 13 (Interference calculus): For the use case, the

interference analysis provides the following results:

Type Size

2 3 4 5 6

itf 364 2 580 12 384 40 704 92 768

free 928 7 298 30 067 66 796 75 072

Type Size Total

7 8 9 10

itf 144 896 148 480 90 112 24 576 556 864

free 33 024 0 0 0 213 185

The next step after generating IFn and In for all n ∈
2..N is to associate a benchmark m1|| . . . ||mn with each

itf = t1|| . . . ||tn of In and to run it in order to quantify the

interference. In the same way, a similar benchmark should

be associated with each element of IFn in order to check

that there is no interference. The total number of itf and of

interference-free simultaneous transactions seems to be too

large to be tractable. However, let us note that the transactions

tri we are considering are micro-transactions performing only

one type of action (load or store). The corresponding micro-

benchmarks mi are then very small codes only repeating a

same instruction a finit number of times. The typical execution

time of such micro-benchmarks is about 10ms. Running about

600 000 benchmarks would take less than 2 hours.

V. SAFETY ANALYSIS

The purpose of the safety analysis is to identify the effect of

physical failures on the applications, that is the behaviour of

the transactions in the presence of failures. The way to analyze

the CAST32-A safety objectives to multi-core was presented

at [18]. We simply sketched here the main ideas and detail the

link with PML.

A. PHYLOG safety analysis reminder

The formal concepts of the the safety analysis are presented

in details in [18]. Let us here detail and illustrate how those

steps are applied in the context of multi-core-based systems.

Note that to the best of our knowledge, there is no contribution

to this question in the literature.

a) Identification of failure modes: As a preliminary

approach, we consider two kinds of failure modes:

Erroneous The component does not properly process a trans-

action, which results in its corruption (data or address).

Lost The component does not process incoming transactions,

which results in a deny of service.

The safety effect of these failure modes are described in the

table below. Note that, the user could easily define more failure

modes.

Type FM Comments

STORE err erroneous value or wrong destination is stored

lost no value is stored

LOAD err erroneous data is loaded

lost no data is loaded

b) Failure propagation model: The dysfunctional model

describes the interconnection of physical components (e.g.

cores, MMU) and the transactions that ensure the system’s

functions. The idea is to abstract the transactions to determine

1) whether a transaction was correctly handled, 2) what are

the effects of a failure on a given transaction or 3) what are the

effects of an erroneous transaction on the other transactions.

In the safety view, the path associated with a transaction

tr is directed. This is due to the propagation of failures,

which follows a direction along a transaction (either from the

initiator to the target in the case of a STORE transaction, or

the other way around, in the case of a LOAD transaction). This

direction is ensured by the use of input and output ports in each

component. The idea is to represent the data propagation and

how their loss or corruption would affect the applications. To

do that, each component is modeled as a mode automaton [19]

and the whole system is the connection of all components. The

behaviour of a the platform is partially illustrated in Figure 6.

MSMC

SRAM

B0

(ok)

MSMC

SRAM

B1

(ok)

DDR

B0

(err)

DDR

B1

(err)

MSMC

CTRL (ok)

M
S

M
C

S
R

A
M
→

o
k

D
D

R
→

er
r

S
P

I→
o

k

TERANET

(ok)

SPI

(ok)

AXI

(ok)
MSMC SRAM→ ok

DDR→ err

SPI→ none
MMU0

(lost)
MSMC SRAM→ lost

DDR→ lost

SPI→ none
L1D0

(ok)
MSMC SRAM→ lost

DDR→ lost

SPI→ none

ARM0

(ok)

MSMC SRAM→ lost

DDR→ lost

SPI→ none

Fig. 6. LOAD transaction with some failures

Let us consider the transaction tr1 of Figure 3, translated

in a failure propagation view as shown in Figure 6. We

observe the local effect of each component failure mode. In

this scenario, all components are ok except the MMU0 which

is in the lost mode and the DDR banks that are err.

The MSMC CTRL has to merge the inputs of several com-

ponents (MSMC SRAM banks, DDR banks, TERANET). This

merging necessitates a more complex behaviour in the mode

automaton that we will not detail here. In effect, it would take,

as input for Target t, the output value provided by t.
The outputs of MSMC CTRL are the inputs of AXI. The AXI

BUS only considers the transactions of the ARMs.

The outputs of AXI are the inputs of MMU0. Here, because

of the internal failure of the component, values are not

transmitted anymore to the ARM, taking then a lost value.

STORE works similarly with more failure propagation. First,

as for the interference view, the model can be enriched with

a special type of Transporters, called Virtualizers (such as the

MMU or MPAX), which define the authorization for accessing

transactions. To better model the effect of Virtualizer failures,

we consider that an erroneous Virtualizer may access any

target and pollutes these targets with err values. Second, a

Target that receives err values with a STORE transaction is

considered itself as corrupted from now on. This behaviour is

taken into account within the hard-coded library of ALTARICA

components. The interested reader can find more information

on the formal encoding in [18].

c) Safety objective: In the context of our case study, the

safety objective is to ensure that RROSACE controls correctly

the aircraft in the following sense: if the orders sent to the

actuators are err, this situation must be detected. The detection

is done by CheckA and CheckB, thus the violation of the

safety objective arises when ROSACE MON, ROSACE COM,

CheckA and CheckB are err at the same time. Thus, the

situation that we want to avoid, which is called a failure

condition is defined by CheckA=err and CheckB=err and

COM=err and MON=err.

We consider that CheckA=err if its L2SRAM is err or DSP2

is err. Same for CheckB. COM=err if at least one of its LOAD

is err. Same for MON.

B. What is generated from PML?

As for the interference view, some parts are hard coded

in ALTARICA. We have developed a generic library for each

type of components (Initiator, Target, Transporter). What is

specific is the number of Target and which Target are visible

in the set Tc (coming directly from the transactions). The

global system, i.e. the interconnection of components, is also

completely generated. Finally, the user must add its failure

conditions. Those are then translated as an observer, which

is the typical way to observe the output of the system. An

external analyzer (CECILIA WORKSHOP [10]) is then used

to perform the safety assessment out of the comprehensive

ALTARICA model extracted from PML.

Validation strategy: Since the exported ALTARICA model

can be imported in the CECILIA WORKSHOP, the user can

benefit from:

Step-wise simulator that unfolds a failure scenario graphi-

cally to observe the error propagation encoded by the

model. Such a simulator can be used to validate some

well-chosen test-cases through expert consultation or fault

injection if the application and the platform (or a detailed

model) are available.

Sequence generator that computes all the failure scenarios

up to a given size. This tool can be used to build

a validation test base by computing all the scenarios

containing one single failure where the feared event is

observed (positive test) or where the feared event is

not observed (negative test). One can then conduct a

fault injection campaign based on these tests to validate

both the vulnerability (with positive test) and tolerance

(negative tests) of the architecture.

C. Experiments

Part of the results when assessing the failure condition is

given in the Table I. Instead of directly looking at the safety

objective, we just show two sub-failure conditions.

failure cut set
conditions

COM.err {ARMx.err (x ∈ {0, 1}), MMUx.err (x ∈ {0−4}),
MSMC SRAM B0.err, AXI.err, DDR B0.err, DSP0.err,
MPAXX .err (x ∈ {0− 4}), EDMA.err }

CheckA.err {DSP2.err, L2SRAM2.err, EDMA.err, MPAXX .err

(x ∈ {0− 4}) }

TABLE I
SAFETY ASSESSMENT RESULTS FOR ROSACE

We observe that ROSACE COM.err is reached when one

of the transaction has failed (ARM0,1 →l DDR B0, MSMC

SRAM B0) or one of the virtualizer has failed (MMU or MPAX)

or the EDMA has failed (as it could write in any target,

thus in particular DDR B0 and MSMC SRAM B0). CheckA has

failed if CheckA execution resources have failed (DSP2.err and

L2SRAM2.err) or one of the virtualizers has failed (MPAX) or

the EDMA has failed because the latter can write erroneous

values in the L2SRAM2.

Table II shows the timing of the framework applied on the

RROSACE use case. Even if applied on a unique use case,

with a quite realistic size, it shows promising scalability.

Task Interference ALTARICA

IDP MonoSat

Model generation 4s < 1s 11s
Analysis 4h45 127s 14s

TABLE II
TIMING PERFORMANCE OF THE FRAMEWORK

VI. RELATED WORK

Abstracting components by the services they offered is

not new to analyze platform behaviour. For instance, CPA

(Compositional Performance Analysis) has been widely used

to compute worst case traversal time on embedded networks

(such as AFDX or TSN) and the methodology considers that

abstract resources provide network services [20] such as Qbv.

More recent work [21] computes memory access timing on

multi-core processor with PYCPA. The multi-core itself is

abstracted with its event arrival curves as a sequence of LOAD

or STORE transactions (not the combination of both) and only

the interaction with the memory is considered.

a) Support to design: Some works follow a different

approach, without modelling the platform. This is the case for

instance, of the timing analyses proposed in [22], [23], which

take into account possible faults of hardware components.

For automotive system engineering, the authors of [24] have

modelled the concepts that are important to the whole design

process, from system engineering to software engineering. The

obtained metamodel is used to ease the interaction between

the different tools that are used during the development of

automotive software. Although the hardware architectures are

multi-core, interaction between cores is not the focus of this

study.

AMALTHEA4 is another framework proposed in the au-

tomotive domain for multi-core software development. This

framework, based on the Eclipse technology, provides a meta-

model for multi-core software and hardware modelling. The

objective of this model-driven approach is to centralize all the

information necessary for the complete development process.

From this central model, it is possible to call different tools

for partitioning, mapping, code generation, and trace analysis.

AMALTHEA focuses on the development process and aims

at reducing data exchanges between the tools involved in the

process. Our approach is different since we only focus on the

data necessary to the certification issues, allowing us to use a

simpler metamodel for multi-core processors.

In the avionics and space fields, the DREAMS project [25]

followed a similar approach by generalizing it to embedded

distributed platforms, including multi-core processors. The aim

of this project was to define a framework and a methodology

for designing mixed-criticality systems (MCS). This frame-

work is based on a metamodel of MCS capturing all the

relevant design, implementation and configuration artefacts,

and on a model-driven engineering process supported by tools

focusing on design-space exploration, real-time scheduling,

and reconfiguration synthesis. Thus the DREAMS framework

focuses on the left branch of the V-cycle, and ranges from

design model to derivation of platform configuration. Our

contribution is different since we focus on the right branch of

the V-cycle, and particularly on the certification activities in

this branch. Our objective is not to support the design process,

but to ease the generation of certification artefacts compliant

with the MCP-CRI standard.

In the avionics fields, some work tried to adapt the MCP-

CRI standard to COST multi-core architectures [26]. To ease

design and certification stages, they propose to group the

MCP-CRI objectives into three high level principles: (1)

determining the final configuration, (2) managing interference

channels, and (3) verifying the use of shared resources.

However, they showed that predicting interference on a COTS

4http://www.amalthea-project.org/

multi-core architecture is a very challenging task because of

the amount of possible scenarios. A way to overcome this

difficulty is to use a formal model of the architecture and

a formal analysis method to explore the set of interference

channels. Such is the aim of our contribution.

Some other works have studied how to support the design

of multi-core systems with the language AADL [27], [28].

The purpose it to take into account the shared resources

and the software-to-hardware allocation for the analyses that

come with the AADL toolset, in particular timing analyses.

Comparing to our work, again, there are more details about

the architecture than in an PML model, which is certification-

oriented. Thus, it would be worth studying the generation of

an PML model from such an AADL model. However, the

information related to the load/store services that are needed

by the software would need to be added to get an PML model.

b) Support to code generation: In [29], [30] the authors

propose a metamodel of GPU architectures with the aim of

supporting the development of application on such hardware

platforms for non specialists in parallel programming. They

extend the MARTE UML profile with a description of the

allocation of data to memory elements. In [31], the authors ex-

tended an existing development framework dedicated to space

application with the ability to handle multi-core platforms and

time and space partitioning systems. This framework eases the

development process by generating part of the code.

Focusing on multi- and manycore architectures, SHIM5

(for Software-Hardware Interface for Multi-Many Core) is

another framework dedicated to software design for multi- and

many-core processors [32]. Its objective is to standardize the

interface between the multi-core hardware and the software

tools. It supports a precise description of the hardware com-

ponents of the processor and its internal topology, including

the processor cores, the inter-core communication channels,

the routing protocols, the memory sub-system, hardware vir-

tualization features, etc. The aim of SHIM is to provide a

common metamodel enabling the use of many types of tools,

including performance analysis, system configuration, auto-

parallelizing compilers, and code generation. The approach

of SHIM and AMALTHEA are very close in the sense they

both provide a centralized model to support software design

and code generation. They mainly differ by their respective

application domain. AMALTHEA is promoted by automotive

manufacturers for automotive systems. SHIM is developed by

a consortium of multi- and manycore manufacturer for more

general purpose software.

The approach of PML is similar in the way that the idea

is to define a central model to be exploited in external views.

However contrary to SHIM and AMALTHEA, which provide

a detailed view of the architecture components, our model

concentrates on an abstract definition only considering three

types of component: initiator, transporter and target. Our

claim is that such an abstraction is sufficient for interference

and safety analyses.

5https://www.multicore-association.org/workgroup/shim.php

VII. CONCLUSION AND FUTURE WORKS

We have defined a unified framework to analyze multi-

core platform and partially answer the CAST32-A position

paper. More specifically, we have abstracted a platform as

the services it offers and modelled the interactions between

software and complex hardware components via this service-

based approach. The purpose was to propose a common model

that covers the minimal concepts needed for both interference

and safety analyses, which are required by the position paper.

Thanks to this formalization, we have defined PML a metal-

model dedicated to the description of any multi-core.

From such a description, we have implemented a tool that

automatically generates the inputs needed for the analysis

tools. For both perspectives, the approach consisted in hard-

coded generic parts that can be reused for any platform and

an automatic generation from the specific description of a

platform. As PML encodes the minimal concepts, it is possible

in each view to add more information (such as complex failure

modes or failure propagation). We have run the framework on

a realistic case study that was also used along the paper to

illustrate the contributions.

In the future, we would like to extend PML (and the associ-

ated analyses) to consider cache coherence related behaviours.

In our framework, a transaction is quite simple: it is repre-

sented by a simple sequence of connected components. With

cache coherence, things become more complicated: requests

can be broadcast, some transporters can initiate a transaction

to send a data to another cache, etc. We also would like to

better model the notion of parallel transactions: indeed, some

components have some capacities, i.e. the ability to deal with

several transactions in parallel to some extent.

Among the analyses required by the CAST32-A, there is a

need to quantify the effects of interference. Thus, the applicant

should define intensive benchmarking strategies [33], [34] in

adequation with the interference. Thus, PML tooling should

also propose an automatic translator to stressing benchmark

for a given platform.

REFERENCES

[1] Certification Authorities Software Team, “Multi-core Processors - Posi-
tion Paper,” Tech. Rep. CAST 32-A, Nov. 2016.

[2] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem - overview of methods and survey of tools,”
ACM Transactions Embedded Computing Systems, vol. 7, no. 3, pp.
36:1–36:53, May 2008.

[3] R. Wilhelm and J. Reineke, “Embedded systems: Many cores - many
problems,” in 7th IEEE International Symposium on Industrial Embed-

ded Systems (SIES’12), 2012, pp. 176–180.

[4] I. Villalta, U. Bidarte, J. Gómez-Cornejo, J. Jiménez, and J. Lázaro,
“Seu emulation in industrial socs combining microprocessor and fpga,”
Reliability Engineering & System Safety, vol. 170, pp. 53–63, 2018.

[5] V.-A. Paun, B. Monsuez, and P. Baufreton, “On the determinism of
multi-core processors,” in French Singaporean Workshop on Formal

Methods and Applications, 2013.

[6] L. Mutuel, X. Jean, V. Brindejonc, A. Roger, T. Megel, and E. Alepins,
“Assurance of Multicore Processors in Airborne Systems,” 2017.

[7] S. Houssany, N. Guibbaud, A. Bougerol, R. Leveugle, F. Miller, and
N. Buard, “Microprocessor soft error rate prediction based on cache
memory analysis,” in 12th European Conference on Radiation Effects

on Components and Systems (RADECS’11), 2011, pp. 412–419.

[8] Texas Instruments, “TCI6630K2L Multicore DSP+ARM KeyStone
II System-on-Chip,” Texas Instruments Incorporated, Tech. Rep.
SPRS893E, 2013.

[9] M. Bozzano, A. Villafiorita, O. Åkerlund, P. Bieber, C. Bougnol,
E. Böde, M. Bretschneider, A. Cavallo, C. Castel, M. Cifaldi et al.,
“Esacs: an integrated methodology for design and safety analysis of
complex systems,” in Proc. ESREL, 2003, pp. 237–245.

[10] Cecilia Workshop framework, Dassault, 2014.

[11] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence
Problem in CPS Simulations: the R-ROSACE Case Study,” in 9th

European Congress Embedded Real Time Software and Systems ERTS

2018, Jan. 2018.

[12] H. Deschamps, “Scheduling of a Cyber-Physical System Simulation,”
Ph.D. dissertation, Institut Supérieur de l’Aéronautique et de l’Espace,
2019.

[13] V. Brindejonc and A. Roger, “Avoidance of dysfunctional behaviour of
complex cots used in an aeronautical context,” in 19eme Congrès de

Maı̂trise des Risques et Sûreté de Fonctionnement, 2014.

[14] X. Jean, L. Mutuel, and V. Brindejonc, “Assurance methods for cots
multi-cores in avionics,” in 35th Digital Avionics Systems Conference

(DASC’16), 2016.

[15] L. Mutuel, X. Jean, and V. Brindejonc, “Investigation of error types
associated with failures in multicore processors,” in 20eme Congrès de

Maı̂trise des Risques et Sûreté de Fonctionnement, 2016.

[16] B. de Cat, B. Bogaerts, M. Bruynooghe, and M. Denecker, “Pred-
icate logic as a modelling language: The IDP system,” CoRR, vol.
abs/1401.6312, 2014.

[17] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu, “Sat modulo
monotonic theories,” arXiv preprint arXiv:1406.0043, 2014.

[18] P. Cuenot, K. Delmas, and C. Pagetti, “Multi-core processor: Stepping
inside the box,” in Proceedings of 31st European Safety and Reliability

Conference ESREL 2021, 2021.

[19] A. Rauzy, “Mode automata and their compilation into fault trees,” Rel.

Eng. & Sys. Safety, vol. 78, no. 1, pp. 1–12, 2002.

[20] D. Thiele and R. Ernst, “Formal worst-case timing analysis of ethernet
tsn’s burst-limiting shaper,” in 2016 Design, Automation & Test in

Europe Conference & Exhibition, (DATE’16), 2016, pp. 187–192.

[21] S. Saidi and A. Syring, “Exploiting Locality for the Performance
Analysis of Shared Memory Systems in MPSoCs,” in 2018 IEEE Real-

Time Systems Symposium, RTSS 2018, Nashville, TN, USA, December

11-14, 2018, 2018, pp. 350–360.

[22] J. Abella, E. Quiñones, F. J. Cazorla, M. Valero, and Y. Sazeides, “Rvc-
based time-predictable faulty caches for safety-critical systems,” in 2011

IEEE 17th International On-Line Testing Symposium, 2011, pp. 25–30.

[23] D. Hardy, I. Puaut, and Y. Sazeides, “Probabilistic wcet estimation in
presence of hardware for mitigating the impact of permanent faults,” in
Proceedings of the 2016 Conference on Design, Automation & Test in

Europe, ser. DATE ’16. San Jose, CA, USA: EDA Consortium, 2016,
p. 91–96.

[24] G. Macher, E. Armengaud, E. Brenner, and C. Kreiner, “A Lightweight
Meta-Model to Support Automotive Systems and Software Engineering,”
in 9th European Congress on Embedded Real Time Software and Systems

(ERTS 2018), 2018.

[25] S. Barner, A. Diewald, J. Migge, A. Syed, G. Fohler, M. Faugère, and
D. G. Pérez, “Dreams toolchain: Model-driven engineering of mixed-
criticality systems,” in Proceedings of the ACM/IEEE 20th International

Conference on Model Driven Engineering Languages and Systems, ser.
MODELS ’17, 2017, p. 259–269.

[26] I. Agirre, J. Abella, M. Azkarate, and F. Cazorla, “On the Tailoring of
CAST-32A Certification Guidance to Real COTS Multicore Architec-
tures,” in 12th IEEE International Symposium on Industrial Embedded

Systems (SIES’17), 2017.

[27] J. Delange and P. H. Feiler, “Design and Analysis of Multi-Core
Architecture for Cyber-Physical Systems,” in Embedded Real Time

Software and Systems (ERTS2014), Feb. 2014.

[28] S. Rubini, P. Dissaux, and F. Singhoff, “Modeling shared-memory multi-
processor systems with AADL,” in Proceedings of the First International

Workshop on Architecture Centric Virtual Integration co-located with the

17th International Conference on Model Driven Engineering Languages

and Systems, ACVI@MoDELS 2014, Valencia, Spain, September 29,

2014, J. Delange and P. H. Feiler, Eds., 2014.
[29] A. W. De Oliveira Rodrigues, F. Guyomarc’H, and J.-L. Dekeyser, “An

mde approach for automatic code generation from uml/marte to opencl,”
Computing in Science Engineering, vol. 15, no. 1, pp. 46–55, 2013.

[30] ——, “A Modeling Approach based on UML/MARTE for GPU Ar-
chitecture,” in Symposium en Architectures nouvelles de machines

(SympA’14), 2011.
[31] C. Honvault, J. Hugues, and C. Pagetti, “Model-Based Design, Analysis

and Synthesis for TSP Multi-Core Space systems,” in 9th European

Congress on Embedded Real Time Software and Systems (ERTS 2018),
2018.

[32] M. Kondo, F. Arakawa, and M. Edahiro, “Establishing a standard
interface between multi-manycore and software tools - shim,” in 2014

IEEE COOL Chips XVII, 2014, pp. 1–3.
[33] J. Bin, S. Girbal, D. Gracia Perez, A. Grasset, and A. Merigot,

“Studying co-running avionic real-time applications on multi-core cots
architectures,” in Embedded Real Time Software and System Conference

(ERTS’14), 2014.
[34] S. Girbal, J. le Rhun, and H. Saoud, “METrICS: a measurement

environment for multi-core time critical systems,” in 9th European

Congress on Embedded Real Time Software and Systems (ERTS’18),
2018.

Session Th.4.C

Assurance & Certification

Thursday 2nd June

14:00

–

Room Pastel

537

538

Toward the certification of safety-related systems
using ML techniques: the ACAS-Xu experience

Christophe Gabreau∗†, Adrien Gauffriau†, Florence de Grancey∗‡, Jean-Brice Ginestet§, Claire Pagetti¶

∗ IRT Saint Exupéry, † Airbus, ‡ Thales, § DGA, ¶ ONERA

Abstract—In the context of the use of Machine Learning (ML)
techniques in the development of safety-critical applications
for both airborne and ground aeronautical products, this
paper proposes elements of reasoning for a conformity to the
future industrial standard. Indeed, this contribution is based
on the EUROCAE WG-114/SAE G-34 ongoing standardization
work that will produce the guidance to support the future
certification/approval objectives. The proposed argumentation
is structured using assurance case patterns that will support
the demonstration of compliance with assurance objectives
of the new standard. At last, these patterns are applied to
the ACAS-Xu use case to contribute to a future conformity
demonstration using evidences from ML development process
outputs.

Disclaimer: This paper is based on the EUROCAE WG-
114/SAE G-34 standardization results at the time of the writing.
Though some of the authors are active members of the working
group, it is a free interpretation of the current draft work and
only reflects the authors’ view. As the working group has not
published any released outcomes yet, some parts of the described
argumentation may have to be modified in the future to conform
to the final standard objectives.

I. INTRODUCTION

A. Context

In the avionics context, the certification of aircraft sys-

tems is ruled by the regulation authorities, e.g. EASA for

Europe and FAA for the United States. EASA developed

Certification Specifications (CS 2x.1301/1309) defining the

requirements that rule systems airworthiness. In addition to

this, Authorities published AMC/AC (Acceptable Means of

Compliance/Advisory Circular) to recognize that developing

systems using industrial standards (ED-79A/ARP4754A for

complex systems, ED-12C/DO-178C for software item and

ED-80/DO-254 for hardware item) are acceptable means to

show evidence that a system behavior, operating functions

implemented by software and/or hardware items, is compliant

with the regulation requirements.

Among the methodologies used for certification purposes,

the assurance case concept is not new. The safety domain was

one of the first to elaborate the safety cases concept. Safety

cases were originally theorized by Tim Kelly [KBMB97] and

then generalized by John Rushby [Rus15]. In particular, in

[Rus15], Rushby claims that the introduction of this kind of

methodology in the industries are a significant contribution to

system and software assurance and certification.

B. Objectives of the paper

The first objective of the paper is to present the guidelines

drafted by the EUROCAE WG-114/SAE G-34 joint working

group (WG-114 subsequently) on the certification of ML-

based systems. The draft guideline [EUR21] is called AS6983

in the rest of the document. Those guidelines cover 3 levels

of engineering:

1) System/Subsystem: Classical system and safety assess-

ment processes are used to capture the requirements al-

located to the ML-based function and identify the items

that will be used to implement the system. Among these

requirements is the DAL (Design Assurance Level) that

modulates the fulfillment of the assurance objectives.

The modulation is not used in the paper because the

levelling of objectives has not been discussed yet in WG-

114.

2) ML Constituent: This level has been introduced by the

WG-114 between subsystem and item in order to support

the design of one ML-based subsystem function that can

be deployed on several items. This level encompasses

the data management process (design the datasets that

will be used to train, test and validate the ML part of

the ML constituent) and the ML model design process

(train/validate the model to fit the intended function

and verify that its properties are compliant with its ML

model requirements).

3) Item: Both classical and ML specific process will be

used to transform the designed model into an imple-

mentation model that will be hosted in a SW or and

HW item.

These 3 levels of engineering are described in an end-to-end

ML-based system development workflow (see Fig. 1). The

semantics of the arrows is as follows: plain thick arrows mean

is an input, plain arrows mean produces and dashed arrows

mean uses.

The second objective is to structure those guidelines with a

set of assurance cases patterns that will reflect the learning

assurance objectives developed by WG-114 and support a

possibly future demonstration of conformity for certification

purposes.

The third objective is to apply the assurance cases patterns

on a detailed use case. Indeed, we will apply them on the

hybrid architecture promoted by [DDGG+21] to implement an

Airborne Collision Avoidance System (ACAS-Xu) for drones.

The purpose of this architecture is to embed several neural

System

architecture

Req

allocated to

ML-based

sub-syst

System

Integration &

Verification

System process

data

manag-

ement
data sets

Data management process

Model

design
ML models

ML model design process

HW or SW

implem

entation

Deployed

model

Implementation and

deployment process

ML CONSTITUENT

ITEM(s)

SYSTEM/SUBSYSTEM

Fig. 1. End-to-end ML-based system development workflow

networks (NNs) to replace the ACAS-Xu standardized Look-

Up Tables (LUT) along with a safety net based on extracts

of the LUT. In that former work, we proposed an initial end-

to-end certification strategy already inspired from the WG-

114 works and which was reflecting the progress status of the

standardization approach at this point. The WG-114 approach

has evolved since and we will present an updated version in

line with the current AS6983 guidelines.

II. STANDARDIZATION APPROACH

Today the WG-114 is a worldwide group of more than

500 engineers that draws its expertise from a large variety of

industry fields such as air-framers, Unmanned Aircraft systems

(UAS), Urban Air Mobility (UAM), electric Vertical Take-Off

and Landing (eVTOL) manufacturers, engine manufacturers,

airborne and ground equipment manufacturers, regulators or

air navigation service providers.

A. Overview of the guidelines

As mentioned in their ”Statement Of Concerns (SOC)”

[EUR20a], the WG-114 anticipated a growing commercial

pressure for Artificial Intelligence (AI) solutions within the

aerospace industry over the coming few years, there is an

urgent call for regulation and the emergence of norms around

acceptable usage. The role of this joint group will be to

produce a new standard for the development and the certi-

fication of aeronautical products using artificial intelligence

(once recognized as an acceptable means of compliance by

the adhoc authorities). The standard will be multi-domains,

the joint working group will evaluate key applications for

AI usage within aeronautical systems, with a scope encom-

passing ground-based equipment, airborne vehicles and Air

Traffic Management (ATM) systems. In terms of processes,

the full life cycle will be under consideration, from design and

manufacture, to operation and through-life maintenance. In its

first issue, the standard will focus on offline trained Machine

Learning (ML) based systems meaning that the embedded ML

algorithms are only trained on ground and does not keep on

learning during operation.

The SOC document has allowed the whole industry to

align on the main concerns related to the use of AI in the

safety-related systems that make the aeronautical ecosystem.

One of the main challenges raised by the document was to

determine how the future standard was going to interfere with

the other existing standards that currently rule the development

and the certification of the aeronautical systems. This paper

intentionally focuses on avionic systems processes and their

applicable standards: safety assessment (ARP4761 [SAE96]),

system development (ARP4754A/ED-79 [SAE10]), software

development (DO-178C/ED-12C [RTC11]) and hardware de-

velopment (DO-254/ED-80 [RTC00]). In order to propose an

end-to end certification approach, the WG-114 considered all

these processes and has identified the gaps with the existing

standards in the chapter 4 of the SOC document. At this

point of time, there is a collegial consensus around a process-

oriented standardization approach introducing new assurance

objectives (a.k.a. learning assurance objectives) to cover the

development processes and fill the identified gaps. Therefore

this paper considers the ongoing work of the working group

and zooms on the levels of engineering that are impacted so

far.

B. Application to the use case

The airborne anti-collision system ACAS X [KHC12] was

developed to overcome some limitations of TCAS systems

and as a response to flights traffic increase. In the ACAS

Xu standard, the design relies on a set of offline computed

lookup tables to make avoidance decisions. Some works

[KBD+17] proposed to replace those LUT with some surro-

gate neural networks: the purpose was to reduce the memory

footprint and thus to improve the execution time. The former

work [DDGG+21] relies on neural networks as proposed by

[KBD+17] but also on a safety net based on an extract of

the LUT to ensure the compliance with the reference behavior

given by the LUT. This ACAS Xu hybrid architecture allows

the use of ML algorithms while guaranteeing the safety of the

system in all operational domain. At operation (see Figure 2),

when the check module meets a pre-identified zone where the

ML controller predictions are incorrect, the system switches to

the safety net. In the other cases, the ML controller is operated.

NNCoC

NNWL

NNSL

NNWR

NNSR

switchnorm post

ML controller / ML constituent

check module

pre-defined

safe box

safety net

pieces of LUT

Fig. 2. Hybrid Architecture Overview

We will apply the assurance case patterns on the ACAS-

Xu use case and demonstrate the compliance to learning

assurance objectives with supportive evidences. Indeed we will

use evidence artefacts that have been developed during the

design (ML algorithm development, performance measures,

generalization demonstration using formal methods), the im-

plementation artefacts demonstrating that the inference model

is preserving the properties of the design model and the tests

of the hybrid controller performed with simulation means.

C. Overview of the assurance case concept

Assurance Cases are a method to structure an argumen-

tation in order to make a demonstration of conformity. It

has been used for a while for safety demonstration in the

whole industry. This method has been theorized by John

Rushby in [Rus15] with this definition: Assurance cases are

a method for providing assurance for a system by giving

an argument to justify a claim about the system, based on

evidence about its design, development, and tested behavior.

Indeed, John Rushby emphasizes that the argument provides

a context in which to justify and assess the quality and

relevance of the evidence submitted, and the soundness of the

reasoning that relates this to the hierarchy of subclaims that

leads to the top-level claim. When building the argumentation

related to a novel technique of development (such as Machine

Learning), this may help to identify the lacks, weaknesses

of the argumentation tree and thus the places where some

additional research is needed.

In the updated edition of ”The uses of argument” [Tou03],

Toulmin states that the argumentation is mixing logic and

epistemology. Considering the latter, he states that the claim

of knowledge leading to the argument soundness should not

be questionable, a man who puts forward some proposition,

with a claim to know that it is true, implies that the grounds

which he could produce in support of the proposition are of

the highest relevance and cogency: without the assurance of

such grounds, he has no right to make any claim to knowledge.

This being said, Rushby in [Rus15], clearly separates 2

kinds of argumentation strategies:

- Reasoning steps are interpreted logically: we must de-

termine if the conjunction of subclaims in a step deductively

entails its claim. So it may lead to a problem in logic: do the

subclaims truly imply the claim?.

- Evidential steps are interpreted epistemically: they are the

bridge between our concepts (expressed as subclaims) and our

knowledge of the world (recorded as evidence). Therefore it

may lead to a problem in epistemology: does the evidence

amount to knowledge that the claim is true?

Both questions are justified and emphasized in [Lev11]

which highlights the possible misuse of an assurance case due

to the confirmation bias (experts may try to build assurance

cases enforcing the compliance of their own system) and

illustrated in the Nimrod accident report [HC09]. However

as underlined by [Lev11]: the type of evidence required and

assurance arguments used are straightforward with prescrip-

tive regulation. As mentioned earlier in the paper, this is

actually the approach of the WG-114 standardization group.

Indeed the working group is a college of experts challenging

themselves and working on a consensus base to provide

the best process-oriented assurance activities to ensure the

certifiably of aeronautical systems.

Most of the recent papers on assurance cases rely on the

GSN notation developed by Tim Kelly from York university

[KW04] and standardized by [ACW18]. The graphical nota-

tion is really a good format to ease the analysis, favour the

use of patterns, ease the concurrent working and allow for

a global view of the work. However we do think that this

is not enough to fully describe the assurance case content,

permit a fine configuration control and express the changes

between versions that are necessary to control the credit for

the final goal of the process assurance: the demonstration

of conformity. Therefore we prone to mix graphical and

textual notation to provide the interesting aspects of the both

notations as it is done in the certification argumentation of

the SAFEGUARD system in [MSG21]. At last, and to echo

the previous paragraph about the confirmation bias, one can

challenge the reasoning or the fact that evidences may not be

sufficient to fully achieve the demonstration. To help solving

the legitimate interrogation inherent to an assurance case in

[Rus15]: doubting that the subclaims to a reasoning step really

do entail its claim, or that the evidence cited in an evidential

step has adequate weight, Rushby was proposing the useful

concept of defeater. The GSN standard V3 [ACW21], by

introducing dialectic principles now allows for challenging the

reasoning or the evidential steps.

D. Notation

The assurance case extracts are patterns containing AS6983

guidance objectives as proposed by [HG18] for DO-178 and

[DPP20] for the multi-core guidelines formerly detailed in the

CAST-32A. From such patterns, it is up to the applicant to

instantiate them for a given product. In this paper, we illustrate

the instantiation on the ACAS Xu use case. The assurance

case patterns were designed with the GSN V3 [ACW21] (note

that they are standard assurance cases for GSN as we did not

use the GSN pattern notations). The instantiations are mainly

described textually. In addition, we use the following colour

codes all along the paper: the grey boxes indicate that the

goal is supported by classical well-known guidance, the white

boxes are used to structure the argumentation and yellow boxes

contain objectives from the AS6983 draft guidance. Any other

colour is used to link the assurance case extracts to one another

in order to ease the navigation.

III. ML-BASED SUBSYSTEM DEVELOPMENT

The future ML standard will propose an end-to-end guid-

ance to develop and certify a system containing a ML-based

function. However the WG-114 approach will try to stick on

the existing guideline as much as possible. From an airborne

perspective, this means using the ARP4754A [SAE10] guid-

ance whenever possible to integrate the ML-based function at

subsystem level. Most of the processes at system/subsystem

level of engineering (safety assessment, system requirements

capture, architecture, integration, validation and verification

processes) are reused from the ARP4754A. The AS6983

overlaps a bit with the system/subsystem ARP guidance for

the beginning of the ML constituent development.

A. Assurance case pattern

The argumentation is based on the application of the

ARP4754A objectives [SAE10] from table A-1//2.0 Aircraft

and System Development Process and Requirements Capture

and //5.0 Implementation verification process. As this is a pure

ARP4754A pattern, this argumentation is not detailed it in

the paper. It leads to the identification of the ML constituent

development goal: The ML constituent performs its intended

function at acceptable level of safety for allocated DAL.

B. Application to ACAS Xu

The ACAS Xu use case subsystem is composed of:

1) ML controller (or ML constituent): contains all the

ML models approximating the LUTs in every points

of the input space. The models are hosted in the SW

item 3 whereas the traditional functions (normalisation,

selection of the NNs and post processing to compute the

advisory maneuver) are hosted in SW item 2.

2) SW item 1: contains the safety net and the check module.

3) HW item: the Texas Instrument keystone platform hosts

the 3 SW items defined above.

The process flow chart to produce the ACAS-Xu system (see

figure 3) is an application of the ML-based system/subsystem

development process from WG-114.

Subsystem Arch.

NNs
Deployement

Requirements

allocated to the

ML constituent

Subsystem

Requirements

Processes

Requirements

allocated to

other items

ML Constituent

Requirements

Process

ML

Constituent

Requirements

ML Model Design

Process

Training/Valid/

Test datasets

ML Data Management

Process

ML Model

description

Data

processing

description

SW item 3

(NNs)

SW item 2

(Normalisation+switch NNs+Post-pro)

SW item 1 (Check Module + Safety Net +Post-pro)

HW item (TI-Keystone platform)

ML constituent

integration Process
ML

Constituent

Subsystem

Integration

Processes

Subsystem

(ACAS-Xu)

ML constituent
(ML Controller)

Subsystem(ACAS-Xu Hybrid ML-based Controller)

Fig. 3. ACAS-Xu system development workflow

The ARP4754A objectives from table A-1//2.0 Aircraft and

System Development Process and Requirements Capture are

supported by the following evidences:

• ARP4754A-2.3 (System requirements): The hybrid ML-

based controller requirements are defined. The ACAS Xu

function is specified using the RTCA SC-147 /EUROCAE

75 standardized tables.

• ARP4754A-2.4 (Derived requirements): The hybrid ML-

based controller derived requirements are defined and

rationale explained. The subsystem Operational Design

Domain (ODD in the rest of the document) is partitioned

between the ML controller and the safety net.

• ARP4754A-2.5 (System architecture): The strategy for

the architecture definition has been developed earlier in

the section.

• ARP4754A-2.6 (Item allocation): The hybrid ML-based

controller requirements are allocated to items. The strat-

egy to satisfy the objectives is to develop the entities

(actually 2 items and a ML constituent) defined by the

subsystem architecture. The traditional SW items Check-

Module, Safety-Net and Post-pro are developed to DO-

178C guidance and the HW item (the NVIDIA Jetson

Xavier platform) to DO-254 guidance.

The ARP4754A objectives from table A-1//5.0 Implementation

verification process are supported by the following evidences:

• ARP4754A-5.3 (Item implementation): The hybrid ML-

based implementation complies with the subsystem re-

quirements. The ML constituent development and ver-

ification processes are further elaborated to detail the

demonstration of compliance to the future ML standard.

• ARP4754A-5.2 (System verification): The subsystem ver-

ification demonstrates the intended function and the con-

fidence of no unintended function impacts to safety. The

Hybrid ML based controller is tested against its func-

tional, safety and operational requirements in a simulated

environment (including a LUT simulator for comparison).

IV. ML CONSTITUENT DEVELOPMENT

The ML constituent contains a ML model and possibly tra-

ditional items. Its current definition is: a defined and bounded

set of either hardware item(s) and/or software item(s) that

implement ML model(s) and associated ML data processing

which are grouped for integration purpose to support(s) one

subsystem function.

A. Assurance case pattern

The certification argumentation is described through the

fulfillment of the goal previously described at subsystem

level: The ML constituent performs its intended function at

acceptable level of safety for allocated DAL. Considering the

ML constituent may contain both ML model and traditional

items, the argumentation strategy is based on both new and

classical guidance. The upper level goals of the ML constituent

are described in the figure 4.

The learning assurance objectives are divided into 4 goals.

The first Goal req concerns the ML constituent requirements

capture. This goal is refined as an assurance case shown figure

5). The ML constituent requirements are a satisfactory re-

finement of the allocated system requirements for the selected

DAL. The strategy to fulfill this goal is supported by 2 levels

of requirements: the ML functional requirements and their

breakdown into ML model requirements and traditional items

identified by the ML constituent architecture:

• ML functional requirements: The ML functional require-

ments are a satisfactory refinement of the allocated sub-

system requirements (functional intent, ODD specifica-

Goal

ML constituent performs its intended

function for the selected DAL

Strategy

Arguments over the ML constituent satisfies the ML

standard and DO-178C standard for traditional

software items

Goal Req

ML constituent reqs

are a satisfactory

refinement of the

allocated subsystem reqs

Goal Dev

ML constituent

is a satisfactory

implementation

of its reqs

Goal Verif

Integrated ML

constituent

complies with

its reqs

Goal Confidence

Evidences that support

demonstration are

adequate (e.g. planning,

conf. management. . .)

Fig. 4. ML constituent pattern

tion, robustness, DAL, system performance and resources

constraints).

• Item requirements: Traditional item requirements are a

satisfactory refinement of the allocated ML functional re-

quirements for the selected DAL. The items are specified

using the DO-178C guidance.

• ML model/data requirements: The ML model and data

requirements are a satisfactory refinement of the allocated

ML functional requirements for the selected DAL.

Goal REQ

ML constituent reqs are

a satisfactory refinement

of the allocated subsystem reqs

Strategy

Argument over 2 layers of requirements

Goal Lvl 1 Reqs

ML functional reqs

are a satisfactory

refinement of the

subsystem reqs

Goal Item Reqs

Item reqs are a

satisfactory refinement

of allocated ML

functional reqs

Goal ML Model Reqs

ML model reqs are a

satisfactory refinement

of allocated ML

functional reqs

Goal ML Data Reqs

ML data reqs are a

satisfactory refinement

of allocated ML

functional reqs

Fig. 5. ML constituent requirement capture pattern

The second goal of figure 4 is Goal Dev and concerns the

ML constituent development. It is further developed as the

assurance case of figure 6. We will detail it later, at the end

of this section, as it is central in the WG114 guideline.

The third goal of figure 4 is Goal Verif and concerns the

ML constituent integration and verification. The ML inference

model and the traditional items are integrated to make the

ML constituent. The goal is then to show evidence that The

integrated ML constituent (ML inference model and traditional

items) complies with the ML constituent requirements. This

goal is not further detailed as it will be evidenced by traditional

process artifacts.

The fourth goal of figure 4 is Goal Confidence. We have

to show confidence that the evidences supporting this argu-

mentation are adequate to the ML constituent development

process. As a consequence, the argumentation will rely on the

fulfillment of transverse objectives (from AS6983) regarding

planning documentation, configuration, change management,

quality assurance process and certification liaison. This latter

part will not be further detailed.

Let us go back to Goal Dev detailed in figure 6. The related

strategy is developed in the context of the ML constituent

architecture (breakdown into the ML model and the traditional

items).

Goal Dev

The ML constituent is a

satisfactory implementation

of its reqs

Strategy

Argument over the entities identified by

the architecture of the ML constituent

Goal Arch

ML constituent

architecture

is validated

Goal Datasets Dev

ML model datasets

are a satisfactory

implementation of

the ML data reqs

Goal Model Dev

ML model inference

model is a satisfactory

implementation of

model reqs

Goal Items Dev

The items are a

satisfactory

implementation of

the item requirements

Strategy

Argument over the ML model elements identified

by the architecture of the ML model

Goal Arch val

The ML model

architecture

is described

and validated

Goal Design

The ML model element

description is a satisfactory

refinement of the ML model

element reqs

Goal Implem.

The ML inference

model element is a

satisfactory implem.

of the ML model

element reqs

Goal Verif

The ML inference

model complies

and is robust

with ML model

requirements

Fig. 6. ML constituent development pattern

It leads to a first level of 4 sub-goals: the Goal Arch validates

the ML constituent architecture. The Goal Items Dev covers

traditional items development to classical guidance. The Goal

Datasets Dev addresses the datasets development, it will be

further developed in section V. Eventually the Goal Model Dev

(”The ML inference model is a satisfactory implementation

of the ML model requirements”) is elaborated taking into

account that the ML model may be decomposed in several ML

model elements. This architecture is identified as an element

of context, so that the argumentation can be based on each

model element identified by the architecture. From this point,

the ML model is designed, implemented and verified:

• Goal Arch Val: The ML model is breakdown into model

elements and the architecture is validated.

• Goal Design: Each ML model element is trained, val-

idated and verified using the datasets. Then the main

goal is to demonstrate that ”the ML model element

description is a satisfactory refinement of the ML model

requirements”. This goal is detailed in section VI.

• Goal Implem.: When the ML model design is terminated

and frozen, each of the ML model element is imple-

mented to make a ML inference model element. This

means that the main goal becomes ”the ML inference

model element is a satisfactory implementation of the ML

model element description”. This goal is detailed in the

section VII.

• Goal Verif : When all the ML model elements are imple-

mented, they are integrated to make the ML inference

model. Then the verification goal becomes: ”the ML

inference model complies and is robust with ML model

requirements”.

B. Application to ACAS Xu

The ML constituent (ML controller) logical architecture is

composed of 4 parts (see figure 2) among which 3 traditional

parts and 1 ML model:

• the 3 traditional parts are:

– the norm normalizes the values of ρ, θ, ψ, vown, vint
in the interval [-1, 1];

– the switch is in charge to select the NNpa,τ that

will compute the advisory. The selection is done

depending on the inputs pa and τ . In effect, the value

of τ is decomposed in 9 possible ranges (e.g. τ = 0
is the first range);

– the post-processing instructions;

• the ML model is composed of 45 elements more pre-

cisely, 45 NNs named NNpa,r with pa ∈ {CoC, SR, SL,

WR, WL} and r ∈ [1, 9].

Provided that the ML controller architecture is an element

of context, the assurance case pattern of figure 4 is applied to

the ACAS-Xu use case.

1) ML controller requirements capture (figure 5 pattern):

• The ML controller requirements are refined from

the requirements of the Hybrid ML-based controller

subsystem (ODD, real-time constraints, anti colli-

sion performance, memory size constraints, DAL).

• The SW item 2 (Normalisation+switchNNs+Post-

pro) is specified using the DO-178C guidance.

• The capture of the NNs requirements is described

in section VI.

• The NNs data requirements are specified by the Op-

erational Design Domain (ODD), defined through

the input points of the LUTs from the RTCA SC-

147 Minimum Operational Performance Standards

(MOPS) For ACAS-Xu. The ODD is divided into

sub-ODDs to fit the 45 ML model elements of the

ML model architecture.

• The NNs data requirements are checked for trace-

ability against hybrid ML-based Controller require-

ments, consistency and compatibility with NNs re-

quirements.

2) ML controller development (figure 6 pattern): The ML

controller architecture document is created and vali-

dated. The SW item 2 is developed according to DO-

178C guidance. The datasets are developed and verified

against the ML model data requirements defined previ-

ously. The ML model (NNs) is developed:

• Goal design instantiation: The ML model is break-

down into 45 ML model elements (45 NNs). Specif-

ically, it is verified that the union of the 45 ODDs

makes the ML Controller ODD. The ML Model

Description (MLMD) document is created with the

NNs architecture and validated. Each NN is trained,

validated and verified using the related datasets.

Each NN description is added to the MLMD.

• Goal implem instantiation: The 45 NNs are imple-

mented from their ML model element description.

See section VI for details.

• Goal verif instantiation: The in-sample general-

ization capability of the NNs has been formally

proven in the design phase. In addition, it has been

demonstrated that the implementation process does

not alter the semantics of the NNs. Therefore there

is no need to demonstrate the robustness/stability in

the inference environment. The Requirement-based

verification is covered by the verification activities

performed at ML controller level.

3) ML controller test (figure 4 pattern): The ML con-

troller is verified against its requirements in a simu-

lated environment (including the LUT simulation for

functional/safety testing). These activities are covered

by classical guidance.

V. DATA MANAGEMENT

The objective of the data management process is to deliver

trustworthy training, validation and test datasets which will

be used to design, implement and integrate the ML model,

in order to achieve the delivery of the ML inference model

that meets the functional and operational requirements. The

figure 7 is an overview of the data management process as

per WG-114 current work.

SubSystem

Requirements

Data

Sources

Identification

DataSource
Data

Collection

Data

Preparation

ML

datasets

System

datasets

Data Collected
Data

Allocation

ML development process Implementation process
Subsystem

Integration process

Data Management Process

Fig. 7. Data Management Process

A. Assurance case pattern

The data management process refined the Goal Datasets

Dev of figure 6 and is detailed in the full assurance case (but

not in this paper due to lack of space). This process has to

be covered by specific learning assurance objectives in order

to guarantee the training of ML algorithms in the context of

safety-related functions. The argumentation is split in 2 strate-

gies applicable to ML model data: data management (sources

identification, data collection, preparation and allocation) and

verification.

B. Application to ACAS Xu

The ACAS Xu use case has only few activities in terms of

data management as the ML algorithms are trained with the

standardized LUTs from the MOPS [EUR20b]. Thus

dataset = LUTs

VI. ML MODEL DEVELOPMENT

The ML constituent development process has been fully

described in the section IV-A. In particular, the ML constituent

has first been decomposed into ML model and traditional

items. This section describes the AS6983 assurance objec-

tives that cover the ML model (only, that is part of the

ML constituent) development process and its output: the ML

model description. This artefact is essential, it shall contain all

the necessary information for the implementation of the ML

model.

We remind that the ML model itself has been broken down

into ML model elements that have to be trained, validated and

verified. The development of the ML model element is based

on 2 main goals identified in the previous sections:

• Goal Model Reqs (Figure 5): The ML model requirements

are a satisfactory refinement of the allocated ML func-

tional requirements. There is a second level of refinement

to define the ML model element requirements. The strat-

egy is double: capture the requirements that are necessary

for the model element development (e.g. specification,

performances, generalization, robustness, stability) and

validate them. Due to the lack of space, the assurance

case about the ML model element requirements capture

are not detailed in this paper.

• Goal Design (Figure 6): For each model element of

the ML model architecture, the ML model element de-

scription is a satisfactory refinement of the ML model

element requirements. This process is detailed in the next

paragraph.

A. Assurance case pattern

This section focuses on the design assurance process of the

ML model element. As described in figure 8, the argumenta-

tion to fulfill the Goal design is based on 2 strategies:

1) The ML model element is designed.

2) The ML model element is verified.

Goal Design

The ML model element description is a satisfactory

refinement of the ML model element reqs

Strategy 1

Arguments over the design process of

the ML model element satisfies the learning

assurance objectives (AS6983)

Strategy 2

Arguments over the verification process of the

ML model element satisfies the learning

assurance objectives (AS6983)

Goal Train Spec

The training requirements

are developed

Goal Model Build

The ML model element

is developed from

defined hyper-parameters

Goal Model Training

The ML model element

is trained and the training stop

criteria are defined

Goal Model Optimization

The ML model element is optimized

to achieve the expected performance

specified in the ML model reqs

Goal Model Description

The ML model element description is

developed and is sufficiently

described for the needs of implementation

Fig. 8. ML Model design pattern

Sub-assurance case rooted from Strategy 1 (cf figure 8): The

design assurance process of the ML model element is based

on the following goals:

• Goal Train Spec: develops the training requirements. ML

training activity could introduce the use of randomization

that may alter the determinism and the repeatability of

the design process of the ML model design process.

In such cases, additional data (such as seeds values

used to generate random numbers) should be defined as

derived ML training requirements and managed through

configuration management.

• Goal Model Build: selects/optimizes the hyper-

parameters of the ML model element from the ML

model requirements and training requirements. The ML

model element is developed from these hyper-parameters.

• Goal Model Training: determines the ML model element

parameters using the appropriate ML training algorithm

and the training/validation datasets to meet the applicable

requirements of the ML model element and the ML

training. The initial values of the ML model element

parameters, the loss function, the evaluation metrics and

the training stop criteria are defined from the ML training

requirements.

• Goal Model Optimisation: consists in performing changes

in the ML model element after the training phase to

achieve the expected performance specified in the ML

model element requirements. In case the performance is

deemed not satisfactory, derived requirements are devel-

oped to specify the required changes.

• Goal Model Description: develops the sufficient docu-

mentation of the ML model element design to permit the

implementation of the ML model element (into a ML

inference model element) including the pre/post process-

ing instructions. The ML model element description is

a part of the ML model description. There are 2 types

of implementation of a ML model element, either an

exact or an approximated replication of the ML model

element semantics. Each ML model element description

contains the design characteristics of the model element

ensuring its exact (or approximated) replication in the

execution environment: hyper parameters and parameters,

analytical/ algorithmic syntax and semantics, replication

criteria, execution environment.

Sub-assurance case rooted from Strategy 2 (from figure 8

and refined in figure 9): The verification assurance process of

the ML model element is based on the following goals:

• Goal Validation: checks the training requirements for cor-

rectness and completeness against the ML model element

requirements. ML training requirements should conform

to the ML design standards and be traceable or justifiable,

verifiable and consistent.

• Goal Performance: ensures that the performance require-

ments, including functional and non-functional aspects

are met.

• Goal Robustness: ensures that the ML model element can

Strategy

Arguments over the verification process of the

ML model element satisfies the learning

assurance objectives (AS6983)

Goal Validation

ML training reqs

are correct

and complete

Goal Performance

ML model element

is compliant with ML

model element reqs

Goal Robustness

ML model element

is robust with ML

model element reqs

Goal Stability

ML model element is

stable for small perturbations

as specified per ML model reqs

Goal Generalization

ML model element

generalization capability

is compliant with

ML model reqs

Goal Consistency

ML model element

is accurate

and consistent

Goal Compatibility

ML model element

is accurate

and consistent

Goal Verifiability

ML model

element conforms to standards

Goal Std Conformity

ML model element

is accurate

and consistent

Fig. 9. ML Model verification pattern

continue to operate correctly despite abnormal inputs and

conditions.

• Goal Stability: ensures stability of the ML model element,

i.e. that small perturbations in the inputs do not activate

unintended behavior. The expected level of perturbation

that the ML model element should sustain has been

specified in the ML model element requirements.

• Goal Generalization: The verification of the ML model

element generalization capability is to ensure that the

model element will show the same performance with

unknown inputs as the one measured during the ML

model element training. This argumentation (cf figure 10)

is further detailed in the next paragraph.

• Goal Accuracy and consistency: determines the correct-

ness and consistency of the ML model element (e.g. stack

usage, memory usage, fixed point arithmetic overflow).

• Goal Compatibility: ensures that no conflict exist between

the ML model element and the hardware/software fea-

tures of the target platform, especially for the system

response time and the input/output hardware.

• Goal Verifiability: ensures that the ML model element

does not contain elements or structures that cannot be ver-

ified, for example neurons which can never be activated

during ML Model element testing or random functions

which cannot be reproduced during testing.

• Goal Std Conformity: ensures that the ML design stan-

dards are followed during the design process of the ML

model element and that deviations from these standards

are justified.

B. Application to ACAS Xu

Requirement considerations - each of the 45 ML model

elements (NN) is specified and validated.

• Behaviour: each NN shall replicate the LUT prediction

in its allocated ODD (LUT property).

• Performances: memory footprint, timing and accuracy

• Generalization capability: the LUT property shall be

preserved whatever the position of the ownship and the

intruder in the input space of the ODD allocated for the

ML model element.

Design considerations - the strategy 1 is detailed:

• Goal train spec instantiation: Training is defined to per-

form a regression task. The training metrics is defined as

the mean square error between truth costs and predicted

costs.

• Goal model build instantiation: The identified hyperpa-

rameters consist in a set of model architecture parameters

(numbers of neurons, number or layers, activation func-

tion) and training parameters (size of batches, learning

rate). Hyperparameters are defined after an optimization

search phase performed with Bayesian optimization.

• Goal model training instantiation: The NN is trained until

a fixed and large number of epochs is attained. An early

stopping criteria is added to avoid overfitting behaviour.

• Goal model optimization instantiation: Pruning methods

are used to optimize the NNs memory footprint. Per-

formances are measured and the best model element is

retained.

• Goal model description instantiation: The ML controller

contains the architecture description of 45 ML model

elements (NN). Each NN description contains the de-

sign characteristics of the network: hyperparameters and

parameters, analytical/algorithmic syntax and semantics,

replication criteria, execution environment. The exact

replication is selected so that the inference model can

inherit from the model performances attained during the

design phase if the model semantics is preserved during

implementation.

The strategy 2 is substantiated regarding the verification of

the performance (each NN accuracy and memory footprint

are verified against the NN requirements). There are no

verification needs for the robustness and the stability because

there are no such requirements.

The generalization aspect is fundamental to the certification

demonstration. The NN generalization property is demon-

strated by proving that the LUT property is preserved for each

NN whatever the ownship/intruder situation in the input space

(cf figure 10). The argumentation is split in 2 parts:

1) Identification - All the input situations where the NN

and the LUT predictions are different, are considered as

incorrect (the NN does not preserve the LUT property).

2) Mitigation - This part is already addressed per the

subsystem architecture design: the ACAS-Xu hybrid

ML-based controller switches from the ML model (NNs)

to the LUTs (Safety Net) when incorrect situations are

detected (this is already described in the ACAS-Xu

subsystem architecture document).

Therefore only the identification is at stake. Indeed, all

the inputs where the NN predictions are incorrect should be

identified, i.e. wherever the LUT property is not true in the

input space. The method is to partition the input space (ODD)

into into p-boxes (where corners are the points of the LUTs).

Then the LUT property is checked in all p-boxes: for each

p-box, it is verified that the NN prediction is the same as

the true prediction of one of the p-box corner points. As per

the paper [DDGG+21], the verification is performed using 3D

boxes. Formal methods are used to make the demonstration.

The argumentation is decomposed into 3 goals:

• The LUT property is correctly defined. Actually this

proof is already available in the ML model requirements

validation report.

• The input space (ODD) is correctly decomposed into 3D-

boxes (proof: Generalization analysis report).

• The LUT property is formally checked in each 3D-box

of the input space (proof: Generalization analysis report)

Goal Generalization

The ML model element generalization

capability is compliant with the

ML model requirements

Strategy

Argument over the LUT property is

preserved whatever the ownship/

intruder situation in the input space

Goal Identification

All the inputs where the ML

model element predictions

are incorrect are identified

Goal Mitigation

All the incorrect situations where

ML model element predictions

are incorrect are mitigated

Strategy

Argument over the verification

of the LUT property in

the whole input space

Solution

Refer to the architecture design

description of the hybrid ML-based

controller which contains a safety net

Goal Property

The LUT property is

correctly defined

Goal Partitioning

The input space (ODD)

is correctly decomposed

into p-boxes

Goal Formal verif

The LUT property is

formally checked in each p-box

of the input space

Solution Mitigation

Refer to ML model

requirements

validation report

Solution Mitigation

Generalization analysis

report

Solution Mitigation

Generalization analysis

report

Fig. 10. ML Model Generalization demonstration for ACAS-Xu

VII. IMPLEMENTATION AND DEPLOYMENT

The input for the implementation phase should be a trained

ML model element that has a complete ML model element

description. The implementation process (see figure 11) pro-

duces a ML inference model element that is capable to infer

on a HW or SW item. It may also optimize the ML model

element (without possible retraining) in order to increase

the computation performance or better fit the targeted hard-

ware resources, however it must ensure that any optimization

preserves the semantics of the input ML model element or

at least leads to an acceptable deviation (e.g. merging of

convolution/batchnorm/ReLu layers or Winograd algorithms).

ML Model

Description
Optimizations

Optimized

Model

Code Gen

Compilation
ML binary

ML Item

MLDL

process

Requirements

non ML

Traditionnal Implementation

Process

Traditionnal

HW/SW

Integ.

ML Implementation Process

Verification

Fig. 11. Implementation process

A. Assurance case pattern

The main goals for the implementation process are the

following (the assurance case extract is not provided due to

the lack of space):

• The description of the ML inference model element is a

satisfactory refinement of the ML model element descrip-

tion - The sub-goals are:

– Semantics preservation: Any modification of the

model element semantics due to the transformations

(optimizations, conversion to the target environment)

should be analysed for their impact on the model

element performance and behavior with respect to

the model element requirements.

– Training and target environment differences: Differ-

ences between the 2 environments are identified to

assess the impact on behavior and performance of the

ML model element, and to evaluate to what extent

the activities performed in the design environment

can be used as verification credit for the demonstra-

tion that the inference model element complies with

the model element requirements.

• The SW or HW item is a satisfactory implementation

of the ML model element description allocated to the

item and meets the target constraints: According to the

AS6983 current guidance, this objective can be fulfilled

using the current standard practices.

• The integrated HW/SW items (host of the ML inference

model element) comply with the ML model element de-

scription - The sub-goals are:

– Compatibility with the target: Timing, memory, la-

tency, throughput and other non-functional require-

ments should be satisfied by the ML inference model

element running on the target environment.

– Unintended behavior detection: The ML inference

model element does not introduce unintended behav-

ior relative to the ML Model element.

– Design performances preservation: the performance

of the HW/SW item(s) implementing the ML infer-

ence Model on the test data set should be verified

and documented. Any deviation should be measured

and reported to the safety assessment process.

• The verification of the verification is achieved: The

verification procedures are correct and complete against

the ML model requirements. Functional and structural

coverage are verified.

B. Application to ACAS Xu

The ML controller is implemented on a TI Keystone plat-

form. The 45 NNs are hosted in a SW item (SW item 3 on

a ARM unit). In this context, the ML element description

document is updated and validated.

Hereunder the substantiated goals:

• ML inference model element:

– Semantics preservation: No post-training optimiza-

tion is performed. The 45 models are converted to a

format that is compatible with the inference platform.

The models semantics is described in the ML model

description and is preserved during the implementa-

tion. This should be detailed in a dedicated dossier

for certification purposes.

– Training and target environment differences: The

inference environment is different from the devel-

opment environment, however the execution on the

ARM processor is expected to be identical provided

that the numerical representation and resolution are

the same on both platforms. Then, credit that can be

sought for the formal verification of the generaliza-

tion capability performed during the design phase.

A representativeness dossier should be provided for

certification purposes.

• SW or HW item implementation: The NNs are coded in

C language using specific libraries for target integration.

• Integrated HW/SW items:

– Compatibility with the target: OTAWA tool is used

to compute the memory footprint and consolidate

the theoretical memory footprint evaluated during the

design phase.

– unintended behavior: As the exact replication of the

ML model element is demonstrated then a verifica-

tion credit can be sought for the formal verification

activities of the design phase. This covers the objec-

tive.

– Design performances preservation: Test dataset

should be used to verify that the 100% accuracy

objective is met in the target environment and that

timing requirements is attained. This is not yet done.

• Verification of the verification: Not performed.

VIII. RELATED WORK

In parallel to WG-114, research field groups work on deter-

mining and solving the challenges to certify AI-based systems.

For instance, the ANITI1/DEEL2 research project released a

comprehensive list of certification issues in their white paper

”Machine Learning in certified systems” [DCW21]. The main

1https://aniti.univ-toulouse.fr/en/
2https://www.deel.ai

challenges and the way the WG-114 is tackling them are

synthesized in the article [FK21].

There are a lot of recent works fostering the use of assurance

cases. In [Rus15], John Rushby explains the fundamentals

of the theory for the use and the evaluation of the assur-

ance cases. Michael Holloway [HG18], on behalf of FAA,

translates the EUROCAE/RTCA ED-12C/DO-178C standard

[RTC11] in an assurance case and expresses the underlying

arguments which justify the assumption that the document

meets its stated purpose of providing guidelines for avionic

embedded software. [CPH20] presents patterns that can be

used to develop assurance arguments for demonstrating the

safety of the ML components. The argument patterns provide

reusable templates for the types of claims that must be made

in a compelling argument. [MSG21] is the first complete

and published demonstration that a system (SAFEGUARD

system enforces geofencing restrictions on unmanned aerial

vehicles) possesses the overarching properties for certification

approval purposes. At last, the work [DPP20] is proposing a

domain-agnostic method to design and evaluate patterns (the

design pattern approach is a way of describing a recurring

problem and its associated solution based on best practices)

of assurance cases. This will be very useful when time comes

for constructing and releasing patterns from the collection of

assurance cases available on the field. At last the safety group

of university of York, with their ”Guidance on the Assurance

of Machine Learning in Autonomous Systems (AMLAS)”

[RHH21], defines a safety argument pattern that can be used

to explain how and the extent to which the generated evidence

supports the relevant ML safety claims, explicitly highlighting

key assumptions, tradeoffs and uncertainties. They suggest

an end-to-end process, from system safety requirements to

ML component safety case, providing guidance for both the

applicant and the certification authority.

IX. CONCLUSIONS

This paper has proposed an interpretation of the current

WG-114 work (future standard for offline machine learning

development) through the development of assurance case

patterns. These patterns have been applied to the ACAS-Xu

use case, in order to structure a possible argumentation for

demonstrating the conformity to the objectives of the standard.

The demonstration is obviously not complete, however the

main learning assurance objectives have been tackled to show

evidence that the proposed process for ACAS-Xu development

is certifiable. Beyond this use case, this is paving the way

towards the certification of the safety-critical aeronautical

products based on surrogate models. The way forward will

be to complete the assurance activities on the implementation

process and adjust the argumentation to the final guidance

when the WG-114 standard (AS6983) is released.

REFERENCES

[ACW18] Assurance Case Working Group ACWG. The goal structuring
notation community standard version 2, 2018. Safety-Critical
Systems Club, York, UK.

[ACW21] Assurance Case Working Group ACWG. The goal structuring
notation community standard version 3, 2021. Safety-Critical
Systems Club, York, UK.

[CPH20] Richard Hawkins Radu Calinescu Chiara Picardi, Colin Pater-
son and Ibrahim Habli. Argument patterns and processes for
machine learning in safety-related systems. 2020. University
of York, York, U.K.

[DCW21] IRT StExupery DEEL Certification Workgroup. White paper -
machine learning in certified systems, 2021.

[DDGG+21] Mathieu Damour, Florence De Grancey, Christophe Gabreau,
Adrien Gauffriau, Jean-Brice Ginestet, Alexandre Hervieu,
Thomas Huraux, Claire Pagetti, Ludovic Ponsolle, and Arthur
Clavière. How to certify a reduced footprint acas-xu system:
A hybrid ml-based solution. In International Conference on

Computer Safety, Reliability, and Security (SAFECOMP), 2021.
[DPP20] Kevin Delmas, Claire Pagetti, and Thomas Polacsek. Pat-

terns for certification standards. In Proceedings of the 32nd

International Conference on Advanced Information Systems

Engineering (CAiSE’20), pages 417–432, 2020.
[EUR20a] EUROCAE / SAE. ER-022/AIR6988 - AI in Aeronautical

Safety-Related Systems: Statement of Concerns, 2020.
[EUR20b] EUROCAE WG 75.1/RTCA SC-147. Minimum Operational

Performance Standards For Airborne Collision Avoidance Sys-
tem Xu (ACAS Xu), 2020.

[EUR21] EUROCAE WG-114/SAE joint group. Certification/approval
of aeronautical systems based on AI, 2021. on going standard-
ization.

[FK21] Christophe Gabreau Baptiste Lefevre Fateh Kaakai, Béatrice
Pesquet-Popescu. Ai for future skies: On-going standardization
activities to build the next certification/approval framework for
airborne and ground aeronautical products, 2021. AISafety
2021.

[HC09] C. Haddon-Cave. The nimrod review: an independent review
into the broader issues surrounding the loss of the raf nimrod
mr2 aircraft xv230 in afghanistan in 2006, 2009. report, vol.
1025. DERECHO INTERNACIONAL.

[HG18] Holloway and Graydon. Explicate ’78: Assurance case appli-
cability to digital systems, 2018. FAA report DOT/FAA/TC-
17/67.

[KBD+17] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and
Mykel J Kochenderfer. Reluplex: An efficient smt solver for
verifying deep neural networks. In International Conference on

Computer Aided Verification, pages 97–117. Springer, 2017.
[KBMB97] Tim Kelly, Iain Bate, John McDermid, and Alan Burns. Build-

ing a preliminary safety case: An example from aerospace. In
1997 Australian Workshop on Industrial Experience with Safety

Critical Systems and Software, Australian Computer Society,

Sydney, Australia, 1997.
[KHC12] Mykel Kochenderfer, Jessica Holland, and James Chryssantha-

copoulos. Next generation airborne collision avoidance system.
Lincoln Laboratory Journal, 19:17–33, 2012.

[KW04] Tim Kelly and Rob Weaver. The goal structuring notation /-
a safety argument notation. In Workshop on Assurance Cases,
2004.

[Lev11] Nancy Leveson. The use of safety cases in certification and
regulation, 2011. Aeronautics and Astronautics/Engineering
Systems MIT.

[MSG21] Hampton Virginia Mallory S. Graydon, Jared D. Cronin Lang-
ley Research Center. Retrospectively documenting satisfaction
of the overarching properties: An exploratory prototype, 2021.

[RHH21] Chiara Picardi Radu Calinescu Richard Hawkins, Colin Pater-
son and Ibrahim Habli. Guidance on the assurance of machine
learning in autonomous systems - amlas. 2021. University of
York, York, U.K.

[RTC00] RTCA/EUROCAE. DO-254/ED-80 - Design Assurance Guid-
ance For Airborne Electronic Hardware, 2000.

[RTC11] RTCA/EUROCAE. DO-178C/ED-12C - Software Considera-
tions in Airborne Systems and Equipment Certification, 2011.

[Rus15] John Rushby. The interpretation and evaluation of
assurance cases. Technical report, 2015. Technical
Report SRI-CSL-15-01 Computer Science Laboratory,
SRI International, Menlo Park, CA, July 2015.
URL=”http://www.csl.sri.com/users/rushby/papers/sri-csl-
15-1-assurancecases.pdf”.

[SAE96] SAE. Aerospace Recommended Practices ARP4761- guidelines
and methods for conducting the safety assessment process on
civil airborne systems and equipment is an aerospace, 1996.

[SAE10] SAE/EUROCAE. Aerospace Recommended Practices
ARP4754a/ed-79a- development of civil aircraft and systems,
2010.

[Tou03] Stephen Toulmin. The uses of argument, updated edition, 2003.
Original edition 1958.

 Page 1/10

Do assurance standards need radical changes?

Emmanuel Ledinot(1) Bertrand Ricque(2) Franck Serratrice(3), Jean Gassino(4),

Rémy Astier(5), Philippe Baufreton(6), Jean-Louis Boulanger(7),
Cyrille Comar(8), Jean Claude Derrien(9) Joseph Machrouh(10), Philippe Quéré(11),

(1, 2, 3, 4, 5, 6, 7, 8, 9,10)
Working Group “Safety Standards” – Embedded France

(1): Contact author, THALES, emmanuel.ledinot@thalesgroup.com
(2) Safran; (3) : Renault (4): Institut de Radioprotection et de Sûreté Nucléaire;

(5): Framatome; (6) Safran; (7) CERTIFER;
(8): AdaCore; (9): SAFRAN (émérite), (10) : THALES, (11) : Stellantis.

Abstract

As Embedded France’s cross-domain group dedicated to
analysis and evolution of safety standards, we observe the
emergence of new types of systems. It is noticeable in the
automotive, railway, manufacturing, defence, and to lesser
extent in aeronautics, space and nuclear domains. Some
of these changes are likely to influence development
assurance up to the point where an update of part of their
principles becomes worth considering. Such an evolution
has already started with the surge of new standards
dedicated to cybersecurity for safety, machine learning, or
advanced automation and autonomy. This paper reviews
some aspects of these ongoing evolutions and argues that
new standards or revisions of former ones might occur in
the near future. The major assurance shifts we anticipate
are the need to address new scales of complexity, the
need to introduce on-line risk mitigation policies, and the
need to revisit qualification of COTS and tools. We regard
the automotive domain as emblematic of the confluence all
the trends so we illustrate our claims and prospects

primarily with examples from this industrial sector.

Keywords: complexity, technological trends, safety,
risk analysis, assurance, assurance costs.

1. Introduction

Convolutional and Deep Neural Networks (CNNs,
DNNs) have nearly revolutionized automated
perception. For sure, there is still a bunch of
difficulties regarding robustness and trustworthiness
demonstrations in this field, but the performance
quantum leap was such that in most industrial
domains embedded systems have initiated a
significant move. Perception, situational awareness,
and complex real-time multi-criteria decision making
that were formerly exclusively devoted to humans
are now planned to be either shared between man
and machine (man-machine teaming) or fully
transferred to machine. This transfer of functions
from human to machine is under way under stringent
cost constraints whatever criticality level is at stake.
This situation puts safety assurance under stress.

Assurance costs depend in the first place on
complexity and criticality.

Moreover, the extension of the Internet of people
and IT services to the Internet of objects and OT1
services has pervasive consequences on industrial
systems. Wireless connectivity (WiFi, 4G/5G/6G),
scalable computing and storage (cloud, edge, MEC,
fog computing), sensor networks, and big data
analytics have motivated the emergence of new
mass-markets of IoT safety-sensitive products and
services [5]. The “IT-OT continuum”, also named
“phygital continuum” where “phy” refers to the
physical and to the physiological, enables new
classes of systems we consider in this paper besides
the classical embedded systems mentioned
previously.

Are current assurance standards, the foundations of
which originate from the 60s, still appropriate to
address this twofold shift: 1) higher complexity at
constant cost? 2) low-cost safety-sensitive mass-
markets?

Section 2 proposes some insights on how systems
are evolving, with emphasis on the automotive
domain that one can view now2 somehow as a
safety critical IoT mass-market. It features the two
trends at the same time: new embedded system
complexity and connectivity to the IT-OT continuum.
The drone market is similar.

Section 3 explains why these evolutions are leading
to engineering bottlenecks that have impact on
assurance cost up to the point where, in our opinion,
it will no longer scale. Section 4 gives some
orientations to overcome that situation.

Our paper continues a series of publications from the
Working Group, through which its members
disseminate and encourage feedback about their

1 OT Operational Technologies, IT Information Technologies
2 Since 2018 connectivity of cars to wireless Internet is becoming
mandatory

 Page 2/10

work [24-33]. All papers are available on Embedded
France’s website.

Note1: we consider assurance as some process
involving planned and systematic actions that
together provide confidence that errors or omissions
in requirements or design have been identified and
corrected to the degree that the system, as
implemented, satisfies applicable certification
requirements”3. We also use development
assurance as assurance applied to requirement
capture, specification, design, architecture,
implementation, verification and validation4.

Note2: safety is our main concern. However, many
assurance issues we discuss apply as well to
cybersecurity and mission reliability.

2. Evolution of safety critical systems

We start by reviewing system evolution in car
industry to substantiate why development assurance
is caught on one side by skyrocketing of costs, and
on the other side by cost containment, if not
reduction. Then we review some other evolutions
applicable to all industrial domains.

2.1. The automotive case

Today in automotive market, regulation (GSR II) and
final customers request new and more complex
functions. Tough competition leads to frequent
addition of new functionalities and constant evolution
of software configurations on:

- Autonomous driving functions (at different

levels),

- Phone Inductive chargers,

- Entertainment functions,

- Connectivity within vehicle (to update GPS

map, Apps…, it is estimated that 100% of the
new cars will be connected to the Internet by

2025).

- Possibility to download Apps…

Regulation authorities request more and more:

- Cybersecurity protection,

- Pedestrian protection,

- Engine emission control,

- New crash requirements,

- Scene recorders,

- Emergency call management.

As a result, vehicle definition becomes more
complex every year and generates systematic
development cost increase. SW development costs

3 This definition is borrowed from “Aircraft system safety –
Assessments for Initial Airworthiness Certification.
4 These terms being defined by ISO15288

Figure 1: Vetronics relative value 1960-2020

are estimated at 40% of the vehicle cost. Customers
regard safety and security as due, in other words
they are not willing to pay extra-cost for it.

The safety and software quality assurance standards
in practice in the field are:

Figure 2: Applicable standards

Besides digital transformation and future self-driving
cars, present hybrid and electrical vehicles are other
domains of system innovation with safety
engineering challenges (e.g. battery management
systems, electrical power control, power electronics,
etc.).

2.2. Safety-critical low-cost

We deem cars are the pivotal example that lies at
the confluence of all trends. Cars are mass-market
products featuring all criticality levels and intense
competition between players. The system
enhancements listed above must be compatible with
strict cost-killing policies, development assurance
inclusive. Assurance consists in careful description
and oversight of all unit development activities and of
their mutual relationships, the number of which
grows more than linearly with project complexity.
How to ensure assurance cost containment with
complexity growth?

The situation is not specific to automotive even if
ADAS and self-driving cars exacerbate this tension.
It is also the case for drones and more generally for
robotics. Manufacturing robots and co-bots of
industry 4.0, for instance, are now capable of
changing their location in workshops. They come
close to, if not in contact with, humans. They are
becoming more safety critical while indulging no

 Page 3/10

extra assurance costs. A major risk management
shift is underway in this field: the move from external
protection functions to integrated safety control.

Emergence of safety-sensitive IoT mass-market
creates new classes of incidents for which no
regulation, as of writing this paper, defines their
severity and societal acceptability. Consider for
instance Orange’s [17] and Facebook’s [18] recent
IT service outage events. In case of [17], the
prosecutors claim six fatalities have been partly
caused by the failure of about 15,000 emergency
calls during the outage period. Do we know the true
safety impact in Facebook’s case [18]? Let us
assume that during the 6-hour blackout only 1 in
10,000 subscribers needed access to their account
to get some information required by some urgency.
Since there are 2 billion Facebook subscribers, the
IT glitch potentially exposed 200,000 people to
safety-sensitive conditions. How many in the end led
to major, hazardous, or even fatal outcomes? Is
Facebook’s liability engaged?

Digital transformation of society creates new
dependency networks, new responsibility chains
possibly leading to a significant number of incidents
and accidents. Who is in charge of analyzing these
new hazards? What level of development rigor is
appropriate for safety-sensitive IT and IT-OT
services? To our knowledge there is no answer yet,
nor work in progress though definite answers are
needed.

2.3. Cost-killing policies

Figure 2 – Cost-Complexity-Market tension

Emergence of mass-markets of low-cost moderately
critical products or services is new. The association
of low-cost and safety-criticality challenges the
applicability of present assurance standards. They
have ever been elaborated with affordability in mind,
but “no price for safety” was also in the mindset.
Low-cost and “no price for safety” are harder to
conciliate.

Even on traditional safety critical products where
high costs have always been considered as

inevitable and acceptable, value-for-money of
development assurance is challenged, at least in US
aeronautics. It started by 2012 for general aviation
i.e. for 1 to 4-seat aircraft. Regulation and safety
assurance standards5 were drastically alleviated to
reduce assurance costs. Extending this reformation
to transportation aircraft6 was researched from 2015
to 2018, without any enforced outcome. Figure 2 is
notional and suggests what dilemma assurance
faces today: ever more complex systems, not at
ever-higher prices. Safety is due without premium.

Hype projects like autonomous flying cabs are not
necessary to illustrate the risks of downscaling
development assurance. Consider iterative updates
of an old aircraft, with on-purpose successive
applications of a component-wise approach to safety
assessment: “no need to revisit such and such
components or subsystems since they were certified
in the past and are not concerned by the change of
interest”. Consider engine change to reduce fuel
consumption, with some longitudinal instability side-
effect over parts of the flight domain. Consider
compensating the pitch-up effect by a new automatic
trim function. Consider undue schedule and cost
pressure leading to silenced safety issues and
breaches of basic architectural rules and conformity
to assurance standards. These very standards that
have led civilian aviation from 2008 to 2018 to the
best ever safety level of 12.2 fatalities per billion
passengers. Consider Authority delegation used by
the applicant beyond reasonable limits to meet
schedules and reduce development costs.
Outcome? 346 casualties, $20-billion loss for the
aircraft manufacturer; [7] and [19] give a
documented 2016-2020 industrial case that
illustrates where low-cost policies and compromised
safety assessment can head for.

2.4. Unforeseeable operating conditions

We address now a more technical issue with
potential deep impact on assurance principles. All
standards assume that risk analysis is performed at
design-time and has to be complete. Completeness
of top level feared events identification and causal
modelling are twofold needed. First, to prevent from
quantitative underestimation of the risks. Second, to
design the mitigation policies i.e. the monitoring
logics, the degraded modes and the FDIR
mechanisms. Anticipating all the hazardous external
conditions was (nearly) possible for integrated-safety
systems because the foreseeable adverse
conditions were anticipated at design-time, and
primarily managed by humans at operation-time.
Crisis management was outside of the system. If

5 Accepted Means of Compliance, i.e. the best engineering
practices recognized as state of the art by applicants and
Authorities
6 100+ passengers

 Page 4/10

inside as it turns out to become the case now, new
monitors and decision logics that operate at
cognitive level should be demonstrated “complete”.
The members of our group involved in automotive,
drone and defense sectors face this new situation.
They argue that wherever AI-based machine
perception and mission supervision are concerned,
the off-line predetermined reactive approach will no
longer be effective. One needs to resort to on-line
and proactive mechanisms that do not rely on a
predefined classification of situations, with pre-
assessed gravities and pre-defined mitigation
policies. One needs (a lot of) additional embedded
software to manage any unanticipated conditions.

There are no standards to assure dynamic hazard
analysis and on-line mitigation decision-making.
There are no standards to assess such on-line
approaches. This is the reason why in the
automotive domain, in addition to ISO 26262 and
SOTIF, four new standardization committees [12],
[13], [14], [15] have been created this year to
address emergency calls, safety and Artificial
Intelligence, preexisting SW product reuse for safety
related applications, and intelligent transport
systems.

There is an analogous situation for drones in urban
conditions w.r.t. SORA and JARUS [20]. Current
standards ban the urban drone operations that
assurance does not know how to address (e.g.
vision-based urban emergency landing in GPS-
denied conditions).

2.5. Virtualized architectures

There is another dynamicity case with deep impact
on assurance: software-defined architectures. It
started a few decades ago with virtual machines and
operating system emulation. Since 2010 IT-OT
convergence promotes the use of cloud-native
technologies for the embedded (e.g. Pods,
containers, K3S, etc.). It introduces virtualized
computing, networking, and storage into medium
criticality soft real-time information-dominant
systems (e.g. supervision, SCADA).

Service Level Agreement (SLA) and best effort
policy appear besides hard real-time worst-case
policy in mixed-criticality infrastructures. Defense
systems, transportation and energy infrastructures,
as well as industry 4.0, are evolving fast in that
direction. Time-Sensitive Networking (TSN) and
Software Defined Networking (SDN) are enablers.
Past physical segregations are shifting to software-
enforced segregations, which augment
dependencies and couplings.

Software-defined architectures (infrastructure as
program) have been motivated by mass-deployment
of IoT end-points, ad-hoc network wireless
connectivity, and resource load balancing in cloud

data centers (e.g. “green IT”). How to justify safety of
such dynamic architectures? Orchestrators
periodically update their logical to physical
mappings... In some sense, this mapping to physical
resources becomes implicit. From the traditional
safety assessment perspective, a consequence is
that FTA and MBSA7 will have to model
architectures that compute their own structure.

Such self-configuring architectures, akin to self-
organizing systems in biology, support formation
control, a type of distributed control needed for
collaborative mission systems (e.g. swarms, satellite
constellations, platoons of cars or trucks,
collaborative combat systems, etc.). Behavioral
analysis of such systems is quite hard, at the
forefront of research, and beyond present assurance
foundational concepts.

2.6. Cyber-security

A consequence of open-world conditions,
generalized connectivity and software-defined
architectures is the absolute necessity of pervasive
cyber-protection. Zero trust policies are being
enforced and orchestrated with the virtualized
resources (DevSecOps). Behavioural complexity and
assurance costs are highly impacted by these
additional protection functions.

2.7. Ever rising Open Source Software (OSS)

Open source’s role keeps growing in complex
embedded systems and CPS/CPSoS development.
It is a major affordability enabler for these new
complexity classes. Originally, it appeared for
software. The emblematic examples are Unix and
Linux. Linux has now spread in 5G infrastructures
and in IoT (e.g. Yocto). Open Source has also
reached hardware (e.g. ARM, Open Hardware
group, RISC-V, etc.), AI and Big Data analytics (e.g.
TensorFlow, Scikit Learn, PyTorch etc.), system
layers (e.g. K8S, OpenStack, OpenFlow,
OpenvSwitch, etc.), and all domains of digital
engineering.

So what w.r.t. development assurance? Assuring
software or hardware COTS is uneasy. Safety is
context-sensitive; COTS pre-qualification is context-
independent. Assurance is a fault prevention
process at development-time, which by definition
does not apply to pre-existing components. As in-
house development is receding and integration-
based development is becoming dominant, finding
efficient means to assure open source components
is of critical importance. The trend towards smarter
mission supervision (cf. §1, §2.1, §2.4) pushes many
open source tools into embedded applicative layers.
COTS pre-qualification formerly limited to OS, RTOS
and libraries is soaring in all domains.

7 Model-Based Safety Assessment, failure propagation modelling.

 Page 5/10

2.8. AI-enabled functions

There is currently a worldwide effort to define
machine-learning assurance standards. We do not
address this important issue in our paper but we
cannot afford skipping over it silently since it is one
major concern that impacts assurance standards.
Example-based specifications, sampling-dependent
deterministic behaviours, black-box requirement-to-
code, adversarial counterexamples in high
dimensional approximation spaces (video/image
classifiers, audio and natural language processing,
etc.), are but a few of the assurance challenges
posed by this specific engineering domain the
importance of which has been stressed in §1, §2.1,
and §2.4.

2.9. New types of responsibilities

Autonomy and enhanced automation are game
changers for the legal. Scapegoating rationales will
evolve. Assurance requirements are getting higher
for autonomy, as already noticed through the
growing use formal methods. More rigor is called for
unmanned vehicles than for manned ones.

2.10. Wrap-up

Depending on whether you are an optimistic or
pessimistic person, system safety engineering and
assurance are facing a situation that one might
consider as exciting, or panicking.

Figure 3: Soaring of assurance with twofold complexity increase

Except for the most safety-critical sanctuaries (e.g.
nuclear protection control command, airplane flight
control systems, car ABS or ESP, etc.), most of the
safety best practices are being dismissed. Examples
are “keep it small and simple”, “keep it statically
defined”, “keep it closed”, “keep it deterministic”,
“keep it worst-case guaranteed”, “minimize attack
surface”, and last but not least: “no price for safety”.
Breaching conformity to the safety assurance
standards for a product that featured none of the
new complexity factors we have surveyed in this
section led to the major crisis accounted in [7] and
[19]. Caution might be needed when considering

development assurance as an impediment to
financial performance.

3. Some engineering and assurance limits

We proceed in reviewing the factors that put
assurance under stress and motivate its evolution.
Section 2 has addressed the product side; we now
turn to the process side: the weaker engineering
processes, the more compensations by assurance
processes. First, we point to some engineering
capabilities that are missing and that, if available,
would enable lower assurance effort. Then, still on
the process side, we review some assurance
weaknesses that lead also to compensatory
redundancy in assurance activities.

Regulation defines the acceptable risk levels that
condition the definition of assurance goals and
accepted means of compliance. Without regulatory
severity matrices one does not know how to scale
the risk mitigation policies: fault tolerance
architectures and development assurance levels. As
indicated in §2.2 and §2.9, some new domains of
system engineering are facing this situation. This is a
second example of mutual influence between
assurance requirements and engineering practices.

They are mutually dependent indeed. The lower trust
on engineering quality the more compensatory
assurance activities. We now hint at a few technical
issues that would help reducing assurance were
engineering stronger. More information is available
in [33] and [3].

3.1. Some limits of specification and verification
technologies

In this section, we exclude engineering aspects
related to validation (Intent in the Overarching
Properties setting [21]). This choice is by no means
a matter of priority. For space limitation reasons we
concentrate on syntactic engineering (text, model,
program, data). Validity assurance relies mainly on
semantic skills: human knowledge of operational
conditions and “business logic”. We also limit
ourselves to high-criticality developments resorting
to model-based engineering, i.e. to situations where
applying assurance standards is the most expensive
(e.g. DAL A 100% overhead incurred w.r.t no DAL),
requires use of the most advanced engineering
techniques.

3.1.1. Contract-based development

In essence, contract-based development could be
the backbone of correctness assurance, especially
when using assurance-cases [21]. Formal contract-
based development is an industrial reality in
hardware engineering. To a lesser extent it is also an
industrial reality in safety critical software
engineering. At system level however, where one

Operational

Functional

Complexity

CLOSED WORLD

Defined environment

Defined Use Cases

Defined Specifications

Defined Recovery States

Static Architectures

OPEN WORLD

Complex Functions

Complex Architectures

Implementation

Complexity

Multi-Cores

Virtualized Resources

Dynamic Architectures

Distributed Architectures

COTS-dominant Developments

OPEN WORLD

Machine perception

Autonomy

Unforeseable Environment

Classical Architectures

 Page 6/10

needs it as well if not more, it is unfortunately absent
of industrial practice. It is still at (early) research
stage [23].

3.1.2. « Verify-while-develop » methods

We prefer this name to the more familiar “correct-by-
construction”. “verify-while-develop” leaves open the
possibility of flawed specifications. For laypersons,
“correct” implicitly encompasses verification and
validation. B-method, refinement calculus, or
qualified automatic code generators are examples of
correctness preserving refinement. Sensitivity of
assurance costs to engineering quality resides
mainly at specification, implementation, and
verification stages.

Formal refinement would be an advanced way of
ensuring that implementation is derived from and
compliant with the requirements. These two
properties are among the main and most expensive
assurance goals. If model-based formal refinement
were industrially mature, it could be an enabler of
lighter assurance compared to the many
redundancies in compliance verification (e.g.
compliance of EOC with HLR8 in DO-178C DAL A).
Unfortunately, apart from the noticeable B-method
exception, there is no industrial support of
specification, model, and code refinement.
Successive steps of text copy-paste with incremental
additions verified by reviews is the most common
low-tech practice.

3.1.3. Verification coverage analysis

Sufficiency of verification coverage, i.e. IVVQ
termination criteria, is one of the most critical issues
of verification of verification (i.e. assurance on
verification).

For software and hardware engineering, nearly all
standards have chosen structural coverage analysis
as measurement of behavioral space exploration.
These measures enable definition of precise IVVQ
termination criteria. What termination criteria for
system verification? In particular, when the new
high-level cognitive supervision or perception
functions mentioned in §2.1 and §2.4 come into
play?

System engineering stumbles on finding means to
measure exploration of complex behavioral spaces
and to justify exploration sufficiency. This generates
mistrust feelings, which in turn generates costly
“overlays” of compensatory measures at engineering
and assurance levels.

The situation is analogous for qualification of
complex Open Source Software (OSS) components,
and for qualification of sophisticated engineering

8 EOC: Executable Object Code, HLR: High Level Requirements.
Eight assurance goals and corresponding verification activities

contribute the compliance demonstration.

tools. For a COTS for instance, how to justify
sufficiency of behavioral exploration to demonstrate
fit for purpose in the new context?

3.1.4. Synopsis

More powerful engineering would favor reduction of
assurance overhead. Ultimately, this overhead could
reduce to process accountability9, supplemented
with quality oversight focused on appropriateness of
application of powerful methods supported by
qualified tools. Unfortunately, engineering state of
the art is incompatible with such lightweight sufficient
assurance. Alleviation of assurance overhead and
progress of engineering are intermingled as
witnessed in current standards by verification credits.
When development or verification steps are
trustworthy10, some upstream or downstream
redundancies of assurance activities may be
suppressed.

3.2. Assurance limits

Assurance is criticized because too often it boils
down to hundreds of descriptive documents whose
value for money and impact on product quality is
matter of debate. There is some legitimacy in
questioning the cost-benefit ratio of some specific
aspects of development assurance11. We point to
two potential sources of “paper work” pain points.

3.2.1. Reductionism to « error-free» simplicity

Since development-fault detection is possibly
incomplete, the risk mitigation policy is to add fault
prevention assurance activities. Explicit engineering
risk analysis12 should drive the definition of the
assurance activities crafted to mitigate the identified
risks. However, as we have noticed in our group,
standards are not explicitly engineering-risk-based.
They prescribe process constraints supposed to be
solutions to problems that are most often left implicit
(if not silenced).

Part of the engineering risks are addressed by
company-dependent engineering guidelines, not by
assurance standards. Fault prevention is mostly
ensured by engineering rules (e.g. design patterns,
complexity limits, etc.) that are audited but kept
confidential as competitive advantages.

Fault prevention is also ensured by decomposing the
engineering processes into elementary activities that
are simple enough to be verifiably error-free. Error
prevention is enforced by detailed documentation of
these elementary activities (a priori development

9 Quality assurance plans describing the engineering processes
10 A typical example is tool qualification with high TQLs (Tool
Qualification Levels).
11 Up to the limits formulated in §2.3.
12 Some sort of “EHA” for Engineering Hazard Analysis that
would be the counterpart at process-level of FHA (Functional
Hazard Analysis) at product-level.

 Page 7/10

plans), and by verification of work conformity to the
plans (a posteriori audits).

This rationale apportions assurance effort to
engineering effort, complexity and criticality. It is the
main reason for assurance cost blow-up on the new
system complexity classes described in section 2. It
is the origin of our feeling of non-scalability, our
motivation to address the issue of finding
orientations for “radical changes”. Beyond the
incompressible process accountability baseline, we
deem systematic documented work reductionism not
scalable nor safety-value for money. In addition, it
intrinsically does not fit COTS-intensive integration-
based development, which is becoming dominant.

3.2.2. Verification redundancy

Redundancy of activities addressing the same
assurance goal (e.g. compliance of executable
object code with high-level requirements) is rightfully
used to mitigate the risks of partial achievement. The
redundancy degree depends on the Development
Assurance Level (DAL). Do multiple weak
verifications constitute a strong verification? Current
approach of Authorities is dominantly to favor
verification innovations (e.g. formal methods) if they
are added to current redundancy schemes. To
substitute a verification step by another one is much
harder to get consensus on. Most often, it leads to
tool qualification requirements that constitute a
barrier because of the high cost of current tool
qualification methods [16].

4. What to evolve in assurance standards?

Section 2 has addressed a few new system
complexity classes, safety impacts and engineering
challenges that in turn challenge current assurance.
Section 3 has advocated that verification
technologies and core assurance principles are
presently too weak to limit assurance to a scalable
minimum.

Process-based assurance enforces engineering-fault
prevention and engineering-fault detection principles
that we have named reductionism to simplicity and
verification redundancy13. This section proposes a
few orientations to revise these principles. We have
grouped these revision proposals in two subsections:
the former is dedicated to foundational and
disruptive (i.e. “radical”) ones, while the latter sticks
to present principles but looks after revised
balances.

13 We are aware of the exceedingly simplistic character of this
statement, up to inappropriateness regarding the invaluable
benefits of the assurance requirements related to change control
and configuration management.

4.1. Matter of principle

4.1.1. Paper work assurance

We challenge systematic fine-grained detailed paper
work14 as effective fauIt-prevention means for the
technical domains reviewed in section 2. It does not
scale nor fit with the new AI-based applicative layers
and the COTS-dominant virtualized architectures.
Assurance overhead grows more than linearly with
project complexity because oversight activities look
after individual and mutual artefact consistency.
Moreover, on past projects the high costs of baseline
assurance documentation have been occasionally
detrimental to the introduction of new powerful
development technologies.

Excess of documented reductionism does not apply
only to authoring activities (requirements,
specifications, models or codes), it may also apply to
verification, especially to unit testing. There is an
issue about cost-effectiveness and safety-
effectiveness of the assurance goals dedicated to
verification of testing, and more specifically to fine-
grained testing coverage analysis and termination
criteria.

4.1.2. Assurance of foreseeably unforeseeable
conditions

Present safety standards assume feasibility of
“exhaustive” anticipation of the product’s future
adverse operating conditions. They assume
applicability of conservative worst-case mitigation
rationales that shape fault-tolerance design and
safety assessment processes.

Complexity of machine perception, interpretation and
decision-making in open environments (e.g. self-
driving cars, drones, or any type of autonomous
robots) necessitates the introduction of a new risk
mitigation paradigm and associated assurance:
adaptable proactivity at supervision and resource
levels. This paradigm would resort to complex on-
line scenery analysis, to anticipation based on
model-predictive control, and possibly to
collaboration with the environment of the system to
mitigate the identified risk. It would introduce
estimation of potential incident and accident
severities at run-time. It would require on-line
assessment of the available risk mitigation
capabilities, and on-line selection of a mitigation
strategy that possibly would rely on new benefit/risk
logics.

14 We exclude from this point the company-owned guidelines that
are part of assurance documentation (engineering rules and
design best practices). We point to meticulous extensive
descriptions of the engineering activities regarded as fault
prevention means, especially in the specification and
implementation refinement processes.

 Page 8/10

All these aspects are disruptive w.r.t. present safety
standards. Best-effort on-line risk management does
no longer claim feasibility of complete identification
of the failure cases. Introducing such a paradigm
would not be compatible with current risk
quantification methods since they rely on
dysfunctional modeling under completeness
assumption w.r.t. to the set of failure cases15. In
other words, the inverse causality dysfunctional
modelling that we questioned in [33] and [3] would
no longer operate at all with this dynamic approach
because the causal scenarios leading to occurrence
of the feared events would remain implicit, i.e.
estimated at run-time.

In addition, such a dynamic approach would require
onboarding a significant number of engineering
models and tools, with the consequent tool
qualification issues at high TQL16.

4.1.3. Assurance of virtualized architectures

IT-OT convergence influences embedded system
development. IT is used to benefit OT when massive
cyber-secure deployment (DevSecOps), data
analytics (AI, sensor networks), 4G/5G connectivity
or interaction with infrastructures are at stake. IT
optimized availability and scalability KPIs. IT
dismissed peak guarantees in favor of best-effort
policies. This design rationale is incompatible with
OT safety motivated worst-case guarantees. There
is a need for future assured mixed criticality over the
IT-OT continuum. This implies adapting the
assurance goals to mixed guarantee regimes.

4.1.4. Assurance of machine learning

The process is under way (e.g. [22]). AI-ML implies
disruption in assurance for a bunch of reasons. As
an example, statistical estimation of a program
introduces randomly conditioned deterministic
software in a field where predictability, correctness
and development rigor were the only eligible

concepts for assurance [35].

4.1.5. Assurance of continuous change

Continuous Integration and Continuous Deployment
(CICD) is an IT technological trend that is pervading
OT very quickly. Certification today is synonymous of
“frozen configurations”, or low pace evolution. Cost
of ensuring conformity to assurance standards
constrains to sparse releases. Conversely,
cybersecurity, open learning and mass deployment
of IoT updates call for CICD. There is a foundational
assurance issue to investigate there: how to
conciliate high integrity cost-effective assured
deployment with nearly continuous deployment?

15 Minimal cut sets of fault-trees or minimal sequences of Markov
chains, stochastic Petri nets, etc.
16 Tool Qualification Level

4.1.6. High profile assurance

Assurance standards cannot assign goals and
activities that would be intractable because of
shortage of supporting tools and trained
professionals. However, some recent concepts that
have emerged from computer science and control
theory (e.g. contracts, abstraction/refinement,
invariants, influence cones, etc.) would be beneficial
to precise formulation of assurance requirements,
even in absence of mature tooled support. They
could be beneficial as assurance ontologies, as
reference concepts. Some industrial domains (e.g.
aeronautic, space, automotive) have banned means
prescriptiveness in standards, and concept
prescriptiveness altogether17. We have advocated in
§3 the existence of a link between assurance
overhead and engineering strength. Distinguishing
between means and concept prescriptiveness, and
accepting to prescribe concepts fundamental for
writing assurance plans would benefit the perceived
value of assurance and facilitate the introduction in
processes of more advanced development
technologies.

4.1.7. Assurance for the new classes of severities

Section. 2.9 explained why the phygital continuum
may lead to mass incidents or accidents. New
assurance standards must ensure that accountability
and responsibility identification remain feasible for
these new classes of potential mass-damages

4.2. Matter of balance

4.2.1. Manual .vs. Automated

For a long time, man has been the only actor
capable of deciding correctness. Today, most of the
engineering artefacts and associated verifications
are so complex that manual verification is no longer
trustworthy. Suspicion of bugged tools and fear of
flawed mechanized verification are legitimate.
However, most standards tend to be more
suspicious of tool errors than of human errors, even
on activities that are far beyond tractability by man
intellectual power.

Tool qualification is a necessity. However, more
often than not its implementation is so expensive
that tool qualification is abandoned in favor of
manual verification. Overestimated trustworthiness
of man w.r.t. machine is preferred e.g. code review
.vs. abstract interpretation for detection of run-time
errors in source code.

17 The few ones commonly used are accuracy, consistency,
validity, correctness, compliance, structural coverage and
completeness. Glossary definitions of standards are often vague.
50 years of research has come out with many other concepts like
abstraction/refinement, simulation relations, observational
inclusions, observational abstractions, behavioral equivalence,
reachable state space, etc. that would help writing higher quality
assurance standards.

 Page 9/10

It happens more often than not that powerful tools
are not used by applicants, or used but kept hidden
because declaring them in the plans would lead to
excessive assurance complications. Some tuning is
needed to avoid these situations that are
counterproductive for innovation and for safety.

4.2.2. In-house .vs. Out-sourced

As development projects are getting more and more
complex and integrative, specification-based
development is receding w.r.t. integration-based
development. COTS reuse in a new context,
framework instantiation, system and software
product-line engineering are becoming the new
mainstream approaches to development. They
poorly fit with current assurance rationales. They
were conceived for developments in which COTS
reuse was more the exception than the rule.
Adaptation of assurance is needed to go beyond
service history and tool qualification approaches.

5. Conclusion

We have reviewed some trends of system markets
and system safety engineering that we deem will
have mid-term impact on assurance standards: from
automation to autonomy, form specification-based
dominance to integration-based dominance, from
closed-world to open-world, and from static
architectures to dynamic architectures. All these
trends lead to far higher complexity that
mechanically in turn lead to far higher assurance
costs while competition would require to keep them
constant, if not decreasing.

Then we have reviewed some aspects of assurance,
whose cost/benefit ratio are perceived as falling
below threshold. We have suggested some high-
priority issues to address to remedy this situation.
System engineering state of the art has to improve a
lot to enable lightweight assurance. The short-term
view is mere old engineering wisdom: scaling
complexity with mastery.

6. References

[1] A. Benveniste B. Caillaud & al., “Contracts for
System Design” Foundations and Trends in
Electronic Design Automation Now (2018).

[2] Nancy G. Leveson, Engineering a Safer
World: Systems Thinking Applied to Safety
(2011). MIT Press. Leveson, N.G., Thomas,
J.P. STPA Handbook (2018).
https://psas.scripts.mit.edu/home/get_file.php?
name=STPA_handbook.pdf.

[3] Emmanuel Ledinot, CPS Engineering: Gap
Analysis and Perspectives (2021). CoRR
abs/2104.13210.

[4] Gabriel, N., Holz, E. SOTIF and FuSa STPA
for a Highway Pilot Function of a Passenger
Car. European STAMP Workshop and
Conference (ESWC, 2020).

[5] Marc Duranton, Michael Malms, Marcin
Ostasz The continuum of computing, in
HiPEAC Vision 2021 High Performance
Embedded Architecture and Compilation.

[6] EASA Concept Paper : first usable guidance
for level 1 machine learning applications.
Issue 01 April 2021.
https://www.easa_concept_paper_first_usable
_guidance_for_level_1_machine_learning_ap
plications_-_proposed_issue_01_1.pdf

[7] Maria Cantwell, Aviation Safety Whistleblower
Report – US Senate Committee on
Commerce, Science and Transportion.
December 2021.

[8] ERDF, Smart Grids la nécessaire mutation du
réseau électrique, https:
//youtu.be/Qbt7H3S_tlE juillet 2015 (consulté
déc. 2021)

[9] ISO 26262-6: 2018 : Road vehicles —
Functional safety — Part 6: Product
development at the software level.
https://www.iso.org/fr/standard/68388.html

[10] ISO/PAS 21448: 2019 : Road vehicles —
Safety of the intended functionality
https://www.iso.org/fr/standard/70939.html

[11] ISO/AWI TS 4654 Road vehicles — Advanced
Automatic Collision Notification (AACN)
systems — Algorithm and parameters for
injury level prediction
https://www.iso.org/standard/80215.html

[12] ISO/AWI TS 5083: Road vehicles — Safety for
automated driving systems — Design,
verification and validation
https://www.iso.org/standard/81920.html

[13] ISO/AWI PAS 8800: Road Vehicles — Safety
and artificial intelligence https://ww
 w.iso.org/standard/83303.html

[14] SO/AWI PAS 8926 : Road vehicles —
Functional safety — Qualification of pre-
existing software products for safety-related
applications.

https://www.iso.org/standard/83346.html

[15] ISO/TC 204 : Intelligent transport systems.
https://www.iso.org/committee/54706.html

[16] Frédéric Pothon, DO-330/ED-215 Benefits of
the new Tool Qualification, October 2012

[17] La panne des numéros d’urgence causée
par un « bug » logiciel, selon l’enquête
interne d’Orange (lemonde.fr), juin 2021

 Page 10/10

[18] Panne géante : Facebook, Messenger,
Instagram et WhatsApp à l'arrêt pendant
plusieurs heures | LCI, octobre 2021

[19] Final Committee Report – The design,
development & certification of the Boeing
737 Max, September 2020

[20] J. Guerin, K. Delmas, J. Guiochet Certifying
Emergency Landing for Safe Urban UAV
arXiv2104.14928v1 30 avril 2021.

[21] J. Chelini &al. Avionics Certification: Back to
Fundamentals with Overarching Properties.
HAL Id: hal-02156109. 14 juin 2019.

[22] EASA Concept Paper: First usable guidance
for Level 1 machine learning applications.
April 2021

[23] A. Benveniste B. Caillaud & al., Contracts for
System Design Foundations and Trends in
Electronic Design Automation Now (2018).

[24] P. Baufreton, JP. Blanquart, JL. Boulanger,
H. Delseny, JC. Derrien, J. Gassino, G.
Ladier, E. Ledinot, M. Leeman, J. Machrouh,
P. Quéré, B. Ricque, “Multi-domain
comparison of safety standards”, ERTS-
2010, Toulouse, France, May 19-21 2010.

[25] JP. Blanquart, JM. Astruc, P. Baufreton, JL.
Boulanger, H. Delseny, J. Gassino, G.
Ladier, E. Ledinot, M. Leeman, J. Machrouh,
P. Quéré, B. Ricque, “Criticality categories
across safety standards in different
domains”, ERTS-2012, Toulouse, France, 1-
3 February 1-3 2012.

[26] E. Ledinot, J. Gassino, JP. Blanquart(, JL.
Boulanger, P. Quéré, B. Ricque “A cross-
domain comparison of software development
assurance”, ERTS-2012, Toulouse, France,
February 1-3 2012.

[27] J. Machrouh, JP. Blanquart, P. Baufreton,
JL. Boulanger, H. Delseny, J. Gassino, G.
Ladier, E. Ledinot, M. Leeman, JM. Astruc,
P. Quéré, B. Ricque, “Cross domain
comparison of System Assurance”, ERTS-
2012, Toulouse, France, February 1-3 2012.

[28] E. Ledinot, JP. Blanquart, Ph. Baufreton, C.
Comar, J. Gassino, H. Delseny, “Joint use of
static and dynamic software verification
techniques: a cross-domain view in safety
critical system industries”, ERTS-2014,
Toulouse, France, February 5-7 2014.

[29] E. Ledinot, J. Gassino, JP. Blanquart
“Perspectives on Probabilistic Assessment
of Systems and Software”, ERTS-2016,
Toulouse, France, January 27-29 2016.

[30] JP. Blanquart E. Ledinot, J. Gassino,
“Software Safety Assessment and

Probabilities”, DSN 2016, Toulouse, France,
June 28 – July 1 2016.

[31] JP. Blanquart E. Ledinot, J. Gassino,
“Software Safety: A Journey across domains
and safety standards”, ERTS-2018,
Toulouse, France, January 31 – February 2,
2018.

[32] B. Ricque, J.P. Blanquart, J. Gassino, “A
cross-domain comparison of systematic
errors control strategies”, Lambda-Mu-2018,
Reims, France, October 16-18 2018.

[33] E. Ledinot, J.P. Blanquart, J. Gassino;
“Towards Rebalancing Safety Design,
Assessment and Assurance” ERTS-2020,
Toulouse, France, January 29-31 2020. Hal-
02442445f.

[34] “Guidelines for Development of Civil Aircraft
and Systems”, EUROCAE ED-79A and SAE
Aerospace Recommended Practice ARP
4754A, 21/12/2010.

[35] “Guidelines and methods for conducting the
safety assessment process on civil airborne
systems and equipment”, EUROCAE ED135
and SAE Aerospace Recommended
Practice ARP 4761, 12/1996.

[36] Wilkinson C. “Integration of complex digitally
intensive systems” – FAA Streamlining
Assurance Processes Workshop – Dallas,
September 13-15, 2016.

Session Th.5.A

Monitoring

Thursday 2nd June

17:00

–

Amphithéâtre

561

562

Multilayer Monitoring for Real-Time Applications

Etienne Hamelin∗, Mihail Asavoae∗, Selma Azaiez∗, Alexandre Berne∗, Cyril Faure∗, Kods Trabelsi∗
∗Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France (email: firstname.lastname@cea.fr)

Abstract—Validation of timing requirements of multicore, het-
erogenous and distributed systems is difficult problem because of
a large number of situations that introduce temporal variability
and/or interference. A possible solution is to augment the system
with monitors and to rely on runtime monitoring techniques. In
this paper we propose such a runtime monitoring which spans
all the semantics layers of a model-based design, from high-
level specification to executable code. We showcase our runtime
monitoring on a safety-critical application for driving assistance.

I. INTRODUCTION

Runtime monitoring is a lightweight verification technique

for detecting property violations in embedded safety-critical

systems. A typical runtime verification workflow consists of

the definition, the synthesis and the execution of a collection

of monitors which observe concrete executions of the system

and check their conformance with respect to a set of stipulated

properties. The observation aspect requires either a form of

instrumentation (e.g. the code is made available) or external

annotations (e.g. only black-box / COTS components are

provided). The conformance checking aspect usually refers to

property violations, or stated differently, to deviations from

expected correct runtime behaviors. The design and implemen-

tation of a runtime monitoring environment needs to address

these aspects as well as the characteristics of the embedded

safety-critical system under consideration. In the following we

propose a versatile runtime monitoring, which we denote as

multilayer runtime monitoring and which combines high-level

design details with low-level implementation particularities (of

both application and execution platform).

We consider a model-based design (MBD) methodology

for embedded software, adapted to address complex designs

and to respond to complex and precise requirements. A

prime example of such a methodology is based on the syn-

chronous dataflow principle, with well-established workflows

from Lustre/SCADE [8] or Simulink [9]. A MBD exposes

several programming languages: the (just enumerated) high-

level languages, intermediate languages like C and finally, low-

level languages (e.g. assembly or binary code). In this case a

multilayer runtime monitoring mimics the MBD languages,

with monitors being placed at each level and an existing

simulation/execution environment, likewise available. We also

consider a distributed execution platform, which is suitable to

map mixed-critical applications.

This research was partially supported by the ECSEL-JU under the program
ECSEL-Innovation Actions-2018 (ECSEL-IA) for research project CPS4EU
(ID-826276) in the area Cyber-Physical Systems.

In this paper we exemplify our multilayer runtime moni-

toring, driven by the non-functional requirements of a safety-

critical application from the automotive domain. More specif-

ically, in this paper we address timing properties. The MBD

workflow starts with a high-level Polygraph design [11], a

specialized dataflow-like language, which is further compiled

and deployed on a distributed architecture. In this setting, the

design of a multilayer runtime monitoring needs to address

a certain number of challenges, presented in Section II.

Moreover, details of the underlying MBD are in Section III, a

high-level presentation of the multilayer runtime monitoring,

in Section IV and the proposed case study, in Section V.

II. CHALLENGES

One of the main challenges in designing and analyz-

ing safety-critical applications running on complex computa-

tional systems (e.g. heterogeneous, distributed or even virtual-

ized [15]) lies in the computation and communication timing

variability of the application’s components. This variability is

due to various factors, among which we enumerate:

• task-specific behavior:

– data-dependent (e.g. a task may chose a different

behavior mode)

• inter-task interference due to shared software resources:

– operating system-managed resources (e.g. schedul-

ing, peripherals etc.),

– exclusive services (e.g. drivers, communication pro-

tocols stacks, synchronization primitives, etc.)

• inter-task interference due to shared hardware resources:

– shared CPU cores, shared caches etc.,

– shared communication buses, shared peripherals, etc.

Static timing analyzers like aiT [1], or Otawa [5] compute

safe bounds on the worst-case execution time of an application

(i.e. behaviour-related timing variability). Another source of

timing variability is due to interference between tasks; dif-

ferent techniques (e.g. static, statistical etc.) are developed

to compute the necessary bounds on the timing behavior. To

address interferences, static timing analyzers are extended with

specialized shared cache analyses or cache-related preemption

delay analyses.

Static and dynamic analyses are used to accurately capture

the timing variability, whereas online monitoring is how the

system identifies and addresses the deviations from specified/-

validated timing values.

• static analysis is performed on the control-flow graph of

the source or binary code,

1

• dynamic analysis is performed on traces extracted from

concrete executions on the actual architecture, on an

emulated target etc.,

• online monitoring is performed, at runtime, on the em-

bedded target

The list of challenges, while non-exhaustive, is sufficient

to expose the potential complexity arising when the timing

variability is analyzed. One of the objectives of our multilayer

runtime monitoring is to provide the necessary support, in the

form of monitors, at various levels in this system representa-

tion (e.g. from high-level design to hardware).

III. DESCRIPTION OF THE APPROACH

An overview of our approach is presented in Figure 1,

adhering to a MBD workflow for dataflow designs. A use case

defines the application and a dataflow model, in Polygraph,

defines the correct behavior of the system. From the Polygraph

model, through a dataflow compilation, we generate elements

of the source code, in C (i.e. a scheduler) which are then

integrated with other elements of the source code (e.g. user-

written code, libraries, RTOS APIs etc.), and finally compiled

into a binary. When deploying and running such binaries on

target boards, we obtain the execution traces which are then

analysed by a processing engine. The goal is to check their

conformance with respect to the correct timing, as defined in

the high-level specification [17].

Fig. 1: Overview of the design flow

The first required step for analyzing the timing behaviour

of our distributed application is to define accurately what is

a ”correct” behaviour for this application. To this end, we

use the Polygraph model of computation and communication,

presented in [11]. Polygraph is a real-time dataflow paradigm

that extends the multi-rate synchronous dataflow approach.

The Polygraph model defines a complex set of causal rela-

tionships between actor/task firings, message tokens, and time

instants. From a Polygraph model verified as both consistent

and live, we generate elements of source code, which are

linked with other user-provided code files and the instrumen-

tation, and finally compiled into a set of binary firmware.

When running these firmware programs on a heterogeneous

platform made of single- or multicore targets, we monitor and

analyze the execution traces generated from the instrumented

programs.

In a MBD workflow, as in Figure 1, the semantics of

the initial use case is successively transformed. First, the

use case is formalized in the dataflow design (i.e. a high-

level application semantics), then the C code is generated

(i.e. an intermediate-level application semantics) and finally,

it is compiled into the binary (i.e. a low-level application

semantics). In order to preserve accurate traceability between

the C code and the generated binary, the compilation is

usually performed without optimizations. However, a coarser

traceability could be preserved in the presence of compilation

optimizations, so as to relate the high-level events to low-

level functionalities (e.g. at function-level). In this work we

consider compiler optimizations, however, regardless of the

optimized/un-optimized compilation, it remains the fact that

the use case semantics is obfuscated by this chain of transfor-

mations and, at the binary level, the use case characteristics

(structural and functional) are difficult to identify and reason

about. This motivates a runtime monitoring which should

preserve some traceability features of the MBD compilation

chain. Obviously, such a multilayered runtime monitoring

implies the existence of execution environments at each level

in the MBD workflow.

IV. MONITORING SYSTEM

In the following, we briefly present some design decisions

behind our multilayer runtime monitoring. We distinguish

three levels of interest, starting with a dataflow Polygraph

design and ending at the hardware hardware level and we

organize this section as such.

A. Application level monitoring

The timing properties derived from the Polygraph design

are used by the code generator to instantiate a set of software

monitors. Here, we rely on the traceability of dataflow compi-

lation chains. These monitors are inserted into the generated

C code; each monitor is dedicated to observe a specific set of

events, and related causal or temporal properties (as specified

in the dataflow design). Then, these monitors output a trace

of timestamped events for further conformance checking with

respect to an expected behavior. As previously mentioned, the

conformance checking could be of static or statistical nature.

B. Binary level monitoring

In case of safety-critical applications (i.e. requiring safe and

tight timing bounds), timing analysis should be addressed in

worst-case scenarios. There are two types of worst-case timing

analysis: based on static analysis and on measurements. In the

measurement-based approach, the binary is actually executed

on the architecture or in a simulation environment and the

results are interpreted with respect to a set of requirements.

The instrumentation is necessary in this case to ensure that

the collected executions are representative for the input ap-

plication. In the context of runtime execution, and thus, in

the presence of a monitoring system, the measurement-based

2

timing analysis seems to be the obvious choice. The code is

instrumented at meaningful program points (actor job start,

job end, message send/receive) so that runtime observations

are possible whenever the code execution passes these points.

The binary instrumentation could and should be coupled

with the non-intrusive hardware performance monitoring,

which is detailed next.

C. Architecture level monitoring

The software-level runtime monitoring is complemented by

a dedicated hardware infrastructure in the form of a Perfor-

mance Monitoring Unit (PMU), available in most hardware

architectures. The PMU allows recording of architectural and

micro-architecture events for profiling purposes. Most modern

CPU architectures contain a PMU embedded in the silicon,

which provides performance counters (PMCs), a set of per-

formance events to be counted Events such as preemptions,

cache hits/misses could be tracked via the PMU to analyze

the execution time of the system under test [6], [25]. Several

commercial tools like ARM Streamline gator kernel module

and daemon [2] are available to leverage PMUs in order to

provide real-time feedback to engineers and help them to

diagnose bugs or identify bottlenecks in software.

V. CASE-STUDY AND EXPERIMENTATION

We showcase our approach by setting up a practical proto-

type platform, which embeds the monitoring layers described

above into a use-case implemented as a Polygraph design.

In Figure 2, we present our use-case. This application is

representative of the kind of real-time computing loads asso-

ciated with advanced driver assistance systems (ADAS): the

Camera actor generates image frames at a fixed rate e.g. 15

frames per second. These frames are analyzed by two mostly

independent sub-chains. On one hand, lanes are detected on

every frame using classic computer vision algorithms, and

illustrates a time-critical chain. On the other hand Objects

detection is performed using a deep neural network, and

processes only a subsampled set of the input frames, in a

soft real-time way. The Display sink actor serves as visual

output, and additionally checks for deadline misses.

A. Case study implementation

The case study was implemented on a set of two Raspberry

Pi multicore embedded computers, equipped with the Linux

Operating system patched with PREEMPT RT to support real-

time applications, connected over Ethernet.

The RPi model 3B+ has a Broadcom BCM2835, 4-core

ARMv7 processor, with 16KiB private L1 instruction, 16KiB

L1 data cache, a 512KiB shared L2 cache.

Actors communicate through ZeroMQ messages using the

publish/subscribe communication pattern. ZeroMQ [16], avail-

able as both C and Python-compatible, was chosen for its

performance and versatility, supporting equally well inter-

thread, inter-process process and Ethernet-based communica-

tions, independently from actual scheduling-related configu-

ration. In comparison the popular ROS framework, available

in C++ and Python, uses by default a single event queue

for scheduling callbacks in a run-to-completion manner. This

makes configuration and verification of real-time properties

complex (see e.g. [34]).

Below is a simplified view of the implementation for an

actor thread, where the business logic is inserted into a task

and communication structure generated from the Polygraph

model with inline tracing statements. The actor detailed,

Perspective Warp, has a simple Polygraph specification:

one input port, one output port, and no clock constraint, i.e.

firings are triggered by incoming messages.

Listing 1: Example actor code

// actor thread

void * a c t o r p e r s p e c t i v e w a r p (void * a r g) {
// Input channel: create subscriber socket

void * z i n = zmq socket (zc tx , ZMQ SUB) ;
// connect to TCP endpoint

zmq connect (z in , "tcp://...") ;
// subscribe to topic

z m q s e t s o c k o p t (z in , ZMQ SUBSCRIBE , "frame") ;

// Output channel: Create publisher socket

z o u t = zmq socket (zc tx , ZMQ PUB) ;
// bind to inter-process com endpoint

zmq bind (z out , "inproc://persp_warp") ;

// Allocate image memory space

img t * im in = img new (. . .) ;
img t * im out = img new (. . .) ;

// Main loop

while (1) {
t r a c e j o b s t a r t (. . .) ;
// receive (blocking) input message

zmq recv image (z in , im in , . . .) ;
t r a c e t o k e n r e c e i v e d (. . .) ;

// transform front view to bird-eye view

i m g p e r s p e c t i v e w a r p (im in , im out , . . .) ;

// send output message

t r a c e t o k e n s e n d (. . .) ;
zmq send image (z out , im out , . . .) ;
t r a c e j o b e n d (. . .) ;

}
}

1) Test stubs: The ADAS camera is simulated by a Image

source actor, implemented with Python and OpenCV. It peri-

odically sends images (300x200 pixels, RGB format) extracted

from a video file, shown in Figure 3.

The Display actor, implemented in Python, subscribes to

the outputs of both lane and object detection chains, and ad-

ditionally monitors the end-to-end latency of each processing

sub-chain.

2) Lane detection: The image processing pipeline is in-

spired from the many Python implementations of Advanced

Lane Detection published by participants to the popular ”Self

Driving Car” NanoDegree from Udacity, e.g. [27].

These actors represent a hard real-time processing sub-

chain. They are implemented in bare C, as three separate

3

Fig. 2: Use-case dataflow

Fig. 3: Input image

threads. They are run on the isolated cores with high real-

time priority.

The Perspective Warp actor transforms the front view

image into a bird-eye-view image, following a manually-

calibrated perspective transform, as shown in Figure 4a.

The Lane Detection actor then uses a color filter to

extract lane markings, then a boxed histogram search to

identify the most plausible markings (local maxima) for each

lane, shown in Figure 4b.

A 2nd degree polynomial is fitted through the local maxima.

The polynomial is used to extrapolate and draw curved lane

besides the detected markings, shown in Figure 4c.

Finally, the Inverse Perspective actor projects the

lane-marked bird-eye-view into a front view, shown in Fig-

ure 4d.

3) Object detection: The Object detection actor uses

a deep neural network (DNN) to detect objects such as cars,

trucks or motorcycles (see 5. The network used is the SSD

Mobilenet v3, pre-trained on 300x300 color images using the

COCO Small dataset [31]. This network is not trained specif-

ically for ADAS applications, but is however representative

of the type of computational load typical of computer vision

DNNs.

This actor is implemented in Python, and uses the Ten-

sorflow Lite runtime. Due to its intensive CPU and memory

usage, this actor only processes 1 frame per second. This actor

is mapped onto the non-isolated cores.

4) Variability sources: In II, we recalled the most promi-

nent sources of temporal variability in real-time applications.

The following measures are configured so as to reduce vari-

ability to a minimum:

• data-dependent behavior is reduced to a minimum: the

memory allocation is authorized only during setup, and

the execution flow depends on image size but not image

content. Only the Gauss-Jordan matrix inversion used in

the polynomial fit step has non-deterministic execution

flow, however this represent a small fraction of the

execution time (less than 100µs);
• time-critical tasks are scheduled as high-priority real-time

threads

• time-critical tasks are run on isolated CPU cores: the

isolcpu and taskset commands prevent the OS

from scheduling background services on two CPU cores

dedicated to real-time tasks, and consequently ensure

interference-free access to private L1 caches;

• inter-task synchronization is limited to blocking on

message reception, thus enforcing a correct Polygraph

dataflow semantics.

The execution times of the non-critical Object detection sub-

chain on the other hand show much more variability, due to

e.g.:

• data-dependent behavior: due to its black box nature,

we could not inspect to what extent the TFLite runtime

behavior does depend on actual image content. To the

least, we observe a variable execution time, and assume

that some operations depend on e.g. the number of objects

detected.

This task configuration is expected to reduce the risk of

interference between non-critical and critical tasks. However,

the shared L2 cache remains a possible source of interference,

4

(a) Perspective warp (b) Boxed histogram search

(c) Polynomial-fitter lane markings (d) Inverse-perspective warped lane markings

Fig. 4: Lane detection chain: intermediate stages

Fig. 5: Detected objects

since both critical and non-critical task chains process memory

chunks larger than the last-level L2 cache.
5) Monitoring infrastructure: The monitoring infrastructure

is integrated within each Python and C-based actor thread,

using the low-overhead LTTNG-UST infrastructure (Linux

Tracing Toolkig - New Generation, User-Space Tracing). In

our configuration, LTTNG-UST tracing was tested to cost

approximately 5µs per trace point, well below the time gran-

ularity of the monitored events. We monitor all Polygraph

dataflow relevant events, that is: actor job start, job end,

message sent, message received. Using these events, we can

compute the execution times of each actor job.

In addition, the Image Source actor generates a times-

tamp, which is transported together with the image payload

during all processing steps. This enables other actors comput-

ing the input and output latency of each actor (time of arrival

of input data, and time of departure of output data, relative to

original input timestamp).

The real-time, NTP synchronized, clock

CLOCK_REALTIME is used to compare timestamps from

distributed platforms with millisecond-level precision,

whereas the monotonic clock CLOCK_MONOTONIC is used

to compare timestamps inside a given platform, up to

microsecond precision for e.g. actor execution times.

The event trace generated by this monitoring infrastructure,

showed in Figure 6 allows to analyze the evolution in time

of execution times of critical actor jobs (in µs; top section).

In particular, the execution time of critical actors is relatively

stable (standard deviation is below 2% of the average). The

input/output latency is computed at each actor job (in ms;
middle section).

In the PMU trace (lower section), we see hardware-level

metrics for the Perspective warp actor. In particular,

from PMU monitored metrics we compute the instruction per

cycle ratio (IPC), and miss rate at private (L1) as well as shared

(last level) cache. In our application, a significant variability

of the miss rate at shared cache LL (stddev ≈ 12% · avg)

is probably caused by interference from the non-critical,

memory-intensive, Object detection actor. This variable

LL miss rate would cause a variable access time for data

outside L1 cache, and variable instruction per cycle (IPC).

However since most data reads only hit the L1 cache (miss

rate < 1%), the effect of LL cache interference is not much

visible on actor execution time or the IPC metric in this run.

B. Static WCET Analysis

In order to better establish correlations between the monitor-

ing infrastructure and the architecture timing, we have consid-

ered a cycle-accurate, WCET analysis for the Perspective

Warp actor. More precisely, we consider a reference imple-

mentation of this actor which is then evaluated with Otawa

static timing analyzer [5] for ARM processors. Whereas spe-

cialized analyses are necessary to address shared caches or the

possibility to accommodate the preemption, Otawa proposes

single-core, non-preemptive analysis, hence we only directly

analyze L1 cache effects. Let us elaborate next on these two

aspects of the experimentation.

5

Fig. 6: Execution trace analysis

The reference implementation of the Perspective

Warp actor is characterized by the following elements. First,

the input image, as shown in Figure 3 is of fixed size (i.e.

300x200 pixels) and the output image, as shown in Figure 4a

is also of fixed side (i.e. 200x133 pixels). We note that both

image sizes are modifiable, but we fix them as a referenced

input-output, as we have previously stated. Second, the code

is organized in three stages: memory allocation of all the

manipulated images, followed by a perspective transformation

algorithm (through a resolution of a system of linear equations)

and finally, the generation of the resulted imaged. We note

that our contribution (wrt. the monitoring infrastructure) is

to observe the timing contribution of the memory accesses.

Third, the code is stripped of auxiliary functionalities, namely

calls to the ZMQ library and other tracing operations. Finally,

we also addressed a highly-optimized version (-O3) of this

code (as used in all the other tests). From the architecture

point of view, we analyze with Otawa single-core timing, using

cache analyses for L1 caches (and without considering the L2

shared cache). As such, the resulting code presents its core

functionality which is then evaluated with the static timing

analyzer in order to obtain a timing bound in the absence of

other interferences (i.e. from ObjectDetection and Linux

background services).

The Otawa timing analyzer is also highly configurable,

featuring, on the architecture side, an infrastructure for ARM,

RISC-V or PPC architectures (to name a few) and on the anal-

ysis side, a wide range of abstractions to compute flow-facts

from both the input program and the underlying architecture

(e.g. standard cache may- and must- analyses). Also, Otawa

proposes an advanced scripting to facilitate the extraction of

loop addresses, in order to introduce loop bounds. We note that

Otawa is accompanied by oRange [10] tool to compute these

loop bounds, however, due to the fact that our code contains

only for-loops, it is not necessary to consider oRange for

these bounds. In our experimentation with the Perspective

Warp actor, we consider the ARM architecture of Otawa with

a simple pipeline and instruction and data caches, for which

the aforementioned analyses are selected. In this setting, Otawa

returns slighly more than 12 million cycles for each image

processed, for a code which is dominated by memory accesses

(i.e. 55% instructions). This estimate is roughly three times the

cycle count measured by runtime monitoring.

The Otawa analyzer only considers a 1 level cache, whereas

our target features 2 cache levels; for this reason we cannot

expect Otawa to provide an accurate figure. However since the

L1 miss rate is low (Fig. 6, consistent with Otawa analysis), the

effect of 2nd level cache cannot explain the large difference.

This discrepancy needs to be further investigated.

While these results are used as a baseline WCET behavior

for Perspective Warp, similar investigations could be

performed for the other time-critical actors of our case study.

6

VI. RELATED WORK

Model-based design (MBD) approaches for real-time sys-

tems consider as, for the high-level application, a design

developed using synchronous languages like Lustre [13]. For

this particular language (as for others in the same family), a

notion of observer could be defined [14] to address design

properties. More precisely, an observer, according to [14] is

another program which observers the behavior of the original

application (in Lustre) and determines eventual deviations

from stipulated correct behaviors. In other words, an observer

is a monitor for the high-level application and a high-level

Polygraph design, as in our work, could also support such an

approach.

The Polygraph formal model is also used by Alkalee, a

spin-off of CEA LIST, as the base of their modeling tool

Euphilia [32]. Alkalee moreover provides the Receef runtime

environment [33], which can supervise actors’ communication

events according to the input system model. The Receef mon-

itors can additionally trigger various containment strategies

for communication faults, e.g. when an expected data sample

is not received on time. To the best of our knowledge, the

Receef monitoring infrastructure does not cover, nor interface

to, low-level architectural observation points such as hardware

performance counters.

In the context of the low-level application and the under-

lying execution platform (wrt. the same MBD workflow), a

typical monitoring systems relies on hardware performance

counters (HPCs) to observe the behavior of the system under

analysis. As such, HPCs are used to address security prop-

erties, e.g. in [7], safety properties, e.g. in [20] and non-

functional requirements, e.g. energy [18] and timing [22]. The

key aspects in using HPCs to cover a wide range of properties

are that modern processors support them and also that their

overhead wrt. the runtime analysis is minimal. We also con-

sider HPCs in our current work for the same reasons, however,

we also aim to correlate the results of their measurements with

different observation methods (i.e. at different semantics levels

in the system design). Such correlations define our framework

of multilayer monitoring for mixed-criticality systems.

The worst-case timing analysis is necessary to ensure that

critical tasks in mixed-criticality systems are able to meet their

timing deadlines. There are two types of timing analysis -

using static-based [30] and measurement-based [29] methods.

Our multilayer monitoring framework draws inspiration from

both, as follows. The static timing analysis, when applied to

MBD workflows (i.e. a survey of methods and techniques is

presented in [4]) considers the application to be represented

and analyzed at each level [19] and aims to establish trace-

ability properties between these levels. In the same way, our

approach aims to exploit the traceability towards increasing

the confidence between the observed timing behavior at the

various levels. The measurement-based timing analysis uses

the HPCs to estimate timing bounds of critical tasks, having

problems of compositionality [21]. Another way of performing

measurement-based timing analysis is by code instrumentation

followed by the application of statistical and/or probabilistic

methods on the collected results [3]. In the same way, our

approach considers the HPCs, but with a broader goal, that of

establishing (composable) connections with different levels in

a MBD workflow.

VII. CONCLUSION

We explained in this document how we used a MBD

methodology to define a monitoring system for a distributed

execution platform in order to validate their temporal be-

haviour during their execution. Using a high-level dataflow

language, i.e. Polygraph, the correct temporal behavior is

specified. From these specifications, source code is generated

or written to embed software monitors. These monitors are

compiled into the application, and inserted into the application

execution flow, and track dataflow-relevant events. At the

binary level, two types of worst-case timing analysis are

considered. For the first one, static analyses are performed on

the control flow graph as a high level abstraction of the binary

code. The second one a measurement-based approach where

the binary is actually executed on the architecture and the

results are interpreted with respect to these measurements. Fi-

nally, at the architecture level, execution is profiled using tools

such as Performance Monitoring Unit (PMU). We have shown

that these various monitoring layers provide complementary

data, especially useful to modelling the actual execution time

in presence of inter-task interference.

REFERENCES

[1] https://www.absint.com/ait/index.htm
[2] https://github.com/ARM-software/gator
[3] https://www.rapitasystems.com
[4] Mihail Asavoae and Claire Maiza and Pascal Raymond, ”Program

Semantics in Model-Based WCET Analysis: A State of the Art Perspec-
tive”, In 13th International Workshop on Worst-Case Execution Time
Analysis (WCET), pp. 32–41, 2013.

[5] Ballabriga C., Cassé H., Rochange C., Sainrat P. (2010) OTAWA: An
Open Toolbox for Adaptive WCET Analysis. In: Min S.L., Pettit R.,
Puschner P., Ungerer T. (eds) Software Technologies for Embedded and
Ubiquitous Systems. SEUS 2010. Lecture Notes in Computer Science,
vol 6399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-
642-16256-5 6

[6] W. L. Bircher and L. K. John, ”Complete System Power Estimation Us-
ing Processor Performance Events,” in IEEE Transactions on Computers,
vol. 61, no. 4, pp. 563-577, April 2012, doi: 10.1109/TC.2011.47.

[7] Malcolm Bourdon and Eric Alata and Mohamed Kaaniche and Vincent
Migliore and Vincent Nicomette and Youssef Laarouchi, ”Anomaly
detection using hardware performance counters on a large scale deploy-
ment”, In ERTS 2020.

[8] J.-L. Colaço, B. Pagano and M. Pouzet, ”SCADE6: A Formal Language
for Embedded Critical Software Development”, in 11th International
Symposium on Theoretical Aspects of Software Engineering (TASE),
pp 1-11, 2017

[9] J. Dabney, T. Harman, ”Mastering Simulink”, Pearson Ed, 2004
[10] Marianne De Michiel and Armelle Bonenfant and Hugues Cassé and

Pascal Sainrat, ”Static Loop Bound Analysis of C Programs Based on
Flow Analysis and Abstract Interpretation”, The Fourteenth IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), pp 161–166, 2008

[11] Dubrulle P., Gaston C., Kosmatov N., Lapitre A., Louise S. (2019) A
Data Flow Model with Frequency Arithmetic. In: Hähnle R., van der
Aalst W. (eds) Fundamental Approaches to Software Engineering. FASE
2019. Lecture Notes in Computer Science, vol 11424. Springer, Cham.
https://doi.org/10.1007/978-3-030-16722-6 22

7

[12] Francalanza, A., Pérez, J.A. and Sánchez, C., 2018. Runtime verification
for decentralised and distributed systems. Lectures on Runtime Verifi-
cation, pp.176-210.

[13] Nicolas Halbwachs, ”A synchronous language at work: the story of
Lustre”, International Conference on Formal Methods and Models for
Co-Design, MEMOCODE, pp.3–11, 2005.

[14] Nicolas Halbwachs and Fabienne Lagnier and Pascal Raymond, ”Syn-
chronous Observers and the Verification of Reactive Systems”, in
Algebraic Methodology and Software Technology (AMAST), pp. 83–96,
1993

[15] Hamelin, Etienne and Ait Hmid, M and Naji, Amine and Mouafo-
Tchinda, Yves, ”Selection and evaluation of an embedded hypervisor:
Application to an automotive platform”, European Congress of Embed-
ded Real Time Software and Systems, 2020

[16] P. Hintjens, ”ZeroMQ: Messaging for Many Applications”, O’Reilly
Media, 2013

[17] R. Kirner, R. Lang, G. Freiberger and P. Puschner, ”Fully Automatic
Worst-Case Execution Time Analysis for Matlab/Simulink Models”, in
14th Euromicro Conference on Real-Time Systems (ECRTS), pp 31-40,
2002

[18] Ghislain Landry and Tsafack Chetsa and Laurent Lefevre and Jean-
Marc Pierson and Patricia Stolf and Georges Da Costa, ”Exploiting
performance counters to predict and improve energy performance of
HPC systems”, in Future Gener. Comput. Syst, pp. 287–298, 2014.

[19] Claire Maiza and Pascal Raymond and Catherine Parent-Vigouroux and
Armelle Bonenfant and Fabienne Carrier and Hugues Cassé and Philippe
Cuenot and Denis Claraz and Nicolas Halbwachs and Erwan Jahier
and Hanbing Li and Marianne De Michiel and Vincent Mussot and
Isabelle Puaut and Christine Rochange and Erven Rohou and Jordy Ruiz
and Pascal Sotin and Wei-Tsun Sun, ”The W-SEPT Project: Towards
Semantic-Aware WCET Estimation”, In 17th International Workshop
on Worst-Case Execution Time Analysis (WCET), pp. 9:1–9:13, 2017.

[20] Corey Malone and Mohamed Zahran and Ramesh Karri, ”Are hardware
performance counters a cost effective way for integrity checking of
programs”, In Workshop on Scalable trusted computing, STC@CCS,
pp. 71–76, 2011

[21] Cristian Maxim and Adriana Gogonel and Irina Mariuca Asavoae
and Mihail Asavoae and Liliana Cucu-Grosjean, ”Reproducibility
and representativity: mandatory properties for the compositionality of
measurement-based WCET estimation approaches”, In SIGBED Rev.,
pp. 24–31, 2017.

[22] Jan Nowotsch and Michael Paulitsch and Arne Henrichsen and Werner
Pongratz and Andreas Schacht, ”Monitoring and WCET analysis in
COTS multi-core-SoC-based mixed-criticality systems”, In Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE) pp. 1–5,
2014

[23] Navabpour S., Bonakdarpour B., Fischmeister S. (2015) Time-Triggered
Runtime Verification of Component-Based Multi-core Systems. In:
Bartocci E., Majumdar R. (eds) Runtime Verification. Lecture Notes
in Computer Science, vol 9333. Springer, Cham.

[24] Reinbacher T., Függer M., Brauer J. (2013) Real-Time Runtime Verifi-
cation on Chip. In: Qadeer S., Tasiran S. (eds) Runtime Verification. RV
2012. Lecture Notes in Computer Science, vol 7687. Springer, Berlin,
Heidelberg.

[25] R. Rodrigues, A. Annamalai, I. Koren and S. Kundu, ”A Study on the
Use of Performance Counters to Estimate Power in Microprocessors,”
in IEEE Transactions on Circuits and Systems II: Express Briefs, vol.
60, no. 12, pp. 882-886, Dec. 2013, doi: 10.1109/TCSII.2013.2285966.

[26] Norman Scaife and Christos Sofronis and Paul Caspi and Stavros
Tripakis and Florence Maraninchi, ”Defining and translating a ”safe”
subset of Simulink/Stateflow into Lustre”, In EMSOFT, pp.259–268,
2004

[27] Siddharth Sharma, Advanced Lane Lines Detection,
https://github.com/sidroopdaska/SelfDrivingCar/

[28] Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka,
S.A. and Zadok, E., 2011, September. Runtime verification with state
estimation. In International conference on runtime verification (pp. 193-
207). Springer, Berlin, Heidelberg.

[29] Ingomar Wenzel and Raimund Kirner and Bernhard Rieder and Peter
P. Puschner, ”Measurement-Based Timing Analysis”, In Leveraging
Applications of Formal Methods, Verification and Validation, Third
International Symposium, (ISoLA), pp. 430–444, 2008.

[30] Reinhard Wilhelm and Sebastian Altmeyer and Claire Burguière and
Daniel Grund and Jörg Herter and Jan Reineke and Björn Wachter

and Stephan Wilhelm, ”Static Timing Analysis for Hard Real-Time
Systems”, In Verification, Model Checking, and Abstract Interpretation,
11th International Conference, (VMCAI), pp. 3–22, 2010.

[31] Hongkun Yu and Chen Chen and Xianzhi Du and Yeqing Li and
Abdullah Rashwan and Le Hou and Pengchong Jin and Fan Yang and
Frederick Liu and Jaeyoun Kim and Jing Li, TensorFlow Model Garden,
https://github.com/tensorflow/models, 2020

[32] Euphilia, the systems modeling tool, ALKALEE,
https://www.alkalee.fr/products/euphilia/

[33] Receef, the embedded features orchestration software, ALKALEE,
https://www.alkalee.fr/products/receef/

[34] Daniel Casini and Tobias Blaß and Ingo Lütkebohle and Björn B.
Brandenburg, Response-Time Analysis of ROS 2 Processing Chains
Under Reservation-Based Scheduling, ECRTS, 2019

8

SAFETY & SECURITY MONITORING CONVERGENCE

AT THE DAWN OF OPEN HARDWARE

Sylvain Girbal, Jimmy Le Rhun, Daniel Gracia Pérez, David Faura
Thales Research & Technology, Palaiseau, France

{sylvain.girbal, jimmy.lerhun, daniel.gracia-perez, david.faura}@thalesgroup.com

Abstract—The emergence of multi-core processors into the
embedded world one decade ago led to the IT/OT convergence.
In the last few years, a second convergence is ongoing in the
domains of safety-critical and security-critical systems. Nowadays
both safety protection systems and security protection systems are
relying on monitoring to ensure the expected critical software
behaviour. However, all these systems incur a performance
overhead to fulfill the service, that could be an issue with time-
critical systems.

The safety monitoring process that was mostly involved at
design time, focusing both on the software and the hardware to
ensure hard real-time behaviour and propose some mitigation
to faults and errors, is now also targeting the integration and
deployment phases with adaptive runtime engines to deal with
the timing interference issue of multi-core architectures.

The security monitoring process that was mostly used to focus
on protecting against software vulnerabilities at runtime now has
to consider unreliable hardware that some cyberthreats such as
Spectre and Meltdown are able to exploit.

This paper proposes a short survey of existing Heath & Usage
Monitoring Systems (HUMS) and Hardware Intrusion Detection
Systems (HIDS) in safety-critical and security-critical systems,
and their associated monitoring features.

We then promote the benefits of communalizing these moni-
toring features to reduce the performance impact of HUMS and
HIDS systems. In this context, open hardware architectures are
a major opportunity, allowing us to analyze the hardware design
without black box, to seek formal proof of critical properties,
to implement mechanisms for improved predictability, and to
enhance hardware-level observability.

I. INTRODUCTION

During the last decades, we observed successive conver-
gences of computing systems. It started 20 years ago with the
convergence between high-performance computing (HPC) that
focused on power efficiency, and the mobile market that was
seeking for more performance and functionalities, both were
dealing with the challenge of controlling the balance between
low power and high performance.

A decade ago, thanks to the multi-core processors, a second
convergence [35, 47, 37] started between the mission critical
market (such as avionics, automotive, healthcare and robotics)
and the mainstream consumer electronics market, also known
as the IT/OT convergence (for Information Technology and
Operative Technology). This convergence was fueled by the
increasing requirements of the mission-critical market for com-
puting performance, as well as the growing need of embedding

more critical functionalities in the mobile devices, that started
to be connected to cars or healthcare systems.

During the past years, dealing with both safety and security
has become a prime requirement for embedded cyber-physical
systems [65] leading to a third convergence. However, the
practice is different for safety and security.

The paper is organized as follows: Section I-A and Section
I-B respectively present the safety- and the security-related
practices during the system development life-cycle. Section
II presents the impact of the introduction of multi-core ar-
chitecture on these practices, and the common safety and
security trends with regard to monitoring. Section III provides
a survey of existing HUMS and HIDS systems focusing on
their monitoring features. Finally, Section IV presents our view
on the future of monitoring techniques promoting the commu-
nalization of monitoring techniques to reduce the performance
costs.

Fig. 1. Safety & Security trends with regards to monitoring

A. Safety Practices

Figure 1 present the usual V-shaped system development
life-cycle, and how safety and security integrates into this
scheme. Regulation standards [44, 45, 71] led the safety
critical industry to focus mainly on the design phases to ensure
reliability and availability by design [39], both at the software
[72] and the hardware [73] levels.

Safety critical applications are also usually characterized by
stringent real-time constraints, which are usually guaranteed
by determining the application Worst Case Execution Time
(WCET). This WCET computation usually relies on analysis
tools based on static program analysis tools [90, 70], detailed
hardware model, as well as measurement techniques through
execution or simulation [38] to provide an estimated upper

bound of the execution time, introducing some safety margins
as depicted in Figure 2.

execution time

d
is
tr
ib
u
ti
o
n

measured WCET

exact WCET

estimated WCET

safety margin

over margin

Fig. 2. Estimation of the Worst-Case Execution Time, and the over-estimation
problem

The current best practices include the use of many statically
defined mechanisms, such as static scheduling of periodic
tasks, static memory allocation and mapping, as a way to
improve the ability to demonstrate a deterministic behaviour
of the system.

The introduction of multi-core architecture to safety-critical
systems as presented in Section II was shown to have a
significant negative impact on worst-case performance [11,
66], while enhancing average performance. The current trend
to deal with this problem is to add safety nets that involve both
the integration and the operational phases.

B. Security Practices

In computing systems (hardware plus software), security
has typically been provided as specialized software executed
on top of them during operation, to overcome their weaknesses,
especially software vulnerabilities and intrusion detection sys-
tems [10].

For example at the device level host intrusion detec-
tion/protection systems (HIDS/HIPS) are used as security
software applications running on the device itself, while at the
network level the network intrusion detection/protection sys-
tems (NIDS/NIPS) are used to protect the computing systems
from malicious communications.

Furthermore, external observation is nowadays not enough,
requiring the integration of security solutions to be integrated
at the application level or underlying layers, like operating
system and even hardware. Examples are control flow integrity
(CFI) [78] solutions that integrate program flow supervision to
detect the unexpected exploitation of software by attackers.

A raising trend is the exploitation of hardware vulnerabil-
ities of computing systems. Exploits such as Spectre [53] and
Meltdown [58] have demonstrated that attackers can exploit
vulnerabilities at hardware level. While software security solu-
tions at different levels (compiler, operating system, firmware,
etc.) have partially mitigated these vulnerabilities with some
performance costs, they can only be fully and efficiently
addressed at hardware level. However, the design of security
solutions at hardware level is not a simple feature, and must
be implemented with care to avoid introducing additional
vulnerabilities [36, 56, 27].

II. IMPACT OF MULTI-CORE ARCHITECTURE ON SAFE

& SECURE SYSTEMS

The recent shift from single-core COTS (component off-
the-shelf) to multi-core COTS processors for safety-critical
and security-critical products was appealing both in terms of
average performance and in terms of size, weight and power
(SWaP) [8], actually fitting with the exponential growth in
performance requirements in the embedded domain.

However, multi-core processor architectures are introduc-
ing both new sources of time variations, and new vulnerabili-
ties: multi-core architectures are characterized by the fact that
they are embedding shared hardware resource between the
cores, as depicted in Figure 3.

core L1
cache

core L1
cache

core L1
cache

core L1
cache

L
2
sh
ar
ed

ca
ch

e
L
2
sh
ar
ed

ca
ch

e

in
te
rc
o
n
n
ec
t

DDR
Memory

I/O

x

x

x

Fig. 3. Shared hardware resources & timing interference

In this figure, each core is associated with a different color,
private resources (such as L1 caches) are colored with the
same color as their cores, and shared hardware resources
are represented with a shade of the involved core colors (such
as L2 caches, the interconnect and the main memory).

On a multi-core COTS processor, different pieces of soft-
ware will be executed on different cores at the same time.
Such different software will compete electronically to use these
shared hardware resources, eventually involving hardware ar-
biters to deal with concurrent accesses, and introducing inter-
task or inter-application delay and jitter, defined as timing
interference [31].

The lack of precise documentation coupled with the black-
box aspects of these hardware arbiters impact the WCET
analysis tools, that have difficulties to deal with real industrial
programs running on multi-core COTS architectures [52, 64],
while resource over-provisioning is no longer an option. The
industry is therefore facing a trade-off between performance
and predictability [90].

The literature [32] proposes several Deterministic Platform
Solutions to tackle this problem, including control solutions
aiming at completely preventing such timing interference and
regulation solutions reducing the amount of interference below
a harmful level. However, all these techniques have to circum-
vent the black-box aspect of the COTS architecture, at the cost
of decreased performance.

On the security side, shared hardware resources are also
a source of vulnerabilities against the confidentiality and the
integrity properties, as the other cores have an opportunity to
access or alter private data of co-running applications.

Multi-core processors have also impacted the security
of the devices. The addition of new shared resources (e.g.
bus, interconnect, L3 shared caches) or new mechanisms
(or variations of existing ones) to operate in a multi-core
configuration (e.g. cache coherence protocol) have introduced
new attack possibilities. For example, the shared bus has
been exploited to perform timing covert channels [92], the
introduced cache coherence protocols have been exploited in
Meltdown and Spectre variations [85] or to perform covert
channel attacks [62], and dynamic frequency scaling of the
different cores used to perform covert channel attacks [3].

Those examples are mainly from the IT domain, but are
equally applicable to modern embedded systems with high
connectivity (e.g. edge- and fog-computing), using equally
complex computer architectures [88] and speculative processor
cores with similar vulnerabilities (e.g. ARM v8 cores subject
to Spectre attacks [7]).

Like for safety, the lack of precise documentation of those
new resources and mechanisms, or their unexpected usage (as
frequent in security exploits) make the defense against these
attacks difficult to anticipate, endangering the confidentiality
and integrity of the system and running applications.

A. Trends in Safe & Secure Systems

The introduction of multi-core architecture in safe or
secure systems already led to a couple of common solutions
like memory-space partitioning [71, 82], allowing to integrate
several applications with different safety/security requirements
in the same platform. In such a scheme, the operating system
and some hardware components (MMU, TLB) are responsible
for providing each software partition with its own protected
memory space, actually ensuring data segregation.

Multi-cores also led to some converging trends between
safety and security practice appearing in Figure 1. The timing
interference problem on time-critical systems for instance has
led to a set of control-based or regulation-based solutions [32]
that involves the integration phase or even the operational
phase with dedicated run-time engines. Health usage monitor-
ing systems (HUMS) [63] are also targeting this operational
life-cycle.

Being secure-by-design [60] has become an hot topic for
security-critical systems with a particular focus on the design
phases of the V-shaped model with approaches dedicated to
security. Also, the hardware should rather not be considered
as reliable anymore, but as a potential source for side-channel
attacks instead [62].

A common trend for both safety and security critical
systems is therefore to focus on all phases of the life-cycle
from conception to operation. Also, all these new practices
rely at different degrees on the ability to monitor the system.

III. CURRENT MONITORING IN SAFE & SECURE

SYSTEMS

This section provides a survey of emerging monitoring
techniques for safe & secure systems. Each subsection empha-
sizes a specific technique as well as the associated application
domain, and how it is integrated relatively to domain-specific
safety/security requirements.

A. Control Flow Integrity (CFI)

A classic security vulnerability consists in exploiting buffer
overflow bugs to alter the program stack and perform code-
reuse attacks [83, 42] executing malicious operations. Return
Oriented Programming [80] exploits this weakness by altering
the return address stored in the stack, hijacking the control flow
when the function returns. Jump Oriented Programming [12,
16] later extended this threat to register corruption of direct
branch targets.

Control Flow Integrity (CFI) [1, 78, 13] is a well known se-
curity approach to detects control flow hijacking, as deviation
from the expected application control flow.

At compilation time, a Control Flow Graph (CFG) is gen-
erated. Each node corresponds to an uninterruptible instruction
sequence (also called basic block) without any branch or return
instruction. Forward edges correspond to jumps and function
calls while backward edges correspond to return statements.

At runtime, to prevent control flow hijacking, we have
to ensure that all jumps and all returns correspond to a
legitimate edge of the CFG. However, it usually involves some
code instrumentation and therefore both code intrusiveness and
performance cost penalties.

1) System call instrumentation: In [49], Kadar et al.
propose the less costly alternative of instrumenting/monitoring
the system calls rather than the branches and returns, unex-
pected system call succession being also a sign of malicious
code execution. They proposed a methodology to evaluate the
system call instrumentation of the PikeOS real-time hypervisor
in terms of performance overhead.

If they were able to keep the per system-call tracing over-
head quite low with a maximum overhead of 700ns each, the
high variability in number of system calls between applications
as well as the critical impact of the number of context switches
both made the global overhead quite complex to determine, and
to be very application dependent.

Furthermore, detecting unexpected syscall succession
would require to previously learn this expected succession.
Applying machine learning techniques to this looks promising
but will lack the certificability of being able to build an exact
CFG at compile-time as required by CFI.

2) Hardware-assisted CFI: Another alternative to reduce
the CFI performance overhead is to rely on the hardware rather
than the software to perform branch trace collection. In [54],
Kuzhiyelil and al. exploit the CoreSight hardware core coupled
with hypervisor partitioning to transparently perform control
flow tracing.

The CoreSight is a hardware component in ARM-v8 sys-
tems performing real-time tracing and debugging of appli-
cations. It embeds private trace FIFO queues and dedicated
data paths ensuring an interference-less gathering of debugging
information. Among the collectible information, the CoreSight
is able to collect taken branches, thus actively monitoring the
application control flow.

As depicted in Figure 4(a), a first step at compile time
consists in generating the control flow graph in addition to
a non-instrumented binary. During runtime, as shown in 4(b),

application
sources

compiler

control
flow graph
(app.cfg)

elf
binary

(app.elf)

Monitored
Application
(app.elf)

app.cfg app.elf

CFI Checking

CFG path
reconstruction

Trace Collection

se
p
ar
a
ti
o
n
ke
rn
el

application
partition

CFI monitor
partition

Hardware

report

CoreSight trace

(a) compile time (b) runtime monitoring

Fig. 4. Transparent control flow integrity as defined in [54]

the trace of taken branches and returns is collected through the
CoreSight debug core to reconstruct the path followed in the
CFG and check and report for unexpected jumps to malicious
code sections.

This notion is then extended in [48] with a particular
focus on mixed-critical and safety-critical systems running
both critical and non-critical software. The later usually offers
a larger attack surface and fewer guarantees. A particular focus
in these systems is to ensure freedom from interference as
required by the safety standards standards [45, 44, 72] to
prevent an attack on the non-critical software from impacting
the critical software.

From the security point of view, such methods show
excellent detection results both in terms of false positive and
false negative rates. However the performance overhead of
CFI can be significant, even with a partitioned RTOS. In
[54], the authors measured a worst case overhead of up to
55% for branch-heavy applications. In [48], the compromize
between overhead and coverage of the detection system can
be configured by the monitoring partition. Setting an overhead
of 10% was shown to be sufficient to correctly classify 99%
of the samples.

B. HIDS for Avionics

Safety has for long being a prime concern in avionics,
however next generation aircraft systems aim at providing
more and more connectivity and services to the passengers.
From the security point of view, however, it continuously
increases the attack surface [69]. In such a context is critical
to protect aircraft software from malicious modifications of
the onboard applications, and airworthiness regulations have
evolved to that extent [74, 75].

The industrial process associated with avionic applications
currently involve several segregated actors. The software com-
ponents are developed by different solution providers working
under computing resource budget constraints from the platform
provider. Later these solutions are put together to build an
avionic system by the integrator. Ideally, if the budget con-
straints are respected the integration should be seamless.

Protecting the aircraft software therefore involves pro-
tecting third party blackbox software components where the
sources may not be available, with no possibility to add source
code instrumentation or analysis as required for CFI.

Host Intrusion Detection Systems (HIDS) and anomaly
detection [19, 41] have been introduced in a IT context as

a way to detect such malicious modification threats, and they
are now widely used for the security of information systems
as a mechanism to detect abnormal or suspicious activities.

Introducing HIDS to existing safety-critical avionics prod-
ucts requires to take additional domain-based constraints,
such as preserving the real-time constraints and the freedom
of interference between components from different solution
providers; keeping the footprint small, both in terms of mem-
ory footprint and resource requirement; provide explainable
and reproducible results; being efficient even on blackbox
components.

In [22], Damien and al. especially study how to bring HIDS
to Integrated Modular Avionics (IMA) systems, considering
above-mentioned specific avionics requirements. The author
proposes to observe the ARINC 653 API calls performed as
a model to the normal or altered behaviour of the application.
This could be performed from the specific avionics RTOS by
capturing both the call sequence and each call duration, but
it requires a significant amount of resources to so, especially
memory resources for the call trace.

Different strategies are studied to reduce the amount of data
being logged, including only logging memory communication
related ARINC 653 calls, or keeping only call frequency infor-
mation rather than a full trace information. Several detection
algorithms are also considered.

The results demonstrates that the solution keeping the
whole trace, and therefore with the larger memory footprint
is not the one providing the best detection results. Keeping on
the more meaningful communication-related data helps with
obtaining a more efficient classifier. Frequency information has
also shown to be an efficient way to detect malicious modifi-
cations while requiring a much smaller memory footprint.

This approach is extended in [21] with the ability to provide
a first onboard diagnosis of the anomalous behaviour, paving
the way to future reactive systems with the capacity to block
an attack. The author proposes the adjunction of an evolutive
knowledge database as depicted in Figure 5.

Fig. 5. Knowledge database of anomalous behaviour, as defined in [21]

This onboard knowledge database includes already known
anomalous or malicious behaviour including cyber-attacks or
safety-related failures, and relies on alert signatures. This
database has to be regularly updated with new signatures
during ground maintenance operations.

Within such a scheme, an anomaly is defined as an un-
known sequence of ARINC 653 API calls, or an abnormal
duration of such a call. When too many anomalies are observed
during the same time frame, an alert is raised.

The anomaly signature is then searched for a match within
the onboard knowledge database in order to identify the current
alert and to provide a feedback message usable immediately
or during later onground investigations.

The overall approach shows interesting results: In terms
of error detection, it exhibits a detection accuracy and correct
anomaly labeling of 87% after 70 samples. In terms of resource
usage, the trace monitoring caused a +2.7% on API call
runtimes and a +3.3% impact when including the early onboard
diagnosis.

C. NIDS for Safety-Critical Networks

Network Intrusion Detection Systems (NIDS) are widely
used in IT computing to analyze network communication
traffic [10], usually performing network packet inspection and
comparing them to a database of attack patterns. Such NIDS
could also be combined with neural networks to increase the
detection rate [30, 87].

Safety critical-systems usually embeds specific determinis-
tic networks such as the AFDX or the CAN bus [5, 6]. In such
a safety critical-context, the key properties is to guarantee the
deterministic behaviour of the network and maintain a high
level of integrity [84]. These mechanisms ensure a safe end-
to-end transfer of information between different subsystems,
preventing the propagation of network packet errors at runtime.

A664P7 [5] implements a network monitoring protocol,
which tracks relevant events and communication protocol
errors at the switch and end-system level. The monitoring is
based on Hardware PMC dedicated to Network observability,
defined in a Management Information Base (MiB) [43].

The Network Management system [2] is in charge of re-
alizing the correlation of multi-protocol information collected
from all the components to detect/localize network failure. A
path of improvement is to distribute the advanced monitoring
computing functionality between the aircraft systems and the
airline maintenance center [25].

D. HW/SW characterization for Aerospace systems with
performance counters

In the context of multi-core processors for aerospace
systems, safety standards require the analysis and mitiga-
tion of undesirable contentions due to concurrent usage of
shared hardware resources, called timing interference. A joint
HW/SW characterization of the system behaviour is needed,
with a high level of precision, including system calls and fine-
grain interaction on shared resources.

To achieve such a precision level, hardware assistance is
mandatory, and we can take advantage of mechanisms initially
developed for performance tuning, called the performance
monitoring counters (PMC). These are simple hardware regis-
ters, able to count various events within a processor core or in
a SoC infrastructure, such as CPU clock cycles, the number of
instructions of a certain type, cache access or misses, branch

mispredicts, bus access, etc. There are typically few counters
per core (e.g. 4 to 8), but up to hundreds of events to choose
from.

The main advantage of this technique is the precise and
timely sampling of low-level information. Time is cycle-
accurate, and reading a counter only takes a couple of in-
structions. Activation of counters and event selection typically
requires supervisor privileges, but in most cases reading the
counter can be allowed in user mode, for lower overhead.

The Measurement Environment for Time-Critical Systems
(METrICS) [34] is a self-contained approach to characterize
multicore processor behaviour and timing interference. The
basic part is a probe, a small piece of code inserted in
an application program to perform a sampling of selected
hardware events. The probe is designed to minimize timing
overhead, making use of macros and inline assembly and
completely avoiding system calls. Sampled counters data is
stored in the main memory, with a structure designed to fit in
a single cache line along with a unique probe identifier, core
and process identifiers.

The probe typically takes less than 190ns to run on 1.8GHz
PowerPC. The timing overhead is therefore very low, at the
cost of a small source code intrusivity.

Time-critical

application

Time-critical

application
Collector

Instrumented System-Call Layer

PikeOS µKernel
Hardware

Monitor

Driver

Hardware-Specific PSP

Target Hardware Board

M
E
T
rI
C
S
li
b

M
E
T
rI
C
S
li
b

Shared
Memory

METrICS

Server

config

collect raw.csv
raw.csv
raw.csv
raw.csv

xTRACT

Visualiser

C
h
ro
n
o
g
ra
m

R
u
n
ch

ar
t

H
is
to
g
ra
m

C
o
rr
el
o
g
ra
m

H
ea
tm

a
p

1

2

2

3

3

Target Board PC Host

Fig. 6. METrICS architecture, as defined in [34]

The extraction of stored data is performed out of the
real-time section by another component, named Collector.
This is an independent partition, that is not scheduled during
the measurement phase. The collector is also in charge of
initialization, and data link with the host (typically using
Ethernet). On-target computation is kept to a minimum, and
all data is preserved for post-processing.

Several statistical techniques can then be used offline to
analyze the collected data. For duration of tasks or system
calls, two probes can be paired and the raw values of counters
can be subtracted. Time series can be derived, as well as
full histograms exhibiting the observed-WCET. Correlation
between counters helps identifying possible cause of time
interference.

E. Online monitoring with PMCs

As the timing overhead to collect the PMCs presented in
the previous section is very low, the same principles can be
extended as an online monitoring technique, as part of the
health and safety usage monitoring subsystem. Multiple online
interference mitigation techniques have been exploiting the

PMCs’ monitoring. MemGuard [93] exploits memory accesses
PMCs to monitor the number of accesses done by the different
partitions in a multi-core system and perform on-board deci-
sions guided by budget limits associated to these partitions to
minimize the interference impact. Similarly, in [20] the time
and instructions counters are used in addition to the memory
access counters to enhance the interference control. BB-RTE
(Budget-Based RunTime Engine) [33] proposes a variation of
the previous two where all the shared resources PMCs, i.e.
not only memory accesses, are considered to perform online
interference mitigation.

To achieve the same goals without source code modifica-
tion, another approach presented by Airbus in [29] makes use
of an external Safety-Net processor to monitor the operational
multi-core processor. As depicted in Figure 7, an external
FPGA device contains a soft-core processor, connected with
a high-speed link to the debug infrastructure of the multi-
core. It is able to periodically access the performance counters
through this link, and record the application behaviour without
intrusivity.

Dual Core Processor
NXP P5020

core 1

FPGA
Xilinx Kintex-7

Safety Net Processor
MicroBlaze

A
u
ro

ra

N
e
x
u
s

High Speed

Serial

Fingerprint

Model

Quality of Service

Algorithm

core 0

Interconnect

Periodical

access

to the

performance

counters

of all

cores

Debug

Interface

Other

Application

Helicopter Terrain

Awareness and

Warning System

Fig. 7. Safety-Net architecture, as defined in [29]

In this case, the rate of executed instructions (in instr/µs)
is the value of interest, and its evolution over the duration of a
major scheduling frame. Such fingerprints can be concatenated
over several time slices for a given partition, and compared
between isolated and concurrent executions. The presence of
timing interference can be detected by a shift of the fingerprint,
as the rate of executed instruction is slightly lower and its
variation pattern is slightly delayed. A slowdown of 1.5% can
be reliably detected in less than 15ms.

Likely, solutions to detect security incidents exploit the
PMCs monitoring techniques [28]. For example, Li [55] pro-
poses a PMC monitoring solution able to detect a Spectre
attack using the cache miss and branch missprediction PMCs
available in most processors. Similarly, Chiappetta [17] ex-
ploits the L3 accesses PMC to detect side-channel attacks
exploiting the caches.

These and other studies have shown the capability of
PMCs usage to develop safety and security characterization
and monitoring solutions. However, multiple studies [81, 86,
9] have proven that the exploitation of these same PMCs for
the development of security attacks.

F. Miscellaneous Monitoring techniques

Some monitoring-base detection solutions introduce creative
techniques either for trace collection or for classification.

In automotive, services used to be integrated as distinct
electronic control units (ECUs) each with a specific hardware.
With the multiplication of the number of services, as well as
optimizing Size, Weight and Power (SWaP), ECUs are now
integrated on the same hardware as virtual machines.

The HIDS introduced in the [50] position paper models
the system interactions both in terms of OS service usage
as well as hardware activity collected through Performance
Monitor Counters. Traces are collected as words and sentences,
applying Natural Language Processing techniques to predict
further traces from the already collected sequence. Threat
detection is then performed by comparing the actual trace to
the predicted one, not requiring any form of previous offline
learning.

HUMS systems on their side can consider input data
beyond the software or the hardware behaviour. In [59],
Airbus captures the impact of vibration in an helicopter on
the mechanical components wear-out to guide out maintenance
tasks.

Such an activity used to being performed with on-ground
calculators during stress-test procedures. The paper proposed
to shift this activity onboard.

The main asset is to implement the fundamental ability
to analyze on the fly the data collected from various em-
bedded aircraft sensors and quickly identify safety/security-
related events to take the most appropriate actions. However,
the authors pointed some critical missing features to collect
information from the physical layer, such as a lightweight
tracing and timestamping mechanism, as well as strong cycle-
accurate synchronized time requirements.

The goal is going toward experimentation in onboard ma-
chine learning [46] to pave the way to predictive maintenance
as part of Flight Data Monitoring [25].

G. AI usage in Monitoring

In the survey presented this section, several monitoring
techniques embed different flavours of artificial intelligence:
Some [34, 20, 33] are just relying on statistical analysis to
compute a threshold used for outlier/anomaly detection. Some
others [29, 48] rely on machine learning techniques to compute
such a threshold, but are keeping the inference as a simple
comparison to this threshold. Machine learning is used to a
greater extent by [55, 17, 22, 21] with a more complex online
inference system based on neural networks. Alternative AI
approaches such as genetic algorithms or sequence prediction
are also used in [22, 50]. Finally a few papers [49, 59] are
considering machine learning techniques as a possible future
work.

It corresponds to a recent trend of using artificial intelli-
gence for anomaly detection, that was first introduced for IT
systems [15, 57], and is now considered for embedded safety
and security critical systems [51].

IV. THE FUTURE OF MONITORING IN SAFE & SECURE

SYSTEMS

As illustrated by Section III, software and hardware mon-
itoring have become prime requirements for both safety and

security, however this extra monitoring activity comes with
complexity, security and performance costs. As a consequence,
the convergence between safety-critical and security-critical
systems would benefit from communalizing the monitoring
features.

A. Multi-level aspects

Figure 8 shows the different layers composing the tech-
nology stack. This includes the user-mode applications, the
domain-specific middlewares, the operating system layer, the
embedded hardware SoC and the physical communication
layer. The arrows show regular component interactions, for
instance the operating system scheduler sets which application
should be running, setting up the proper MMU entries for
logical to physical address translation and flushes the hardware
TLB caching the MMU.

Applications USER MODE

Domain
Libraries

IPC HAL MIDDLEWARE

MMU Scheduler
System
Calls

Ressource
Management

Drivers
KERNEL
MODE

TLB

Firmware

Cores

Caches
Interconnect

DRAM DMA PCI ETH

HARDWARE

Sensors Wired / Wireless Network EDGE

Fig. 8. Multi-layer software/hardware stack

Among all the monitoring techniques presented in the
survey of Section III, many techniques are already multi-level
implying several layers.

For instance, hardware-assisted CFI [54] monitors the
application path behaviour from the debug module of the
hardware layer. To perform a transparent, uninstrumented mon-
itoring of the application the [21] HIDS gathers ARINC 653
call information from the operating system/middleware layers.
Network monitoring has the opportunity to be performed
within the hardware abstraction layer (HAL), at the Ethernet
driver level, or further down on the physical link.

In fact, each layer has only limited information and lacks
the semantics of the other layers: the hardware layer has
efficient and immediate pipeline-related information from the
Performance Monitor Counters (PMCs) such as branches or
even cache misses but does not know which application, task
or thread is running. This information is only available either
directly from the application layer or from the scheduler of
the operating system layer.

Accessing the PMCs registers is also doable from the ap-
plication layer, but at the cost of additional code to be executed
to capture this information and also the cost of traversal time

from the application layer down to the hardware (e.g. syscalls),
providing slightly outdated and noisy information.

Gathering information from multiple layers is therefore
necessary to perform efficient monitoring. Pushing this concept
further, we might also benefit from gathering information
from multiple sources, communalizing the monitoring infor-
mation from different subsystems. It will reduce the overall
performance costs, as many HIDS/HUMS are accessing the
same information, and provide opportunity to identify new
correlations for detection. However, it comes with a set of
associated challenges.

B. The Requirements for Communalizing Monitoring Infor-
mation

The survey from Section III identified several challenges
or specific requirements for the different detection techniques:

1) Trace collection: All previously detailed techniques
optimize trace collection either in terms of intrusiveness or
performance:

At user application level, [54, 21, 29, 55] minimize appli-
cation intrusiveness, avoiding any code modification by either
performing the trace collection automatically, at hardware level
or externally at the cost of some performance. [34, 50] focus
on minimizing time intrusiveness and optimizing performance
by requiring some user instrumentation.

Some techniques perform their collection at operating
system level, such as [54, 21, 50, 20, 93], requiring the source
code of the RTOS. Instead, [34, 55] rely on a kernel driver to
perform the actions requiring privileged mode.

Many collection techniques rely on hardware level infor-
mation: [54, 29] use a specific but COTS hardware component
to gather debug traces. [34, 29, 55, 50, 20, 93] are gathering
the hardware-level Performance Monitor Counters.

2) Classification/detection: is usually performed outside
of the monitored application, as an distinct adhoc process. To
limit the impact of such a process on the monitored application,
[54, 21, 33, 50, 20, 93] are relying on a separation kernel or
partitioning hypervisor.

From the hardware point of view, [29, 59] are rely-
ing on specific onboard hardware to perform the detection,
whereas [34] relies on an external host to perform the statistical
analysis as a post-processing action.

3) Exploiting monitoring for side channel attacks: As
stated before, most classification algorithm are performed in
software from trace data extracted from the hardware [54, 21,
34, 33, 50, 55, 17]. As a consequence the monitored infor-
mation is available in user-mode and therefore also available
for malicious purpose to implement side-channel attacks. [29,
59] are alleviating this risks by performing this on dedicated
hardware.

Ideally, to reduce the attack surface and performance cost,
supervision solution should be implemented at hardware level
with private resources. However, customizing hardware could
be costly.

C. Open Hardware in Safe & Secure Systems and the
benefits of low-level monitoring

Many of the issues faced in critical embedded systems
are rooted in the incomplete or imprecise knowledge of the
processor system inner operation. The high complexity of
current processors necessitates abstraction for efficient usage,
and many implementation details are hidden to the developer,
either with each software layer or even at hardware register
level. While those hidden details are specifically designed not
to impact functional correctness or average-case performance,
they can have a significant impact on worst-case performance
that matters for critical systems.

In reaction to the increasing complexity of hardware im-
plementation of processor systems, we observe a current rise
in popularity for Open Source Hardware. Several institutions
team up to develop more generic hardware platforms, with a
common set of requirements, and share under a more or less
permissive license the burden of development, verification and
documentation on an accessible code base. From this point,
extensions and product differentiation is possible. The open-
source nature also allows security audit of the source code,
and precise documentation of low-level mechanisms such as
shared resource arbitration.

1) RISC-V ecosystem: One of those Open-Source Hard-
ware initiatives, currently gathering a large momentum in
the industry, is RISC-V [89]. As a fifth-generation processor
instruction set specification, it aims at becoming the “Linux of
the processors” with applications from simple IoT devices up
to supercomputers. The specification is maintained by RISC-
V International [76], a non-profit organization structured in
several working groups and strong of more than 280 members,
including all major actors of the computing industry.

The RISC-V ISA is modular and specifies 32-, 64- and 128-
bits versions, with various optional extensions such as bitwise
operations or hardware virtualization. In addition, industry
associations such as OpenHardware Group [67] or Chips
Alliance [18] focus on open-source implementations of RISC-
V processors.

2) Safety & Security in the context of Open Hardware
systems: Safety- and security-critical systems are niche mar-
kets, compared to mainstream computing products, and face
difficulty to have their stringent requirements satisfied in the
COTS market. The Open Source ecosystem allows several
stakeholders to team for the specification, the implementation
and the validation of processors with suitable features, whereas
they would not have had the resources to do so or to influ-
ence COTS vendors individually. Within RISC-V International,
these topics are notably addressed in the Security Standing
Committee and the Functional Safety Special Interest Group.

Among the specific mechanisms required for critical sys-
tems, a guarantee of time-, memory-space and computer-space
isolation is a common need to ensure that a dysfunctional
application cannot impact other critical applications. Health
monitoring, integrity checks and run-time monitoring are
needed to ensure proper operation and react to errors/attacks.

In the context of multi-core processors, achieving those
properties present extra difficulty as explained in Section II.
However the openness of Open Hardware allows to lift the

curtain on previously black-box subsystems such as the arbiters
on the interconnect and other shared hardware resources,
and take into account their scheduling policy in interference
mitigation strategies.

Furthermore, the access to such low-level design elements
offers the opportunity to perform formal validation of safety-
and/or security-related properties, for example using tools such
as Yosys [91].

Lastly, it provides the opportunity to add or modify specific
features in the implementation, and tune hardware mechanisms
to increase predictability or immunity to attacks, e.g. by
reducing the sources of speculation.

3) Benefits of Open Hardware on Monitoring: In addition
to the well-known advantages of openness listed above, Open-
Source Hardware presents several interesting opportunities for
monitoring activities, as it enables addition or modification of
hardware mechanisms specifically optimized.

Low-level instrumentation can generate large amounts of
data, as it operates at very fine grain. It is therefore beneficial
to implement filtering capabilities in order to focus on relevant
information for a given observation goal. Filter examples
include address range of memory transaction, initiator core,
or type of request, but very complex detection can be crafted
with a combination of several monitors and filters.

Another opportunity is to propagate semantic information
across system layers, that would otherwise be lost or ignored.
For example, an application parameter or loop iteration could
be logged along with hardware performance counters. As
described in [23] this information and the filtering capabilities
are actually required to perform an efficient monitoring, as
those required in [55, 17].

Many low-level monitoring mechanisms focus on each
processor core, but the most worrisome aspect of critical multi-
core lies in the interactions at SoC-level, notably within the
interconnect. Additional monitors and counters in the SoC
infrastructure allow a better understanding of interference
channels, and in some cases enable mitigation techniques.
This is particularly interesting when combined with filtering
capabilities.

A simple interrupt mechanism triggered when a perfor-
mance counter reaches a given threshold allows the implemen-
tation of budget-based interference mitigation, e.g. de-schedule
a task when it has exhausted its budget of memory access to
ensure it is not slowing down other tasks, either because of a
bug or an attack.

A recent development in this direction is the Safe Statistics
Unit from BSC [14], consisting of three novel kinds of
performance counters tailored for the monitoring of timing in-
terference on multi-core processors: the Maximum-Contention
Control Unit (MCCU), the Request Duration Counter (RDC),
and the Cycle Contention Stack (CCS). By analyzing the
traffic on a shared processor bus, it allow new ways of
understanding and controlling the interactions between cores.
The MCCU monitors access to a shared resource, and enforce
per-core quotas. The RDC can log maximum duration of a
bus transaction, and act as a watchdog. The CCS helps in the
identification of the initiator at the origin of the interference
suffered by each core.

Finally, a dedicated hardware mechanism can be an im-
provement for security concerns, as it can be designed as a
separate entity, not accessible from vulnerable application soft-
ware or isolated from side-channel attacks. Similarly, designs
with private memories and communication channels dedicated
to monitoring avoid any overhead on the system operation, and
any skew in the observed behaviour.

D. Opportunities for AI-based HIDS/HUMS

Some industry domains are reluctant to introduce artifi-
cial intelligence in safety critical systems. For decades, au-
tonomous piloting, one of the most critical function in avionics
has been relying on deterministic algorithms, and the benefits
in shifting to AI-based systems is not likely to cover the
additional certification costs. As the monitoring subsystem runs
at a lower criticality level, such a system is a good candidate
to introduce AI, with lower certification costs. However em-
bedded safety-critical systems have additional constraints to be
taken into account by the AI-based systems.

In avionics, post-mortem analysis is critical to maintain
flight authorization from the authorities. As a consequence it
is not only a matter of successfully performing the classifica-
tion/detection with an acceptable amount of false-positive and
false-negative, but also a matter of identifying the root causes
of a detected event. Also post-mortem analysis involves a large
degree of replaying the conditions that led to the studied event.
As a consequence, we expect determinism in terms of the same
input causing the same answer from the AI system. Such a
behaviour seems to be incompatible with continual/continuous
learning [68], but more in cope with explainable AI [24] such
as symbolic AI [40, 61].

Embedded systems also have stringent requirements in
terms of resource usage, including processing power, real-
time behaviour and memory footprint [26]. Machine learning
[4, 79] seems to be in adequation with such requirements:
the learning phase that builds neural networks requires both
processing power and memory, but could be performed offline
on external systems, while only the inference part is performed
onboard with a small neural network memory footprint, and
involves a constant number of multiply-add operations leading
to deterministic time processing.

Another challenge for the application of AI techniques in
critical systems is the low occurence of some safety/security
hazards in these systems. This difficults the usage of AI tech-
niques, particularly during the learning phase. Frugal learning
[77] especially focuses on being less dependent on large
collections of input data, learning from few samples with
additional semantic information.

Beyond these additional challenges for embedding AI
in safety/security critical systems, it also comes with new
benefits and potential new markets, especially predictive main-
tenance, and the ability to propose more complex embedded
HUMS/HIDS systems.

V. CONCLUSION & FUTURE WORKS

In this paper, we presented a survey of emerging moni-
toring technologies implemented in Health Usage Monitoring
Systems or Host Intrusion Detection Systems in the domain
of safety-critical and security-critical devices.

Cyber BlackBox
Open

Hardware
AI-based
Detection

performance
monitor
counters

timings

context
switches

power, voltage
& temperature

system calls

control flow

Fig. 9. Cyber BlackBox: a multi-level/muti-source approach to monitoring

We then promoted the communalization on monitoring re-
sources in a multi-layer and multi-source approach, as depicted
in Figure 9.

We foresee Open Hardware as being an enabler to im-
plement the supervision system with dedicated software and
especially hardware resources, allowing us both to capture the
necessary hardware-related information, but also as a way to
protect from side-channel attacks exploiting the monitoring
features.

Finally, using Artificial Intelligence-based techniques looks
like a promising opportunity to merge monitoring data of dif-
ferent natures, layers and sources to identify new correlations
allowing us to detect either new safety failures or security
threats, or to detect already known ones sooner.

Machine Learning in particular is usually decomposed into
two phases: a preliminary learning phase, and an inference
phase performing the classification. The resource-consuming
learning phase could be performed offline, only leaving the
inference phase to be embedded onboard and therefore reduc-
ing the resource footprint of such systems, while keeping open
the explainability challenge.

The Cyber BlackBox approach presented in Figure 9
considers each monitoring source/technique as an optional
plugin to the overall supervision infrastructure, so that it could
be adapted the the specifics of each safety/security critical
domain.

ACKNOWLEDGEMENTS

This research work has received funding from the European
Union’s Horizon 2020 research and innovation programme
under Grant Agreements No 871385 and 869945.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow in-
tegrity principles, implementations, and applications. ACM Transactions

on Information and System Security (TISSEC), 2009.

[2] AIRBUS. US8190727B2, airbus patent, network management system
for an aircraft, 2012.

[3] M. Alagappan, J. Rajendran, M. Doroslovački, and G. Venkataramani.
DFS covert channels on multi-core platforms. In IEEE International

Conference on Very Large Scale Integration (VLSI-SoC), 2017.

[4] E. Alpaydin. Introduction to machine learning. MIT press, 2020.

[5] ARINC. Aircraft data network part 7 avionics full duplex switched
ethernet (afdx) network, 2005.

[6] ARINC. General standardization of can (controller area network) bus
protocol for airborne use, 2007.

[7] ARM. Whitepaper: Cache speculation side-channels, version 2.5, 2020.

[8] T. G. Baker. Lessons learned integrating COTS into systems. In
Proceedings of the First International Conference on COTS-Based

Software Systems, ICCBSS ’02, 2002.

[9] S. Bhattacharya and D. Mukhopadhyay. Utilizing Performance Counters
for Compromising Public Key Ciphers. ACM Trans. Priv. Secur., 21(1),
jan 2018.

[10] E. Biermann, E. Cloete, and L. M. Venter. A comparison of intrusion
detection systems. Journal on Computers & Security, 2001.

[11] J. Bin, S. Girbal, D. Gracia Pérez, A. Grasset, and A. Merigot.
Studying co-running avionic real-time applications on multi-core COTS
architectures. Embedded Real Time Software and Systems conference,
2014.

[12] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: A new class of code-reuse attack. In Proceedings of the

6th ACM Symposium on Information, Computer and Communications

Security, ASIACCS ’11, 2011.

[13] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer. Control-flow integrity: Precision, security, and performance.
ACM Comput. Surv., Apr 2017.

[14] G. Cabo, F. Bas, R. Lorenzo, D. Trilla, S. Alcaide, M. Moretó,
C. Hernández, and J. Abella. Safesu: an extended statistics unit for
multicore timing interference. In 2021 IEEE European Test Symposium

(ETS), pages 1–4, 2021.

[15] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3), jul 2009.

[16] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy. Return-oriented programming without returns. In
Proceedings of the 17th ACM Conference on Computer and Communi-

cations Security, CCS ’10, 2010.

[17] M. Chiappetta, E. Savas, and C. Yilmaz. Real time detection of
cache-based side-channel attacks using hardware performance counters.
Applied Soft Computing, 2016.

[18] CHIPS (Common Hardware for Interfaces, Processors and Systems)
Alliance. https://chipsalliance.org/. [Online].

[19] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of
malicious behavior. In Proceedings of the the 6th Joint Meeting of the

European Software Engineering Conference, ESEC-FSE ’07, 2007.

[20] A. Crespo, P. Balbastre, J. Simó, J. Coronel, D. Gracia Pérez, and
P. Bonnot. Hypervisor-based multicore feedback control of mixed-
criticality systems. IEEE Access, 2018.

[21] A. Damien, P.-F. Gimenez, N. Feyt, V. Nicomette, M. Kaâniche, and
E. Alata. On-board diagnosis: A first step from detection to prevention
of intrusions on avionics applications. In 2020 IEEE 31st International

Symposium on Software Reliability Engineering (ISSRE), 2020.

[22] A. Damien, M. Marcourt, V. Nicomette, E. Alata, and M. Kaâniche.
Implementation of a host-based intrusion detection system for avionic
applications. In 2019 IEEE 24th Pacific Rim International Symposium

on Dependable Computing (PRDC), 2019.

[23] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose.
SoK: The Challenges, Pitfalls, and Perils of Using Hardware Perfor-
mance Counters for Security. 2019 IEEE Symposium on Security and

Privacy (SP), May 2019.

[24] F. K. Došilović, M. Brčić, and N. Hlupić. Explainable artificial
intelligence: A survey. In 2018 41st International Convention on

Information and Communication Technology, Electronics and Micro-

electronics (MIPRO), pages 0210–0215, 2018.

[25] European Union Aviation Safety Agency. Flight data monitoring on atr
aircraft, 2016.

[26] M. Evchenko. Frugal Learning: Applying Machine Learning with
Minimal Resources. 2016.

[27] S. Fei, Z. Yan, W. Ding, and H. Xie. Security vulnerabilities of SGX
and countermeasures: A survey. ACM Comput. Survey, July 2021.

[28] J. C. Foreman. A survey of cyber security countermeasures using
hardware performance counters. CoRR, abs/1807.10868, 2018.

[29] J. Freitag and S. Uhrig. Quality of Service for Integrated Modular
Avionics (IMA) on Multicore Processors using a Safety Net Architec-
ture. In ERTS 2018, 9th European Congress on Embedded Real Time
Software and Systems (ERTS 2018), Toulouse, France, Jan. 2018.

[30] F. Garzia, M. Lombardi, and S. Ramalingam. Artificial neural networks
framework for security/safety systems management and support. In
International Carnahan Conference on Security Technology, 2017.

[31] S. Girbal, D. Gracia Pérez, J. Le Rhun, M. Faugère, C. Pagetti, and
G. Durrieu. A complete toolchain for an interference-free deployment
of avionic applications on multi-core systems. In Proceedings of the

34th Digital Avionics Systems Conference, DASC’2015, 2015.

[32] S. Girbal, X. Jean, J. Le Rhun, D. Gracia Pérez, and M. Gatti.
Deterministic Platform Software for hard real-time systems using multi-
core COTS. In Proceedings of the 34th Digital Avionics Systems

Conference (DASC), 2015.

[33] S. Girbal and J. Le Rhun. BB-RTE: a Budget-Based RunTime Engine
for Mixed & Time Critical Systems. In Embedded Real Time Software

and Systems, ERTS ’18, 2018.

[34] S. Girbal, J. Le Rhun, and H. Saoud. METrICS: a measurement
environment for multi-core time critical systems. In Embedded Real

Time Software and Systems, ERTS ’18, 2018.

[35] S. Girbal, M. Moretó, A. Grasset, J. Abella, E. Quiñones, F. J. Cazorla,
and S. Yehia. On the convergence of mainstream and mission-critical
markets. In 50th IEEE Design Automation Conference (DAC), 2013.

[36] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida. ASLR on
the line: Practical cache attacks on the MMU. In NDSS, 2017.

[37] B. Gyselinckx, R. Vullers, C. Van Hoof, J. Ryckaert, R. F. Yazicioglu,
P. Fiorini, and V. Leonov. Human++: Emerging technology for body
area networks. In 2006 International Conference on Very Large Scale

Integration, 2006.

[38] R. Heckmann and C. Ferdinand. Verifying safety-critical timing and
memory-usage properties of embedded software by abstract interpreta-
tion. In Proceedings of the conference on Design, Automation and Test

in Europe, DATE’05, 2005.

[39] C. Hobbs. Embedded software development for safety-critical systems.
CRC Press, 2019.

[40] V. Honavar and L. Uhr. Symbolic artificial intelligence, connectionist
networks & beyond. 1994.

[41] N. Hubballi, S. Biswas, and S. Nandi. Sequencegram: n-gram modeling
of system calls for program based anomaly detection. In 3rd Interna-

tional Conference on Communication Systems and Networks, 2011.

[42] A. Humayed, J. Lin, F. Li, and B. Luo. Cyber-physical systems
security—a survey. IEEE Internet of Things Journal, 2017.

[43] IETF. Rfc4293: Management information base for the internet protocol
(ip), 2006.

[44] International Electrotechnical Commission. IEC 61508: Functional
safety of electrical, electronic, or programmable electronic safety-
related systems, 2011.

[45] International Organization for Standardization (ISO). ISO 26262: Road
Vehicles – Functional Safety, 2011.

[46] ITU-T Focus Group on Aviation Applications of Cloud Computing for
Flight Data Monitoring. Existing and emerging technologies of cloud
computing and data analytics. 2016.

[47] A. Jahn, M. Holzbock, J. Muller, R. Kebel, M. de Sanctis, A. Rogoyski,
E. Trachtman, O. Franzrahe, M. Werner, and F. Hu. Evolution of
aeronautical communications for personal and multimedia services.
IEEE Communications Magazine, 2003.

[48] M. Kadar, G. Fohler, D. Kuzhiyelil, and P. Gorski. Safety-aware
integration of hardware-assisted program tracing in mixed-criticality
systems for security monitoring. In 2021 IEEE 27th Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2021.

[49] M. Kadar, S. Tverdyshev, and G. Fohler. System calls instrumentation
for intrusion detection in embedded mixed-criticality systems. In
CERTS, 2019.

[50] M. Kadar, S. Tverdyshev, and G. Fohler. Towards host intrusion
detection for embedded industrial systems. In 2020 50th Annual IEEE-

IFIP International Conference on Dependable Systems and Networks-

Supplemental Volume (DSN-S), 2020.

[51] G. Kasparaviciute, M. Thelin, P. Nordin, P. Söderstam, C. Magnus-
son, and M. Almljung. Online encoder-decoder anomaly detection
using encoder-decoder architecture with novel self-configuring neural
networks & pure linear genetic programming for embedded systems.
In Proceedings of the 11th International Joint Conference on Compu-

tational Intelligence, IJCCI 2019, page 163–171, Setubal, PRT, 2019.
SCITEPRESS - Science and Technology Publications, Lda.

[52] R. Kirner and P. Puschner. Obstacles in worst-case execution time
analysis. In Proceedings of the 11th IEEE Symposium on Object

Oriented Real-Time Distributed Computing, 2008.

[53] P. Kocher et al. Spectre attacks: Exploiting speculative execution. In
40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[54] D. Kuzhiyelil, P. Zieris, M. Kadar, S. Tverdyshev, and G. Fohler.
Towards transparent control-flow integrity in safety-critical systems. In
ISC, 2020.

[55] C. Li and J.-L. Gaudiot. Online Detection of Spectre Attacks Using
Microarchitectural Traces from Performance Counters. In 2018 30th

International Symposium on Computer Architecture and High Perfor-

mance Computing (SBAC-PAD), 2018.

[56] M. Li, Y. Zhang, Z. Lin, and Y. Solihin. Exploiting unprotected I/O
operations in AMD’s secure encrypted virtualization. In Proceedings

of the 28th USENIX Conference on Security Symposium, 2019.

[57] B. Lindemann, B. Maschler, N. Sahlab, and M. Weyrich. A survey
on anomaly detection for technical systems using lstm networks.
Computers in Industry, 131:103498, 2021.

[58] M. Lipp et al. Meltdown: Reading kernel memory from user space. In
27th USENIX Security Symposium, Baltimore, Aug. 2018.

[59] M. Lo, N. Valot, F. Maraninchi, and P. Raymond. Real-time on-Board
Manycore Implementation of a Health Monitoring System: Lessons
Learnt. In 9th European Congress on Embedded Real Time Software

and Systems (ERTS 2018), Toulouse, France, Jan. 2018.

[60] S. Longari, A. Cannizzo, M. Carminati, and S. Zanero. A secure-by-
design framework for automotive on-board network risk analysis. In
2019 IEEE Vehicular Networking Conference (VNC), 2019.

[61] J. Mattioli, P.-O. Robic, and T. Reydellet. L’intelligence artificielle au
service de la maintenance prévisionnelle. 07 2018.

[62] C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5: Cross-cores
cache covert channel. In DIMVA, 2015.

[63] S. Mekid. IoT for health and usage monitoring systems: mitigating
consequences in manufacturing under cbm. In 18th IEEE International

Multi-Conference on Systems, Signals & Devices (SSD), 2021.

[64] E. Mezzetti and T. Vardanega. On the industrial fitness of WCET
analysis. In Proceedings of the 11th International Workshop on Worst

Case Execution Time Analysis (WCET2011). 2011.

[65] H. Mun, K. Han, and D. H. Lee. Ensuring safety and security in can-
based automotive embedded systems: A combination of design opti-
mization and secure communication. IEEE Transactions on Vehicular

Technology, 2020.

[66] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing
architectures in avionics. European Dependable Computing Conference,
2012.

[67] OpenHW Group: Proven processor IP. https://www.openhwgroup.org/.
[Online].

[68] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual
Lifelong Learning with Neural Networks: A Review. Neural Networks,
113:54–71, 2019.

[69] S. Parkinson, P. Ward, K. Wilson, and J. Miller. Cyber threats
facing autonomous and connected vehicles: Future challenges. IEEE

Transactions on Intelligent Transportation Systems, 2017.

[70] P. Puschner and A. Burns. Guest editorial: A review of worst-case
execution-time analysis. Real-Time Systems, 2000.

[71] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-297:
Software, electronic, integrated modular avionics (IMA) development
guidance and certification considerations.

[72] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-178B:
Software considerations in airborne systems and equipment certification,
1992.

[73] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-254:
Hardware considerations in airborne systems and equipment certifica-
tion, 1992.

[74] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-326:
Airworthiness security process specification, 2010.

[75] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-356:
Airworthiness security methods and considerations, 2015.

[76] RISC-V International. https://riscv.org/. [Online].

[77] H. Sahbi, S. Deschamps, and A. Stoian. Frugal Learning for Inter-
active Satellite Image Change Detection. In 2021 IEEE International

Geoscience and Remote Sensing Symposium IGARSS, pages 2811–2814.
IEEE, 2021.

[78] S. Sayeed, H. Marco-Gisbert, I. Ripoll, and M. Birch. Control-flow
integrity: Attacks and protections. Applied Sciences, 2019.

[79] J. Schmidhuber. Deep learning in neural networks: An overview. CoRR,
abs/1404.7828, 2014.

[80] H. Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Proceedings of the 14th

ACM Conference on Computer and Communications Security, 2007.

[81] M. Spisak. Hardware-Assisted Rootkits: Abusing Performance Counters
on the ARM and X86 Architectures. In Proceedings of the 10th USENIX

Conference on Offensive Technologies, 2016.

[82] R. Strackx, F. Piessens, and B. Preneel. Efficient isolation of trusted
subsystems in embedded systems. In International Conference on

Security and Privacy in Communication Systems, 2010.

[83] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal war in
memory. In 2013 IEEE Symposium on Security and Privacy, 2013.

[84] P. Toillon, P. B. Champeaux, D. Faura, W. Terroy, and M. Gatti. An
optimized answer toward a switchless avionics communication network.
In 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC),
2015.

[85] C. Trippel, D. Lustig, and M. Martonosi. MeltdownPrime and Spec-
trePrime: Automatically-synthesized attacks exploiting invalidation-
based coherence protocols, 2018.

[86] L. Uhsadel, A. Georges, and I. Verbauwhede. Exploiting Hardware
Performance Counters. In 2008 5th Workshop on Fault Diagnosis and

Tolerance in Cryptography, 2008.

[87] D. W. F. L. Vilela, A. D. P. Lotufo, and C. R. Santos. Fuzzy artmap
neural network ids evaluation applied for real ieee 802.11w data base.
In International Joint Conference on Neural Networks (IJCNN), 2018.

[88] X. Wang, Y. Yang, and Y. Han. Enforcing security for real-time
multicore embedded system. In 2018 IEEE 4th Information Technology

and Mechatronics Engineering Conference (ITOEC), pages 1551–1556.
IEEE, 2018.

[89] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic. The RISC-V
instruction set manual, 2014.

[90] R. Wilhelm et al. The worst case execution time problem, overview of
methods and survey of tools. ACM Trans. Embed. Comput. Syst., 2008.

[91] C. Wolf. Formal verification with symbiyosys and yosys-smtbmc. URL

http://www.clifford.at/papers/2017/smtbmc-sby/slides.pdf, 2017.

[92] Z. Wu, Z. Xu, and H. Wang. Whispers in the hyper-space: High-speed
covert channel attacks in the cloud. In Proceedings of the 21st USENIX

Conference on Security Symposium, Security’12, 2012.

[93] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. R. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In 19th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), Apr. 2013.

Session Th.5.B

Process modelling

Thursday 2nd June

17:00

–

Room Lauragais

583

584

Towards an agile, model-based multidisciplinary process to improve operational

diagnosis in complex systems

Nikolena Christofi1, Xavier Pucel2, Claude Baron3, Marc Pantel4, Sébastien Guilmeau5, Christophe Ducamp6

Toulouse, France

Abstract

Systems’ online diagnostics require multidisciplinary system knowledge and experience by their operators. When the

complexity of the system rises, operational (in-service) diagnostics become a complex task. In an effort to improve the

efficiency while better handling the complexity of diagnostics during operations, the authors propose a methodology

aiming to increase the agility in complex systems’ development processes. This paper introduces a new way to

construct operational models early on the development cycle so as to improve the performance of monitoring activities

and, ultimately, increase the confidence on the systems’ resilience provided by its design.

Keywords: Satellite Systems, Health Monitoring, Online Diagnosis, Model-Based Systems Engineering (MBSE),

Model-Based Safety Assessment (MBSA), Maintainability, Behaviour Trees, Model-Based Operations, Agile

Techniques

1. Introduction

To this day, monitoring activities and associated tools used for Fault Detection and Diagnosis (FDD) [1] during

system operation are limited to specific functions provided by certain subsystems, while largely relying on the oper-

ators’ experience [2]. Past data i.e. Return of Operating Experience (ROE), also feed the algorithms used for FDD.

However, the ever growing complexity of embedded systems demand that the tools used for system monitoring have

an underlying knowledge of the whole system structure and behaviour, so as to provide a faster, and more reliable

diagnosis, especially when time is a key operational constraint. What is more, without precise knowledge of the sys-

tem design, it is ambitious for diagnostic tools to be able to provide a unique possible failure source, or the correct

troubleshooting procedure, in case the monitoring data contain alarm inconsistencies.

Diagnostic tools shall thus be able to provide the operators with dedicated views of the system, which will help

them perform diagnosis more efficiently. These views must incorporate the appropriate system information with the

defined level of detail while keeping monitoring and diagnosis in the main focus. An overly detailed view of the

system would make the operation model too heavy and long to exploit, while if the view is too coarse or stays only

at high level, the model might lack crucial information to assist in diagnosis. To this end, one approach consists in

collecting available information from the system architecture designed during Systems Engineering (SE), as well as

from the Safety Analyses (SA) documents and models, the latter regarding the potential failures. The aim would then

be to use the collection of data, information and models, to produce a tool that will support the operators in their

monitoring task: interpreting housekeeping data, troubleshooting problems, and performing system maintenance.

Email address: nikolena.christofi@irt-saintexupery.com (Nikolena Christofi)
1IRT Saint Exupéry, LAAS-CNRS, Airbus Defence & Space, INSA Toulouse, Université de Toulouse
2ONERA, DTIS, Université de Toulouse
3INSA Toulouse, LAAS-CNRS, ISAE-SUPAERO, Quartz-Supméca, Université de Toulouse
4IRIT, Toulouse INP, Université de Toulouse
5IRT Saint Exupéry
6Airbus Defence & Space

Preprint submitted to Embedded Real Time Systems (ERTS) 2022 2022-01-25

Our goal is thus to use the system design information to construct operational diagnosis tools. We postulate that

this is possible with the introduction of an Operations-Dedicated Model (ODM), which shall include both system

design information –SE data, as well as the information produced by selected system dysfunctional analyses –SA

data. The latter shall help in the diagnosis activities by suggesting a possible source for the error, and its location in

the system.

We explore Behaviour Trees (BTs) as a solution towards the construction of ODMs to be used for operational

diagnosis. Considering that BTs can provide an intuitive way to model and simulate system behaviour, they can

also be used to meet the needs for a diagnostic model which includes the system’s dynamic aspects and not only its

structural information –as it is the case for the currently available diagnosis models. BTs have shown a lot of potential

in the last decade, mainly with their application to robotics and Artificial Intelligence (AI). Initially developed within

the gaming community to replace Finite State Machines (FSM) with more user friendly models, their use could be

widened to the field of operational diagnosis to model, implement and monitor the state of complex systems.

This paper explores the use of BTs to create a system behavioural model –namely ODM, oriented towards system

monitoring, which can be exploited during operations in order to increase efficiency in diagnosis. We show in place

that the BT model can be built during the design phase and along the production of other design models and docu-

ments, in a co-design manner, thus contributing to an agile system development process. The co-design of system and

BT models is a process within which documents and models of system function and dysfunction and BT models of

system monitoring for operational diagnosis are mutually constituted.

The structure of this paper is as follows. Section 2 outlines the context of our research and the problematic

addressed. Section 3 presents a literature review on the involved topics. The proposed approach is presented in

Section 4, using an illustrating example in Section 4.1, and perspectives on the use of ODMs inside monitoring tools

for diagnostic purposes in Section 4.2. Finally, Section 5 draws conclusions and discusses future work opportunities.

2. Context and Motivation

Despite the recent flourishing of model-based languages, methods and tools for system development –system

design and Verification and Validation –V&V activities, diagnostic tools created for the same systems, have known a

different path. Existing diagnosis tools are often designed after the system is built; hence the opportunities to make the

system easy to operate –which would be the case if the tools were constructed during system design, are lost. Either

under the form of data-based [3] or model-based [4], these tools are often targeting single system functions/subsystems

–e.g formation flight [5], reaction wheels [6], or thrusters [7, 8, 9]. Consequently, their specificity to one function or

subsystem makes them non-generic, and thus not reusable.

Moreover, diagnostic models fail to include safety analyses methods’ derived information; methods such as Failure

Modes and Criticality Effects Analysis (FMECA), Fault Tree Analysis (FTA), Failure Logic Modelling (FLM) [10,

11], Failure Propagation Modelling (FPM) [12], or Model-Based Safety Assessment [13, 12]. On the other hand,

system diagnostic tools can be very generic i.e. agnostic of the domain usage: they use general diagnosis techniques,

such as Machine Learning (ML) [14], not specific to spacecraft operations.

Moreover, operational diagnostics, as a core part of satellite maintenance, is limited by many constraints, should

thus consist one of the major concerns in satellite design. Therefore, by integrating a diagnostic tool in the system

development process and co-designing it along with the system itself, we can ensure that the operational diagnosis

activities are well taken under consideration before the satellite deployment.

As mentioned in [15], this would mean that the system design and its monitoring models influence each other. The

proposed process is depicted in Figure 1, where it is illustrated with a space satellite system application. Following

the system’s deployment, the operator, having at their disposal the housekeeping data the Operation Centre (OC) has

received from on-board the satellite, can perform diagnosis with the help of the monitoring tool. The latter is using

the ODM built during the system development process (concurrently with the system design models) in the form of

BTs. This would add confidence in the diagnosis results as well to the operations model. For the needs of our project

we assume that the ODM is representative of the actual system emitting the monitoring data.

2

Figure 1: Overview of the proposed approach: creating ODMs during system design phase (along with SE & SA models), to be used as a basis for

the “System Health Monitoring Tool”.

3. Literature Review

This section consists of a description of the current State of the Art (SoA) in the fields of MBSE –section 3.1,

and MBSA, as a prominent System Safety Assessment (SSA) methodology –section 3.2. The aim is to introduce the

reader to the topics involved in our approach. Finally, subsection 3.3 presents the basic semantics of BTs, which is

the formalism used to create the ODMs.

3.1. Model-Based Systems Engineering (MBSE)

MBSE facilitates the fulfillment of the SE requirements through design –structural and behavioural system mod-

elling in various decomposition levels. SE models allow the engineers to verify the solution’s design, functions and

envisaged operations, early on in the development process, resulting to the reduction of the overall project cost. MBSE

allows design alterations to take place in the beginning of system development and not when the solution is furtherly

developed.

By applying MBSE, one can create architectural models (express system structure and decomposition), func-

tional models (express system functions), and behavioural models (express system behaviour in different operational

scenarios). To represent these models, several types of formalism are used, along with their associated languages

and methodologies. The most common languages used in MBSE [16] are SysML [17] –based on OMG’s7 UML

[18] standard, and EAST-ADL [19]. ARCADIA [20], IDEF [21], and OPM [22] consist both MBSE languages and

methodologies. In terms of tools, IBM’s Rhapsody [23] and Magic Draw’s Cameo [24]–both based on SysML, and

Eclipses’ open-source Capella [25]–based on the Arcadia method, are the most popular.

3.2. System Safety Assessment (SSA) and Model-Based Safety Assessment (MBSA)

System Safety Assessment (SSA) is an analysis which leads to the production of a series of documents reporting

all the identified hazards for the system in question, and the complying with the safety requirements [26]. For each

identified system Failure Condition (FC)–how the system could fail, characterised by their level of impact to the

environment, humans and the system itself (for space systems: catastrophic, critical, major, minor/negligible) [27], an

analysis shall be made, in order to identify the possible causes–and combination of, that can lead to these FCs.

A recently developed approach for performing SSA or Reliability, Availability, Maintainability and Safety (RAMS)

analysis, is MBSA. It is a technique which models the system’s structure and behavior in order to provide safety

analysis results. In this approach, various SSA-related activities are based on formal models which contain system

dysfunctional data. In order to perform dysfunctional analysis at system level, it is required to have a fundamental

7The Object Management Group® (OMG®) is an international, open membership, not-for-profit technology standards consortium, founded in

1989. OMG standards are driven by vendors, end-users, academic institutions and government agencies.

3

knowledge of (a) the nominal system behavior, limited to the scope and the level of abstraction useful for dysfunc-

tional analysis, in particular the reconfiguration and protection systems defined in the SE model, and (b) the various

ways the failures can occur and propagate inside the system [28].

Consequently, MBSA uses a formal model describing both the nominal system behavior and the possible faulty

behaviors, to analyse combinations of faults and their consequences in terms of feared events, which affect operational

availability (when a critical error occurs, the system is not available until the error is resolved). The resulting analytical

models are manually built by safety engineers from the available SE information. These models can be used to

compute quantitative and/or qualitative safety indicators. Several mathematical formalisms are used to support the

computations, mainly Markov chains [29], Petri nets [30] or Finite State Machines (FSMs) [31], each with different

variants. These types of underlying formalisms are important for the qualification of computation tools.

As in MBSE, a number of modelling languages supporting MBSA were developed, such as AltaRica (AltaRica

LaBRI [32], AltaRica DataFlow [33], AltaRica 3.0 [34]), Figaro [35], SAML [36], HiP-HOPS [37], Component Fault

Trees [38], Generalized Stochastic Petri Nets [39] and Safety Architect [40]. In our approach we use the AltaRica

language, since it has has become a de-facto European industrial standard for MBSA [41]. The most mature industrial

tools for MBSA based on AltaRica are Dassault’s Cecilia OCAS [42] and Apsys’ SimfiaNeo [43].

3.3. Behaviour Trees

BTs were first invented as a tool to build modular Artificial Intelligence (AI) in computer games. A known

alternative to FSMs, BTs are meant to provide better modularity, scalability, extendibility, adaptability and reuse of

code [44, 45, 46, 47, 48, 49, 50], and to be easier to understand for humans, thus allowing incremental functionality

design and efficient testing. On the benefits of modularity, Bagnell et al. state that ”individual behaviors can be reused

in the context of another higher-level behavior, without needing to specify how they relate to subsequent behaviors”

[51].

According to Colledanchise and Ögren, ”a Behavior Tree is a way to structure the switching between different

tasks (assuming that an activity can somehow be broken down into reusable sub-activities called tasks) in an au-

tonomous agent, such as a robot or a virtual entity in a computer game” [52]. According to Garcı́a et al., a Behavior

Tree is ”a mathematical model of plan execution that allows composing tasks in a modular fashion through a set of

nodes representing tasks and connections among them” [53].

BTs are widely used in systems control since they provide an easy way to perform conditional state switching.

However, the main reason we have chosen BTs as the means to construct the ODM is that they provide an answer to

the question ”What is the system currently doing?”, which is precisely the first question the operators ask themselves,

both when the system is in nominal mode, as well as when an issue has been identified.

One of the benefits of BTs we have additionally identified is that their elements can be in the form of blackboxes

and be furtherly developed when new information is available; that being during the design phase or the operations

phase –in the case of telemetry data reception. In the following section we demonstrate that BTs are easy to integrate

within the design process. Based on the MBSE and MBSA models, and with operational objectives, we can create

a model that can then be used inside a monitoring tool, suited for diagnosis. In our modelling approach we use the

Figure 2: BTs’ sequence execution.

classic formulation of BTs as described in [52], where BTs can be considered as a form of directed tree, where the

flow amongst its nodes and edges is sequential in a left to right, depth first manner. The ticking execution sequence is

illustrated in Figure 2.

4

BTs represent the possible system behaviours and their changes, in contrast to decision trees, which represent a

logical formula, usually for automated decision purposes. BT nodes are visited at each time step (called “tick”) during

execution, starting from the root node. Parent nodes specify which children nodes must be visited, and in which order.

Fallback and Sequence (parent) nodes define how the behaviour evolves when one of its child behaviour succeeds or

fails. Action (child) nodes contain executable information. A classical BT formulation [52] is depicted in Figure 3.

Figure 3: BTs’ basic elements.

Regarding our BT implementation to construct the ODMs, we use the PyTrees (python implementation of BTs)

library [54][55], which is relatively easy and intuitive to code with, so any engineer/scientist can build a BT model,

with no particular programming background or developer skills. In our approach, BTs consist of sequential tasks: al-

though PyTrees’ ticking mechanism is compatible with parallel execution, we do not use this feature in our modelling

approach, since no need has risen so far. Parallel execution in PyTrees is possible with the use of the the “parallel”

composite node, which visits all its children simultaneously at each tick [56].

In terms of the trigger mechanism, we propose a time-triggered (vs event-driven [57] pg. 199) BT execution,

in a way that the BT nodes are triggered in a time-increment manner and not by the order of the modelled events’

occurrence. When representing structural system information, we often use time-triggered modelling –in contrast with

dynamic system information, where event-driven modelling is preferred. Therefore, when dealing with highly complex

systems, we prefer to represent them with time-triggered models that can periodically check for the occurrence (or

not) of the modelled events, in an effort to reduce modelling complexity.

Regarding the periodicity of BTs, BT nodes are independent concurrent processes, that may or may not follow a

mutual clock, e.g. they may terminate at any time. However, the BT is only active at every tick, which means BT

events (starting a new action, mostly) only take place upon a tick. Ticks should be relatively fast with respect to the

system’s dynamics.

BTs can be modelled to be state-full i.e. having memory of all the visited nodes’ state –state information can be

either in the node type or the node instance (its source code), or state-less i.e. not “remembering” the state of multiple

nodes, rather than saving only the state of the lastly triggered node. Clearly this option changes the behaviour of the

composite nodes, while PyTrees can support both styles. By making the state-less modelling choice, one can affect

the performance of the BT: state-less BTs offer less control over the workflow, thus this control must be implemented

in the Action leaf nodes.

The BT implementation presented in this paper is using the default PyTrees’ setting for Sequence and Fallback

nodes, which is memory-full and memory-less, respectively. More specifically, the class syntax for the Sequence and

Fallback nodes is respectively the following[56]:

class py trees.composites.Sequence(name=Sequence, memory=True, children=None)

class py trees.composites.Selector(name=Selector, memory=False, children=None)

In regard to the interruption of BT behaviours, there may be many reasons to interrupt a node, some related

to the BT, some completely unrelated. Action nodes are free to implement their internal interruption management

5

mechanism: it integrates easily in the BT paradigm. However, many libraries (including PyTrees) also include an

interruption mechanism for BT-related interruptions (in Fallback nodes mostly). In PyTrees, the memory parameter

of Selector nodes inhibits the interruption mechanism, e.g. with memory=True the Selector node does not try to

restart “high priority” terminated children, so there are no interruptions. With memory=False, the Selector node

always queries the high priority children first, so they can “restart” and interrupt a currently running low priority

child.

A simple example would be a system that tries to buy an item, but if it does not have enough money, works to earn

it. The version without interruption could be:

• Acquire item (Sequence)

– Work until enough money
– Buy item

In this version, the “Work until enough money” must internally check whether there is enough money, and terminate

or perform work accordingly. The version with interruption could be:

• Acquire item (Selector(memory=False))

– Try to buy (Sequence)

* Has enough money (Condition)

* Buy item
– Work

In this tree, the “Has enough money” and “Work” activities are separated. Because of “memory=False”, even when

the “Work” node is running, the BT still executes the “Try to buy” node. When the latter fails, it goes back to the

“Work” node. When the “Try to buy” node finally succeeds, the BT automatically interrupts the “Work” node.

Existing BT libraries are built for control purposes, and rely almost exclusively on the past behaviour statuses

“success”, “failure” and “running” to decide to start or interrupt other behaviours. In our approach, we require that

the status of each behaviour can be enriched with health indicators, such as alarms, specific to each behaviour. This

enriches the ticking mechanism with an alarm gathering mechanism, that can be used for User-Interface (UI) or

automated reasoning purposes. This mechanism can be flexibly implemented in the PyTrees library through the use

of visitors. This feature is illustrated in the next section.

4. Proposal

In traditional satellite system development process, the SE, SA and Operations stages occur sequentially –each

stage commences after the precedent’s completion, and evolve linearly in time –no recurring loop is connecting the

three stages. There is however an exception regarding the SE and SA stages, the activities of which interlock during

system design. Nevertheless, SE and SA activities finish long before the system operation phase starts. Therefore,

if any issue is detected at operation time (which could have been avoided by a change in design), there will be no

modification in the SE or SA documents and models, since the latter would significantly augment the project cost.

This modification would thus be dismissed, even if the operational impact would be beneficial in the long term.

In our proposal, SE and SA documents and models are being concurrently developed with the ODM. Hence oper-

ational aspects can be taken into account in the SE and SA activities. This would not only increase the confidence of

the system design in regards to its representation of the actual system, but also to the foreseeing of possible operational

issues, which can be avoided by modifying the system design, early on the system life cycle [58]. This would also

decrease the system development cost, while optimising system design.

SE is defined by an iterative system development process. All teams involved in the system design (SE/MBSE,

RAMS/SA) are striving for continued improvement through constant dialogue and joint meetings at each iteration

step –concept of concurrent design [59]. Our proposal consists in incorporating the ODMs’ team in the feedback

loop, so as to increase the agility of the system design process. This shall imply the involvement of more stakeholders

(operators / ODM architects) in the design phase.

The proposed methodology implies the constant amelioration of system design at each iteration loop, which in-

creases the efficiency of the system design activities. The co-conception and co-design of system models means that

any modifications are made early on the life cycle development process; in contrast to making changes at the end,

during the V&V and testing phase. Hence an increase of efficiency is achieved, by reducing the total time and cost of

the design phase. The proposal thus not only is agile, but also improves the agility of current methodologies, widely

used in the aerospace industry.

6

4.1. Illustration of the ODM construction process

As mentioned in section 3.3, one of the benefits of BTs is that its elements can be in the form of black boxes and

be furtherly developed when new information is available. This way, BT models can be easily integrated within the

design process. Based on the SE and SA models, and with operational objectives, we can create a model that can then

be used inside a monitoring tool, suitable to diagnosis. An illustration of our proposal is presented in Table 1, where

a juxtaposition of SE and SA information and the implementation into a BT is depicted.

As shown in Table 1, information can be added in the BT models gradually, when new information concerning the

system is available. In this example we tackle the case of an Earth Observation satellite that shall fulfill its primary

mission, which is to take photos of the area(s) of interest on Earth and transmit them back to the OC, as we can see

in the first model iteration. The information coming from preliminary SE activities, here shown in the first column, is

“Satellite must perform Earth Observation”. This information can be translated in a BT model–as shown in the 3rd

column, where a single action node “Observe Earth” is included in the tree, under the “Mission” node–here a Fallback

node.

Throughout the system design development, the FMEA team can produce new system information, as shown in

the second column, as for example, “Mission may fail”. This information can be integrated in the BT model with the

addition of a new action node (“Mission Fail”), on the right side of the “Observe Earth” node, which represents the

system’s nominal mode. This would mean that, if the “Observe Earth” node ticking returns “failure”, the “Mission

Fail” node will be ticked. If the “Observe Earth” node returns “success” or “running”, the “Mission Fail” node will

not be ticked.

In the third iteration, we assume the information “A mission fail can sometimes be mitigated by putting the

Satellite on Standby Mode” is available by the SE team. This information can be integrated in the BT model by

adding a new action node between the “Observe Earth” and “Mission Fail” node, which represents the “Standby”

mode of the system. Consequently, if the “Observe Earth” node ticking returns “failure”, the “Standby” node will be

ticked. If the “Standby” node also returns “failure”, the “Mission Fail” node is ticked. If the “Observe Earth” node

returns “failure” and the “Standby” node returns “success” or “running” the “Mission Fail” node will not be ticked.

The latter would signify–in case of system monitoring, that the system is currently in Standby mode.

The SE activities might then conclude that the Earth observation activity has three phases: capture photos, save

photos, send photos to Operations Centre. The “Observe Earth” action node can then be turned into a Sequence node

in the BT model, and have three children, namely “Capture photos”, “Save photos” and “Send photos”. This would

mean that if the “Capture photos” activity is successful, then the “Save photos” activity can be performed. Similarly,

if the “Save photos” activity is successful, the “Send photos” activity is able to be performed. If one of the activities

cannot be performed, the “Observe Earth” activity will fail, and so the BT will return “failure” as well.

Lastly, we assume that the FMEA teams communicate to the SE teams that a fault leading to instrument over-

heating thus causing the mission to fail can be detected by the operator, if able to monitor the instrument’s health

status data during the “Capture photos” phase. The SE team can then conclude that adding temperature monitoring

capabilities in the picture capturing instrument can help prevent system failure, and implement it in the system design.

This new design modification shall also be added in the BT; this way the BT model is up-to-date with the SE and SA

system models.

4.2. Exploitation of the ODM: Diagnostic Tools

The ODM is being created in parallel with the system functional and dysfunctional models and documents. How

this activity ultimately improves the system’s resilience is out of the scope of this paper, since there are many more

steps in between. However, we can already point out that since the ODM is created at the design stage, it is possible

to analyze it, identify design flaws that may impede operations, and derive new SE and SA requirements to address

these flaws.

The most direct way to use the ODM is to build a UI component out of it, that displays the behaviour statuses in

a hierarchical way, including possible alarms. The hierarchical nature of the model helps operators focus on relevant

behaviours to quickly pinpoint problems and launch appropriate troubleshooting procedures.

Automated diagnosis techniques based on models [3] or data [4] can easily be integrated when they focus on

particular components or functions of the system. Their output can be used to raise alarms in the associated behaviours,

7

Table 1: Illustration of the first iterations of a satellite design. At each iteration, the BT model can incorporate information coming from the system

design process related activities, while remaining at each step a valid model.

Functional textual
information

Dysfunctional textual
information

Behaviour Tree

Satellite must perform
Earth Observation

Mission

Observe
Earth

Mission may fail

Mission

Observe
Earth

Mission
Fail

A mission fail can
sometimes be mitigated

by putting the Satellite on
Standby Mode

Mission

Observe
Earth

Standby

Mission
Fail

Earth observation activity
has 3 phases: capture

photos, save photos, send
photos to OC

Mission

Observe
Earth

Standby

Mission
Fail

Capture
photos

Save
photos

Send
photos

A fault leading to instrument
overheating causing the mission

to fail can be detected by
operator monitoring health
status data during “Capture

photos” phase

Add instrument
temperature monitor for

operator

Mission

Observe
Earth

Standby

Mission
Fail

Capture photos
→ Temperature

Save
photos

Send
photos

8

or alternatively the automated diagnosis tool can be considered a behaviour in itself, that raises alarms when detecting

abnormal situations.

The ODM is a model that can be used to support automated reasoning techniques. A pattern of alarms in some

behaviours could be automatically associated to a diagnosis, or a troubleshooting procedure. There are many ways

to implement such reasoning (case-based reasoning, decision rules, constraint programming), that depend on aspects

specific to the system and its environment.

Taking the example illustrated in Table 1 as a use case, we created a tool to display the status of the BT nodes called

at each execution i.e. the BT nodes’ response to the embedded ticking mechanism, which can be one of the three:

“Success”, “Failure” or “Running”. Each execution is defined by an incremental time step T (tn), where t = t0, ..., tn−1,

n ∈ Z, t0 = 0. We also implemented an “Alarm” feature, so that raised alarms associated with a behaviour can also

also appear in the tool interface.

Table 2 shows an example interface of a diagnostic tool using the BT model of the last row and column of Table

1 as its ODM, after 3 time executions. In this case scenario, we can observe that in the first execution (T0), the status

of the root node “Mission” is “Running”, since the status of its first node “Observe Earth” is also “Running”. As a

Fallback node, the “Mission” node “inherits” the status of its first successful or running child node. After another

“Running” interval, the status of the satellite mission function returns “Sucess”, indicating the mission’s successful

completion (with or without errors in between).

The Sequence node “Observe Earth” needs all of its children nodes to succeed in order for it to take the status

“Sucess”; on the contrary, if at least one of its children nodes returns “Failure”, the “Observe Earth” function would

equally fail. In this case, its first child node “Capture Photos”, along with the temperature check of its camera sensor

has successfully completed its function. Then, we can see that the following function “Save Photos” is “Running”,

meaning that the satellite is in the process of saving the photos taken. Thus the function “Observe Earth” is in process,

hence the satellite is currently undergoing its principal mission.

Table 2: Diagnostic tool UI example.

Type of Behaviour Status Status Status

Node Name T0 T1 T2

Fallback Mission Running Running Success

Sequence Observe Earth Running Running Success

Action
Capture Photos /

Check Temperature
Success Success Success

Action Save Photos Running !Alarm! Success Success

Action Send Photos – Running Success

Action Standby – – –

Action Mission Fail – – –

However, we can see that the “Save Photos” function has raised an alarm, which would indicate to the operator

that there might be a problem related to the On-Board Computer (OBC), the memory e.g. over-warmed electronics,

etc. In such case, the operator shall have a troubleshooting sequence related to each error or alarm raised, which they

would follow in order to establish a road-map leading to the fault resolution. In the next time interval (T1), we can

safely assume that the satellite is in the process of sending the photos to the OC, while in the third (T2), that the

satellite has successfully completed its mission for the moment.

If the operator had access solely to the information presented in the last column (T2), which only displays the

results of the “Observe Earth” function –and not the underlying process, they would not be able to “see” the alarm

raised during the photos saving function. A model-based diagnostic tool which uses an ODM with a BT formalism

can have several benefits over traditional diagnostic procedures, such as the one illustrated in this use case scenario.

Effectively, a comparison with current monitoring methods can only be made by using a real-life model of a complex

satellite system, and feedback from operators. In this paper we present only a proof-of-concept.

9

5. Conclusion

Monitoring tools for diagnosis during system operations are, to this day, still lacking important information needed

for the operators to perform their supervision and diagnostic tasks efficiently. They mainly rely on knowledge acquired

through previous experience as well as engineers’ and operators’ know-how, rather than system design elements. For

this reason we propose a methodology for the concurrent construction of a model dedicated to system monitoring

for diagnosis, along with the system design (construction of SE and SA models). Our methodology would not only

increase the agility of the system development process, but also the confidence on the system design by creating a

monitoring tool which is equally based on its design information as well as ROE. Eventually, our proposal shall be

validated by real-life operators, after having tested the model’s integration in a specific tool, as part of a representative

case study. We plan to evaluate it through feedback from industrial partners, research labs, and space agencies.

References

[1] W. Kim, S. Katipamula, A review of fault detection and diagnostics methods for building systems, Science and Technology for the Built

Environment 24 (2018) 3–21.

[2] K. Djebko, F. Puppe, H. Kayal, Model-based fault detection and diagnosis for spacecraft with an application for the sonate triple cube

nano-satellite, Aerospace 6 (2019).

[3] J. de Kleer, J. Kurien, Fundamentals of model-based diagnosis, IFAC Proceedings Volumes 36 (2003) 25–36. 5th IFAC Symposium on Fault

Detection, Supervision and Safety of Technical Processes 2003, Washington DC, 9-11 June 1997.

[4] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, A. K. Nandi, Applications of machine learning to machine fault diagnosis: A review and roadmap,

Mechanical Systems and Signal Processing 138 (2020) 106587.

[5] A. Barua, K. Khorasani, Hierarchical fault diagnosis and fuzzy rule-based reasoning for satellites formation flight, IEEE Transactions on

Aerospace and Electronic Systems 47 (2011) 2435–2456.

[6] P. Baldi, M. Blanke, P. Castaldi, N. Mimmo, S. Simani, Combined geometric and neural network approach to generic fault diagnosis in

satellite reaction wheels, IFAC-PapersOnLine 48 (2015) 194–199. 9th IFAC Symposium on Fault Detection, Supervision andSafety for

Technical Processes SAFEPROCESS 2015.

[7] C. Pittet, A. Falcoz, D. Henry, A model-based diagnosis method for transient and multiple faults of aocs thrusters, IFAC-PapersOnLine 49

(2016) 82–87. 20th IFAC Symposium on Automatic Control in AerospaceACA 2016.

[8] R. J. Patton, F. J. Uppal, S. Simani, B. Polle, Robust fdi applied to thruster faults of a satellite system, IFAC Proceedings Volumes 40 (2007)

1–6. 17th IFAC Symposium on Automatic Control in Aerospace.

[9] A. Valdes, K. Khorasani, A pulsed plasma thruster fault detection and isolation strategy for formation flying of satellites, Applied Soft

Computing 10 (2010) 746–758.

[10] O. Lisagor, L. Sun, T. Kelly, The illusion of method: Challenges of model-based safety assessment, in: 28th international system safety

conference (ISSC), p. Num Pages: 10.

[11] Y. Papadopoulos, M. Walker, D. Parker, E. Rüde, R. Hamann, A. Uhlig, U. Grätz, R. Lien, Engineering failure analysis and design optimisa-

tion with hip-hops, Engineering Failure Analysis 18 (2011) 590–608.

[12] Society of Automotive Engineers (SAE) International, Guidelines and methods for conducting the safety assessment process on civil airborne

systems and equipment, SAE International, p. 331.

[13] O. Lisagor, T. Kelly, R. Niu, Model-based safety assessment: Review of the discipline and its challenges, in: The Proceedings of 2011 9th

International Conference on Reliability, Maintainability and Safety, pp. 625–632.

[14] S. K. Ibrahim, A. Ahmed, M. A. E. Zeidan, I. E. Ziedan, Machine learning techniques for satellite fault diagnosis, Ain Shams Engineering

Journal 11 (2020) 45–56.

[15] W. Wolf, Hardware-software co-design of embedded systems, Proceedings of the IEEE 82 (1994) 967–989.

[16] INCOSE - International Council on Systems Engineering, Guide to the Systems Engineering Body of Knowledge (SEBoK), https://www.

sebokwiki.org/, 2021.

[17] Object Management Group (OMG), Systems Modeling Language (SysML), https://www.omg.org/spec/SysML/Current, 2021.

[18] Object Management Group (OMG), Unified Modeling Language (UML), http://www.omg.org/spec/UML/current, 2021.

[19] EAST-ADL Association, EAST Architecture Description Language (EAST-ADL), https://www.east-adl.info/Specification.

html, 2021.

[20] Thales, ARChitecture Analysis & Design Integrated Approach (ARCADIA), https://www.eclipse.org/capella/arcadia.html,

2021.

[21] Knowledge Based Systems, Inc. (KBSI), Integration DEFinition (IDEF), https://www.idef.com/, 2021.

[22] International Organisation for Standardization (ISO), Object Process Methodology (OPM), https://www.iso.org/standard/62274.

html, 2021.

[23] International Business Machines Corporation (IBM), IBM®Rational®Rhapsody®Architect for Systems Engineers, https://www.ibm.

com/products/systems-design-rhapsody, 2021.

[24] No Magic, Cameo Systems Modeler, http://www.nomagic.com/products/cameo-systems-modeler.html, 2021.

[25] Eclipse Foundation, Eclipse CapellaTM, https://www.eclipse.org/capella/, 2021.

[26] M. Verrastro, I. Dimino, Chapter 21 - morphing devices: Safety, reliability, and certification prospects, in: A. Concilio, I. Dimino, L. Lecce,

R. Pecora (Eds.), Morphing Wing Technologies, Butterworth-Heinemann, 2018, pp. 647–682.

[27] European Cooperation for Space Standardization, ECSS-Q-ST-40C Rev.1: Space Product Assurance - Safety, 2017.

10

[28] M. Machin, E. Saez, P. Virelizier, X. de Bossoreille, Modeling Functional Allocation in AltaRica to Support MBSE/MBSA Consistency, in:

Y. Papadopoulos, K. Aslansefat, P. Katsaros, M. Bozzano (Eds.), Model-Based Safety and Assessment, Springer International Publishing,

Cham, 2019, pp. 3–17.

[29] P.-A. Brameret, J.-M. Roussel, A. Rauzy, Preliminary system safety analysis with limited markov chain generation, IFAC Proceedings

Volumes 46 (2013) 13–18. 4th IFAC Workshop on Dependable Control of Discrete Systems.

[30] N. Leveson, J. Stolzy, Safety analysis using petri nets, IEEE Transactions on Software Engineering SE-13 (1987) 386–397.

[31] X. Chen, J. Jiao, A fault propagation modeling method based on a finite state machine, in: 2017 Annual Reliability and Maintainability

Symposium (RAMS), pp. 1–7.

[32] Laboratoire Bordelais de Recherche en Informatique (LaBRI), AltaRica Project - MEthods and Tools for AltaRica Language, https://

altarica.labri.fr/wp/, last accessed January 2022.

[33] M. Boiteau, Y. Dutuit, A. Rauzy, J.-P. Signoret, The altarica data-flow language in use: modeling of production availability of a multi-state

system, Reliability Engineering & System Safety 91 (2006) 747–755.

[34] T. Prosvirnova, M. Batteux, P.-A. Brameret, A. Cherfi, T. Friedlhuber, J.-M. Roussel, A. Rauzy, The altarica 3.0 project for model-based

safety assessment, IFAC Proceedings Volumes 46 (2013) 127–132. 4th IFAC Workshop on Dependable Control of Discrete Systems.

[35] M. Bouissou, H. Bouhadana, M. Bannelier, N. Villatte, Knowledge modelling and reliability processing: Presentation of the figaro language

and associated tools, IFAC Proceedings Volumes 24 (1991) 69–75.

[36] M. Lipaczewski, S. Struck, F. Ortmeier, Using tool-supported model based safety analysis – progress and experiences in saml development,

in: Proceedings of IEEE International Symposium on High Assurance Systems Engineering, pp. 159–166.

[37] Y. Papadopoulos, J. McDermid, Hierarchically performed hazard origin and propagation studies, in: Proceedings of the 18th SAFECOMP

International Conference, volume 1698, pp. 139–152.

[38] B. Kaiser, D. Schneider, R. Adler, D. Domis, F. Möhrle, A. Berres, M. Zeller, K. Höfig, M. Rothfelder, Advances in component fault trees,

CRC Press, p. Num Pages: 9.

[39] G. Balbo, Introduction to Generalized Stochastic Petri Nets, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 83–131.

[40] ALL4TEC, Safety Architect - Model Based Safety Assessment software, https://www.all4tec.com/en/

safety-architect-fmeca-fta-sofware/, last accessed January 2022.

[41] M. Bozzano, A. Cimatti, O. Lisagor, C. Mattarei, S. Mover, M. Roveri, S. Tonetta, Safety assessment of AltaRica models via symbolic model

checking, Science of Computer Programming 98 (2015) 464–483.

[42] P. Bieber, J. P. Blanquart, G. Durrieu, D. Lesens, J. Lucotte, F. Tardy, M. Turin, C. Seguin, E. Conquet, Integration of formal fault analysis in

ASSERT: Case studies and lessons learnt, in: Embedded Real Time Software and Systems (ERTS2008), Toulouse, France, p. Num Pages: 9.

[43] M. Machin, L. Sagaspe, X. de Bossoreille, Simfianeo, complex systems, yet simple safety, in: Embedded Real Time Software and Systems -

ERTS 2018, p. 4.

[44] M. Colledanchise, A. Marzinotto, D. V. Dimarogonas, P. Oegren, The Advantages of Using Behavior Trees in Mult-Robot Systems, in:

Proceedings of ISR 2016: 47st International Symposium on Robotics, pp. 1–8.

[45] P. Ogren, Increasing Modularity of UAV Control Systems using Computer Game Behavior Trees, in: AIAA Guidance, Navigation, and

Control Conference, American Institute of Aeronautics and Astronautics, Minneapolis, Minnesota, 2012, pp. 1–8.

[46] M. Colledanchise, P. Ögren, How Behavior Trees modularize robustness and safety in hybrid systems, in: 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 1482–1488. ISSN: 2153-0866.

[47] M. Colledanchise, P. Ögren, How Behavior Trees Modularize Hybrid Control Systems and Generalize Sequential Behavior Compositions, the

Subsumption Architecture, and Decision Trees, IEEE Transactions on Robotics 33 (2017) 372–389. Conference Name: IEEE Transactions

on Robotics.

[48] M. Colledanchise, R. Parasuraman, P. Ögren, Learning of Behavior Trees for Autonomous Agents, IEEE Transactions on Games 11 (2019)

183–189. Conference Name: IEEE Transactions on Games.

[49] A. Klöckner, Interfacing Behavior Trees with the World Using Description Logic, in: AIAA Guidance, Navigation, and Control (GNC)

Conference, Guidance, Navigation, and Control and Co-located Conferences, American Institute of Aeronautics and Astronautics, 2013, pp.

1–11.

[50] F. Rovida, B. Grossmann, V. Krüger, Extended behavior trees for quick definition of flexible robotic tasks, in: 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 6793–6800. ISSN: 2153-0866.

[51] J. A. Bagnell, F. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert, M. Kazemi, M. Klingensmith, J. Libby, T. Y. Liu, N. Pollard, M. Pivtoraiko,

J.-S. Valois, R. Zhu, An integrated system for autonomous robotics manipulation, in: 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 2955–2962.

[52] M. Colledanchise, P. Ögren, Behavior Trees in Robotics and AI: An Introduction, arXiv:1709.00084 [cs] (2018). ArXiv: 1709.00084.

[53] S. Garcı́a, P. Pelliccione, C. Menghi, T. Berger, T. Bures, High-level mission specification for multiple robots, in: Proceedings of the 12th

ACM SIGPLAN International Conference on Software Language Engineering, SLE 2019, Association for Computing Machinery, New York,

NY, USA, 2019, pp. 127–140.

[54] Google JAX, PyTrees Library Documentation, https://py-trees.readthedocs.io/en/devel/, last accessed January 2022.

[55] Google JAX, PyTrees Github space, https://github.com/splintered-reality/py_trees, last accessed January 2022.

[56] Google JAX, PyTrees Library Documentation - Composites, https://py-trees.readthedocs.io/en/devel/composites.html, last

accessed January 2022.

[57] R. Ghzouli, T. Berger, E. B. Johnsen, S. Dragule, A. Wasowski, Behavior trees in action: a study of robotics applications, in: Proceedings of

the 13th ACM SIGPLAN International Conference on Software Language Engineering, ACM, Virtual USA, November 2020, pp. 196–209.

[58] W. K. Vaneman, The system of systems engineering and integration ”vee” model, in: 2016 Annual IEEE Systems Conference (SysCon), pp.

1–7.

[59] S. FINGER, M. S. FOX, F. B. PRINZ, J. R. RINDERLE, Concurrent design, Applied Artificial Intelligence 6 (1992) 257–283.

11

Authors index

Abella, Jaume, 105
Abou Faysal, Joelle, 43
Adalbert, Michaël, 19
Adedjouma, Morayo, 117
Ait Bensaid, Samira, 53
Al Sheikh, Ahmad, 311
Alcaide, Sergi, 105
Alecu, Lucian, 333
Ameur-Boulifa, Rabea, 211
Andrieu, Olivier, 231
Arnal, Fabrice, 311
Asavoae, Mihail, 53, 561
Assioua, Yasmine, 211
Astier, Rémy, 549
Azaiez, Selma, 561
Aı̈ello, Ombeline, 31

Bailleul, Quentin, 301
Barisic, Ankica, 43
Baron, Claude, 475, 583
Barrere, Rémi, 9
Bas, Francisco, 105
Baufreton, Philippe, 549
Beck, Thomas, 451
Belschner, Tim, 429
Ben Amor, Slim, 127
Benedicte, Pedro, 105
Bergaoui, Ayoub, 311
Berne, Alexandre, 561
Berthou, Pascal, 311
Bertoin, David, 347
Bhattacharjee, Arpita, 265
Biglari, Raheleh, 121
Binder, Benjamin, 53
Blanquart, Jean-Paul, 549
Boniol, Frédéric, 451, 523
Bonnin, Hugues, 333
Boulanger, Jean-Louis, 549
Bousquet, Fabrice, 251
Boyer, Marc, 293

Brunel, Julien, 523
Brusq, Gabriel, 99
Bräunling, Felix, 157
Buettner, Bernd, 231
Burton, Mark, 285

Cabo, Guillem, 105
Camus, Jean Louis, 549
Cappi, Cyril, 323, 333
Carle, Thomas, 19
Cazorla, Francisco J, 105
Cazorla, Francisco J., 501
Certes, Jonathan, 63
Chabrol, Damien, 381
Chapdelaine, Camille, 323
Chaudemar, Jean-Charles, 31
Chenevier, Florent, 511
Chianca Ferreira, Bruno, 111
Christofi, Nikolena, 583
Claraz, Denis, 369
Colaço, Jean-Louis, 231
Comar, Cyrille, 133, 549
Constant, Olivier, 93
Courbis, Anne-Lise, 221
Cucu-Grosjean, Liliana, 127
Cuenot, Philippe, 301
Cêtre, Cyril, 9

Daigmorte, Hugo, 293
De Grancey, Florence, 511
de Grancey, Florence, 537
de la Cruz, Raul, 501
De Saqui-Sannes, Pierre, 31
de Simone, Robert, 381
Delmas, Kevin, 333, 523
Demachy, Romaric, 77
Demarets, Romain, 487
Denil, Joachim, 121
Denis, Richard, 487
Devy, Michel, 251

597

Dion, Bernard, 231
Dissaux, Pierre, 99
Dissoubray, Sylvan, 549
Djemai, Tanissia, 311
Djoudi, Adel, 393
Drif, Youssouf, 311
Dross, Claire, 133
Ducamp, Christophe, 583
Ducamp, Mathilde, 171
Dufour, Guillaume, 111
Dumérat, Arnaud, 127

Ermont, Jérôme, 451
Esteban, Phillipe, 475
Evripidou, Christos, 501

Fabre, Jean Charles, 83
Faura, David, 569
Faure, Cyril, 561
Feirreira, Florian, 9
Fel, Thomas, 333
Ferdinand, Christian, 201, 405
Fernandez, Mikel, 501
Fontaine, Arnaud, 393
Friese, Max Jonas, 369
Féliot, David, 393

Gabreau, Christophe, 537
Gardes, Laurent, 323, 333
Gassino, Jean, 549
Gauffriau, Adrien, 347, 537
Generes, Alexis, 83
Genestet, Jean-Brice, 537
Gerasimou, Simos, 117
Gerchinovitz, Sébastien, 333
Gilcher, Florian, 133
Girbal, Sylvain, 569
Gohring de Magalhaes, Felipe, 145
Gracia Pérez, Daniel, 569
Gratadour, Damien, 9
Gremillet, Olivier, 311
Guilmeau, Sebastien, 77, 583
Guitton-Ouhamou, Patricia, 211

Haliulin, Alexander, 87
Hamelin, Etienne, 561
Harnois, Serge, 145
Harris, Phil, 501
Herbulot, Ariane, 251
Hetherington, David, 189
Hoffmann, Thorben, 429
Hugues, Jerome, 419
Hána, Martin, 393

Jaffres-Runser, Katia, 301

Jan, Mathieu, 53
Jean, Xavier, 127
Jegu, Victor, 523
Jenn, Eric, 323, 333
Johansson, Rolf, 465
Junghanns, Andreas, 265
Jünger, Lukas, 285

Kaestner, Daniel, 201, 405
Keerthi, K, 357
Kosmatov, Nikolai, 393
Kougblenou, Kossivi, 127
Kramer, Franz, 265
Kuntumalla, Purushottam, 265
Kurz, Christoph, 429
Kästner, Daniel, 157
Křıženecký, Milan, 393

Lambolais, Thomas, 221
Lauer, Michaël, 83
Le Noir, Jérôme, 93
Le Rhun, Jimmy, 569
Ledinot, Emmanuel, 93, 549
Lefevre, Baptiste, 323, 333
Lefoul, Jean-Baptiste, 145
Lesens, David, 171
Leuper, Rainer, 285
Loubes, Jean-Michel, 243
Loveless, Tim, 501

Mader, Ralph, 357, 369
Maillet, Luc, 451
Mallet, Frederic, 43
Mallon, Christoph, 201
Mamalet, Franck, 333
Mauborgne, Laurent, 201
Mazzocchetti, Fabio, 105
Mertens, Joost, 121
Methni, Amira, 381
Mezzetti, Enrico, 501
Monate, Benjamin, 127
Moothedan, Geopeter, 357
Morgan, Benôıt, 63
Most, Thomas, 231
Mouy, Patricia, 393
Moy, Yannick, 133
Mraidha, Chokri, 117
Mussot, Vincent, 333

Najork, Max, 231
Nicolescu, Gabriela, 145

Ohayon, Franck, 393
Ollier, Guillaume, 117

598

Pacalet, Renaud, 211
Pagetti, Claire, 523, 537
Pahun, Laurent, 475
Pantel, Marc, 583
Pauwels, Edouard, 243
Perrotin, Esteban, 251
Philippe Quéré, Philippe Quéré, 549
Picard, Agustin Martin, 243
Picard, Sylvaine, 323
Pister, Markus, 405
Plasson, Philippe, 99
Poitou, Olivier, 31
Ponsolle, Ludovic, 333
Potop-Butucaru, Dumitru, 381
Procter, Sam, 419
Prof. Dr. Mottok, Juergen, 275
Pucel, Xavier, 583

Ranoarivony, Philippe, 171
Rebeiro, Chester, 357
Reichel, Reinhard, 429
Reina, Juan M., 501
Ribas De Amaral, Janaina, 231
Ricque, Bertrand, 549
Rochange, Christine, 19
Roques, Pascal, 189
Roux, Pierre, 293
Roy, Matthieu, 251
Rubini, Stéphane, 99
Röhmel, Tobias, 285
Röper, Jan, 265

Salort, Joshua, 511
Samuel, Jacob, 357
Scharbarg, Jean-Luc, 301
Schmid, Michael, 275
Schreiber, Werner, 357
Sen Gupta, Jayant, 347
Senn, Eric, 181
Serratice, Franck, 549
Sevin, Arnaud, 9
Silvestre, Guthemberg, 111
Singhoff, Frank, 99
Sirgabsou, Yandika, 475
Siron, Fabien, 381
Soumarmon, Thomas, 323
Stilkerich, Isabella, 157

Taillandier, Virginie, 487
Terraillon, Jean-Loup, 441
Thabet, Farhat, 53
Thompson, Sam, 501
Tollec, Simon, 53
Torres Aurora Dugo, Alexy, 145

Trabelsi, Kods, 561
Tran, Hai Nam, 99

Vigouroux, David, 243
Vincenot, Quentin, 243
Von Hasseln, Hermann, 369

Wedajo, Brouk, 487
Wegener, Simon, 157
Wehaiba El Khazen, Marwan, 127
Wilhelm, Stephan, 201
Wipperfürth, Robert, 429

Zalmai, Nour, 43
Zamolodtchikov, Petr, 243

599

	Contents
	Program Committee
	We.1.A – GPU
	Real-time high performance computing platform using a Jetson Xavier AGX
	PasTiS: building an NVIDIA Pascal GPU simulator for embedded AI applications

	We.1.B – Model Driven Engineering I
	Sizing a Drone Battery by coupling MBSE and MDAO
	Adaptation of an auto-generated code using a model-based approach to verify functional safety in real scenarios

	We.1.C – HW Formal Verification
	Formal Hardware Modeling for Analyzing Safety and Security Properties
	An Automated Framework Towards Widespread Formal Verification of Complex Hardware Designs

	We.2.PO – Poster overview
	Structural consistency of MBSE and MBSA models using Consistency Links
	Experimenting with Dynamic Cache Allocation to Improve Linux Real-Time Behaviour
	Model-based design of high-performance computer-based architectures
	Towards Model-Based Support for STPA as a Capella Add-On
	PLATO N-DPU ON-BOARD SOFTWARE: AN IDEAL CANDIDATE FOR MULTICORE SCHEDULING ANALYSIS
	Unboxing the Sand: on Deploying Safety Measures in the Programmable Logic of COTS MPSoCs
	Towards a Novel UAV Position Tracking and Reporting System for Very Low Level Airspace
	A cross-domain framework for Operational DesignDomain specification
	Towards Real-time Adaptive Approximation
	STARTREC: Verification of a safety-critical system for autonomous vehicles

	We.3.A – Memory Management
	Dynamic Memory Management in Critical Embedded Software
	Certifiable Memory Management System for Safety Critical Partitioned System
	Whole-System Analysis for Memory Protection and Management

	We.3.B – Model Driven Engineering II
	Automatic Test Generation - An Industrial Feedback
	ROS communications profiling for bus load analysis from AADL
	STPA Analysis of Automotive Safety and Security Using Arcadia and Capella

	We.3.C – Formal Methods
	Static Data and Control Coupling Analysis
	Automatic Support for Requirements Validation
	Property Expression and Verification in an Incremental Model Development Framework: a Case Study

	We.4.A – AI:Assurance & Testing I
	Programming Neural Networks Inference in a Safety-Critical Simulation-based Framework
	Leveraging Influence Functions for Dataset Exploration and Cleaning
	Towards the certification of vision based systems: modular architecture for airport line detection

	We.4.B – Simulation
	Combining Real and Virtual Electronic Control Units in Hardware in the Loop Applications for Passenger Cars
	Investigation of Scheduling Algorithms for DAG Tasks through Simulations
	SytHIL: A System Level Hardware-in-the-Loop Framework for FPGA, SystemC and QEMU-based Virtual Platforms

	We.4.C – Network
	Checking validity of the min-plus operations involved in the analysis of a real-time embedded network
	Assessing a precise gPTP simulator with IEEE802.1AS hardware measurements
	Smart Management of Virtualized Network Service Chains in 5G Infrastructure

	Th.1.A – AI: Assurance & Testing II
	A testing approach for safety-critical Machine Learning systems
	Can we reconcile safety objectives with machine learning performances?

	Th.1.B – Security
	Hijacking an autonomous delivery drone equipped with the ACAS-Xu system
	Practical Trust x Performance Metrics for Block Cipher Evaluation in Automotive Environments

	Th.1.C – Logical Execution Time
	A dynamic reference architecture to achieve planned determinism for automotive applications
	The synchronous Logical Execution Time Paradigm

	Th.2.A – Formal Methods & Certifification
	A Bottom-Up Formal Verification Approach for Common Criteria Certification: Application to JavaCard Virtual Machine
	Obtaining DO-178C Certification Credits by Static Program Analysis

	Th.2.B – Assurance By Design
	Architecture-Supported Audit Processor: Interactive, Query-Driven Assurance
	Automated Generation of Requirements for the Highly Fault-Tolerant System Behaviour of a Distributed and Integrated Avionics Platform

	Th.2.C – Space applications
	Digital transformation in the European Space Industry
	Impact of environment on the execution of a real-time Linux process on a multicore platform

	Th.4.A – Autonomy
	Efficient Use of Systems Theoretic Process Analysis for Automated Driving Systems
	Software fault propagation patterns for model-based safety assessment in autonomous cars
	Pave the way for connected & autonomous driving at level crossings

	Th.4.B – Multicore
	MASTECS Multicore Timing Analysis on an Avionics Vehicle Management Computer
	Using IA to estimate Memory Interference Impact on Avionics Software on Multicore Platform
	Modelling and analyzing multi-core COTS processors

	Th.4.C – Assurance & Certification
	Toward the certification of safety-related systems using ML techniques: the ACAS-Xu experience
	Do safety standards need radical changes ?

	Th.5.A – Monitoring
	Multilayer Monitoring for Real-Time Applications
	Safety and Security monitoring convergence at the dawn of Open Hardware

	Th.5.B – Process modelling
	Towards an agile, model-based multidisciplinary process to improve operational diagnosis in complex systems

	Authors index

