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Introduction

Mismatching energy constraints and trends

Energy constraints

@ Carbon neutral society
o Low carbon footprint

@ Battery powered devices

Energy trends

@ Consume everywhere

o Internet of (every-)Things (loT), IoET, Industrial IoT (lloT), fog/edge computing
@ Energy hungry workloads

e Al/ML, autonomous driving, computer vision, video streaming, etc.
@ The scary figures

e Communication technology is expected to become 21% of global electricity usage [2]
(903 TWh)

o the “Global DataSphere” will grow to 175 ZB by 2025 [51]

@ 62.7% of the total system energy, on average, is spent on data movement between
main memory and the compute units [8]
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Introduction

Issues and challenges

Global Data Centers

2010 to 2018

Workloads: 6x

Internet Traffic: 10x w
§

Storage Capacity: 25x

Source: https://i2.wp.com/semiengineering.com

Ultra-low-power

Energy efficient architectures for the loT-edge-cloud computing continuum
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Introduction

The quest for (energy) performance

Application

Match

Architecture Tools/compiler
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Introduction

Architectural solutions

Energy-efficiency Energy-efficiency
(MOPS/mW) (MOPS/mW)
N

1000 @ 1000 |
100 @ 100

" "

Low-level High-level ”
programming  programming Flexibility
(Programming)

Performance
(GOPS)

Near-Fixed

Source: Liu et al. [39]

Coarse Grained Reconfigurable Architecture
@ energy efficient solution

o trade-off performance/flexibility
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Three decades of CGRA

CGRA architectures

30 years of architectures

Inventory of existing CGRAs done in [29, 56, 13, 60, 39, 48]
@ Hartenstein 2001 [29]: the first decade
@ De Sutter et al. 2010 [19]: book chapter
@ Wijtvliet et al. 2016 [60]: 25 years of CGRAs
@ Liu et al. 2019 [39]: taxonomy, classification
@ Podebas et al. 2020 [48]: performance perspective

v

Main limitations

@ Many programmed by hand (assembly level)

@ Unadapted programming model
@ How to efficiently make use of the available computing resources?
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Three decades of CGRA
Example of CGRA

. (c) Configuration :
' A Generic CGRA design .

14-bit Configuration Register

Incoming data-paths
Outgoing data-paths

3 8 5 2 0

. (a) Mesh of RCs (b) Reconfigurable Cell}

st s

lllustration of a simple CGRA taken from [48], showing the mesh topology (a), the internal architecture of the Reconfigurable

Cell, RC (b), and an example of the configuration register (c).

[48] A. Podobas, K. Sano, and S. Matsuoka. A survey on coarse-grained reconfigurable architectures from a performance perspective. IEEE Access, 2020.
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Three decades of CGRA

Coupling with a host processor

| Program Fetch ‘
| Tnstruction Dispatch
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ADRES [42] Control — — — Data ————  Chip boundary:+....se.eeeee
< MorphoSys [53]
[42] Mei et al. ADRES: An architecture with tightly coupled vliw processor and coarse-grained reconfigurable matrix. FPL, 2003
[63] Singh et al. Morphosys: an integrated reconfigurable system for data-parallel and ion-intensive ications. /IEEE on C 2000.
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Three decades of CGRA

CGRA mapping
Typical CGRA compilation flow

Source code
int sun = 0; 8
for (int i = 0; i < size; ++i) { @ @
sum+=A[1]*B[1];
)
Front-end 0
(parsing, abstract
syntax tree, ...) 6
Middle-end (=)

(transformations,
optimisations, ...)

sum+=A[i] *B[i]
i

"] from other tiles

Back-end

(mapping)

Spatial
mapping
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Three decades of CGRA

CGRA mapping

CGRA mapping problem formulation

Bind in place and schedule in time operations of the application on the cells of the

CGRA, in a short time, while guaranteeing the dependencies, such that the application
executes as fast as possible

CGRA mapping problem

@ Solve 2 NP-complete problems: scheduling and binding
+ register allocation

| \

@ Mapping might fail!

Approximate methods Exact methods
Heuristics Meta-heuristics ILP/B&B CsP
Population-based local search
Spatial mapping [30, 62, 37] GA [34] SA [58, 23] ILP [12, 45, 62]
Temporal mapping  [59, 7, 36, 65, 46, 18, 24, 10] SA[40] ILP [9] B&B [32] ~ CP [49] SAT [43] SMT [20]
Binding [61, 31, 27, 47,17, 26] QEA [35] SA[21, 30, 52] ILP [25, 35]
Scheduling [17, 26, 35, 27, 6, 65, 52, 5] ILP [25, 44]

A review of binding and scheduling techniques for automated spatial and temporal mapping of applications on CGRAs.
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Three decades of CGRA

CGRA mapping

Mapping if-then-else (ITE) constructs

@ Full predication [3]

@ Partial predication [11]

@ Dual-issue single execution [28, 33, 63]
@ Direct CDFG mapping [14]
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Three decades of CGRA

CGRA mapping

Mapping loops
@ Modulo scheduling

@ Modulo routing resource graph (MRRG) [41, 33]
o Graph-based approaches [18, 46]
o ILP

@ Direct CDFG mapping [14]
© Hardware loops [4, 54, 57]
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Three decades of CGRA

Timeline
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Integrated Programmable-Array (IPA)

Integrated Programmable Array (IPA)

Inside a Processing Element
Integration with data on-chip memory

From the neighbouring PEs To and from memory interconnect

Global Context fjlf Bank J§ Bank N Bank Bank
Memory w0 f # [l - [EIBW TCDM W

- L
Iy
- =
: > : < . Ng ; \_‘.—17 Global Global
o 52 12 k2 12 Gated a clock stalls from
P 5 lock . driven ! all th
- - I e A R
PEs the PEs PEs the PEs.
»ﬁ< »ﬂ PMU: Power Management Unit
[ R 0_1 RRF: Regular Register file
CRF: Constant Register File
TCDM: Tightly Coupled Data Memory CM: Context Memory
PE: Processing Element OPR: Output Register

CR: Control Register
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Integrated Programmable-Array (IPA)

Integration in a PULP cluster
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Integrated Programmable-Array (IPA)

Compilation flow

C Code CGRA
model
Compilation

Update
constraints

Scheduling &
placement

transformation

Stochastic
pruning

Assembly of
the CDFG
mapping

Assembler
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constant) ¢/

Ultra-low Power Computing with CGRAs

Compilation method

@ Except array inputs and
outputs, all the scalar variables
are placed in the register files of
the PEs

@ Modified Forward traversal of
CDFG to minimize the number
of constraints

@ Introduce routing to reach the
correct variable, while mapping
the basic blocks
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Compilation steps

DFG mapping Graph transformations

@ Backward traversal of operation Nemrizaion @y Assmmen ? 9
nodes ;
@ List scheduling based on priority ? ? :
(fanout) !
w o ¢¢¢9¢°9¢¢¢¢¢
@ Partial Levi’s algorithm to find EEEEEEEE EEE
common subgraphs e Cotingroung  Rowmg
v

@ Graph transformations
@ Stochastic pruning
o Keep a minimum number of partial
mappings to find a complete
mapping
e Keep a maximum number of partial
mappings to manage scalability
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Integrated Programmable-Array (IPA)

Experimental Setup

Technology and tools

@ STMicroelectronics 28 nm UTBB FD-SOI
@ Synopsys design compiler 2014.09-SP4
@ Synopsys PrimePower 2013.12-SP3

@ Questa Sim-64 10.5¢c

CGRA

@ 4x4 array with 16 PEs

@ 20x32-bit (Instructions), a 32x8-bit RRF, and 32x 16-bit CRF
@ 100 MHz

@ clock gating
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Integrated Programmable-Array (IPA)

Results

Overall instructions executed and energy consumption in IPA vs CPU [16]

Kernels FIR MatM (16x16) Convolution SepFilter NonSepFilter FFT DC Filter
Configuration cycles 7 88 88 90 98 87 145
Execution cycles 6071 11940 56241 827685 1852382 8076 4748

jpa  Total number 44294 110946 531815 7349843 17486486 76310 28868
of instructions executed
Active PEs/cycle (%) 46.1 58.5 59.2 55.5 59 59.7 39.5
Energy (uJ) 0.022 0.043 0.202 2.98 6.669 0.032 0.017

Energy (uJ) in

0.047 0.077 0.479 7.152 11.704 0.063 0.045
non-clock-gated IPA
CPU Execution cycles 37677 96 256 616805 5982730 9084101 164480 50085
Energy (1J) 0.132 0.337 2.159 20.94 31.794 0.576 0.175
Speed-up 6.21x 8.06x 10.97x 7.23x 4.9x 20.3x 10.55x
Energy-gain 6x 7.84x 10.69x 7.03x 4.77x 18x 10.29x
[16] Satyajit Das et al. An gy-efficient ir P array and ilation flow for ultralow power p ing, IEEE TCAD, 2019.
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Integrated Programmable-Array (IPA)

Results
Performance evaluation in execution time (ns) for different configurations in the heterogeneous platform [15]
Speed- Speed-
Data Single- Multi- P . up
. upin IPA .
Kernels size core core multi- (ns) in
(KB) (ns) (ns) IPA
core (x)
(x)
MatMul 8 3,358,740 435,180 7.72 432,630 7.76
Conv 8 9,733,380 1,520,840 6.4 1,494,860 6.51
FFT 1 767,640 142,720 5.38 94,510 8.12
FIR 0.84 182,500 33,460 5.45 33,410 5.46
?i?t%r 10 39,870,420 6,404,160 6.23 6,334,700 6.29
?i(l)tl;?‘l 10 117,024,880 40,894,260 2.86 28,865,890 4.05
GCD 0.01 2,951,160 2,951,160 1 61,1300 4.83
Cordic 0.06 9,000 7,000 1.29 3,610 2.49
'\D”;'t'h 8 244,640 164,640 1.49 70,300 3.48

[15] Satyajit Das etal. A
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for energy efficient near-sensor data analytics, ISCAS, 2018.
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Integrated Programmable-Array (IPA)

Results
Energy consumption evaluation in i J for different configurations in the heterogeneous platform [15]
Kernels Single-core | Multi-core IPA of
Energy Active
PEs/cycle
MatMul 1.247 0.313 0.208 58.5
Convolution 2.876 1.095 0.658 59.2
FFT 0.292 0.087 0.042 59.7
FIR 0.08 0.026 0.026 46.1
Separable filter 16.663 4.611 4.28 55.5
Sobel Filter 51.491 29.444 12.701 51.2
GCD 1.151 1.151 0.257 6.25
Cordic 0.004 0.003 0.001 50
ManhDistance 0.1 0.095 0.03 48.5

cluster with

[15] Satyajit Das etal. A
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Integrated Programmable-Array (IPA)

Comparison with state of the art architectures

Ultra-low-power CGRAs

High-performance CGRAs

ULP-SRP [34] CMA [55] IPA [17] HyCube [33] Revel [75] SGMF [71] SNAFU

Fabric size 3x3 8x10 4x4 4x4 5x5 8x8 + 32 mem NxN (6x6 in
SNAFU-ARCH)
NoC Neighbors only Neighbors only Neighbors only Static, bufferless, ~ Static & dynamic  Dynamic routing | Static, bufferless,
multi-hop NoCs (2X) multi-hop

PE assignment Static Static Static Static Static or dynamic  Dynamic Static
Time-share PEs? Yes Yes Yes Yes Yes Yes No
PE firing Static Static Static Static Static or dynamic  Dynamic Dynamic
Heterogeneous PEs? No No No No Yes Yes Yes
Buffering (approx.) — — 188B / PE 272B/ PE ~1KB /PE >1KB/PE 40B /PE
Power 22mW 1T mW 3-5mW 15-70 mW 160 mW 20W <ImW
MOPS/mW (approx.) 30-100 100-200 140 ‘ 60-90 60 60 305

Table I: Architectural comparison of SNAFU to several prior CGRAs.

Taken from [23]

[23] Gobieski et al. Snafu: An ultra-low-power, energy-minimal cgra-generation framework and architecture. /SCA, 2021
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Integrated Programmable-Array (IPA)

IPA features

@ Architectural support

e PMU: Power Management Unit
o CRF: Constant Register File
o Global synchronization
o ISA-based configurations (20/21-bits)
@ Compiler
e Direct CDFG mapping (register allocation approach)
o Backward traversal of operation nodes
o List scheduling based on priority (fanout)
o Partial Levi’s algorithm to find common subgraphs
o Dynamic Graph transformations
@ Stochastic pruning

K. Martin (UBS/Lab-STICC) Ultra-low Power Computing with CGRAs
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Summary

IPA: Integrated Programmable Array

@ Ultra-low power domain
@ Integer operations
@ CDFG support

TRANSPIRE: transprecision and SIMD support

@ Floating-point operations

@ Multi-cycle operators
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Perspectives

@ Still ever promising approach?
@ New momentum

o Xilinx Al engine
o Reconfigurable Dataflow Architecture/Accelerator (RDA)

Embedded systems

@ Small grids (4x4, 5x5, 6x6) @ (Very) Large grids (100s to 1000s of
@ Temporal mapping cells)
@ (Ultra) Low Power @ Spatial mapping

@ HPC: High Power Consuming
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Perspectives

CGRAs for Al

Artificial Intelligence (Al) applications
@ Xilinx Al-engine [22]
@ Reconfigurable Dataflow Architecture [50]
@ Reconfigurable Dataflow Accelerator [64]

Scalability challenge
v

Al for CGRAs

@ Machine learning to optimize the mapping [38]

@ Single model: functional + non functional contraints
v

K. Martin (UBS/Lab-STICC)
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CGRA + emerging memory

technologies and organisations

@ MRAM, FeRAM, ReRAM, PCM, ...

@ Computing in/near memory
v

Open-source frameworks

@ DSAGEN [58]
@ OpenCGRA [55]
@ CGRA-ME [1]
@ CCF
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Ultra-low Power Computing with CGRAs

THANK YOU

... and thanks to Philippe, Matthieu, Gwenolé, Luca, Davide, Mickaél, Thomas, Satyajit, Rohit, Chilanka
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