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Uncertainty exists regarding whether cyclophilin D (CypD), a mitochondrial matrix
protein that plays a key role in ischemia-reperfusion injury, can be a pharmacologi-
cal target for improving outcomes after cardiac arrest (CA), especially when thera-
peutic hypothermia is used. Using CypD knockout mice (CypD�/�), we investigated
the effects of loss of CypD on short-term and medium-term outcomes after CA.
CypD�/� mice or their wild-type (WT) littermates underwent either 5 minute CA fol-
lowed by resuscitation with and/or without hypothermia at 33˚C�34˚C (targeted
temperature reached within minutes after resuscitation), or a sham procedure. Brain
and cardiac injury were assessed using echocardiography, neurological scores,
MRI and biomarkers. Seven day survival was compared using Kaplan-Meier esti-
mates. The rate of restoration of spontaneous circulation was significantly higher in
CypD�/� mice (with shorter cardiac massage duration) than in WT mice (P < 0.05).
Loss of CypD significantly attenuated CA-induced release of troponin and S100 pro-
tein, and limited myocardial dysfunction at 150 minutes after CA. Loss of CypD com-
bined with hypothermia led to the best neurological and MRI scores at 24 hours and
highest survival rates at 7 days compared to other groups (P < 0.05). In animals suc-
cessfully resuscitated, loss of CypD had no benefits on day 7 survival while hypo-
thermia was highly protective. Pharmacological inhibition of CypD with
cyclosporine A combined with hypothermia provided similar day 7 survival than
loss of CypD combined with hypothermia. CypD is a viable target to improve suc-
cess of cardiopulmonary resuscitation but its inhibition is unlikely to improve long-
term outcomes, unless therapeutic hypothermia is associated. (Translational
Research 2022;&&:&&-&&)
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AT A GLANCE COMMENTARY
Jahandiez V, et al.

Background

Uncertainty exists regarding whether cyclophilin

D (CypD), a mitochondrial matrix protein that

plays a key role in ischemia-reperfusion injury,

can be a pharmacological target for improving

outcomes after cardiac arrest, especially when

therapeutic hypothermia is used.

Translational Significance

Using both genetic and pharmacological approach

of CypD inhibition in a murine cardiac arrest

model, we found (1) that CypD might be a new

target for improving the success rate of cardio-

pulmonary resuscitation and (2) that pharmaco-

logical CypD inhibition is unlikely to improve

long-term outcomes unless therapeutic hypother-

mia is associated. Combining CypD inhibition

and therapeutic hypothermia may confer very

high survival rate.
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INTRODUCTION

Cardiac arrest (CA) remains a leading avoidable

cause of death in western countries.1 Only one-third of

patients with resuscitation attempt is admitted alive to

hospital.1 Even in these patients, the prognosis is poor

as a majority of them will subsequently die of the

post�CA syndrome that encompasses irreversible

brain damage, myocardial dysfunction and systemic

ischemia-reperfusion response.2 Despite huge research

efforts, since decades, no new drugs have proven effec-

tive in this setting.3,4 Moreover, to date, only therapeu-

tic hypothermia is recommended to limit the severity

of the post�CA syndrome.

Cyclophilin D (CypD)-mediated mitochondrial per-

meability transition pore (PTP) opening has been dem-

onstrated to play a key role in the pathophysiology of

the post�CA syndrome.5�13 Experimentally, both

cyclosporine A (CsA), that is, the reference pharmaco-

logical CypD inhibitor, and therapeutic hypothermia,

limit the severity of the post�CA syndrome and seem

to prevent CypD-mediated PTP opening.5,6,8�12 Inter-

estingly, our group reported, in a rabbit CA model, that

combining these therapeutic strategies did not provide
any additive or synergic short�term (2 hours after CA)

cytoprotective effect at the clinical, cellular or molecu-

lar levels, suggesting a common underlying mechanism

of protection involving the PTP.10,11 Nevertheless,

whether combining hypothermia and CypD-mediated

PTP opening inhibition would improve longer-term

outcome after CA, which is mainly driven by neurolog-

ical injury, remains undetermined. Moreover, the path-

ophysiological role of CypD in favoring post-CA

organ failure, including in humans, has only been stud-

ied using pharmacological inhibitors.5,6,8�12,14�16 As

these agents lack potency and exhibit substantial off-

target effects, either cytoprotective or cytotoxic, the

specific contribution of CypD in CA-induced ische-

mia-reperfusion injury remains unclear.15�21 For

example, CsA binds to extra-mitochondrial cyclophi-

lins, as well as to calcineurin, leading to the activation

of numerous signaling pathways unrelated to

CypD.17�19 Another issue with pharmacological PTP

inhibitors is that, when given upon reperfusion, their

mitochondrial effects might be delayed beyond a nar-

row therapeutic window, especially in poorly perfused

tissues. In the brain, it is even possible that they do not

reach their targets because of the blood-brain barrier

impermeably to many compounds.22

To overcome these limitations and to provide unam-

biguous data on whether CypD could be a potential via-

ble therapeutic target for improving outcomes after CA

in the era of therapeutic hypothermia, we investigated

the short and medium-term effects of the complete

inhibition of CypD-dependent PTP opening using

CypD knockout mice (CypD�/�) submitted to CA

treated with or without therapeutic hypothermia.
METHODS

All procedures conformed to the guideline from the

Directive 2010/63/EU of the European Parliament on

the protection of animals used for scientific purposes

and followed the ARRIVAL guidelines.23 All experi-

ments were approved by the French Ministry for

Teaching and Research (MESR; n DR-2017-07).

Animals. CypD�/� mice (C57BL/6 x SV129 back-

ground) were obtained from the Korsmeyer laboratory

(Dana Farber Cancer Institute, Boston, MA, USA).20,24

Both CypD�/� male mice (aged 8�12 weeks and

weighting 20�30 g) and their wild-type (WT) litter-

mates were obtained in our laboratory.25 Mice were

group-housed in a climate-controlled animal colony

with a 12�hour dark-light cycle with free access to

food and water.

https://doi.org/10.1016/j.trsl.2022.06.006
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Surgical preparation. Mice were anesthetized by

intraperitoneal (IP) injection of 100 mg/kg ketamine,

(Imalgene 1000; Boehringer Ingelheim Animal Health,

Lyon, France) and 5 mg/kg xylazine (Rompun; Bayer

HealthCare, Puteaux, France) as previously

described.26 Rectal temperature was monitored and

maintained at 37˚C using a heating pad.

After tracheal intubation using a 22-gauge catheter,

animals underwent mechanical ventilation with a rodent

ventilator (MouseVent, PhysioSuite, Kent Scientific,

Torrington, CT, USA). The tidal volume was 6.5 ml/g,

the respiratory rate 150/min, and the inspired fraction of

oxygen (FiO2) 0.4. End-tidal carbon dioxide concentra-

tion (EtCO2) and pulse oximetry were measured contin-

uously and ventilation was adjusted to keep them within

the physiological ranges. An electrocardiogram was

recorded continuously through subcutaneous needles.

For drug administration, a microcatheter was

inserted into the left internal jugular vein and filled

with heparinized 0.9% saline solution. A 5 minute sta-

bilization period was observed before experiments.

Cardiac arrest model. We developed an original

murine, asphyxia-induced, non�shockable CA model.

Deeply anesthetized mice were paralyzed with an intra-

venous (IV) injection of 2 mg/kg

succinylcholine (Neuraxpharm France, Paris, France).

CA was then induced by the withdrawal of mechanical

ventilation. CA was determined by echocardiography

and defined as biventricular myocardial standstill >10

seconds.

After 5 minutes of untreated CA, cardio-pulmonary

resuscitation (CPR) was started with the resumption of
Fig 1. Experimental protocol Wild-type (WT) or cycloph

arrest (CA) followed by cardiopulmonary resuscitation (CPR

of WT mice underwent a sham procedure (panel A). Hypoth

temperature of 32˚C�34˚C maintained for 1 hour before slo

formed at 150 minutes, 24 hours, and 7 days after CA. CTR

hypothermia after CA in WT mice (grey circles); CypD�/�,
HT+CypD�/�, hypothermia after CA in cyclophilin D kno

WT mice (white circle).
mechanical ventilation (FiO2: 100%, respiratory rate:

220/min), chest compressions delivered by finger at a

rate of 250�300/min and a single IV bolus of epineph-

rine (0.1 mg/kg). Restoration of spontaneous circula-

tion (ROSC) was defined as both the return of an

organized cardiac rhythm with a heart rate >200/min

and an EtCO2>15 mmHg, for at least 3 minutes. In the

absence of ROSC after 5 minutes, the animal was

declared dead. Successful CPR was defined as the res-

toration of spontaneous breathing allowing weaning

from mechanical ventilation; there was no time limit

for this weaning. During the first hour of reperfusion,

animals received 0.2 ml IV of 2.1% NaHCO3.

Experimental protocol. Mice were randomly assigned

to 5 experimental groups. WT or CypD�/� mice under-

went 5 minutes CA followed by CPR with or without

hypothermia (HT) or a sham procedure (Fig 1, A).

Investigators who performed CPR were blinded to the

genetic background of the mice. In hypothermic

groups, hypothermia was induced at the onset of CPR

with a gauze compress moistened with ice water cover-

ing the body and maintained at 33˚C for 1 hour using a

heating pad; animals were then rewarmed to 37˚C at a

rate of 0.5˚C/15 min (Fig 1, B).

Two sets of mice were used in this study: 1 for short-

term (150 minutes after CA without awaking from

anesthesia) analysis including echocardiography, blood

analysis and mitochondrial assays (n = 10�24/group),

and another for longer-term (up to 7 days in animals

successfully weaned from mechanical ventilation)

analysis including neurological assessment at 24 hours

and 7 day survival (n = 15�30/group). In the second
ilin D knockout mice underwent 5 minute cardiac

) with or without therapeutic hypothermia; a group

ermia was induced upon CRP and the targeted core

w rewarming at 37˚C (panel B). Analyzes were per-

L, CA in WT mice (black squares in panel B); HT,

CA in cyclophilin D knockout mice (white triangle);

ckout mice (grey triangle); SHAM, sham-operated
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set, animals successfully weaned from mechanical ven-

tilation had their endotracheal tube and catheter

removed, their wounds surgically closed, and were

placed into a recovery cage for 24 hours before return-

ing to the animal facility. Animals that were unable to

drink and/or eat received subcutaneous fluids to pre-

vent dehydration and/or weight loss. CA and CPR data

were obtained from both sets.

Because a global genetic modification may have

effects on physiology and on disease outcome, an addi-

tional subset of mice (n = 8) was used to compare the

effects of genetic CypD deletion with pharmacological

CypD inhibition with a 5 mg/kg IV bolus (given 5

minutes prior CA) of CsA (Sandimmun, Novartis

Pharma SAS, Rueil-Malmaison, France) in hypother-

mia-treated WT mice. This group was added after the

other experiments and therefore was not randomized.
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MYOCARDIAL INJURY AND/OR DYSFUNCTION

Echocardiography. Left ventricle (LV) surface short-

ening fraction (SSF) was measured at baseline and 150

minutes after CA by echocardiography using a 13-

MHz linear-array transducer (Vivid 7; GE Medical

Systems, Milwaukee, WI, USA).

Biomarkers. From blood samples collected at 150

minutes after CA, levels of troponin Ic were deter-

mined using an ELISA kit (KA4340; Abnova, Taipei

City, Taiwan).

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438
NEUROLOGICAL INJURY AND/OR DYSFUNCTION

Biomarkers. From blood samples collected at 150

minutes after ROSC, levels of S100b protein, a vali-

dated marker of brain injury, were determined using an

ELISA kit (KA0037, Abnova).

Neurological examination. For neurological evaluation

at 24 hours after CA a validated 12 point score (higher

score indicating better neurological function) was used.27

For animals that died before 24 hours after CA, the score

was 0. Assessment was independently performed by an

investigator blinded to the group allocation.

Brain magnetic resonance imaging (MRI). MRI was

acquired at 24 hours after CA. Prior to imaging, mice

were slightly anesthetized. T2-weighted images and dif-

fusion-weighted images (DWI) were acquired on a 7T/

12 cm magnet (Bruker Biospin, Ettlinger, Germany), as

previously described.28 The field of view was 20£ 20

mm2 and slice thickness 1.0 mm (n = 15 slices). The

apparent diffusion coefficient (ADC) and the T2

parametric maps were reconstructed using the software

ParaVision 5.1 (Bruker Biospin). Regions with edema

(ie, focal ischemic lesions) were then identified visually
by the presence of DWI hyperintensity and reduced

ADC. We developed a simple and easy-to-use 0 to 4

point brain MRI integrity score (higher scores indicating

greater brain integrity) based on both T2-weighted and

ADC images according to the number and the distribu-

tion of ischemic lesions. Briefly, starting at 4 points, 1

point was withdrawn when a single lesion was found

and 2 points if �2 lesions were found (an additional

point was withdrawn if lesions were bilateral); 1 point

was also withdrawn if�1 lesion was visible on>1 slice.

MRI brain images were scored by 2 independent investi-

gators blinded to the group allocation.
MITOCHONDRIAL ASSAYS

After 150 minutes of reperfusion, the cerebral cortex as

well as the heart were harvested and mitochondria were

isolated, as previously described.11 Susceptibility of PTP

opening was assessed by the calcium retention capacity

(CRC; expressed as moles of CaCl2 per mg of protein),

that is the amount of calcium required to induce permeabil-

ity transition in isolated mitochondria, with or without in

vitro addition of 1 mMCsA, as previously described.11,29

Statistical analysis. Data are expressed as mean §
standard error of the mean or number (%). Categorical

variables were compared using a 2 sided Chi-square

test or Fisher’s exact test, as appropriate. Normality of

continuous data was assessed using the Kolmogorov-

Smirnov test. Continuous data were compared using 1

way ANOVA or by the Kruskal-Wallis test, as appro-

priate. Time-based measurements within each group

were compared using 2 way ANOVA with repeated

measures. Time to death was estimated using the

Kaplan-Meier method and comparisons made using the

Log-rank test. Cox proportional hazards regression was

used to assess the independent contribution of hypo-

thermia and CypD deletion and/or inhibition on sur-

vival; the results are reported as hazard ratios (HR)

with 95% confidence intervals (CI). Statistical analyses

were performed using Graphpad Prism 9 software

(GraphPad Software, La Jolla, CA, USA). Statistical

significance was defined as a value of P < 0.05.
RESULTS

Among the 180 mice used in this study, 14 were

excluded because of surgical complications or mechan-

ical ventilation issues; results are therefore presented

for the remaining 166. A total of 66 mice (SHAM:

n = 6; CTRL: n = 24, HT: n = 15, CypD�/�: n = 11, HT

+CypD�/�: n = 10) were included in the first set of

experiments, 92 (SHAM: n = 4; CTRL: n = 30, HT:

n = 23, CypD�/�: n = 20, HT+CypD�/�: n = 15) in the

https://doi.org/10.1016/j.trsl.2022.06.006
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second set, and 8 in the additional set using CsA in

hypothermia-treated WT mice.

Cardiopulmonary resuscitation. The mean duration of

asphyxia before CA massage did not differ signifi-

cantly between groups (Table I). The mean duration of

cardiac massage to obtain ROSC was significantly (P

< 0.05) shorter in the CypD�/� and HT+CypD�/�

groups than in the 2 groups of WT mice (ie, CTRL and

HT groups) (Table I). The rate of ROSC was also sig-

nificantly higher in the 2 groups with CypD�/� mice

compared to the 2 groups of WT mice, irrespective of

the use of hypothermia (Table I).

Among animals used in the second set of experi-

ments, successful weaning from mechanical ventilation

was obtained in 11 of 30 (37%) mice in the CTRL

group, 13 of 23 (56%) mice in the HT group, 18 of 23

(78%) mice in the CypD�/� group, 15 of 15 (100%)

mice in the HT+CypD�/� group and 7 of 8 (88%) mice

in the additional HT+CsA group (P< 0.05 vs the CTRL

group for the CypD�/�, HT+CypD�/� and HT+CsA

groups). Time between CA and weaning from mechani-

cal ventilation was significantly shorter in mice treated

with hypothermia than in normothermic animals (208 §
7 vs 167§ 5 minutes, respectively; P< 0.001).

Susceptibility to PTP opening. The mean CRC in mito-

chondria isolated (150 minutes after CA) from both the

heart (Fig 2, A) and brain (Fig 2, B) was significantly

lower in normothermic WT animals than in sham ani-

mals (P < 0.05). The mean CRC (150 minutes after

CA) in the brain of hypothermia-treated WT animals

was significantly higher than in controls (P < 0.05; Fig

2, B); this was significantly higher in both the heart (Fig

2, A) and brain (Fig 2, B) of CypD�/� mice compared

to sham and WT animals, irrespective of hypothermia

(P < 0.05). In both brain and heart mitochondria from

WT animals, in vitro exposure to CsA significantly

increased CRC (P < 0.05) to near sham values (P =NS

vs sham animals; Fig 2, C and D). As expected, in both

brain and heart mitochondria isolated from CypD�/�

mice, CRC was not significantly different after in vitro
Table I. Cardiopulmonary resuscitation

Duration of asphyxia before cardiac arrest (s) D

CTRL 99 § 2 12
HT 98 § 2 11
CypD�/� 92 § 2 78
HT+CypD�/� 95 § 5 82

Abbreviations: ROSC, Restoration of spontaneous circulation; CTRL, Contro
treated with hypothermia; CypD�/�, CA in cyclophilin-D knockout mice
hypothermia.
Data are expressed as mean § SEM or n (%), as appropriate.
*P < 0.05 vs CTRL,
yP < 0.05 vs HT.
addition of CsA (P =NS) and there was no significant

difference (P =NS) with sham values.

Myocardial injury. LV systolic function, as assessed

by SSF, did not differ significantly between groups at

baseline. At 150 minutes after CA, the mean SSF value

was significantly lower in controls than in sham ani-

mals (P < 0.001). The mean SSF was significantly

higher in hypothermic and/or CypD�/� mice than in

controls, without additive effect (Fig 3, A).

The mean level of troponin Ic was significantly

(P < 0.001) higher in controls than in sham animals

(Fig 3, B). It was also higher (P < 0.05) in controls

than in mice treated with hypothermia and/or in

CypD�/- mice (Fig 3, B).

Neurological assessment. The mean concentration of

S100b protein 150 minutes after CA was significantly

(P < 0.001) higher in controls than in sham mice. It

was significantly lower 150 minutes after CA in

CypD�/� mice, hypothermia-treated CypD�/� mice

and hypothermia-treated WT mice compared to con-

trols (Fig 4, A).

The groups of CypD�/� mice and/or hypothermia-

treated WT mice presented, 24 hours after CA, signifi-

cantly (P < 0.05) higher median neurological function

score than did controls (Fig 4, B). The group of hypo-

thermia-treated CypD�/� mice had the highest median

neurological function score (P < 0.001 vs all other CA

groups). Brain MRI identified ischemic lesions all con-

trol animals vs none in hypothermia-treated CypD�/�

mice (Fig 4, D). The median brain MRI integrity score

at 24 hours after CA was significantly (P < 0.05)

higher in hypothermia-treated CypD�/� mice than in

the control animals (Fig 4, D).
7 DAY SURVIVAL

There were 2 of 30 (7%) mice that survived 7 days

after CA in the control group; 4 of 20 (20%) survived

in the CypD�/� mice group, 10 of 23 (43%) in the
uration of heart massage before ROSC (s) ROSC

2 § 9 39/54 (72)
3 § 7 0 30/38 (79)
§ 4*,y 30/31 (97)*,y

§ 4*,y 025/25 (100)*,y

ls, cardiac arrest (CA) in wild-type mice; HT, CA in wild-type mice
; HT+CypD�/�, CA in cyclophilin-D knockout mice treated with
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Fig 2. Calcium retention capacity Calcium retention capacity (CRC, expressed in nmol Ca2+/mg protein) of

mitochondria isolated from the heart (panel A) and the brain (panel B) are presented. The effects of in vitro addi-

tion of cyclosporine A to mitochondria isolated from the heart (panel C) and the brain (panel D) before calcium

challenge are also presented. SHAM, sham-operated wild-type animals; CTRL, controls, cardiac arrest (CA) in

wild-type mice; HT, hypothermia after CA in wild-type mice; CypD�/�, CA in cyclophilin D knockout mice;

HT+CypD�/�, hypothermia after CA in cyclophilin D knockout mice. Data are expressed as mean § standard

error of the mean. *P < 0.05 vs SHAM, y P < 0.05 vs CTRL, z P < 0.05 vs HT.

ARTICLE IN PRESS
Translational Research

6 Jahandiez et al && 2022

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635
hypothermia-treated WT group, 11 of 15 (73%) in the

hypothermia-treated CypD�/- mice group (Fig 5). The

probability of survival was significantly higher in
Fig 3. Myocardial injury Echocardiographic measuremen

(SSF) at baseline (grey bars) and 150 minutes after cardiac a

troponin Ic (expressed in mg/l) measured 150 minutes after C

wild-type animals; CTRL, controls, CA in wild-type mic

CypD�/�, CA in cyclophilin D knockout mice; HT+CypD�

mice. Data are expressed as mean § standard error of the m

P < 0.05 vs CTRL.
hypothermia-treated CypD�/- mice compared to hypo-

thermia-treated WT mice (P < 0.05) and CypD�/�

mice (P < 0.01; Fig 5). In the additional set of WT
ts of the left ventricle surface shortening fraction

rrest (CA) are presented in panel A. Blood levels of

A are presented in panel B. SHAM, sham-operated

e; HT, hypothermia after CA in wild-type mice;
/�, hypothermia after CA in cyclophilin D knockout

ean. *P < 0.05 vs baseline; y P < 0.05 vs SHAM; z
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Fig 4. Neurological assessment Levels of S100ß protein (expressed in pg/ml) 150 minutes after cardiac arrest

(CA) are presented (data expressed mean § standard error of the mean) for each experimental group in panel A.

The neurological function score (higher score indicating better neurological function) was assessed 24 hours

after CA (panel B; each circle represents an individual neurological dysfunction score and the thick line the

median value of the corresponding group). Panel C shows representatives T2-weighted images (at the top) and

ADC images (at the bottom) of brain magnetic resonance imaging (MRI) acquired at 24 hours after CA; arrows

indicate areas of ischemia-reperfusion lesions. Brain MRI integrity scores are presented in panel D, each circle

represents an individual brain MRI integrity score and the thick line the median value of the corresponding

group. For both scores (panels B and D), values of SHAM are presented for information but not included in the

statistical analysis. SHAM, sham-operated wild-type animals; CTRL, controls, CA in wild-type mice; HT, hypo-

thermia after CA in wild-type mice; CypD�/�, CA in cyclophilin D knockout mice; HT+CypD�/�, hypothermia

after CA in cyclophilin D knockout mice. * P < 0.05 vs CTRL; y P < 0.05 vs HT; z P < 0.05 vs CypD�/�.
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mice treated with both CsA and hypothermia, 6 of 8

mice (75%) were alive at day 7 after CA (Fig 6). In all

groups, all mice alive at day 7 had a normal neurologi-

cal examination.

In the Cox regression analysis, both hypothermia

(HR 0.45; 95%CI [0.29; 0.69], P < 0.01) and deletion

and/or inhibition of CypD (HR 0.56; 95%CI [0.37;

0.85], P < 0.001) were independently associated with

7 day survival.

To better identify the respective roles of loss of

CypD and hypothermia on early and longer-term sur-

vival, we analyzed survival only in animals success-

fully weaned from mechanical ventilation. Seven day

survival was significantly (P < 0.001) higher in the 2

groups treated with hypothermia (ie, HT, HT+CypD�/

�) compared to the groups not treated with hypother-

mia (Fig 7). In the additional set of WT mice treated

with both CsA and hypothermia, 6 of 7 (86%) mice

that were successfully weaned from mechanical venti-

lation survived 7 days after CA. There was no
significant difference in 7 day survival among the 3

groups treated with hypothermia (P = 0.825) or

between the 2 groups not treated with hypothermia

(P = 0.286) (Fig 6). The cause of death was neurologi-

cal in all animals that did not survive until day 7 after

successful CPR.
DISCUSSION

In this experimental study, in the absence of thera-

peutic hypothermia, we found that suppression of

CypD-dependent PTP opening increased the rate of

ROSC and improved short-term survival but failed to

prevent death in animals that survived the first hours

after CA. Conversely, therapeutic hypothermia had no

significant effect on CPR success but prevented death

in animals weaned from the ventilator. Consequently,

the combination of suppression of CypD-dependent

PTP opening and hypothermia additively and

https://doi.org/10.1016/j.trsl.2022.06.006


Fig 5. Survival after cardiac arrest Kaplan-Meier survival estimates are presented for the 4 experimental groups

(n = 15-30/group) submitted to 5 minutes of cardiac arrest (CA). The 7 day mortality significantly differed

among the 4 groups (P < 0.001, Log-rank test). CTRL, controls, CA in wild-type mice; HT, hypothermia after

CA in wild-type mice; CypD�/�, CA in cyclophilin D knockout mice; HT+ CypD�/�, hypothermia after CA in

cyclophilin D knockout mice.
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significantly improved 7 day survival after CA in com-

parison to either hypothermia or loss of CypD alone

suggesting partly different mechanisms of protection;

this was confirmed using a pharmacological approach.

Although genetic manipulation is an advantage of

mouse models, other than the technical difficulties

related to surgery and CPR that can be overcome, a

limitation of CA models in mice is that it is almost

always induced by potassium chloride, which is an

uncommon cause of CA.30 To reproduce a much more

clinically relevant scenario, we developed a new

model of non�shockable, asphyxia-induced CA in

mice. Mortality in controls (around 90%) was close to

that observed in non�shockable CA in humans,14

allowing to assess the effects of interventions on car-

diovascular and brain injury using a reasonable num-

ber of animals.

As intended, CRC was higher in mitochondria iso-

lated from both heart and brain of CypD�/� animals

compared to their littermates, indicating a lower sus-

ceptibility to PTP opening under stress conditions (eg,

calcium overload). In line with previous studies using

pharmacological CypD inhibitors, we observed, within

the first hours after ROSC, a significant decrease in

CA-induced release of troponin and S100ß protein and

early improvement of cardiovascular dysfunction in
CypD�/� mice, confirming the key role of CypD in the

pathophysiology of the immediate post�CA

syndrome.10,11 Genetic loss of CypD was also associ-

ated with an increase in the rate of CPR success (with

shorter duration of cardiac massage). This finding con-

firms previous observations from our rabbit CA model

in which intravenous administration of CsA or its non-

�immunosuppressive derivative NIM811 at the start

of CPR (before epinephrine), significantly increased

both the rate of ROSC and 2 hour survival.8 Thus,

genetic or pharmacological approaches to inhibit

CypD-dependent PTP opening appear to provide very

similar short-term protective effects after CA. To our

knowledge, only 1 study reported longer-term (ie, 3

days) benefits of pharmacological PTP inhibition after

asphyxial CA in rats.9 The present study further sug-

gests that CypD-dependent PTP inhibition (without

hypothermia) might slightly improve medium-term

survival. Nevertheless, although statistically signifi-

cant, loss of CypD yielded 7 day survival rates as low

as 20%, which is far from satisfactory. Moreover, this

improvement was almost exclusively explained by the

increase in CPR success. Indeed, in animals that sur-

vived the first hours after CA, loss of CypD did not pre-

vent death secondary to irreversible brain damage that

occurred within 7 days.

https://doi.org/10.1016/j.trsl.2022.06.006


Q3

Fig 6. Survival in the additional group of mice treated with both hypothermia and cyclosporine. A 7 day cumu-

lative survival rate (dashed line) is presented for the additional subset of wild-type mice treated with both hypo-

thermia and cyclosporine A (n = 8).
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The present study confirms the powerful cardiopro-

tective effect of hypothermia when applied very rap-

idly (ie, within minutes) after CA.11,27,31 Nevertheless,

in mitochondria isolated from the heart of WT mice

herein, contrary to that observed in our rabbit model of

CA,8,10,11 CRC was similar after CA, between normo-

thermic and hypothermic animals. This result might be

explained by the shorter duration of myocardial ische-

mia in the mouse model (5 minutes vs 15 minutes in

the rabbit model), limiting cell damage in heart and

thus the possibility to highlight mitochondrial benefits

of hypothermia. However, cardiac contractility was

better preserved in the hypothermic WT group, sug-

gesting that the benefits of hypothermia on early

post�CA myocardial dysfunction are not related to

sustained CypD-dependent mechanisms. The fact that

rate of ROSC was different between hypothermia and

loss of CypD (or CsA) does not bring into question the

assumption that CypD-dependent PTP inhibition dur-

ing CPR might be involved in the improvement in

resectability X X. Indeed, as hypothermia was applied upon

the start of CPR, the decrease in core temperature was

delayed by a few minutes, possibly beyond a very nar-

row window of protection involving CypD.
Concerning the brain, the effects of hypothermia

were slightly different than those observed in the heart.

In WT animals, hypothermia was associated with an

improvement in CRC and lower brain damage as

assessed by S100ß protein early after CA. This result

might be, in part, explained by different effects of

hypothermia on brain and heart mitochondria.32 Clini-

cal neurological benefits of hypothermia were evident

as soon as 24 hours after CA; there were better neuro-

logical function scores and fewer lesions on brain MRI

compared to controls. The use of hypothermia in WT

animals was associated with significant increase in neu-

rologically-intact 7 day survival but that remained

below 50%. These findings are in line with previous

reports and confirm a wider therapeutic window for

hypothermia-induced neuroprotection than for

cardioprotection.10,11,33 Interestingly, in animals that

were weaned from mechanical ventilation, hypother-

mia was highly effective to prevent death from neuro-

logical cause while loss of CypD did not confer any

clinically relevant benefit.

A new and most important finding of this study is

that combination of genetic inhibition of CypD-depen-

dent PTP opening and hypothermia conferred a

https://doi.org/10.1016/j.trsl.2022.06.006


Fig 7. Survival after cardiac arrest in mice successfully weaned from mechanical ventilation Kaplan-Meier sur-

vival estimates are presented for the 4 groups (n = 7�15/group) of mice submitted to 5 minutes of cardiac arrest

(CA) mice and successfully weaned from mechanical ventilation. The 7 day mortality significantly differed

among the 4 groups (P < 0.001, Log-rank test). CTRL, controls, CA in wild-type mice; HT, hypothermia after

CA in wild-type mice; CypD�/�, CA in cyclophilin D knockout mice; HT+ CypD�/�, hypothermia after CA

in cyclophilin D knockout mice.
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significantly better medium-term survival after CA

than each of these interventions alone. This unantici-

pated finding was confirmed by a pharmacological

approach of CypD inhibition, thus limiting the possibil-

ity that the results were due to CypD knockout-induced

changes in the physiology of animals unrelated to PTP

opening regulation. As discussed above, 1 can reason-

ably assume that the benefits of CypD inhibition upon

reperfusion are related to an improvement in short-

term survival, mostly by increasing the rate of ROSC

and shortening the duration of CPR. Conversely, CypD

inhibition in brain after successfully resuscitated CA

seems to be of limited interest when hypothermia is

applied early. Thus, the present study highlights that

different pathways must be targeted to prevent effec-

tively ischemia-reperfusion injury after CA.

The present study has potential important implica-

tions for clinical CA research. Potential benefits of

pharmacological CypD inhibition with CsA, given as

soon as possible after the start of CPR, were investi-

gated in the randomized CYRUS trial that involved

794 patients.14 Disappointingly, the severity of

post�CA syndrome (primary endpoint) was similar in

patients who received or not CsA.14 To explain these

results it was hypothesized that the dose of CsA was
not sufficient or given too late after the start of CPR to

protect vital organs against ischemia-reperfusion

injury.34 Even though ancillary studies of CYRUS sub-

sequently showed that CsA may limit the severity of

respiratory failure after CA16 and CA-induced immune

dysfunction,15 the results herein indicate that even a

complete inhibition of CypD-dependent PTP opening

is unlikely to confer potent long-term neuroprotection

in case of successfully resuscitated CA or to reproduce

the benefits of hypothermia. Nevertheless, inhibition of

CypD-dependent PTP opening might increase the rate

of ROSC and short-term survival through mechanisms

that remains to be determined. Thus, researchers should

better investigate other therapeutic approaches (eg,

molar sodium lactate35) than trying to optimize phar-

macological PTP inhibition for improving outcomes of

patients admitted alive to hospital after CA. The

increase in the rate of ROSC in CypD�/- is a very

important finding, because, for many decades, epineph-

rine has been the only pharmacological option to help

to “restart” the heart.4 Finally, the present study con-

firms the benefits of therapeutic hypothermia CA espe-

cially in times when it is called into question.36

In conclusion, complete inhibition of CypD-depen-

dent PTP opening dramatically increased short-term

https://doi.org/10.1016/j.trsl.2022.06.006
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survival but did not prevent death related to brain

injury in case of successfully resuscitated CA, unless it

was associated with therapeutic hypothermia. Regard-

ing clinical perspectives, our results indicate that phar-

macological inhibition of CypD might a new

therapeutic option to investigate for improving CPR

success. Conversely, this therapeutic approach should

not be longer considered to prevent post-CA syndrome

in patients already successfully resuscitated from CA.
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