
HAL Id: hal-03704278
https://hal.science/hal-03704278

Submitted on 24 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ManyGUI: A Graphical Tool to Accelerate Many-core
Debugging Through Communication, Memory, and

Energy Profiling
Marcelo Ruaro, Kevin J. M. Martin

To cite this version:
Marcelo Ruaro, Kevin J. M. Martin. ManyGUI: A Graphical Tool to Accelerate Many-core De-
bugging Through Communication, Memory, and Energy Profiling. DroneSE and RAPIDO ’22:
System Engineering for constrained embedded systems, Jun 2022, Budapest, Hungary. pp.39-46,
�10.1145/3522784.3522791�. �hal-03704278�

https://hal.science/hal-03704278
https://hal.archives-ouvertes.fr

ManyGUI: A Graphical Tool to Accelerate Many-core Debugging
Through Communication, Memory, and Energy Profiling

Marcelo Ruaro
marcelo.ruaro@univ-ubs.fr

Univ. Bretagne-Sud, Lab-STICC, UMR CNRS 6285
Lorient, France

Kevin J. M. Martin
kevin.martin@univ-ubs.fr

Univ. Bretagne-Sud, Lab-STICC, UMR CNRS 6285
Lorient, France

ABSTRACT
The debugging and validation of the many-core design is a com-
plex task due to numerous events happening in the system si-
multaneously. Current state-of-the-art many-cores are strongly
based on waveforms and log files to validate their behavior dur-
ing simulation. Our hypothesis is that, as happened with ASIC
development, a Graphical User Interface (GUI) can significantly
accelerate the many-core development. To sustain that, we pro-
pose an open-source GUI tool called ManyGUI for many-core de-
bugging. ManyGUI is organized in a framework that collects and
classifies high-level events during simulation related to computa-
tion (executed CPU instructions), memory, and communication
(NoC packets). Such events are shown graphically to the devel-
oper through a set of intuitive and practical frames. We evaluate
ManyGUI in a silicon-proven state-of-the-art open-source many-
core called OpenPiton, which uses RISC-V 64-bits CPU, 3 NoCs, and
a distributed/shared cache memory organization. Results show that
ManyGUI allows the developer to rapidly obtain a comprehensive
view of the many-core behavior in terms of communication sta-
tistics (packets paths, link utilization), memory statistics (memory
access, miss rate), and energy (CPU, memory, and NoC).

CCS CONCEPTS
• Hardware → Simulation and emulation; • Computer sys-
tems organization →Multicore architectures.

KEYWORDS
Many-core, Validation, Graphical, Energy, Memory, Network-on-
Chip

This document is the author version of the paper “ManyGUI: A
Graphical Tool to Accelerate Many-core Debugging Through Com-
munication, Memory, and Energy Profiling” byMarcelo Ruaro, Kevin
J. M. Martin, accepted for publication in RAPIDO’22.
ACM Reference Format:
Marcelo Ruaro and Kevin J. M. Martin. 2022. ManyGUI: A Graph-
ical Tool to Accelerate Many-core Debugging Through Commu-
nication, Memory, and Energy Profiling. In System Engineering
for constrained embedded systems (DroneSE and RAPIDO ’22), June
21, 2022, Budapest, Hungary. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3522784.3522791

Author version

1 INTRODUCTION
Many-cores are systems-on-chip that reach outstanding process-
ing power by assuming tiles implemented as a processor, memory,

or a specific accelerator [4]. The tiles are connected through a
scalable on-chip technology called Network-on-Chips (NoCs) [11].
Many-cores quickly evolve from research prototypes to mature
designs used in industry today1. The next generation of many-
core, powered by the advances in semiconductor technologies and
novel power management techniques, is expected to reach hun-
dreds either thousands of tiles. While NoCs facilitate the placement
of new tiles on the chip, the complexity of such systems due to
the abundance of components, events, protocols, among others,
pose significant challenges to debugging them during the design
phase. Specifically, there is an important lack of tools that allow the
designer to rapidly understand what is happening in the system
regarding communication events (packet level), memory statistics,
and energy consumption.

A study of the state-of-the-art of current many-core platforms
leads to the observation that they are heavily based on log files and
waveforms. We see that such methods can be significantly extended
by using Graphical User Interfaces (GUI). The introduction of GUI
in the ASIC design allowed a rapid and intuitive chip development.
As happened on ASIC design, we support that GUI advantages can
also be exploited to accelerate many-core functional development,
assuming a higher level observation strategy that aims to reduce the
time lost analyzing big waveforms and understanding large log files.
Figure 1 position our idea. It shows functional development steps
of many-cores typically found in the literature [8, 11, 13, 15]. The
figure can be observed from the bottom to the top. At first, the de-
velopers work in designing the hardware model, for instance, using
RLT-based languages like VHDL and Verilog. The software design
comprises the Operating System (OS) and application development.

After having the software and hardware design, the developers
team usually creates scripts that automatically resize the model
before compilation according to design-time features, such as the
number of cores, memory sizes, and NoC flit width. The scripts
generate essential software and hardware files, as "include files,"
which will drive the automatic generation of hardware and prede-
fined pragmas in software. Once the final design was generated,
the flow advances to the simulation phases, using commercial or
open-source simulator tools, which compile the hardware in a given
description level and simulate its behavior based on the software.

The next step is the debugging and validation, where the devel-
oper will analyze if everything is working as expected at a logical
level2. Traditionally, simulators provide waveforms, which allow a
very detailed (gate-level) representation of the system. The design
can also print some values at important checkpoints, which are
displayed in log files. If the hardware is not modeled at the RTL

1www.kalrayinc.com/products/mppa-technology
2the physical validation is out of the scope of this work

https://orcid.org/0000-0001-5995-435X
https://orcid.org/0000-0002-8122-1192
https://doi.org/10.1145/3522784.3522791

Marcelo Ruaro and Kevin J. M. Martin

 M
an

y-
co

re
 f

u
n

ct
io

n
a

l d
e

si
gn

 s
te

p
s

Proposed Debugging
Tool
(GUIs of communication,
memory, energy)

Debugging (e.g.
Waveforms, Log files)
Debugging (e.g.
Waveforms, Log files)

Simulator (e.g.
QuestaSim, Verilator,
Gem5)

Simulator (e.g.
QuestaSim, Verilator,
Gem5)

Generation Scripts (e.g.
Python, ShellScript,
Makefiles)

Generation Scripts (e.g.
Python, ShellScript,
Makefiles)

Hardware Design
(e.g. Verilog, VHDL, SV,
System-C)

Software Design
(e.g. Assembly, C)

Tile
0x0

Tile
1x0

Tile
0x1

Tile
1x1

Tile
0x0

Tile
1x0

Tile
0x1

Tile
1x1

Tile
0x0

Tile
1x0

Tile
0x1

Tile
1x1

Hardware Design
(e.g. Verilog, VHDL, SV,
System-C)

Software Design
(e.g. Assembly, C)

Tile
0x0

Tile
1x0

Tile
0x1

Tile
1x1

SYNOPSYS
ISE
QuestaSim

Quartus

Figure 1: Overview of many-core functional design steps.
This work proposes a high-level GUI-based debugging step,
extending waveforms and log files.

level (as in the Gem5 simulator [13]), the simulator can only output
log files.

The motivation for this work is that current debugging methods
based on waveform and log files are slow and prone to interpre-
tation errors due to the fatigue passed to the developer to follow
the massive information volume that many-core generates while
simulating. The goal of this work is to go one step higher in the
debugging and validation process by proposing a GUI tool called
ManyGUI that, based on high-level events collected at computation,
memory, and communication level, can depict the communication
flow, memory statistics, and energy consumption.ManyGUI allows
a rapid and comprehensive understanding of the many-core behav-
ior and, consequently, the application running on it. This work has
the following contributions:

(1) An overview of recent many-cores platforms and how they
implement the debugging during simulations;

(2) A framework to collect and classify events of computation
(executed CPU instructions), memory, and communication
(NoC packets) during the many-core simulation, assuming
a generic interface which can be easily adapted to different
many-core designs;

(3) A set of graphical frames which show, during the simulation,
communication statistics (packets paths, link utilization),
memory statistics (memory access, miss rate), and energy
(CPU, memory, and NoC);

(4) A case study of ManyGUI in a state-of-the-art open-source
many-core called OpenPiton [2].

2 OVERVIEW OF MANY-CORE PLATFORMS
AND DEBUGGING

This section presents contribution (1). Table 1 addresses the main
characteristics of the state-of-the-art many-core design platforms

in literature. The 1st column shows the name of the platform, its
reference work, and the year. Focusing on an updated classifica-
tion, we consider only recent works, dating not more than 5 years
ago (from 2017 on). Older platforms classifications can be found in
[1, 7, 14]. The 2nd column addresses the language used to model
the platforms. It is possible to see that most of the listed platforms
use Verilog or System-Verilog (SV) while very few rely on VHDL
and System-C. One of the advantages of using Verilog and SV is
its C-like style and its easy integration with open-source simu-
lators as Verilator3, which promises to speed-up the simulation
by converting the model to multithreaded C++. The 3rd column
classifies works by detailing how the computation is implemented.
Noticeably, RISC-V was received considerable attention from re-
search, resulting in the majority of the works, which either adopt
RISC-V cores exclusively [2, 6, 7] or use it in an on-chip heteroge-
neous fashion [4, 8, 15]. Another observed aspect is that many-cores
are increasingly adopting accelerators to reach energy efficiency
in complex applications, specifically to support machine learning
[4, 12, 13, 15].

The 4th column classifies works by their memory organization.
Few architectures adopt purely distributed system [6, 11, 14]. Most
systems use a hybrid shared memory system, which includes a
private memory (L1 or scratchpad) with a logically shared but phys-
ically distributed last level shared memory [1, 2, 7, 12, 15]. Such
hybrid systems are suitable to many-core since a centralized shared
memory is not scalable for a high number of tiles [1]. Some works
adopt cache coherence protocols, as the distributed directory-based
protocol [2, 12]. Other works [8, 9, 15], argue that cache coherence
protocols are not scalable for many-cores due to their high cost
in terms of synchronization overhead and energy consumption
observed, specifically, for streaming data-flow applications [15]. In-
stead, the alternative is to rely upon software-managed scratchpad
memory close to each CPU, with the communication among CPUs
initialized by software [1, 7, 8, 14, 15]. Some designs cluster the
cores and assign a shared memory for each cluster [1, 7, 8, 13]. Such
an approach has benefits since it preserves data locality inside the
cluster, speeding intra-cluster communication. The side effect is
the heterogeneous latency (jitter) caused to access off-cluster data
and the task mapping complexity for applications that do not fit in
one cluster.

The 5th column classifies works by communication implemen-
tation. NoCs are interesting solutions to build scalable and high
throughput interconnections [1, 2, 4, 6–8, 11, 12, 14, 15]. Some plat-
forms adopt hybrid approaches (bus + NoC), specifically, those that
adopt clustering [1, 7, 8]. Thus, a bus implements the communi-
cation intra-cluster, while a NoC implements the communication
inter-cluster. The 6th column details if the work is open-source.
Finally, the last column details if works adopt some GUI-based
method. As can be observed, GUI-based debugging is the main
gap found in the state-of-the-art. In [11], the authors use a GUI
to generate the many-core according to some properties and also
to collect NoC-centered statistics during simulation. In [14], the
authors use a GUI to assist platform debugging during simulation.
They focus on CPU scheduling and, as in [11], mostly into com-
munication statistics. This work advances the state-of-the-art of

3www.veripool.org/verilator/

ManyGUI: A Graphical Tool to Accelerate Many-core Debugging

Table 1: State-of-the-art (from 2017) many-core platforms.

Name, Work, Year Language Computation Memory Communication Open GUI Debug

ProNoC, [11], 2017 SV Generic (not the focus) Distributed/core Parameterizable VC-based NoC (inter-core) ✓
To generation
(NoC-centered)

CoreVA-MPSoC, [1], 2017 N.A. CoreVA L1/core + L2 slice/Cluster Bus (intra-cluster) + 1x NoC (inter-cluster) - -
HERO, [8], 2018 SV RISC-V + ARM L1/Cluster + L2/System Bus (intra-cluster) + 1x NoC (inter-cluster) ✓ -
RVNoC, [6], 2018 Verilog RISC-V Distributed/core Parameterizable VC-based NoC ✓ -
Celerity, [4], 2018 Verilog RISC-V + NN Accelerator L1 cache/core 1x NoC ✓ -
OpenPiton, [2], 2019 Verilog, SV RISC-V L1,L1.5/core + L2 slice/core 3x NoCs ✓ -

Memphis, [14], 2019 VHDL,
System-C MIPS-I Distributed/core 1x NoC ✓

NoC +
CPU scheduling

Kamaleldin et al., [7], 2020 N.A. RISC-V L1/core + L2/cluster Bus (intra-cluster) + NoC (inter-cluster) - -

BlackParrot, [12], 2020 SV BlackParrot Core +
Heterogeneous tiles L1/core + L2 slice/core 1x NoC ✓ -

Savas, [15], 2020 Verilog + Chisel RISC-V + Accelerator L1/core + Shared L2 slice/core 1x NoC ✓ -
Gem5-X, [13], 2021 C++ ARMv8 + Accelerators L1/core + L2/Cluster + L3/System Bus ✓ -

GUI debugging for many-core by addressing not only communi-
cation but memory statistics and energy consumption. As could
be observed from previous columns, systems are increasingly com-
plex, and memory is a key player in driving the chip’s performance
and energy efficiency. Therefore, easily understanding the memory
statistics and the energy consumption is fundamental in the design
of next-generation many-cores.

3 MANY-CORE GUI DEBUGGING
This section presents the contributions (2) and (3). Figure 2 presents
an overview of ManyGUI debugging framework. It includes the
steps of event extraction, classification, and representation. The
event extraction is built inside the hardware by monitoring in-
struction events from the CPU, memory events from the memory
subsystem, and NoC events from the NoC router. These events
are inserted into a database during the simulation. In parallel, the
ManyGUI desktop application (implemented in Java), read from this
database, classifies, and displays the event graphically. ManyGUI
desktop application is composed of two parts: (1) a back-end part,
implemented by an event classification engine (ECE); (2) a front-
end part, implemented by the Event Graphical Interface (EGI). The
back-end part reads from the database and creates a logical struc-
ture of the events in the memory of the ManyGUI program. The
front-end part displays graphically and intuitively the events to the
developer in a set of frames. The following subsection will enter in
details of each part.

3.1 Event Monitoring
Figure 2 shows an example of a many-core with 4 tiles. To support
event monitoring, we implemented inside each tile three types of
event monitors: Instruction Counter Monitor (ICM), Memory Event
Monitor (MEM), and Packet Counter Monitor (PCM). The role of
these monitors is to extract events from the hardware model during
the simulation and insert them into a database structure.

Themonitors implementation consists of non-synthesizable code
inside key hardware points, which are generic to any modern many-
core: CPU (ICM), memory (MEM), and NoC router (PCM). Inside
CPU, the ICM extracts computation events by monitoring the exe-
cuted instruction. Each ICM event consists of a timestamp in clock
cycles, an instruction ID, and a class ID representing its instruction
class (e.g., branch, ALU, multiplication, and floating-point). Inside

ManyGUI desktop
application

Tile
0x0

Tile
1x0

Tile
0x1

Tile
1x1

Tile
0x0

Tile
1x0

Tile
0x1

Tile
1x1

CPU Memory

RouterOther
modules
(e.g. NI)

ICM MEM

PCM

CPU MEM NOC
Event
DataBase

Event Graphical Interface (EGI)Event Graphical Interface (EGI)

Event Classification
Engine (ECE)
Event Classification
Engine (ECE)

Figure 2: Proposed ManyGUI debugging framework for
event extraction, classification, and representation. It in-
cludes hardware-implemented monitors: ICM = Instruction
Counter Monitor, MEM = Memory Event Monitor, PCM =
Packet Counter Monitor. The monitored data are stored
in an Event DataBase in the host desktop computer. The
ManyGUI desktop application reads from the database, clas-
sifies the events by the Event Classification Engine (ECE),
and shows them by the Event Graphical Interface (EGI).

thememory, theMEM extractsmemory events. Memory events vary
according to the many-core memory organization. Cache memories
are currently common implementations, and one of the ManyGUI
goals is to be suitable to caches. Therefore, memory events types
include L1 access, L1 miss, L2 access, L2 miss, and DRAM accesses.
Each MEM event has a timestamp and an ID representing the class.

Marcelo Ruaro and Kevin J. M. Martin

Event
Integer time

MemEvent
- Integer eventType

CPUEvent
- Integer InstrType
- Integer IntructionClass

NoCEvent
- Integer pktSize
- Integer routerAddr
- Integer tgtRouterAddr
- Integer inPort
- Integer service

(a)

MemEventInfo
- HashTable memEvents:
 * key = Integer tileID
 * value = List <MemEvent> mE

CPUEventInfo
- HashTable cpuEvents:
 * key = Integer tileID
 * value = List <CPUEvent> cE

NoCEventInfo
- HashTable nocEvents:
 * key = Integer tileID
 * value = List <NoCEvent> nE

EventInfo
- CPUEventInfo CPUEvents
- MemEventInfo MemEvents
- NoCEventInfo NoCEvents

0..* 0..* 0..*

(b)

Figure 3: Class diagram of the Event Classification Engine
(ECE). (a) Classes that model the 3 collected events. (b)
Classes that store all the events read from the database.

Finally, inside the NoC routers, the PCM extracts communication
events. The PCM generates one new event each time a packet enters
in a router by a given input port. The PCM comprises a timestamp,
packet size, current router address, destination router address, input
port, and packet service.

An important functional property of the monitors is that they
register the events in three respective databases shown in Figure 2.
Such a database can be implemented as a structured database (as
Structured Query Language (SQL)) or simply by using text files on
the host OS directory structure.

3.2 Event Classification Engine (ECE)
The Event Classification Engine (ECE) aims to read the events from
the database and compute statistics at runtime. It was designed
to provide a simplified set of data structures that the ManyGUI
front-end can easily access. We use object-oriented implementation
to classify the data. Figure 3 shows two main class diagrams imple-
mented by ECE. For clarity, we omit the functions of these classes
and keep only the attributes and UML relationships among them.

Figure 3(a) shows the class diagram of the basic classes to repre-
sent events. It consists of 3 classes (MemEvent, CPUEvent,NoCEvent)
which store one single event from database. These 3 classes inherit
from the Event abstract class, which has the attribute time. The
MemEvent class has one attribute that stores the type of memory
event (e.g.: L1 miss, L1 access, L2 miss). The CPUEvent class stores
the additional attributes of instruction type (e.g.: add, sub, jal), and
instruction class (e.g.: ALU, branch, multiplications). Finally, the
NoCEvent class stores all attributes required to one packet (size, cur-
rent router address, target router address, input port, and service).
Figure 3(b) shows the class diagram that stores all events from the
database. At runtime, the ECE pools the database during a fixed
interval of time (200 milliseconds), gets all new incoming events
within this time, and classifies them by storing in a high-level class
structure. To implement such a structure, we design a class named
EventInfo. It is the top-level class that stores all events of the system.
It is composed of 3 other classes: MemEventInfo, CPUEventInfo, and

NoCEventInfo. Those 3 classes implement a similar behavior which
can be explained as a single one. Each one has a hash table, where
keys represent the tile IDs and values represent a list of events for
that tile. This hash table allows to speed up the access to events
by the EGI since it rapidly extracts event associated to a given
tile due to its average access time complexity of O(1) [3]. These
3 classes also implement functions to collect statistics from the
events, which include: cache miss rate, NoC links throughput, CPU
energy, memory energy, and NoC energy.

The cache miss rate is calculated by dividing the number of cache
misses by the cache access. The NoC link throughput is calculated
by dividing the total time the router was busy handling packets
by the total simulated time. The energy estimation is performed
by assuming a previous hardware characterization of the many-
core (out of the scope of this work). In this work we adopted the
characterization provided in [10] for memory and NoC, and in [16]
for CPU. Based on such energy characterization, the developer can
extract the following information: (1) energy at computation level:
the energy per CPU instruction class; (2) energy atmemory level: the
energy per memory miss and hit, and (3) energy at communication
level: the energy to transmit one-hop flit into the NoC. These energy
values are informed to the tool using a configuration file which is
loaded when ManyGUI is initialized (section 3.4).

In summary, the goal of ECE is to provide a structured event
classification to compute statistics about the events. This structure
is clustered in the class EnergyInfo, which is the input of the front-
end EGI.

3.3 Event Graphical Interface (EGI)
The Event Graphical Interface (EGI) is composed of a set of frames
that brings information about the system’s communication, mem-
ory, and energy. Figure 4 shows the principal frames of ManyGUI .
The next subsections explain the functional properties of the frames.
The explanation of the data content is left to section 4.

3.3.1 Communication. The communication is the initial frame of
the tool and is called when ManyGUI is opened. Figure 4(a) shows
an example for a many-core with 9 tiles (3x3 dimension). This frame
aims to show the interconnection among cores, the packets travers-
ing the NoC in a given time (red arrows), and the link utilization of
each router input port. The frame contains several configuration
panels at bottom. In the panel detailed by marker (1), the user can
control the displaying of the packet events (start, stop, show next
packet). When a new NoC event is read by the tool, it colors in red
the arrow between the current router and the previous router. By
keeping the arrows colored until the packet reaches the destination
router, it is possible to show the full path of the packet, as zoomed
by marker (5), which shows a packet generated by tile 0x0 and
that arrived at tile 0x2, crossing the router of tile 0x1. Marker (2)
shows the speed control panel, in which the velocity of displaying
the NoC event can be controlled. Marker (3) allows backing the
packet displaying to a specific period in the simulation time. Finally,
marker (4) allows for seeing the packet service, which carries the
meaning of that packet. In this example, the packet is a DATA_ACK,
representing an acknowledgment message from a high-level cache
to a low-level cache.

ManyGUI: A Graphical Tool to Accelerate Many-core Debugging

1

3 4 5

2

(a) Communication Frame (b) Energy Frame (c) Memory Frame

1 2 3 4

1

Figure 4:ManyGUI main frames.

(d) Energy detail frame (e) Memory detail frame

Figure 5:ManyGUI detailed frames.

The debug possibilities of this frame include the validation of the
routing algorithms, communication load distribution, link utiliza-
tion, and packet content. Additionally, we observe that this frame
is helpful when the simulation hangs due to a software error inside
a given tile. Using the tool, the developer can quickly identify the
tile responsible for this bug by observing that it stopped consuming
packets, which leads to a cascade effect in the NoC. This awareness
is more difficult (in terms of time) to be reached just using log files
or waveform since the developer needs to trace log by log (or signal
by signal) along the time to find the actual source of the hang.

3.3.2 Energy. From the communication frame, the user can open
the energy frame depicted in Figure 4(b). The goal of this frame is
to detail the energy consumption for each tile. The energy is shown
in the form of a plot for each tile in a 2D-mesh layout. The energy
measurement is broken in monitoring windows, so each tile bar at
the x-axis represents the energy accumulated on one monitoring
window. The y-axis of each tile represents the energy in nJ. The
frame contains some configuration panels at the bottom. In the
panel detailed by marker (1), the user can enable or disable the

update of new events during simulation. In the panel of marker (2),
the user can configure the size of the window. In this example, it
was configured to the default size, which is 1 Kcycles. The panel of
marker (3) allows the user to choose if the displayed values inside
each tile must be normalized to the worst value among all tiles
or according to a specified value. This option is helpful to allow a
quick and fair comparison among the energy consumed by all tiles.
However, sometimes one tile can consume much more energy than
the other ones, which will hide the energy bars of the low-energy
tiles. In such a case, the user can specify an absolute value, which
will be used as a reference to set themaximum value of the y-axis for
all plots. Finally, the panel of marker (4) shows the current time of
the simulation in clock cycles. Another debug property of this frame
is to show the tile energy in a detailed frame (by clicking over the
tile), shown in Figure 5(a). There, the developer can observe 4 plots
related to energy: the total accumulated energy (top-left) and its
normalized version (top-right), and the energy per window (bottom-
left) and its normalized version (bottom-right). Each energy bar
of those plots is broken in the energy of CPU, memory, and NoC,
allowing the user to profile quickly which many-core subsystem is
spending more energy at a given time.

The debug possibilities of the energy frame include: achieving a
comprehensive view of energy for all tiles, detecting tiles that are
energy-hungry, observing the total energy and energy per window
over time, comparing the energy consumption among different
many-core subsystems (CPU, NoC, memory).

3.3.3 Memory. Figure 4(c) shows the memory frame. Its layout is
similar to the energy frame, especially regarding the configuration
panels at the bottom. This frame includes an upper panel high-
lighted by marker (1), which selects which memory statistics must
be displayed, e.g., L1-D access, L1-D miss, L2 access. Thus, the user
can rapidly see the statistics of different memory properties. The
y-axis of each tile represents the number of events (e.g., number
of L1-D miss), and the x-axis represents the monitoring window.
Similar to the energy frame, this frame allows to click over the tile

Marcelo Ruaro and Kevin J. M. Martin

to achieve a detailed memory statistic frame. This action generates
the frame depicted in Figure 5(b). There, the developer can observe
4 plots: at the top, one big plot shows the memory event scheduling.
This plot is proper to compare different memory events and see
how they can influence each other and impact tile’s energy con-
sumption. At the bottom, there are 3 plots showing the miss rate
for L1-D (left), L1-I (center), and L2 (right). Each of these plots also
brings the total miss rate achieved at that given simulation time
(represented by the horizontal dashed line).

The debug possibilities of the memory frame include: achieving a
comprehensive view of memory behavior for all tiles, detecting un-
desired memory behavior in a given tile, crossing different memory
parameters with the energy frame, observing the memory event
scheduling and the miss rate of different cache levels.

3.3.4 Plot Generator. An additional frame shown in Figure 6 con-
sists of a plot generator, which, based on a set of filters, allows the
developer to generate in a vector format any specific plots shown
in the energy and memory frames. To implement this, we integrate
the tool with Matplotlib4 (python-based script to generate plots).
To generate a new plot, the developer must filter which parameters
must be considered (e.g., L1-D access of tile 1x0, the energy of tile
0x0). Once the generate command is pressed, the vector version of
the plot will be shown in a separated frame. This plot can be saved
(e.g., in PDF) for future use in presentations or reports.

Figure 6: Plot generator frame.

3.4 Configuration file
At initialization, ManyGUI demands a configuration file as input.
Table 2 describes the parameters of the configuration file. From left
to right, the columns detail the name, the unit, the numeral format,
and the description. This file allows the developer to configure
important parameters, such as the XY dimension, the router that
implements off-chip connection, frequency, flit width, NoC number,
the monitoring window used by energy and memory frames, and
the energy for events of instructions, memory, and NoC.

4 CASE STUDY: OPENPITON MANY-CORE
OpenPiton is a state-of-the-art silicon-proven many-core developed
by Princeton University [2, 10]. Figure 7 presents an overview of
OpenPiton. Tiles are organized in a 2D-mesh topology, with routers
of tile 0x0 connected to off-chip peripherals. Each tile has a CPU
(with L1 D and I caches), one L1.5 cache (a replica of L1 cache), and
a slice of L2 cache, modeled as a distributed/shared memory. The

4www.matplotlib.org

Table 2: Configuration file description.

Name Unit Form. Description

X Dimension Number of tiles N Horizontal length of many-core
Y Dimension Number of tiles N Vertical length of many-core

Offchip XY addr NoC XY address NxN Address of the router connected
to the offchip interface

NoC number NoC N Amount of NoC or sub-NoCs
Flit size Bits N Size of one NoC flit
Frequency MHz R>0 Many-core running frequency
Monitor Window Clock cycles N Size of one monitor window
EnergyInstru<ALU> pJ R>0 Energy per ALU instruction
EnergyInstru<Mult> pJ R>0 Energy per Branch instructions
EnergyInstru<...> pJ R>0 ...
EnergyMem<L1 miss> pJ R>0 Energy per l1 miss
EnergyMem<L1 hit> pJ R>0 Energy per l1 hit
EnergyMem <...> pJ R>0 ...
EnergyNoC <Flit> pJ R>0 Energy per flit hop

cache implements the directory-based MESI coherence protocol.
The system has 3 packet-switching NoCs with credit-based flow
control and XY routing algorithm. The 3 NoCs are required to
keep the coherence protocol free of deadlocks. Figure 7 shows the
connection between the memory (L2 and L1.5 cache) and the local
ports of routers of each NoC.

NoC1

NoC2

NoC3

NoC1

NoC2

NoC3

NoC1

NoC2

NoC3

NoC1

NoC2

NoC3

N
o

C1

N
o

C2

N
o

C3

N
o

C1

N
o

C2

N
o

C3

N
o

C1

N
o

C2

N
o

C3

N
o

C1

N
o

C2

N
o

C3

Tile

L2
Cache

L1.5
Cache R1

NoC

RouterR2
NoC

RouterR3
NoC

Router

CPU Ariane
(CVA6)

L1-D
Cache

L1-I
Cache

Tile

L2
Cache

L1.5
Cache R1

NoC

RouterR2
NoC

RouterR3
NoC

Router

CPU Ariane
(CVA6)

L1-D
Cache

L1-I
Cache

Tile 0x0 Tile 1x0

Tile 0x1 Tile 1x1

Tile 0x0 Tile 1x0

Tile 0x1 Tile 1x1

Tile 0x0 Tile 1x0

Tile 0x1 Tile 1x1

Offichip
- DRAM
- CLINT
- PLIC
- BOOT
- Other

Figure 7: Hardware overview of OpenPiton many-core.

4.1 Experimental Setup
Intending to address an easy-to-follow debugging experiment, we
build the OpenPiton many-core with 9 tiles (3x3 dimension) and
run on this system a synthetic application shown in Figure 8(a).
The application consists of 3 classes of tasks. A single Split task
receives input data and splits it among several parallel tasks, called
Proc, which process the data slice in parallel. A Join task receives
the processed data gathering them to compose the final result. This
parallel application pattern is commonly found in image and video
processing applications [5]. The application runs during 3 iterations.
The size of the input data is 26.25 KB, meaning that each Proc task
handles 3.75 KB at each iteration. The Proc cost function has a
complexity of O(n), where n is equal to 960 (3.75 KB / 32 bits).

ManyGUI: A Graphical Tool to Accelerate Many-core Debugging

Figure 8(b) shows the task mapping of the application in Open-
Piton. Each task runs in one tile in a bare-metal fashion (without
OS). The application communicates using semaphore operations of
up() and down() to produce and consume data, respectively. Due to
the absence of OS, the semaphore implementation spins the lock
until it is released by the communicating task pair, then it advances
to modify the semaphore counter. This behavior is important since
it will stress the cache memory, as will be evaluated in the next
subsection.

Split

Proc1

Proc
N-2

... JoinSplit

Proc1

Proc
N-2

... Join

(a) Task graph

Proc3 Proc4

Proc6 Proc7

Split Proc1

Proc5

Join

Proc2

Proc3 Proc4

Proc6 Proc7

Split Proc1

Proc5

Join

Proc2

(b) Task mapping

Figure 8: Synthetic application.

4.2 Results
The goal of the results is not to enter in the merit of the application
performance but evaluate the capabilities of ManyGUI to provide a
rapid understanding of the many-core in terms of communication,
memory usage, and energy consumption. For the sake of space, we
reuse the frames of Figure 4.

The first basic information that can be achieved, is the simulation
time, shown in all frames. It can be observed that the application
took 72,974 cycles to finish its execution (marker (4) of Figure 4(b)).

4.2.1 Communication. In communication frame, each tile was
graphically modeled to represent the inputs and outputs of each
NoC router. As OpenPiton has 3 NoCs, each tile has 3 sets of inputs
and outputs that represent packets entering and exiting it. The
inner draw of the tile represents the local interface between the
memory with routers (which can be better understood jointly to
the Figure 4). A descend arrow means a connection from a given
memory module (L1.5 or L2) to the router. The ascendant arrow
means the opposite, the connection from the router to the memory
module.

The zoomed panel shown in marker (5) of Figure 4(a) points
that L2 of tile 0x0 is sending a packet by NoC2 to the L1.5 of tile
0x2 at time 15,864 (marker 2). Another interesting behavior is link
utilization. Observing the marker (5) it is possible to see that the
left-most NoC input link (NoC1) of tile 0x0 is saturated, with 93%
of utilization. This behavior is expected because the application
fits entirely inside the L2 cache of tile 0x0, which stores the data
and semaphores locks used for synchronization among all tasks.
This makes all the cores communicate with L2 of tile 0x0. As the
communication on NoC uses XY algorithm, the south input port
receives most of the packets since 6 in 9 (66%) tiles use this port to
communicate with tile 0x0. Looking to the east input port of tile
0x0, we can see a link utilization of 40%. This usage is lower since
only 2 tiles (22%) use this link to communicate.

4.2.2 Memory. By observing the L1-D miss plots of Figure 4(c), it
is possible to identify (after a warm-up period) 3 increasing patterns
in the miss along the time. A similar pattern is found when selecting
the L1-D access (not shown in the figure). These memory peaks
occur because at each new application iteration (3 in total), the Split
task overwrites new data in the shared buffers used by the Proc task
to access the data. This invalidates the current data, increasing the
L1-D misses. This behavior is endorsed by observing the detailed
memory frame of Figure 5(b), specifically, the bottom-left plot,
which shows the L1-D miss rate at tile 0x0. Clearly, 3 peaks can
be observed in the miss rate, representing the 3 iterations of the
application. In this same frame, it is also possible to observe that the
L1-I miss rate (bottom-center plot) is higher during the warm-up
period (up to 16 Kcycles) when the task’s code is loaded inside the
L1-I cache.

By using the plot generator frame, it is possible to look at the
statistics closer. Additionally, it is possible to collect system-level
metrics. As an example, Figure 9(a) and (b) shows the system miss
rate for L1-D and L1-I, respectively. As expected, the L1-D miss
rate (after warm-up) shows the same 3 patterns already explained.
The horizontal line represents the average miss rate, which reached
6.7% in this case. In the L1-I miss rate, a peak occurs only during
the warm-up, with the miss rate remaining below 0.1% after that.
The average LI-D miss rate is 0.51%.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
Monitoring window (x 1000 Kcycles)

0.0

0.2

0.4

0.6

0.8

1.0

Sy
st

em
 L

1-
D

m
iss

 ra
te

6.70%

System L1-D miss rate

(a) L1-D miss rate

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
Monitoring window (x 1000 Kcycles)

0.0

0.2

0.4

0.6

0.8

1.0

Sy
st

em
 L

1-
I m

iss
 ra

te
0.51%

System L1-I miss rate

(b) LI-D miss rate

Figure 9: System statistics.

4.2.3 Energy. The energy frame combined with the memory frame
can lead to powerful analysis. First, lets focus on the energy con-
sumption of a tile running a Proc task (tile 1x1), shown by Figure 4(e).
The normalized total energy of the tile (top-right plot) shows that
the NoC has a low influence on the total energy after the warm-up
period, representing on average less than 4% of the tile’s energy.
This observation is in accordance with what was observed in the
characterization of OpenPiton in silicon [10], which pointed out the
low impact of NoC in the chip’s energy consumption. Additionally,
the most important player in energy consumption is the memory
(> 88% after warm-up), which in this case is highly used since the
semaphores implement busy-wait spinlock.

Looking into the all tiles energy plots in Figure 4(b), we can
see that the 3 peaks observed in the memory frame are correlated
with the energy consumption of all tiles, except for tile 0x0, which
presents the largest energy consumption among all. This energy
consumption is directly impacted due to the high L2 usage of tile
0x0 previously explained. As the energy of miss and hit increases
according to the highest cache level [10], the L2 energy dominates

Marcelo Ruaro and Kevin J. M. Martin

the energy consumption of tile 0x0. To perform a detailed analysis,
we use the plot generator frame to extract the accumulated energy
of tile 0x0 in Figure 10(a) and the L2miss rate in Figure 10(b) (the red
rectangles where manually inserted). It is possible to see in Figure
10(b) that there are 3 periods where the energy remains practically
constant. Such points correlate precisely with the 3 L2 miss rate
plateaus of Figure 10(a), caused due to the computing period of the
Proc tasks. Such computation moments are outside of the critical
region, and therefore do not push the L2 cache to keep the lock
synchronized among tiles. As a last observation, Figure 10(a) also
allows for achieving the total energy consumption of tile 0x0, which
was 218,648 nJ (maximum value of y-axis).

(a) Accumulated energy (b) L2 miss rate

Figure 10: Tile 0x0 statistics.

5 CONCLUSION
This work has investigated that state-of-the-art open-source plat-
forms have an important gap in debugability of high-level events,
leading the developer to meticulous tasks of debugging and correlat-
ing log files and waveform to understand what is happening during
the simulation. We proposed ManyGUI , a graphical tool to debug
many-cores, composed of a data extraction and classification frame-
work connected to a set of graphical frames that allows to represent
the many-core behavior during simulation in an intuitive way. The
choice to focus in high-level events (instructions, memory, and NoC
packets), allows to build a comprehensive profile of many-core in
terms of communication events, memory events and energy con-
sumption. We implemented the support ofManyGUI to state-of-the-
art silicon-proven many-core called OpenPiton. The experimental
results show that ManyGUI can profile correctly NoC, cache mem-
ory, and energy consumption, presenting values already endorsed
in silicon energy analysis. ManyGUI is an open-source tool ac-
cessible to download in github.com/Nooman-LabSTICC/manyGUI.
Since OpenPiton is also a open-source tool, we believe that the
combination of both will contribute to accelerate many-core re-
search. Future works include to add thermal estimation and collect
events at the software level, allowing to correlate a given software
region with the statistics of memory and energy. In such a way, the
developer could improve the software design accordingly to the
presented statistics.

ACKNOWLEDGMENTS
This work is supported by the Agence Nationale de la Recherche
under Grant No.: ANR-17-CE24-0018.

REFERENCES
[1] Johannes Ax, Gregor Sievers, Julian Daberkow, Martin Flasskamp, Marten

Vohrmann, Thorsten Jungeblut, Wayne Kelly, Mario Porrmann, and Ulrich Rück-
ert. 2018. CoreVA-MPSoC: A Many-Core Architecture with Tightly Coupled
Shared and Local Data Memories. Transactions on Parallel and Distributed Systems
29, 5 (2018), 1030–1043. https://doi.org/10.1109/TPDS.2017.2785799

[2] Jonathan Balkind, Katie Lim, Fei Gao, Jinzheng Tu, David Wentzlaff, Michael
Schaffner, Florian Zaruba, and Luca Benini. 2019. OpenPiton+ Ariane: The First
Open-Source, SMP Linux-booting RISC-V System Scaling From One to Many
Cores. In Workshop on Computer Architecture Research with RISC-V (CARRV-).
ACM, USA, 1–6.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms (3rd ed.). MIT Press, Cambridge, Massachusetts.

[4] Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawai, Austin Rovin-
ski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao, Steve Dai, Aporva Amarnath,
Bandhav Veluri, Paul Gao, Anuj Rao, Gai Liu, Rajesh K. Gupta, Zhiru Zhang,
Ronald Dreslinski, Christopher Batten, and Michael Bedford Taylor. 2018. The
Celerity Open-Source 511-Core RISC-V Tiered Accelerator Fabric: Fast Architec-
tures and Design Methodologies for Fast Chips. IEEE Micro 38, 2 (2018), 30–41.
https://doi.org/10.1109/MM.2018.022071133

[5] Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine Aridhi. 2016.
Distributed Memory Allocation Technique for Synchronous Dataflow Graphs. In
International Workshop on Signal Processing Systems. IEEE, USA, 45–50. https:
//doi.org/10.1109/SiPS.2016.16

[6] M. A. Elmohr, A. S. Eissa, M. Ibrahim, M. Khamis, S. El-Ashry, A. Shalaby, M.
AbdElsalam, and M. W. El-Kharashi. 2018. RVNoC: A Framework for Generating
RISC-V NoC-Based MPSoC. In PDP. IEEE, UK, 617–621. https://doi.org/10.1109/
PDP2018.2018.00103

[7] Ahmed Kamaleldin, Salma Hesham, and Diana Göhringer. 2020. Towards a
Modular RISC-V Based Many-Core Architecture for FPGA Accelerators. IEEE
Access 8 (2020), 148812–148826. https://doi.org/10.1109/ACCESS.2020.3015706

[8] Andreas Kurth, Alessandro Capotondi, Pirmin Vogel, Luca Benini, and Andrea
Marongiu. 2018. HERO: An Open-Source Research Platform for HW/SW Explo-
ration of Heterogeneous Manycore Systems. In Workshop on AutotuniNg and
ADaptivity AppRoaches for Energy Efficient HPC Systems (Limassol, Cyprus) (AN-
DARE ’18). Association for Computing Machinery, New York, NY, USA, Article 5,
6 pages. https://doi.org/10.1145/3295816.3295821

[9] Andreas Kurth, Wolfgang Ronninger, Thomas Benz, Matheus Cavalcante, Fabian
Schuiki, Florian Zaruba, and Luca Benini. 2021. An Open-Source Platform for
High-Performance Non-Coherent On-Chip Communication. Transactions on
Computers NA (2021), 1–1. https://doi.org/10.1109/TC.2021.3107726

[10] Michael McKeown, Alexey Lavrov, Mohammad Shahrad, Paul J. Jackson,
Yaosheng Fu, Jonathan Balkind, Tri M. Nguyen, Katie Lim, Yanqi Zhou, and David
Wentzlaff. 2018. Power and Energy Characterization of an Open Source 25-Core
Manycore Processor. In International Symposium on High Performance Computer
Architecture. IEEE, Austria, 762–775. https://doi.org/10.1109/HPCA.2018.00070

[11] A. Monemi, J.W. Tang, M. Palesi, and M.N. Marsono. 2017. ProNoC: A low
latency network-on-chip based many-core system-on-chip prototyping platform.
Microprocessors and Microsystems 54 (2017), 60–74. https://doi.org/10.1016/j.
micpro.2017.08.007

[12] Daniel Petrisko, Farzam Gilani, Mark Wyse, Dai Cheol Jung, Scott Davidson, Paul
Gao, Chun Zhao, Zahra Azad, Sadullah Canakci, Bandhav Veluri, Tavio Guarino,
Ajay Joshi, Mark Oskin, and Michael Bedford Taylor. 2020. BlackParrot: An Agile
Open-Source RISC-V Multicore for Accelerator SoCs. IEEE Micro 40, 4 (2020),
93–102. https://doi.org/10.1109/MM.2020.2996145

[13] Yasir Mahmood Qureshi, William Andrew Simon, Marina Zapater, Katzalin Olcoz,
and David Atienza. 2021. Gem5-X: A Many-Core Heterogeneous Simulation
Platform for Architectural Exploration andOptimization. ACMTrans. Archit. Code
Optim. 18, 4, Article 44 (July 2021), 27 pages. https://doi.org/10.1145/3461662

[14] Marcelo Ruaro, Luciano L. Caimi, Vinicius Fochi, and Fernando G. Moraes.
2019. Memphis: a framework for heterogeneous many-core SoCs generation
and validation. Design Automation for Embedded Systems 23, 3-4 (2019), 103–122.
https://doi.org/10.1007/s10617-019-09223-4

[15] Süleyman Savas, Zain Ul-Abdin, and Tomas Nordström. 2020. A framework
to generate domain-specific manycore architectures from dataflow programs.
Microprocessors and Microsystems 72 (2020), 102908. https://doi.org/10.1016/j.
micpro.2019.102908

[16] Florian Zaruba and Luca Benini. 2019. The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core
in 22-Nm FDSOI Technology. IEEE Trans. Very Large Scale Integr. Syst. 27, 11 (nov
2019), 2629–2640. https://doi.org/10.1109/TVLSI.2019.2926114

github.com/Nooman-LabSTICC/manyGUI
https://doi.org/10.1109/TPDS.2017.2785799
https://doi.org/10.1109/MM.2018.022071133
https://doi.org/10.1109/SiPS.2016.16
https://doi.org/10.1109/SiPS.2016.16
https://doi.org/10.1109/PDP2018.2018.00103
https://doi.org/10.1109/PDP2018.2018.00103
https://doi.org/10.1109/ACCESS.2020.3015706
https://doi.org/10.1145/3295816.3295821
https://doi.org/10.1109/TC.2021.3107726
https://doi.org/10.1109/HPCA.2018.00070
https://doi.org/10.1016/j.micpro.2017.08.007
https://doi.org/10.1016/j.micpro.2017.08.007
https://doi.org/10.1109/MM.2020.2996145
https://doi.org/10.1145/3461662
https://doi.org/10.1007/s10617-019-09223-4
https://doi.org/10.1016/j.micpro.2019.102908
https://doi.org/10.1016/j.micpro.2019.102908
https://doi.org/10.1109/TVLSI.2019.2926114

	Abstract
	1 Introduction
	2 Overview of Many-core Platforms and Debugging
	3 Many-core GUI Debugging
	3.1 Event Monitoring
	3.2 Event Classification Engine (ECE)
	3.3 Event Graphical Interface (EGI)
	3.4 Configuration file

	4 Case Study: OpenPiton Many-core
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	Acknowledgments
	References

