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Abstract—Coarse-Grained Reconfigurable Architectures
(CGRAs) emerged about 30 years ago. The very first CGRAs
were programmed manually. Fortunately, some compilation
approaches appeared rapidly to automate the mapping process.
Numerous surveys on these architectures exist. Other surveys
also gather the tools and methods, but none of them focuses
on the mapping process only. This paper focuses solely on
automated methods and techniques for mapping applications on
CGRA and covers the last two decades of research. This paper
aims at providing the terminology, the problem formulation,
and a classification of existing methods. The paper ends with
research challenges and trends for the future.
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I. INTRODUCTION

Despite three decades of constant study, Coarse Grain
Reconfigurable Architectures (CGRAs) are still in 2022 the
ever promising solution that did not yet meet the expected
commercial success. Computer architecture is entering a new
golden age [1] and CGRAs might eventually go beyond
promise. CGRAs are seen as good compromise between the
necessary flexibility and computing power needed by next-
generation applications and the energy-efficiency required by
all systems, not only the embedded ones. CGRAs gather
together a huge set of possible architectures, ranging from
simple organisations to complex ones [2], [3]. One may even
consider also GPGPUs as part of this big family [4]. Indeed,
the design space is huge and includes several architectural
dimensions: processing elements and their homogeneity, in-
terconnection network, context frame, partial reconfiguration,
orchestration mechanism, design of memory hierarchy, and
host-CGRA coupling to name a few. The number of proposed

Fig. 1. Architecture comparison proposed in [3]

architectures is simply tremendous and undoubtedly, CGRAs
still keep a wide unexplored area. From its reconfigurable
features, CGRAs are a key member of the reconfigurable
computing family. Figure 1 shows the ideal trade-off between
flexibility, performance, and energy efficiency that CGRAs
offer compaired with other architectures.

Making an inventory of existing CGRAs is a complex and
time consuming task that has been successfully done in the
past [2], [3], [5]–[8]. Fortunately, the newcomer in the domain
can restrict to reading only few papers to acquire a nice
overview. The Hartenstein’s paper surveys the first decade
of reconfigurable computing [2]. In 2010, De Sutter et al.
published a book chapter detailing the architecture features
of a CGRA [9]. Wijtvliet et al. review 25 years of CGRAs
in 2016 [7]. The most recent surveys are provided by Liu
et al. [3] and Podebas et al. [8]. Liu et al. [3] suggest
another classification, complementary to the ones proposed in
the previous surveys. Podebas et al. interestingly gather the
published CGRAs from a performance perspective [8], and
highlights by figures what is commonly accepted: CGRAs are
serious competitors to GPGPUs1. These two last surveys point
out the severe limitations that CGRAs meet like the unadapted
programming model.

The abovementioned papers focus on the architectures. In
order to make use of the abondant number of processing
elements available, a CGRA must come along with a compiler.
The very early CGRAs were programmed manually, i.e. at
assembly level [10]. These first steps were important to
understand how to program such an architecture and describe a
systematic method that can then be automated. The automated

1provided that we do not consider GPGPUs as part of the big CGRA family
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process of programming a CGRA from a high level language
falls in the compilation category. The backend part, responsible
for defining the use of the hardware resources is called
application mapping.

An inventory of existing mapping techniques has also been
done in the past [5], [6], [11]. Theodoridis et al. present the
CAD tools along with the CGRAs up to 2007 [5]. In 2011,
Choi [6] wrote a survey that combines both architecture and
application mapping. These papers present first the architec-
ture, and their associated mapping flow individually. In [11],
a survey on compiling for reconfigurable computing archi-
tectures covers the broad range of reconfigurable computing,
including FPGAs, up to 2010. The common features in the
compiler are described, and then some dedicated compilers
are presented. This paper focuses on automated methods for
mapping on CGRAs only, includes the last decade of research
on that topic, and proposes a classification. From the early first
papers [12]–[14] to the latest publications on the topic [15]–
[17], this paper paints a picture of two decades of CGRA
mapping.

Before presenting what is the mapping problem and the
techniques to solve it, this survey proposes a terminology
to clearly state the problem, and extracts a general problem
formulation. This paper concludes with the research challenges
to be taken up.

II. TERMINOLOGY AND METHODOLOGY

This paper starts with definitions and terminology, that
might not be so obvious even for experts of the topic. Defining
the terms allows for a newcomer to get familiar with the terms.

A. What a CGRA looks like

Even if this paper focuses on the mapping technique, it
presents a typical CGRA and describes its main architec-
tural features, which are essential to introduce in order to
understand the mapping problem. Figure 2, taken from [8],
presents a simple CGRA which contains the minimal com-
ponents of a basic CGRA. A CGRA is a set of processing
elements (PEs), also called reconfigurable cells (RCs), or tile,
or functional unit (FU). The term cell might be more generic,
as in some CGRAs, the cells are heterogeneous, composed
of computation unit, or memory units. This set of cells is
usually placed as a two dimensions array, where the cells are
interconnected through point to point connections, or more
complex topologies. The interested reader is invited to read
the dedicated papers for more details [3], [5], [8], [18]. The
key element to highlight is that a CGRA exposes both spatial
and temporal parallelism.

B. Terminology and definitions

Array or Architecture? A first ambiguity is the ‘A’ of
CGRA. In the literature, it sometimes stands for “Array”,
sometimes for “Architecture”. Both cases make sense. A
CGRA is typically organized around an array of cells, but
the word architecture encompasses all kind of organisations,
not only array-based.

Fig. 2. Illustration of a simple CGRA taken from [8], showing the mesh
topology (a), the internal architecture of the Reconfigurable Cell, RC (b), and
an example of the configuration register (c).

Why reconfigurable? A CGRA is a reconfigurable archi-
tecture. As such, it relies on configurations. The term context
or control are also commonly found in the literature to mean a
configuration. Some authors may even use the term instruction.
A newcomer might wonder what is the difference between
a configuration, a context, and an instruction of a CGRA.
The difference lies in the hardware that allows to reconfigure
the architecture. Finally, in all CGRAs, the reconfiguration
is a matter of signals that drive multiplexers in a data-path.
Therefore, a configuration must hold all the values of a set
of signals that select the correct input of a multiplexer. A
context is such a structure that contains all the raw values.
An instruction can be seen as a condensed representation of a
context. An instruction needs to go through a decoder whose
outputs drive the multiplexers. Deducing that a processor is
a reconfigurable architecture is a precocious conclusion that
we cannot draw though. But whether it be a context or an
instruction, the importance from the compilation point of
view is to know what to produce as the format defines the
contract between the hardware and the software to reach a
valid execution.

Spatial computation vs. temporal computation. One of
the crucial hardware feature that the compiler must know is if
the CGRA supports spatial computations or temporal computa-
tions [3]. Spatial computation is very similar to FPGAs. Along
with spatial computations that all CGRAs support, temporal
computations allow to share in time the hardware resources
leading to more flexibility, but are often criticized to reduce
the energy efficiency [19].

Compilation. Compilation is an automated process that
takes an input source code and transforms it into an equivalent
binary code, executable by a given architecture. Fig. 3 shows
a typical compilation flow for CGRAs. A compiler is con-
ceptually composed of three main steps: (1) the front-end, in
charge of parsing the source code and producing an equivalent
intermediate representation (IR), (2) the middle-end, where
some optimization passes may occur on the IR2, and (3) the
back-end, responsible for producing the binary code from

2in real life there are multiple IRs according to the optimisation to perform
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Fig. 3. Classical compilation flow for CGRAs

the IR. Thus the back-end must know the target architecture.
The specific features of the early CGRAs were hardcoded
in their own compiler, some techniques being specific to a
very particular hardware and hardly reusable. This is why the
previous surveys present individually the compilers [5], [6],
[11], as they are all tailored to a specific target. Designing a
retargetable compiler for CGRAs is still an open issue today.

DFG, CDFG. The intermediate representation of a compiler
is usually in the form of a graph. A Data Flow Graph (DFG)
is a graph whose nodes represent operations and whose edges
are the data dependencies between the operations. A DFG
is embedded in a basic block, such that a basic block has
a single entry and single exit. Fig. 3 shows an example of
a DFG inside a basic block (BB3). A Control Flow Graph
is a graph whose nodes are basic blocks and whose edges
are the control dependencies between the basic blocks. The
combination of the two forms a CDFG (Control Data Flow
Graph). An application specified in a given language can thus
be represented in the form of a graph, where the nodes are
the operations, and the edges are the dependencies (control or
data).

Binding or placing? The word binding holds the idea to
tie things together, whereas placing let think a little freedom
about the spatial location. Both terms are equally used in the
literature for the same meaning. We choose binding for the
rest of this paper.

Routing. The routing defines the physical connections be-
tween the computing resources. Routing usually builds on
placement. In a CGRA, placement and routing of computing
resources are already done. In that context, routing does
not mean creating a new route with a physical wire, but
use an existing link without interfering with already existing
communications using this link.

Scheduling. The scheduling is the method that assigns in
time, operations to the hardware resource, while guaranteeing
the dependencies.

Mapping. The mapping in the main step in the back-end.
The word mapping can designate both the process and the out-
put of the process. For a spatial CGRA, the mapping process
amounts to solving the binding problem. For temporal CGRA,
the mapping process must solve both binding and scheduling
problems. When the problem is solved, the output of the
process is a valid mapping, i.e. a binding (and scheduling) of
operations of the application on the hardware resources while
guaranteeing the dependencies. Fig. 3 shows a spatial mapping
and a temporal mapping of a simple dot-product input source
code. Spatial mapping is also sometimes referred to as straight
forward mapping.

Software pipelining and modulo scheduling. Software
pipelining is a general technique for overlapping loop iter-
ations. Modulo scheduling is the most commonly used tech-
nique for software pipelining, especially in the CGRA domain.
In [20], the authors define clearly the goal: “The objective of
modulo-scheduling is to engineer a schedule for one iteration
of a loop such that this same schedule can be initiated at
regular, as short as possible, intervals, taking into account
data dependences and resource constraints. This interval in
terms of cycles is termed initiation interval (II)”. The quest of
the minimum II is the main motivation of many works. Fig. 3
shows an example of modulo scheduling for the dot-product.
The II in the example is one, and the figure clearly shows that
two different iterations of the loop are being processed at the
same time.

CGRA models. The back-end must know the target archi-
tecture in order to fully make use of its specific features.
The idea of describing to the compiler the CGRA emerged
very early [21]. In 2002, Mei et al. [22] use an architecture
abstraction in the famous DRESC. In 2003, Lee et al. pro-
pose a generic architecture template called the dynamically
reconfigurable ALU array (DRAA) [14]. Since then, the great
majority of works considers a model of the CGRA as input
of the compilation flow. Recent efforts include non-functional
constraints [18].

C. Problem formulation

This paper focuses on methods to solve the mapping prob-
lem, which combines two NP-complete problems: scheduling
and binding. This raises CGRA compilation as a unique
scientifique problem and main challenge, because mapping
might fail [23]–[25], which is of course unconceivable from
the user point of view. To this end, for instance, HiMap [26]
is an iterative algorithm that terminates when a valid mapping
is found. Historically, CGRA mapping is the meeting point
between VLIW compilation, and FPGA place-and-route. The
difference with VLIW compilation is the direct communication
possibilities offered by the CGRAs between the different PEs.
VLIW processors share data through a register file only. The
difference with FPGA place-and-route is the granularity of the
processing elements and a usually less flexible interconnect. A



single formalisation of the mapping problem is not possible,
as it is specific to the architecture model and the execution
model considered. The interested reader can refer to other
papers where the authors clearly formalized their problem [23],
[27]. The idea is to give an explanation of the problem,
understandable by a newcomer.

A nice definition is given in [3]: “the mapping of a CGRA
is actually equivalent to identifying the spatial and temporal
coordinates of every node and arc in the control/data flow
graph (CDFG). Compilers are responsible for making this
arrangement.” We may add that the temporal coordinate
system is often called the time extended CGRA (TEC) [28],
or the time-space graph [29]. The challenge is reminded
by Chen et al. [27]: to provide high quality solution with
fast compilation time. Thus, the mapping problem can be
summarized as follows: bind in place and schedule in time
operations of the application on the CGRA while guaranteeing
the dependencies and in a short time, such that the application
executes as fast as possible.

D. Methodology

This paper is solely based on the information found in the
publications available online. The authors of the cited papers
have not been contacted for more thorough explanation about
the techniques (the lack of space when writing papers forces
sometimes the authors to simplify or omit some aspects), and
the personal knowledge of the authors of this paper is not
used.

The papers cited in this survey have been published in high
ranked international conferences or journals. As the ranking
is an endless debate, and the ranking is subject to change, the
international audience targeted preveals. National conferences
or journals, even when the proceedings are written in English,
are rarely considered for this survey. There are several strong
places of CGRAs all around the world. Some groups have
a long history and contributed heavily to the increase of
knowledge about the CGRAs and corresponding mapping
techniques. Only a subset of papers is cited in this survey.

III. A REVIEW OF MAPPING METHODS

This section presents a round-trip of proposed methods to
solving the CGRA mapping problem. As the application is
composed of data-flow parts, and control-flow parts, some
methods have been devised specifically for each part. The
section ends with an overview of the scientific production of
the last two decades.

A. Data-flow mapping

All the works cited in this paper propose a technique to map
the data-flow part of an application. Some methods follow a
place-and-route similar to what is done in FPGAs. Some other
methods formalized the problem to delegate to a solver. Since
the mapping problem is a NP-complete problem, researchers
naturally looked after techniques provided by the operational
research or graph theory domains. These have been extensively
used to solve the data-flow mapping problem.

In [26], Wijerathne et al. suggest to classify the exist-
ing CGRA mapping algorithms into three main categories:
heuristic-based, graph-based or ILP-based (Integer-Linear Pro-
gramming). The graph-based approach can be discussed as
soon as all applications are modeled by graph, but graph-based
approaches use techniques borrowed from the graph theory
domain and can deserve an own class. For instance, Hamzeh
et al. [46] build a compatibility graph, Dave et al. rely on
the max clique in RAMP [38], a graph minor approach is
followed in [27], and the maximum common subgraph is used
in [28], [47], [54]. We suggest to follow a more usual way
of classifying optimization algorithms between approximate
methods and exact methods. The other issue with graph-
based approaches, in the general case, is that some of them
can be exact and others not. Specifically for the case of
CGRA mapping, it appears that all of them are heuristics. We
also suggest to further divide the heuristic-based approaches
by adding a meta-heuristic category (which is part of the
heuristics category but this makes Table I more clear). Finally,
we include the ILP into an “exact-based” category, which is
also debatable as soon as these techniques do not guarantee an
optimal mapping. The main feature of the exact based methods
is that they can prove the optimality, whereas heuristics may
find the optimal solution, but without the possibility to prove
it.

As a second dimension to this classification, we suggest
to differentiate spatial and temporal mapping. In the case of
temporal mapping, the binding and scheduling steps can be
solved together, or can be solved separately (one after the
other). In that case, some approaches may use a combination of
techniques. Table I gathers all the techniques used to solve the
mapping problem, for spatial or temporal architectures. The
different techniques used are presented in four main columns:
(1) heuristics, (2) meta-heuristics, (3) ILP or Branch and
Bound (B&B) methods, (4) Constraint Satisfaction Problems
(CSP). The heuristics encompass all the techniques specifically
designed for the given problem. The meta-heuristics form
a family of optimisation algorithms, and the table further
divides it into two families: population-based technics like
Genetic Algorithms (GA) or quantum-inspired evolutionary
algorithm (QEA), and local search techniques like Simulated
Annealing (SA). The exact methods include Integer Linear
Programming (ILP) and branch and bound on one side, and
techniques that model the mapping problem as a constraint
satisfaction problem. This problem is then solved through
constraint programming (CP), SAT (Boolean satisfiability),
or SMT (Satisfiability Modulo Theories). Please note that
all the papers cited do not appear in the table, as some of
them rely on already referenced papers. For instance, the
approach presented by De Sutter et al. [20] relies on DRESC
compiler [22], which already appears in the table.

B. Control-flow mapping

Mapping the control-flow graph raises another difficulty.
A solution adopted in many cases is to let the control flow
managed by a host processor. But this reduces greatly the pos-



TABLE I
A REVIEW OF BINDING AND SCHEDULING TECHNIQUES FOR AUTOMATED SPATIAL AND TEMPORAL MAPPING OF APPLICATIONS ON CGRAS.

Approximate methods Exact methods
Heuristics Meta-heuristics ILP/B&B CSP

Population-based local search

Spatial mapping [23], [30], [31] GA [19] SA [32], [33] ILP [23], [34], [35]

Temporal mapping [12], [16], [26], [36]–[40] SA [22] ILP [41] B&B [42] CP [43] SAT [17] SMT [44]
Binding [14], [24], [28], [45]–[47] QEA [48] SA [30], [49], [50] ILP [15], [48]
Scheduling [24], [28], [36], [46], [48], [50]–[52] ILP [15], [53]

sibilities to use the CGRA and increases the communication
overhead, loosing sometimes the benefit of the acceleration
provided by the CGRA. Another approach is to provide the
CGRA with extra hardware features to support the control
flow. Two structures are distinguished: Conditional and alter-
native structures, and iterative structures.

1) Conditional and alternative structures: Conditional and
alternative structures are if-then-else (ITE) constructs. As
clearly presented in [55], there are four basic methods to
map applications with ITE onto CGRAs: (1) Full predica-
tion [56], (2) Partial predication [57], (3) Dual-issue single
execution [55], [58], [59], (4) Direct CDFG mapping [60].
Supporting ITE constructs efficiently is still a hot topic, as
witnessed by recent publications [55], [59].

2) Iterative structures: Iterative structures are defined by
an initialisation phase, an iteration condition, and an iteration
step. Most of the works focus on for loops. Loops have been
the primary care since the early days of CGRAs [12]. Since
loops concentrate the most important computing part of the
application, researches naturally focused on this specific case,
and the topic has been intensively studied during the last two
decades. Most of the works consider the loop body, letting the
control flow managed by a host processor. When the loop body
contains conditional or alternative structures, the techniques
presented in III-B1 can be used. Mapping loops on CGRA is
so intensively studied that it would certainly deserve a survey
on its own.

Modulo scheduling. Modulo scheduling is the most widely
used technique to map loops on the CGRA [29], [30],
[52], [61]. It can rely on a modulo routing resource graph
(MRRG) [59], [61]. It can also be solved through graph-based
approaches [37], [38].

Hardware loops. Hardware loops consist of extra logic
inside the CGRA to manage the iterations of the loop in order
to reduce the overhead of loop control by the processor [62]–
[64].

C. Data mapping

The interaction between the CGRA and the memory is
also of utmost importance as it defines the efficiency of the
whole execution of the application. Various parameters of the
memory can be considered for an efficient mapping: number
of banks, communication bandwidth, and memory size [50],
[65]–[68].

The internal memory resources of the CGRA should also
be used efficiently. Register allocation is presented in [29],

[46], for a rotating register file [29], or for a unified register
file [25].

D. Timeline

Fig. 4 presents the evolution of scientific production around
CGRA mapping the last two decades. The number of pub-
lications per year is not accurate, as it considers the papers
focusing on CGRA mapping only, and a subset of selected
papers, but still it shows that the community has intensified
the efforts in the last decade, with a clear increase in 2021.
The figure also shows that modulo scheduling was considered
since the beginning of the studies, that supporting branches
started in the early 2000s, and that memory-aware methods
gained interest around 2010.

IV. THE FUTURE

The first wave of CGRA was fueled by signal processing
applications, especially multimedia applications like image,
audio, and video, for embedded systems, constrained by strin-
gent power and energy budget. The Samsung Reconfigurable
Processor (SRP) [69], an ADRES-like CGRA, integrated in
the past in the Exynos SoC, is an example of a commercial
use of CGRAs. The choice of Samsung to discontinue the use
of SRP in favor of more conventional processors is the sign
of a mitigated success [70].

A. Trends

CGRAs experience a new momentum as they get carried
away by artificial intelligence (AI) applications. The mas-
sive need of high-performance computing, coupled with the
slowdown of Moore’s law and end of Dennard scaling, and
the mismatch between AI workloads and conventional Von
Neumann architectures, drives the efforts towards a multitude
of AI-accelerators, which fall in the category of CGRAs. The
diversity of names in the literature also shows that the domain
is buzzing: Xilinx AI-engine [71], Reconfigurable Dataflow
Architecture [72], Reconfigurable Dataflow Accelerator [73].
These “modern” CGRAs differ from the legacy ones in the
number of cells that are available, which causes a serious
scalability issue that is discussed in the challenge section.
Another difference is the coupling with a host CPU. Modern
CGRAs tend to be standalone, similarly to a GPU, and they
require a full system integration. CGRAs are the relevant (if
not the only credible) solution to take up the challenge of
energy-efficient AI applications. The second wave of CGRAs
might eventually be the one that meets an industrial success.
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The mapping problem is complex, and needs sophisticated
algorithms that are time consuming to understand, and to
formalize. The methods based on artificial intelligence and
machine learning are clearly interesting trails [74]. AI-based
methods help in concentrating within a single model some
functional but also non functional contraints, that are hard to
formalize through traditional methods. AI for electronic design
automation in general is at its early beginnings, and AI for
CGRA specifically will be part of this global trend.

From the architectural point of view, some evolutions will
obviously impact the compilation. The CGRA coupling can
also be further explored: near the memory, or directly inte-
grated within the memory array in a processing-in-memory
manner [3]. The emerging memory technologies will also be
game changers.

Finally, some open-source frameworks recently ap-
peared [32], [75]–[77] to share the technical efforts and pro-
vide a ready for use tool to democratize the CGRAs and make
them widely adopted for energy-efficient or high-performance
computing. These frameworks are also part of a wider trend
about open source hardware.

B. Challenges

a) Programming model: The unadapted programming
model used up to now for CGRAs is the main limitation
identified in two recent surveys [3], [8]. Other programming
models needs to be considered, more adapted to CGRAs, able
to specify the data-level parallelism, like OpenMP, SYCL,
CUDA or OpenCL. The dataflow model of computation could
also be interesting to look at. This kind of streaming model
can fit with CGRAs [31], [78].

b) Scalability: Scalability is clearly one of the biggest
challenge to be taken up. Some techniques are already pro-
posed do deal with scalability. In [26], the repetitive patterns
of loops are detected and are mapped in a hierarchical way.
In [24], the partial solutions are stochastically pruned to keep
under control their number. But while legacy CGRAs are
composed of tens of cells, with a use rate quite low limited by
the intruction level parallelism available in the applications,
the more recent and modern CGRAs, the most capable of
crunching AI workloads, contains hundreds to thousands of
cells. The issue is to effectively make use of the massive
number of cells. The standalone feature of modern CGRAs

is another game changer for mapping methods. The mapping
problem is intractable, scalability further raises the challenge,
and the number of cells involved takes it in yet another
dimension. The application should be considered as a whole,
not with intensive kernels to be offload to the CGRA and
letting the host processor interact with the system. A holistic
approach is thus needed to first analyse the input application,
and then relevantly partition it for finally an efficient complete
mapping. SARA [73] is such a recent approach. It relies on
a hierarchical pipelining to further extract parallelism. For
instance, at loop level, two sibling loops might be executed in
parallel. When there are data dependencies across the loops,
the memory consistency is managed by the compiler, and the
instructions are ordered to guarantee the correct execution.
SARA makes use of spatial parallelism and temporal paral-
lelism. The iterations of the loops are overlapped at all levels
as an advanced implementation of software pipelining (not
only modulo scheduling). In other words, the new generation
of compilers for CGRAs must be able to make use of all levels
of parallelism : instruction level, data level, and loop level.

V. CONCLUSION

This paper presents twenty years of methods for mapping
application on CGRA. It provides the terminology and basic
knowledge for the newcomer. The paper focuses on offline
methods from imperative language, presents a classification
of the methods and shows a timeline of the last two decades.
The paper ends with current trends, calls for open-source
frameworks for a democratization of the CGRA technology,
and discusses the challenges for the near future of modern
CGRAs. Among the upcoming challenges, the use of other
programming models, and scalability for modern CGRAs
running AI workloads, are specifically identified.
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