
HAL Id: hal-03704229
https://hal.science/hal-03704229

Submitted on 24 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Efficient Hardware Loop Based Optimization for
CGRAs

Chilankamol Sunny, Satyajit Das, Kevin J M Martin, Philippe Coussy

To cite this version:
Chilankamol Sunny, Satyajit Das, Kevin J M Martin, Philippe Coussy. Energy Efficient Hard-
ware Loop Based Optimization for CGRAs. Journal of Signal Processing Systems, In press,
�10.1007/s11265-022-01760-9�. �hal-03704229�

https://hal.science/hal-03704229
https://hal.archives-ouvertes.fr

Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-022-01760-9

Energy Efficient Hardware Loop Based Optimization
for CGRAs

Chilankamol Sunny · Satyajit Das ·
Kevin J. M. Martin · Philippe Coussy

Received: 3 October 2021 / Revised: 21 January 2022 / Accepted: 6 April 2022

This document is the author version of the paper “Energy Efficient Hard-
ware Loop Based Optimization for CGRAs” by Chilankamol Sunny,
Satyajit Das, Kevin J. M. Martin, Philippe Coussy, accepted for publi-
cation in Journal of Signal Processing Systems.

This version of the article has been accepted for publication, after
peer review (when applicable) but is not the Version of Record and
does not reflect post-acceptance improvements, or any corrections. The
Version of Record is available online at:

https://doi.org/10.1007/s11265-022-01760-9.
Use of this Accepted Version is subject to the publisher’s Accepted

Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms.

Author version

Abstract Research interest and industry investment in edge computing so-
lutions have increased dramatically in recent years. Consequent quest for bal-

C. Sunny
IIT Palakkad, Palakkad, Kerala, India
E-mail: 112004004@smail.iitpkd.ac.in

S. Das
IIT Palakkad, Palakkad, Kerala, India
E-mail: satyajitdas@iitpkd.ac.in

K. J. M. Martin
Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100 Lorient, France
E-mail: kevin.martin@univ-ubs.fr

P. Coussy
Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100 Lorient, France
E-mail: philippe.coussy@univ-ubs.fr

https://doi.org/10.1007/s11265-022-01760-9
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2 Chilankamol Sunny et al.

anced performance, energy efficiency and flexibility bestowed surging popular-
ity on Coarse Grained Reconfigurable Array (CGRA) architectures. To further
improve the performance and energy efficiency, several hardware and software-
based loop optimizations are adopted for CGRAs. In this paper, we propose a
centralized hardware-based loop optimization technique to achieve better area
and energy results compared to the previously implemented distributed ver-
sion. Without incurring any performance degradation, area overhead against
the reference architecture is reduced down to 1.5% for a 4×2 CGRA configu-
ration. A maximum of 47.3% and an arithmetic mean of 27.2% reduction in
energy consumption is attained by the centralized version of hardware loop
compared to the baseline model employing software loop. Furthermore, the
paper explores the co-existence of CGRA-specific hardware and software opti-
mizations and their impact on loop efficiencies. Enhanced results are obtained
by coupling loop unrolling with centralized hardware loop support. The com-
bination allows achieving up to 68.7% reduction in energy consumption and
5.46× speed-up against the baseline model with no optimizations applied.

Keywords Coarse grained reconfigurable array (CGRA) · Loop optimiza-
tion · Hardware loop · Loop unrolling

1 Introduction

The wave of widespread specialization is observed in industry from a long
time earlier. This is on account of the momentous improvement in energy ef-
ficiency and performance the specialized accelerators could bring in. Varying
nature and growing size of applications and rapidly evolving software force
flexibility an equally relevant criteria for the acceptability and sustainabil-
ity of computing fabrics [16]. Nevertheless, achieving satisfactory balance be-
tween performance, energy efficiency and flexibility is a hard-to-meet challenge.
Application-specific integrated circuits (ASICs) with highest performance and
energy efficiency results are the least flexible architectures, whereas highly flex-
ible general-purpose processors (GPPs) and graphics processing units (GPUs)
report extremely low energy efficiency [14,19]. The field-programmable gate
arrays (FPGAs) as well as the flexible digital signal processors (DSPs) are less
energy-efficient than ASICs. Further, it is much more challenging to program
FPGAs compared to CPUs. Coarse-grained reconfigurable array (CGRA) ar-
chitectures possess near-ASIC energy efficiency and performance and software-
like programmability [14,29], and gain increasing attention from industry and
academia. To cope with the growing demand for ultra-low power computing
imposed by edge computing paradigms like internet of things (IoT) and cyber
physical systems (CPS), studies on CGRAs are now headed towards further
improving the energy efficiency.

Most of the applications that run on CGRA spend a major portion of the
computation time and energy on loops. This narrows down the scope of im-
proving overall energy efficiency to optimizing the loop execution. Numerous
loop transformation techniques that convert loops into semantic equivalents of

Energy Efficient Hardware Loop Based Optimization for CGRAs 3

lesser computation complexity or exhibiting better parallelism have been de-
signed and deployed in commercial compilers to optimize the loop execution.
Majority of these techniques target to optimize the innermost loop execution
on CGRAs entrusting outer loops to the host processor. By devising such
software-based loop optimizations [8,11,13,18], CGRAs could achieve signifi-
cant improvement in performance and energy efficiency. However, synchroniza-
tion overhead with the host processor for the execution of outer loops became
a bottleneck leaving room for further improvement. CGRA implementations
with processing elements (PEs) supporting globally synchronized branch in-
structions to execute nested loops and conditionals [6] gained popularity as
they could handle the outer loops as well. This approach minimizes the syn-
chronization overhead with the host yet necessitated the execution of extra
loop control instructions. Case studies on processor architectures [1,12,15,25]
reveal that improved performance and energy efficiency can be attained when
loop-specific hardware optimizations are applied. Few recent CGRA architec-
tures have come up with such architectural modifications to better support
loop execution and reported good results [2,22,24,26].

In this paper, we introduce a centralized hardware-based loop optimization
for CGRAs where a central PE synchronizes the loop execution between all
the PEs with minimal communication overhead. State-of-the-art Integrated
Programmable Array (IPA) architecture [5] is chosen as the reference CGRA
to work on. In our previous work [22], we extended the IPA model with a
hardware-based loop control mechanism to eliminate the non-contributing
loop control instructions from the execution stream. With this enhancement,
IPA renders hardware support to arbitrarily nested loops. Features like syn-
chronous termination of loops at multiple levels, support for any number of
sibling loops (loops at the same level of nesting) and on-the-fly loop configura-
tion distinguish the model from other hardware solutions like ZOLA [26]. The
proposed centralized design does not impose any alteration in the compilation
flow set for the distributed version in which each PE houses a hardware loop
unit. Instead it offers the flexibility to work with the same configuration (in-
structions and constants for each PE) generated for the basic implementation.
Without incurring any performance degradation, area overhead against the
baseline IPA architecture is reduced down to 1.5% in the centralized version.
Compared to the baseline, the proposed model achieves a maximum of 47.3%
and an arithmetic mean of 27.2% reduction in energy consumption when the
basic distributed hardware loop model marks 44.5% and 23.3% respectively.

As the second contribution, we explore the impact of combining hard-
ware and software-based loop optimizations on CGRAs. IPA supports loop un-
rolling as an optimization technique to reduce the overhead and better expose
instruction-level parallelism in innermost loop execution. This paper investi-
gates the combined effect of hardware loop with loop unrolling. By coupling
loop unrolling with centralized hardware loop implementation, up to 68.7% re-
duction in energy consumption is attained in comparison to the baseline IPA
model with no optimizations applied.

4 Chilankamol Sunny et al.

The rest of the paper is organized as follows. Section 2 presents related
works on hardware and software-based loop optimizations. Section 3 describes
the baseline CGRA architecture and the hardware-based looping technique we
introduced in [22]. Section 4 introduces the centralized approach and details
the implementation. An overview of the compilation flow is given in section 5.
In section 6, performance, area and energy results for both distributed and
centralized versions of the hardware loop are discussed. Section 7 concludes
the paper.

2 Related Work

A larger portion of the works that optimize loop execution on CGRAs are
focused on the placement and routing of the loop bodies. Another popular di-
vision is the transformation of loops prior to placing. In the context of CGRAs,
loop unrolling [8,26] is the most widely used transformation technique. The
unrolled loop kernel is mapped onto the CGRA leveraging its massively paral-
lel architectural features. Other optimization techniques are modulo schedul-
ing [11,18] that facilitates overlapped execution of loop iterations and loop
affine transformation [13] that optimizes the PE utilization rate and the cost
of communication between PE array and controller. A vast majority of the de-
signs based on the above approaches pivot on optimizing only the innermost
loop neglecting the communication overhead of outer loops. Authors of [13]
formulated loop mapping as a polyhedral based nonlinear optimization prob-
lem and introduced affine transformation on the loop body to map up to two
innermost levels of the loop nesting. It is a promising still a minimal effort in
optimizing the mapping of deep nested loop structures. Purely software-based
solutions like the discussed techniques often prove to be insufficient to meet the
growing demand for energy efficient execution imposed by low power budget
applications.

Studies show that, since their early beginnings, processor architectures
have availed hardware support for repeated execution of instructions. Some
examples are loop buffers, loop and rep instructions of x86 processors and
the zero overhead loop accelerators on DSP [25], RISC [12] and VLIW ar-
chitectures [15]. The parallel ultra-low power (PULP) cluster architecture [9]
is a multi-core platform with hardware support for loops. It could support
two level nesting of loops by employing two sets of registers to hold the loop
configuration data. In stream processors, many optimizations like loop distri-
bution, loop fusion and re-ordering were introduced to improve the locality of
stream register file (SRF) [23]. Primary objective of many of such hardware-
software hybrid solutions is to enhance reusing of data streams across different
iterations of loop so as to minimize the memory access time [27]. Coming to
CGRAs, hardware support was not a necessity until scope of acceleration
spanned beyond the innermost loop. Hence, CGRA solutions that wield ar-
chitectural features to support loop execution are very few in number. The
approach presented in [26] reports good results, thanks to the extension of the

Energy Efficient Hardware Loop Based Optimization for CGRAs 5

reference CGRA architecture with zero-overhead loop accelerator (ZOLA), sin-
gle cycle loop support and loop buffers. An average energy reduction of 18.3%
was achieved by the design combining these three hardware techniques. ZOLA
alone could save energy up to 25% for applications for which it could replace
the functional unit (FU) required to calculate the loop index. For those ap-
plications where the FU is used for other computations, it cannot be removed
and hence ZOLA is an advisable choice only when its energy overhead is lower
than what it saves through the reduction of register accesses and control flow
computations. Usage of loop buffers could reduce the energy consumption as it
eliminated significant number of instruction memory accesses. However, buffer
sizes should be carefully chosen profiling the application, otherwise having
them only aggravates the overhead.

Another notable work with architectural support for optimizing loop exe-
cution is the ultra-elastic CGRAs (UE-CGRAs) [24] that can efficiently exe-
cute loops with irregular control flow and memory accesses and inter-iteration
loop dependencies. The solution co-designed across compiler, architecture, and
VLSI accelerates true-dependency bottlenecks and reduces energy consump-
tion by supporting fine-grain dynamic voltage and frequency scaling (DVFS)
on individual PEs. It could achieve reasonable improvement in performance
and energy efficiency compared to traditional inelastic and elastic CGRAs on
executing irregular loops. LASER [2] is yet another hardware solution tak-
ing compiler support to accelerate nested loops and loops with nested condi-
tionals. Compiler transforms nested loops into single-level loops with condi-
tionals and the hardware fetches and executes the instructions from the right
path at runtime. Both LASER and UE-CGRAs are specialized solutions focus-
ing on loops that would suffer from performance degradation on conventional
CGRAs. In both of these approaches, basic implementation of loops remains
to be software-based and hence there exists the discussed issue of control flow
bottleneck. On the other hand, the technique we introduced in [22] is a generic
loop optimization solution that eliminates loop control instructions by imple-
menting the looping mechanism entirely in hardware. However, each PE in the
PE array houses a dedicated unit to manage the loop control flow.

In this paper, we propose a centralized implementation of the model to
minimize the area overhead imposed by this design. None of the mentioned
works discuss the impact of applying the techniques they propose in combina-
tion with existing software-based optimizations like loop unrolling or modulo-
scheduling. This paper explores the co-existence of hardware and software-
based optimizations by applying loop unrolled kernels on the hardware loop
model.

3 Background and Motivation

This section gives an introduction to the baseline CGRA architecture and the
hardware-based looping technique we introduced in [22]. It also details the
motivation behind implementing the hardware loop in centralized fashion as

6 Chilankamol Sunny et al.

Loop control instructions

MOTIVATION & BACKGROUND

for (i =0; i<2; i++) {
a[0]=a[0]+1;

}

i=0;

Outside of for
loop

a[0]=a[0]+1;
i=i+1

i<2

i=0
JMP
i<2
CJMP
a[0]=a[0]+1
i=i+1
JMP
i<2
CJMP
a[0]=a[0]+1
i=i+1
JMP
i<2
CJMP

(a)

Number of loop control
operations (Nlc) = 12
Number of kernel operations
(Nke) = 2

3

(b) (c)

Fig. 1 (a) Sample program; (b) Corresponding CDFG; (c) Representative assembly code

well as the need for coupling hardware and software-based optimizations. In
this discussion, the first and last instructions in the loop body are referred
as start and end of loop respectively. The number of times the loop is to be
iterated is termed as loop count.

In CGRAs, loop control flow is often implemented by supporting repeated
branching to the loop start. Additional instructions are injected into the kernel
code to keep track of the iterations and perform the branching. Using a simple
example, Figure 1 demonstrates the overhead imposed by this software-based
loop implementation.

Listing 1 Matrix Multiplication Pseudo-code

for (int i = 0 ; i < r1 ; ++i){
for (int j = 0 ; j < c2 ; ++j){

for (int k = 0 ; k < c1 ; ++k)
mult [i] [j] += f i r s t [i] [k] ∗ second [k] [j] ;

}
}

}

The burden is higher in the case of nested loops. For example, consider
the matrix multiplication pseudo-code shown in Listing 1 with a nested loop
of depth three. It is assumed that the product matrix is initialized with zero.
Total number of loop control instructions executed, Nlc and total number of
kernel instructions executed, Nke can be computed as shown in (1) and (2).

Nlc = q ∗ (r1 + (r1 ∗ c2) + (r1 ∗ c2 ∗ c1)) (1)

Nke = p ∗ (r1 ∗ c2 ∗ c1) (2)

where q is the number of loop control instructions executed per iteration
and p is the number of instructions that constitute the loop body.

Energy Efficient Hardware Loop Based Optimization for CGRAs 7

Table 1 Comparison between different architectural approaches

CMA [17] ZOLA [26] LASER [2] Plasticine [20] Plasticine SNAFU [10] IPA [5]
(8×10) (16×8) with SARA [28] CGRA (6×6) (4×2)

Memory ops CPU CGRA CGRA CGRA CGRA CGRA CGRA
Innermost loop CGRA CGRA CGRA CGRA CGRA CGRA CGRA
Outer loop CPU CGRA CGRA CGRA CGRA CPU CGRA
Offload+Sync CPU CPU CPU CGRA CGRA CPU CPU
Maps DFG NA DDG CDFG CDFG DFG CDFG
Source Customized ZOLA Assembly ANSI C Scala-based Scala-based Vector Assembly ANSI C
Power 11mW NA NA 22W NA < 1mW 5mW
Main performance Energy efficiency of 18.3% energy gain 46% energy gain 76.9× energy efficiency 1.9× speed-up 9.9× speed-up 20×speed-up
claim 243 MOPS/mW over ref. CGRA over CGRA with over FPGA over GPU over CPU over CPU

predicate network

The number of additional instructions executed per iteration of the loop
(q) is more or less fixed for a particular CGRA implementation but the impact
is more on loops containing lesser number of kernel instructions. Therefore the
overhead of loop execution is proportional to the ratio of Nlc to Nke. Minimiz-
ing Nlc, the total number of loop control instructions will result in consider-
able improvement in performance and energy efficiency. Loop unrolling is one
of the techniques that CGRA architectures employ to reduce this overhead.
By unrolling a loop, number of times the loop gets executed is reduced by
the unrolling factor whereas the number of kernel instructions in that loop is
increased by the same factor. In the above example, if the innermost loop is
unrolled by a factor of 4, Nlc is reduced while Nke remains the same as can
be seen in (3) and (4).

number of instructions that constitute the innermost loop, p′ = 4 ∗ p;
loop count of innermost loop, c′1 = c1/4

N ′
lc = q ∗ (r1 + (r1 ∗ c2) + (r1 ∗ c2 ∗ c1/4)) (3)

N ′
ke = 4 ∗ p ∗ (r1 ∗ c2 ∗ c1/4) = Nke (4)

Although enhanced performance is attained by applying software solutions
like loop unrolling, modulo scheduling and affine transformation, the scope of
optimization is limited to innermost loop only. This is not sufficient to get
high energy efficiency for kernels with complex nesting of loops. In view of
this, we introduced a hardware-based loop optimization technique [22] where
the looping mechanism is entirely implemented in hardware. Focus was on
minimizing or completely eliminating the parameter q, the number of loop
control instructions executed per iteration.

State-of-the-art Integrated Programmable Array (IPA) architecture [5] is
extended to implement the hardware loop design. A comparative study of
different CGRA architectures including the recent works is given in Table 1.
Cool Mega-Array (CMA) [17], LASER [2], ZOLA [26], Plasticine [20] with
vanilla compiler, Plasticine with SARA [28] compiler and the CGRA generated
by SNAFU framework [10] are the discussed approaches. Some information
could not be extracted from a few papers for which we have entered “NA”
in the corresponding cell. It is evident from the table that IPA gives the best
trade-off between performance, energy efficiency and ease of programming. It
also provides support for conditionals and nested loop execution and hence
chosen as the baseline architecture.

8 Chilankamol Sunny et al.

Figure 2 represents the SoC design in which the IPA accelerator is loosely
coupled with a host CPU. IPA and CPU are connected to a shared multi-
banked tightly coupled data memory (TCDM) through a low-latency loga-
rithmic interconnect. It is through TCDM that data are fed and results are
taken to and from the IPA. Global configuration memory (GCM) stores the
instructions and constant values that are to be sent to each PE. An instruction
cache is provided for the host CPU for better performance. IPA is an inter-
connected array of processing elements (PEs). The figure shows a 4×2 PE
array configuration of IPA, augmented with hardware loop support. Architec-
tural details of individual PEs is also given. A parametric number of PEs are
configured to include Load-Store Units (LSUs) as well with which the TCDM
is interfaced. Further details of data communication and compiler support for
the same are featured in [4] and [21]. Each PE is incorporated with a hardware
loop block (HLB) in its Controller unit to optimize the loop execution.

Figure 2(b) gives a simplified view of HLB with which the loop control flow
is entirely stitched into hardware. This unit is responsible for updating the PC.
Inside the loop, control flows sequentially by incrementing PC by one. As the
loop completes one iteration, PC points to the loop start. This is repeated for
as many times as specified by the loop count. To facilitate this functionality,
HLB keeps track of loop configuration parameters like loop count and address
of the first and last instructions in the loop body. To check if an iteration is
over, PC value is compared against loop end address in each cycle. If they
are equal, loop count is decremented by one and PC is loaded with loop start
address as long as the new loop count is greater than zero. In every other case,
PC is incremented by one.

The dedicated loop unit, HLB is integrated into every PE in the PE array.
Each PE maintains a copy of loop configuration parameters for each level of
loop nesting and processes the loops independently. This is not an ideal so-
lution in terms of area and energy consumption. In this paper, we present a
centralized implementation of the discussed model to overcome this overhead.
The block-oriented, globally synchronized execution model of IPA ensures that
each PE reaches the start and end of loop synchronously. This feature is ex-
ploited to bring on a central control on loop execution for the entire CGRA.

4 Proposed Architecture

We propose a conductor-performer model (Figure 3(a)) in which one of the
PEs in the entire array is designated as the conductor-PE, controlling the
loop execution in every other PE. Figure 4 gives the architecture of HLB at
conductor-PE, configured to support up to four levels of loop nesting. The de-
sign includes a set of configuration registers (one for each level of loop nesting),
a register (loopLevel) pointing to the current loop and the necessary logic to
implement the functionality. Each configuration register stores the loop count
and start and end instruction addresses. Corresponding registers are popu-
lated on encountering each loop in the kernel code. At any point of time, only

Energy Efficient Hardware Loop Based Optimization for CGRAs 9

CRF

RRF

Decoder

To Neighbors / TCDM

From Neighbors / TCDM

FU

CRF

Controller

IRF

HLB

PE

PE

PE

PE

PE

PE

PE

PE

(a)

TCDM

IPA

GCM

SoC Bus

CPU

Low Latency Interconnect

Instruction

Cache

PC Loop End AddressLoop Start Address Loop Count

PC + 1

WEN

=
1

0

Loop Count -1

>

0

(b)

Fig. 2 (a) IPA SoC; (b) Simplified HLB - FU: Functional Unit; CRF: Constant Register
File; IRF: Instruction Register File; RRF: Regular Register File

one loop will be in execution from each level of nesting. Therefore loops at
the same level can reuse the configuration register facilitating the design to
support any number of sibling loops.

At each clock cycle, conductor-PE compares its PC to the loop end address
from the register chosen by loopLevel. Based on the outcome and loop count
value, decision on how to update the PC is taken as discussed in section 3. This
decision is communicated to the performer-PEs through a three-bit wire carry-
ing two signals. The signals are one-bit loopStartFlag and two-bit loopLevel. If
PC is to be loaded with loop start address, loopStartFlag will be set to one and
zero otherwise. The Loop Select Control Unit (LSCU) updates loopLevel to
specify which loop is in action. Performer-PEs listen to the conductor signals
and update their PCs as directed.

HLB architecture for performer-PEs is given in Figure 3(b). Even though
all PEs hit the loop borders synchronously over time, the instruction ad-
dresses may vary from PE to PE as can be seen in Figure 5(a). Therefore
even the performer-PEs should maintain their own copy of PC and register
the loop start address. Furthermore, such a design helps to limit the width
of conductor-performer communication channel. Rather than an instruction
address, a one-bit flag and a two-bit loop selector suffice to govern the loop
control on performers. In each clock cycle, performer-PEs check the loopStart-
Flag. If it is one, PC is updated with the loop start address stored in the
register chosen by loopLevel. If the flag value is zero, the performers proceed
to the very next instruction in their instruction register file (IRF) by incre-
menting PC by one.

10 Chilankamol Sunny et al.

lo
op

St
ar

tF
la

g

from Decoder

from Conductor-PE
+

loopStartFlag loopLevel

PC

Loop Start

1

R1 R2 R3 R4

1

0

Conductor-PE

Performer-PE

lo
op

Le
ve

l

(a) (b)

Fig. 3 (a) Conductor-Performer Model; (b) Hardware Loop Block in the Performer-PEs

PC

Loop EndLoop Start Loop CountS

+
PC + 1

WEN

=

R1 R2 R3 R4

+

loopLevel

-1
 1

newLoop_HIGH

from Decoder

WEN

1

0

-1

LSCU
-2
 -3
 -4

loopLevel

loopStartFlag loopLevel

Fig. 4 Hardware Loop Block in the Conductor-PE

Figure 5(b) and (c) together illustrate the loop control flow in conductor-
performer model. A representative snapshot of conductor-PE IRF and the log
depicting how loopStartFlag, loopLevel and PC are getting updated in each
cycle are given. PC shown in the log is that of the conductor-PE. Two dedi-
cated instructions, LOOP INIT and LOOP CNT are used to initialize the
hardware loop. Loop start address is computed as two plus the LOOP INIT
instruction address. Loop end address and loop count appear as operands in
LOOP INIT and LOOP CNT instructions respectively. These values are fed
to the corresponding registers to configure the loop. Loop count field in the
configuration register is initialized with one less than the loop count value to
facilitate computing branch outcome by sign bit comparison.

Instructions executed in cycle one and two initiate the outermost loop.
loopLevel becomes one, and the level one loop configuration register R1 is

Energy Efficient Hardware Loop Based Optimization for CGRAs 11

0 MOV
1 JMP
2 LOOP_INIT
3 LOOP_CNT
4 LOAD
5 MOV
6 JMP
7 MUL
8 ADD
9 STORE
10 JMP
11 LOOP_INIT
12 LOOP_CNT

0 NOP
1 JMP
2 LOOP_INIT
3 LOOP_CNT
4 NOP 2

5 JMP
6 LOAD
7 NOP 2

8 JMP
9 LOOP_INIT
10 LOOP_CNT

PE0 - IRF PE1 - IRF

time

Cycle# loopStartFlag loopLevel PC

1 0 1 1

2 0 1 2

3 0 1 3

4 0 2 4

5 0 2 5

6 0 2 6

7 0 3 7

8 0 3 8

9 0 3 9

10 0 4 10

11 0 4 11

Address Instruction
0 Loop_Init 15 //L1
1 Loop_Cnt 1
2 Ins1
3 Loop_Init 12 //L2
4 Loop_Cnt 1
5 Ins2PE

 I
RF

(a)

11 0 4 11

12 1 4 11

13 0 3 12

14 0 1 13

15 0 2 14

16 0 2 15

17 0 0 16

5 Ins2
6 Loop_Init 12 //L3
7 Loop_Cnt 1
8 Ins3
9 Loop_Init 11 //L4
10 Loop_Cnt 2
11 Ins4
12 Ins5
13 Loop_Init 15 //L5
14 Loop_Cnt 1
15 Ins6

CO
N

D
U

CT
O

R-
PE

 I
RF

(b) (c)

BB_1
Loop_Init 15
Loop_Cnt 1

Ins1

BB_2
Loop_Init 12
Loop_Cnt 1

Ins2

BB_3
Loop_Init 12
Loop_Cnt 1

Ins3

BB_4
Loop_Init 11
Loop_Cnt 3

Ins4
Ins5

BB_5
Loop_Init 15
Loop_Cnt 1

Ins6

(d)

Fig. 5 (a) Snapshot of PE IRFs holding temporally synchronized instructions; (b)
Conductor-PE IRF with a sample pseudo-code; (c) Log of register updates according to
the pseudo-code in (b)

updated with the loop parameters. Conductor-PE stores all the three param-
eters where the performer-PEs register the loop start address only. In cycle
three, conductor-PE compares its PC against the loop end address stored in
R1 which is found to be different. Hence loopStartFlag is set to zero and PC
is incremented by one in conductor and performer-PEs. LOOP INIT and
LOOP CNT instructions executed in cycle four and five together mark a new
loop and this triggers incrementing loopLevel by one making its value to two.
Loop parameters are loaded onto the second level register R2 in both con-
ductor and performer-PEs. PC is also incremented by one since loopStartFlag
remains at zero. In cycle six, PC is compared against the end address of L2.

12 Chilankamol Sunny et al.

Since they are different, loopStartFlag is kept at zero. Consequently, PC is
incremented by one in all the PEs.

L3, the loop at level three is initialized by the instructions executed in
cycle seven and eight. loopStartFlag is still zero and loopLevel and PC are
incremented by one. By having loopLevel as three, loop parameters are fed
to register R3 in all the PEs. The next cycle resembles cycle six and PC is
incremented by one in all the PEs. Loop L4 is initialized by the instructions
executed in cycle ten and eleven. loopLevel is updated as four choosing register
R4 as the active register. PC and the loop end address in R4 are found to
be the same in cycle twelve and the loop count sign bit is zero. Therefore
conductor-PE sets loopStartFlag to one and decrements loop count in R4 by
one. Performer-PEs check the flag and PC is updated with loop start address
in R4. In cycle thirteen as well, PC and loop end address of L4 are the same
but this time, the loop count sign bit is non-zero indicating that the loop L4
has finished its execution.

Before setting the loopLevel to point to the parent loop, L3, conductor-PE
compares its PC value against loop end address stored in R3 to check whether
that was the last instruction of L3 as well. But it is not and hence L3 is
activated by making loopLevel to 3. In this case as well, loopStartFlag is zero
and PC is incremented by one to point to the next instruction in loop L3. In
the next cycle, it is found that loop L3 is completed and hence a check on the
parent loop L2 is also done. From the values of PC, loop end address and loop
count in R2, it is evident that L2 also finishes its execution. Then a loop end
check on loop L1 is done. This fails and hence loop L1 becomes active, setting
loopLevel to one and loopStartFlag to zero. The instruction executed in cycle
fifteen is again a loop instruction pushing loopLevel value to two choosing the
second level register R2 to hold the L5 configuration data from decoder. In
cycle seventeen, PC value is found to be the end address of both L5 and L1
and the loop count values of both the loops indicate that they are in their last
iteration. Consequently loopLevel is decremented by two bringing its value to
zero. This indicates that the entire loop execution will be over by the end of
this cycle. As loopStartFlag is zero, PC is incremented by one which takes the
control out of the loop structure in every PE.

5 Compilation Flow

The IPA compilation flow is augmented with a pre-mapping CDFG trans-
formation phase for hardware loop support. Both distributed and centralized
versions of the hardware loop model employ the same compilation flow which
is given in Figure 6(a). The kernel to be accelerated is converted into a con-
trol and data flow graph (CDFG) using GCC 4.8, with nodes representing
basic blocks (BBs) and edges representing the control flow between them. The
CDFG is so constructed that it aids in the software-based implementation of
loops. A cyclic-to-acyclic graph transformation is done on this CDFG to elim-
inate injecting extra instructions into the kernel for loop control. Transformed

Energy Efficient Hardware Loop Based Optimization for CGRAs 13

CDFG is then fed to the mapping module that performs scheduling and place-
ment of nodes in a block by block fashion. This is essentially a mapping of the
CDFG on to the time extended model of PE array comprising of operator and
register nodes. The best of the several mappings identified is chosen and cor-
responding assembly code is generated. Using the IPA ISA extended with two
dedicated loop configuration instructions, assembler converts it into a series of
configurations comprising of the instructions and constants to be loaded onto
the PE array. Figure 6(b) lists down the major steps in CDFG transformation.
The same is explained with an example in the following section.

5.1 CDFG Transformation

Figure 7 shows a sample program, the corresponding CDFG and the trans-
formed version of it. In this figure, rectangles represent basic blocks (BBs)
and the arrows depict the flow of control from one BB to another. True and
false paths in the case of conditional jumps are represented by solid and
dotted arrows respectively. The execution flow of the CDFG in Figure 7(b)
can be presented as: BB 1 −→ BB 2 −→ (either BB 3 or BB 4) if BB 3 −→
BB 5 −→ (either BB 7 or BB 8) ifBB 8 −→ BB 5... and so forth. Let the
three loops in the sample program with loop control variables i, j and k
be called L1, L2 and L3 respectively. Loop L2 forms a cycle in the CDFG,
(BB 5 −→ BB 8 −→ BB 5) and its outer loop L1 forms another, given by
(BB 2 −→ BB 3 −→ L2 −→ BB 7 −→ BB 2). Similarly, L3 as well. The software-
based IPA loop model identifies the first BB in the loop body as the loop
header and the last one as the loop latch as it has a back jump to the header
BB. For instance, BB 2 is the loop header of loop L1 and BB 7, the loop
latch. Condition checking on the loop control variable is done in loop header
and its update is done in the latch BB.

As the first step, a pre-checking on the loop at hand is done to confirm
whether it can be run as a hardware loop or not since the design supports
only up to a given number of (typically four) levels of loop nesting. Once
the loop is selected, the loop count is computed from the initial and final
values of loop control variable and the step by which the variable gets updated
in each iteration of the loop. The first BB in the set of basic blocks that
forms the loop body is identified and its DFG is modified to insert a node
holding the computed loop count value. As the next step, the loop condition
checking BB, which is the present loop header is eliminated from the CDFG
and the first BB of the loop is designated as the Hardware Loop Header
(HLH). As shown in Figure 7(c), loop headers, BB 2, BB 5 and BB 6 are
eliminated and BB 3, BB 8 and BB 9 are marked as the HLH of loops L1,
L2 and L3 respectively. The last BB in the loop body referred as loop latch
is now set as the Hardware Loop Terminal (HLT). The only predecessor of
the eliminated condition checking BB was the one in which the loop control
variable is initialized. The BB designated as HLH becomes its successor. Jump
from the last BB in the loop (HLT) to the eliminated BB is removed next.

14 Chilankamol Sunny et al.

GCC
plugin

CDFG

C Code CDFG
Transformation

Scheduling
&

Placement

IPA ISA

Assembler
Assembly

Code
Generation

CGRA model

IPA
Configuration

Insertion of
loop activity node

Removal of loop
condition checking

BB
Removal of empty

BBs
Removal of floating

jumps
Removal of loop

variable
data/activity nodes

(a)

(b)

Fig. 6 (a) IPA Compilation Flow with CDFG Transformation for Hardware Loop Support;
(b) Major Steps in CDFG Transformation

HLT-L1

BB_3
a[0]=a[0]+1;

j=9;

BB_9
a[0]<min

BB_8
a[j]=a[j]+1;

j=j-1;

HLH-L1

HLH-L2

HLH-L3

HLT-L2

for (i =0; i<10; i=i+2)

{

a[0]=a[0]+1;

for (j =9; j>=0; j--)

{

a[j]=a[j]+1;

}

}

for (k =0; k<2; k=k+1)

{

if(a[0]<min)

a[0]=a[0]+1;

After merging of outer and inner ending blocks

BB_1
i=0;

BB_4
k=0;

BB_5
j>=0

BB_3
a[0]=a[0]+1;

j=9;

BB_2
i<10

BB_6
k<2

BB_11
a[0]=a[0]+1;

BB_12
a[0]=a[1];

BB_10
Outside of for

loop

HLT-L3

else a[0]=a[1];

}

(a) Sample C code (b) CDFG (c) Transformed CDFG

BB_10
Outside of for

loop

BB_7
i=i+2;

BB_9
a[0]<min

BB_8
a[j]=a[j]+1;

j=j-1;

BB_11
a[0]=a[0]+1;

BB_12
a[0]=a[1];

BB_13
k=k+1;

BB_13

Fig. 7 (a) Sample program; (b) Corresponding CDFG; (c) Transformed CDFG

HLT is then connected to the first BB that appears in the false path of the
removed condition checking BB as its predecessor. This eliminates every cycle
in the CDFG transforming it into an acyclic graph.

Next step in the transformation is to perform a conditional elimination of
the control variable and its associated activities from the CDFG. The decision
is made after checking the entire CDFG to see whether the loop control variable
is used other than to control the looping. If found to be used elsewhere, then its
initialization and increment/decrement operations are preserved. Otherwise,
nodes that manipulate the control variable are removed from the respective

Energy Efficient Hardware Loop Based Optimization for CGRAs 15

BBs. Once the loop variable is eliminated, we proceed to determine whether
the BB which does the variable initialization can be removed or not. If the
BB is totally dedicated for initializing the control variable then that BB as a
whole will be pulled out of the CDFG. In the given example, control variables
i and k of loops L1 and L3 are used only for the looping mechanism where as
j of loop L2 is used as an operand in the loop body. Hence every operation on
variable j except the condition checking is preserved. In the case of loop L1,
BB 1 which was dedicated for initializing variable i is removed. From loop L3,
BB 4 which initializes its control variable k is eliminated. Similarly update of
k is removed from BB 12 and that of i is removed from BB 7 making them
empty. Both BB 12 and BB 7 were terminal BBs. The case of removing an
empty BB is handled carefully if it happens to be the HLT of the loop. Such
a BB is removed only if it is possible to correctly determine which BB can
become the new HLT. There may be cases like in loop L3 where there exists
multiple predecessors to HLT as the new HLT candidate. In such cases the
HLT BB will be preserved even if it is empty to mark the end of the loop
body. This explains why the empty BB, BB 12 is in the transformed CDFG.

As the last step, merging of the HLTs of outer and inner loops is done if
feasible. The conditions to be satisfied by the HLT of outer loop for the merg-
ing are: i) it should be an empty block (as a result of eliminating loop variable
update) ii) the HLT of inner loop should be its only immediate predecessor.
Since the requirements are met, the empty BB, BB 7 is removed from the
CDFG and its only predecessor, BB 8 is set as the HLT of both L1 and L2.
This merging is performed to facilitate synchronous loop count update/termi-
nation of inner and outer loops with same loop end address. Resultant CDFG
is a very simple acyclic graph representing a significantly reduced set of in-
structions as can be seen in Figure 7(c).

6 Experiments and Results

This section analyses the efficiency of the proposed approach in different met-
rics such as performance, area and energy consumption. Area and energy re-
sults of the basic distributed hardware loop model are also discussed. Exper-
imental results are compared against those of the baseline IPA architecture
that operates on software-based loop implementation. IPA reports an energy
efficiency improvement up to 18×, with an average of 9.23× and a maximum
speed-up of 20.3×, with 9.7× on average [7] compared to a RISC-V core [9]
specialized for ultra-low power near-sensor processing. A set of loop intensive
kernels with varying structure of loop nesting from different application do-
mains are chosen for the experiments. The list includes kernels used in other
works like Binarization and Erosion from [26], Seidel-2D, Jacobi-1D and Floyd
Warshall from [3] and FIR Filter, Matrix Multiplication and Non-Separable
Filter from [7]. Table 2 gives the computational features of the kernels such as
number of levels of loop nesting with the number of loops at each level, number
of conditional jumps present and arithmetic intensity. Based whether condi-

16 Chilankamol Sunny et al.

Table 2 Listed kernels and their computational features

Kernel No. of Levels Total No. No. of Ins No. of Load/Store No. of Arithmetic No. of Cond Arithmetic Arithmetic
of Nesting of Ins in Loop Ins Ins Jumps Intensity Intensity

(Innermost Loop)

Control-Oriented

2D Convolution 4(1-1-1-1) 59 46 3 33 5 11.00 8.00
Dilation 4(1-1-1-1) 50 34 4 21 5 5.25 4.00
Erosion 4(1-1-1-1) 46 32 4 20 3 5.00 3.00
Projection 2(2-2) 41 25 6 13 3 2.17 1.25
Floyd Warshall 3(1-1-1) 33 22 6 12 1 2.00 0.67
Binarization 2(1-1) 23 13 3 6 1 2.00 0.67

Data-Oriented

Matrix Addition 2(1-1) 20 10 3 6 0 2.00 0.67
Seidel-2D 3(1-1-1) 39 30 10 18 0 1.80 1.00
Jacobi-1D 2(1-2) 38 29 8 19 0 2.38 1.50
FIR filter 2(1-1) 22 12 3 8 0 2.67 1.50
Histogram Equalization 2(1-1) 20 10 2 7 0 3.50 1.50
Matrix Multiplication 3(1-1-1) 28 17 3 12 0 4.00 1.50
Non-Separable Filter 4(1-1-1-1) 36 24 3 18 0 6.00 1.50

2

3

4

N
um

be
r

of
 le

ve
ls

 o
f n

es
tin

g

Jacobi-1D
Seidel-2D
FIR filter
Erosion
Dilation
Matrix Multiplication
Matrix Addition
Projection

12

1

2

1000 10000 100000

N
um

be
r

of
 le

ve
ls

 o
f n

es
tin

g

Maximum number of iterations in log scale

Projection
Histogram Equalization
Binarization
Non-Separable Filter
2D Convolution
Floyd Warshall

Fig. 8 Spectrum covered by the depth of nesting and iteration counts of the considered
kernels

tional jumps are present or not, kernels are categorized into control-oriented
and data-oriented. Figure 8 depicts the spectrum covered by their number of
levels of nesting and the maximum number of iterations.

6.1 Implementation results

In this section, implementation results for baseline and proposed architectures
are discussed. The baseline IPA is configured as a 4×2 PE array with each
PE comprising of a 21×64-bits IRF, a 20×32-bits CRF and a 32×8-bits RRF.
IPA is modified by integrating HLB unit in each of the 8 PEs for the basic
distributed version of the hardware loop model. In the centralized implementa-
tion, PE-0-0 in the IPA PE array is set as the conductor-PE and the remaining
seven PEs as the performer-PEs. Both distributed and centralized models are
configured to support up to four levels of loop nesting, which suffices for the
studied benchmarks. The model can be extended to support any number of
nested levels at the cost of including one configuration register per level of
nesting. The designs were synthesized with Cadence Genus Synthesis Solution
17.22− s017 1 using 90nm CMOS technology libraries. Placement and Rout-
ing was performed using Cadence Innovus 17.14 − s077 1. Cadence Voltus
Power Analysis - Power Calculator 17.21− s032 1 was used for power analysis

Energy Efficient Hardware Loop Based Optimization for CGRAs 17

100.00
106.37

101.50

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Baseline Model Basic Hardware
Loop Model

Proposed
Model

CG
RA

 A
re

a
 (N

or
m

al
iz

ed
)

4

(a)

101.50

Proposed
Model

135587.3

131020.9131020.9

131020.9

131020.9

131020.9

2567.4

Ar
ea

 in
 µ

m
2

(b)

135587.3

131020.9

131020.9

131020.9

Conductor-PE

Performer-PE0

Performer-PE1

Performer-PE2

Performer-PE3

Performer-PE4

Performer-PE5

Performer-PE6

Others

Fig. 9 (a) Synthesized area of IPA PE array in different implementations; (b) Area break-
down of IPA (4X2) in the proposed model

at the supply of 0.9 V, in typical process conditions. Simulation results for
performance analysis were collected using Mentor Questasim-64 10.7b-1.

Figure 9(a) gives a comparison of synthesized area of the PE array for
baseline and the two versions of hardware-based loop model. It is evident from
the chart that the area overhead for the hardware loop implementation can
be significantly reduced by adopting the proposed conductor-performer model.
The 6.4% increase in CGRA size in the distributed version is reduced to 1.5%
in the centralized model. The area reduction achieved by the centralized over
the distributed version will be more in the case of CGRAs of bigger dimensions
(8 × 8 for example). The area breakdown of IPA with centralized hardware
loop model is depicted in Figure 9(b).

6.2 Performance analysis

Compared to the distributed version, centralized implementation does not suf-
fer any performance degradation in terms of latency or the number of instruc-
tions executed. Both implementations give the same performance results and
hence only the proposed model is discussed against the baseline.

6.2.1 Effect of Hardware-based Optimization

Table 3 gives the average (arithmetic) and maximum gain achieved in reduc-
ing various parameters like latency and total number of instructions. With the
proposed model, total number of instructions executed is reduced by 2.63×
compared to the baseline for Floyd Warshall and Jacobi-1D kernels. The av-
erage gain obtained is 1.93×. Along with achieving better performance and
energy efficiency, fewer number of instructions can result in reduced configu-
ration size/instruction memory occupancy and lesser configuration load time.
Up to 77.76× and an average of 26.20× gain is observed in reducing the num-
ber of branch instructions. Latency in terms of execution cycles is noted for all
the kernels. This corresponds to the total execution time including the config-
uration (instructions and constants) load time. Latency is found to be reduced

18 Chilankamol Sunny et al.

Table 3 Gain achieved by the proposed over the baseline model

Parameter Average Gain Maximum Gain

No. of Instructions Executed 1.93× 2.63×
No. of Branch Instructions Executed 26.20× 77.76×
No. of Execution Cycles 1.49× 1.97×
No. of Basic Blocks Mapped 1.32× 1.57×

up to 1.97× (for Matrix Multiplication) and 1.49× on average by the proposed
model. The table also presents the gain in reducing the number of basic blocks
that would correspond to a reduction in compilation time and the number of
branch instructions executed. Thanks to the efficient CDFG transformation
phase in the compilation flow, the number is reduced up to 1.57× and 1.32×
on average compared to the baseline.

6.2.2 Combined Effect of Hardware and Software-based Optimizations

IPA supports loop unrolling as an optimization technique to reduce loop over-
head and also to leverage spatial parallelism. The innermost loop is fully or
partially unrolled prior to mapping. Unrolling factor is chosen depending on
loop count and number of instructions in the loop as well as the PE array
size. By employing loop unrolling, IPA achieves better latencies at the cost of
increased number of instructions. Hardware loop alone reduces latency as well
as the number of instructions executed. Combining these two, better results
are obtained on both parameters. For instance, while running the Histogram
Equalization kernel, IPA attains 3.72× speed-up by unrolling the innermost
loop by a factor of four when the number of instructions is increased by 15%.
On IPA augmented with hardware loop support, a speed-up of 1.49× and
a reduction of 49% in the number of instructions are achieved for the same
kernel without unroll. Executing the unrolled version on the IPA hardware
loop model, speed-up is increased to 5.46× when the number of instructions
is reduced by 42%. Figure 10 presents the gain achieved in latency by execut-
ing kernels with loops unrolled on HLB-integrated-IPA against the baseline
IPA loop model without any optimizations applied. For almost all the kernels
gain improves with the loop unrolling factor. Innermost loops that iterate for
fewer number of times are fully unrolled. By fully unrolling, the loop is en-
tirely taken off and hence the gain on innermost loop execution is solely from
unrolling with no contribution from the hardware-based optimization. This
explains why there is no notable improvement in gain for kernels like Erosion
and Dilation.

To indicate how well the proposed solution would perform over the CPU, a
comparison of latency in terms of execution cycles between RISC-V processor
and IPA integrated with hardware loop is given in Table 4. Results on the pro-
posed model are gathered by executing loop unrolled kernels; unrolling factor
is given in the table. It can be seen that the proposed approach outperforms
the CPU by a big margin achieving an average (arithmetic) gain of 23.13×.

Energy Efficient Hardware Loop Based Optimization for CGRAs 19

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Without Loop Unrolling Unrolled by 2 Unrolled by 4

1

2

3

4

0 50000 100000

N
o.

 o
f l

ev
el

s
of

 n
es

tin
g

Maximum number of iterations

5.46

Unrolled by 4 Unrolled by 8 Fully Unrolled

Floyd-Warshall

Jacobi-1D

Seidel-2D

FIR Filter

Erosion

Dilation

Matrix Multiplication

Matrix Addition

Projection

Histogram Equalization

Binarization

Non-Separable Filter

100000 150000 200000
Maximum number of iterations

Warshall

1D

2D

FIR Filter

Erosion

Matrix Multiplication

Matrix Addition

Projection

Histogram Equalization

Binarization

Separable Filter

Jacobi-1D

Seidel-2D

FIR filter

Erosion

Dilation

Matrix Multiplication

Matrix Addition

Projection

Histogram Equalization

2D Convolution

Floyd Warshal

Fig. 10 Gain in latency achieved against the baseline model by applying loop unrolled
kernels on the proposed model

Table 4 Comparison of latency in terms of execution cycles between CPU and the proposed
model

Kernel Unroll Factor CPU Proposed Model Gain

Floyd Warshall 2 31,752,000 1,426,779 22.25×
Jacobi-1D 4 277,201 4,075 68.02×
Seidel-2D 2 5,487,200 308,385 17.79×
FIR filter 2 62,091 7,370 8.42×
Erosion Full (3) 272,147 27,996 9.72×
Dilation Full (3) 443,879 27,996 15.86×
Matrix Multiplication 8 1,311,354 83,618 15.68×
Matrix Addition 8 49,819 2,296 21.70×
Projection 2 1,478,400 44,708 33.07×
Histogram Equalization 4 361,518 8,086 44.71×
Binarization 4 260,300 44,459 5.85×
Non-Separable Filter Full (3) 2,459,761 170,357 14.44×

Subsequent tables give a comparison of performance efficiency between
baseline and proposed models when loop unrolling is employed on both the
models. Table 5 compares the total number of instructions executed on baseline
and proposed models for various loop unrolling factors. The effect of unrolling
on achievable gains can be explained in terms of (Nke) and (Nlc) formulated
in section 3. Loop overhead is proportional to the ratio of (Nlc) to (Nke).
By partially unrolling a loop, loop count is reduced and the number of ker-
nel instructions in the loop body is increased by the unrolling factor. As a
result, (Nlc) which is proportional to the loop count decreases while (Nke)
remains the same. Thus the overhead of executing loops on the baseline model
reduces with loop unrolling factor. Lesser the overhead, lower will be the gain
achieved by the proposed solution over the baseline model. This fall with loop
unrolling factor is evident in the gain on total number of instructions executed.
However, the trend is not reflected in the results of all kernels since other pa-
rameters like PE utilization can affect the figures. The number of independent
kernel instructions is often increased by unrolling the loop. This will create

20 Chilankamol Sunny et al.

-

1.00

2.00

3.00

4.00

5.00

6.00

Se
id

el
-2

D

Ja
co

bi
-1

D

Fl
oy

d-
W

ar
sh

al
l

Di
la

tio
n

FI
R

fil
te

r

Er
os

io
n

M
at

rix

M
ul

tip
lic

at
io

n

M
at

rix
 A

dd
iti

on

H
is

to
gr

am

Eq
ua

liz
at

io
n

Pr
oj

ec
tio

n

Bi
na

riz
at

io
n

N
on

-S
ep

ar
ab

le

Fi
lte

r

N
or

m
al

iz
ed

 N
o.

 o
f b

ra
nc

h
in

st
ru

ct
io

ns

Without Loop Unrolling (Hardware Loop Model) Without Loop Unrolling (Baseline Loop Model)

Unrolled by 2 (Hardware Loop Model) Unrolled by 2 (Baseline Loop Model)

Unrolled by 4 (Hardware Loop Model) Unrolled by 4 (Baseline Loop Model)

Unrolled by 8 (Hardware Loop Model) Unrolled by 8 (Baseline Loop Model)

Fully Unrolled (Hardware Loop Model) Fully Unrolled (Baseline Loop Model)

5.46

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Without Loop
Unrolling

Unrolled by 2 Unrolled by 4 Unrolled by 8 Fully Unrolled

Floyd-Warshall

Jacobi-1D

Seidel-2D

FIR Filter

Erosion

Dilation

Matrix
Multiplication
Matrix Addition

Projection

Histogram
Equalization

Fig. 11 Effect of loop unrolling on the number of branches executed on baseline and pro-
posed models

more flexible mapping opportunities, leading to better PE utilization. With
more number of PEs participating, the number of branch instructions will be
increased. This is because control flow altering instructions like jump and con-
ditional jump instructions are executed by each and every PE following the
globally synchronized execution model of IPA. This increases the overhead of
executing loops on the baseline model and consequently, the gain will be more.

Figure 11 gives the number of branch instructions executed in normalized
form for different unrolling factors for both baseline and proposed models.
In any case, lesser number of branches are executed by the proposed model
compared to the baseline. For both the models, the number grows with the
unrolling factor if better PE utilization is achieved. However, the increase in
the number of branch instructions with loop unrolling factor does not increase
the number of execution cycles in the baseline implementation. This is because
the corresponding branch instructions are executed simultaneously by all the
PEs. Therefore the gain on latency achieved by the proposed over the baseline
model depends solely on the measure of overhead eliminated. As discussed
above, the overhead (given by the (Nlc) to (Nke) ratio) falls with loop unrolling
factor and the gain on latency decreases accordingly. This is evident in Table 6.
Table 7 gives a comparison on the number of basic blocks between baseline
and proposed models in the presence of loop unrolling. It is observed that the
number of basic blocks is not affected by unrolling unless the unrolled loop
contains conditional statements. Number of basic blocks increases with the
unrolling factor if conditionals are present; Binarization kernel is an example.

The performance of the proposed model expressed in Million Operations
Per Second (MOPS) for the studied benchmarks is given in Table 8. It also
lists the CGRA occupation which is the average fraction of the PE array active
per execution cycle.

Energy Efficient Hardware Loop Based Optimization for CGRAs 21

Table 5 Comparison of total number of instructions executed between baseline and pro-
posed models in the presence of loop unrolling

Kernel Unroll Baseline Proposed Gain
Factor Model Model Achieved

Floyd Warshall 2 2,650,585 2,549,917 1.04×
Jacobi-1D 2 26,414 16,763 1.58×

4 22,292 15,257 1.46×
Seidel-2D 2 1,205,192 976,097 1.23×
FIR filter 2 30,816 17,897 1.72×
Erosion Full (3) 92,379 37,154 2.49×
Dilation Full (3) 92,379 51,205 1.80×
Matrix Multiplication 2 566,573 254,757 2.22×

4 419,382 188,986 2.22×
8 383,048 172,899 2.22×

Matrix Addition 2 12,324 7,150 1.72×
4 13,896 6,201 2.24×
8 10,568 6,729 1.57×

Projection 2 138,279 64,351 2.15×
Histogram Equalization 2 72,300 41,335 1.75×

4 67,592 33,913 1.99×
Binarization 2 79,618 61,217 1.30×

4 67,618 58,218 1.16×
Non-Separable Filter Full (3) 717,645 380,688 1.89×

6.3 Energy Results

Energy estimates are prepared using the switching activity obtained by simu-
lating the placement-and-routed net list design at a clock frequency of 17.5MHz.
Results include the energy spent on the entire PE array including the LSUs
interfacing with TCDM and the interconnects used for data transfer between
PEs. As expected, the energy consumption is considerably reduced by the
hardware-based loop model in comparison with the baseline that uses the
conventional looping technique. Table 9 lists down the energy results for the
compared designs over various kernels with and without loop unrolling. A re-
duction up to 44.5% and an arithmetic mean of 23.3% is achieved by the basic
distributed model compared to the baseline model employing software loop.
Furthermore, a maximum of 47.3% and an arithmetic mean of 27.2% reduc-
tion in energy consumption is attained by the centralized approach over the
baseline model. Compared to the basic distributed model of hardware loop,
the centralized version reduces the energy consumption by 5.02% on aver-
age. In the presence of loop unrolling, energy consumption is reduced on all
the three designs. These results confirm the inter-operability of the proposed
hardware-based optimization with any of the existing software-based optimiza-
tion techniques. For instance, the energy consumption of 77.81µJ recorded for
Matrix Multiplication kernel on the baseline IPA architecture is reduced to
24.36µJ by unrolling the innermost loop by a factor of 8 and executing it
on the centralized hardware loop model. This marks a reduction of 68.7% in
energy consumption.

22 Chilankamol Sunny et al.

Table 6 Comparison of latency in terms of execution cycles between baseline and proposed
models in the presence of loop unrolling

Kernel Unroll Baseline Proposed Gain
Factor Model Model Achieved

Floyd Warshall 2 1,771,147 1,426,779 1.24×
Jacobi-1D 2 9,377 6,856 1.37×

4 4,973 4,075 1.22×
Seidel-2D 2 353,299 308,385 1.15×
FIR filter 2 10,602 7,370 1.44×
Erosion Full (3) 41,724 27,996 1.49×
Dilation Full (3) 41,733 27,996 1.49×
Matrix Multiplication 2 190,068 108,075 1.76×

4 149,144 90,622 1.65×
8 128,738 83,618 1.54×

Matrix Addition 2 5,227 3,619 1.44×
4 2,976 22,85 1.30×
8 2,752 2,296 1.20×

Projection 2 59,454 44,708 1.33×
Histogram Equalization 2 22,620 15,243 1.48×

4 11,854 8,086 1.47×
Binarization 2 55,138 45,938 1.20×

4 49,163 44,459 1.11×
Non-Separable Filter Full (3) 214,773 170,357 1.26×

6.4 Comparison to other approaches

The reference CGRA architecture used by the ZOLA model [26] is a con-
figurable array of Functional Unit(FU)s. To run applications involving loops,
the reference CGRA will be customized to include an extra FU as an ALU
to compute the loop control flow decisions. It also requires another FU as
an Immediate Unit (IMM) and a custom instruction in loop body to support
branching. By having the zero-overhead loop accelerator integrated with the
Accumulate Branch Unit(ABU), the use of extra ALU and IMM units and the
associated issue slots could be avoided resulting in an average energy gain of
6.8% against the reference CGRA when tested on a set of image processing
kernels. ZOLA tries to reduce energy consumption by removing the extra FUs
its reference architecture employs to implement loop control flow. The solu-
tion we introduce aims to minimize the number of loop control instructions
executed by the baseline IPA architecture, rather than trying to reduce the
PE usage. In ZOLA model, the FU and issue slot replacement is not possible
if the units are used for other computations as well. Hence ZOLA is an advis-
able choice only for those applications for which its energy overhead is lower
than what it saves. Our approach could cut down the number of instructions
executed to half for almost all the kernels we tested with. The centralized
hardware loop model could achieve as much as 68.7% and 47.3% reduction in
energy consumption with and without loop unrolling against the baseline.

The LASER model [2] outperforms the state-of-the-art partial predica-
tion techniques in accelerating complicated loops with nested conditionals.

Energy Efficient Hardware Loop Based Optimization for CGRAs 23

Table 7 Comparison of number of basic blocks between baseline and proposed models in
the presence of loop unrolling

Kernel Unroll Baseline Proposed Gain
Factor Model Model Achieved

Floyd Warshall 2 18 15 1.20×
Jacobi-1D 2 14 10 1.40×

4 14 10 1.40×
Seidel-2D 2 14 10 1.40×
FIR filter 2 11 9 1.22×
Erosion Full (3) 23 20 1.15×
Dilation Full (3) 23 20 1.15×
Matrix Multiplication 2 14 11 1.27×

4 14 9 1.56×
8 14 11 1.27×

Matrix Addition 2 11 9 1.22×
4 11 7 1.57×
8 11 9 1.22×

Projection 2 25 21 1.19×
Histogram Equalization 2 11 9 1.22×

4 11 9 1.22×
Binarization 2 17 15 1.13×

4 23 21 1.10×
Non-Separable Filter Full (3) 14 11 1.27×

Table 8 MOPS and CGRA occupation of the proposed model for the studied benchmarks

Kernel MOPS CGRA Occupation %

Floyd Warshall 41.41 29.5
Jacobi-1D 122.53 87.3
Seidel-2D 109.84 78.3
FIR filter 62.20 44.3
Erosion 53.88 38.4
Dilation 46.64 33.2
Matrix Multiplication 66.58 47.4
Matrix Addition 106.51 75.9
Projection 31.18 22.2
Histogram Equalization 110.74 78.9
Binarization 30.22 21.5
Non-Separable Filter 62.19 44.3

For MiBench benchmarks, LASER consumed on an average 45.78% less en-
ergy compared to reference architecture employing partial predication scheme.
However, the hardware based optimization LASER showcases is entirely ded-
icated for the efficient execution of conditional statements. The support is
extended to loops by flattening nested loops into single-level loops with nested
conditionals. Loop control remains to be software-based necessitating the ex-
ecution of control instructions for each iteration of the loop. The hardware
based optimization we introduced completely shifts the loop control to hard-
ware eliminating the need for executing loop control instructions.

24 Chilankamol Sunny et al.

Table 9 Comparison of Energy(µJ) consumed in different IPA implementations for various
kernels

Kernel Unroll Baseline Basic Hardware Loop Proposed
Factor Model Model Model

Floyd Warshall - 630.43 474.84 451.15
2 506.80 437.54 415.58

Jacobi-1D - 4.35 3.46 3.28
2 2.68 2.10 2.00
4 1.42 1.25 1.19

Seidel-2D - 191.98 178.68 169.71
2 101.09 94.57 89.82

FIR Filter - 4.39 2.87 2.73
2 3.03 2.26 2.15

2D Convolution - 154.12 122.44 116.30
Erosion - 11.94 8.60 8.17

Full (3) 11.94 8.59 8.15
Dilation - 11.95 8.59 8.16

Full (3) 11.94 8.59 8.15
Matrix Multiplication - 77.81 43.15 40.99

2 54.39 33.14 31.48
4 42.68 27.79 26.40
8 36.84 25.64 24.36

Matrix Addition - 2.80 2.01 1.91
2 1.50 1.11 1.05
4 0.85 0.70 0.67
8 0.79 0.70 0.67

Projection - 22.49 15.17 14.41
2 17.01 13.71 13.02

Histogram Equalization - 12.63 9.07 8.62
2 6.47 4.67 4.44
4 3.39 2.48 2.36

Binarization - 19.20 15.00 14.24
2 15.78 14.09 13.38
4 14.07 13.638 12.95

Non-Separable Filter - 135.62 94.06 89.34
Full (3) 61.46 52.24 49.62

Avg. Reduction wrt 23.3% 27.2%
Baseline Model

Max. Reduction wrt 44.5% 47.3%
Baseline Model

Avg. Reduction wrt 5.02%
Basic Hw. Loop Model

7 Conclusion

Many proven hardware and software loop optimizations on processor archi-
tectures have been adopted to CGRAs for enhanced performance and en-
ergy efficiency. In this paper, we proposed a centralized implementation of
the hardware loop that we introduced previously. Furthermore, we analysed
and confirmed combining hardware loop support with software optimization
techniques like loop unrolling as a means to improve the gains. Compared to

Energy Efficient Hardware Loop Based Optimization for CGRAs 25

the basic hardware loop model, the proposed centralized solution could reduce
area overhead against the reference architecture to 1.5% for a 4×2 CGRA
configuration. By executing loop unrolled kernels on the centralized hardware
loop model, up to 5.46× speed-up and 68.7% reduction in energy consump-
tion are attained compared to the baseline with no optimizations applied. The
proposed model can be further enhanced by having multiple hardware loop
units in the CGRA, each controlling a cluster of PEs in centralized fashion.
Such a design can aid in exploiting loop level and thread level parallelism in
the kernel execution.

Declarations

Funding
This work was funded by the Science and Engineering Research Board (SERB),
Government of India under grant file No. SRG/2020/001005.
Conflicts of interests
The authors have no conflicts of interest to declare that are relevant to the
content of this article.
Acknowledgement
First published in Journal of Signal Processing Systems, 2022 by Springer
Nature

References

1. Bajwa, R.S., Hiraki, M., Kojima, H., Gorny, D.J., Nitta, K.i., Shridhar, A., Seki, K.,
Sasaki, K.: Instruction buffering to reduce power in processors for signal processing.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 5(4), 417–424
(1997)

2. Balasubramanian, M., Dave, S., Shrivastava, A., Jeyapaul, R.: Laser: A hardware/soft-
ware approach to accelerate complicated loops on cgras. In: 2018 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 1069–1074. IEEE (2018)

3. Bielecki, W., Skotnicki, P.: Insight into tiles generated by means of a correction tech-
nique. The Journal of Supercomputing 75(5), 2665–2690 (2019)

4. Das, S.: Architecture and programming model support for reconfigurable accelerators
in multi-core embedded systems. Ph.D. thesis, Lorient (2018)

5. Das, S., Martin, K.J., Coussy, P., Rossi, D.: A heterogeneous cluster with reconfigurable
accelerator for energy efficient near-sensor data analytics. In: 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2018)

6. Das, S., Martin, K.J., Coussy, P., Rossi, D., Benini, L.: Efficient mapping of cdfg onto
coarse-grained reconfigurable array architectures. In: 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 127–132. IEEE (2017)

7. Das, S., Martin, K.J., Rossi, D., Coussy, P., Benini, L.: An energy-efficient integrated
programmable array accelerator and compilation flow for near-sensor ultralow power
processing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 38(6), 1095–1108 (2018)

8. Dragomir, O.S., Bertels, K.: Extending loop unrolling and shifting for reconfigurable
architectures. Architectures and Compilers for Embedded Systems (ACES) pp. 61–64
(2010)

26 Chilankamol Sunny et al.

9. Gautschi, M., Schiavone, P.D., Traber, A., Loi, I., Pullini, A., Rossi, D., Flamand,
E., Gürkaynak, F.K., Benini, L.: Near-threshold risc-v core with dsp extensions for
scalable iot endpoint devices. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 25(10), 2700–2713 (2017)

10. Gobieski, G., Atli, A.O., Mai, K., Lucia, B., Beckmann, N.: Snafu: an ultra-low-power,
energy-minimal cgra-generation framework and architecture. In: 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA), pp. 1027–1040.
IEEE (2021)

11. Hamzeh, M., Shrivastava, A., Vrudhula, S.: Epimap: Using epimorphism to map appli-
cations on cgras. In: Proceedings of the 49th Annual Design Automation Conference,
pp. 1284–1291 (2012)

12. Kavvadias, N., Nikolaidis, S.: Elimination of overhead operations in complex loop struc-
tures for embedded microprocessors. IEEE Transactions on Computers 57(2), 200–214
(2008)

13. Liu, D., Yin, S., Liu, L., Wei, S.: Polyhedral model based mapping optimization of loop
nests for cgras. In: Proceedings of the 50th Annual Design Automation Conference, pp.
1–8 (2013)

14. Liu, L., Zhu, J., Li, Z., Lu, Y., Deng, Y., Han, J., Yin, S., Wei, S.: A survey of coarse-
grained reconfigurable architecture and design: Taxonomy, challenges, and applications.
ACM Computing Surveys (CSUR) 52(6), 1–39 (2019)

15. Mathew, B., Davis, A.: A loop accelerator for low power embedded vliw processors. In:
Proceedings of the 2nd IEEE/ACM/IFIP international conference on Hardware/soft-
ware codesign and system synthesis, pp. 6–11 (2004)

16. Nowatzki, T., Gangadhan, V., Sankaralingam, K., Wright, G.: Pushing the limits of
accelerator efficiency while retaining programmability. In: 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp. 27–39. IEEE
(2016)

17. Ozaki, N., Yoshihiro, Y., Saito, Y., Ikebuchi, D., Kimura, M., Amano, H., Nakamura,
H., Usami, K., Namiki, M., Kondo, M.: Cool mega-array: A highly energy efficient
reconfigurable accelerator. In: 2011 International Conference on Field-Programmable
Technology, pp. 1–8. IEEE (2011)

18. Park, H., Fan, K., Mahlke, S.A., Oh, T., Kim, H., Kim, H.s.: Edge-centric modulo
scheduling for coarse-grained reconfigurable architectures. In: Proceedings of the 17th
international conference on Parallel architectures and compilation techniques, pp. 166–
176 (2008)

19. Podobas, A., Sano, K., Matsuoka, S.: A survey on coarse-grained reconfigurable archi-
tectures from a performance perspective. IEEE Access 8, 146719–146743 (2020)

20. Prabhakar, R., Zhang, Y., Koeplinger, D., Feldman, M., Zhao, T., Hadjis, S., Pedram,
A., Kozyrakis, C., Olukotun, K.: Plasticine: A reconfigurable architecture for parallel
patterns. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pp. 389–402. IEEE (2017)

21. Prasad, R., Das, S., Martin, K.J., Tagliavini, G., Coussy, P., Benini, L., Rossi, D.:
Transpire: An energy-efficient transprecision floating-point programmable architecture.
In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
1067–1072. IEEE (2020)

22. Sunny, C., Das, S., Martin, K.J., Coussy, P.: Hardware based loop optimization for cgra
architectures. In: International Symposium on Applied Reconfigurable Computing, pp.
65–80. Springer (2021)

23. Tian, W., Xue, C.J., Li, M., Chen, E.: Loop fusion and reordering for register file
optimization on stream processors. Journal of Systems and Software 85(7), 1673–1681
(2012)

24. Torng, C., Pan, P., Ou, Y., Tan, C., Batten, C.: Ultra-elastic cgras for irregular loop
specialization. In: 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pp. 412–425. IEEE (2021)

25. Tsao, Y.L., Chen, W.H., Cheng, W.S., Lin, M.C., Jou, S.J.: Hardware nested looping of
parameterized and embedded dsp core. In: IEEE International [Systems-on-Chip] SOC
Conference, 2003. Proceedings., pp. 49–52. IEEE (2003)

Energy Efficient Hardware Loop Based Optimization for CGRAs 27

26. Vadivel, K., Wijtvliet, M., Jordans, R., Corporaal, H.: Loop overhead reduction tech-
niques for coarse grained reconfigurable architectures. In: 2017 Euromicro Conference
on Digital System Design (DSD), pp. 14–21. IEEE (2017)

27. Zhang, Y., Li, G., Yang, X.: Recognition and optimization of loop-carried stream reusing
of scientific computing applications on the stream processor. In: International Confer-
ence on Computational Science, pp. 474–481. Springer (2007)

28. Zhang, Y., Zhang, N., Zhao, T., Vilim, M., Shahbaz, M., Olukotun, K.: Sara: Scaling
a reconfigurable dataflow accelerator. In: 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pp. 1041–1054. IEEE (2021)

29. Zheng, S., Zhang, K., Tian, Y., Yin, W., Wang, L., Zhou, X.: Fastcgra: A modeling,
evaluation, and exploration platform for large-scale coarse-grained reconfigurable arrays.
In: 2021 International Conference on Field-Programmable Technology (ICFPT), pp. 1–
10. IEEE (2021)

	Introduction
	Related Work
	Background and Motivation
	Proposed Architecture
	Compilation Flow
	Experiments and Results
	Conclusion

