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Abstract: This study aims to discuss the combined theoretical and experimental results of elastic
properties of tungsten trioxide films supported on Quartz (YX)/45◦/10◦ resonator to form surface
acoustic wave (SAW) devices. The SAW systems with different thicknesses of WO3 thin films were
imaged and structurally characterized by X-ray diffraction, atomic force, and transmission electron
microscopy. The deposited WO3 films (100, 200, and 300 nm of thickness) crystallized in a single
monoclinic phase. The acoustoelectric properties of the SAW system were obtained by combining
theoretical simulations with experimental measurements. The modeling of the SAW devices has
been performed by the finite element and boundary element methods (FEM/BEM). The elastic
constants of the films at room temperature were assessed via electrical admittances experiments in
light of theoretical calculations. The gravimetric effect of the deposited layers is observed by a shift
of the resonance frequency to lower values as the thickness of the films increases. Moreover, the
acoustic losses are affected by the dielectric losses of the WO3 films while the resonant frequency
decreases almost linearly. SAW devices revealed strong displacement fields with low acoustic losses
as a function of WO3 thicknesses. For all the deposited layers, the measured Young’s moduli and
Poisson’s ratios are 8 GPa and 0.5, respectively.

Keywords: acoustic resonator; tungsten trioxide; harmonic admittance; dielectric properties;
gravimetric effect

1. Introduction

Surface acoustic wave (SAW) devices have been largely studied as chemical gas sensors
to determine micromass changes. The enthusiasm over SAW devices originates in its easy-
to-use and highly sensitive characteristics. The working principle is the measurement
of the modification of the surface propagating wave due to the interaction of the active
material with a specific gas molecule [1–4]. Indeed, the surface wave resonator, which is
confined within few wavelengths of the piezoelectric crystal surface, is strongly sensitive
to any changes in the physical and/or chemical properties of the thin active layer (as
in the present study) [5]. Provided that the thickness of the sensitive material is less
than the wavelength of the surface wave, the waves can be considered Rayleigh waves.
The associated mechanisms (phenomena) are mass loading effects, changes of the elastic
properties and electrical conductivity [6–8].

Variations in electrical conduction of the sensitive film disturb the propagation of the
acoustic wave on the quartz surface and consequently its speed. The first study on the
acoustoelectric effects was demonstrated on SAW sensor covered with a semiconductor
thin film under hydrogen exposure [9]. This effect is generalized through an acoustoelectric
parameter calculation showing that the wave propagation is affected either by mass effect,
change in electrical conductivity of the film, or by combining both [10,11]. This effect has
been theorized and is described by an acoustoelectric parameter that depends on mass
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variations and changes in electrical conductivity of the film, or on a combination of both
quantities.

The tungsten trioxide WO3 is a well-known material in sensor technology that has
been studied extensively, particularly in our lab [12,13]. Moreover, WO3-based materials,
known as heavy metal oxides, have been considered as promising glasses due to their high
thermal stability, good mechanical properties, and electrical conductivity [14,15]. Ideally,
the tungsten trioxide structure is cubic and formed by a three-dimensional network of
corner sharing octahedra [16]. However, the structure of WO3 reveals phase transitions
as a function of the preparation temperature, showing a polymorphic behavior. The
different crystallographic structures result from the distortion of the network through
tilts of the octahedra and/or ions displacement vacancies. Thus, all modifications of
WO3 crystal network depend on the various oxidation states of the different coordination
polyhedral [17].

Currently, the elastic parameters of WO3 in single crystal or powder form have been
determined using atomic level simulation methods [18]. However, to date, no simple and
reproducible method has been able to determine the elastic constants of this material as
a thin layer. In other words, the acoustic characterization of WO3 as thin films is almost
non-existent in the literature. In this paper, we consider the elastic constants of thin films
found in the literature as a starting point for the fitting of the elastic parameters.

Our theoretical study offers a methodology that allows to estimate the elastic parame-
ters of a thin film deposited on the SAW resonator starting from unknown physical param-
eters of an element constituting the acoustic component and from simulation-measurement
agreement. The modeling of the SAW devices has been performed by the finite element
method (FEM), and is based on the adjustment of the thin layer density allowing the agree-
ment between simulations and measurements. This work deals with the direct analysis of
the acoustoelectric signals of different layers deposited on SAW resonator to extract some
physical properties of the material such as the Young’s modulus, E, and the Poisson’s ratio,
ν. The originality of this work lies in the use of SAW devices to study the electromechanical
behavior of thin layers constituting our SAW sensor.

2. Experimental and Theoretical Approach
2.1. SAW Sensing Device

SAW device configuration: SAW device consists in a Quartz (YX)/45◦/10◦ resonator
equipped with a transducer and interdigital structures, IDTs, used as reflectors and different
layers of WO3. The surface wave devices that were used to perform this study are quartz-
based single-port resonators operating at 434 MHz. Figure 1 represents the structure of
the SAW transducer used in this study. Table 1 gathers the physical characteristics of SAW
devices.

Table 1. The IDT specifications of YX/45◦/10◦ quartz SAW resonator.

Resonator Type Quartz (YX/45◦/10◦)

Type of Electrodes Aluminium

Electrode width a (µm) 2.9
IDT period p (µm) 3.63

Wavelegnth λ (µm) 8
Electrode thickness h (nm) 120

Metallization ratio a/p 0.8
Metallization thickness h/λ (%) 1.5

Acoustic velocity v (m/s) 3462



Electron. Mater. 2022, 3 126

Electron. Mater. 2022, 3 3 
 

 

In all cases, the layer deposited on the piezoelectric substrate acts as a sensitive layer 
but also as a guide for the elastic waves; this is done by judiciously choosing the possible 
vibration modes of the structure and the anisotropy properties of the considered sub-
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Figure 1. (a) Schematic of SAW device with a WO3-coated quartz, (b) configuration of the IDTs 
transducer, (c) SAW system with metallized excitation surface and (d) representation of an elemen-
tary cell. 

The WO3 layers were deposited on the entire surface of the resonator, as shown in 
Figure 1. The interest of such configuration is to work with waves propagating on the 
metallized excitation surface and not on the free surface (Figure 1c). The interest is to sig-
nificantly improve the sensitivity to the effects of films conductivity variation.  

2.2. Experimental Setup 
Film synthesis: WO3 films were prepared by reactive radio frequency (13.56 MHz) 

magnetron sputtering, using a 99.9% pure tungsten target. The thin films were sputtered 
on quartz substrate of SAW devices with aluminum electrodes, in a reactive atmosphere 
under oxygen–argon mixture (PAr/P(O2) = 1.6). Several WO3 layers with different thick-
nesses, have been deposited. After layer deposition, the films were annealed at 400 °C for 
3 h in air to stabilize the chemical composition and the crystalline structure. The synthesis 
setup and standard procedure have been already published with more details elsewhere 
[12,13]. 

Characterization methods: The morphological analyses of WO3 thin films were con-
ducted by atomic force microscopy (AFM) and with a conventional transmission micro-
scope (TEM), Tecnai 200 kV, equipped with a LaB6 source. 

The structural characterization of WO3 films were obtained by X-ray powder diffrac-
tion (XRD) in the classical θ–2θ mode, from 10° to 80° (step size 0.003°, scan speed 
0.004°·s−1), with an Empyrean Panalytical diffractometer, equipped with a Cu anticathode. 
X-ray patterns were compared with those of the inorganic crystal structure datasheets 
(ICSD). 

Acoustic measurement: The output signal of SAW devices was measured by a HP 
Agilent 4396B Network Analyzer. The set parameters of (YX)/45°/10° quartz SAW resona-
tor are reported in Table 1. 

  

Figure 1. (a) Schematic of SAW device with a WO3-coated quartz, (b) configuration of the IDTs
transducer, (c) SAW system with metallized excitation surface and (d) representation of an elementary
cell.

In all cases, the layer deposited on the piezoelectric substrate acts as a sensitive layer
but also as a guide for the elastic waves; this is done by judiciously choosing the possible
vibration modes of the structure and the anisotropy properties of the considered substrates.

The WO3 layers were deposited on the entire surface of the resonator, as shown in
Figure 1. The interest of such configuration is to work with waves propagating on the
metallized excitation surface and not on the free surface (Figure 1c). The interest is to
significantly improve the sensitivity to the effects of films conductivity variation.

2.2. Experimental Setup

Film synthesis: WO3 films were prepared by reactive radio frequency (13.56 MHz)
magnetron sputtering, using a 99.9% pure tungsten target. The thin films were sputtered on
quartz substrate of SAW devices with aluminum electrodes, in a reactive atmosphere under
oxygen–argon mixture (PAr/P(O2) = 1.6). Several WO3 layers with different thicknesses,
have been deposited. After layer deposition, the films were annealed at 400 ◦C for 3 h in air
to stabilize the chemical composition and the crystalline structure. The synthesis setup and
standard procedure have been already published with more details elsewhere [12,13].

Characterization methods: The morphological analyses of WO3 thin films were con-
ducted by atomic force microscopy (AFM) and with a conventional transmission microscope
(TEM), Tecnai 200 kV, equipped with a LaB6 source.

The structural characterization of WO3 films were obtained by X-ray powder diffrac-
tion (XRD) in the classical θ–2θ mode, from 10◦ to 80◦ (step size 0.003◦, scan speed
0.004◦·s−1), with an Empyrean Panalytical diffractometer, equipped with a Cu anticathode.
X-ray patterns were compared with those of the inorganic crystal structure datasheets
(ICSD).

Acoustic measurement: The output signal of SAW devices was measured by a HP Agi-
lent 4396B Network Analyzer. The set parameters of (YX)/45◦/10◦ quartz SAW resonator
are reported in Table 1.

2.3. Simulation

For theoretical acoustic studies, a combination of finite element and boundary element
methods (FEM/BEM), which is widely used to model complex multilayer systems, such as
SAW device [19–22], has been modified using Mathematica software to match our specific
system. To simulate our piezoelectric resonators, we built a model that takes into account
each material constituting the SAW devices. This approach is similar to the one used for
volume wave acoustic resonators [23]. Each element can be considered as points of a given
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structure for which the physical parameters will be computed using the finite element
method coupled with the boundary element method. Each subset constitutes a domain,
which makes the structure discontinuous. However, in order to give the best account
of the physical quantities of our system, it must be seen as a set of continuous domains,
hence the need to discretize the volume or the study surface by creating a mesh. The mesh,
represented in Figure 2, subdivides the study area into sub-elements or finite elements,
interconnected by particular points called “nodes”.

Electron. Mater. 2022, 3 5 
 

 

 
Figure 2. Representation of the typical mesh of two neighboring electrodes in a periodic array cov-
ered with WO3 films. 

3. Results and Discussion 
3.1. Structural and Morphological Characterization of WO3 Thin Films 

Figure 3a represents the typical X-ray diffraction patterns of WO3 films with thick-
nesses of 100 nm, 200 nm, and 300 nm. The identified diffraction Bragg peaks are charac-
teristic of a single-phase monoclinic structure of WO3 according to the ICSD standard da-
tabase (ICSD datasheet N° 050727). As reported in a previous study [16], Rietveld refine-
ment of experimental XRD patterns provided satisfactory figures of merit with the previ-
ously mention ICSD datasheet and pointing out the presence of small WO3 crystallites (40 
nm ± 10 nm). Hence, the three films have similar structures based on tridimensional net-
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of (200) and (020) peaks as compared to the (002) peak vary with the thickness of the films 
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nesses deposited, the three main peaks oriented in the main directions change in intensity 
and width at mid-height. However, all WO3 films have a similar structure close to the 
cubic phase that behave as an isotropic system. The lattice parameters show little varia-
tions and remain close to the cubic phase for all the films, resulting in the set of mean 
values: a = 7.316 Å, b = 7.528 Å, c = 7.397 Å, α = γ = 90°, and β = 90.82° that are associated 
to the space group of P21/C (N° 14).  

The TEM image (Figure 3b) is an example of a cross section of a WO3 film deposited 
on quartz substrate with a thickness of 200 nm. The electronic diffraction pattern of a se-
lected area (insert Figure 3b) shows that the film is monocrystalline and confirms the dis-
torted cubic phase, in agreement with XRD results: the strong spots correspond to the 
initial cubic phase and the weak ones are induced by the deformation of the octahedral.  

Figure 2. Representation of the typical mesh of two neighboring electrodes in a periodic array covered
with WO3 films.

The propagation of acoustic waves in linear homogeneous media can be formulated
as an eigenvalue problem according to the Fahmy–Adler approach [24]. In this approach,
the propagation is considered to be in the (x,z) plane and the dependence along y is given
by the system of equations to solve. A state vector mixing displacements and generalized
constraints in the propagation plane can thus be defined and the time dependence is set to
be of harmonic type (ejωt).

The calculation is based on the stress relations (Hooke’s law extended to piezoelectric-
ity) and the electric displacement vector to define an eigenvalue system [25,26], described
by the following equations:

Ti = Cijkl Skl + eijkEk (1)

Di = eikl Skl − eikEk (2)

Where T is the stress tensor, C is the elastic stiffness tensor, S is the elastic strain tensor, e
is the piezoelectricity tensor, E is the electric field, D is the electric displacement, ε is the
dielectric permittivity tensor, and i represents the three directions (x, y, z).

The usual piezoelectric coefficient e is expressed in matrix form as follows: e = d C,
where [C] is the elastic stiffness matrix and [d] is the piezoelectric strain coefficient matrix of
quartz. In the case of anisotropic materials, the existence of symmetries in a crystal reduces
the number of admissible stiffness tensor components Cijkl (independent elastic constants)
to 21. Given its trigonal symmetry, α-quartz has six independent elastic constants.

The isotropic character of a cubic structure, as it is the case of tungsten oxide WO3 (see
structural characterization section), satisfies the relation: 2C66 = C11 − C12. The Young’s
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modulus (E) and the Poisson’s ratio (ν) are then expressed in terms of the elastic constants
C11, C12, and C66 as follows:

ν =
C12

C11
(3)

E =
4 C66(C11 − C66)

C11
(4)

To characterize the propagation of acoustic waves generated by the piezoelectric effect,
conditions on the boundaries of the domains are associated with the constitutive equations
of piezoelectricity. The piezoelectric material should not be treated as an infinite substrate,
but with dimensions defined by mechanical and electrical boundary conditions, such as:

• For the electrical domain, a potential difference is assigned to the electrodes;
• The mechanical stress T is zero at the free surfaces of WO3 and the electrodes;
• The boundary conditions at the piezoelectric substrate-electrode and piezoelectric

substrate–WO3 interfaces require continuous mechanical displacements and stresses.

3. Results and Discussion
3.1. Structural and Morphological Characterization of WO3 Thin Films

Figure 3a represents the typical X-ray diffraction patterns of WO3 films with thick-
nesses of 100 nm, 200 nm, and 300 nm. The identified diffraction Bragg peaks are character-
istic of a single-phase monoclinic structure of WO3 according to the ICSD standard database
(ICSD datasheet N◦ 050727). As reported in a previous study [16], Rietveld refinement
of experimental XRD patterns provided satisfactory figures of merit with the previously
mention ICSD datasheet and pointing out the presence of small WO3 crystallites (40 nm ±
10 nm). Hence, the three films have similar structures based on tridimensional networks of
corners-sharing WO6 octahedra.
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Figure 3. (a) XRD pattern of the deposited WO3 films, (b) TEM cross section of 200 nm thick film, 
the insert picture corresponds to the electronic diffraction pattern, (c) AFM image of the surface 
porosity of a film on SAW device. 

The AFM images of the deposited films (see example in the Figure 3c) reveals a weak 
roughness and a high porosity. This porosity increases with the film thickness ranging 
from 100 nm to a few microns. Moreover, this analysis allowed to verify the thickness of 
the deposited layers by using the largest pores. 

3.2. Piezoelectric Characteristic  
To model the electromechanical behavior of surface acoustic wave devices, the peri-

odic electrode array must be decomposed into elementary single-electrode cells; this al-
lows the evaluation of the impact of electrical behavior on wave propagation (Figure 1d). 
From theoretical calculations, it is possible to determine the harmonic admittance. This 
method was developed by Ventura [27] and then by Baghaï-Wadji [28]. 

3.2.1. Sensitivity to the Gravimetric Effect 
The first approach was to investigate the gravimetric sensitivity of these acoustic sys-

tems when they are coated with thin 100, 200, and 300 nm-thick layers of tungsten oxide. 
To do this, we have calibrated the simulation calculations on the experimental results per-
formed at 25 °C. We assumed that the WO3 thin films were homogeneous and uniformly 
distributed on the whole resonator, i.e., on the reflectors and the transducer. This implies 
that the topology of the material covering the acoustic component is like the initial relief 
induced by the presence of the electrodes. Besides, we considered the case of a metallized 
surface excited wave with free charge motion modeled by a Green function (Figure 1c).  

The harmonic admittance is given by the evolution of the conductance and the har-
monic susceptance as a function of the frequency, defined by Y(f) = G(f) + j B(f). Figure 4 
shows the measured admittances on resonators for three different thicknesses of WO3 thin 
film. After integration of WO3 with different thicknesses (passivation effect), we observed 

Figure 3. (a) XRD pattern of the deposited WO3 films, (b) TEM cross section of 200 nm thick film, the
insert picture corresponds to the electronic diffraction pattern, (c) AFM image of the surface porosity
of a film on SAW device.
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The tilt and the distortion of the octahedra, lead to monoclinic phase whereas ideal
ReO3 structure (without tilting) corresponds to the cubic structure. The ratios of intensity
of (200) and (020) peaks as compared to the (002) peak vary with the thickness of the
films indicating a dependence of the film orientation with thickness. As a function of the
thicknesses deposited, the three main peaks oriented in the main directions change in
intensity and width at mid-height. However, all WO3 films have a similar structure close
to the cubic phase that behave as an isotropic system. The lattice parameters show little
variations and remain close to the cubic phase for all the films, resulting in the set of mean
values: a = 7.316 Å, b = 7.528 Å, c = 7.397 Å, α = γ = 90◦, and β = 90.82◦ that are associated
to the space group of P21/C (N◦ 14).

The TEM image (Figure 3b) is an example of a cross section of a WO3 film deposited on
quartz substrate with a thickness of 200 nm. The electronic diffraction pattern of a selected
area (insert Figure 3b) shows that the film is monocrystalline and confirms the distorted
cubic phase, in agreement with XRD results: the strong spots correspond to the initial cubic
phase and the weak ones are induced by the deformation of the octahedral.

The AFM images of the deposited films (see example in the Figure 3c) reveals a weak
roughness and a high porosity. This porosity increases with the film thickness ranging from
100 nm to a few microns. Moreover, this analysis allowed to verify the thickness of the
deposited layers by using the largest pores.

3.2. Piezoelectric Characteristic

To model the electromechanical behavior of surface acoustic wave devices, the periodic
electrode array must be decomposed into elementary single-electrode cells; this allows
the evaluation of the impact of electrical behavior on wave propagation (Figure 1d). From
theoretical calculations, it is possible to determine the harmonic admittance. This method
was developed by Ventura [27] and then by Baghaï-Wadji [28].

3.2.1. Sensitivity to the Gravimetric Effect

The first approach was to investigate the gravimetric sensitivity of these acoustic
systems when they are coated with thin 100, 200, and 300 nm-thick layers of tungsten
oxide. To do this, we have calibrated the simulation calculations on the experimental
results performed at 25 ◦C. We assumed that the WO3 thin films were homogeneous and
uniformly distributed on the whole resonator, i.e., on the reflectors and the transducer.
This implies that the topology of the material covering the acoustic component is like the
initial relief induced by the presence of the electrodes. Besides, we considered the case of
a metallized surface excited wave with free charge motion modeled by a Green function
(Figure 1c).

The harmonic admittance is given by the evolution of the conductance and the har-
monic susceptance as a function of the frequency, defined by Y(f) = G(f) + j B(f). Figure 4
shows the measured admittances on resonators for three different thicknesses of WO3
thin film. After integration of WO3 with different thicknesses (passivation effect), we
observed a significant shift toward low frequencies highlighting the mass effect following
the deposition. The mass–frequency shift variation is described by the Sauerbrey relation:

∆ f = − 2 f 2
0√

C66ρq
∆m (f 0 is SAW resonance frequency and ρq is quartz density). To take into

account the passivation effect, we had to consider frequency shifts of 18, 26, and 45 MHz
respectively for thicknesses of 100, 200, and 300 nm. We observe the disappearance of the
exploitable resonance conditions for a film of 300-nm thick. Therefore, this thickness is
considered as the maximum thickness compatible with a proper use of the acoustoelectric
signals from Rayleigh wave resonators within our conditions.
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Figure 4. Experimental admittances of Quartz (YX)/45°/10° alone and with WO3 films, 200 nm and 
300 nm. 
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To consider the impact of conduction effects in the WO3 semiconductor layer on the 
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propagation parameters to the effects of variations in the dielectric properties of the metal 
oxide layer is monitored by the dielectric losses, denoted as tan(δ) and describe by the 
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Some of the electroacoustic energy is converted to conduction current in the sensitive 
layer, resulting in attenuation of the wave as it propagates. These losses will be even more 
important as the electromechanical coupling is strong.  

Figure 4. Experimental admittances of Quartz (YX)/45◦/10◦ alone and with WO3 films, 200 nm and
300 nm.

3.2.2. Sensitivity to the Variations of the WO3 Films Dielectric Properties

To consider the impact of conduction effects in the WO3 semiconductor layer on the
acoustic wave properties, free charges must be introduced. The sensitivity of the SAW
propagation parameters to the effects of variations in the dielectric properties of the metal
oxide layer is monitored by the dielectric losses, denoted as tan(δ) and describe by the
formula:

tan(δ) =
σ

ε ω
(5)

where σ is the real conductivity, ε is the dielectric constant, and ω is the pulsation. For all
simulations, a dielectric constant of 5.24 was set as reported in the literature [29].

Considering the WO3 film being a cubic structure and knowing its conducting behav-
ior, the displacement of free charges under the action of an electric field (E) is described by
the following equation [30]:

σij
∂Ej

∂xi
+ jwεij

∂Ej

∂xi
= 0 (6)

Some of the electroacoustic energy is converted to conduction current in the sensitive
layer, resulting in attenuation of the wave as it propagates. These losses will be even more
important as the electromechanical coupling is strong.

The simulation of the acoustic losses of the resonator according to the dielectric
characteristics of the sensitive layer of WO3 was carried out with devices covered with
100 nm and 200 nm thickness. The parameters determined were deduced from Green’s
function calculations that allow the characterization of the sensitivity of the wave properties
(phase velocity, acoustic losses, and electromechanical coupling) at first order.

Figure 5 shows the acoustic losses as a function of the dielectric losses around the
resonant frequency for each film thickness. The acoustic losses are slightly affected by the
dielectric losses of the WO3 films. At the same time, the frequency decreases almost linearly.
The acoustic losses increase with the thickness of the deposited films, to the limit of 300 nm.
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Figure 5. Evolution of acoustic and dielectric losses and frequencies for a resonator covered with a 
WO3 film of thickness: (a) 100 nm and (b) 200 nm. 
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izability in the piezoelectric phase of WO3. To simplify the simulation calculations, we 
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3.2.3. Elastic Properties of WO3 Thin Films

It is important to point out the lack of data about the elastic properties of WO3
as thin film. Therefore, the dielectric constants found in the literature was used as a
starting point for fitting the elastic parameters. E. Salje reported values of the dielectric
constants as high as 230 [29]. The magnitude of this value is in accordance with the strong
dielectric polarizability in the piezoelectric phase of WO3. To simplify the simulation
calculations, we assumed that the sensitive layer is isotropic. Figure 6 represents the
theoretical and experimental electroacoustic responses (electrical admittances) obtained at
room temperature in the case of quartz resonators (YX)/45◦/10◦. The signals obtained show
the presence of a clear resonance at the end of the stop band corresponding to a precise
reflection coefficient. From this characteristic, it is possible to determine the properties
of the WO3 layer. For each configuration, a set of constants was adjusted to obtain the
maximum agreement between the simulated and experimental results; the final results
are reported in Table 2. As can be seen, the acoustic dissipation increases as a function
of WO3 thickness such that above 300 nm, the experimental signal was no longer usable
(Figure 6). In addition, the viscoelastic losses of the overlay were also adjusted according to
the experimental observations resulting in an equivalent mechanical quality factor of 50.

Table 2. Elastic constants of WO3 thin film at 100 nm, 200 nm, and 300 nm thicknesses obtained from
modeling of quartz (YX)/45◦/10◦ resonators by the mixed matrix method.

Resonator Quartz (YX)/45◦/10◦

Thickness of WO3 100 nm 200 nm 300 nm

Density ρ (kg/m3) 6500 4700 3900
C11 (GPa) 14 15 12.5
C12 (GPa) 8 8 7
C66 (GPa) 2.5 2.5 2.5

Poisson Coefficient ν 0.57 0.53 0.56
Young’s modulus E (GPa) 8.2 8.3 8.0



Electron. Mater. 2022, 3 132
Electron. Mater. 2022, 3 9 
 

 

380 390 400 410 420 430 440
0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

 

 

 Bexp100 nm

 Bth

Without WO3 

 Bexp

 Bth 100 nm

Frequency (MHz)

 Bth 200 nm 
 Bexp 200 nm

 S
us

ce
pt

an
ce

 B
 (S

)

 Bexp 300 nm
 Bth 300 nm

 
Figure 6. Theoretical and experimental responses of quartz (YX)/45°/10° resonators for different 
WO3 thicknesses: 100 nm, 200 nm, and 300 nm. 

As shown in Table 2, the density was adjusted for each WO3 thickness to obtain the 
best fits. The obtained results with SAW resonator, show similar elastic characteristic than 
those obtained with bulk acoustic wave (BAW) resonator. SAW results are slightly lower 
but remain of the same order of magnitude as those obtained using BAW [23]. This agree-
ment shows that our approach remains reliable for the evaluation of elastic constants. 

One can imagine that the mass density remained unchanged with respect to the thick-
ness of WO3 film, but the ratio between the elastic constants would then have remained 
unchanged. From a technological point of view, the film is polycrystalline, and the poros-
ity size is affected by the thickness of the deposited layers. Within each grain, the elasticity 
behavior is not modified but the total mass of the layer does increase as a function of the 
deposit (thickness). 
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We believe that the low values of elastic constants in Table 2 compared to those ob-
tained in the literature [18] mainly originate in response to the acoustic disturbance of the 
grain boundaries of WO3. We therefore considered WO3 as a two-dimensional plate con-
sisting of grains and grain boundaries. Under the external stress action, the elastic defor-
mation within the material occurs at the grain boundaries. In this case, the elastic constants 
Cij define the local deformation leading to an electroacoustic response of the device. 

Figure 6. Theoretical and experimental responses of quartz (YX)/45◦/10◦ resonators for different
WO3 thicknesses: 100 nm, 200 nm, and 300 nm.

As shown in Table 2, the density was adjusted for each WO3 thickness to obtain the
best fits. The obtained results with SAW resonator, show similar elastic characteristic
than those obtained with bulk acoustic wave (BAW) resonator. SAW results are slightly
lower but remain of the same order of magnitude as those obtained using BAW [23]. This
agreement shows that our approach remains reliable for the evaluation of elastic constants.

One can imagine that the mass density remained unchanged with respect to the
thickness of WO3 film, but the ratio between the elastic constants would then have remained
unchanged. From a technological point of view, the film is polycrystalline, and the porosity
size is affected by the thickness of the deposited layers. Within each grain, the elasticity
behavior is not modified but the total mass of the layer does increase as a function of the
deposit (thickness).

We believe that the low values of elastic constants in Table 2 compared to those
obtained in the literature [18] mainly originate in response to the acoustic disturbance of
the grain boundaries of WO3. We therefore considered WO3 as a two-dimensional plate
consisting of grains and grain boundaries. Under the external stress action, the elastic
deformation within the material occurs at the grain boundaries. In this case, the elastic
constants Cij define the local deformation leading to an electroacoustic response of the
device.

The simulations were performed at different levels to differentiate the eigenmodes
from the parasitic modes and to calculate the resonance frequency of our systems consti-
tuted by the piezoelectric substrate and the electrodes in presence or not of a WO3 layer. The
maps shown on Figure 7 exhibit the thickness shearing vibration mode (TSM) representing
the displacement fields in a SAW system.
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4. Conclusions

The elastic properties of tungsten trioxide films were investigated in SAW sensor
devices. The deposited layers (100, 200, and 300 nm) crystallized in a single-phase mono-
clinic structure, obtained after calcination at 400 ◦C. The analysis of the surface showed the
presence of a strong porosity, ranging from a hundred nanometers to a few micrometers.
Consequently, the effective volume densities decrease with the thickness of the WO3 layers.

The effective elastic constants Cij of WO3 was evaluated owing to the harmonic ad-
mittance obtained by simulations using FEM/BEM methods combined with experimental
measurements. The calculated Young’s modulus and Poisson’s ratio are in the order of
8 GPa and 0.5, respectively. The electroacoustic modeling of SAW informs about the elastic
deformation not within the completely thin layer but rather at the local level, i.e., at the
interface between the grain boundaries constituting the crystal.

The SAW electroacoustic responses to the gravimetric effect and acoustic loss are
dependent on the thickness of the deposited layers. As the thickness increases, resonance
frequency shifts to lower values, followed by acoustic losses. Moreover, the displacement
fields linked to the deformations become very important at the interface electrode—WO3
films.

Future work will involve sensing application using WO3 layers with better electroa-
coustic coupling.
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