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27 Abstract. Sound velocities and thermodynamical properties of hep iron have been
28 computed using ab initio calculations over an extended density and temperature range,
29 encompassing the conditions directly relevant for the Earth’s inner core. At room
30 temperature, and up to350 GPa;.an excellent agreement is obtained between present
31 results and experimental datafor many thermodynamical quantities: phonon density of
32 states, vibrational entropy, heat eapacity, Griineisen parameter and thermal expansion.
33 With increasing temperature, along an isochore, we observe a strong decrease of
34 the phonon frequenéies, demonstrating that intrinsic anharmonic effects cannot be
35 neglected. We also carefully eompare previous theoretical data for the sound velocities
and try to explain t@ discrepancies observed with experiments. Finally, we propose a
temperature dependant Birch’s law that we compare with previous experimental work.

42 Submitted to: J. Phys.: Condens. Matter
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1. Introduction

Due to its technological and geophysical importance, iron is one of the most studied
element of the periodic table. A large experimental effort has been devoted to the
measure of its thermodynamical properties at pressures and temperatures relevant to
Earth’s interior. Among these properties the sound velocities [1, 253, 4y 5] are key
quantities since they can be directly related to seismological observations [647]. Probing
matter at such thermodynamical conditions (~ 330 GPa, ~_6000,K) is extremely
challenging and in fact constraints are obtained by extrapolatienof data at lower
pressures and temperatures. In parallel to these experimental works and to circumvent
the experimental limits, ab initio calculations have been performed‘to obtain

sound velocities [8, 9, 10, 11, 12]. In addition, othérithermodynamical properties
as thermal expansion or Griineisen parameter have beéen calculated [13, 14, 15] to build
reliable equation of state (EOS) and compare to experimentaldata [16, 5, 17].

Calculations at high pressure with densitymfunetional theory (DFT) can be
performed simply by changing the value of the volume.® Including temperature is a
longstanding task, much more complex. Many approximations have been made, mostly
based on the harmonic approximation, to indirectly simulate the temperature and
describe the thermal behaviour of physical quantities. One of the best known is the
quasi-harmonic approximation (QHA)»[L8] which introduces an implicit temperature
dependence of the phonon frequencies,and leads to a non-zero thermal expansion.
The QHA is easy to implement and onlyirequires 0 K calculations [14]. However,
its temperature range of validity is difficult to assess and can strongly depend on the
materials under consideration; since it is now well established that anharmonic effects,
beyond the QHA, can be important far below the melting temperature [19, 20, 21].

In the past ten years, strong_ efforts have been made to take into account explicit
temperature effects, and ‘gol beyond the QHA. New methods capturing the thermal
properties of solids at non-zero temperature are now available and can be applied in ab
initio calculations.«These approaches combine ideas including finite large displacements,
molecular dynamics sampling, self consistent harmonic theories, and different force
fitting schemessy The most widely used methods include Self-Consistent Ab Initio
Lattice Dynamics (SCAILD) [22], Stochastic Self-Consistent Harmonic Approximation
(SSCHA) [28,24], Temperature Dependent Effective Potential (TDEP) [25, 26, 27|,
Anharndonic LAttice MODEl (ALAMODE) [28] and Compressive Sensing Lattice
Dynamies [29]. | Other methods obtain anharmonic contributions via thermodynamic
integration [30], or a series expansion of the interatomic forces constants [31]. A large
number of mew phenomena, intrinsically temperature dependent, can now be captured:
the medification of the phonon density of states (vDOS) and free energy, the (7', P)
phase transition boundaries [32], the evolution of elastic constants [33] or Griineisen
doefficients, the phonon lifetimes [34], mechanisms behind superconductivity in pressure-
stabilized hydrides [35] or the thermal conductivity [36].

In this paper we perform ab initio molecular dynamics (AIMD) simulations and
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: use the TDEP method to calculate the vibrational properties of iron up to pressure
6 and temperature relevant for the Earth’s core. In the next two sections wérgive the
; details of the calculations and the different equations used to calculate various physieal
9 quantities. Then we present results for the thermodynamical properties in, section 4 and
10 for the sound velocities in section 5 with careful comparison with prefious theoretical
:; and experimental data.

13

14 2. Computational Details

15 o

1? Ab initio simulations were performed using the ABINIT package [37, 38, 39| in the
18 framework of the Projector Augmented Wave (PAW) method [40;,41]. We employ the
19 generalized gradient approximation (GGA) according to the parametrization of Perdew,
;? Burke and Ernzerhof (PBE) for the exchange-correlation cnergy and potential [42].
22 Using ATOMPAW [43, 44, 45|, we generate a small core PAW atomic data with a
23 radius rpaw equal to 2.0 u.a, with 3s, 3p, 3d, and4s states as valence electrons and a
;g cutoff energy equal to 350 eV for the plane wave basis set.”

26 The simulation box includes 180 atoms and corresponds to a 5 x 3 x 3 supercell of
27 a 4-atoms C-centered orthorhombic cell (hepistructure with orthogonal axes). A good
;g integration of electronic quantities is fulfilled using a 2 x 2 x 2 Monkhorst—Pack mesh
30 leading to the inclusion of 4 specialdk-points in the calculations. The size of the supercell
31 and the k-points mesh used in present ¢alculations give an uncertainty of less than 1%
gg on the velocity, which cannotbe obtained using smaller supercells (128 and 144 atoms)
34 whatever the k-points mesh used (I point or 3 x 3 x 3).

35 Tens of AIMD simulations are perfermed in the NVT ensemble (constant number
;? of particles, constant volumeandtemperature) and are run for about 3-5 ps using a time
38 step (7) of 1.13 fs. In particular, AIMD simulations are carried out for five densities p
39 equal to 10, 10.8, 12, 13.15/@nd 14 g.cm~3 corresponding to pressures between 50 and
2(1) 350 GPa, and several temperatures from 300 up to 7000 K depending on the density
42 considered. The brodening of the occupation numbers was beased on the Fermi-Dirac
43 statistics with the electronic temperature equal to the ionic one. Taking benefit of an
2‘; efficient schemerof parallelization [46] and using hundreds to thousands of processors,
46 the recovery time is a few months.

47

22 3. Calculations of thermodynamic properties and sound velocities

g? Tosobtain “dynamic, elastic and thermodynamic properties as a function of the
52 temperature we used the TDEP approach developed by Hellman and coworkers [25, 26]
;31 and implemented in ABINIT [47, 27] as ATDEP. In this method, a model Hamiltonian
55 expanded as a function of the atomic displacements around equilibrium and truncated
56 at the second or third order is adjusted to fit the potential energy surface obtained
g; using molecular dynamic simulations at finite temperature. As a results, we obtain the
59 effective interatomic force constants (IFC) at the second @%ﬁ (T') and third \I!fﬁv(T)
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order, between i, j, k atoms and for any «, 3, directions. These effective IFQ are no
longer constant as a function of the temperature but now depend on it.

2" order IFC,. we cannget

By performing a Fourier transform of the effective
the dynamical matrix, the eigenvectors X%(q,7T") and eigenvalues (phonen freéquencies)
ws(q,T') at any g-point of the Brillouin zone and for each phonon mode s. In addition,
ATDEP provides the vDOS g(w,T') and the associated thermodynami¢ properties: the
specific heat Cy (T), the vibrational entropy S, (T'), the vibrational energy(U.,;,(T) and
the vibrational free energy F,;(T).

Another thermodynamic quantity which can be derived from “the IFCs is the
Griineisen parameter v = V (%)V’ where U is the intérmal energy. For iron at
Earth’s inner core conditions, its determination is essential because it provides the link
between the thermal pressure P,; and the temperature (at. high temperature, in the
classical limit, U,;,(T') = 3NkgT, with kg the Boltzmann ¢enstant). Consequently, this
parameter is a key quantity for the Earth’s interiorfwhere P,; as a function of depth is
well constrained, thanks to seismological data, but This peorly known. The evolution of
v(p, T) with density p, but also with temperature is therefore essential to build reliable
equation of states (EOS) for planetary modeling [48, 49].

The mode Griineisen parameters are defined by the volume derivatives of the
phonon-mode frequencies:

Ys(q,T) =

e, .

These later can be obtained [27] from the effective 3" order IFC \I/?ﬁ](T) as follows:

1
J(q,T) = A N Wb (T
v (q7 ) 6w§(q,T) z]k( )

ijkaBy
N S T)X/(q,T)
JMM,

where M; is the mass, r the vector position of atom ¢ along o and R, the lattice

ri exp [iq.Ry] (2)

vector of the umiteell of @atom i. From the mode Griineisen parameters v,(q,T"), the
thermodynamical Griineisen parameter writes:

")/(T) — Szi; qEXB;Z f)/s(qa ?VC(’;S)(qa T) (3)

whefe the Oyzg(q, T) are the mode heat capacities such as Oy (T) = 53 >Yqenz Cvis(q,T)
and BZ is the Brillouin zone.
As,previously performed for the Griineisen parameter, we can also obtain the

temperature dependence of the isothermal elastic constants by using the effective 2™¢
IFC and the formulation proposed in Refs. [50, 51, 33]:

Capys(T) = Aarps(T) + Apras(T) — Aaprs(T) (4)
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4

5 with,

6 1

7 Aapos(T) = 5 3 O (D) djd (5)
8 J

9 where d7; is the distance between the atom ¢ and j along a. The full isothermal
1(1) elastic tensor Cyp,5(T) can be reduced following the symmetries and the Voigt notation.
12 The temperature effects are then directly introduced in the elastic constants by the
13 temperature variation of the IFCs.

12 Once the C,3(T) are obtained, the isothermal incompressibilityad&#(7") and the
16 shear modulus G(T') are given using the Voigt average for the hep'structure by:

17

. 2(Ch1 + Ch) + 4013 + C

;g Kn(T) = (Cr1+ 12)9+ 13+ Css (6)
% G(T) = 7C1 — 5Ch2 + 22?63 4C13 + 12Cyy (7)
24 We have also calculated K7 and G using the/Reuss andyHill formulas, the differences
25 were less than 0.3% compared to the Voigt average. From the Griineisen parameter,
;? the isothermal compressibility f7(T) = #(T) and ‘the'heat capacity, it is also possible
28 to compute the thermal expansion of the system, with all the intrinsic and extrinsic
;g thermal effects:

31 _ D)y (T)

i a(T) = BTV (8)
2431 Finally, the adiabatic incompressibility Kg(7'), the compressional Vp(T') and shear
35 Vs(T) velocities are obtained using allythe previous results coming from the 2" and
;? 37 orders, as follows: ~

38

39

0 Ks(T) KT<T>(1 +a(T) <T>T) )
41

44
" Vs(P) = ,/7 (11)

2; Thissprocedure’enables us to take into account the anharmonic effects not included
49 in the QHA where only implicit effects coming from the thermal dilation is considered.
50 This-missing explicit anharmonic part, also called intrinsic, can be crucial for finite
g; temperature elasticity, as shown on TiAIN alloys [33].

53 For comparison, the procedure to obtain the C,z with the QHA [52, 14] is very
>4 tedious since the phonon spectra has to be calculated not only for the parent structure
gg but also for all the strained structures with different values for the applied strain.
57 So between 20 to 30 first principles linear-response calculations are necessary at each
gg volume. Note that if the internal degree of freedom are relaxed for the strain structures

at 0 K, their temperature dependency is not taken into account with this procedure.
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Similar criticisms can be made for the method where the strains are applied to
supercells [9, 53, 10]. At least 10 AIMD simulations are necessary with running time
around 10 ps [10], resulting in an overall simulation time of 100 ps t0 obtain the,set
of elastic constants of the hcp structure at one thermodynamic point. By cemparison,
using TDEP, we obtain the elastic constants with a single simulation of@about 5 ps.” The
main drawback of this method is that since the elastic constants arewelated:to phonon
frequencies in the long wavelenght limit, it requires large supercells'to convérge the sum
in Eq. (5). To circumvent this difficulty, we only retain the temperature dependence of
Eq. (4) that we apply to the static calculations at 0 K [33, 32].

4. Thermodynamic properties of e-Fe

4.1. Phonon spectrum, phonon density of state and nélated,quantities

As a first illustration, we compare in Figure 1 the ¥DOS obtained in present AIMD
calculations at room temperature to the results obtainedgn nuclear resonant inelastic
X-ray scattering (NRIXS) measurements on isofopically enriched *"Fe [54](we consider
natural *Fe in present calculations). The, excellentdagreement obtained attests the
validity of vDOS computed as a function of theéwpressure (between 50 and 150 GPa) at
low temperature and assess the quality of present calculations at higher pressure and
temperature where no experimental data areravailable.

The phonon dispersion relations and the associated vDOS of hep Fe at 13.06 g.cm ™3
as a function of temperature are presented in Fig. 2. First, we do not observe any
dynamical instabilities for thedcp structure even at 7000 K, a temperature close to the
melting point (ab initio calculations evaluate the melting temperature around 6300 K
at this density [56, 57| butithe solidistate can be maintained at higher temperature due
to the overheating effect|[15]). Secondly, we observe that the frequencies soften with
temperature but notwwith the,same amplitude. Up to 5000 K the temperature effect
is rather small for the longitudinal branches (acoustic and optic) while we observe a
stronger effect on/the tramsversal branches. Between 5000 and 7000 K, the longitudinal
branches decreases, considerably. This is also clearly seen on the vDOS where the
peak at high/frequencies is abruptly shifted between 5000 and 7000 K, while the peak
at low frequencies softens'monotonously with temperature. The initial slope at low
energy, from whieh'the Debye sound velocity can be derived, strongly increases with
temperature, an effect already noticed experimentally [1]| but at lower temperature (from
3004071100, K).

As alréady noticed for bee Fe [58] and for hep Fe [13], Figure 2 demonstrates the
importance of the explicit anharmonic effects in iron at high temperature. All the
temperature effects highlighted in Fig. 2 cannot be reproduced using QHA with fixed
phonen spectrum at constant volume.

From the vDOS computed at each thermodynamic point we extract the vibrational
entropy S}, and the vibrational heat capacity Cy7, and compare them to experimental

Page 6 of 22
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Figure 1. Room temperature phonon density of states of hep Fe at different pressures.
Straight lines: present work,at 517(black), 87 (red), 158 (blue), 245 (green) and 323
(orange) GPa. Open circles: NRIXS measurements [54, 55| at 51 (black), 85 (red) and
151 (blue) GPa.

36 values (see Fig. 3). Once again the agreement is really encouraging and proves the
37 reliability of the present siethodis-@ur results for the vibrational entropy at 300 K
are also in good agreement with the calculations of J. Zhuang et al.[59]. As shown in
40 this work, above 1000 K, the, eléctronic contribution to the specific heat is no longer
41 negligible and it starts tondeviate from the Dulong-Petit law.

44 4.2. Grineisen ‘parameter

46 The Griineigen parameter. is an important quantity for thermal EOS and to extrapolate
47 thermophysical properties to high pressures and temperatures. It can be deduced
from seéveral mieasured quantities, as the vDOS [55], the atomic mean square
50 displacements [61], Raman spectroscopy [62] or by comparing the Hugoniot and
51 measured isentrope, as done recently at the National Ignition Facility (NIF), up to
52 1.4 TPa [63].

54 Concerning the building of equation of state (EOS), a commonly used expression
55 for,the volume dependence of the Griineisen parameter is:

57 N (g) (12)

where vy and V[ are the Griineisen parameter and the volume at ambient conditions,
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Figure 2. Temperature-dependent phonon dispersion and vDOS of hep Fe at 300,
1000, 3000, 5000 and 7000 K at constant volume corresponding to a density of 13.06

g.cm™3.

Table 1. Parameters of Eq.(12) for the variation of the Griineisen parameter.

Reference .00 q

Dubrovinsky [61]/ 1.78" 0.69
Murphy [55] 1.88 0.8
Merkely[62] 1.68 0.7
Miozzi [17] 111 03
Present study 1.73 0.68

and ¢ is a fittedparameter. The result of the fitting of present data with Eq. (12) is
given in Tabled in comparison with previous studies.

Present raw data at 300 K and the corresponding fitting curve are reported in Fig. 4
and compared to various experimental data and fits. Present room temperature values
arein close agreement with the experimental points, specially those obtained by X-ray
diffraction [61]. At high pressure, the fit also confirms the experimental constraint on
the Griimeéisen parameter obtained at the NIF.

The behaviour in temperature of the Griineisen parameter is shown in Fig. 5. At
the highest densities here considered (13 to 14 g.cm™3), it slightly increases at low
temperature then shows a strong decrease due to anharmonic effects, following the
decrease observed on the phonon frequencies (see Fig. 2). At high temperatures and
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Figure 3. Vibrationaltentropy (squares) and vibrational heat capacity (circles) as
a function of density for hep, Fe ontisotherms T = 300 K (filled symbols) and 1000 K
(opened symbols). Present workiand NRIXS measurements [60, 54, 1]] are respectively
in black, green, red and blue.

36 densities, the Griineisen parameter is almost constant, as already observed by Alfé et
37 al. [13]. At 6000 K, theyfobtamias¢onstant value of 1.45, while at 7000 K we have
around 1.0. Since here we only calculate the vibrational contribution, we can estimate
40 the electronic part aretind 0.3-0.4 at temperatures and densities relevant for the Earth’s
41 core.

44 4.8. Thermal erpamsion

46 As mentioned indsectionnd, the thermal expansion matrix can be calculated using the
47 third order_effective IFCs. For an hcp crystal, there is two coefficients of thermal
expansion (CTE), one for the basal plane («,) and a second one for the perpendicular
50 directiomyalong the ¢ axis (a.), while the volumetric CTE is given by ay = 2a, + a.
51 Present results at 300 K are presented in Fig. 6 and compared to the volumetric CTE
52 deduced from the experimental vDOS obtained with NRIXS [60]. As for the vDOS and
54 the vibrational entropy, the agreement is excellent. We observe an anisotropy between
55 the,thermal expansion along the a and c axis, a. being larger than «,. Therefore
the c¢/a ratio increases with temperature as found in previous theoretical |65, 66] and
58 experimental studies |67, 68]. This anisotropy decreases at core density where «, and
59 . are close to each other at 300 K [69].
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Figure 4. Griineisen parameter of\hcp Fe at T = 300 K as a function of density.
The black diamonds are the,resultsiof present calculations. The green circles, the red
triangles and the blue squares are experimental data from Ref. [55, 64, 63| respectively.
The black, orange, wiolet and greemlines are fits following Eq. (12) for present data
and Ref. [61, 62, 55].

The effect of temperature on the volutmetric CTE is presented in Fig. 7. It increases
between 300 and 1000 K due to the filling of the phonon energy levels, then decreases at
higher temperaturesydite to. anharmonic effects (a trend similar to the one observed for
the Griineisen parameter; according to Eq. (8)). At 5000 K, we slightly underestimate
the experimental /valuerof Duffy and Ahrens [69], possibly because of the electronic
contribution. Imipresent calculations we also observe that the anisotropy between the
basal plane and the ¢axis decreases with temperature so the ¢/a ratio stays below the
ideal value of 1.633 in agreement with Gannarelli et al. [66].

5. Elastic properties and sound velocities

5.1. Comparison with previous ab initio calculations at 0 K

In Fig. 8, we compare present compressional and shear velocities for hep-Fe at 0 K
to previous ab initio calculations with different methods: PAW [8, 53, 10|, ultrasoft
pseudopotentials [11] or all-electrons methods [52, 12, 70]. All these calculations use
the GGA functional to describe the exchange-correlation energy and potential. As
expected, the agreement between all these results is really good. The discrepancies
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Figure 5. Griineisen parameter of hcp Fe as a function of density and temperature.
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56 Figure 6. CTE of hep Fe at T = 300 K as a function of density. ay is the volumetric
57 thermal expansion while «, and «.. are the linear coefficient in the = (y) and z direction
respectively. The black symbols are the results of the calculation while the red squares
are the data extracted from the NRIXS measurements [60].
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Figure 7. Temperatureidependence of the volumetric CTE as a function of density.
The orange diamonds with error baris the experimental value of Duffy and Ahrens [69]
at T' = 5200 £+ 500 K.

observed with the PAW calculationsief Vocadlo et al. [8] (filled red squares in Fig. 8)
are certainly due to a less dense k-points grid or a smaller number of valence electrons.
Their more recent results/10, 33] (open red squares in Fig. 8) are in better agreement
with other calculations. Welso observe large discrepancies with the data of Sha and
Cohen [12] (filled orange downgtriangles in Fig. 8) obtained using full-potential linear-
muffin-tin-orbital (EPLMTO), calculations. This is unexpected and seems incoherent
with calculationg using full charge density exact muffin-tin orbital (FCD-EMTO)
method |71, 70]." The difference increasing with density, it is possible that a too large
muffin-tin radius wasused in the work of Sha and Cohen, resulting in an overlap between
the spheres around each ion and a smaller pressure than expected. This would explain
why their'eompression curve strongly diverges from the experimental one at low volumes
(see the figure 4ie of Ref. [72]). If we put aside these two works [8, 12], we observe a
linear'dependence on density for the sound velocities, with differences below 2% between
the calculations, confirming the validity of the Birch’s law for athermal calculations (i.e.
the walidity of the quasi-harmonic approximation).

59.2. " Comparison with experimental data at 300 K

We compare present theoretical velocities to the experimental data on Fig. 9. Two
main techniques are used to obtain the velocities: the NRIXS and the inelastic X-Ray

Page 12 of 22
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Figure 8. Theoretieal. compressional Vp and shear Vg velocities for hcp-Fe.
Black circles, PAW, this study; redisquares, PAW, Ref. [8]; open red squares, PAW,
Ref. [53, 10]; green triangles, ultrasoft pseudopotentials, Ref. [11]; violet diamonds,
FPLAW, Ref. [52]; erange down triangles, FPLMTO, Ref. [12]; brown left triangles,
FCD-EMTO Ref. [70]; blue right triangles, FPLMTO, Ref. [71].

scattering (IXS), with differentsdrawbacks and advantages. Basically NRIXS is more
reliable to provide Vg than Vpwhile for IXS it is the opposite. For a complete discussion
and a comparison ofitliese technigues, see Ref. [2], which also provides a fit to combined
data sets available in literature, aslo including results by impulsive stimulated light
scattering|73] and(picosecond acoustics|74].

Clearly, the'theoretical results overestimate the experimental velocities for the low
densities, but/the difference diminishes at higher densities. For Vp, at 10 g.cm™3, we
have a difference of dbouts8 % with the fit of Ref. [2], which drops to 2 % at 13 g.cm™
if we extrapolate the experimental data. The comparison is worse with the sub-linear
relation proposéd by Mao et al. [75] at core densities with differences up to 8%. The
differencerwith the NRIXS measurements is larger, about 12 % from 10 to 12.5 g.cm 3.
For Vg, the situation is even worse, with differences going from 18 to 12% respectively
at 10,and 13 g.cm™3.

Can we understand these discrepancies and the reasons behind, and more, can
we propose a way to correct them? To answer these questions, we need to turn to
the comparison between the experimental and ab initio EOS of iron. Fortunately, the
EOS obtained with the PAW atomic datasets that we use here have been extensively
compared with the more recent EOS derived from diamond anvil cell data |77, 45, 72, 16],
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Figure 9. Comparisonswith experimental compressional Vp and shear Vg velocities
for hep-Fe. Theory: black eircles, PAW, this study (same as in Fig. 8); open circles,
PAW with corrected pressure. Experiments: red line, linear fit of combined datasets,
Ref. [2]; green liné, linear fit of IXSrdata, Ref. [3]; orange line, power law fit of IXS,
Ref [75]; red circles, bluexdiamonds, violet triangles and brown down triangles, NRIXS
measurements of Ref. [76],.[60], [54], and [1] respectively. PREM is shown as crosses.
For the fits, the lines cover the data points while the dashed ones are extrapolations.

A S

either using Vinet or Birch-Murnaghan EOS. These comparisons bring out a number of
important points. Below 200°GPa, the ab initio EOS underestimates the experimental
pressure, while abeveithe pressure is overestimated. Dewaele et al. [45] also emphasize
an overestimation of the bulk modulus with the filling of the d-orbitals due to the GGA
approximation.itself. In/conclusion they propose a procedure to correct the ab initio
EOS (i) by msing the experimental equilibrium volume instead of the theoretical one,
and (ii) by using the K7 and K/ recalculated at this volume.

In the same spirit we can try to correct present theoretical sound velocities. First,
using the theoretical and experimental parameters of the Vinet EOS, we have corrected
present densities to obtain the experimental pressure (see the open circles in Fig. 9).
As direct eonsequence of this correction, velocities are decreased for densities lower
than 12:57g.cm > (the density where both EOS give the same pressure) and increased
above. The effect is significant for Vp and improve the agreement with experiments
but is almost negligible for Vg due to a weaker slope. Interestingly this correction
gives a density dependence of the compressional velocity in close agreement with the fit
proposed by Antonageli et al [2] and Sakamaki et al [3| with a constant overestimation
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: of the compressional velocities around 4% between 10 and 14 g.cm™3.

6 Once the pressure correction performed, the discrepancies that we still observe for
; the shear velocity can only be explained by an overestimation of the shear modulus-G
9 in the calculations. If we compare the K1 obtained with present athermal caleulations
10 and the values taken from the EOS of Sakai et al. the difference is aréund 9% for the
:; range of densities considered here. An increase of G around 20 % would be,needed to
13 find a good agreement with experiments for both velocities.

14 The second correction that can be made to the theoretical#esults, comes from the
12 temperature difference between calculations and experiments, (0 K vs. 300 K). In the
17 results presented in the next section we have included the velocities that we obtain at
18 room temperature. This correction lowers the velocities, with a larger effect for Vg, but
;g is still not sufficient to explain the discrepancies.

21

22 5.3. Temperature dependence of the sound velocitie§

2

2431 5.83.1.  Results and Birch’s law We present/ the temperature dependence of the
;2 compressional and shear velocities of hcp iron on Fig, 10. To calculate Kg we use
27 the thermal expansion a and the Griineisen'parameter’~ obtained using Eq. (8) and (3)
28 (see sections 4.3 and 4.2). Both velocities, decrease with temperature but Vg much
gg more rapidly than Vp. This is simply. due torthe fact that C1; and Cs3 decrease with
31 temperature while C5 and Ci3 increase. Soj according to equation (6), these effects
32 compensate each other for Kz while they amplify each other for G. The temperature
;i effects on velocities weaken as the ,denity increase.

35 We fit these data using thie formula proposed by Sakamaki et al. [3]:

2? Vip,T) = Mpst Bt Alp — p")T (13)
38 where M and B are the coéfficient of Birch’s law at 0 K while A and p* give the
zg temperature dependence of the vélocities. In equation (13), T is in K, density in g.cm™
41 and V in kms~!. In the present fit, we discard the data at p = 10.22 g.cm™3 and
42 3000 K since at these thermodynamic conditions iron is either liquid or fec [78|. For
" Vp we found M= 120,/ B = —3.66, A = 4.55 x 10 and p* = 15.68 g.cm™3. For
45 Vs we foundM = 0507 B = —0.36, A = 5.24 x 107° p* = 19.6 g.cm™3. We plot in
46 Fig. 11 a comparison between the results of the present fit and the direct calculation
2; of the velogitiess, The differences do not exceed 2 % and are larger for Vg than for Vp.
49 We therefore conclude that for the range of densities considered here, and up to 7000
50 K, velocities along an isotherm linearly depend on density and that it is not necessary
g; to(introduge a power law function for Vp as proposed in Ref. [75]. As expected the
53 temperature effects are more important at low densities and tends to reduce at the inner
>4 core boundary (ICB) but since the melting temperature is much higher they cannot be
gg neglected.

57

gg 5.3.2. Comparison with previous theoretical work At 12.52 g.cm™3, when the

temperature increases, Sha and Cohen [12| obtain a reduction of the compressional
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Figure 10. Compressional Vp and\shear Vg velocities for hep-Fe at 0 (black), 300
(red), 1000 (blue), 3000 (green), 5000 (orange) and 7000 K (violet) as a function of
density. The compressional andishear velocity of the PREM [6] inner core are shown
as large crosses.

velocity equal to 0.13 m.s~ ' K~!, which is comparable to the present value of 0.15
m.s L. K~!. The differencé in thercase of Vg is larger, they found 0.35 m.s™*.K~! to
be compared with present value of 0.39 m.s™' K=, At 10.43 g.cm~3, they obtain a
value around 0.09 mes™ ' K=k for' Vp, much lower than present result 0.27 m.s~ 'K~
This difference is certainly. due to anharmonic effects beyond the thermal expansion and
not taken into agcount by the quasi harmonic approximation. On an isotherm, these
anharmonic terms are supposed to be more important at low densities and this would
explain thesefdiscrepancies.

We use thedp, T') values of Refs. [53, 10] in the present fit (see Eq. (13)) to compare
their sounidvelogitiés values with present results (see Fig. 12). The agreement is really
good, all the more so when considering that the correction on present densities (coming
fromethe discrepancy between the theoretical and experimental EOS) is not taken into
account indthese previous studies.

Howeyver we observe larger differences at high temperature. Elastic properties are
difficult to obtain at temperatures close to the melting point. For example at 13 g.cm ™3
and 7200 K, we observe a distorsion in the hcp supercell. A plane of atoms slides
along the |010] direction and the hep structure is no longer stable. This is expected
to have a strong impact on the values of the elastic constants which can considerably
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28
29 Figure 11. Comparisonsbetween the compressional (filled circles) and shear (open
30 circles) velocities obtained form thetAIMD and from the fit (see Eq. (13)). The colors
g; of the temperatures are the same as in Figure 10.
33
34 .
35 drop. Unfortunately these phénomena, are related to the size of the supercell, and the
36 conclusions from those simulations are limited. It could be premelting effect, but also
;73 a transition towards another said structure as bce which could be more stable than
39 the hep structure at temperatures close to the melting point|79]. Martorell et al. [10]
40 observed the same phenomenasbut on smaller supercells (64 atoms compared to 180
41 atoms in present simulations), A deformation of the supercell as used in this work to
fé calculate the elastic constants could also induce sliding planes. We believe that these
44 results should be treated with caution.
45
46 : ' .
47 5.3.83.  Comparison with experimental data If temperature effects on the sound
48 velocities of iron'have been calculated for thermodynamic conditions corresponding to
‘;g those expected at the inner-core, outer-core boundary (ICB) [12, 53, 10|, results of
51 calgulationsshave never been directly compared to experimental measurements at the
52 actual density and temperature where data have been collected (i.e. at lower densities
gi and temperature). Vp has been much more studied and we are aware of only one NRIXS
55 experiment to measure Vg up to 1700 K [1]. The temperature dependence deduced from
56 the experiments for Vp are in open disagreement. Lin et al. [1] using NRIXS estimated
5; a temperature decrease of about 0.35 m.s™1.K™! at a constant density value of 10.25
gg g.cm 3. For the same density and temperature from 300 to 700 K, Mao et al. [75]
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Figure 12. Comparisonybetween the sound velocities obtained with the present fit
(filled symbols) and the values obtained in Refs. [53] (open red circles) and Refs. [10]
(open black squares).

using IXS give a value almost/wo times larger: 0.67 m.s~1.K~!. From the fit proposed
by Sakamaki et al. [3] based on their IXS measurements, we obtain a value of 0.28
m.s~LK™! at this densityl In a)ntrast, Antonangeli et al. [80] and Ohtani et al. [81],
starting with IXS reported the temperature effects to be negligible up to 1000 K.
From Eq. (13) weé find awalue of 0.28 m.s~'.K™!, in agreement with Sakamaki et
al. [3] and we do netssuppertsthe large value found by Mao et al. [75]. The agreement
remains very good at high pressure and temperature. They predict a value of 11.85
km.s™! at 330 GPay 5500,K) while we obtain 11.93 km.s™. For Vs, Lin et al. [1] using

1

NRIXS estimated a temperature decrease of about 0.46 m.s™". For the same density,

Eq. (13) gives a'similar value.

6. Conclusion

Using a néw method to calculate the vibrational contribution to the free energy we
have studied the temperature dependence of physical quantities of hep iron up to the
FEarth’s core conditions. To assess the validity of the present approach we first compare
the results obtained to recent experimental data in the (P, T') domain accessible to
experiments. We obtain an excellent agreement between present calculations of the
phonon density of states at room temperature and NRIXS measurements which gives
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4

5 weight to subsequent predictions at temperatures not reached in experiments. The

6 Griineisen parameter and the coefficients of thermal expansion are also well réproduced

; by present calculations at room temperature. We also show that the underestimation-of

9 the iron densities by GGA is partially responsible for the discrepancies obgserved,between

10 experimental and theoretical compressional sound velocities. Overall, the agreement is

:; better with IXS measurements than with NRIXS. Following a recent experimental work,

13 we also provide the parameters of a high-temperature Birch’s law for hcp-Fe. In the

14 future, we hope that present data can be used to build reliabledEOS ef iron for Earth
~

12 and planetary models.

17
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