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Compression of micro-pillars is followed in situ by a quick nano-focused X-ray scanning microscopy 

technique combined with three-dimensional reciprocal space mapping. Compared to other attempts using 
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X-ray nanobeams, it avoids any motion or vibration that would lead to a destruction of the sample. The 

technique consists of scanning both the energy of the incident nano-focused X-ray beam and the in-plane 

translations of the focusing optics along the X-ray beam. Here, we demonstrate the approach by imaging 

the strain and lattice orientation of Si micro-pillars and their pedestals during in situ compression. Varying 

the energy of the incident beam instead of rocking the sample and mapping the focusing optics instead of 

moving the sample supplies a vibration-free measurement of the reciprocal space maps without removal 

of the mechanical load. The maps of strain and lattice orientation are in good agreement with the ones 

recorded by ordinary rocking-curve scans. Variable-wavelength quick scanning X-ray microscopy opens 

the route for in situ strain and tilt mapping towards more diverse and complex materials environments, 

especially where sample manipulation is difficult. 

Introduction 

 

Strain and lattice distortions often dictate both performance and properties of materials.[1] A wide 

range of techniques have been developed to map strain and they can be divided into imaging and 

diffraction techniques. For example, in transmission electron microscopy (TEM), atomic resolution can 

be achieved by imaging atomic columns, which directly determines the local elastic strain from the 

observed lattice distortions.[2,3] However, it is more common for diffraction techniques to be used to 

measure the local elastic strain, where the Bragg law directly links the position of diffraction peaks to the 

lattice constants and is exploited with many different probes; X-ray,[4] neutron,[5] and electron 

diffraction.[2] Complex strain distributions require that the local strain is measured with high spatial 

resolution across the entire field-of-view. However, most of the time, the local strain is difficult to measure 

under real working conditions, in particular, at the nanoscale. Nano-focused Bragg (coherent) X-ray 

diffraction methods (see for example, Refs.[6–11]) are often used at synchrotron sources to address this 
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challenge. These techniques allow one to image the strain fields at the nanoscale non-destructively and 

under complex sample environments thanks to the high penetration of X-rays in matter. Focal spot sizes 

of a few hundred nanometers are routinely obtained nowadays, rendering it possible to study individual 

nanostructures.  

In order to fully record the induced structural changes during operation (such as at high temperatures, 

pressures, electric or magnetic fields etc), it is necessary to measure in situ the complete three-dimensional 

(3D) intensity distribution of a Bragg reflection coming from the nanostructure under investigation. 3D 

reciprocal space maps (3D-RSMs) are generally recorded by rocking the sample on the order of one degree 

or more. The typical sphere of confusion of state-of-the-art diffractometers is of the order of 10 

micrometers over a complete rotation. This may lead to parasitic displacements caused by e.g. the 

eccentricity error of the rotation axis that can be much larger than both the beamsize and the nanostructures, 

thus complicating the measurement of 3D-RSMs. Moreover, the presence of complex sample 

environments may limit the sample movement or access in angular space and make it necessary to reduce 

or avoid any vibrations induced by sample rotation. As an example, during in situ compression tests using 

a micro-compression device or an atomic force microscope[12,13] to study the mechanical properties of 

single micro- and nanostructures, any movement of diffractometer motors must be avoided to prevent 

damaging the tip and/or nanostructure during loading. Therefore, a method of recording 3D-RSMs at 

different sample positions and without moving the sample is highly desirable. Alternatively, the X-ray 

energy can be varied in a pre-determined range, which allows for mapping reciprocal space in three 

dimensions when using a two-dimensional (2D) detector. Recent studies have successfully measured 3D-

RSMs from crystals in this manner for a given sample position.[14–17] 

Here, we use this method not for one sample position only but during 2D direct space mapping by 

scanning the focusing optics, hence translating the focused beam on the sample surface, while keeping 

the sample itself fixed. This approach of scanning the focusing optics is similar to the Kirkpatrick-Baez 
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(KB) scanning method demonstrated for in situ Laue microdiffraction studies.[18] This variable-

wavelength quick scanning Bragg X-ray microscopy technique thus allows to record scattering images of 

extended objects without moving any diffractometer motor. We will demonstrate that chromatic optics, 

namely Fresnel zone plates, can be successfully used for this purpose. They eliminate the need to rotate 

or translate the sample. 3D-RSMs are recorded by scanning the wavelength of the incident X-ray beam 

(as opposed to scanning the sample angle) at different direct space positions (y and z) of the sample (x 

being along the beam direction). The (y, z) maps are obtained by scanning the focusing optics, while 

keeping the sample fixed. This five-dimensional data set (3 reciprocal space coordinates and two 

dimensions in direct space) is processed and analysed using the X-ray strain orientation calculation 

software (XSOCS)[8] that we modified to take into account the variation of the X-ray energy. The resulting 

reciprocal space coordinates of the diffraction peak as well as the strain (resolution of 10-5)[19] and lattice 

tilt are compared with the same map obtained by the classical approach of rocking the Bragg angle and 

scanning the sample. This capability enables new strain imaging studies in environments where samples 

cannot move and the details of nanoscale strain distribution and evolution remain difficult to follow.  

 

Experimental method 

 

The experiment was performed at the upgraded ID01 beamline of the European Synchrotron Radiation 

Facility (ESRF). Monochromatic X-rays of an energy of 8 keV (wavelength  of 1.54975 Å) are selected 

by a double crystal Si(111) monochromator. 3D-RSMs were recorded both by rocking scans and by 

scanning the energy of the incident X-ray beam. While in the former case, the sample was rotated by ± 

0.1° (corresponding to 0.116 nm-1 in reciprocal space), the X-ray energy was varied in the latter case by 

∆E = ± 24 eV in steps of 6 eV corresponding to a variation of ∆Q = ± 0.098 nm-1. To remain on the 

maximum of the undulator emission peak and, thus maintaining the incident intensity constant, the 

undulator gap was adjusted at every energy step. 
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The X-rays were focused by a Fresnel zone plate (FZP) having a diameter of 300 µm and an outermost 

zone width of 60 nm. Unfocused radiation transmitted by the FZP was eliminated using a 60 µm wide (80 

µm thick) Au central stop placed in front of the FZP, while higher diffraction orders were eliminated by a 

50-µm diameter Pt/Ir order sorting aperture (OSA) positioned 20 mm upstream of the sample (see Figure 

1). The FZP is a chromatic focusing optics, i.e. its focal length f varies as a function of the X-ray energy: 

f(E)  E. At 8 keV, the focal length of the FZP is 116 mm. A set of slits located in front of the FZP were 

closed down to an aperture of 200 µm (vertically) and 60 µm (horizontally) corresponding to the coherent 

part of the X-ray beam at the ID01 beamline. The focal profile of the beam was characterised using a 2D 

ptychography approach on a test pattern featuring a 30-µm diameter gold Siemens star placed close to the 

focal position of the FZP. The gold structure and the complex-valued wavefront were retrieved 

simultaneously using the ptychography reconstruction code of the PyNX package.[20] Figure 2(a) – (c) 

display cuts of the retrieved experimental complex illumination. This leads to a Gaussian beam waist with 

focal spot sizes of 80 nm (vertical) and 280 nm (horizontal) with respective Rayleigh ranges of  0.15 mm 

(vertical) and 1.59 mm (horizontal). The experimental and simulated 1D illumination profiles are 

displayed in Figure 2(d). Despite the asymmetry of the experimental profile, which is probably caused by 

the optical aberrations of the FZP, both curves lead to the same focal depth of  0.33 mm (full width at 

half maximum of the peak size). Note that the focal depth is increased when reducing the illuminated area 

of the FZP.[21] Thus, the energy of the incident X-ray beam can be changed within a wider range without 

deteriorating the focal spot on the structure under investigation. Considering the depth of focus and linear 

chromaticity of the FZP, one can thus tolerate an energy variation of about 0.2 % (+/- 16 eV) without 

significant beamsize variation in the vertical and of 1.3 % (+/- 104 eV) for constant horizontal beamsize. 

Free-standing Si [110]-oriented micro-pillars were fabricated on top of a Si wedge by focused ion beam 

(FIB) milling (inset of Figure 1). This geometry favours X-ray transmission thus facilitating the alignment 

of the nanostructure with respect to the nano-focused X-ray beam for in situ nano-focused quick X-ray 
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microscopy. During the milling process, the ion beam current and acceleration voltage were successively 

reduced to limit eventual creation of lattice defects and/or surface amorphisation. During the last 

fabrication step when defining the pillar, ion beam currents of 24 pA as well as an ion energy of 30 keV 

were employed.  

The sample was mounted on the load-cell of a custom-built micro-compression device,[22,23] which was 

installed on the hexapod (resolution of 100 nm) of the high precision diffractometer.  A photograph of the 

experimental setup is shown in Figure 1. A flat diamond tip (d = 10 m) was used for in situ compression 

tests. An optical microscope was used to observe the sample and the tip from above, therefore allowing 

for accurate sample positioning at the center of rotation of the goniometer. The FZP was mounted on a 

piezoelectric stage (from Physik Instrumente) with a stroke of 100 m along x, y and z and an encoder 

resolution of 2 nm. This mounting facilitates laterally scanning the focusing optics (along the y and z-

directions) and, hence the beam focus across an immobile sample, thus allowing for quick mapping 

without damaging the tip and/or the nanostructure under investigation. 

The [110]-oriented Si pillars were mounted so that their axis was along the y-direction (see Figure 3). 

The (220) vertical planes were probed in a horizontal scattering geometry to get access to the axial strain 

of the Si pillars during their mechanical loading and unloading. The X-ray intensity around the 220 Si 

Bragg reflection of Bragg angle, B = 23.8°, was recorded using a 2D MAXIPIX[24] fast read-out photon 

counting (frame rates of up to 100 Hz full frame) detector of 516516 pixels and 55 m pixel size, 

mounted at a distance of 1.4 m from the sample. The acquisition is performed continuously or “on the 

fly”, i.e. with a very low detector deadtime (290 s) and zero settling time for the motors. 

 

Results and discussion 
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Figures 3(a-b) display two-dimensional direct space maps of the logarithmic integrated intensity 

measured at the 220 Si Bragg reflection for different surface areas (from large to small scale) centered 

around a Si micro-pillar (square section of 0.81 x 0.81 µm2 and height of 2.26 m) at the top of a large 

cubic pedestal (10  10  10 m3) on the top of a Si wedge. Note that the maps were recorded by scanning 

the focusing optics in the y-z plane, whilst the sample remained stationary. The pillar appears smaller in 

height as it has been rotated in the plane (along the out-of-plane axis, ) to be in Bragg condition. The 

scattered signal from the Si pedestal (see Figure 3(b)) shows heterogeneities indicating variations of strain 

and/or tilt of lattice planes. 

The strain and lattice orientation of a pristine pillar (section of 0.92 µm x 0.92 µm and height of 2.82 

m - similar to the one shown in Figure 3) and of its pedestal were measured using the conventional quick 

scanning technique by finely scanning the Bragg angle () at the energy of 8 keV (see Figures 4 and 5). 

A sample area of 5 m  5 m was mapped taking diffraction with the 2D detector every 100 nm for 

different in-plane incident angles (27.54° ≤  < 27.74°) with steps of 0.01°. The angular resolution 

depends on the diffractometer (typically 0.0005° at the ID01 beamline of ESRF) and the convergence of 

the incident beam. The latter was 0.01° in the diffraction plane in this experiment. This resulted in the 

collection of 20 (y, z) maps (for 20 incidence angles). The lateral spatial resolution (here, along y and z) 

is given by the beam size. The resolution in the orthogonal direction (here, x) depends on the beam 

penetration depth (i.e., energy and incident/exit angles of the X-ray beam and the studied material). The 

obtained detector frames at each spatial (y, z) position were then reconstructed into three-dimensional 

(3D) reciprocal space maps by converting the detector pixels and the angular coordinates into the 

reciprocal space coordinates, Qx, Qy and Qz. Figure 4 displays the reciprocal space coordinates of the 

scattering vector, Qx (a), Qy (b) and Qz (c). Figure 5 displays the maximum measured intensity (a) and the 

strain along the [220] direction, 220 (b). 220 is related to the variation of the d220 spacing of the atomic 

planes, and was retrieved for each position in direct space: 220 = (d220,meas - d220,ref)/d220,ref, where d220,ref is 
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the reference d spacing of bulk Si. Interestingly, the top of the Si pillar exhibits compressive strain (220  

< 0) of the vertical (220) planes. On the contrary, one topside of the Si pedestal shows tensile strain (220 

> 0). Assuming that the mosaic spread was homogeneously distributed in all directions, the lattice tilt of 

the (220) Si planes was calculated from the peak position as  = arccos(Qy/Q220) (see Figure 5(f)) revealing 

a tilt of up to 0.07° at the base of the Si pillar while in the interior of the pedestal no tilt was observed. 

Both the strain and the tilt of the (220) Si lattice planes in the Si pillar probably originate from the FIB-

milling process. 

The same sample area of 5 x 5 µm2 was then mapped with the same spatial resolution as before but using 

the variable-wavelength quick scanning technique. The energy of the incident X-ray beam was varied in 

steps of 6 eV and the undulator gap was adjusted accordingly while keeping the rocking angle  fixed for 

each fast (y, z) map. This resulted in the collection of 9 (y, z) maps (for 9 energies from 7.976 keV to 

8.024 keV). Figures 4 and 5 display the results obtained using the variable-wavelength quick scanning 

technique. They are in excellent qualitative and quantitative (the same scale bars are used for the strain 

and tilt in Figure 5) agreements with the ones obtained using the conventional quick scanning technique. 

The difference between the strain and tilt maps obtained by conventional and variable-wavelength quick 

scanning techniques can be estimated using the mean square error: 𝜀𝑟 =  ∑ (𝐼𝑖,𝑗
1 − 𝐼𝑖,𝑗

2 )
2

𝑖,𝑗 /𝑁, where 𝐼𝑖,𝑗
1,2

 

are the different pixels of image 1 or 2, which corresponds to the strain or tilt map obtained using the two 

techniques and 𝑁 is the total number of pixels, respectively. The mean square errors for the strain and tilt 

maps between the two techniques are 𝜀𝑟 = 1.4×10-7 and 𝜀𝑟 = 3.8×10-5°. These values can be compared 

with the averaged values of the strain and tilt: -4.1×10-5 and 2.94×10-2°, respectively. This validates the 

variable-wavelength quick scanning X-ray microscopy approach.  

The strain and tilt-sensitive imaging capability of this new quick scanning technique, which does not 

require any sample motion, was then employed during in situ mechanical loading, where the traditional 

rocking approach must not be used due to vibrations induced by moving diffractometer motors. Figures 



  

 

9 

 

6 (a, b) display the strain and lattice orientation fields of another Si pillar (shown in Figure 3 and different 

from Figure 5). Interestingly, its strain and lattice tilt are different from the ones shown for the pillar 

displayed in Figure 5. Different residual strain and lattice tilt are obtained from the FIB milling process 

from one pillar to the other. Figures 6 (c, d) display the strain and lattice orientation fields when the 

indenter is in contact with the Si pillar. Note that the same colorscale is used at the initial state (see Figures 

6 (a, b)) and during contact (see Figures 6 (c, d)) for the strain and tilt, respectively. Small changes of the 

strain and tilt inside the Si pillar are observed when the tip is in contact with it. Figures 6(e-f) display the 

differences of strain and tilt between the contact and the initial state. It appears that the (200) planes at the 

top of the pillar are slightly compressed (∆220<0) and tilted when the tip is in contact. When the tip is in 

contact, only the variable-wavelength quick scanning X-ray microscopy approach can be used whereas 

the traditional rocking approach risks to breaking the pillar or the tip. Figure 7 displays the strain and 

lattice orientation fields of the Si pillar and the pedestal (shown in Figures 3 and 6) before (a-b) and during 

loading (c-d), where a force of 0.9 mN was applied corresponding to a stress of 1.37 GPa. A compressive 

strain of -0.81% was expected considering the Si Young’s modulus of 169 GPa along [110]. Because of 

elastic bending of the Si micro-pillar, this maximum strain value was outside of the scanned reciprocal 

space range (covering ∆Q = ± 0.123 nm-1); the Si pillar is thus not observed during loading. The in-situ 

variable-wavelength quick scanning map however evidences an inhomogeneous strain field in the Si 

pedestal with large compressive strain of up to -0.1 % just below the Si micro-pillar. This inhomogeneous 

compressive strain field results from the fact that the pillar is pushed into the Si pedestal, thus indenting 

it. Besides the strain, the maps show strong tilting of the Si (220) lattice planes in the pedestal ranging 

from -0.04 to +0.06° (compared to 0.02° in the pristine state). While negative lattice tilt values are revealed 

just below the Si nanopillar, this is compensated by a rotation of the lattice planes into the opposite 

direction about 2 µm below the top surface of the pedestal. Moreover, the rotation of the (220) planes 

spreads few micrometers away from the indented Si pillar. 
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Hence, as demonstrated in the present work, this new approach based on variable energy and on scanning 

the focal spot provides access both to the rotation of the crystalline lattice and to the strain field inside 

micro- and nanostructures under mechanical load offering new opportunities to study the mechanical 

behavior at small scales in situ. It calls for the development of precision mechanics for optics positioning 

in order to be able to move with high reproducibility the optics in three dimensions in order to adapt the 

focal distance to the X-ray energy and hence to overcome the limiting parameter of a narrow depth of 

field. By adapting the focal distance, monochromator and undulator gap, it is possible to enlarge the 

scanning energy range. With the improvement of compact and lightweight nano-optics with short focal 

lengths, this is likely to play an even more important role in the future. The very light weight of such 

optics however will likely make a precise positioning and scanning of these devices a standard option on 

nano-focused X-ray beamlines. Besides chromatic also achromatic focusing optics such as Kirkpatrick-

Baez mirrors may be used. The installation of a hexapod underneath each mirror allows for translating 

them laterally and vertically and thus enables a two-dimensional displacement of the focused X-ray beam 

and, thus, the two-dimensional cartography of the sample. This kind of KB-scanning method has recently 

been demonstrated for Laue microdiffraction [18].  

 

In comparison, among all the techniques to measure strain (for instance, spatially resolved Raman 

spectroscopy,[25,26] digital image correlation (DIC),[27] …), high-resolution electron backscatter diffraction 

(HR-EBSD) offers a strain and angular resolution of 10-4 and 0.006°, respectively, for ex situ 

experiment.[28,29] But the sample must be compatible with the general requirements of electron 

microscopy. Interestingly,  in situ TEM deformation and characterization have been successfully carried 

out.[30,31]  In situ TEM is characterized by an excellent spatial resolution of 1 nm compared with 100 

nm (beam size) for X-ray microscopy. However, the strain resolution (10-3[32]) as well as the field of 
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view (150 x 150 nm2 for high-resolution (HR)-TEM[33]) are several order of magnitude smaller than for 

X-ray microscopy (10-5[19] and 200 x 200 µm2).  Note that the strain resolution is 2.5x10-4 in this work 

as we acquired (y, z) maps using a 2D detector each 6 eV step. The strain resolution can be improved by 

reducing the energy step size but at the expense of a longer measurement time. Furthermore, the TEM 

specimen preparation technique is often destructive so that the studied sample will not be in the same 

strain-state as the original “bulk” material. For HRTEM, lenses are not perfect, even in the age of 

aberration correction. There are therefore slight shifts between the image of the atomic lattice and its 

actual position.[34] Indeed, the position of neighboring atomic columns can even influence the apparent 

position of the atomic column of interest.  

 

Conclusion 

In summary, we introduced an in situ combination of mechanical loading and quick scanning nano-

focused X-ray microscopy based on variable-wavelength three-dimensional reciprocal space mapping. 

This approach gave access to the tilt and strain distribution of Si micro-pillars during mechanical 

compression. The good agreement between results using rocking-curve-based and variable-wavelength 

quick scanning X-ray microscopy methods demonstrates that the latter preserves the strain and tilt-

sensitive imaging capabilities of the first one without the need for sample motion. The technique can also 

be used to evaluate the composition and thickness fluctuations of thin structures.[22,23] Despite the 

chromaticity of Fresnel zone plates, the energy of the incident X-ray beam can be scanned by several tens 

of electron-volt without deteriorating the focal spot on the sample. To increase the scannable energy range, 

i.e. to achieve a larger reciprocal space range, during variable-wavelength quick scanning X-ray 

microscopy, the position of the Fresnel zone plate along the beam can be adjusted matching the energy-

dependent focal distance. This experimental technique paves the way to novel combinations of in situ 
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strain measurements of poly- and single-crystalline structures in heavy and complex environments. The 

detector can be positioned very close to the sample to catch most of the reflections of the grains. The 

energy-tuning approach circumvents both the comparatively large sphere of confusion of diffractometers 

compared with nanostructures and vibrations induced by motors. As the technique provides microscopy 

images with 3D reciprocal space information with a spatial resolution given by the nanobeam size, it will 

definitely benefit from the development of novel lenses. Recently, a record resolution leading to a X-ray 

spot size of 8.4 nanometers by 6.8 nanometers has been achieved.[36] The quick scanning technique will 

also benefit from the increase of the brilliance of X-rays from the multiple upgrade projects currently 

being carried out or planned at several third-generation synchrotron sources.  
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Figure 1. Experimental set-up showing (i) the load-cell with the sample and the diamond tip, (ii) the 

focusing optics (order sorting aperture (OSA) and box with a FZP inside) and (iii) translation motors 

(hexapod and piezo-motors). The inset displays one Si micro-pillar with height of 2.8 µm and lateral size 

of 0.9 µm.  
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Figure 2. Experimental complex illumination in the direction of propagation, x and along y (a) and z (b). 

(c) Experimental complex illumination at the focal plane of the Fresnel Zone Plate. (d) Experimental 
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(black curve) and simulated (red curve) illumination profile in the direction of propagation. The green 

curve corresponds to a gaussian fit of the simulated curve. 
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Figure 3. Two-dimensional direct space maps of the logarithmic integrated intensity measured 

at the 220 Si Bragg reflection for different surface areas (from large to small area (a-c)) centered 

on a Si micro-pillar. 
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Figure 4. Reciprocal space coordinates of the scattering vector Qx (a, d), Qy (b, e) and Qz (c, f). 

Results obtained for the pristine pillar measured using the conventional (left: a,sb and c) and 

the variable-wavelength (right: d, e and f) quick scanning techniques. 
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Figure 5. (a, d) Two-dimensional direct space maps of the maximum intensity measured at the 

220 Si Bragg reflection. Maps of (b, e) the strain (in %) along the [220] direction and of (c, f) 

the tilt. Results obtained for the pristine pillar measured using the conventional (left: a, b and c) 

and the variable-wavelength (right: d, e and f) quick scanning techniques. 
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Figure 6. Maps of the (a-c) strain (in %) along the [220] direction and of the (b-d) tilt of the 

(220) lattice planes of a Si pillar and pedestal (shown in Figure 3 and different from Figures 4 

and 5) before (a-b) and when the tip/indenter (displayed in grey) is in contact with the Si pillar 

(c-d). The differences of strain and tilt between the contact and the initial state are displayed in 

(e) and (f), respectively. The gray dashed-line indicates the contour of the Si pillar and the 

pedestal. 
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Figure 7. Maps of the (a-c) strain (in %) along the [220] direction and of the (b-d) tilt of the 

(220) lattice planes of a Si pillar and/or pedestal (shown in Figures 3 and 6) before (a-b) and 

during loading (c-d). The gray dashed-line indicates the contour of the Si pillar and the pedestal. 

 

 

Table of contents: Variable-wavelength quick scanning X-ray microscopy is demonstrated 

to be a new in situ tool that provides access both to the rotation of the crystalline lattice and to 

the strain field inside micro- and nanostructures under mechanical load. It offers news 

opportunities to study the mechanical behavior at small scales in situ as well as in heavy and 

complex environments.  

 

 

Keyword: structural microscopy, strain, lattice tilt, in situ, energy-scanning 

 

Marie-Ingrid Richard†,‡,*, Thomas W. Cornelius†, Florian Lauraux†, Jean-Baptiste Molin§, 

Christoph Kirchlechner§, Steven J. Leake‡, Jérôme Carnis†,‡, Tobias U. Schülli‡, Ludovic 

Thilly⊥, Olivier Thomas† 

 

 

 



  

24 

 

Title: Variable-wavelength quick scanning X-ray microscopy for in situ strain and tilt 

mapping  

 

 

 

 

 

ToC figure: 

 

 

 
 

 

 


	Here, we use this method not for one sample position only but during 2D direct space mapping by scanning the focusing optics, hence translating the focused beam on the sample surface, while keeping the sample itself fixed. This approach of scanning th...

