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On the sharp regularity of solutions to hyperbolic boundary

value problems

Corentin Audiard ∗†

June 24, 2022

Abstract

We prove some sharp regularity results for solutions of classical first order hyperbolic
initial boundary value problems. Our two main improvements on the existing litterature are
weaker regularity assumptions for the boundary data and regularity in fractional Sobolev
spaces. This last point is specially interesting when the regularity index belongs to 1/2+N,
as it involves nonlocal compatibility conditions.

1 Introduction

Everything in a toy model Consider the simplest hyperbolic initial boundary value prob-
lem (IBVP) 

∂tu+ ∂xu(x, t) = 0, (x, t) ∈ (R+)2

u(x, 0) = u0(x),
u(0, t) = g(t)

When (u0, g) ∈ L2(R+)2, the solution is piecewise defined: u(x, t) = u0(x − t) for x − t ≥ 0,
g(t− x) for x− t < 0, it belongs to CtL

2.
It is well known that the smoothness of (u0, g) is not enough to ensure the smoothness of u,
compatibility conditions are required: for k ∈ N, u ∈ ∩kj=0C

j
tH

k−j if and only if

(u0, g) ∈ (Hk)2 and ∀ j ≤ k − 1, u
(j)
0 (0) = (−1)jg(j)(0).

These compatibility relations are trivial here due to the solution formula, but are more generally
derived considering u (and its derivatives) at the corner x = t = 0, and writing ∂αu|x=0|t=0 =
∂αu|t=0|x=0. A basic rule of thumb being that any compatibility condition that makes sense
should be true.
For fractional regularity, not much changes except in the notoriously pathologic case s ≡ 1/2[Z].
Indeed even if there is no trace in H1/2(R+), the gluing of two functions in H1/2(R+) is not
H1/2(R). The simplest way to see this is to consider the map f ∈ L2(R) → f(·) − f(−·) ∈
L2(R+). It is continuous L2(R) → L2(R+) and H1 → H1

0 (R+) hence H1/2(R) → [L2, H1
0 ]1/2
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1 INTRODUCTION 2

by interpolation. The interpolated space is the famous Lions-Magenes space H
1/2
00 (R+), and

it is different (algebraically and topologically) from H1/2(R+): by interpolation of Hardy’s

inequality, any function f ∈ H1/2
00 (R+) must satisfy∫

R+

f2(x)

x
dx <∞,

this is obviously not the case for functions merely in H1/2(R+).
For the regularity of solutions of the BVP, this adds a “global” compatibility condition

u ∈ CtH1/2 ⇔ (u0, g) ∈ H1/2(R+) and

∫
R+

|g(x)− u0(x)|2

x
dx <∞.

Our aim here is to prove an analogous result for general hyperbolic boundary value problems.

Settings and results Let Ω be a smooth open set of Rd, we consider first order boundary
value problems of the form

Lu := (∂t −
∑d

j=1Aj∂j)u = 0, (x, t) ∈ Ω× R+
t ,

Bu|∂Ω = g, (x, t) ∈ ∂Ω× R+
t ,

u|t=0 = u0, x ∈ Ω.

(1.1) IBVP

The index t in R+
t has no meaning except to emphasize the time variable. The A′js are q × q

matrices depending smoothly on (x, t), B is a smooth b×q matrix, b is the number of boundary
conditions.
For data (u0, g, f) ∈ L2(Ω)×L2(∂Ω×R+

t )×L2(R+
t ×Ω), the well-posedness of such hyperbolic

BVP has been obtained in a large variety of settings, that we will only shortly mention.
After the pioneering results of Friedrichs

Friedrichs
[6] for symmetric dissipative systems, Kreiss

Kreiss
[10]

proved the well-posedness of the BVP with zero initial data in the strictly hyperbolic case
(
∑
Ajξj has only real eigenvalues of algebraic multiplicity one) under the now standard Kreiss-

Lopatinskii condition on B. In Kreiss’s framework, the case of L2 initial data was then tackled
by Rauch

Rauch
[17]. Well-posedness of constantly hyperbolic BVP was later obtained by Métivier

Met
[15] (zero initial data), the author then proved well-posedness with L2 initial data

Audiard1
[2]. A

further generalization was obtained by Métivier
Metsemigroupe
[16] for a new class of hyperbolic operators,

larger than the constantly hyperbolic ones. He also gave a new proof, both more general and
simpler, of well-posedness with L2 initial data.
For more references and results, in particular for characteristic BVP (that we do not consider
here) the reader may refer to the book

Benzoni3
[4].

Let n be a normal on ∂Ω, the problem (
IBVP
1.1) is said to be noncharacteristic when

∑
Ajnj is

invertible on ∂Ω. For non characteristic boundary value problems, the main reference on the
smoothness of solutions is the classical paper of Rauch and Massey

RauchMassey
[18], where, under no specific

assumption (except of course well-posedness), the authors prove that the solution of (
IBVP
1.1)

belongs to ∩kj=0C
j
t (R

+
t , H

k−j(Ω)) when (u0, g, f) ∈ Hk(Ω)×Hk+1/2(∂Ω×R+
t )×Hk(Ω×R+

t )
and satisfy natural compatibility conditions that we describe now. For conciseness, when there
is no ambiguity we will usually denote Hk instead of Hk(X), X = Ω, ∂Ω× R+

t ,Ω× R+
t .



1 INTRODUCTION 3

We denote A =
∑
Aj∂j and define inductively vj the formal value of (∂jt u)|t=0 by

v0 = u0, vj+1 = (∂jt ∂tu)|t=0 = ∂jt (Au+ f)|t=0 =

j∑
l=0

(
j

l

)
(∂ltA|t=0)vj−l + ∂jt f |t=0. (1.2) taylor

The first order compatibility condition is Bv0|∂Ω = g|t=0 and the generic compatibility condi-
tion of order j is

Compatibility at order j : ∂j−1
t g|t=0 =

j−1∑
l=0

(
j − 1

l

)
(∂ltB)vj−1−l|∂Ω. (1.3) CCj

Note that (
CCj
1.3) makes sense as soon as (u0, g, f) ∈ (Hs)3, s > j − 1/2. If the smoothness of

the data is j− 1/2, j ∈ N∗, we define a special compatibility condition : when Ω = Rd−1×R+,
denote x = (x′, y); the condition is
Compatibility at order j − 1/2:

∂j−1
t g(x′, t)−

(
j−1∑
l=0

(
j − 1

l

)
(∂ltB)vj−1−l(x

′, t)

)
∈ H1/2

00

(
Rd−1 × (R+)

)
. (1.4) CCj-

For general smooth Ω, (
CCj-
1.4) is defined similarly through local maps and a partition of unity:

near the boundary Ω is diffeomorphic to (a part of) Rd−1 × R+ thanks to some map Φ, one
simply requires (

CCj
1.3) to stand for g(Φ(x′, 0), t), (vl ◦ Φ(x′, t))0≤l≤j−1.

Note that due to Hardy’s inequality, the j-th condition implies the condition of order j − 1/2.

Definition 1.1. If s = k+ θ, −1/2 < θ < 1/2, k ∈ N∗, θ 6= 1/2, we say that data (u0, g, f) ∈
(Hs)3 satisfy the compatibility conditions at order s when (

CCj
1.3) is satisfied for 1 ≤ j ≤ k.

If s = k − 1/2, the compatibility conditions are satisfied at order s when (
CCj
1.3) is true for

1 ≤ j ≤ k − 1 and (
CCj-
1.4) is true for j = k.

A strong L2 solution of (
IBVP
1.1) is a function u ∈ CtL2 such that there exists a sequence un

of smooth solutions of (
IBVP
1.1) with data (u0,n, gn, fn) that converge to (u0, g, f) in L2, and for

any T > 0, ‖u− un‖C([0,T ],L2) → 0.

Assumptions We need the smoothness of Ω and the well-posedness of (
IBVP
1.1):

assump1 1. ∂Ω is a smooth hypersurface with normal ν, parametrized by local maps (φj(y
′))1≤j≤J ,

y′ ∈ Rd−1, and ϕj(y
′, yd) := φj(y

′) + ydν(ϕj(y
′)) are local diffeomorphisms Vj → Uj ,

with ϕj((Rd−1 × R+∗) ∩ Vj) ⊂ Ω, and ∪Jj=1Uj ⊃ ∂Ω. We do not assume that the Uj are

bounded sets, but Dϕj , Dϕ
−1
j must be uniformly bounded, and d(Ω \∪Im(ϕj), ∂Ω) > 0.

charac 2. The boundary is uniformly not characteristic, in the sense that
∑
Ajνj is invertible on

∂Ω, and the inverse is uniformly bounded.



1 INTRODUCTION 4

3. For data (u0, g, f) ∈ (L2)3, there exists a unique strong L2 solution1 to (
IBVP
1.1) that satisfies

the semi-group estimate for γ large enough

‖e−γ·u‖C([0,t],L2(Ω)) +
√
γ|e−γ·u|∂Ω|L2(∂Ω×[0,t]) . ‖u0‖L2(Ω) + |e−γ·g|L2(∂Ω×[0,T ])

+
‖e−γ·f‖L2([0,t]×Ω)√

γ
. (1.5)

We use the convention that norms inside the domain are denoted ‖ · ‖ while norms on
the boundary are denoted | · |.

We point out that a consequence of the semi-group estimate is the resolvent estimate: for γ
large enough (larger than for (

semigroupe
1.5))

γ‖e−γtu‖2
L2(Ω×R+

t )
+ |e−γtu|∂Ω|2L2(∂Ω×R+

t )

.

(
‖u0‖2L2(Ω) + |e−γtg|2

L2(∂Ω×R+
t )

+
‖e−γtf‖2L2

γ

)
. (1.6)

This is readily obtained by squaring (
semigroupe
1.5) for some fixed γ0, multiplication by e−2γt, γ > γ0 and

integration in t. Higher regularity versions of the resolvent and the semi-group estimates are
a bit more delicate to state. We define weighted Sobolev spaces Hs

γ in section
notations
2, the weighted

resolvent estimate is then

γ‖u‖2Hs
γ

+ |u|∂Ω|2Hs
γ
. ‖u0‖2Hs(Ω) + |g|2Hs

γ
+
‖f‖2Hs

γ

γ
. (1.7)

The main point of this estimate is that it is sharp with respect to the parameter γ and allows
to absorb commutators in a priori estimates. Moreover, it implies the following (simpler to
read) estimate

‖e−γtu‖2Hs(Ω×R+) + |e−γtu|∂Ω|2Hs(∂Ω×R+)

. ‖u0‖2Hs(Ω) + |e−γtg|2Hs(∂Ω×R+) + ‖e−γtf‖2Hs(Ω×R+). (1.8)

We shall not need something as precise for the semi-group estimate: let s = k+ θ, k ∈ N, 0 <
θ < 1, then

k∑
j=0

‖e−γt∂jt u‖2C(R+
t ,H

k−j+θ(Ω))
+ |e−γtu|∂Ω|2Hs(Ω×R+

t )

. ‖u0‖2Hs(Ω) + |e−γtg|2Hs(∂Ω×[0,T ] + ‖e−γtf‖2Hs . (1.9)

Both estimates should be modified when s = k + 1/2, k ∈ N: it is necessary to add in the

right hand side the H
1/2
00 norm of ∂kt g−

∑k
0

(
k
l

)
(∂ltB)vk−1−l, see page

cas1/2
15 for details. This is the

(implicit) convention that we use in theorem
mainth
1.3, we refer to the proof for more details.

An interesting related feature is that the constant in . can not be uniform in θ, it blows
up as θ → 1/2 and the estimates are actually not true for θ = 1/2.

We can now state more precisely the regularity result of Rauch and Massey:

1This assumption is somewhat too strong, as it is classical that in this framework, weak solutions are actually
strong, see

LaxPhillips
[11].
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Theorem 1.2 (
RauchMassey
[18]). If (u0, g, f) ∈ Hk(Ω) × Hk+1/2(∂Ω × R+

t ) × Hk(Ω × R+
t ) satisfy the

compatibility condition up to order k, the solution of (
IBVP
1.1) belongs to ∩kj=0C

j
tH

k−j.

The only suboptimal part of the theorem is the regularity assumption on g. This is due to
the fact that the theorem is deduced from the homogeneous case g = 0 with a lifting argument.
It was already pointed out at the time by the authors that it could be improved (without proof),
but quite unfortunately the result that remained in the litterature is the suboptimal one, see
for example the reference book

Benzoni3
[4], and in somewhat different settings the lecture notes

Met2
[14] or

the interesting discussion in the introduction of
lanigu
[9].

Our result is that the same property holds with boundary data in Hk instead of Hk+1/2,
moreover we allow k to be any nonnegative real number rather than an integer.

mainth Theorem 1.3. Let s ∈ R+. If (u0, g, f) ∈ Hs(Ω) × Hs(∂Ω × R+
t ) × Hs(Ω × R+

t ) satisfy
the compatibility condition up to order s, the solution of (

IBVP
1.1) belongs for any T > 0 to

Hs(Ω× [0, T ]), satisfies estimate (
resolvreg
1.7) for γ large enough, and if s = k+ θ, k ∈ N, 0 ≤ θ < 1,

it satisfies (
semigreg
1.9).

The proof when s is an integer is quite similar to the original argument of Rauch and
Massey, actually the fact that we handle directly nonzero boundary data leads to some slight
simplifications due to the fact that it allows to avoid a reduction to the case where B is
constant. The fractional case is essentially an interpolation argument, however it is not trivial
due to the presence of the compatibility conditions. For example, in the model case described
earlier instead of interpolating [L2 × L2, H1 × H1]θ one must identify [L2 × L2, {(u0, g) ∈
H1(R+)×H1(R+) : u0(0) = g(0)}]θ.
The litterature on such problems is not very rich. Another related problem is the interpolation
of Sobolev spaces with boundary conditions, that are in some sense between Hs and Hs

0 .
This issue appeared quite long ago for elliptic equations on non smooth domains or parabolic
problems, see e.g. the last section of

Grisvard
[7], sections 14-17 of chapter 4 in

lionsmagenes2
[13] (where most of the

identification problems were left open), or the more recent (and much more involved) book
Amann
[1],

in particular VIII.2.5. Due to the technicity of this last reference (anisotropic Besov spaces are
studied), degenerate cases (in our settings s ∈ N + 1/2) are not considered. The Schrödinger
equation on a domain and related interpolation problems were also studied by the author in
Audiard7
[3], where the natural spaces for the boundary data are Bourgain spaces.

Plan of the article Section 2 is devoted to notations and a brief reminder on interpolation.
The proof of theorem

mainth
1.3 is then organized in three sections : in section 3 we recall a standard

smoothness result for the pure boundary value problem posed for t ∈ R, due to Tartakov.
For completeness, we include a sketch of proof that follows an argument of the (unfortunately
depleted) book

ChaPi
[5]. Theorem

mainth
1.3 in the case s integer is proved in section 4. An important point

is a basic lifting lemma which proves also useful for the general case. In section 5, smoothness
is first proved for 0 ≤ s ≤ 1 with an interpolation argument, then for any s with a non trivial
differentiation argument.

Ackowledgement This work was partially funded by the ANR project NABUCO, ANR-
17-CE40-0025.



2 NOTATIONS AND BASIC RESULTS 6

2 Notations and basic results
notations

Basic notations Proofs are often reduced to the case Ω = Rd−1 × R+. In such settings, we
denote the variable x = (x′, y) x′ ∈ Rd−1. The variables x′, t are called tangential, while y is
the normal variable.
Partial differential operators acting on functions of (x, t) are written as ∂α, α ∈ Nd+1, by
convention αd+1 is the order of differentation in time. A multi-index, or a differential operator,
is said to be tangential when αd = 0.
We denote [L1, L2] = L1L2 − L2L1 the commutator between two linear operators.

Sobolev spaces Ω is assumed to be a smooth open set as in definition page
assump1
3. The Sobolev

spaces Hs(Ω), are defined when s is an integer as

{u ∈ L2 : ‖u‖2Hs =
∑
|α|≤s

∫
Ω
|∂αu|2dx <∞}.

When s is not an integer, they are defined by (complex) interpolation, Hs = [L2, Hk]s/k for
any integer k larger than s. This definition does not depend on k.
The Sobolev spaces for functions defined on ∂Ω,Ω× R+

t etc are defined in the same standard
way.
Hs

0(Ω) is the closure of C∞c (Ω). We do have [L2, H1
0 ]s = Hs

0 for 0 < s < 1, except for s = 1/2,

where H
1/2
0 = H1/2 and [L2, H1

0 ]1/2 = H
1/2
00 is different algebraically and topologically from

H1/2. It is a Banach space endowed with the norm

‖u‖2
H

1/2
00

= ‖u‖2
H1/2 +

∫
Ω

|u(x)|2

d(x)
dx,

where d is the distance to ∂Ω (see
lionsmagenes
[12]). The only important fact, regularly used in the article,

is that if X0, X1 are Banach spaces, an operator T : X0 → L2, X1 → H1
0 maps [X0, X1]1/2 to

H
1/2
00 . For example, u ∈ Hs(Rd)→ u(x′, y)− u(x′,−y) maps H1/2(Rd) to H

1/2
00 (Rd−1 × R+).

The weighted Sobolev spaces Hs
γ are defined as follows :

Definition 2.1. When s is a nonnegative integer we define Hs
γ(Ω × R+

t ) as the the set of
functions in L2 such that the following norm is finite

‖u‖Hs
γ

=
∑
|α|≤s

‖e−γt∂αu‖L2 .

When s is not an integer, Hs
γ is defined by complex interpolation : if k is an integer larger

than s, Hs
γ = [L2

γ , H
k
γ ]s/k.

Hs
γ(∂Ω× R+

t ) is defined similarly.

When s is an integer, it is a straightforward consequence of Leibniz formula ∂jt (e
−γtu) =∑(

j
i

)
(−γ)ie−γt∂j−it u that the Hs

γ norm is equivalent to ‖e−γtu‖Hs , though with constants
that depend on γ, hence the Hs

γ spaces coincide algebraically and topologically with the set of
functions such that e−γtu ∈ Hs.
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Traces Sobolev spaces on ∂Ω are defined with local maps. The trace operator is an isomor-
phism: {

Hs(Ω)→
∏
k<s−1/2H

s−1/2−k(∂Ω),

u→ (∂knu|∂Ω)k<s−1/2,

where ∂n is the normal derivative on ∂Ω.
For functions defined in Hs(Ω × R+∗), the trace operator on ∂Ω × R+∗ and Ω × {0} is more
subtle, the map{

Hs(Ω× R+∗
t )→

(∏
k<s−1/2H

s−1/2−k(∂Ω× R+∗
t )
)
×
(∏

k<s−1/2H
s−1/2−k(Ω× {0})

)
,

u→ (∂knu|∂Ω×R+∗ , ∂kt u|Ω×{0})k<s−1/2,
(2.1) trace2

is continuous but not surjective: if s /∈ N, local compatibility conditions between (gk, vk) ∈
(
∏
Hs−1/2−k(∂Ω× R+∗

t ))× (
∏
Hs−1/2−k(Ω× {0})) are required as follows

∀ k + j < s− 1, ∂jt gk|t=0 = ∂knvj |∂Ω, (2.2) compaclassique1

(see
lionsmagenes2
[13]).

In the case s = 1, and Ω = Rd−1×R+∗, surjectivity requires the global compatibility condition

v0(x′, t)− g0(x′, t) ∈ H1/2
00 (∂Ω). (2.3) compaclassique2

This condition extends to smooth Ω, see the short comment after (
CCj-
1.4).

Provided such compatibility conditions are added, the trace map is a surjection and has a right
inverse, this very well known fact will be proved later in the article in some basic cases where
it is needed with more precise estimates.

3 Regularity for the pure boundary value problem

Consider the boundary value problem
Lu = f, (x, t) ∈ Ω× R+

t

Bu|∂Ω = g,
u|t=0 = 0.

(3.1) bvp

When g, f can be smoothly extended by 0 for t < 0, the smoothness of u is well known
Tartakoff
[19],

ChaPi
[5].

The classical proof is done by first studying the pure boundary value problem posed on t ∈ R,
the case t ∈ R+ is then deduced by an extension by 0 for t < 0. We give here a minor variation
of this argument that directly tackles (

bvp
3.1).

regBVP Proposition 3.1. Let k ∈ N. If the extension of f and g by 0 for t < 0 belongs to Hk, then
for γ large enough the solution of (

bvp
3.1) satisfies e−γtu ∈ Hk(Ω×R+

t ). In particular, its belongs
to Hk(Ω× [0, T ]) for any T > 0.

Proof. The classical plan is to straighten the boundary through local maps, then use a tan-
gential regularization. It is done by induction on k, it suffices to prove the final step where we
assume u ∈ Hk−1(Rd × Rt) and prove u ∈ Hk.
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We fix local maps ϕj as in assumption
assump1
1. Let (ψj)0≤j≤J be a partition of unity associated to

Ω ∪ (∪jIm(ϕj)). We denote the new variable y = (y′, yd), uj = (ψje
−γtu) ◦ ϕj , and u0 = ψ0u,

Lj = ∂t + γ +
∑

i

(∑
k Ak(Dyϕj)

−1
ik (y)

)
∂yi . For 1 ≤ j ≤ J , uj satisfies{

Ljuj + ([ψj , L]e−γtu) ◦ ϕj = e−γt(ψjf) ◦ ϕj := fj , (y
′, yd, t) ∈ Rd−1 × R+ × R+

t ,
B(ϕj(y

′, 0))uj(y
′, 0, t) = e−γt(ψjg)(ϕj(y

′, 0), t) := gj .
(3.2) eqredresse

For simplicity we still denote B for B ◦ ϕj(·, 0). The regularization procedure was introduced
by Hörmander

hormanderBVP
[8]: for v ∈ L2(Rp), p ≥ 1, define

‖v‖2Hs,δ(Rp) =

∫
Rd
|v̂(ξ)|2 (1 + |ξ|2)s+1

1 + |δξ|2
dξ −→δ→0 ‖v‖2Hs+1 .

Let ρ(x) ∈ C∞c (Rp), such that |ρ̂(ξ)| . |ξ|m, m > k and ρ̂ does not cancel on a neighborhood
outside 0 (such functions are easily constructed, for example using ∆m/2(ρ0(t)ρ′(y′)), m even).
Define ρε = ρ(·/ε)/εd. It is an exercise in calculus that for 0 ≤ s ≤ k − 1, an equivalent norm
to ‖ · ‖Hs,δ -uniformly in δ- is

‖v‖L2 +

(∫ 1

0
‖v ∗ ρε‖2L2

1

ε2(s+1)(1 + δ2/ε2)

dε

ε

)1/2

∼ ‖v‖Hs,δ . (3.3) equivsobo

Friedrich’s lemma can be generalized in such settings: for P a first order differential operator
with smooth coefficients∫ 1

0
‖[P, ρε∗]v‖2L2

1

ε2(s+1)(1 + δ2/ε2)

dε

ε
. ‖v‖2Hs,δ . (3.4) friedrichs

For details, we refer to
ChaPi
[5] chapter 2 section 6.

We shall use tangential mollifiers ρε(x
′, t) for the functions uj , 1 ≤ j ≤ J , and full mollifiers

ρε(x, t) for u0. Everything in (
eqredresse
3.2) is extended by 0 for t < 0. Note that due to the assumptions

on f, g, the extensions of (fj , gj) are still in Hk. We apply ρε∗ to (
eqredresse
3.2) for 1 ≤ j ≤ J :{

Ljρε ∗ uj = ρε ∗ fj − ρε ∗ [ψj , Lj ]e
−γtu ◦ ϕj − [ρε∗, Lj ]e−γtuj ,

B(ρε ∗ uj)|yd=0 = ρε ∗ gj − [ρε∗, B]uj |yd=0.
(3.5) eqreg

Since ρε ∗ uj belongs to L2(R+, H∞(Rd−1 × Rt) it is in H∞ due to non-characteristicity, we
can use the resolvent estimate (

resolv
1.6).

γ‖ρε ∗ uj‖2L2 + |ρε ∗ uj |2L2 .
‖ρε ∗ fj‖2L2 + ‖ρε ∗ [ψj , Lj ]e

−γtu ◦ ϕj‖2L2 + ‖[ρε∗, Lj ]uj‖2L2

γ

+|ρε ∗ gj − [ρε∗, B]uj |2L2 .

Multiplying by ε−2k−1
(
1 + (δ/ε)2

)−1
, integrating in ε and using Friedrich’s lemma we have

γ‖uj‖2L2Hk−1,δ + |uj |2Hk−1,δ .
‖fj‖2Hk + ‖[ψj , Lj ]e−γtu ◦ ϕj‖2L2Hk−1,δ

γ
+ ‖gj‖2Hk . (3.6) estimtan
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The commutator [ψj , Lj ] is the multiplication by a smooth matrix θj . Due to the special
structure of the local maps, ϕ−1

i ◦ ϕj has the form (ϕi,j(y
′), yd) hence

θje
−γtu ◦ ϕj =

J∑
1

ψiθjui(ϕi,j(y
′), yd) + θju0 ◦ ϕj .

Thanks to composition rules (in Hs,δ, again see
ChaPi
[5]),

‖[ψj , Lj ]e−γtu ◦ ϕj‖L2Hk−1,δ .
J∑
i=1

‖ui‖L2Hk−1,δ + ‖u0‖Hk−1,δ

For γ large enough, this can be absorbed in (the sum over j of) the left-hand side of (
estimtan
3.6):

J∑
j=1

γ‖uj‖2L2Hk−1,δ + |uj |2Hk−1,δ .

∑J
1 ‖fj‖2Hk + ‖u0‖2Hk−1,δ

γ
+

J∑
1

|gj |2Hk . (3.7) estimtan2

It seems “moral” that noncharacteristicity should imply the same bound for ‖uj‖Hk−1,δ , how-
ever the Hk−1,δ norm is a non local norm for functions defined on Rd × Rt, hence such an
assertion is not clear. Instead we first obtain interior estimates with similar, simpler compu-
tations

γ‖u0‖2Hk−1,δ .
‖f0‖2Hk + ‖e−γtψ̃0u‖2Hk−1,δ

γ
, supp(ψ̃0) ⊂ Ω, ψ̃0 ≡ 1 on supp(ψ0). (3.8) interieur

Decomposing again ψ̃0u =
∑J

j=0 ψ̃0ψju, and following the same lines that led to (
estimtan2
3.7),

J∑
j=1

γ‖ψ̃0ψju ◦ ϕj‖2L2Hk−1,δ .

∑J
1 ‖fj‖2Hk + ‖u0‖2Hk−1,δ

γ
+

J∑
1

|gj |2Hk . (3.9)

A simple consequence of the definition of the Hs,δ spaces is that for any tangential differential
operator D of order 1 and s ≥ 1

‖Dv‖Hs−2,δ .
1

C
‖v‖Hs−1,δ + C‖v‖L2Hs−1,δ . (3.10) transfert

Now for j ≥ 1, each function ψ̃0ψju ◦ ϕj is compactly supported in Rd−1 × R+∗ × Rt, and on
its support Lj is (uniformly) non characteristic, so we may extend it by zero for yd < 0 and
use (

transfert
3.10) to deduce

J∑
j=1

γ‖ψ̃0ψju ◦ ϕj‖2Hk−1,δ .
‖fj‖2Hk + ‖u0‖2Hk−1,δ

γ
+

J∑
1

|gj |2Hk + γ‖u‖2
Hk−1
γ

. (3.11) interieur2

Note that the term γ‖e−γtu‖2
Hk−1
γ

is present due to the factor γ in the definition of Lj . Thanks

to the induction assumption, this lower order term is bounded by ‖g‖2
Hk−1
γ

+ ‖f‖2
Hk−1
γ

. Putting

together (
estimtan2
3.7), (

interieur
3.8), (

interieur2
3.11) we have(

J∑
1

‖uj‖2L2Hk−1,δ + ‖u0‖2Hk−1,δ

)
+

J∑
1

|uj |2Hk−1,δ . ‖e−γtf‖2Hk + |e−γtg|2Hk .

Letting δ → 0 we have uj ∈ L2Hk, 1 ≤ j ≤ J and u0 ∈ Hk. We conclude that u ∈ Hk again
thanks to the uniform non characteristicity.
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4 Smoothness of the IBVP: the integer case

We assume in this section that (u0, g, f) ∈ (Hk)3 satisfy the compatibility conditions (
CCj
1.3) up

to order k, and we prove theorem
mainth
1.3 in these settings.

To prove that u ∈ ∩kj=0C
j
tH

k−j , the strategy is to use the regularity for the pure boundary value
problem by substracting an approximate solution (actually a Taylor expansion at t = 0) to u.
For technical reasons, it is necessary to use much more regular data that satisfy compatibility
conditions to higher order. The construction of such data requires the following lifting lemma
that is also used in the next section.

releve Lemma 4.1. For m ∈ N, there exists a lifting map Rm : Hs(∂Ω) → Hm+s+1/2(∂Ω × Rt),
continuous for any s > 0 such that

∂mt Rmg|t=0 = g, ∂jtRmg|t=0 = 0, j < m+ s, j 6= m− 1, (4.1) trace

and for r < m+ 1/2, |‖Rm|‖L2→Hr << 1 is arbitrarily small.

Proof. Up to the use of local maps, the problem is reduced to ∂Ω = Rd−1, and to construct a
lifting valued in Hm+s+1/2(Rd−1 × Rt). The variables are denoted (x′, t).
We choose χ ∈ C∞c (R) such that χ(k)(0) = 0, k 6= m, χ(m)(0) = 1. We use the Fourier
transform on Rd−1 ×Rt and denote ξ the dual variable of x′, τ the dual variable of t, and λ is
a large parameter to fix later:

R̂mg =
χ̂(τ/(λ〈ξ〉))
(λ〈ξ〉)m+1

ĝ(ξ), equivalently Fx′ (Rm(g)(ξ, y)) =
χ(λt〈ξ〉)
λm〈ξ〉m

ĝ(ξ), 〈ξ〉 =
√

1 + |ξ|2.

The trace relations (
trace
4.1) are obvious from the second formula. The Hm+s+1/2 norm is easily

bounded

‖Rmg‖2Hm+s+1/2(Rd)
=

∫
|χ̂(τ/(λ〈ξ〉))|2|ĝ|2

(λ〈ξ〉)2(m+1)
(〈ξ〉2 + τ2)m+s+1/2dξdτ

=

∫
|χ̂(τ)|2|ĝ|2

(λ〈ξ〉)2(m+1)
(〈ξ〉2(1 + λ2τ2))m+s+1/2dξλ〈ξ〉dτ

≤
∫
|ĝ|2〈ξ〉2s

∫
|χ̂(τ)|2 (1 + λ2τ2)m+s+1/2

λ2m+1
dτ dξ.

. λ2s‖g‖2Hs .

With the same computation

‖R̂mg‖2Hr ≤
∫

|ĝ|2

(λ〈ξ〉)2(m−r)+1

∫
|χ̂(τ)|2(1 + λ2τ2)rdτ dξ .

‖g‖2L2

λ2(m−r)+1
.

It is therefore sufficient to choose λ large enough to ensure the smallness of ‖Rm‖L2→Hr .

compahaute Lemma 4.2 (Construction of smooth compatible data). Let k ≥ 0, (u0, g, f) ∈ (Hk)3 satis-
fying the compatibility conditions up to order k. For any m > k, there exists (u0,n, gn, fn) ∈
(H∞)3 satisfying the compatibility conditions up to order m, and such that

‖(u0, g, f)− (u0,n, gn, fn)‖(Hk)3 → 0.
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Proof. By density of smooth functions, there exists a sequence (u0,n, gn, fn) ∈ (H∞)3 converg-
ing to (u0, g, f) in (Hk)3. We denote vj,n the corresponding functions in (

taylor
1.2). For j ≥ 1 the

“compatibility error” is defined as

εj,n := ∂j−1
t gn|t=0 −

j−1∑
l=0

(
j

l

)
(∂ltB)vj−1−l,n|∂Ω.

Due to the compatiblity conditions and continuity of traces we have

∀ 1 ≤ j ≤ k, ‖εj,n‖Hk−j+1/2 −→n 0.

As a consequence, given a lifting operator Rj−1 as in lemma
releve
4.1, ‖Rj−1εj,n‖Hk →n 0.

For k < j ≤ m, εj,n is not small in any Sobolev space, nevertheless from lemma
releve
4.1 there exists

a lifting Rj−1,n such that ‖Rj−1,nεj,n‖Hk ≤ 1/n. We then define

g̃n := gn −
m∑
j=1

Rj−1(εj,n).

This choice ensures that compatibility conditions are satisfied by (u0,n, g̃n, fn) up to order m
and ‖g̃n − g‖Hk → 0.

Proof of theorem
mainth
1.3 (integer case) We follow the notations of lemma

compahaute
4.2; vj,n are

smooth functions defined by (
taylor
1.2) for smooth data (u0,n, gn, fn). We define the approximate

solution

uapp,n(x, t) =
m−1∑
j=0

tj

j!
vj,n(x)χ(t), χ ∈ C∞c (R+), χ ≡ 1 near 0.

We solve then 
Lwn = fn − Luapp,n,
wn|t=0 = 0,
Bwn = gn −Buapp,n,

By construction, the data (0, gn −Buapp,n, fn − Luapp,n) are smooth and it is easily seen that

∂jt (gn − Buapp,n) = 0, ∂jt (fn − Luapp,n) = 0, j ≤ k + 1 provided m ≥ k + 4. Hence according
to proposition

regBVP
3.1, the solution wn belongs to Hk+2, this implies by Sobolev embedding wn ∈

∩k+1
j=0C

j
tH

k+1−j . Therefore un := wn + uapp,n is also in ∩k+1
j=0C

j
tH

k+1−j , and it is a solution of
(
IBVP
1.1) with data (u0,n, gn, fn).

Using a differentiation argument similar to the proof of proposition
regBVP
3.1, but much simpler since

no regularization is needed, we see that un satisfies
semigreg
1.9:

k∑
j=0

‖∂jt (e−γtun)‖C(R+,Hk−j(Ω)) + |e−γtun|∂Ω|Hk .

(
‖u0,n‖Hk(Ω) + |e−γtgn|Hk(∂Ω×[0,T ]

+‖e−γtfn‖Hk

)
,

as well as (
resolvreg
1.7). The same estimates, applied to up − uq, (p, q) ∈ N2, shows that (un) is a

Cauchy sequence in ∩kj=0C
j
tH

k−j , but since (un) converges (in L2) to the solution u of (
IBVP
1.1) with
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data (u0, g, f), this ensures that u ∈ ∩kj=0C
j
tH

k−j . The estimate (
resolvreg
1.7) is then an elementary

differentiation argument : tangential regularity is obtained directly by differentiation (which is
now legal) and use of the L2 estimate, while normal regularity uses the non characteristicity.

5 Regularity for positive s

For ease of presentation, we only detail the case Ω = Rd−1 × R+. The general case can be
obtained by using a partition of unity as in the previous section.

In this section, we follow the (non standard) convention that Hs
0 is H

1/2
00 if s = 1/2.

Under such settings, we can assume that Ad is invertible and A−1
d is uniformly bounded.

Furthermore since B : Rp → Rb has maximal rang b, there exists a smooth basis of KerB (as
a smooth vector bundle over the contractible space Rd−1 × R+

t ) that we denote (k1, · · · kp−b).
A basis (vj)1≤j≤b of (KerB)⊥ is then obtained easily:

B̃ =


B
kt1
...

ktp−b

 is an isomorphism Rp → Rp, we can choose vj = B̃−1(ej), 1 ≤ j ≤ b.

We remind that compatibility conditions of order s = k + θ, k ∈ N∗, 0 < θ < 1 are defined as
follows:

1. If θ < 1/2, then compatibility conditions (
CCj
1.3) up to order k are satisfied.

2. If θ > 1/2, then compatibility conditions (
CCj
1.3) up to order k + 1 are satisfied.

3. If θ = 1/2, compatibility conditions up to order k are satisfied and

∫
Rd−1

∣∣∣∣∣∣∂k−1
t g(x′, y)−

k−1∑
j=0

(
k − 1

j

)
(∂jtB) (Ak−1−ju0 +Bk−1−jf |t=0) |(x′, y)

∣∣∣∣∣∣
2

dy

y
<∞.

The case 0 < s < 1 From the previous section, the map (u0, g, f) → u solution of (
IBVP
1.1) is

continuous

X0 × L2 := (L2)3 → CtL
2 and

X1 ×H1 := {(u0, g) ∈ (H1)2 : Bu0|∂Ω = g|t=0} ×H1 → CtH
1 ∩ C1

t L
2.

Let us define for 0 ≤ θ ≤ 1

Xθ =
{

(u0, g) ∈ (Hθ)2 : the compatibility condition of order θ is satisfied
}
,

(note that compatibility conditions of order less than 3/2 do not involve f).
Both the semi-group estimate (

semigreg
1.9) and the resolvent estimate (

resolvreg
1.7) follow from an interpolation

argument if we can prove that
Xθ = [X0, X1]θ. (5.1) interpX
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More precisely, since the resolvent estimate implies for s = 0, 1

γ‖u‖2L2
γ

+ ‖u|∂Ω‖2L2
γ
. ‖(u0, e

−γtg)‖2X0
+
‖f‖2L2

γ

γ

γ‖u‖2H1
γ

+ ‖u|∂Ω‖2H1
γ
. C(γ)‖(u0, e

−γtg)‖2X1
+
‖f‖2H1

γ

γ
,

the interpolation identity (
interpX
5.1) implies

γ‖u‖2Hθ
γ

+ ‖u|∂Ω‖2Hθ
γ
. C ′(γ)‖(u0, e

−γtg)‖2Xθ +
‖f‖2

Hθ
γ

γ
. (5.2) resolvsupersharp

(a better estimate would require to use weighted Xθ spaces, a course that we chose not to
follow).

Proof of (
interpX
5.1) We extend B̃ on Ω × R+

t as B̃(x′, y, t) = B̃(x′, t), and consider the map
u0 → B̃u0 := ũ0. It is an isomorphism (Hs(Ω))p → (Hs(Ω))p, and the compatibility condition
can be rewritten

Bu0|∂Ω = g|t=0 ⇔ BB̃−1B̃u0|∂Ω = g|t=0 ⇔
(
Ib 0

)
ũ0|∂Ω = g|t=0, with ũ0 = B̃u0.

This transformation “diagonalizes” (
interpX
5.1), and we are reduced to determine

[L2 × L2, H1 ×H1]θ, and
[
L2 × L2, {(u0, g) ∈ H1 ×H1 : u0|y=0 = g|t=0}

]
θ

= [Y0, Y1]θ,

where u0 and g are now scalar functions.
Of course, it is well-known that [L2, H1]θ = Hθ, so the first case is immediate. In the second
case, surprisingly, we were not able to find results in the litterature except in the simplest case
θ < 1/2, which is in

lionsmagenes2
[13] section 14.

interpfacile Lemma 5.1. For θ < 1/2, [Y0, Y1]θ = Yθ.

Proof. The following inclusions are clear : H1
0 ×H1

0 ⊂ Y1 ⊂ H1(Ω) ×H1(∂Ω × R+). On the
other hand, for θ < 1/2 we have [L2, H1

0 ]θ = Hθ (
lionsmagenes
[12], chapter 1 section 11), and we can

conclude

Hθ ×Hθ = [L2 × L2, H1
0 ×H1

0 ]θ ⊂ [Y0, Y1]θ ⊂ [L2 × L2, H1 ×H1]θ = Hθ ×Hθ.

relevecoin Lemma 5.2. For 0 < θ ≤ 1, there exists an universal (independent of θ) operator R

R : Yθ → Hθ+1/2(Ω× R+), ∀ 0 < θ ≤ 1.

Proof. This is a result due to Grisvard
Grisvard
[7], for completeness we include a simple proof. Given

(u0, g) ∈ (Hθ)2, from lemma
releve
4.1 there exists an opertor Rb : g → Rb(g) ∈ Hθ+1/2 which is

independent of θ. By construction, Rbg|t=0 − u0 ∈ Hθ
0 . If θ = 1/2, we also notice

Rbg(x′, y, 0)− u0(x′, y) = Rbg(x′, y, 0)− g(x′, y)︸ ︷︷ ︸
H

1/2
00 by interpolation

+ g(x′, y)− u0(x′, y)︸ ︷︷ ︸
H

1/2
00 by assumption

.
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If there exists an universal lifting R0 : Hθ
0 (Ω) → {u ∈ Hθ+1/2(Ω× R+)| u|∂Ω = 0}, R can be

defined as R(u0, g) = Rbg +R0(u0 −Rbg|t=0) so we focus on the construction of R0.

For u0 ∈ Hθ
0 (H

1/2
00 for θ = 1/2), we extend it as an odd function of y, I(u0) defined on Rd.

The map I : Hθ
0 (Rd−1 × R+) → Hθ(Rd) is continuous as it is clearly the case for θ = 0, 1.

Define now
̂RI(I(u0))(ξ, δ) = χ(〈ξ〉t)Î(u0)(ξ),

where χ is as in lemma
releve
4.1. According to the proof of lemma

releve
4.1, RI ◦ I : Hθ → Hθ+1/2(Rd×

R+) is continuous, moreover by construction RI ◦ I(u0) is an odd function of y, therefore
necessarily RI ◦I(u0)|y=0 = 0. Thus by taking the restriction on Rd−1×R+

y ×R+
t , R0 := RI ◦I

solves the problem.

Proposition 5.3. For 0 < θ < 1, [Y0, Y1]θ = Yθ.

Proof. On one hand, the map (u0, g)→ u0(x′, y)− g(x′, y) is continuous Yi → H i
0 for i = 0, 1,

therefore by interpolation it is continuous [Y0, Y1]θ → Hθ
0 . This gives the first inclusion

[Y0, Y1]θ ⊂ Yθ. (5.3) inclusion

On the other hand, from Lions-Peetre reiteration theorem, for any 0 < s, θ < 1

[[Y0, Y1]s, Y1]θ = [Y0, Y1]θ+s(1−θ).

If we have for some s < 1/2, [Ys, Y1]θ ⊃ Yθ+s(1−θ) for any 0 < θ < 1, then by reiteration this
implies [Y0, Y1]θ = Yθ for θ > s. On the other hand, the case θ ≤ s is contained in lemma

interpfacile
5.1.

For any 0 < r < 1 we define the map

u ∈ Hr+1/2(Ω× R+
t )→ Tr(u) = (u|t=0, u|y=0).

It is easily seen that Tr is continuous H3/2 → Y1 and H1/2+s → Ys for 0 < s < 1/2. As it is
well known that [Hs+1/2, H3/2]θ = H1/2+θ+(1−θ)s, we deduce by interpolation

Tr : H1/2+(1−θ)s+θ = [Hs+1/2, H3/2]θ → [Ys, Y1]θ is continuous.

We observe now that the lifting R from lemma
relevecoin
5.2 is a right inverse for Tr: for fixed 0 < s < 1/2

and any 0 < θ < 1, we have Tr ◦ R = Id : Yθ+s(1−θ) → Yθ+s(1−θ). Since R maps Yθ+s(1−θ) to

Hs(1−θ)+θ+1/2, this implies
Yθ+s(1−θ) ⊂ [Ys, Y1]θ,

which was the required converse inclusion.

The case s > 1 We denote s = k + θ, 0 ≤ θ < 1. According to the integer case, we already
have u ∈ ∩Ck−jHj . For any tangential multi-index α of order k (that is, αd = 0, |α| = k), ∂αu
satisfies 

L(∂αu) = ∂αf + [L, ∂α]u,
B∂αu|∂Ω = ∂αg + [B, ∂α]u|∂Ω,
∂αu|t=0 = Lα(u0) + L′α(f)|t=0.

(5.4) derBVP

where Lα, L
′
α are differential operators of respective order α, α − 1. Regularity will again be

obtained by regularization of the data, we distinguish three cases:
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The case 0 < θ < 1/2 With the same argument as in the integer case (note that the
condition θ < 1/2 allows to use lemma

releve
4.1), there exists regularized data (u0,n, gn, fn) ∈

(Hk+1)3, converging to (u0, g, f) that satisfy the compatibility conditions up to order k + 1.
The corresponding solution un belongs to ∩k+1

0 CjtH
k+1−j so that we may apply the resolvent

estimate (
resolvreg
1.7) to ∂αun with s = θ, combined with basic trace estimates and the commutator

estimate ‖[∂α, L]un‖Hθ
γ
. ‖u‖Hs

γ
:

γ‖∂αun‖2Hθ
γ

. ‖u0,n‖2Hs + ‖gn‖2Hs
γ

+
‖fn‖2Hs

γ
+ ‖un‖2Hs

γ

γ
.

Due to the boundary being non characteristic, we deduce as for the integer case (note that
the fractional regularity gained here includes conormal regularity) for γ large enough only
depending on s

γ‖un‖2Hs
γ
. ‖u0,n‖2Hs + ‖gn‖2Hs

γ
+
‖fn‖2Hs

γ

γ
.

With the resolvent estimate available, the semi group estimate is now an immediate conse-
quence of the case 0 < s < 1 applied to (

derBVP
5.4):

‖e−γt∂αun‖2CtHθ . ‖u0,n‖2Hs(Ω) + ‖fn‖2Hs
γ([0,T ]×Ω) + ‖[∂α, L]un‖2Hθ

γ
+ ‖gn‖2Hs

γ

. ‖u0,n‖2Hs(Ω) + ‖fn‖Hs
γ([0,T ]×Ω) + ‖gn‖2Hs

γ
.

Once more, normal regularity is then obtained thanks to the boundary being non characteristic.
Letting n→∞, we deduce that e−γtu is in Hs(R+×Ω)∩ (∩kj=0C

j(R+, Hs−j(Ω)) and satisfies
the semi group estimate and the resolvent estimate.

The case 1/2 < θ < 1 This can be done with exactly the same argument. Actually, the
construction of regularized data (u0,n, gn, fn) ∈ (Hk+1)3 that satisfy compatibility conditions
up to order k+ 1 and converging to (u0, g, f) in (Hs)3 is even simpler. Indeed (u0, g, f) satisfy
compatibility conditions up to order k + 1, hence any regularization of (u0, g, f) satisfies

∀ 1 ≤ j ≤ k + 1,

∥∥∥∥∥∥∥∥∥∥
∂j−1
t gn|t=0 −

k−1∑
l=0

(
j

l

)
(∂ltB)vj−1−l,n|∂Ω︸ ︷︷ ︸

:=εj,n

∥∥∥∥∥∥∥∥∥∥
Hs−j+1/2

−→n 0,

and it suffices to modify gn as gn − δn where δn is a function in Hk+1(∂Ω×R+
t ) that satisfies

for 1 ≤ j ≤ k + 1, ∂j−1
t δn|t=0 = εj,n

cas1/2
The case θ = 1/2 When s = k + 1/2, the compatibility conditions are satisfied in

particular up to order k. From the previous study, we have e−γtu ∈ (∩kj=0C
j
tH

k+θ−j) ∩Hk+θ

for any θ < 1/2, with the estimate

‖e−γtu‖
(∩kj=0C

j
tH

j+θ−j)
+ ‖e−γtu‖Hk+θ ≤ C(θ)‖(u0, g, f)‖(Hs)3 .
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Of course this is not enough to conclude, but the estimate can be sharpened: apply estimate
(
resolvsupersharp
5.2) to (

derBVP
5.4) for θ < 1 and any tangential multi-index α ∈ Nd, |α| = k, this reads

γ‖∂αu‖2Hθ
γ

.
∥∥(Lαu0 + L′αf |t=0, e

−γt(∂αg + [B, ∂α]u|∂Ω)
)∥∥2

Xθ
+
‖f‖2

Hk+θ
γ

+ ‖u‖2
Hk+θ
γ

γ
.

Recall that the compatibility conditions at order j are are

∀ 1 ≤ j ≤ k, ∂j−1
t g|t=0 −

j−1∑
l=0

(
j

l

)
(∂ltB)vj−1−l|∂Ω = 0,

and at order k + 1/2

∂kt g(x′, t)−

(
k∑
l=0

(
k

l

)
(∂ltB)vk−1−l(x

′, t)

)
∈ H1/2

00

(
Rd−1 × (R+)

)
.

As a consequence, for any j ≤ k + 1 and any β ∈ Nd−1, |β| = k + 1− j,

∂βx′∂
j−1
t g(x′, t)− ∂βx′

j−1∑
l=0

(
j − 1

l

)
(∂ltB)vj−1−l(x

′, t) ∈ H1/2
00 (Rd−1 × R+). (5.5) compafrac

Furthermore, e−γtu ∈ Hk(Ω× R+
t ), hence for any multi-index of order k − 1

‖e−γt∂αu|y=0 − e−γt∂αu|t=0‖H1/2
00 (Rd−1×R+)

. ‖e−γtu‖Hk(Rd−1×(R+)2). (5.6) compagratuite

Now to make (
derBVP
5.4) more explicit, let us write ∂α = ∂jt ∂

β
x′ , β ∈ Nd−1, |β| = k − j. Then

∂αu|t=0 = ∂βx′vj ∈ H
1/2(Rd−1 × R+), the compatibility condition of order 1/2 for (

derBVP
5.4) is thus

e−γt (∂αg + [B, ∂α]u|∂Ω)−B∂βx′vj ∈ H
1/2
00 (Rd−1 × R+).

With basic computations, we now check that it is implied by (
compafrac
5.5),(

compagratuite
5.6):

e−γt(∂αg + [B, ∂α]u|∂Ω)−B∂βx′vj

= e−γt

(
∂αg − ∂βx′

j∑
l=0

(
j

l

)
(∂ltB)∂j−lt u|∂Ω

)
+ e−γtB∂αu|∂Ω −B∂βx′vj

= e−γt∂αg − ∂βx′
j∑
1

(
j

l

)
(∂ltB)vj−l −B∂βx′vj

−∂βx′
j∑
l=1

(
j

l

)
(∂ltB)

(
e−γt∂j−lt u|∂Ω − vj−l

)
−∂βx′

(
Be−γt∂jt u|∂Ω

)
+ e−γtB∂αu|∂Ω

= e−γt

(
∂αg − ∂βx′

j∑
l=0

(
j

l

)
(∂ltB)vj−l

)

−∂βx′
j∑
l=1

(
j

l

)
(∂ltB)

(
e−γt∂j−lt u|∂Ω − vj−l

)
+[B, ∂βx′ ]e

−γt∂jt u|∂Ω − [B, ∂βx′ ]vj .
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For j ≤ k, due to the compatibility condition (
compafrac
5.5), the first line in the last equality is in H

1/2
00 .

The H
1/2
00 norm of the second line is easily controlled by writing

e−γt∂j−lt u|∂Ω − vj−l = e−γt(∂j−lt u|∂Ω − vj−l) + (1− e−γt)vj−l,

the first term can be bounded thanks to (
compagratuite
5.6) while for the second we simply use (1−e−γt)/t . 1.

The same argument is used for the third line. We deduce that for θ < 1/2, α tangential, |α| ≤ k

γ‖∂αu‖2
Hθ
γ(Ω×R+

t )
. C(γ)

‖(u0, g, f)‖(Hk+1/2)3 +

∥∥∥∥∥g −
k∑
0

(
k

l

)
(∂ltB)vk−1−l

∥∥∥∥∥
H

1/2
00 (Rd−1×R+)


+
‖u‖2

Hk+θ
γ

γ
.

Using non characteristicity, we recover

γ‖u‖2
Hk+θ
γ (Ω×R+

t )
. ‖(u0, g, f)‖(Hk+1/2)3 +

∥∥∥∥∥g −
k∑
0

(
k

l

)
(∂ltB)vk−1−l

∥∥∥∥∥
H

1/2
00 (Rd−1×R+)

.

This estimate is uniform in θ < 1/2, we deduce that the same estimate holds for θ = 1/2.
Finally we deduce that the semi group estimate is true with the same argument as for the end
of the case 0 < θ < 1/2. This ends the proof of theorem

mainth
1.3.
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[7] P. Grisvard. Caractérisation de quelques espaces d’interpolation. Arch. Rational Mech.
Anal., 25:40–63, 1967.



REFERENCES 18
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