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Sensibilité de la Valeur Espérée du Risque
Empirique Induit par l’Algorithme de Gibbs dans

le Problème d’Apprentissage Supervisé
Résumé : Une expression explicite de la sensibilité du risque empirique espéré
(REE) induit par l’algorithme de Gibbs (AG) dans le problème de l’apprentissage
automatique supervisé est présentée. La sensibilité est définie comme la dif-
férence entre l’REE induit par l’AG et l’REE induit par une mesure de proba-
bilité alternative sur les modèles. Lorsque plusieurs ensembles de données sont
disponibles, la sensibilité joue un rôle central pour déterminer si un REE plus
petit peut-être observé comme résultat de l’agrégation de plusieurs ensembles de
données. Les conditions nécessaires et suffisantes pour observer une diminution
de l’EER due à l’agrégation des données sont présentées. De telles conditions,
qui sont sur les paramètres de l’AG et les mesures de référence supposées pour
chaque ensemble de données, se résument à l’évaluation du signe d’une somme
de certains termes d’entropie relative. À la lumière de ces résultats, la sensibi-
lité apparaît comme (a) une métrique alternative pour évaluer les capacités de
généralisation de l’algorithme de Gibbs; et (b) un cadre théorique pour étudier
l’impact de l’utilisation de plusieurs ensembles de données décrivant le même
phénomène mais soumis à différents systèmes d’acquisition de données, ce qui
implique par exemple, différentes propriétés statistiques pour chaque ensemble
de données.

Mots-clés : Apprentissage Supervisé, Apprentissage PAC, Régularisation, En-
tropie Relative, Minimisation du Risque Empirique, Principe d’Entropie Maxi-
male, et Apprentissage Bayésien.



Sensitivity of the Gibbs Algorithm to Data Aggregation 3

Contents
1 Introduction 4

2 Problem Formulation 5
2.1 Generalized Relative Entropy Regularization . . . . . . . . . . . 6
2.2 The Gibbs Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Sensitivity 9
3.1 Priors and Posteriors . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 A Geometric Interpretation of Sensitivity . . . . . . . . . . . . . 11

4 Sensitivity to Dataset Aggregation 12
4.1 Dataset Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Sensitivity Analysis with Constituent Datasets . . . . . . . . . . 14
4.3 Sensitivity Analysis with Aggregate Datasets . . . . . . . . . . . 15
4.4 Homogeneous Priors and Proportional Regularization . . . . . . 17

5 Conclusions and Final Remarks 20

RR n° 9474



4 Perlaza, Esnaola, and Poor

1 Introduction

In the context of supervised learning, the Gibbs algorithm labels unseen data by
randomly selecting a model sampled from the probability measure that solves
the empirical risk minimization (ERM) problem with relative entropy regular-
ization (ERM-RER) [1]. One of the main advantages of the Gibbs algorithm is
that it does not require additional assumptions on the statistical description of
the datasets [2–4]. Instead, it requires a prior or preference over the set of models
in the form of a σ-finite measure, e.g., a probability measure. The regularization
term in the ERM-RER is precisely a relative entropy with respect to such prior,
which in the case of probability measures, has been shown to govern the general-
ization capabilities of the Gibbs algorithm [5,6]. The solution to the ERM-RER
problem is unique and described by the Gibbs probability measure, which has
been extensively studied using information theoretic tools in [5–8]; statistical
physics [2]; PAC (Probably Approximatively Correct)-Bayesian learning the-
ory [9–12]; and shown to be central to classification problems [13,14].

A dataset is constructed by acquiring data from a source that is linked to a phe-
nomenon for which a learning task must be implemented. In practical settings,
training data might be acquired from different sources and through different
data acquisition systems. This leads to datasets sampled from different proba-
bility measures. In such cases, data aggregation techniques that combine several
constituent datasets acquired from sources related to the same phenomenon can
be useful for tackling poor performance induced by data scarcity from some of
the sources. For instance, consider that a dataset is used to implement a Gibbs
algorithm and that a new constituent dataset about the same phenomenon is
made available. The question addressed in this report is the following: Should
this new dataset be aggregated to the previous dataset to form a larger training
dataset aiming at improving the performance of the Gibbs algorithm? The main
challenge stems from the fact that the probability measures generating each con-
stituent dataset are not known, and therefore, Bayesian characterizations of the
aggregate risk are not feasible. Moreover, assuming that both datasets have
been generated by the same probability measure is not a prudent premise be-
cause differences in dataset acquisition methods often result in varying degrees
of fidelity for each constituent dataset.

In this report, the performance of the Gibbs algorithm is analyzed for datasets
constructed by aggregating two constituent datasets for which the probability
measures from which they have been sampled from are unknown. Interestingly,
the sensitivity of the expected empirical risk induced by the Gibbs algorithm
quantifies the benefit of data aggregation. It is shown that the sensitivity change
induced by data aggregation is a function of the Gibbs probability measures ob-
tained for each constituent dataset and the corresponding reference measures.
This analytical characterization of the sensitivity is used to distill necessary and
sufficient conditions for improving the Gibbs algorithm performance obtained
with the aggregate dataset with respect to the performance obtained with the
constituent datasets. Remarkably, the resulting sensitivity expressions are com-

Inria



Sensitivity of the Gibbs Algorithm to Data Aggregation 5

putable without knowledge of the probability measures generating the datasets
and can be expressed in terms of the Gibbs probability measures obtained for
the constituent datasets and for the aggregate datasets.

2 Problem Formulation
Consider three sets M, X and Y, with M ⊆ Rd and d ∈ N. Let the function
f : M × X → Y be such that, for some θ? ∈ M, there exist two random
variables X and Y that satisfy,

Y = f(θ?, X). (1)

A pair (x, y) ∈ X × Y is referred to as a data point. Given n data points,
with n ∈ N, denoted by (x1, y1), (x2, y2), . . ., (xn, yn), a dataset is the tuple
((x1, y1) , (x2, y2) , . . . , (xn, yn)) ∈ (X × Y)

n. The model θ? in (1), which is
often referred to as the ground truth model, is unknown. Given a dataset, the
objective is to obtain a model θ ∈ M, such that for all patterns u ∈ X , the
assigned label f(θ, u) minimizes a notion of loss or risk. Let the function

` : Y × Y → [0,+∞) (2)

be such that given a data point (x, y) ∈ X × Y, the loss or risk induced by
choosing the model θ ∈ M, which assigns the label f(θ, x) to the pattern
x, is ` (f(θ, x), y). Often the function ` is referred to as the loss function or
risk function. In the following, it is assumed that the function ` satisfies that
for all y ∈ Y, ` (y, y) = 0, which implies that correct labelling implies zero
cost. Note that there might exist several models θ ∈ M \ {θ?} such that
` (f(θ, x), y) = 0, which reveals the need of a large number of labelled patterns
for model selection.

The empirical risk induced by the model θ, with respect to a dataset

z =
(

(x1, y1) , (x2, y2) , . . . , (xn, yn)
)
∈ (X × Y)

n
, (3a)

with n ∈ N, is determined by the function Lz : M → [0,+∞), which satis-
fies

Lz (θ),
1

n

n∑
i=1

` (f(θ, xi), yi) . (3b)

Using this notation, the ERM problem with respect to the data set z is the
following optimization problem

min
θ∈M

Lz (θ) , (4)

whose solutions form the set denoted by T (z) , arg minθ∈M Lz (θ). The ERM
problem in (4) is well posed. Note for instance that the ground truth model θ?
in (1) is one of the solutions to the ERM problem in (4). That is, the model θ?
in (1) satisfies that θ? ∈ T (z) and Lz (θ?) = 0.

RR n° 9474



6 Perlaza, Esnaola, and Poor

2.1 Generalized Relative Entropy Regularization
The generalized relative entropy is defined below as the extension to σ-finite
measures of the relative entropy usually defined for probability measures.

Definition 2.1 (Relative Entropy). Given two σ-finite measures P and Q on
the same measurable space, such that Q is absolutely continuous with respect to
P , the relative entropy of Q with respect to P is

D(Q‖P ) =

∫
dQ

dP
(x) log

Å
dQ

dP
(x)

ã
dP (x), (5)

where the function dQ
dP is the Radon-Nikodym derivative of Q with respect to P .

A fundamental assumption in this work is that for all (x, y) ∈ X × Y, the
function ¯̀

x,y :M→ [0,+∞), such that for all (θ, x, y) ∈M×X × Y,

¯̀
x,y (θ) = ` (f(θ, x), y) , (6)

where the functions f and ` are those in (1) and (2), is Borel measurable with
respect to the measure space (M,B (M)). Under this assumption, the expected
empirical risk is introduced.

Definition 2.2 (Expected Empirical Risk). Given a dataset z ∈ (X × Y)
n,

let the function Rz : 4 (M,B (M)) → [0,+∞) be such that for all σ-finite
measures P ∈ 4 (M,B (M)), it holds that

Rz (P ) =

∫
Lz (θ) dP (θ), (7)

where the function Lz is in (3b). When P is a probability measure, the expected
empirical risk induced by P is Rz (P ).

The ERM-RER problem is parametrized by a σ-finite measure on (M,B (M))
and a positive real, which are referred to as the reference measure and the
regularization factor, respectively. Let Q be a σ-finite measure on (M,B (M))
and let λ > 0 be a positive real. The ERM-RER problem, with parameters Q
and λ, consists in the following optimization problem:

min
P∈4Q(M,B(M))

Rz (P ) + λD (P‖Q) , (8)

where the dataset z is in (3a); the function Rz is defined in (7); and the opti-
mization domain is the set of all probability measures on (M,B (M)) that are
absolutely continuous with the measure Q. The notation 4Q (M,B (M)) in
(8) is used to represent the set of probability measures on (M,B (M)) that are
absolutely continuous with the measure Q.

2.2 The Gibbs Algorithm
The solution to the ERM-RER problem in (8) is presented by the following
lemma.

Inria



Sensitivity of the Gibbs Algorithm to Data Aggregation 7

Lemma 2.1 (Theorem 2.1 in [1]). Given a σ-finite measure Q and a dataset
z ∈ (X × Y)

n, let the function KQ,z : R→ R∪{+∞} be such that for all t ∈ R,

KQ,z (t)=log

Å∫
exp (t Lz (θ)) dQ(θ)

ã
, (9)

where the function Lz is defined in (3b). Let also the set KQ,z ⊂ (0,+∞) be

KQ,z,
ß
s > 0 : KQ,z

Å
−1

s

ã
< +∞

™
. (10)

Then, for all λ ∈ KQ,z, the solution to the ERM-RER problem in (8) is a unique
measure on (M,B (M)), denoted by P (Q,λ)

Θ|Z=z, whose Radon-Nikodym derivative
with respect to Q satisfies that for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (θ)

ã
. (11)

When Q is a probability measure, the ERM-RER problem in (8) is known to
possess a unique solution [6,15,16] described by a Gibbs probability measure. In
the more general case in which Q is a σ-finite measure, the ERM-RER problem
in (8) also possesses a unique solution to which we refer to as a Gibbs probability
measure [1], despite the fact that it is defined for a σ-finite measure instead of
a probability measure. Similarly, the function KQ,z in (9) is referred to as
the log-partition function, independently of whether the reference measure Q
is a probability measure. This is in order to avoid disrupting with the current
nomenclature.

Using Lemma 2.1, the Gibbs algorithm can be described as follows.

Algorithm 1: The Gibbs Algorithm
Parameter: Training Data z in (3a);

Reference Measure Q in (8); and
Regularization Factor λ in (8)

Input: Unseen Pattern x ∈ X
1 Obtain θ ∈M by sampling from P

(Q,λ)
Θ|Z=z in (11)

Output: Label y = f (θ, x), with f in (1)

In the following, the Algorithm 1 is represented by the probability measure
P

(Q,λ)
Θ|Z=z in (11), which justifies that often, such probability measure is referred

to as the Gibbs algorithm itself, c.f., [5–7,17].

The expected empirical risk induced by the Gibbs algorithm P
(Q,λ)
Θ|Z=z is denoted

by Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
, where the function Rz is defined in (7). Among the numerous

properties of the Gibbs algorithm, the following property plays a central role in
this work.

RR n° 9474



8 Perlaza, Esnaola, and Poor

Lemma 2.2. Given a σ-finite measure Q over the measurable space (M,B (M)),
and given a dataset z ∈ (X × Y)

n, for all λ ∈ KQ,z, with KQ,z in (10), it holds
that

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
+ λD

Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
=−λKQ,z

Å
− 1

λ

ã
and (12)

Rz (Q)− λD
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
=−λKQ,z

Å
− 1

λ

ã
, (13)

where the function Rz is defined in (7); the function KQ,z is defined in (9); and
the probability measure P (Q,λ)

Θ|Z=z is the solution to the ERM-RER problem in (8).

Proof: From Lemma 2.1, it follows that for all θ ∈M,

log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(θ)

é
=−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (θ) , (14)

where the functions Lz is defined in (3b). Thus,

D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
=

∫
log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(θ)

é
dP

(Q,λ)
Θ|Z=z (θ) (15)

=−KQ,z

Å
− 1

λ

ã
− 1

λ

∫
Lz (θ) dP

(Q,λ)
Θ|Z=z (θ) (16)

=−KQ,z

Å
− 1

λ

ã
− 1

λ
Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
, (17)

where the function Rz is defined in (7). This completes the proof of (12).

From (14), it follows that

D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
=−

∫
log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(θ)

é
dQ (θ) (18)

=KQ,z

Å
− 1

λ

ã
+

1

λ

∫
Lz (θ) dQ (θ) (19)

=KQ,z

Å
− 1

λ

ã
+

1

λ
Rz (Q) , (20)

which completes the proof of (13).

Note that Lemma 2.2 states that for all λ ∈ KQ,z, with KQ,z in (10), it holds
that

min
P∈4Q(M,B(M))

Rz (P ) + λD (P‖Q)=−λKQ,z

Å
− 1

λ

ã
. (21)

Inria



Sensitivity of the Gibbs Algorithm to Data Aggregation 9

3 Sensitivity

The sensitivity of the expected empirical risk Rz in (7) to deviations from the
probability measure P (Q,λ)

Θ|Z=z in (11) towards an alternative probability measure
P is defined as follows.

Definition 3.1 (Definition 8 in [8]). Given a σ-finite measure Q and a pos-
itive real λ > 0, let SQ,λ : (X × Y)

n × 4P (M,B (M)) → (−∞,+∞] be a
function such that for all datasets z ∈ (X × Y)

n and for probability measures
P ∈ 4 (M,B (M)), it holds that

SQ,λ (z, P ) =

®
Rz (P )− Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
if λ ∈ KQ,z

+∞ otherwise,
(22)

where the function Rz is defined in (7) and the measure P (Q,λ)
Θ|Z=z is the solution

to the ERM-RER problem in (8). The sensitivity of the expected empirical risk
Rz when the measure changes from P

(Q,λ)
Θ|Z=z to P is SQ,λ (z, P ).

The sensitivity SQ,λ (z, P ) in (22) is a means to quantify the change of the
expected empirical risk function Rz around the optimal solution of a given ERM-
RER problem in (8). That is, it quantifies the loss or gain obtained by using
an alternative to the Gibbs algorithm P

(Q,λ)
Θ|Z=z, i.e., Algorithm 1. The following

theorem introduces an exact expression for the sensitivity SQ,λ (z, P ).

Theorem 3.1. Given a σ-finite measure Q over the measurable space (M,B (M))
and a probability measure P ∈ 4Q (M,B (M)), it holds that for all datasets
z ∈ (X × Y)

n and for all λ ∈ KQ,z, with KQ,z in (10),

SQ,λ (z, P )=λ
Ä
D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
+D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
−D(P‖Q)

ä
, (23)

where the probability measure P (Q,λ)
Θ|Z=z is the solution to the ERM-RER problem

in (8).

Proof: The proof uses the fact that the probability measure P (Q,λ)
Θ|Z=z in (11)

is mutually absolutely continuous with the σ-finite measure Q [1, Lemma 2.6].
Hence, the probability measure P is absolutely continuous with P

(Q,λ)
Θ|Z=z, as a

consequence of the assumption of the lemma that P is absolutely continuous
with Q.

RR n° 9474



10 Perlaza, Esnaola, and Poor

The proof follows by noticing that for all θ ∈M,

log

Ñ
dP

dP
(Q,λ)
Θ|Z=z

(θ)

é
=log

Ñ
dQ

dP
(Q,λ)
Θ|Z=z

(θ)
dP

dQ
(θ)

é
(24)

=− log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(θ)

é
+ log

Å
dP

dQ
(θ)

ã
(25)

=KQ,z

Å
− 1

λ

ã
+

1

λ
Lz (θ) + log

Å
dP

dQ
(θ)

ã
, (26)

where the functions Lz and KQ,z are defined in (3b) and in (9), respectively;
and the equality in (26) follows from Lemma 2.1. Hence, the relative entropy
D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
satisfies,

D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
=

∫
log

Ñ
dP

dP
(Q,λ)
Θ|Z=z

(θ)

é
dP (θ) (27)

=KQ,z

Å
− 1

λ

ã
+

1

λ

∫
Lz (θ) dP (θ) (28)

+

∫
log

Å
dP

dQ
(θ)

ã
dP (θ) (29)

=KQ,z

Å
− 1

λ

ã
+

1

λ
Rz (P ) +D(P‖Q) (30)

=−D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
− 1

λ
Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
+

1

λ
Rz (P ) +D(P‖Q) , (31)

where the function Rz is defined in (7), and the equality in (31) follows from
Lemma 2.2. Finally, from (31), it follows that

Rz (P )− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
=λ
Ä
D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
+D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
−D(P‖Q)

ä
, (32)

which completes the proof.

An interesting observation from Theorem 3.1 follows by re-writing (22) in terms
of the objective function of the ERM-RER problem in (8), as shown by the
following corollary.

Corollary 3.1. Given a σ-finite measure Q ∈ 4 (M,B (M)) and a probability
measure P ∈ 4Q (M,B (M)), it holds that for all datasets z ∈ (X × Y)

n and
for all λ ∈ KQ,z, with KQ,z in (10),(

Rz (P ) + λD(P‖Q)
)
−
(
Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
+ λD

Ä
P

(Q,λ)
Θ|Z=z‖Q

ä)
= λD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
(33)

where the probability measure P (Q,λ)
Θ|Z=z is the solution to the ERM-RER problem

in (8).

Inria



Sensitivity of the Gibbs Algorithm to Data Aggregation 11

Corollary 3.1 characterizes the deviation of the objective function of the ERM-
RER problem in (8) from its solution, i.e., the measure P (Q,λ)

Θ|Z=z in (11), to an
alternative probability measure P ∈ 4Q (M,B (M)).

3.1 Priors and Posteriors
In Theorem 3.1, when P is chosen to be identical to the reference measure Q,
it follows that

Rz (Q)− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
=λ
Ä
D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
+D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ää
, (34)

where the right-hand side is a symmetrized Kullback-Liebler divergence, also
known as Jeffrey’s divergence, between the measures Q and P (Q,λ)

Θ|Z=z. More im-

portantly, when Q is a probability measure, it follows that D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
> 0

and D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
> 0, which leads to the following corollary from Theo-

rem 3.1.

Corollary 3.2. Given a probability measure Q ∈ 4 (M,B (M)) and a proba-
bility measure P ∈ 4Q (M,B (M)), for all datasets z ∈ (X × Y)

n and for all
λ ∈ KQ,z, with KQ,z in (10), it holds that

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
6 Rz (Q) , (35)

where, the function Rz is defined in (7); and the probability measure P (Q,λ)
Θ|Z=z is

the solution to the ERM-RER problem.

Corollary 3.2 reveals the fact that, under the assumption that the reference
measure Q is a probability measure, for all λ ∈ KQ,z, with KQ,z in (10), the
expected empirical risk induced by the Gibbs algorithm P

(Q,λ)
Θ|Z=z is smaller than

or equal to expected empirical risk obtained by randomly sampling models from
the reference measure Q. This observation can be interpreted from a Bayesian
perspective. Note for instance that the probability measure Q on the measurable
space (M,B (M)) does not depend upon the available dataset. Hence, Q can
be interpreted as a prior probability measure on the models. This also justifies
interpreting the probability measure P (Q,λ)

Θ|Z=z as a posterior probability measure
on the set of models.

3.2 A Geometric Interpretation of Sensitivity
In Theorem 3.1, note that if Q is a probability measure, then it holds that
D(P‖Q) > 0, D

Ä
P‖P (Q,λ)

Θ|Z=z

ä
> 0, and D

Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
> 0, and thus, from (22),

it holds that for all λ ∈ KQ,z, with KQ,z in (10),

SQ,λ (z, P ) + λD(P‖Q)=Rz (P ) + λD(P‖Q)− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
(36)

>Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
+ λD

Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
− Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
(37)

=λD
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
, (38)
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12 Perlaza, Esnaola, and Poor

√
λD
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
√
λD
Ä
P‖P (Q,λ)

Θ|Z=z

ä √
SQ,λ (z, P ) + λD(P‖Q)

Figure 1: Geometric interpretation of the sensitivity (Definition 3.1).

and

SQ,λ (z, P ) + λD(P‖Q)=λ
Ä
D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
+D
Ä
P‖P (Q,λ)

Θ|Z=z

ää
(39)

>λD
Ä
P‖P (Q,λ)

Θ|Z=z

ä
, (40)

where the inequality in (37), follows from Lemma 2.1.

Hence, under the assumption that the measure Q is a probability measure, the
inequalities in (38) and (40) allow writing the equality in (22) as follows:(»

SQ,λ (z, P ) + λD(P‖Q)
)2

=

Å√
λD
Ä
P

(Q,λ)
Θ|Z=z‖Q

äã2
(41)

+

Å√
λD
Ä
P‖P (Q,λ)

Θ|Z=z

äã2
, (42)

which implies that a right-angled triangle can be constructed such that the
hypotenuse exhibits length

√
SQ,λ (z, P ) + λD(P‖Q) and the short sides exhibit

lengths
√
λD
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
and

√
λD
Ä
P‖P (Q,λ)

Θ|Z=z

ä
, respectively. Figure 1 shows

this interpretation of sensitivity.

4 Sensitivity to Dataset Aggregation

4.1 Dataset Aggregation
For all i ∈ {1, 2}, let ni ∈ N be the number of labelled patterns in the
dataset i and denote by zi ∈ (X × Y)

ni such dataset. Consider the dataset
z0 ∈ (X × Y)

n0 that aggregates dataset 1 and dataset 2 as constituents such
that

z0 = (z1, z2) . (43a)

The total number of labelled patterns is given by

n0 = n1 + n2, (43b)

and for all i ∈ {0, 1, 2}, the entries of the datasets are denoted as

zi=((xi,1, yi,1) , (xi,2, yi,2) , . . . , (xi,ni
, yi,ni

)) ∈ (X × Y)
ni . (43c)

Inria



Sensitivity of the Gibbs Algorithm to Data Aggregation 13

For all i ∈ {0, 1, 2}, let Qi ∈ 4 (M,B (M)) be a σ-finite measure. Let also
λi ∈ KQi,zi

, with KQi,zi
in (10), be a positive real number. Each dataset

induces a different ERM-RER problem formulation of the form

min
P∈4Qi

(M,B(M))
Rzi

(P ) + λiD (P‖Qi) , (44)

where Rzi
is the expected empirical risk defined in (7).

The following lemma shows that the empirical risk function and the expected
empirical risk function that emerge as a result of aggregating dataset z1 and
dataset z2 are convex combinations of the empirical risk functions and expected
empirical risk functions induced by the constituent datasets.

Lemma 4.1. Consider the datasets z0, z1, and z2 with lengths n0, n1, and n2,
respectively, that satisfy (43). Then, the empirical risk functions Lz0

, Lz1
, and

Lz2
, defined in (3b) satisfy for all θ ∈M,

Lz0 (θ)=
n1
n0

Lz1 (θ) +
n2
n0

Lz2 (θ) . (45)

The expected empirical risk functions Rz0
, Rz1

, and Rz2
, defined in (7), satisfy

for all σ-finite measures P ∈ 4 (M,B (M)),

Rz0 (P )=
n1
n0

Rz1 (P ) +
n2
n0

Rz2 (P ) . (46)

Proof: From the definition of the empirical risk function Lzi , with i ∈ {0, 1, 2},
in (3b) and the structure of the datasets z0, z1, and z2 in (43), it follows that
for all θ ∈M,

Lz0
(θ),

1

n0

n0∑
t=1

` (f(θ, x0,t), y0,t) (47)

=
n1
n0

(
1

n1

n1∑
t=1

` (f(θ, x0,t), y0,t)

)
+
n2
n0

(
1

n2

n2∑
t=n1+1

` (f(θ, x0,t), y0,t)

)
(48)

=
n1
n0

(
1

n1

n1∑
t=1

` (f(θ, x1,t), y1,t)

)
+
n2
n0

(
1

n2

n2∑
t=1

` (f(θ, x2,t), y2,t)

)
(49)

=
n1
n0

Lz1
+
n2
n0

Lz2
, (50)

where the equality in (49) follows from the concatenation of datasets z1 and z2
into z0, as shown in (43a). This completes the proof of the equality in (45). The
proof of the equality in (46) follows by integrating with respect to the σ-finite
measure P the equality in (45).

Lemma 4.1 highlights that the risk contribution of each dataset is proportional
to the corresponding number of labelled patterns supplied to the aggregate
dataset.
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14 Perlaza, Esnaola, and Poor

4.2 Sensitivity Analysis with Constituent Datasets

For all i ∈ {0, 1, 2}, the solution to the ERM-RER problem in (44) is a prob-
ability measure denoted by P (Qi,λi)

Θ|Z=zi
. In particular, from Lemma 2.1, it holds

that the probability measure P (Qi,λi)
Θ|Z=zi

satisfies for all θ ∈ suppQi,

dP
(Qi,λi)
Θ|Z=zi

dQi
(θ)=exp

Å
−KQi,zi

Å
− 1

λi

ã
− 1

λi
Lzi

(θ)

ã
. (51)

The probability measure P (Qi,λi)
Θ|Z=zi

in (51) defines a Gibbs algorithm, c.f., Al-
gorithm 1, whose training dataset is zi. The following theorem provides ex-
pressions for the differences Rzi

Ä
P

(Qj ,λj)

Θ|Z=zj

ä
−Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
, i.e., the sensitivity

SQi,λi

Ä
zi, P

(Qj ,λj)

Θ|Z=zj

ä
.

Theorem 4.1. Assume that the σ-finite measures Q1 and Q2 in (44) are mu-
tually absolutely continuous. Hence, for all i ∈ {1, 2} and j ∈ {1, 2} \ {i}, the
solution to the ERM-RER problem in (44), denoted by P (Qi,λi)

Θ|Z=zi
, satisfies:

Rzi

Ä
P

(Qj ,λj)

Θ|Z=zj

ä
− Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
=λi
Ä
D
Ä
P

(Qj ,λj)

Θ|Z=zj
‖P (Qi,λi)

Θ|Z=zi

ä
+D
Ä
P

(Qi,λi)
Θ|Z=zi

‖Qi
ä
−D
Ä
P

(Qj ,λj)

Θ|Z=zj
‖Qi
ää
, (52)

where the functions Rz1
and Rz2

are defined in (7).

Proof: The proof of Theorem 4.1 is immediate from Theorem 3.1 by noticing
that for all i ∈ {1, 2} and for all j ∈ {1, 2}\{i}, the diferences Rzi

Ä
P

(Qj ,λj)

Θ|Z=zj

ä
−

Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
can be written in terms of the sensitivity SQi,λi

Ä
zi, P

(Qj ,λj)

Θ|Z=zj

ä
.

The relevance of the sensitivity SQi,λi

Ä
zi, P

(Qj ,λj)

Θ|Z=zj

ä
in Theorem 4.1 is revealed

by the interpretation of the terms Rzi

Ä
P

(Qj ,λj)

Θ|Z=zj

ä
and Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
, with i ∈

{1, 2} and j ∈ {1, 2} \ {i}. The former represents the expected empirical risk
induced by the Gibbs algorithm P

(Qj ,λj)

Θ|Z=zj
on the unseen dataset zi, whereas the

latter represents the expected empirical risk induced by the Gibbs algorithm
P

(Qi,λi)
Θ|Z=zi

on the training dataset zi. Hence, the sensitivity SQi,λi

Ä
zi, P

(Qj ,λj)

Θ|Z=zj

ä
represents the loss or gain of using the Gibbs algorithm P

(Qj ,λj)

Θ|Z=zj
or P (Qi,λi)

Θ|Z=zi

over the data set zi. More specifically, the algorithm P
(Qj ,λj)

Θ|Z=zj
would induce a

smaller expected empirical risk than the one induced by the algorithm P
(Qi,λi)
Θ|Z=zi

over the data set zi if and only if

D
Ä
P

(Qj ,λj)

Θ|Z=zj
‖P (Qi,λi)

Θ|Z=zi

ä
+D
Ä
P

(Qi,λi)
Θ|Z=zi

‖Qi
ä
−D
Ä
P

(Qj ,λj)

Θ|Z=zj
‖Qi
ä
< 0. (53)
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Sensitivity of the Gibbs Algorithm to Data Aggregation 15

4.3 Sensitivity Analysis with Aggregate Datasets

The focus of this section is on the differences Rz0

Ä
P

(Qi,λi)
Θ|Z=zi

ä
− Rz0

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
and Rzi

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
− Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
, with i ∈ {1, 2}, which written in terms of

sensitivity respectively yield SQ0,λ0

Ä
z0, P

(Qi,λi)
Θ|Z=zi

ä
and SQi,λi

Ä
zi, P

(Q0,λ0)
Θ|Z=z0

ä
.

The following theorem provides explicit expressions for SQ0,λ0

Ä
z0, P

(Qi,λi)
Θ|Z=zi

ä
.

Theorem 4.2. Assume that the σ-finite measures Q0, Q1 and Q2 in (44) are
(pair-wise) mutually absolutely continuous. Hence, for all i ∈ {0, 1, 2}, the
solution to the ERM-RER problem in (44), denoted by P (Qi,λi)

Θ|Z=zi
, satisfies:

Rz0

Ä
P

(Qi,λi)
Θ|Z=zi

ä
− Rz0

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
=λ0
Ä
D
Ä
P

(Qi,λi)
Θ|Z=zi

‖P (Q0,λ0)
Θ|Z=z0

ä
+D
Ä
P

(Q0,λ0)
Θ|Z=z0

‖Q0

ä
−D
Ä
P

(Qi,λi)
Θ|Z=zi

‖Q0

ää
, (54)

where the function Rzi
is defined in (7).

Proof: The proof of Theorem 4.2 is immediate from Theorem 3.1 by noticing
that for all i ∈ {1, 2}, the diference Rz0

Ä
P

(Qi,λi)
Θ|Z=zi

ä
− Rz0

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
can be

written in terms of the sensitivity SQ0,λ0

Ä
z0, P

(Qi,λi)
Θ|Z=zi

ä
.

The aggregate sensitivity SQ0,λ0

Ä
z0, P

(Qi,λi)
Θ|Z=zi

ä
in Theorem 4.2 is reminiscent

to the generalization error or population error [17], except that instead of an
assumption on the probability measure on the data sets, additional data is
required to evaluate the generalization capabilities. More specifically, the dif-
ference Rz0

Ä
P

(Qi,λi)
Θ|Z=zi

ä
−Rz0

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
represents the gain or loss on expected

empirical risk over the aggregated dataset z0 obtained by using the Gibbs al-
gorithm P

(Qi,λi)
Θ|Z=zi

instead of the Gibbs algorithm P
(Q0,λ0)
Θ|Z=z0

. Remarkably, the
Gibbs algorithm obtained with all available data (the aggregate set z0) induces
a larger expected empirical risk than the one obtained using only the constituent
dataset i, that is, SQ0,λ0

Ä
z0, P

(Qi,λi)
Θ|Z=zi

ä
< 0, if and only if

D
Ä
P

(Qi,λi)
Θ|Z=zi

‖P (Q0,λ0)
Θ|Z=z0

ä
+D
Ä
P

(Q0,λ0)
Θ|Z=z0

‖Q0

ä
−D
Ä
P

(Qi,λi)
Θ|Z=zi

‖Q0

ä
< 0. (55)

The following corollary of Theorem 4.2 is obtained by subtracting the equalities
in (54) for i = 1 and i = 2.

Corollary 4.1. Assume that the σ-finite measures Q0, Q1 and Q2 in (44)
are (pair-wise) mutually absolutely continuous. Hence, for all i ∈ {0, 1, 2}, the
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16 Perlaza, Esnaola, and Poor

solution to the ERM-RER problem in (44), denoted by P (Qi,λi)
Θ|Z=zi

, satisfies:

Rz0

Ä
P

(Q1,λ1)
Θ|Z=z1

ä
− Rz0

Ä
P

(Q2,λ2)
Θ|Z=z2

ä
=λ0

(
D
Ä
P

(Q1,λ1)
Θ|Z=z1

‖P (Q0,λ0)
Θ|Z=z0

ä
−D
Ä
P

(Q1,λ1)
Θ|Z=z1

‖Q0

ä
−D
Ä
P

(Q2,λ2)
Θ|Z=z2

‖P (Q0,λ0)
Θ|Z=z0

ä
(56)

+D
Ä
P

(Q2,λ2)
Θ|Z=z2

‖Q0

ä)
, (57)

where, the functions Rz1
and Rz2

are defined in (7).

Corollary 4.1 allows the comparison of the Gibbs algorithms P (Q1,λ1)
Θ|Z=z1

and
P

(Q2,λ2)
Θ|Z=z2

with respect to the same dataset, i.e., the aggregated data set z0.
Note for instance that the Gibbs algorithm P

(Q1,λ1)
Θ|Z=z1

induces a smaller expected
empirical risk over the aggregated dataset than the one induced by the Gibbs
algorithm P

(Q2,λ2)
Θ|Z=z2

if and only if

D
Ä
P

(Q1,λ1)
Θ|Z=z1

‖P (Q0,λ0)
Θ|Z=z0

ä
−D
Ä
P

(Q1,λ1)
Θ|Z=z1

‖Q0

ä
(58)

<D
Ä
P

(Q2,λ2)
Θ|Z=z2

‖P (Q0,λ0)
Θ|Z=z0

ä
−D
Ä
P

(Q2,λ2)
Θ|Z=z2

‖Q0

ä
. (59)

Consider now the sensitivity SQi,λi

Ä
zi, P

(Q0,λ0)
Θ|Z=z0

ä
with i ∈ {1, 2}, which is char-

acterized by the following theorem.

Theorem 4.3. Assume that the σ-finite measures Q0, Q1 and Q2 in (44) are
(pair-wise) mutually absolutely continuous. Hence, for all i ∈ {0, 1, 2}, the
solution to the ERM-RER problem in (44), denoted by P (Qi,λi)

Θ|Z=zi
, satisfies:

Rzi

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
− Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
=λi
Ä
D
Ä
P

(Q0,λ0)
Θ|Z=z0

‖P (Qi,λi)
Θ|Z=zi

ä
+D
Ä
P

(Qi,λi)
Θ|Z=zi

‖Qi
ä
−D
Ä
P

(Q0,λ0)
Θ|Z=z0

‖Qi
ää
, (60)

where the function Rzi is defined in (7).

Proof: The proof of Theorem 4.3 is immediate from Theorem 3.1 by noticing
that for all i ∈ {1, 2}, the diferences Rzi

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
− Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
can be

written in terms of the sensitivity SQi,λi

Ä
zi, P

(Q0,λ0)
Θ|Z=z0

ä
.

More specifically, for all i ∈ {0, 1, 2}, the difference Rzi

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
−Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
represents the gain or loss on expected empirical risk over the aggregated dataset
zi obtained by using the Gibbs algorithm P

(Qi,λi)
Θ|Z=zi

instead of the Gibbs algo-

rithm P
(Q0,λ0)
Θ|Z=z0

.

Interestingly, the Gibbs algorithm that uses all available data induces a smaller
expected empirical risk (over the constituent dataset zi) than the one induced

Inria



Sensitivity of the Gibbs Algorithm to Data Aggregation 17

by the Gibbs algorithm that uses only the constituent dataset zi if and only
if

D
Ä
P

(Q0,λ0)
Θ|Z=z0

‖P (Qi,λi)
Θ|Z=zi

ä
+D
Ä
P

(Qi,λi)
Θ|Z=zi

‖Qi
ä
−D
Ä
P

(Q0,λ0)
Θ|Z=z0

‖Qi
ä
< 0. (61)

4.4 Homogeneous Priors and Proportional Regularization
In this section two assumptions are made. Firstly, given a σ-finite measure
Q ∈ 4 (M,B (M)), it is assumed that for all i ∈ {0, 1, 2} and for all A ∈
B (M),

Q (A) = Qi (A) . (62)

Secondly, the parameters λ0, λ1, and λ2 in (44) satisfy

λ1 =
n0
n1
λ0 and λ2 =

n0
n2
λ0, (63)

with n0, n1, and n2 integers satisfying (43b). These assumptions are referred to
as the case of homogeneous priors with measure Q, and the case of proportional
regularization with parameter λ0, respectively.

Under these assumptions, the following corollary follows from Theorem 4.1 and
Lemma 4.1.

Corollary 4.2. Consider the case of homogeneous priors with a σ-finite mea-
sure Q and proportional regularization with parameter λ0. Then, for all i ∈
{1, 2}, the solution to the ERM-RER problem in (44), denoted by P

(Qi,λi)
Θ|Z=zi

,
satisfies: (n1

n0
Rz1

Ä
P

(Q,λ2)
Θ|Z=z2

ä
− n2
n0

Rz2

Ä
P

(Q,λ2)
Θ|Z=z2

ä)
+
(n2
n0

Rz2

Ä
P

(Q,λ1)
Θ|Z=z1

ä
− n1
n0

Rz1

Ä
P

(Q,λ1)
Θ|Z=z1

ä)
= λ0

(
D
Ä
P

(Q,λ1)
Θ|Z=z1

‖P (Q,λ2)
Θ|Z=z2

ä
+D
Ä
P

(Q,λ2)
Θ|Z=z2

‖P (Q,λ1)
Θ|Z=z1

ä)
, (64)

where the functions Rz1
and Rz2

are defined in (7); and the integers n0, n1, and
n2 satisfy (43b).

For all i ∈ {1, 2} and j ∈ {1, 2} \ {i}, the Gibbs algorithm P
(Q,λi)
Θ|Z=zi

, which
is obtained by using the training set zi, induces an expected empirical risk
Rzi

Ä
P

(Q,λi)
Θ|Z=zi

ä
over the training set; and an expected empirical risk Rzj

Ä
P

(Q,λi)
Θ|Z=zi

ä
over the unseen dataset zj . The coefficient ni

n0
weighs the function Rzi

pro-
portionally to the number of datapoints in the dataset zi. Hence, the differ-
ence

nj
n0

Rzj

Ä
P

(Q,λi)
Θ|Z=zi

ä
− ni
n0

Rzi

Ä
P

(Q,λi)
Θ|Z=zi

ä
(65)

is reminiscent to a validation [18, Section 11.2] for the special case in which the
probability distribution of the data sets is unknown and thus, only available
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datasets can be used. More specifically, the dataset zj can be assumed to
be a validation dataset for the Gibbs algorithm P

(Q,λi)
Θ|Z=zi

. Hence, from this

perspective, the most performing Gibbs algorithm is P (Q,λk)
Θ|Z=zk

, with k ∈ {1, 2},
such that

k = argmin
i∈{1,2}

nj
n0

Rzj

Ä
P

(Q,λi)
Θ|Z=zi

ä
− ni
n0

Rzi

Ä
P

(Q,λi)
Θ|Z=zi

ä
, with j ∈ {1, 2} \ {i}. (66)

In (64), it holds that D
Ä
P

(Q,λ1)
Θ|Z=z1

‖P (Q,λ2)
Θ|Z=z2

ä
> 0 and D

Ä
P

(Q,λ2)
Θ|Z=z2

‖P (Q,λ1)
Θ|Z=z1

ä
>

0, which leads to the following corollary of Theorem 4.1.

Corollary 4.3. Consider the case of homogeneous priors with a σ-finite mea-
sure Q and proportional regularization. Then, for all i ∈ {1, 2}, the solution to
the ERM-RER problem in (44), denoted by P (Qi,λi)

Θ|Z=zi
, satisfies:(n1

n0
Rz1

Ä
P

(Q,λ2)
Θ|Z=z2

ä
+
n2
n0

Rz2

Ä
P

(Q,λ1)
Θ|Z=z1

ä)
>
(n1
n0

Rz1

Ä
P

(Q,λ1)
Θ|Z=z1

ä
+
n2
n0

Rz2

Ä
P

(Q,λ2)
Θ|Z=z2

ä)
, (67)

where, the functions Rz1
and Rz2

are defined in (7); and the integers n0, n1,
and n2 satisfy (43b).

Corollary 4.3 highlights that the weighted-sum of the expected empirical risks
respectively induced by the Gibbs algorithms P (Q,λ1)

Θ|Z=z1
and P (Q,λ2)

Θ|Z=z2
over their

unseen datasets is not smaller than the weighted sum of the expected empirical
risks respectively induced by those algorithms over their training datasets.

The following theorem provides an alternative expression for the difference
Rz0

Ä
P

(Q,λ1)
Θ|Z=z1

ä
− Rz0

Ä
P

(Q,λ2)
Θ|Z=z2

ä
in Corollary 4.1 under the assumption of ho-

mogeneous priors and proportional regularization.

Theorem 4.4. Consider the case of homogeneous priors with a σ-finite measure
Q and proportional regularization. Hence, for all i ∈ {1, 2}, the solution to the
ERM-RER problem in (44), denoted by P (Qi,λi)

Θ|Z=zi
, satisfies:

Rz0

Ä
P

(Q,λ1)
Θ|Z=z1

ä
− Rz0

Ä
P

(Q,λ2)
Θ|Z=z2

ä
=λ0

(
D
Ä
P

(Q,λ1)
Θ|Z=z1

‖P (Q,λ2)
Θ|Z=z2

ä
+ 2D

Ä
P

(Q,λ1)
Θ|Z=z1

‖Q
ä
−D
Ä
P

(Q,λ2)
Θ|Z=z2

‖P (Q,λ1)
Θ|Z=z1

ä
−2D

Ä
P

(Q,λ2)
Θ|Z=z2

‖Q
ä)

, (68)

where the function Rz0
is defined in (7).

Proof: In the case of proportional regularization, the following holds from The-
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orem 4.1,

n2
n0

Å
Rz2

Ä
P

(Q,λ1)
Θ|Z=z1

ä
− Rz2

Ä
P

(Q,λ2)
Θ|Z=z2

äã
= λ0

Ä
D
Ä
P

(Q,λ1)
Θ|Z=z1

‖P (Q,λ2)
Θ|Z=z2

ä
+D
Ä
P

(Q,λ2)
Θ|Z=z2

‖Q
ä
−D
Ä
P

(Q,λ1)
Θ|Z=z1

‖Q
ää
, and(69)

n1
n0

Å
Rz1

Ä
P

(Q,λ2)
Θ|Z=z2

ä
− Rz1

Ä
P

(Q,λ1)
Θ|Z=z1

äã
= λ0

Ä
D
Ä
P

(Q,λ2)
Θ|Z=z2

‖P (Q,λ1)
Θ|Z=z1

ä
+D
Ä
P

(Q,λ1)
Θ|Z=z1

‖Q
ä
−D
Ä
P

(Q,λ2)
Θ|Z=z2

‖Q
ää
. (70)

The substraction of the equality in (70) from the equality in (69) yields

n2
n0

Ä
Rz2

Ä
P

(Q,λ1)
Θ|Z=z1

ä
− Rz2

Ä
P

(Q,λ2)
Θ|Z=z2

ää
− n1
n0

Ä
Rz1

Ä
P

(Q,λ2)
Θ|Z=z2

ä
− Rz1

Ä
P

(Q,λ1)
Θ|Z=z1

ää
= λ0

(
D
Ä
P

(Q,λ1)
Θ|Z=z1

‖P (Q,λ2)
Θ|Z=z2

ä
+D
Ä
P

(Q,λ2)
Θ|Z=z2

‖Q
ä
−D
Ä
P

(Q,λ1)
Θ|Z=z1

‖Q
ä

−D
Ä
P

(Q,λ2)
Θ|Z=z2

‖P (Q,λ1)
Θ|Z=z1

ä
−D
Ä
P

(Q,λ1)
Θ|Z=z1

‖Q
ä

+D
Ä
P

(Q,λ2)
Θ|Z=z2

‖Q
ä)

. (71)

The left-hand side of the equality in (71) satisfies the following equalities:

n2
n0

Ä
Rz2

Ä
P

(Q,λ1)
Θ|Z=z1

ä
− Rz2

Ä
P

(Q,λ2)
Θ|Z=z2

ää
− n1
n0

Ä
Rz1

Ä
P

(Q,λ2)
Θ|Z=z2

ä
− Rz1

Ä
P

(Q,λ1)
Θ|Z=z1

ää
=
n1
n0

Rz1

Ä
P

(Q,λ1)
Θ|Z=z1

ä
+
n2
n0

Rz2

Ä
P

(Q,λ1)
Θ|Z=z1

ä
− n1
n0

Rz1

Ä
P

(Q,λ2)
Θ|Z=z2

ä
−n2
n0

Rz2

Ä
P

(Q,λ2)
Θ|Z=z2

ä
(72)

= Rz0

Ä
P

(Q,λ1)
Θ|Z=z1

ä
− Rz0

Ä
P

(Q,λ2)
Θ|Z=z2

ä
. (73)

Plugging (73) into (71) yields,

Rz0

Ä
P

(Q,λ1)
Θ|Z=z1

ä
− Rz0

Ä
P

(Q,λ2)
Θ|Z=z2

ä
= λ0

(
D
Ä
P

(Q,λ1)
Θ|Z=z1

‖P (Q,λ2)
Θ|Z=z2

ä
+D
Ä
P

(Q,λ2)
Θ|Z=z2

‖Q
ä
−D
Ä
P

(Q,λ1)
Θ|Z=z1

‖Q
ä

(74)

−D
Ä
P

(Q,λ2)
Θ|Z=z2

‖P (Q,λ1)
Θ|Z=z1

ä
−D
Ä
P

(Q,λ1)
Θ|Z=z1

‖Q
ä

+D
Ä
P

(Q,λ2)
Θ|Z=z2

‖Q
ä)

(75)

= λ0

(
D
Ä
P

(Q,λ1)
Θ|Z=z1

‖P (Q,λ2)
Θ|Z=z2

ä
−D
Ä
P

(Q,λ2)
Θ|Z=z2

‖P (Q,λ1)
Θ|Z=z1

ä)
(76)

+2λ0

(
D
Ä
P

(Q,λ2)
Θ|Z=z2

‖Q
ä
−D
Ä
P

(Q,λ1)
Θ|Z=z1

‖Q
ä)

. (77)

This completes the proof.
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The advantage of the expression in (68) with respect to the one in (57) is that
it does not depend on the probability measure P (Q0,λ0)

Θ|Z=z0
. That is, it does not

require to implement the Gibbs algorithm P
(Q0,λ0)
Θ|Z=z0

.

5 Conclusions and Final Remarks

Using the notion of sensitivity (Definition 3.1), the exact difference between
the expected empirical risks induced by Gibbs algorithms obtained with differ-
ent training datasets has been presented. More specifically, given two datasets
(constituent datasets), three Gibbs algorithms are obtained by using each of
the constituent datasets and the aggregate dataset as training data. In this
context, explicit expressions for the differences of the following quantities have
been obtained:
(a) The expected empirical risks (over a constituent dataset) induced by the
Gibbs algorithms respectively trained with constituent datasets (Theorem 4.1);
(b) The expected empirical risks (over the aggregated dataset) induced by the
Gibbs algorithm respectively trained with the aggregated dataset and a con-
stituent dataset (Theorem 4.2);
(c) The expected empirical risks (over the aggregated dataset) induced by the
Gibbs algorithms respectively trained with constituent datasets (Corollary 4.1);
and
(d) The expected empirical risks (over a constituent dataset) induced by the
Gibbs algorithm respectively trained with the aggregated dataset and a con-
stituent dataset (Theorem 4.3);
These differences, which correspond to forms of sensitivity, are in terms of the
relative entropy of the probability measures associated with the Gibbs algo-
rithms (solutions to the corresponding ERM-RER problems) and the reference
measures associated to each dataset. This reveals the impact of the choice of
these reference measures on the expected empirical risk induced by the corre-
sponding algorithms.

The sensitivities in (a) - (d) arise as performance metrics that are relevant when
a probability measure over the datasets is not available and thus, expectations
cannot be performed. This is even more relevant in the case in which differ-
ent datasets are obtained from unknown and different probability distributions.
This justifies that in this work, different references measures are associated to
the constituent and aggregate datasets. In some special cases, e.g, homogeneous
regularization and proportional regularization, it is shown that the expressions
in (a) - (d) are further simplified and the symmetrized Kullback-Liebler diver-
gence appears as one of the driving terms.

Finally, equipped with this analytical insights, necessary and sufficient condi-
tions for data aggregation to improve the performance of the Gibbs algorithms
are obtained.
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