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ABSTRACT
Despite the great potential offered by Artificial Intelligence in the 
context of smart mobility, it comes with the greater challenge of 
preserving the privacy of users. Federated Learning (FL) has gained 
popularity as a privacy-friendly approach, however, an equally 
important aspect rarely addressed in the literature, is its fairness. 
In this work we audit a FL-based privacy-preserving model. We 
use Entropy to determine similarity within the system’s input data 
and compare its value against that of the output to detect unfair 
treatment.
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1 INTRODUCTION
Understanding human mobility based on location-based data gen-
erated by smartphone devices has become a fundamental part of 
urban and environmental planning in cities. Through the collec-
tion of these geo-traces, it has become possible for the scientific 
community and policy-makers to model citizens’ daily commutes 
using crowd-sensed car-share data [5], city bicycles [8] and RFID 
cards [13], or to build predictive algorithms to estimate people’s 
flows [15] for traffic management and community resources [3]. 
However, location data is highly sensitive in terms of privacy as it 
can reveal a great level of information about individuals.

Recently a new set of works have been proposed that have lever-
aged decentralized methods to tackle privacy concerns. For example, 
the mobile crowd-sensing community has started to explore alter-
natives and possibilities of a paradigm shift that would decouple 
the data collection and analysis from a centralized approach to a 
distributed setting by moving towards Federated Learning [4, 11]. 
In Federated Learning (FL) end-devices train their own models us-
ing locally preserved training data while sharing the benefits of a

global aggregated model across all clients [12]. Other approaches
have proposed FL models to automatically assign the best-suited
location privacy-preserving methods (LPPM) [6]. While substan-
tial research progress has been made in the area of privacy, little
attention has been given to auditing the fairness of these black-box
models which are orchestrated in a decentralized setting. Existing
algorithms for fairness auditing are designed under the assumption
of centralized settings and operate with the assumption that they
have unrestricted access to the model [1, 2].

Motivated by these gaps, in this poster, we audit the fairness of
a FL model designed for preserving the privacy of individuals. In
order to do so, we first implement a set of metrics for measuring
and evaluating fairness in the context of spatial-temporal FL mod-
els as previously proposed by [10]. We then audit a FL model for
enhancing the location privacy of users, namely EDEN [6]. EDEN
is a FL model that automatically selects the best Location Privacy-
Preserving Method (LPPM) and its corresponding configuration
without sending raw geo-located traces outside the user’s device. In
this work, we treat EDEN as a black box, and to assess the outcome
of EDEN on traces we rely on pre and post entropy of trajectories
as we detail next.

2 BACKGROUND AND DEFINITION
Literature on fairness in machine learning strives to avoid the fact
that the decision made by automated systems and algorithms are
skewed toward the advantaged groups or individuals, by examining
fairness from two perspectives of group based and individual based
fairness. Individual fairness claims that similar individuals should
be treated similarly regarding their specific task. In most cases, the
difficulty with individual fairness lies in the notion of measuring
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦. To measure individual fairness in the context of spatial
temporal applications, we need two sets of definitions correspond-
ing to the similarity between users’ trajectories, and the similarity
of the outcome of the FL model. In this work we consider that indi-
viduals who are similar in terms of their mobility, should receive
an equal privacy gain from EDEN. We define the similarity of tra-
jectories by borrowing tenets from mobility literature and measure
entropy of users as a measure of their maximum predictability. In
this paper, we define entropy as a measure of Shannon Entropy
(𝐸ℎ). A larger entropy indicates greater disorder, and consequently
reduces the predictability of an individual’s movements. We define
entropy following notion in [9, 14] and measure (𝐸ℎ) as:

𝐸ℎ = −
𝑛∑︁
𝑖=1

𝑃 (𝑥𝑖 ) log2 [𝑃 (𝑥𝑖 )] (1)
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where𝑛 is the length of probability vector, 𝑃 (𝑥𝑖 ) is the probability
of visiting location 𝑥𝑖 considering only spatial pattern.

To assess the fairness of EDEN, we hypothesize that user traces
with similar entropy should receive similar privacy gain. As we treat
EDEN as a black-box model, we assess privacy gain as the entropy
of the traces after EDEN has been applied. In an ideal setting, we
expect the entropy to increase for all the users (i.e., predictability
to decrease). To measure individual fairness we thus compare the
entropy of similar user traces to their output by EDEN and we study
in detail the percentage of users for whom the entropy decreases
after applying EDEN. We refer to this group as the disadvantaged
group.

3 PRELIMINARY RESULTS
We evaluate the fairness of EDEN on three mobility datasets but
we illustrate the results of only one dataset: MDC [7] due to the
lack of space. Figure 1 presents the different levels of pre and post
entropies for EDEN’s LPPMs schemes for the MDC dataset. We
observe that EDEN increases the entropy of most users. Indeed the
cases where we find the outcome of EDEN to disadvantage users
(decrease their entropy) are 3% for MDC. We next study the fairness
for those traces that correspond to the disadvantaged group.

Figure 1: Entropy level of each LPPM schema on raw traces
and post-EDEN traces of MDC dataset.

Figure 2 presents the entropy decline for the disadvantaged users
for the MDC dataset. As we can see the users with lower entropy
prior to applying EDEN receive a relatively less decline in their
post-EDEN entropy as well as smaller variation. In this plot, the size
of each box presents the fairness as measured by the difference in
outcome after applying EDEN. That is users who initially had lower
predictability (high pre-EDEN entropy) exhibit a larger variation in
their post-entropy after applying EDEN, corresponding to different
treatments. Likewise, users with low entropy (highly predictable
patterns) receive a similar outcome from EDEN.

4 CONCLUSION
In summary, in this paper, we have studied the trade-off between
privacy and fairness and have presented our early results in audit-
ing a black-box privacy-preserving model, EDEN, on two real-life
datasets. We have shown that while EDEN increases the overall
entropy of users (decreasing their predictability), for a very small
percentage of users it fails to achieve fairness. Our future directions
include designing and implementing our methodology under an
automatic framework that could audit any black-box FL privacy
model by intercepting the input and output of the model.

Figure 2: The entropy decline of disadvantage groups.
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