
HAL Id: hal-03703594
https://hal.science/hal-03703594v1

Submitted on 24 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robustness to imperfect CSI of power allocation policies
in cognitive relay networks

Yacine Benatia, Romain Negrel, Anne Savard, E Veronica Belmega

To cite this version:
Yacine Benatia, Romain Negrel, Anne Savard, E Veronica Belmega. Robustness to imper-
fect CSI of power allocation policies in cognitive relay networks. IEEE Workshop on Sig-
nal Processing Advances in Wireless Communications, SPAWC 2022, Jul 2022, Oulu, Finland.
�10.1109/SPAWC51304.2022.9834027�. �hal-03703594�

https://hal.science/hal-03703594v1
https://hal.archives-ouvertes.fr


Robustness to imperfect CSI of power allocation
policies in cognitive relay networks

Yacine Benatia∗†, Romain Negrel‡, Anne Savard†§, and E. Veronica Belmega‡∗

∗ETIS UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, F-95000, Cergy, France
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Abstract—In this paper, the aim is to study the robustness
against imperfect channel state information (CSI) of the power
allocation policies maximizing the constrained and non-convex
Shannon rate problem in a relay-aided cognitive radio network.
The primary communication is protected by a Quality of Service
(QoS) constraint and the relay only helps the secondary com-
munication by performing complex and non-linear operations.
First, we derive the optimal power allocation policies under
Compress-and-Forward (CF) relaying under perfect CSI. Second,
we investigate the robustness of this solution jointly with that of
the deep learning existing solution for Decode-and-Forward (DF),
which we exploit here for CF as well. For all these solutions that
strongly rely on perfect CSI, our numerical results show that
errors in the channel estimations have a damaging effect not only
on the secondary rate, but most importantly on the primary QoS
degradation, becoming prohibitive for poor quality estimations.
Nevertheless, we show that the deep learning solutions can be
made robust by adjusting the training process to rely on both
perfect and imperfect CSI observations. Indeed, the resulting
predictions are capable of meeting the primary QoS constraint
at the cost of secondary rate loss, irrespective from the channel
estimation quality.

Index Terms—Robustness to imperfect CSI, full-duplex relay-
ing, cognitive radio, unsupervised deep learning

I. INTRODUCTION

The increasing number of connected users and devices
coupled with the heterogeneity of mobile applications gives
rise to new challenges for future generation wireless networks
in terms of throughput target, energy efficiency, spectral ef-
ficiency, delay, etc. Various technologies, such as cognitive
radio, full-duplexing, cooperative communication and artificial
intelligence have hence been proposed to address them, and
most likely multiple technologies will have to be cleverly
combined for this.

Firstly, cognitive radio and full-duplexing both tackle the
spectral scarcity by either allowing an opportunistic use of
under-utilized licensed bands, provided that the licensed trans-
mission is not degraded too much [1]–[3]; or by allowing
transmission and reception over the same resource block [4],
respectively. Secondly, cooperative communications are able
to improve the network throughput [5] by exploiting received
signals from other users within range. Finally, artificial intelli-
gence and, in particular, deep learning methods have recently
been shown to enable smart and efficient resource management
for future wireless networks [6].

Based on the above, we consider a relay-aided cognitive
radio network, as in [1], [7], and study the maximization of
the opportunistic rate when the relay performs either Decode-
and-Forward (DF) or Compress-and-Forward (CF) in a full-
duplex manner, while ensuring a predefined primary Quality
of Service (QoS) constraint. Because of the non-linear and
complex operations performed at the relay, the resulting re-
source allocation problems for cooperative cognitive networks
are non-convex ones and cannot be solved in closed-form in
general [7].

As opposed to our previous investigations [1], [7], which
rely on a perfect and global channel state information (CSI),
our main objective in this paper is to relax this assumption.
Indeed, perfect CSI can be particularly difficult to obtain in
cognitive networks, e.g., when estimating the channels from
the secondary to the primary network, the full cooperation of
the primary network may not be granted.

Related works: In order to solve complex and non
convex resource optimization problems, deep neural networks
(DNNs) have been recently exploited thanks to their powerful
capabilities to learn complex relationships based on relevant
training data [8]–[10]. In [8], a DNN has been proposed
to maximize the sum rate of a relay-aided non orthogonal
multiple access device-to-device network. A convolutional
neural network (CNN) solving a non-convex spectral and
energy efficiency maximization problem of a non-cooperative
multi-users wireless network has been proposed in [9]. In
[10], the authors propose an unsupervised method based on
DNN for the sum-rate maximization in a fading multi-user
interference channel.

More specifically, resource allocation problems for cog-
nitive radio networks have been addressed via DNN-based
approaches to maximize the opportunistic spectral efficiency
while regulating the interference caused to the primary user,
either in a centralized [11], or in a distributed manner [12].

To the best of our knowledge, except for our previous study
in [7], DNN-based techniques have not been used for resource
allocation problems in cooperative cognitive networks. Com-
pared to [7], in which we only focused on DF relaying, in this
paper, we extend our investigation to include CF relaying, for
which we derive the analytical solution under perfect CSI. We
then shift gears and investigate the robustness of our solutions,



either in closed form for CF or via deep learning for DF and
CF, to imperfect CSI.

Regarding the robustness to CSI imperfections, the authors
of [13] propose a DNN-based autoencoder to improve the
channel estimation quality (similarly to [14]), and only af-
terwards feeding these improved estimations at the input of a
second DNN performing the optimal power allocation in the
cognitive network under study. In our work, the underlying
power allocation problem is different because of the presence
of the relay node and we also treat the case of imperfect CSI
for the links between the secondary and primary network.

Main contributions: In this paper, we derive the optimal
power allocation policy for full-duplex CF relaying under
individual power constraints and a primary QoS constraint,
assuming perfect and global CSI. Then, we investigate the
robustness to imperfect CSI of this solution coupled with that
of our existing DNN solution for DF in [7], which we exploit
here also for CF. The training of the DNN is performed with
perfect CSI as in [7]. The resulting deep learning predictions
perform just as poor as the ideal benchmarks (i.e., the brute
force for DF, and our closed-form analytical solution for CF)
when tested with imperfect CSI and lead to prohibitive primary
QoS degradation levels. Indeed, the training with perfect CSI
conveys no information about channel estimation errors and
results in an unfit prediction in the case of imperfect CSI.
This is precisely the issue of our closed-form solution that
strongly relies on the perfect CSI assumption.

We further provide an easy fix to increase the robustness
of our deep learning methods, which is not the case for the
closed-form solution. We propose to use a new training dataset
composed of pairs of perfect channel estimations jointly with
their noisy versions. This enables the neural network to learn
when imperfect CSI is available at its input and to perform
much better by avoiding the prohibitive primary QoS viola-
tions, even when only poor channel estimations are available.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1. Cognitive relay-aided network under study.

We study the network illustrated in Fig. 1, consisting of
a primary link: transmitter UP – destination DP , and a
secondary link: transmitter US – destination DS aided by a
full-duplex relay node, as in [1], [7]. The received signals at
the relay, the primary and secondary destinations write as

YR = hPRXP + hSRXS + ZR (1)
Yi = hRiXR + hiiXi + hjiXj + Zj , (2)

where i, j ∈ {P, S}, i ̸= j; XP , XS and XR are the messages
sent by UP , US and the relay, of average power PP , PS

and PR respectively; ZR and Zi represent the additive white
Gaussian noise (AWGN) at the relay and at destination Di, of
variance NR and Ni respectively. Without loss of generality,
we assume that all noises are of unit variance such that
NR = NS = NP = 1; or equivalently assume that the channel
gains are normalized by the received noise variance, i.e.,
gij =

h2
ij

Nj
. We let h = {√gij ,∀i, j} represent the collection

of all normalized network channels.
Furthermore, we consider a full-duplex relay which is

assumed to cancel out any self-interference. Both messages
sent from the secondary network are treated as additional noise
at the primary destination; and the primary message is treated
as additional noise for all secondary receivers (relay and
destination DS). Hence, we can consider equivalent correlated
Gaussian noises at the relay and secondary destination of
variance ÑR = gPRPP+1 and ÑS = gPSPP+1 respectively;
where the correlation coefficient equals ρZ =

√
gPRgPSPP√

ÑRÑS

.

The achievable rate of the primary and secondary transmit-
ters are denoted by Ri, i ∈ {P, S}; and RP is the single-
user primary rate in the absence of the secondary network:
RP = 1/2 log2(1 + gPPPP ).

As in our previous studies [1], [7], the opportunistic network
is allowed to access the licensed resources provided that the
primary minimum QoS constraint is met in terms of achievable
primary rate degradation: RP ≥ (1− τ)RP , τ ∈ [0, 1].

To sum up, our objective is to maximize the achievable
secondary rate RS , when the relay and secondary transmitter
are also subject to maximum power budgets given as PR and
PS , which writes as

(OP) max
PR,PS

RS(PS , PR)

s.t. RP ≥ (1− τ)RP ,

0 ≤ PS ≤ PS , 0 ≤ PR ≤ PR.

Notations: A= gPPPP

(1+gPPPP )1−τ−1−1, C(x)= 1
2 log2(1+x),

x+=max{0, x}.
In the following, we focus on two relaying schemes, namely

Compress-and-Forward (CF) and Decode-and-Forward (DF).

A. Compress-and-Forward (CF)

For CF, the relay sends a compressed version of it’s received
signal. To simplify the presentation, we use the notations

K1 =gSRÑS+gSSÑR−2ρZ

√
gSRgSSÑSÑR,

K2 =(1−ρ2Z)ÑRÑS .

Replacing the achievable rate region obtained with CF in
[1] into our optimization problem (OP), leads to

(OCF) max
PR,PS

K1gRSPSPR + gSSPS(K1PS +K2)

K2gRSPR + ÑS(K1PS +K2)
,

s.t. gSPPS + gRPPR ≤ A, (QoS)

0 ≤ PS ≤ PS , 0 ≤ PR ≤ PR. (TP)



B. Decode-and-Forward (DF)

For DF, the relay decodes first the message send by the
secondary transmitter and then re-encodes it before being for-
warded to the destination. Replacing the resulting achievable
rate region in [1] into our optimization problem (OP) leads,
as in our previous work [7], to

(ODF) max
PR,PS ,α

RS(h, α, PS , PR)

s.t. Q(h, α, PS , PR) ≤ A, (QoS′)

0 ≤ PS ≤ PS , 0 ≤ PR ≤ PR, (TP)
0 ≤ α ≤ 1, with (ADF)

RS(h,α,PS ,PR)=C(min{fR(h,α,PS ,PR),fS(h,α,PS ,PR)})
Q(h,α,PS ,PR)=gSPPS + gRPPR + 2α

√
gSP gRPPSPR,

fR(h,α,PS ,PR)=
gSR(1− α2)PS

ÑR

,

f2(h,α,PS ,PR)=
gSSP2 + gRSPR + 2α

√
gRSgSSPSPR

ÑS

,

where the additional optimization parameter α ∈ [0, 1] follows
from the use of superposition coding.

III. PERFECT CSI
We start by investigating the two optimization problems

(OCF) and (ODF) when the secondary network has access
to perfect and global channel state information (CSI), before
delving into the robustness of our solutions in the more
realistic case of imperfect CSI.

A. Closed-form solution for CF

For CF relaying, in spite of (OCF) not being a convex
problem, we provide below its closed-form analytical solution.
To simplify its derivation, we will use the following notations:

C1 = K1gRP (gSSgRP − gRSgSP )
C2 = K1gRSgSPA− 2K1gSSAgRP − gSSgRP gSPK2

C3 = gSSA(K1A+ gSPK2)

C4 = K2gRSg
2
SP − ÑSK1gRP gSP

C5 = ÑSgSP (K1A+K2gSP )

The objective function of the optimization problem (OCF)
can be shown to be monotonically increasing unilaterally w.r.t.
PS for fixed PR, and w.r.t. PR for a fixed PS . This implies
that the optimal power allocation lies on the Pareto boundary
of the feasible set. Now, regarding the specific shape of the
feasible set defining the solution of (OCF), five cases can
arise as depicted in Fig. 2, depending on the relative position
of the QoS curve and the total power constraints:

[H1] if A
gRP

< PR and A
gSP

< PS , (aside from positivity) only
the QoS constraint restricts the feasible set;

[H2] if A
gRP

< PR and A
gSP

> PS , the QoS constraint
intersects the secondary user power constraint;

[H3] if A
gRP

> PR and A
gSP

< PS , the QoS constraint
intersects the relay’s power constraint;

[H4] if A
gRP

> PR and A
gSP

> PS and gSPPS + gRPPR < A,
the QoS constraint intersects both total power constraints;

[H5] if A
gRP

> PR and A
gSP

> PS and gSPPS + gRPPR ≥ A,
only the total power constraints define the feasible set.

Fig. 2. Feasible set of (OCF).

A close analysis of these five cases and, since the optimal
solution lies on the Pareto boundary of the feasible set, leads
us to the following result.

Theorem 1 When the relay employs CF over the cooperative
cognitive radio network, the solution to (OCF) can be found
analytically in closed form. Indeed, when [H5] is met, the QoS
constraint is not restrictive and the solution is simply P ∗

R =
PR, P

∗
S = PS . In all other cases, [H1]–[H4], the solution

to (OCF) lies on the QoS constraint such that P ∗
R = x∗,

P ∗
S = A−gRP x∗

gSP
, where x∗ is the closed-form solution to the

following single-value optimization problem

(OCFx) max
x

f(x) ≜
C1x

2 + C2x+ C3

C4x+ C5
,

s.t. x ∈ [xℓ; xu]. (3)

The values of xℓ and xu defining the box-type constraints
depend on the system parameters and the specific case.

Proof: In [H1]–[H4], the search for the optimal solution
is reduced to the candidate points meeting the QoS constraint
with equality. Hence, by setting P ∗

R = x, P ∗
S = A−gRP x

gSP
, the

original problem (OCF) is reduced to (OCFx).

Proposition 1 By studying the different cases in Fig. 2, the
values of xℓ and xu defining the feasible set of (OCFx) are

[xℓ; xu] =



[
0; A

gRP

]
, if [H1] is met,[

A−gSPPS

gRP
; A

gRP

]
, if [H2] is met,[

0; PR

]
, if [H3] is met,[

A−gSPPS

gRP
; PR

]
, if [H4] is met.

Now, the derivation of the closed-form solution x∗ to the re-
duced problem (OCFx) amounts simply to the analysis of the
first order derivative of the objective, denoted by f ′(x), and the
critical points, which are the solutions to f ′(x) = 0. The latter
reduces to a second-order equation, whose roots are given
by −C1C5±

√
∆′

C1C4
, where ∆′ = C2

1C
2
5 − C1C4(C2C5 − C3C4)

represents the corresponding reduced discriminant. Ultimately,
the analytical expression of x∗ depends on the sign of the
dominant coefficient C1C4 (of f ′(x) = 0), the sign of ∆′,



and on the relative position of the critical points (when they
exist) w.r.t. the feasible set [xℓ; xu] given in Proposition 1.
The full details are somewhat tedious and will be omitted here.

B. Deep learning for DF and CF

Solving the optimization problem (ODF) is very challeng-
ing because of the non convexity of both the objective function
and the QoS constraint. Hence, we proposed in [7] a new
approach based on unsupervised deep neural networks (DNN),
which exploits a customized loss function and for which the
training dataset contains only channel samples, i.e., h, without
ground truth data. For the sake of completeness, we briefly
present our proposed DNN-based method but kindly refer the
reader to [7] for complete details.

Since the non-convex QoS constraint is a requirement
rather than a physical hard constraint, we propose to
relax it and minimize the following customized loss
function instead of optimizing solely the secondary rate:

L =

N∑
ℓ=1

(
−RS(hℓ, α, PS , PR) + λ[Q(hℓ, α, PS , PR)−A]+

)
,

where N is the number of channel realizations
hℓ, ℓ ∈ {1, . . . , N} in the training dataset. Large values of
λ turn the optimization problem (ODF) into a QoS driven
one, at the cost of the secondary rate; whereas small values
of λ turn (ODF) into a rate driven one, at the cost of QoS
violation.

Based on extensive numerical simulations [7], we propose
to use a DNN architecture composed of four fully connected
hidden layers with M − 2M − 2M − 2M neurons, where
M = 128, followed by a rectified linear unit (ReLU) activation
function and a hyperparameter λ = 100.5. The final layer is
followed by sigmoid activation functions to ensure that the
outputs, i.e., the predicted values of α and powers PR and PS

satisfy the box-type constraints of (ODF).
Now, regarding CF relaying, our analytical solution in Sec.

III-A greatly relies on perfect CSI. In order to investigate
the robustness to imperfect CSI, we further exploit the deep
learning approach above to solve (OCF), using the same
neural network architecture and λ = 100.5 as for DF, by simply
removing the output α (specific to DF) and then retraining the
network with the corresponding CF loss function.

IV. ROBUSTNESS TO IMPERFECT CSI

In this section, we investigate via extensive numerical
simulations the robustness of our solutions to errors in the
channel estimations of the links related to the primary network:
hPP (direct primary link); hSP , and hRP (interfering links
from the secondary network to the primary receiver); hPR

and hPS (interfering links from the primary transmitter to
the secondary network). We assume that the estimations are
corrupted by additive Gaussian noise: ĥij = hij + εij ,
∀(i, j) ∈ {(P, P ), (S, P ), (R,P ), (P,R), and (P, S)} such
that εij ∼ N (0, σ2

ij), as per usual in the related litera-
ture [13], [14]. The estimation error variance is such that
σ2
ij = Var[hij ]/SNR, where Var[hij ] represents the empirical

variance of the true channels hij in the datasets (train and test)
and SNR ∈ [−10, 20] dB represents the signal-to-noise ratio
(SNR) of the estimator. The imperfect channel gains become
ĝi,j = (ĥij)

2/Nj . We henceforth denote by ĥ = {ĥij ,∀i, j}
the vector collecting the imperfect channel estimations (
the secondary channel links are assumed perfectly known:
ĥij = hij , ∀(i, j) ∈ {(S, S), (S,R), and (R,S)}).

Dataset: The simulation setup is the same as in [7] de-
scribed in details at https://github.com/yacine074/Robustness
SPAWC22, where all source codes can be found. The majority
of related works exploiting DNNs use simulated data given
the lack of real data available and in open access. Our train
(containing 106 samples), validation (20% of train) and test
(2 × 105 samples) datasets are disjoint and generated as
follows. The channel gains follow a common fading and
pathloss model: hij ∼

N (0,σ2
g)√

1+dγ
ij

, where dij is distance between

nodes i and j, the pathloss is γ = 3. The nodes’ positions are
generated uniformly within a 10 m square cell. The primary
QoS primary is τ = 25% and the maximum powers are
PP = PS = PR = 10 W.
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Fig. 3. Impact of imperfect CSI on our proposed solutions (via deep learning
and in closed form for CF) for DF and CF relaying over the test set.

DNN training: For the training phase, we assume that
we have access to a dataset containing perfect or high quality
channel samples {hℓ}ℓ obtained offline, but that in the running
or test phase we only have access to erroneous channel
estimations. First, our training is done solely by exploiting this
perfect CSI dataset, as in [7]. Second, we propose a different
training process to improve the robustness of our predictions to
imperfect CSI. To this aim, we build a different training dataset
containing pairs of perfect and imperfect channel estimations:
(ĥℓ,hℓ)ℓ, obtained simply by adding Gaussian noise to the



initial samples. The perfect channels hℓ are exploited in the
loss function L, whereas the imperfect ones ĥℓ are used as
inputs to the DNN.

To avoid overfitting effects, an early-stopping method is
adopted for both CF and DF with a patience parameter of
20 epochs.

Benchmarks and performance metrics: Our comparison
benchmarks are: the brute force or exhaustive search for DF
(due to its’ implementation simplicity), and our closed-form
solution for CF (due to its’ minimal computational cost).

The relative gap between the predicted achievable rate
with imperfect CSI and the achievable rate obtained by the
benchmark with perfect CSI, as follows:

G =
1
N

∑N
ℓ=1 R̂S,ℓ −R∗

S,ℓ

1
N

∑N
ℓ=1 R

∗
S,ℓ

(4)

where R̂S,ℓ denotes the secondary rate achieved by either
our DNN or the benchmark when the corresponding power
allocation policy relies on imperfect CSI and R∗

S,ℓ denotes the
ideal optimal rate via the benchmark obtained with perfect
CSI, both for the ℓ-th sample in the dataset.

The degradation of the primary rate caused by the oppor-
tunistic interference is defined as: ∆ℓ = 1−R̂P,ℓ/RP,ℓ, where
R̂P,ℓ is the primary rate achieved by either our DNN or the
benchmark when the corresponding power allocation policy
relies on imperfect CSI. Based on this metric, we define the
empirical outage as the proportion of samples in the dataset
for which the target primary QoS constraint is not met, and
the average primary rate degradation when in outage:

Outage =
1

N

N∑
ℓ=1

I [∆ℓ> τ ] , ∆out =

∑N
ℓ=1I [∆ℓ> τ ]×∆ℓ∑N

ℓ=1I [∆ℓ> τ ]
,

where I [x] equals 1 when x is true and 0 otherwise.
Robustness analysis over the test set: We now evaluate

the performance over new data samples that have not been
seen during the training phase and that are imperfect, i.e.,
{ĥℓ}ℓ. In Figure 3, we plot: the relative secondary rate gap
G (top sub-figures), empirical outage (middle) and average
primary rate degradation ∆out (bottom) as functions of the
quality of the channel estimator SNR ∈ [−10, 20] dB and for
both DF (left sub-figures) and CF (right) relaying schemes.
In each sub-figure we evaluate and compare the robustness to
imperfect CSI of the power allocation policy obtained by the
benchmark (i.e., brute force for DF, our closed-form solution
for CF), by our DNN trained with perfect CSI only, and by
our DNN trained with both perfect and imperfect CSI, i.e.,
our robust training described above.

Notice that the performance of the DNN trained with perfect
CSI only matches almost perfectly that of the benchmark
in all plots. This shows the high generalization capability
of our DNN approach, which was tuned for DF relaying
(its architecture and choice of λ) and can be exploited with
almost no change for CF relaying as well. Nevertheless, having
imperfect CSI reduces the secondary rate and, most critically,
it highly damages the primary communication: the primary

QoS is violated in 20− 40 % of cases (the Outage) and the
average degradation when in outage is of 35−60 % (the ∆out).
Finally, the outage of the DNN approach trained in a robust
manner is much improved and stays below 5%. At the same
time, the average degradation ∆out is also reduced (in between
0− 40%). All this comes at the cost of secondary rate, which
is acceptable in cognitive radio settings, in which the primary
communication must be protected.

V. CONCLUSIONS

In this work, we have analyzed the robustness to CSI
imperfections of two different solutions to the power allocation
problem in a relay-aided cognitive radio network: our closed-
form solution obtained for CF relaying, and a deep learning
method previously proposed for DF, which is also exploited
here for CF. The closed-form solution strongly relies on
perfect CSI, leading to prohibitive primary communication
degradation and is unfit in cognitive radio settings. At the
opposite, the deep learning methods can be easily rendered
robust to errors in channel estimations by cleverly adjusting the
training phase to exploit some information about the channel
estimation quality.
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