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Abstract: Low voltage distribution networks have not been traditionally designed to accommodate
the large-scale integration of decentralized photovoltaic (PV) generations. The bidirectional power
flows in existing networks resulting from the load demand and PV generation changes as well as
the influence of ambient temperature led to voltage variations and increased the leakage current
through the cable insulation. In this paper, a machine learning-based framework is implemented for
the identification of cable degradation by using data from deployed smart meter (SM) measurements.
Nodal voltage variations are supposed to be related to cable conditions (reduction of cable insulation
thickness due to insulation wear) and to client net demand changes. Various machine learning
techniques are applied for classification of nodal voltages according to the cable insulation conditions.
Once trained according to the comprehensive generated datasets, the implemented techniques can
classify new network operating points into a healthy or degraded cable condition with high accuracy
in their predictions. The simulation results reveal that logistic regression and decision tree algorithms
lead to a better prediction (with a 97.9% and 99.9% accuracy, respectively) result than the k-nearest
neighbors (which reach only 76.7%). The proposed framework offers promising perspectives for the
early identification of LV cable conditions by using SM measurements.

Keywords: smart meter; low voltage distribution networks; load flow computation; cable condition
degradation; cable insulation wear; machine learning approaches; decision tree; k-nearest neighbors;
logistic regression

1. Introduction

Electrical low voltage (LV) distribution networks are the last stage of the electrical
power network, which supply many dispersed small-scale loads. A set of equipment such
as MV-LV (medium voltage-low voltage) transformer substations, overhead/underground
lines, protection systems, etc., compose those networks. The radial topology is widely used
in LV distribution networks, with a voltage level around 230V. LV feeders are designed to
feed a limited amount of end users in order to reduce the influence of an interruption. Con-
sequently, either LV level interruption problems or LV equipment physical state problems
(such as the cable ageing and deterioration) have received less attention.

The French standard NF C 15–100 (harmonized with the European standard HD 384)
specifies that the insulating material of LV electrical cables must oppose the current all
along the conductor [1]. In fact, the deteriorations of the insulation material can increase
the discharge of leakage currents, which can create overcurrent and voltage variation
issues and can decrease the efficient operation and safety of the network. In addition,
LV distribution networks (initially designed for unidirectional power flows) are currently
subject to the bidirectional power flows and frequent voltage variations arisen from the
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extensive connection of decentralized photovoltaic (PV) generations. The voltage variation
problems [2–4] tend to increase the leakage current through the insulation material of LV
cables. Monitoring the insulation material degradation then becomes a relevant issue.

Investigations have been carried out for modelling this insulation degradation through
its resistivity variations. Additionally, the sensitivities of the insulation material to electrical
and physical phenomena (such as stress in applied voltage) are analyzed. By studying
the degradation of PVC (PVC (polyvinyl chloride)) insulated high-voltage cables, the
author in [5] has shown the impact of environmental conditions (phenomena such as
temperature and humidity variations) on the ageing of this insulation material. In [6], the
authors developed a test procedure for electrical cable insulation material. The authors
in [7] have evaluated the insulation resistance characteristics of LV cable under extreme
experiments (such as flame contact, over-current, and accelerated degradation). The
studies in [6,7] reveal that the network external operating conditions directly affect the
insulating properties of the material. They show that the insulation resistance value is
doubly inversely proportional to a 10 ◦C temperature increase. Reference [7] shows that
accelerated degradation in the LV cable significantly reduces its equivalent life since it
reduces the insulation resistance of the cable.

In the Netherlands, the research works [8–10] investigated underground LV cables
with a focus on jacket damage. Researchers in [8] worked on how water ingress can pro-
gressively degrade the LV cable. To accomplish this, the experimental study was carried
out based on two different plastic insulated cables (cross-linked poly-ethylene (XLPE) and
PVC) artificially damaged by drilling an 8-mm hole into each cable. The cables have been
tested in water exposure conditions and gradual degradation linked to partial discharges
has been observed in the insulating material after any water evaporation phenomena. The
different experiments showed that at a sufficient degree of degradation, breakdown can
occur in the PVC cable (due to leakage currents) while the XLPE cable was still under
operation. Indeed, the PVC, by decomposing, produces hydrogen chloride, which makes
the water more conductive. In [9], the same researchers made a comparative study of how
polymeric insulation materials affect degradation growing in LV underground cables. That
study pointed out the major role of the insulating material decomposition in the cable
degradation rate, regarding its chemical composition. From this aspect, PVC material has
led to significant degradation, unlike polyurethane (PU) and XLPE. In Hungary, refer-
ences [11–13] have studied the effects of distributed generation (DG) on the ageing and
degradation of PVC insulation. Firstly, the work was focused on the thermal ageing of
LV cables. Reference [11], by implementing a periodic thermal ageing test, has shown an
inverse correlation between hardness and the conductive properties of the cable. In [13],
the authors tracked the thermal aging of the PVC insulation material under various temper-
atures and different plasticizer contents. The results revealed the best PVC specimens for
the monitoring and characterizing thermal aging in PVC insulated cables. However, these
studies only focus on the physicochemical properties of the insulation material of cables.

Based on a diametrically opposed procedure, the study carried out in [14] has explored
the physical degradation of the cable through the sensitivity analysis of LV network voltage
variation to various degrees of cable insulation wear. In that work, the position and degree
of insulation degradation of the cable are modelled as uncertain variables. Then, a Monte
Carlo (MC) analysis process was used to characterize unknown variables. MC techniques
have been widely used in the literature to capture the uncertain and unobservable physical
quantities in distribution systems.

Scenario creation processes based on the MC technique have proven their effectiveness
either for uncertainty impact assessment associated with generated and consumed powers
at each nodes of the network as in [15,16], or for characterizing the low voltage distribution
systems (in a sensitivity analysis context), as in [17]. Moreover, the uncertainty impacts
associated to the electrical network parameters on the nodal voltages have been evaluated
in [18,19]. Furthermore, reference [20] investigated whether and when alternative mainte-
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nance strategies, using historical data, would be more profitable than the currently used
corrective maintenance.

In a recent research direction, machine learning (ML) techniques have been studied
for fault detection in [21–27]. The study in [22] addresses the benefit of a machine learning
framework for fault detection and classification in power systems. By analyzing the most
used ML techniques (within consideration of fault types and metrics for those techniques
evaluation), the authors have shown the benefits of supervised classifiers to reliably solve
power system problems. In the same way, a part of the research in [23] was dedicated
to the fault diagnosis in LV networks by using a deep neural networks approach. The
results of this study allowed the authors to highlight the most influencing parameters in
the fault assessment process, such as the fault resistance. In the context of grid monitoring,
the authors in [25] set up a power line modems (PLM)-based solution for the diagnostics
of distribution network cable. By implemented various ML algorithms (combined with
several preprocessing methods), the proposed approach ensures the employment of the
best algorithm for a given diagnostic procedure. The work has been oriented through a
two-stage approach from the degradation detection to the ageing and localized degradation
assessment of XLPE-insulated cable. The key point of this approach relies on access to
the PML database. The authors of [27] investigated the role of ML in integrity analysis
of subsea cables. From the design of a low frequency (LF) sonar system to the detection
of the cable degradation stage through accelerated life cycle testing, their study provides
a library of LF sonar responses depending on the cable types and conditions. Regard-
ing voltage issues in the distribution network, the researchers in [28] have worked on a
centralized voltage control framework within consideration of the uncertainties related
to the network working conditions and its physical parameters (dependency between
temperature variation and line resistance; internal resistance of the transformer and con-
sideration of the shunt admittances of power lines by using a PI line model). The authors
have implemented a fast decision-making method, which is cost-efficient since the deep
reinforcement learning-based agent can automatically adapt its behavior under varying
operating conditions.

The above ML-based studies give relevant and acceptable accuracy results with a
good speed and a low calculation burden. However, they do not integrate the assessment
of the electrical properties of the LV network cables associated to its growing insulation
degradation. It will therefore be interesting to investigate the integration of those ML tools
in the LV cable condition assessment. Hence, this paper focuses on the implementation of
a machine learning-based framework in order to identify the cable lines that present an
insulation degradation, considering the voltage and net demand variation profiles of the
distribution network.

The novelty of this study resides in its proposed machine learning-based framework
to identify the cable insulation wear, relying on nodal voltage and load demand variations.
Through the extensive analysis of cable insulation thickness variations and load flow
calculations, a synthetic database is built. Then, the observations in the dataset are classified
using several predictors whose impacts are studied. Indeed, the proposed work is a novel
approach, which lies in the use of data from already largely deployed smart meters. From
an economic point of view, it is a cost-effective approach compared to the actual costly
monitoring of HV transmission lines where specific meters and communication systems
are used (as implemented in France). In the LV distribution system, it is very expensive to
deploy sensors and dedicated information and communication technologies in the entire
electrical network. To tackle this challenge, this research project aims to take advantage of
available data from smart meters and leverage the ML capabilities in order to detect the soft
(early-stage) degradation of cable insulation (regardless of the type of fault). Despite the
existing literature related to fault detection in electrical networks, the main contribution of
the current study lies in its proposed methodology, where the problem has been approached
through highlighting the relationships between the operating conditions of network, its
nodal voltages and thickness variation of cable insulation.
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The remaining of this paper is organized as follows: Section 2 expresses the motivation
and objectives of this study. Sections 3 and 4 present the formulation of the insulation
degradation problem and the way that the LV line is modelled in this work. In Section 5,
the proposed methods of classification are introduced. Then, Section 6 presents the applica-
tion cases, while Section 7 discusses the obtained results. Finally, in Section 8, the main
conclusions are presented.

2. Motivation and Objectives

The degradation of the insulating material and its impact on the node voltages have
been investigated by [14] through the electrical conductance variation of the cable insu-
lation. A probabilistic framework has been proposed to that end by combining Monte
Carlo simulations and load flow computations. Assuming that the degradation degree
of the insulation material is an uncertain variable, the scenario creation procedure using
Monte Carlo (MC) has been implemented for characterizing the above uncertainty. The
load flow calculations finally determine the nodal voltages in the generated scenarios.
The developed framework in [14] provides us with the insightful information about the
statistical distribution of nodal voltage variations. Additionally, the probability of voltage
variation appearance, under various degrees of insulation wear, has been analyzed.

The current paper is a step further on this direction. The objective is to detect the
cable insulation degradation from the network operating point. To do so, relying on the
generated database consisting of nodal voltages (associated with the load and generation
profiles) as well as the cable insulation conditions, different machine learning techniques
have been implemented. The latter in the training phase will learn what would be the
possible nodal voltages linked to each load and generation profiles as well as the cable
insulation conditions. Then, in the test phase, relying only on the nodal voltages (associ-
ated with the load and generation data), they will identify if the network working point
corresponds to the normal conditions or if there is cable insulation degradation in the
tested network. As the main contribution of this work, it paves the way to an effective and
timely predictive maintenance of the LV distribution network avoiding the costly solutions
for the distribution system operators (DSOs) as well as the customers.

3. Characterization of the Cables Insulation Degradation

Electrical cables are subject to mechanical damage, excessive heat, ageing of material,
and electrical stress on a daily basis. These operating conditions cause degradation of
the cable insulation material, and in extreme cases, the cable can totally or partially lose
its insulation. As consequence, the insulation impedance decreases, which generates
a leakage current flowing through the cable to the ground. Therefore, this impedance
is composed of the ground resistance as well as the resistance of the degraded cable
insulation. The remainder of this section focuses on calculating the resistance associated to
the degraded insulation.

In a degraded cable, the leakage current flows radially outwards from the center
towards the surface of the cable along its length. So, let us assume a cylindrical cable that
has a total radius R, a length L and a conductor radius equal to r. The radius corresponding
to the insulating material is equal to R-r. Then, let us consider an elementary section of
that cable with a radius x and an insulation material thickness dx (infinitesimally small
layer of insulation) [29]. The elementary cylindrical section (of area 2πLx) has an insulation
resistance given by:

Riso−dx =
ρdx

2πLx
(1)

where Riso-dx and ρ are, respectively, the resistance and the resistivity coefficient of the
insulation material.
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From Equation (1), the insulation resistance of the cable is calculated by integrating
the thickness value dx over the radius of the insulating material [14]:

Riso =
ρ

2πL

∫ R

r

dx
x

=
ρ

2πL
ln

R
r

(2)

The above equation gives a general formulation of an electrical cable insulation
resistance. Then, by assuming that due to degradation the cable loses a part of its insulation
thickness, the conductor radius r will remain constant while the cable radius R will reduce;
radius variation will tend to decrease the insulation resistance value.

4. Modelling of the LV Line in Healthy and Degraded Conditions
4.1. Model of a Healthy Line

A single-phase LV line (between two nodes), in healthy condition, is modelled by its
longitudinal impedance. In this study, the shunt admittances (capacitive phenomenon)
from the traditional PI model are neglected because of the short distances (short cable
length between system nodes; see Section 6.1) as demonstrated in [18]. Therefore, the
equation of the line impedance becomes a combination of per-unit-length series resistance
Ri and reactance Xi as:

Zi = lengthi × (Ri + jXi) (3)

where Zi is the self-impedance of the line i (between nodes i and i + 1). Ri, Xi and lengthi
represent, respectively, the line resistance, the line reactance and the length of the line.

Figure 1 shows the series model of the above LV electrical line.
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Figure 1. Series model of a healthy line [14].

4.2. Model of a Line with Damaged Insulation

To model the electrical line, in the damaged insulation condition, the resistance
variation (Riso) due to the insulation degradation, established in Section 3, is incorporated
in the above model, as in [14]. Indeed, a shunt variable resistance, between the leakage
point (named t in Figure 2) and the ground, models the current discharge over an electrical
insulation material. Figure 2 shows the representation of this new electric path (series
combination of insulation resistance Riso and ground resistance Rg) in the line model.
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lengthi is defined as the total length of the damaged line i while the healthy part of
this line is represented by lengthih. lengthiw is the length of the section starting from the
leakage point to the next node.

lengthiw + lengthih = lengthi (4)

From the model in Figure 2, three impedances are defined according to the different
parts of the star model [14]:

Zat = Ri1 + jXi1 (5)

Zbt = Ri2 + jXi2 (6)

Zct = Riso + Rg (7)

To suite with the chosen load flow calculation method (presented below in Section 5.1)
the «T» line model shown in Figure 2 (star connection represented by three impedances Zat,
Zbt and Zct according to Equations (5)–(7)) is converted to an equivalent delta connection
circuit represented by Figure 3.
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This new PI model has resistive parallel branches with different resistance values
depending on the position of the leakage point. The delta model parameters are based on
the following equations:

ZAB =
Zat Zbt + Zbt Zct + Zct Zat

Zct
(8)

ZBC =
Zat Zbt + Zbt Zct + Zct Zat

Zat
(9)

ZAC =
Zat Zbt + Zbt Zct + Zct Zat

Zbt
(10)

5. Method of Analysis
5.1. Synthetic Creation of the Working Database

In the first stage, a working database is created from the cable thickness distribution
and the smart meter (SM) measurements data (i.e., the load and the PV measured each
quarter of an hour q). The SM inputs are used to obtain the net demand (ND).

NDi = Loadi − PVi (11)

where NDi, PVi and Loadi are, respectively, the net demand, the PV production and the
load demand at node i.

Then a load flow is computed, for each observation (each quarter q of each day), using
the Newton-Raphson load flow (NRLF) technique. In this study, the NRLF technique
is carried out for calculating the network nodal voltages. During NRLF computation,
the nodal powers are expressed in nonlinear algebraic equations. Then, Taylor series are
used to linearize those equations, which give the link between small variations in real
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and reactive powers as a function of small variations in the nodal voltage angles and
magnitudes. The obtained Jacobian matrix is expressed as:[

∆P
∆Q

]
=

[
∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

][
∆θ
∆V

]
=

[
J1 J2
J3 J4

][
∆θ
∆V

]
(12)

where the vectors ∆P and ∆Q represent the errors between the scheduled and calculated
powers at the load buses. The vectors ∆θ and ∆V represent, respectively, the variations in
the nodal voltage angles and magnitudes.

The equations for calculating the elements of the Jacobian matrix (using measured
powers by the smart meter) are given in [30]. The obtained Jacobian matrix is used to
update the network voltages. The ∆P and ∆Q vectors are then updated with the new
voltages. For the computation of the next iteration, the Jacobian matrix elements are
recalculated to obtain new network voltages, and so on, until the errors (i.e., ∆P and ∆Q
vectors) are minimized to a predefined value. This is what makes the NRLF technique
an iterative-based procedure. The particularity of this process is linked to the fact that
the load levels are imposed for obtaining voltages of the same magnitude range as those
obtained with a non-degraded cable. Figure 4 shows the flowchart of the synthetic creation
of the knowledge database (the global flowchart of the proposed approach including the
classification process is presented in Appendix A).
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5.2. Labelling Data

For the evaluation of the cable state, two classes are defined and applied to each
observation in the database (see Table 1). The class H is associated with the cables without
insulation wear while the class M is used to label the cables presented a certain degree of
insulation wear.



Energies 2021, 14, 2852 8 of 20

Table 1. Label table for the observations.

Cable State Labels Description

No insulation wear H H for Healthy
Insulation wear M M for Medium

5.3. Implemented Machine Learning Methods

This subsection focuses on the machine learning (ML) aspect of the developed tool.
Indeed, supervised learning approaches are ML techniques based on input and output data
(labeled data) and are employed for classification. The objective is to automatically generate
knowledge rules from a database containing “samples” of inputs and corresponding
outputs so that with a new input data, the output variable can be predicted (as represented
by Figure 5).
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Regarding supervised learning approaches, they can be divided into two categories [31]:

• Classification methods, which dispatch the input observations in categorical groups
and lead to the construction of predictive models for discrete responses.

• Regression methods, which describe the relationship between input variables (so-
called predictors) and the outputs (through a mathematical function) and lead to the
construction of predictive models for continuous responses.

In what follows, the supervised machine learning methods, implemented in this work,
have been discussed.

5.3.1. K-Nearest Neighbors Algorithm

The k-nearest neighbor (kNN) is a supervised ML algorithm that can be used in both
classification and regression models. For classification purposes, kNN is a non-parametric
method that supports non-linear solutions and can only provide labels as an output. By
assuming a value k for the number of nearest neighbors, kNN algorithm identifies the
training observations N closest to the new prediction point x, as represented in Figure 6.

Each new observation x is compared to those that already exist in the input dataset
by using a distance calculation (such as Euclidean distance, cosine of the angle formed by
the two observations, etc.). Then, the class with the smallest distance is assigned to x. The
algorithm therefore requires knowing k, the number of neighbors to consider. To choose
the right k, the kNN algorithm can be run several times with different values of k. Then,
the right k will be the one that has led to the best performance (i.e., the lowest error and the
best prediction accuracy).
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Studies have proved that kNN is a simple but highly efficient and effective algorithm
for solving real-life classification problems (such as the recommendation of movies on
NETFLIX) [33,34]. In electrical engineering applications, kNN is mostly use for fault
detection and classification but also for power quality classification. The kNN algorithm
also has the advantage of being a versatile and easy to understand and implement method
with no need for initial assumptions. However, when the volume of samples in the dataset
(so-called predictors) increases, the kNN algorithm tends to become slower. Even if there
are more precise classification algorithms, kNN remains a first-choice and simple algorithm
to model a classification problem and can achieve a high classification accuracy in problems
with unknown distributions, while familiarizing with the available database. For this
study, the kNN algorithm has been implemented by keeping the Euclidean distance as the
employed distance measure. For this study, the Euclidean distance has been employed as
the distance measure because of the ease of calculations and possible manual checking of
results. Additionally, a limited number of neighbors (k = 5) has been applied.

5.3.2. Decision Tree

A decision tree (DT) is a supervised ML algorithm used in both regression and classifi-
cation problems (usually called CART: classification and regression trees). For classification
purposes, DT is a widely used non-parametric method, which is based on a hierarchical
representation where the end-nodes are the classification and the intermediate nodes are
the tests on the properties of the observations (see Figure 7). In other words, building a
decision tree is a recursive process, going from the properties (drawn by branches) to the
conclusions about an observation (drawn by leaves).
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The decision tree starts with a root node (property of X1 in Figure 7) and branches
toward possible outcomes. Each of those outcomes leads to additional nodes (property
of X2 and X3), which also branch toward other outcomes. In other words, it is a visual
representation of the decision-making directly related to the problem to be solved.

A decision tree is a commonly used and highly understandable machine learning
method. It is a reliable algorithm for separating a dataset (predictor variables set) into
several given classes by providing some clear indications about the most relevant predictors.
For classification problems, a DT algorithm does not need much computation and does
not rely on functional assumptions (i.e., it is not affected by any non-linearity) while it
can build very complex trees and encounter an overfitting problem. Additionally, the
creation of optimal decision trees can be obstructed by the presence of dominate classes.
DT accuracy reduces, however, when the number of training examples to the number of
classes is low. Decision trees are widely used algorithms that give high-quality results
with the data, which mostly depends on the conditions [35,36]. In electric power system
applications, DT is used in load consumption prediction and load forecasting, preventive
and corrective control, power systems security assessment, etc. [37]. The DT algorithm, in
this study, is an adjusted binary classification decision tree.

5.3.3. Logistic Regression

Logistic regression (LR) is a parametric model that supports linear solutions and can
derive to a high confidence level (regarding its prediction). LR is a powerful algorithm
for finding boundaries between two classes. Mathematically speaking, an LR algorithm
uses regression to predict the probability (between 0 and 1) of a new observation x to be
classified into y, a given class (see Figure 8).
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A mathematical representation of LR will be made here. Considering the two-class
classification problem of this paper, an analogy can be made between the labels and the
output classes as shown in Table 2.

Table 2. Analogy between labels and classes.

State of the Line Labels Class in LR

No insulation wear H 1 for the positive class
Insulation wear M 0 for the negative class

The output hθ(x) of a logistic regression model (i.e., the probability of a new observa-
tion x to be classified into a class y) will be bounded as below:

0 ≤ hθ(x) ≤ 1 (13)
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{
I f hθ(x) ≥ 0.5 : predict y = 1
I f hθ(x) < 0.5 : predict y = 0

(14)

For this classification problem, the probability value hθ(x) can be calculated by using
a sigmoid function g (S-curve function to map predictions to probabilities):

g(u) =
1

1 + e−u (15)

Then hθ(x) can be written as bellow:

hθ(x) = g
(

θTx
)

(16)

where the input of the sigmoid function (u) is the weighted sum of the input predictors (x).
The key point is then to find the right values for parameters θ (θ being a vector of the

same size as the observation vector x) by solving a minimization problem:

min
θ

J(θ) (17)

with

J(θ) =
1
M

M

∑
m=1

cost
(

hθ

(
x(m)

)
, y(m)

)
(18)

where J is a cost function, M is the total number of observations in the dataset and cost is
the quadratic classification error that is expressed as follows [39]:

cost(hθ(x), y) =
1
2

(
1

1 + e−(θT x)
− y
)2

(19)

cost(hθ(x), y) =
{

− log(hθ(x)) i f y = 1
− log(1 − hθ(x)) i f y = 0

(20)

The cost function to be minimized will be equal to:

J(θ) = − 1
M

M

∑
m=1

[
y(m)log

(
hθ

(
x(m)

))
+
(

1 − y(m)
)

log
(

1 − hθ

(
x(m)

))]
(21)

The logistic regression method is the go-to method for binary classification problems
(problems with two class values). LR is easy to implement, fast and very efficient to train.
The LR algorithm gives good accuracy for simple datasets and the provided model coeffi-
cients can be interpreted as indicators of predictor importance. LR has the advantage of
being less likely to lead to over-fitting, except in high dimensional datasets. Logistic regres-
sion methods are used, in electrical engineering, for electricity monitoring, visualization
and prediction but also for fault detection in renewable energy production [40].

6. Application
6.1. Presentation of the Monitored Low-Voltage Distribution Network

The LV distribution network studied in this paper is presented in Figure 9. Having a
radial topology, it consists of 18 nodes, each one (except node 1, i.e., the slack bus) connected
to a customer (Ci) with photovoltaic panels (so-called prosumers). The LV network is part
of Flobecq town distribution system in Belgium [14,16], where each prosumer is equipped
with a smart meter (SM). The SM simultaneously records, at each node and for each quarter
of an hour, the PV generation, the injection and the consumption. Using those measured
energy values, the system powers P (active power) and Q (reactive power) are calculated
(Appendix B shows the associated lengths of the lines).
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Figure 9. Topology of the monitored LV distribution network.

For the sake of simplicity, the analysis of this paper is carried out on a portion of
the network shown in Figure 9, which is in the upward direction of node 3. The input
node (i.e., node 2) is connected to customer C1 while the output node (i.e., node 3) is
connected to customer C2. The first node (i.e., node 1) connected to the secondary side
of the transformer is supposed to be at the 230 V reference value. In this study, a month
of SM data is used to build the dataset. For each day, 96 measurements are made. The
total number of observations is thus equal to 2880 measurements (i.e., 30 × 96). Those
2880 observations are created while ensuring uniformity of the two classes in the synthetic
dataset. Table 3 shows how the cable states are distributed in the working database.

Table 3. Observation in the working database.

Observations State Number of Observations

H 1441
M 1439

Total 2880

6.2. Training and Validation Sets

Supervised machine learning algorithms consist of two phases—a training phase and
testing phase. During the training phase, the training samples and the class labels of these
samples are stored in a subset. The algorithm to learn and to create the right output from
the data uses this subset. While training, the algorithm modifies the training parameters.
In this phase, the algorithm is said to be learning. During the testing phase, the remaining
observations from the original dataset are stored in a subset without the associated output.
Then, a prediction is made on those samples to check how well the algorithm predicts the
desired output.

To fit those two phases, the original dataset has been reduced in two subsets: the
training subset and the test subset. The training subset is used to train the algorithm and
the test subset is used to make some predictions for the resulting model validation. To select
the observations in each data subset, a random logical selection was made. Tables 4 and 5
summarize the repartition of the data used in each classification algorithm.

Table 4. Partition of the data.

Database Percentage Observations

Working database 100% 2880
Training subset 70% 2016

Test subset 30% 864
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Table 5. Distribution of the observations in each subset.

Observations State Working Database Training Subset Testing Subset

H 1441 1008 441
M 1439 1008 423

Total 2880 2016 864

As explained in Section 2, the main purpose of this work is to identify if the monitored
cable section (i.e., the one between nodes 2 and 3) is either in the healthy working condition
(class H) or has any insulation wear (class M). This classification will be made by various ML
methods using an input dataset built from the provided smart meter data and computed
nodal voltage variations. Figure 10 presents the flowchart of the implemented tool for
solving that classification problem while Figures 11 and 12 show the specified classification
process for each implemented algorithm.
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6.3. Test Cases

In order to evaluate the performance of the proposed framework, two cases are
considered as follows.

6.3.1. Case 1: Impact of the Net Demand and the Thickness Variation

The first application case will evaluate the impact of the net demand and the thickness
variation on the model training and the prediction result. In this case, the net demand (ND)
and the nodal voltage (V) of both the input node (named ND1 and V1) and output node
(named ND2 and V2) are given to the classification input dataset. This helps the algorithm
in its learning process. The algorithm will understand if any variation in the data is related
to a cable degradation (based on the net demand/voltage level compromise) or to the client
net demand.

6.3.2. Case 2: Impact of the Net Demand on the Prediction Result

The second application case will evaluate the impact of the net demand on the model
training and the prediction result. In this scenario, only the nodal voltage (V) of both input
node (V1) and output node (V2) are given to the classifier in the training subset. The idea is
to evaluate if the algorithm can really distinguish between the effects of thickness variation
independent of the net demand variation.

7. Results and Discussion

A first investigation is carried out to find the nodal voltage variation range of the feeder
in a healthy cable condition (knowing that the maximum ND is associated to minimum
voltage). The obtained values are limited to [210.19, 242.2734] Volts as shown in Figure 13a.
In addition, Figure 13b presents the nodal voltages for moderately degraded cable located
in the line between nodes 2 and 3. It should be noted that the extreme degradation scenarios
as studied in [6] have not been considered in this work. Moreover, the severe faults (extreme
degradation scenarios) are easier to observe and detect. The interest in this study is focused
more on the detection of the cable at the beginning of degradation process, which will
be useful in managing cable maintenance and in anticipating the occurrence of severe
faults or outage. Hence, the moderately degraded cable condition is linked to a soft fault
degradation, which is not necessarily in breakage conditions but just introduces significant
variations in the voltage profile.
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Figure 13. Boxplots of nodal voltages obtained by the load flow calculations (a) for feeder in a healthy cable condition, and
(b) for feeder with a moderately damaged cable located in the line between nodes 2 and 3.

In the boxplots of nodal voltage profiles shown in Figure 13, the red positive signs
demonstrate the outliers of the voltages in the created scenarios. The outliers in Figure 13a
are related to the prosumers ND demand variations while those in Figure 13b are due
to the nonlinear equation of the insulation conductance (1/Riso) applied in the NRLF
computation. As it can be understood, the increase in insulation conductance (1/Riso) can
lead to the voltage drops shown by the outliers.

Tables 6 and 7 show the prediction results obtained by the studied classification
techniques in case 1 and case 2.

Table 6. Prediction results for application case 1.

Observations State Real State kNN DT LR

H 433 468 434 447
M 431 396 430 417

Total 864 864 864 864

Table 7. Prediction results for application case 2.

Observations State Real State kNN DT LR

H 433 299 454 524
M 431 565 410 340

Total 864 864 864 864

In Table 6, it can be observed that LR and DT demonstrate good accuracies in the
prediction process in case 1 (model trained with ND variations and nodal voltage profiles)
while kNN performance is in a lower level. For the case 2, where the net demand (DT)
is missing, it can be seen that the implemented algorithms lost performance. Therefore,
the ND is an important predictor (input variable) for the classifier, as well as the voltage
profiles. This is due to its unneglected impact on the nodal voltage variation range [6]. The
constructed tree for DT method is shown in Figure 14 (corresponding to case 1). It reveals
that normalized input ND profiles (named x1) will affect the prediction process as well
as the normalized output voltage profile (named x4). As a result, the LR and DT lead to
predictions with high accuracies in case 1.
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Figure 14. Constructed decision tree in case 1.

Table 8 gives the related training and prediction accuracy for each studied classification
method. By comparing these results, it can be concluded that the LR and decision tree are
great binary classification tools, while the kNN method leads to less accurate predictions.

Table 8. Training and prediction results accuracy for application case 1.

Algorithms Training Error Prediction Error (%) Accuracy (%)

kNN 0.15427 23.264 76.736
DT 0 0.116 99.884
LR 0 2.083 97.917

Figure 15 represents the confusion matrix of LR and DT methods for the first appli-
cation case in order to visualize the quality of the classifiers output (see if the predictions
really match the real associated classes for validating the prediction counts in Table 6) in a
three-dimensional plot. In Figure 15, the axes yPred and yvalid correspond, respectively, to
the outputs of the classifier (the predictions) and to the known cable conditions (real classes
from the original dataset). Only a few damaged cable conditions could not be predicted
with either LR or DT algorithms (small blue block corresponding to 30 observations in
Figure 15a and four observations in Figure 15b).
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Figure 16 shows the ROC (receiver operating characteristic) diagram representation of
the prediction, which shows the ratio between the true positive (sensitivity) and the false
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positive (specificity) outputs of the classifier. It is the curved diagram of the classifier’s
accuracy (in Table 8). Knowing that the closer the curve is to a 45-degree diagonal of the
ROC space, the less accurate the prediction result, it can be concluded that kNN is clearly
the least efficient algorithm in the studied application case.
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Figure 16. ROC diagram of the prediction result for k-nearest neighbors (kNN), decision tree (DT)
and logistic regression (LR) methods.

The conducted simulations on various degrees of insulation wear reveal interesting
information about the added value of data-driven approaches for the cable condition
assessment. Particularly, this work demonstrates the ability of different classification
algorithms to identify, on the basis of only ND and voltage variation, the LV network cable
condition assessment.

However, this presented work should not be directly extended for other practical
applications or be generalized, for two reasons. Firstly, the resistance of the insulation
material is calculated (in Section 3) within consideration of some LV cable electrical prop-
erties specific to each manufacturer. Secondly, machine-learning techniques have been
developed here for the degradation detection in operating domains where the causes of
observed variations are difficult to interpret. Hence, to avoid a direct median separation in
the observations, the input database has been built (in Section 5.1) by excluding the cases
of extreme degradation scenarios (severe faults) because they are easily detected without
any advanced techniques.

8. Conclusions

In this study, a machine learning-based framework is proposed for the identification
of low voltage cable degradation due to the insulation material wear. To this end, a
probabilistic tool was first developed to generate scenarios for the uncertain nature and
degree of the cable insulation degradation. Those scenarios were then associated with the
load demand and PV generation variations and used to build the nodal voltage database
by performing probabilistic load flow calculations. Different supervised learning methods
were finally applied to the generated database. In the first (training) stage, the studied
classification methods learned from the given inputs, its associated cable condition status in
order to be able to predict, in the second (test) phase, the cable condition corresponding to
each given network operating point. The comparisons between the implemented classifiers
show that logistic regression and decision tree approaches are powerful binary classification
tools with 97.917% and 99.884% accuracy performance, respectively, while the k-nearest
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neighbors method could not provide accurate predictions. The conducted study reveals
the added value of such a data-driven approach for the cable condition assessment.

The interest of this work is to set up a tool that can assist the distribution system
operators (DSOs) in an effective and timely predictive maintenance of the LV distribution
network, avoiding the costly solutions. Indeed, the obtained result offers promising
perspectives for the early detection of cable degradation by combining ML approaches,
load demands profiles and smart meter (SM) measurements.

For future work, this research will extend the current model to a complete network,
on the basis of cross nodal learning (learning between the models of each line section or
cables in the network). The current study is the first step towards a global and generalized
(e.g., by considering the type of cable as one of the classifier parameters) data-based early
identification of electrical low voltage cable degradation due to insulation wear, using
machine learning tools.
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Appendix B

Table A1. Line lengths of the studied LV network.

Line Between: Length (in Km) Line Between: Length (in Km)

Node 1 and Node 2 0.046 Node 10 and Node 11 0.044
Node 2 and Node 3 0.273 Node 11 and Node 12 0.01
Node 3 and Node 4 0.062 Node 12 and Node 13 0.015
Node 4 and Node 5 0.063 Node 13 and Node 14 0.014
Node 5 and Node 6 0.194 Node 14 and Node 15 0.041
Node 6 and Node 7 0.026 Node 5 and Node 16 0.396
Node 7 and Node 8 0.011 Node 16 and Node 17 0.093
Node 8 and Node 9 0.025 Node 17 and Node 18 0.117

Node 9 and Node 10 0.021 Node 7 and Node 19 0.119

References
1. Norme Française NF C 15-100 (Décembre 2002). Installations Electriques à Basse Tension. Available online: http://alternatif33.

free.fr/NFC15100_2002.pdf (accessed on 23 September 2020).
2. Codjo, E.L.; Vallée, F.; Francois, B. Impact of the line resistance statistical distribution on a probabilistic load flow computation. In

Proceedings of the 2020 6th IEEE International Energy Conference (ENERGYCon), Gammarth, Tunisia, 28 September–1 October
2020; pp. 637–642.

3. Bakhshideh Zad, B.; Hasanvand, H.; Lobry, J.; Vallée, F. Optimal reactive power control of DGs for voltage regulation of MV
distribution systems using sensitivity analysis method and PSO algorithm. Int. J. Electr. Power Energy Syst. 2015, 68, 52–60.
[CrossRef]

4. Bakhshideh Zad, B.; Lobry, J.; Vallée, F. A centralized approach for voltage control of MV distribution systems using DGs power
control and a direct sensitivity analysis method. In Proceedings of the 2016 IEEE International Energy Conference, Leuven,
Belgium, 4–8 April 2016.

5. Salivon, T. Vieillissement Thermique D’isolants en PVC et PELX de Câbles Electriques en Environnement Automobile. Ph.D.
Thesis, Ecole Nationale Supérieure d’arts et Métiers—ENSAM, Paris, France, 2017.

6. Techni-Tool Company. The Complete Guide to Electrical Insulation Testing; Ensto Finland OyEnsio. Available online: https:
//www.instrumart.com/assets/Megger-Guide-to-Insulation-Testing.pdf (accessed on 4 January 2020).

7. Kang, S.-D.; Kim, J.-H. Investigation on the insulation resistance characteristics of Low Voltage cable. Energies 2020, 13, 3611.
[CrossRef]

8. Kruizinga, B.; Wouters, P.A.A.F.; Steennis, E.F. Fault development on water ingress in damaged underground Low Voltage cables
with plastic insulation. In Proceedings of the 2015 IEEE Electrical Insulation Conference (EIC), Seattle, WA, USA, 7–10 June 2015;
pp. 309–312.

9. Kruizinga, B.; Wouters, P.A.A.F.; Steennis, E.F. Comparison of polymeric insulation materials on failure development in low-
voltage underground power cables. In Proceedings of the 2016 IEEE Electrical Insulation Conference (EIC), Montreal, QC, Canada,
19–22 June 2016; pp. 444–447.

10. Helmholt, K.A.; Groote Schaarsberg, M.; Broersma, T.; Morren, J.; Kruizinga, B.; Wouters, P.A.A.F.; Steennis, E.F.; Baldinger,
F. A structured approach to increase situational awareness in low voltage distribution grids. In Proceedings of the 2015 IEEE
Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015; pp. 1–6.

11. Csányi, G.M.; Tamus, Z.Á.; Varga, Á. Impact of Distributed Generation on the Thermal Ageing of Low Voltage Distribution
Cables. In Proceedings of the 8th Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS), Costa de
Caparica, Portugal, 3–5 May 2017; pp. 251–258.

12. Csányi, G.M.; Tamus, Z.Á.; Kordás, P. Effect of Enhancing Distribution Grid Resilience on Low Voltage Cable Ageing. In
Technological Innovation for Resilient Systems, Proceedings of the Doctoral Conference on Computing, Electrical and Industrial Systems
(DoCEIS), Costa de Caparica, Portugal, 29 March 2018; Springer: Cham, The Netherland, 2018; pp. 300–307.

13. Csányi, G.M.; Bal, S.; Tamus, Z.Á. Dielectric Measurement Based Deducted Quantities to Track Repetitive, Short-Term Thermal
Aging of Polyvinyl Chloride (PVC) Cable Insulation. Polymers 2020, 12, 2809. [CrossRef] [PubMed]

14. Codjo, E.L.; Bakhshideh Zad, B.; Vallée, F.; François, B. Analysis of Low-Voltage Network Sensitivity to Voltage Variations Due to
the Insulation Wear. In Proceedings of the 55th International Universities Power Engineering Conference (UPEC), Turin, Italy, 1–4
September 2020.

15. Klonari, V.; Toubeau, J.-F.; De Grève, Z.; Durieux, O.; Lobry, J.L.; Vallée, F. Probabilistic simulation framework for balances and
unbalanced low voltage networks. Int. J. Electr. Power Energy Syst 2016, 82, 439–451. [CrossRef]

16. Conti, S.; Raiti, S. Probabilistic load flow using Monte Carlo techniques for distribution networks with photovoltaic generators.
Sol. Energy 2007, 81, 1473–1481. [CrossRef]

http://alternatif33.free.fr/NFC15100_2002.pdf
http://alternatif33.free.fr/NFC15100_2002.pdf
http://doi.org/10.1016/j.ijepes.2014.12.046
https://www.instrumart.com/assets/Megger-Guide-to-Insulation-Testing.pdf
https://www.instrumart.com/assets/Megger-Guide-to-Insulation-Testing.pdf
http://doi.org/10.3390/en13143611
http://doi.org/10.3390/polym12122809
http://www.ncbi.nlm.nih.gov/pubmed/33260920
http://doi.org/10.1016/j.ijepes.2016.03.045
http://doi.org/10.1016/j.solener.2007.02.007


Energies 2021, 14, 2852 20 of 20

17. Klonari, V.; Bakhshideh Zad, B.; Lobry, J.; Vallée, F. Application of voltage sensitivity analysis in a probabilistic context for
characterizing low voltage network operation. In Proceedings of the 2016 International Conference on Probabilistic Methods
Applied to Power Systems, Beijing, China, 16–20 October 2016.

18. Bakhshideh Zad, B.; Lobry, J.; Vallée, F. Impacts of the model uncertainty on the voltage regulation problem of medium-voltage
distribution systems. Iet Gener. Transm. Distrib. 2018, 12, 2359–2368. [CrossRef]

19. Bakhshideh Zad, B.; Toubeau, J.-F.; Lobry, J.; Vallée, F. Robust voltage control algorithm incorporating model uncertainty impacts.
Iet Gener. Transm. Distrib. 2019, 13, 3921–3931. [CrossRef]

20. Klerx, M.H.P. Condition Assessment of Low Voltage Distribution Grids; Technische Universiteit Eindhoven: Eindhoven, The
Netherlands, 2020.

21. Asadi Majd, A.; Samet, H.; Ghanbari, T. k-NN based fault detection and classification methods for power transmission systems.
Prot. Control Mod. Power Syst. 2017, 2, 1–11. [CrossRef]

22. Baskar, D.; Selvam, P. Machine Learning Framework for Power System Fault Detection and Classification. Int. J. Sci. Technol. Res.
2019, 9.

23. Sapountzoglou, N. Fault Detection and Isolation for Low Voltage Distribution Grids with Distributed Generation; Université Grenoble
Alpes: Grenoble, France, 2016.

24. Ndeye, L.; Flaus, J.-M.; Adrot, O. Review of Machine Learning Approaches in Fault Diagnosis applied to IoT System. In
Proceedings of the 2019 International Conference on Control, Automation and Diagnosis ICCAD’19, Grenoble, France, 2–4 July
2019.

25. Huo, Y.; Prasad, G.; Lampe, L.; Leung, C.V. Smart-grid monitoring: Enhanced machine learning for cable diagnostics. In
Proceedings of the 2019 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC), Prague,
Czech Republic, 3–5 April 2019; pp. 1–6.

26. Khan, M.A.; Kim, J. Toward Developing Efficient Conv-AE-Based Intrusion Detection System Using Heterogeneous Dataset.
Electronics 2020, 9, 1771. [CrossRef]

27. Wenshuo, T.; Flynn, D.; Brown, K.; Valentin, R.; Zhao, X. The Application of Machine Learning and Low Frequency Sonar for
Subsea Power Cable Integrity Evaluation. In Proceedings of the OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 27–31
October 2019; pp. 1–6.

28. Toubeau, J.-F.; Bakhshideh Zad, B.; Hupez, M.; De Grève, Z.; Vallée, F. Deep reinforcement learning-based voltage control to deal
with model uncertainties in distribution networks. Energies 2020, 13, 3928. [CrossRef]

29. BICC Cables Ltd. Electric Cables Handbook, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 1997.
30. Saadat, H. Power System Analysis; McGraw-Hill: New York, NY, USA, 1999.
31. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press:

Cambridge, UK, 2014.
32. Noteworthy the Journal Blog. A Quick Introduction to K-Nearest Neighbors Algorithm. 2017. Available online: https://blog.

usejournal.com/a-quick-introduction-to-k-nearest-neighbors-algorithm-62214cea29c7 (accessed on 19 November 2020).
33. Chen, G.; Shah, D. Explaining the Success of Nearest Neighbor Methods in Prediction. Found. Trends Mach. Learn. 2018, 10,

105–199. [CrossRef]
34. Imandoust, S.B.; Bolandraftar, M. Application of K-Nearest Neighbor (KNN) Approach for Predicting Economic Events: Theoreti-

cal Background. Int. J. Eng. Res. Appl. 2013, 3, 605–610.
35. Carnegie Mellon University—School of Computer Science. Artificial Intelligence: Representation and Problem Solving. Introduc-

tion to Learning & Decision Trees. 2007. Available online: https://www.cs.cmu.edu/afs/cs/academic/class/15381-s07/www/
slides/041007decisionTrees1.pdf (accessed on 23 November 2020).

36. Great Learning Blog. Decision Tree Algorithm Explained with Examples. 2020. Available online: https://www.mygreatlearning.
com/blog/decision-tree-algorithm/ (accessed on 23 November 2020).

37. Liu, C.; Rather, Z.; Chen, Z.; Bak, C.L. An overview of decision tree applied to power systems. Int. J. Smart Grid Clean Energy 2013,
2, 413–419. [CrossRef]

38. JavaTpoint. Linear Regression vs Logistic Regression. 2018. Available online: https://www.javatpoint.com/linear-regression-vs-
logistic-regression-in-machine-learning (accessed on 25 November 2020).

39. Andrew, N. Machine Learning. Available online: https://www.coursera.org/lecture/machine-learning/classification-wlPeP
(accessed on 14 September 2020).

40. Ansari, M.; Srivastava, K.; Kaluri, R. Electricity Monitoring, Visualization and Prediction Using Logistic Regression. 2017.
Available online: https://www.researchgate.net/publication/319523536_Electricity_Monitoring_Visualization_and_Prediction_
using_Logistic_Regression (accessed on 4 January 2021). [CrossRef]

http://doi.org/10.1049/iet-gtd.2017.1829
http://doi.org/10.1049/iet-gtd.2018.6383
http://doi.org/10.1186/s41601-017-0063-z
http://doi.org/10.3390/electronics9111771
http://doi.org/10.3390/en13153928
https://blog.usejournal.com/a-quick-introduction-to-k-nearest-neighbors-algorithm-62214cea29c7
https://blog.usejournal.com/a-quick-introduction-to-k-nearest-neighbors-algorithm-62214cea29c7
http://doi.org/10.1561/2200000064
https://www.cs.cmu.edu/afs/cs/academic/class/15381-s07/www/slides/041007decisionTrees1.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15381-s07/www/slides/041007decisionTrees1.pdf
https://www.mygreatlearning.com/blog/decision-tree-algorithm/
https://www.mygreatlearning.com/blog/decision-tree-algorithm/
http://doi.org/10.12720/sgce.2.3.413-419
https://www.javatpoint.com/linear-regression-vs-logistic-regression-in-machine-learning
https://www.javatpoint.com/linear-regression-vs-logistic-regression-in-machine-learning
https://www.coursera.org/lecture/machine-learning/classification-wlPeP
https://www.researchgate.net/publication/319523536_Electricity_Monitoring_Visualization_and_Prediction_using_Logistic_Regression
https://www.researchgate.net/publication/319523536_Electricity_Monitoring_Visualization_and_Prediction_using_Logistic_Regression
http://doi.org/10.13140/RG.2.2.20915.94240

	Introduction 
	Motivation and Objectives 
	Characterization of the Cables Insulation Degradation 
	Modelling of the LV Line in Healthy and Degraded Conditions 
	Model of a Healthy Line 
	Model of a Line with Damaged Insulation 

	Method of Analysis 
	Synthetic Creation of the Working Database 
	Labelling Data 
	Implemented Machine Learning Methods 
	K-Nearest Neighbors Algorithm 
	Decision Tree 
	Logistic Regression 


	Application 
	Presentation of the Monitored Low-Voltage Distribution Network 
	Training and Validation Sets 
	Test Cases 
	Case 1: Impact of the Net Demand and the Thickness Variation 
	Case 2: Impact of the Net Demand on the Prediction Result 


	Results and Discussion 
	Conclusions 
	
	
	References

