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Figure 1: The input image (a) is a non-stationary texture. Our multi-scale analysis provides a hierarchy of labeled clusters: one cluster at
a coarse scale (b) includes sub-clusters at finer scales (c). It has several applications in texture synthesis, such as automatic pattern palettes
for interactive texture editing (d) and content selection for creating new non-stationary textures (e).

Keywords: texture analysis, pattern labeling, multi-scale cluster-
ing, superpixels, non-stationary textures, texture editing.
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Abstract

Texture synthesis is a well-established area, with many important
applications in computer graphics and vision. However, despite
their success, synthesis techniques are not used widely in practice
because the creation of good exemplars remains challenging and
extremely tedious. In this paper, we introduce an unsupervised
method for analyzing texture content across multiple scales that
automatically extracts good exemplars from natural images. Un-
like existing methods, which require extensive manual tuning, our
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method is fully automatic. This allows the user to focus on using
texture palettes derived from their own images, rather than on man-
ual interactions dictated by the needs of an underlying algorithm.

Most natural textures exhibit patterns at multiple scales that may
vary according to the location (non-stationarity). To handle such
textures many synthesis algorithms rely on an analysis of the input
and a guidance of the synthesis. Our new analysis is based on a
labeling of texture patterns that is both (i) multi-scale and (ii) unsu-
pervised – that is, patterns are labeled at multiple scales, and the
scales and the number of labeled clusters are selected automati-
cally. Our method works in two stages. The first builds a hierarchi-
cal extension of superpixels and the second labels the superpixels
based on random walk in a graph of similarity between superpix-
els and a nonnegative matrix factorization. Our label-maps provide
descriptors for pixels and regions that benefit state-of-the-art tex-
ture synthesis algorithms. We show several applications including
guidance of non-stationary synthesis, content selection and texture
painting. Our method is designed to treat large inputs and can scale
to many megapixels. In addition to traditional exemplar inputs, our
method can also handle natural images containing different textured
regions.

1 Introduction

Texture synthesis has received considerable attention and has now
reached a certain degree of maturity. In spite of substantial
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progress, automatic synthesis algorithms are still rarely used in
practical content production applications. One reason is that high
quality textures must be both multi-scale and non-stationary. Real-
world textures indeed exhibit patterns at different visual scales. (By
“pattern” we mean a distinctive shape and its content). For in-
stance, a cluster in Figure 1 (large-scale pattern) contains many
leaves (fine-scale, sub-patterns); textures contain repetitions of sim-
ilar patterns at all these scales. Moreover natural textures are rarely
stationary, as the distribution of patterns may vary across the tex-
ture (e.g. shady areas Figure 1). Despite this, non-stationarity is
still an open and difficult problem for by-example texture synthe-
sis. A recent study about “synthesizability” [Dai et al. 2014] shows
that “homogeneous” (i.e. stationary) textures are easier to synthe-
size and the homogeneity criterion performs the best in predicting
“how well present synthesis algorithms perform”. Indeed, most tile,
patch, pixel or optimization-based methods assume stationarity.

A popular approach to overcome this limitation is to spatially
distribute patterns according to label-maps which encode non-
stationarity, with each label representing a given pattern. The
pipeline generally calls for, (i) defining a label-map for the input,
(ii) synthesizing a label-map for the output, and (iii) synthesizing
the output texture. Whereas a large number of algorithms are able
to use label-maps for guiding texture synthesis, extraction and syn-
thesis of the label-maps have been given very little attention. In this
paper we tackle automatic extraction of label-maps from an input
exemplar and demonstrate that our technique may greatly improve
state-of-the-art synthesis algorithms.

The key idea of our approach is to consider stationarity as a scale-
dependent and context-dependent property. Dai et al. [2014] no-
ticed that scale matters; when zooming in, a repeated pattern be-
comes an “individual object” which is difficult to synthesize. In
other words, a stationary distribution of similar patterns becomes
non-stationary as the scale of the patterns reaches the size of the
exemplar. We can also analyze stationarity in a given context. For
instance, in Figure 1 the non-stationary distribution of leaves be-
comes stationary when regarding only clumps of leaves (context
without stones, moss, etc.). Our idea is to look at large scale pat-
terns as a “non-stationary context” for stationary distributions of
sub-patterns. We exploit these two ideas in our label-map extraction
algorithm where patterns are labeled not only at multiple scales but
also in their context, namely as sub-patterns of larger scale patterns.

Our algorithm takes a large image as input and extracts a multi-scale
label-map in two stages:

• Partitioning aims at detecting patterns (section 3). It works lo-
cally and produces connected components, namely superpix-
els. However, standard superpixels detect patterns with homo-
geneous color while we aim at detecting patterns containing
sub-patterns, possibly with strong color variations. Our con-
tribution is to extend SLIC superpixels hierarchically so as to
detect patterns at multiple scales.

• Labeling aims at describing patterns (section 4). The issue is
to identify similar patterns throughout the texture. It works
globally and produces a label-map that describe the texture
content at multiple scales. Our contribution is to state the
problem as a random walk in a bipartite graph which leads to
a nonnegative matrix factorization problem. Then we propose
a new factorization algorithm adapted to our large and sparse
matrix situation. This algorithm is unsupervised in the sense
that no prior training is required and the number of labels is
computed automatically.

Any pixel (section 5) and any region (section 6) of the texture can
be described using the same labels. The main application in texture
synthesis is that it allows for instant selection of contents at any

scale, which is useful for guiding non-stationary synthesis and for
interactive texture painting of extremely large outputs. We further-
more show benefits for extraction of stationary textures in arbitrary
images.

2 Related work

To place our work in context, we review relevant texture extraction
and synthesis methods.

2.1 Texture extraction

Texture extraction consists of identifying and labeling regions with
similar textures in an image. This is different from the well studied
problem of segmentation, which is comparable to the first stage of
our algorithm (local partitioning). Indeed, extraction methods can
afford to be extremely conservative when separating regions. If a
segmentation algorithm were as conservative, it would produce an
over-segmentation. Though it is possible to use segmentation algo-
rithms to extract textures, it leads to poor results [Lu et al. 2009a].
In section 3.5 we provide a comparison between our partitioning
algorithm and hierarchical segmentation [Arbeláez et al. 2011].

A first series of methods are “dominant texture extraction” in which
pixels are labeled as inside/outside a region of interest. It is moti-
vated by the observation that most natural images are inappropriate
exemplars for synthesis algorithms because they are non-stationary
or contain outliers. The goal is to select an appropriate region for
synthesis. Lu et al. [2009a] extracted a dominant texture from kilo-
pixel images using diffusion methods and performed a psychophys-
ical study to demonstrate the performance of their method [Lu et al.
2009b]. Lockerman extended this approach [2013] so as to manage
various inputs, larger images (megapixel), and allow user selection
of scale and location of interest. Wang and Hua [2013] provided
another method for dominant texture extraction which is orders of
magnitude faster then Lu et al. Based on a prior supervised learning
on a large set of exemplars, Dai et al. [2014] predicted a best candi-
date square region as input for synthesis. These existing “dominant
texture extraction” methods differ from our approach in that they
either require user input or make assumptions about the existence
of one dominant texture. Our algorithm does not require either.

A second series of methods extract multiple classes. Layered Shape
Synthesis [Rosenberger et al. 2009] considers a texture as an or-
dered set of homogeneous layers nested within each others. In a
pre-processing stage they extract these layers from the input and
generates a label-map with one label per layer. This is limited to
specific types of natural textures that result from processes such
as weathering or corrosion. In their Composite Texture Synthe-
sis method, Zalesny et al. [2005] compute a mono-scale label-map
using an unsupervised algorithm based on first and second image
statistics. The authors point out the need for a multi-scale approach
in order to detect sub-patterns in certain examples.

To our knowledge, no existing method is capable of extracting tex-
tures at multiple scales. Our method overcomes this limitation.

2.2 Texture synthesis using label-maps

A thorough review of texture synthesis methods is beyond the
scope of this paper since synthesis is not a contribution here. We
rather intend to bring out the broad usage of label-maps in vari-
ous synthesis algorithms, as they have been used under different
names (guidance-, control-, feature-, parameter-, correspondence-,
or label-maps) to guide the synthesis. Different properties of the
synthesized texture may be guided: the location of contents (non-
stationarity, including so-called “composite textures”), the distribu-



tion of patterns (regularity), or the shape of patterns (e.g. sharp
features).

Because of their very local nature, pixel-based methods struggle
with the control of pattern’s location. Thus label-maps are popu-
lar for guiding non-stationarity [Ashikhmin 2001; Hertzmann et al.
2001; Zalesny et al. 2005; Mertens et al. 2006; Rosenberger et al.
2009], pattern size and orientation [Zhang et al. 2003; Lefebvre and
Hoppe 2006], or perspective distortions [Wu et al. 2016].

A series of methods processes a global optimization by iterative
replacements of local neighborhoods. Label-maps have been used
in this context to guide non-stationarity [Narain et al. 2007] or shape
and distribution of patterns [Kaspar et al. 2015].

Patch-based approaches proceed by copying and pasting large
pieces of textures [Efros and Freeman 2001; Cohen et al. 2003;
Kwatra et al. 2003; Vanhoey et al. 2013]. Label-maps have been
used for guiding non-stationarity [Efros and Freeman 2001; Dia-
manti et al. 2015]. These methods effectively preserve individual
patterns, provided that the patches have an appropriate size and
shape with respect to the content, but the transitions between pat-
terns are difficult to hide. Our multi-scale labeling improves on
several difficult stages of theses methods such as size and content
selection.

Controlling the content is a challenging task for synthesis meth-
ods and thus many of them stumble over non-stationarity. There-
fore, a common strategy uses label-maps to guide the synthesis but
they often require a manual labeling of the input. Even those that
do automatic analyses make strong assumptions about their exem-
plars, such as requiring the entire exemplar to contain a single tex-
ture [Kaspar et al. 2015]. A way to describe any content in terms
of these labels is also needed. Our method provides fully automatic
tools to solve these issues using arbitrary natural images as exem-
plars, as demonstrated in sections 5 and 6.

3 Hierarchy of superpixels

Superpixels (SP) are small connected components with homoge-
neous appearance that form a partition of an image. They are pop-
ular as pre-processing step for image analysis and computer vision
applications. In this section we first summarize the original SLIC
algorithm and comment on its limitations with respect to our set-
ting. Then we describe our hierarchical extension that detects pat-
terns with sub-patterns and color variations. The notation is sum-
marized in Table 1.

3.1 Original SLIC algorithm

SLIC is a highly regarded algorithm for finding superpixels (SP)
with a homogeneous color. It is similar to k-means clustering, with
modifications to ensure both spatial and color coherence of the clus-
ters. It operates on a 5 dimensional space (2 spatial and 3 color
channels) along with the following distance metric:

δσ,m,I
(
x,x′

)
=

√
‖x− x′‖2color +m2

‖x− x′‖2spatial
σ2

(1)

where sample vectors x contain the spatial position p and the color
I(p). The scale parameter σ =

√
IxIy/#superpixels tunes the

scale of SPs or, equivalently, the approximate number of SPs. The
compactness parameterm tunes between sensitivity to distance and
sensitivity to color.

Input
I input image
Ix, Iy input height and width
p pixel (position)
I(p) pixel (color)

Superpixels
1 ≤ γ ≤ Γ levels of superpixels
σγ scale of level γ
Sγ partition at level γ
S superpixel (element of Sγ)
x pixel + color vector (5D)
xS average of x over S

Labels / clusters
1 ≤ l ≤ L levels of labels
ρl scale of level l
Cl label-map at level l

Table 1: Notations. The label-map Cl may be seen as a function
assigning a label to each superpixel or pixel. From the “set theory”
viewpoint it is a set partition, each subset being a cluster with a
unique label.

3.2 Limitations

SLIC superpixels’ usefulness stems from their ability to fit the
edges in the image. The algorithm works well for small super-
pixels with a homogeneous color. However, as shown in 3rd row
Figure 2, when σ is large, SLIC is unable to distinguish between
pattern and sub-pattern edges. Petals are merged with the wall be-
hind and leaves are merged with concrete. The problem is par-
tially solved by low-pass filtering of the image (Figure 2, 4th row).
While removing the fine sub-patterns, this also blurs the pattern
edges. Our solution (Figure 2, 2nd row) ignores edges within pat-
terns while keeping edges between patterns precisely located.

The SLIC algorithm is also very sensitive to the scale parameter
σ: a slight change in σ or initial seeds may result in a completely
different set of SPs. This can be seen Figure 2 and more clearly in
the accompanying video (poor temporal coherence while σ changes
gradually). In contrast our decomposition is much more robust be-
cause large scale SPs are constrained by fine ones. This robustness
w.r.t. σ allows us to select a small set of representative scales (sec-
tion 4) without magnifying errors caused by slight perturbations in
the selected scale.

Finally, the SLIC algorithm is not conducive to comparing SPs cal-
culated at different scales. In general, any SP at any scale can par-
tially overlap with any number of SPs at any other scale. Con-
versely, our decomposition produces a hierarchical structure where
a fine scale SP will never be divided at larger scales. This greatly
simplifies the use of our decomposition in hierarchical labeling.

3.3 Hierarchical partitioning

Our algorithm builds a hierarchy of superpixel partitions Sγ oper-
ating at scale σγ , 1 ≤ γ ≤ Γ. By hierarchy we mean:

• The scales are increasing: σγ−1 < σγ .

• Sγ−1 is a sub-partition of Sγ , i.e. every SP of Sγ−1 is included
in one SP of Sγ .

As described in Algorithm 1 the partitioning starts with a fine scale
partition S1. Then fine scale SPs are iteratively merged into larger
scale SPs to get S2, S3, etc. The main advantage of this merging
process is that large scale edges do respect fine scale patterns and



Our hierarchical
partitioning

SLIC

SLIC on
blurred image

Input image Blurred image      at scale

Figure 2: Superpixel decomposition from our hierarchical algorithm (2nd row) compared to the SLIC algorithm on the original (3rd row)
and on a blurred image (4th row). The average color of each superpixel is represented here.

blurring is prevented. The inner loop stopping criterion ensures that
σγ is the average scale of SPs in Sγ .

The priority criterion for selecting the pair (R,S) to be merged is
designed so that the SPs of Sγ match patterns at scale σγ . In other
words we aim at merging patterns finer than σγ . We achieve this by
guiding the process with the Gaussian stack of images defined by
Iγ = G∆σ ∗ Iγ−1, where I1 = I and G∆σ is the Gaussian blur
kernel of order ∆σ = σγ+1 − σγ . We then select the pairs (R,S)
minimizing

|R| δ2
σγ ,mγ ,Iγ (x̄R, x̄R∪S) + |S| δ2

σγ ,mγ ,Iγ (x̄S , x̄R∪S) . (2)

As shown in Appendix A, this criterion locally minimizes the global
error

ε (Sγ) =
∑
S∈Sγ

∑
p∈S

δ2
σγ ,mγ ,Iγ (x, x̄S) , (3)

where x is the 5D vector associated to p and x̄S denotes the av-
erage over S. It tends to produce compact SPs with respect to the
distance metric (1): it balances between spatial coherence and color
coherence.

To compute S1 we use a slightly modified form of the SLIC algo-
rithm designed to work on a GPU so as to run faster. The most
noticeable change from the original implementation is that we al-
low for a maximum of 1000 iterations and use a minimum super-
pixel size of 25 pixels. To improve result we also run the algorithm
10 times, and select the segmentation with the least global error as
defined by equation (3).

3.4 Constants Selection

In theory we could examine all scales stepwise from a few pix-
els up to the full image. However, this would just provide a large
amount of useless and redundant information. Instead, we exam-
ine scales regularly spaced by ∆σ = 3 pixels from a minimum of
σ1 = .02 min (Ix, Iy) up to a maximum of σΓ = .2 min (Ix, Iy).
This range allows us to keep most of the information needed for our
application while still greatly accelerating the computation.

Input: image I .
Input: parameters {σ1, . . . , σΓ} and {m1, . . . ,mΓ}.
Output: partitions {S1, . . . , SΓ}.
S← apply SLIC to I with parameters σ1 and m1

S1 ← S
I1 ← I
for γ = 2 . . .Γ do

Iγ ← G∆σ ∗ Iγ−1

for S ∈ S do recompute x̄S using Iγ

while #superpixels > IxIy/σ
2
γ do

Select the priority pair (R,S) according to Eq. (2)
Merge superpixels R and S into R ∪ S

end
Sγ ← S

end
Algorithm 1: Hierarchical partitioning.

We use m1 = 20 for the initial segmentation to impose spatial
regularity on the fine SPs. This compactness will be inherited by
the higher level superpixels due to our hierarchical constraint. Thus,
we don’t need to give the same weight to compactness for higher
scales. As such, we use a constant mγ = 1 for γ > 1.

3.5 Comparison with segmentation

To validate our algorithms we prepared a benchmark provided in
supplemental material. It consists of 15 large inputs with manually
drawn ground truth labeling. We use the same ground truth to eval-
uate both our partitioning and labeling (section 4); connected com-
ponents with the same label are considered as distinct regions in a
segmentation point of view. Unlike segmentation data sets, which
usually contain images with individual objects to be detected, we
chose inputs more suitable for texture extraction: non-stationary
textures (few perspective distortions and shadows) and natural im-
ages containing textures.
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Figure 3: Evaluation. (a) Input images with manual texture labeling taken as ground truth. (b) Our H-SLIC partitioning is compared to
hierarchical segmentation using under-segmentation error (the lower the better). Our labeling is tested with alternative feature vectors (c)
and compared to other clustering methods (d) using Rand index and covering measures (the higher the better).

One issue is to compare multi-scale sequences {S1, . . . , SΓ} with a
single scale ground truth G. The idea is that we do not expect one
single scale to perfectly match the ground truth but we want the hi-
erarchy to potentially recover any ground truth. Thus we plot curves
of the metrics on (Sγ ,G) against |Sγ |. So different sequences may
be compared even if abscissas |Sγ | are not equal.

Our hierarchical SLIC superpixels algorithm (H-SLIC) is similar to
segmentation though the regions we seek have different properties.
SP partitions are a basis for later clustering (under-segmentation).
In order to be useful each SP should ideally be contained in a single
labeled region of the ground truth. This condition can be assessed
by the under-segmentation error [Achanta et al. 2012]. We compare
H-SLIC with the hierarchical segmentation (H-Seg) of Arbeláez et
al. [2011]. Figure 3(b) show representative results (extensive re-
sults are provided in supplemental material). H-SLIC usually per-
forms better, especially on non-stationary textures and on images
with textures containing highly contrasted sub-patterns. H-Seg per-
forms well when the labeled regions have sharp boundaries.

4 Multi-scale label-maps

In the previous section we detected patterns as superpixels (SP)
with spatial coherence. Based on the resulting hierarchy of SPs, we
now label similar patterns throughout the image, so as to be able to
describe them and select them at different scales. At detection stage
we used a dense set of scales in order to save maximum information
about the content. Conversely the labeling stage identifies a small
set of useful labels at a small set of scales. Patterns with different
labels must be easy to distinguish and to describe, in order to be
helpful during the synthesis process. Thus, our algorithm generates
a sequence of scales ρ1 < ρ2 < . . . < ρL that are a subset of
{σ1, . . . , σΓ}. At each level 1 ≤ l ≤ L the number of labels is
automatically computed and then each SP at scale ρl is assigned a
label, producing the label-map, Cl.

Our work is inspired by Lockerman et al. [2013] for measuring the
similarity between patterns (section 4.1), with local scaling as pro-
posed by Zelnik-Manor et al. [2004]. We formulate labeling as
a random walk problem on a bipartite graph which we solve by
Nonnegative Matrix Factorization (section 4.2). Then we propose a
multi-scale clustering (section 4.3). Finally, we discuss our design
choices and evaluate our algorithm (sections 4.4 to 4.7).

4.1 Similarity graph between patterns

Comparing patterns first requires describing them. As suggested
by Lockerman et al. [2013] we use a 15 dimensional feature vector
to represent each superpixel. The vector includes the first 5 cen-
tralized moments for each of the 3 Lab color channels. That is it
includes the mean, standard deviation, and 3 higher moments. The
kth moment is weighted by 1

k!
.

The distance dij between two SPs i and j is then defined as the L2

norm of the difference between the corresponding feature vectors.
We now need to turn the distance measure into a similarity measure
suitable for later clustering. We define a similarity matrix D̂ with
entries

D̂ij = e

−d2ij
d̂id̂j

e−r

, (4)

where d̂i equals the distance between SP i and its 6-th closest neigh-
bor as suggested by Zelnik-Manor et al. [2004]. It is a local scaling
parameter that automatically adapts the measure to the local point
density. e−r is a global normalization parameter suggested by Lu.
et. al. [2009a] where r maximizes

∂

∂r
log
∑
i,j

D̂ij =

(∑
i,j

D̂ij

)−1∑
ij

d2
ij

d̂id̂j
e−rD̂ij (5)

The matrix is made sparse by saving the 256 largest entries in each



column (the remaining ones are set to zero) calculated by the ANN
library [Mount 2010] with a ε = .001. Then the columns are nor-
malized, resulting in a sparse stochastic matrix D with entries

Dij =

(∑
k

D̂kj

)−1

D̂ij (6)

As illustrated in Figure 4 this can be interpreted as the transition
matrix of a random walk on a directed k-nearest-neighbors graph
whose nodes are SPs. Starting on any SP j the walker jumps to
SP i with probability Dij . A probability of presence is represented
by a probability column vector p. Starting at p, one step leads to
Dp and s steps lead to Dsp. This idea has been used on square
tiles [Lockerman et al. 2013] as follows: starting at j, that is to say
p = δj the Kronecker symbol, the probability Dsδj is interpreted
as a map of similarity between all SPs and SP j (see the intensity
of red dots in Figure 4). Inspired by this work, we go further by
extracting clusters from the graph.

4.2 Mono-scale clustering

Our clustering assigns a label C(i) to each SP i. We formulate the
problem as a random walk on a bipartite graph. Then we propose
a new algorithm that both (i) computes the number of clusters and
(ii) clusters the SPs with maximum intra-cluster similarity.

In our case the similarity is described by a random walk on the
graph of SP-nodes with transition probabilitiesDs. Our key insight
is treating a cluster as a latent variable embedded in the random
walk: we assume that the graph has some hidden structure which
the walker is discovering. We model this structure by a new graph,
as illustrated in Figure 4: there is still a “SP-node” (in blue) for each
superpixel, and there is a new “cluster-node” (in green) for each
cluster. The graph is bipartite: edges are only permitted between
the SP-nodes and the cluster-nodes. Each edge from a SP-node
i to a cluster-node c is weighted by Gcj , which is intuitively the
probability of the SP i to belong to cluster c. The reverse edge is
weighted by Fic: the intuition is that Fic/maxj{Fjc} measures
how well SP i fits in cluster c. In the end each SP i is labeled by the
most probable cluster

C(i) = argmax
c

Gci (7)

The challenge consists in finding the number of cluster-nodes and
the weights F and G. We formulate the problem as

argmin
F,G

‖Ds − FG‖2 (8)

s. t. F and G are left stochastic
(non-negative with all columns adding up to 1)

where matrix norm is Froebenius norm. It can be understood as fol-
lows: we search for a two-step random walk in the bipartite graph,
from a SP-node to a cluster-node with probability G, and back to
a SP-node with probability F . We want this process FG to be as
equivalent as possible with the processDs which describes the sim-
ilarity between SPs (see section 4.1).

Equation (8) is a Nonnegative Matrix Factorization (NMF) prob-
lem. It is known for its ability to extract a small set of meaningful
features [Gillis 2011; Gillis 2014] from large data: the number of
representatives (i.e. columns in F , or rows in G, clusters in our
case) is much smaller than the input data (Ds in our case).

Solving NMF is NP-hard in general [Gillis 2014] so many approxi-
mation heuristics have been created. However, our particular case’s
structure makes it hard to apply many existing methods. While D

(a) transitions

(b)   steps 

(d) 1 step    + 1 step 

(c) transitions   ,

Figure 4: Random walks on a bipartite graph. Each superpixel is
represented by a 15D feature point which is a node of the directed
k-nearest-neighbor graph (a) with transition probabilities based on
the similarity between pairs of SPs. For any given starting node,
random walks with several steps provide a similarity map repre-
sented by intensity of red dots in (b). Our algorithm approximates
the similarity maps by a bipartite graph (c) with a small set of new
“cluster-nodes” (green). The walker jumps only twice: from a SP-
node to a cluster-node, and back to a SP-node. The goal is to con-
struct such a graph that’s destination probability (d) approximates
the similarity maps (b).

is a sparse matrix, Ds is, in general, an accountably large dense
matrix which is prohibitively expensive to compute. Some existing
algorithms are able to efficiently handle such matrices without ex-
plicit computation but are only to approximate our stochastic con-
straint [Berry et al. 2007]. As such, we have created our own family
of algorithms specifically designed for our particular problem.

We developed a modified gradient descent solver, designed to fac-
tor powers of sparse matrices into statistic matrices (F,G). Choos-
ing the number of representatives and the initial values is difficult
because it depends on the context. One of our contributions is a
heuristic for finding the number of labels and the initial (F,G).

We have also developed algorithms which make the factorization
both faster and more reliable. When the number of superpixels is
extremely large the NMF problem becomes overdetermined. To
keep the problem tractable, we have developed a new projection
algorithm which can relate our NMF problem to a simpler smaller
one. Finally, due to the random nature of our starting values, it is
possible that our algorithm might find a unwanted local minimum.
We therefore introduce a novel boosting algorithm which combines
multiple solutions to try to find a better final one.

For brevity we moved all the details to a supplemental document. A
reader interested in understanding the overall flow of this algorithm
can consider it a black box to solve equation (8). The viability of
our approach relies on these algorithms. In particular the design for
powers of large sparse matrices makes it possible to work on large
images (many megapixels).

The use of a NMF algorithm has several advantages over other clus-
tering methods. First, it utilizes and approximates the diffusion
framework that past works have shown to work extraneously well



[Lu et al. 2009b; Lu et al. 2009a; Lockerman et al. 2013]. Sec-
ond, a NMF algorithm requires a similarity map as input, allowing
it to work with datasets where the creation of feature vectors is not
possible. Third, we obtain information as to how well each super-
pixel fits into each cluster. While the last two properties are only
indirectly used in this paper, they will allow for future works to
use our algorithm for other graphical purposes. Thus, we hope that
the introduction of NMF based methods will be useful beyond our
particular application.

4.3 Multi-scale clustering

We propose a clustering algorithm which provides a multi-scale
label-map as illustrated in Figure 5. Our algorithm takes as input
the hierarchy of superpixels (section 3) and returns a small subset of
scales ρ1 < ρ2 < . . . < ρL and the label-maps {C1, C2, . . . , CL}
at these scales. It works as follows:

• Bottom-up stage: compute the scales ρl and independent
label-maps C̃l. It first creates a label-map C̃1 at scale
ρ1 = σ1 as discussed in Section 4.2. It then does a binary
search to find the minimum scale γ such that each S ∈ Sγ
overlaps multiple clusters in C̃1. This γ becomes ρ2 and a
label-map C̃2 is computed. This process iterates to fill out
ρ3 < . . . < ρL until we can no longer find a suitable next
level.

• Top-down stage: compute a hierarchy of label-maps Cl. The
key idea is to intersect recursively any cluster c ∈ C̃l with
Cl+1 as described by Algorithm 2.

(a) (c)(b)

Input

∪

∪

∪

∪

∪

Figure 5: Multi-scale labeling. Based on the dense hierarchy of
superpixels (a), a few representative levels are selected to build a
multi-scale label-map (b). It can be seen as a tree of clusters (c).

Input: Independent label-maps {C̃1, C̃2, . . . , C̃L}.
Output: Hierarchy of label-maps {C1, C2, . . . , CL}.
CL ← C̃L

for level l = L− 1 . . . 1 do
Cl ← ∅
for cluster c ∈ Cl+1 do

for cluster d ∈ C̃l do
if c ∩ d 6= ∅ then add c ∩ d to Cl

end
end

end
Algorithm 2: Multi-scale labeling (top-down stage).

4.4 Selection of step count

There have been a number of methods proposed for selecting the
number s of diffusion steps [Zelnik-Manor and Perona 2004; Wang
and Tu 2012; Lu et al. 2009a]. We have opted to use a simple
method based on the eigenvectors despite its limitations [Zelnik-
Manor and Perona 2004]. It is based on the well known property
that the eigenvector of a matrix raised will change exponentially
according to that power.

Specifically, we find the largest eigenvalue, λ, that is less than
.9999. We then determine how many steps it would take for that
eigenvalue to decay to 95% of its original power: s =

⌊
log(.95λ)

log(λ)

⌋
.

4.5 Performance

We implemented our method in Python and OpenCL (major li-
braries used are: Numpy, Scipy, scikit-image, scikit-learn, scik-
its.ann, bottleneck, pyopencl, and matplotlib). We tested our soft-
ware on an Intel Core i7 5820K with 16 GB of RAM, and equiped
with an AMD Radeon R9 280X with 3 GB of memory. Table 2 pro-
vides timings for producing the multi-scale label-maps of Figure 6.
The timings mostly depend on the resolution of the input. Note
also in Figure 6 how our method captures the different patterns at
different scales. Additional results and timings for arbitrary natural
images are given in the supplemental material.

Times in seconds
Image name H-SLIC Multi-scale Total

labeling
Flowered wall (1233×924) 19.4 590.5 609.9
Ground (2560×1920) 66.2 2627.2 2693.4
River (1616×616) 19.5 1075.3 1106.8
Plaster damaged (373×560) 7.8 702.1 709.9
Rust (2272×1704) 51.2 1486.6 1537.8
City (2016×703) 22.2 876.6 898.8

Table 2: Time performance (in seconds) of our hierarchical SLIC
method (H-SLIC) and of our multi-scale labeling method.

4.6 Evaluation

To measure the quality of a label-map C with respect to the ground
truth G we make use of two standard segmentation metrics [Ar-
beláez et al. 2011]: the Rand index and the covering (asymmetric
metric evaluated in both directions). These measures give values
between 0 (worse) and 1 (best) that we plot against the number of
labels. More details, as well as extensive qualitative and quantita-
tive results are provided in supplemental material.

To evaluate our NMF based mono-scale labeling algorithm we com-
pare it with K-means and spectral clustering. As illustrated on the
selected results of Figure 3(d), the different clustering methods per-
form similarly in many cases. However, unlike our NMF algorithm
the other methods require the number of clusters to be supplied as
input. As such, we used the initial part of our NMF algorithm to
calculate the number of clusters before running them. As explained
in section 4.2, the NMF algorithm also provides additional infor-
mation encoded in the F and G matrices.

4.7 Choice of the feature vectors

The labeling relies on the feature vector used to define distances be-
tween nodes (section 4.2). As an alternative to the moments (5 mo-
ments per color channel) we tested Gabor filters (12 filter responses
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Figure 6: Multi-scale label-maps. (a): Flowered wall (1233×924); (b): Ground (2560×1920); (c): River (1616×616); (d): Plas-
ter damaged (373×560); (e): Rust (2272×1704); (f): City (2016×703).

per channel) and local region statistic (mean values in 21 cells of a
local quadtree per channel). All details and extensive results are in
the supplemental material.

There are quantitative differences in the resulting label-maps. How-
ever none of the 3 feature vectors performs better universally (see
Figure 3(c)). The moments vector has the advantage of being com-
putationally the simplest and fastest. Alternatives are available and
usable depending on the needs of an application.

5 Pixel description

Assume we are given a texture exemplar which undergoes the
multi-scale labeling of section 4. Every pixel p inherits from the su-
perpixels it belongs to L labels {C1(p), C2(p), . . . , CL(p)}, i.e.
one at each scale ρl. In this section we show how these labels may
be exploited as descriptors for p so as to improve texture synthesis
algorithms.

5.1 Layered textures

In Figure 7 we compare our multi-scale labeling with the pre-
processing of Layered-Shape Synthesis [Rosenberger et al. 2009].
Unlike our method, the number of labels must be given. Our large
scales are quite similar, though no fixed number of labels has been
preset. The main difference is that our result is much less noisy.
This is due to the hierarchy of patterns, which may contain sub-
patterns with different colors.

C4 C3 C2 C1

(b)

(a)

(c)

Figure 7: Comparison of our label-maps to the labeling results
of Layered-Shape Synthesis [Rosenberger et al. 2009]. (a): Input
images (from left to right); (b): corresponding Layered-Shape Syn-
thesis label-maps (top to bottom); (c): Our label-maps (4 levels for
the two leftmost input images, and 3 levels for the rightmost one).

5.2 Extraction of stationary textures in natural images

Most natural images contain completely different textures in several
regions, possibly with outliers. This observation motivated work on
the extraction of one dominant texture. Our label-maps allows us to
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Figure 8: Stationary texture extraction. Our labeling method is
used to pre-process input natural images (a). In the resulting pat-
tern label-map (b) at a given level (l = 2), a pattern (blue square) is
chosen. Stationary synthesis (c) uses only similar patterns: graph-
cut synthesis using only patches with the same label.

go further, as shown in Figure 8. Once the input has been labeled,
the user selects a label to which the synthesis can be restricted. The
goal is to give access to many more texture exemplars than carefully
prepared libraries, including photographic collections. The multi-
scale label-maps can then be used to synthesize textures with the
rich variation at smaller scales of natural images.

6 Region description

Many texture synthesis algorithms process connected sets of pix-
els (such as patches, tiles, or neighborhoods). Let us call a region
R any such set consisting of pixels p. A standard descriptor for
regions is the histogram of pixel values. In our case each pixel is
described by one label Cl(p) per level 0 ≤ l ≤ L so we can define
L histograms hlR of labels:

∀c ∈ Cl, hlR(c) = #{p ∈ R|Cl(p) = c} (9)

Each histogram describes the content of region R when analyzed
at scale ρl as shown in Figure 9. In the following we show some
applications to the control of texture synthesis.

6.1 Content selection for patch-based synthesis

Many patch-based synthesis techniques, such as quilting [Efros and
Freeman 2001] or graphcut [Kwatra et al. 2003], work by copy-
paste of patches, i.e. large pieces of an input example texture. To
control non-stationarity we need to be able to select the content
of the patches. To do so we propose to describe the content by a
simple key based on the histograms of labels. Although complete
histograms describe the content, they are not easy to manipulate
because the number of labels increases as l gets lower. The issue
is to define a set of keys which are meaningful, distinguishable,
and such that regions with similar contents have the same key. For
instance in Figure 10 a key may signify “stones only” or “mainly
flowers with little stone”.

Before selecting the content one must decide the size of patches.
This is a delicate problem as they must be large enough to capu-
ture and faithfully reproduce patterns but as small as possible so
as to avoid repetition artifacts. Our multi-scale labeling helps as
follows. First the user chooses the relevant level l: for instance fig-
ure 10, l = 5 is appropriate to control wall versus flowers while
l = 3 is appropriate to control flowers’ hue variations. Then the

C3 C2
C1

Figure 9: Histograms of labels are statistical content descriptors
for regionsR (in blue). Regions with similar contents at level l have
similar histograms hlR (see column 2, l = 3). As l gets lower, for
the same regions, content differences get captured in corresponding
finer histograms.

C3 C2C5

Figure 10: Content similarity. For each level l of the label-map
(3 levels, top row) we show three patches R outlined in blue. ρl
decreases from left to right, and the size of the patches decreases
accordingly. Rows two to four highlight subsets of pixels that are
centers of patches of the same size, so that the histogram is “simi-
lar” to hlR (in this case, we consider histograms as similar if their
two most frequent labels are matching).

corresponding scale ρl gives the size of patterns to be captured. Fi-
nally the patch size can be chosen proportional to the scales ρl. In
practice we round ρl to the closest power of two.

Figure 10 illustrates our content descriptor for square patches. The
selected size (i.e. proportional to ρl) makes that two labels at most
cover the great majority of the pixels in patches. This is why a
key kl(R) = (k1, k2) where k1 and k2 are the most represented
(frequent) labels in hlR yields an efficient patch content descriptor.
Using such a key, all possible patches of an input can be put in a
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Figure 11: Description of regions’ content. All tiles of an input are
given keys (k1, k2) (row,column) stored in a hash table. The keys
are obtained from our label-maps. The hash table allows tiles to be
instantly selected according to their content.

(a) (b) (c) (d)

Figure 12: Non-stationary texture synthesis is guided by region
description. An example (2560×1920) and a guidance map are
given as input (a). Our label-map is used to describe tiles by
keys (b) which are linked to the guidance map. The result of quilting
(16638×11776) is shown (c) with close-ups (d).

hash table (Figure 11). The patches need not be stored but only
their offset so the hash table has a size proportional to the size of
the input image. It can then be used for controlling non-stationarity
during texture synthesis, by instant patch access according to the
desired content using the corresponding key. In Figure 12 keys are
provided in a guidance map and only patches with this key are can-
didates. Here, we used texture synthesis based on quilting (regular
arrangement of square patches) because it scales very well and al-
lows us to produce huge texture maps that can be rendered at fast
framerates at a low memory cost. Only the input, as well as patch
indices and some stitching information need to be stored on the
GPU.

The use of a hash table significantly speeds up patch selection for
texture synthesis. At a given level, we instantly get a list of poten-
tial patch candidates, by getting rid of an explicit search [Barnes
et al. 2009]. We can then select among these, the “best candidate”
according to some criteria depending on the applied synthesis algo-
rithm. The fact that we have a multi-scale content description al-
lows us to further discriminate candidates according to various sub-
level contents, which is useful for the evaluation of the similarity
of neighboring or overlapping regions. Interactive patch-based tex-
ture editing becomes possible even for high resolution inputs. The
quilting result of Figure 12 took less than five minutes, while con-
ventional quilting takes more than an hour and optimization-based
synthesis techniques are not practicable. Tiling methods such as
Wang tiles [Cohen et al. 2003] or irregularly shaped tiles [Vanhoey
et al. 2013] are also not suitable in this case, because they assume
uniformity of contents and cannot well handle local content varia-

(a)

(b)

Figure 13: Texture palettes. For each input (a), patterns at the
coarsest scale level are organized in palettes. (b) shows synthesized
palettes (left) with corresponding label-map (right). These palettes
can be used for selecting patterns in texture painting applications.

Figure 14: Multi-scale palettes. Each pattern in level l (vertical
palette) can be refined into a level l − 1 sub-palette (horizontal).

tions, unless a very large number of adequate well-connecting tiles
are specifically pre-computed.

6.2 Multi-scale patterns palettes for texture painting

Tasks such as browsing texture examples or interactive texture
painting require quickly seeing the patterns in the texture. The
user experience might be improved by a clear exhibition of these
patterns. As shown in Figure 13 we can build palettes of patterns
by synthesizing a band of texture guided by our label-maps. The
patterns may be organized as one pleases so as to provide a user-
friendly palette in which the user can pick up a “pattern brush” for
texture painting. The accompanying video shows interactive tex-
ture editing. One can also take advantage of the multiple scales
by computing sub-palettes, as shown in Figure 14. This allows
interactive editing not only at one scale, but at multiple different
scales. In Figure 15 the textures are edited at two different scales.
It greatly extends user interaction and control compared to conven-
tional composite texturing approaches which are generally limited
to one label-map scale. The use of multiple scales for texture edit-
ing has an additional advantage as it reduces repetition artefacts
because non-stationarity is possible at all scales.



Figure 15: Multi-scale editing. Textures are first edited at large
scale and then at a fine scale so as to modify local details.

7 Conclusions

We proposed an algorithm for the analysis of large input textures. It
builds a multi-scale label-map of texture patterns. In a first stage we
compute a hierarchy of superpixels which is able to detect patterns
with sub-patterns precisely. In a second stage an unsupervised algo-
rithm provides a label-map that describes the texture content at mul-
tiple scales. We propose a novel formulation of the labeling prob-
lem as a random walk on a bipartite graph of superpixels and clus-
ters, which lead to a nonnegative matrix factorization. We provide a
series of algorithms for factorizing powers of large sparse stochastic
matrices which allow to process large inputs. We show the benefits
of our analysis in several texture synthesis applications including
content selection, non-stationary synthesis, interactive painting at
multiple scales, and choice of tile size.

In our future work, we are looking for more applications to further
improve texture synthesis. Pixel description may improve the com-
putation of optimal cuts and blending in patch-based synthesis, as
well as the comparison and search of similar local neighborhoods
in optimization-based synthesis. We used content selection for in-
teractive texture painting, but it could also lead to synthesis from
multiple inputs as well as automatic synthesis of non-stationary tex-
tures. Our hash coding gives us instant access to patch candidates
for texture synthesis. We also want to experiment with the use of
our label-maps to further improve the search of patch candidates in
structured image editing using random algorithms like PatchMatch.

Some pixel-based techniques [Rosenberger et al. 2009] or
optimization-based techniques [Kaspar et al. 2015] have used dis-
tance maps to sharp features so as to guide individual patterns. The
first stage of our algorithm (pattern detection) could be combined
with distance transforms in this context.

Beyond texture synthesis, we believe that automatic multi-scale la-
beling in images can be useful for many other applications, such as
texture and color transfer between images, as well as the synthesis
of image appearance from exemplars and retexturing. Indeed, most
of these methods need a prior labeling of regions with similar pat-

terns, which is mostly done manually. Our approach provides not
only an automatic and robust solution to do so, but it also provides
an efficient tool to handle multiple scales instead of a single one.
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A Partition error minimization

For clarity we remove subscripts m and γ an I . Equation (3) be-
comes

ε (S) =
∑
S∈S

∑
p∈S

δ2 (x, x̄S) (10)

and equation (2) becomes

∆ε = |R| δ2 (x̄R, x̄R∪S) + |S| δ2 (x̄S , x̄R∪S) (11)

where x̄R∪S =
|R| x̄R + |S| x̄S
|R|+ |S|

Lemma 1. When merging the pair of superpixels (R,S) intoR∪S
the global error (10) increases by (11).

Proof.

∆ε =
∑

p∈R∪S

δ2 (x, x̄R∪S)−
∑
p∈R

δ2 (x, x̄R)−
∑
p∈S

δ2 (x, x̄S)

=

(∑
p∈R

δ2 (x, x̄R∪S)−
∑
p∈R

δ2 (x, x̄R)

)

+

(∑
p∈S

δ2 (x, x̄R∪S)−
∑
p∈S

δ2 (x, x̄S)

)
The second equality is obtained by splitting the first sum overR∪S
into two sums over disjoint sets R and S. Then we apply lemma 2
twice with y = x̄R∪S to complete the proof.

Lemma 2. Let X be a set of points x in an inner product space.
For any point y∑

x∈X

‖x− y‖2 −
∑
x∈X

‖x− x̄‖2 = |X| ‖y − x̄‖2

where and x̄ is the average over X , which cardinal is |X|.

Proof.∑
x∈X

‖x− y‖2 =
∑
x∈X

‖x− x̄ + x̄− y‖2

=
∑
x∈X

‖x− x̄‖2 +
∑
x∈X

‖x̄− y‖2

− 2
∑
x∈X

〈x− x̄; x̄− y〉

=
∑
x∈X

‖x− x̄‖2 + |X| ‖x̄− y‖2 + 0


