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Dispersing solid hard particles in an elasto-plastic material leads to important shear-history de-
pendence of the behavior, namely strain hardening and Bauschinger effect. Strain hardening is
observed as the progressive strengthening of a material during its plastic deformation and is usually
associated with ductility, a property often sought after in composite materials to postpone fractures
and failure. In addition, anisotropic mechanical properties are developed, the material resistance
being larger in the direction of the imposed flow, which is referred to as the Bauschinger effect.
We show that this is related here to shear-history-dependent particle-pair distribution functions.
Roughness and interparticle contacts likely play a major role, as replacing hard particles by non-
deformable bubbles modifies the suspension microstructure and suppresses strain hardening. Beyond
suspensions, our study provides new insight in the understanding and control of strain hardening
and Bauschinger effect in composite materials.

I. INTRODUCTION

A. From suspensions to composite materials

Polymers including elastomers, commonly called plas-
tics and rubbers, are standard materials in the manufac-
turing industry. To improve their mechanical properties,
solid inclusions such as particles or fibers are often em-
bedded in the polymer matrix [1, 2]. They then form
composites, with a microstructure emerging at the inclu-
sion scale.

These materials are usually processed in their molten
state (in moulding, coating, three dimensional print-
ing...), in which they are handled as suspensions of solid
particles in a fluid. This molten state offers the oppor-
tunity to tune the final microstructure as a function of
flow history (e.g., by forcing the fiber alignment in the
casting direction for fibrous materials [3]).

As for any architectured material, such composites
may reach optimal mechanical properties for specific mi-
crostructures only. Materials with high strength and duc-
tility are particularly sought after for postponing frac-
tures and failure [4, 5]. Appropriate preparation in the
molten state is a priori needed to tune the microstruc-
ture and thus the solid state properties [2].

Strain hardening (also named work hardening) is a
mechanism governing the strength and the ductility of
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materials, as it leads to higher resistance and higher rup-
ture strain in some specific directions. Strain hardening
is observed as the progressive strengthening of a material
– increase of its yield stress – during its plastic deforma-
tion [6].

In order to study the emergence of strain hardening
in composite materials and the impact of flow history
on it, a suspending yield-stress fluid can be used as a
model material. Indeed, it has both the characteristics
of a fluid, when stresses are larger than its yield stress,
thus being relevant to model the molten composite, and
those of a solid otherwise, then being relevant to model
the solid composite. Large strains experienced by yield-
stress suspensions can be of the same order as typical
strains of some polymeric composites (elastomers, rub-
bers) enhancing their relevance as model systems. Before
presenting our study on such elasto-plastic suspensions,
we discuss below the main characteristics of strain hard-
ening in solid materials and yield-stress fluids. We then
review some features of the coupling between flow and
microstructure in suspensions.

B. Elasto-plasticity and strain hardening

Plasticity is at the crossroad of solid and fluid behav-
iors. In solid mechanics, plasticity is defined as the emer-
gence of irreversible deformations; it is thus a flow, which
is the focus of fluid mechanics. There is a critical stress,
the yield stress σY , below which only reversible deforma-
tions (defining elasticity) are found and above which plas-
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FIG. 1. From Lemaitre and Chaboche [6], a classical book on
solid materials. (a) Strain-hardening curves with unloading-
reloading steps for a solid (elasto-plastic) metal using quasi-
static shear-rate-controlled flow. After a given loading, un-
loading the material allows to disentangle reversible and irre-
versible deformations, whereas reloading it allows to measure
its yield stress in its current state and to evidence its progres-
sive strengthening. (b) Typical stress-strain response to a
cycle of quasi-static traction and compression. Starting from
a non-plastified initial state, the yield stress measured in both
traction and compression is the same (σt = σc), whereas it is
smaller when measured in compression after an initial plas-
tic traction flow (σ′c). This influence of the plastic flow on
the anisotropy of the mechanical properties is due to strain
hardening (Bauschinger effect).

tic flows take place. Reversible and irreversible deforma-
tions can be disentangled by loading (up to a given stress
σ 6= 0) and subsequently unloading a material (back to
rest, defined by a zero stress), as shown by the typical
stress-strain response of a solid metal in Fig. 1a. When
the shear stress σ is below the yield stress σY of the ma-
terial in its initial (reference) state, the strain goes back
to 0 when the material is unloaded. When it is higher
than σY , the unloading path is different from the load-
ing path and the final accumulated (plastic) deformation
is 6= 0.

In addition, strain hardening is commonly observed
[Fig. 1(a)]. After loading the material up to a stress
σ = σ0 > σY for which plastic flow occurs, the unloading
step and its subsequent reloading step are superposed,
showing that the material can now be loaded reversibly
until σ = σ0, which is thus the current material yield
stress (i.e., in its current reference state). Reloading the
material with a higher value of σ then leads to additional
plastic flow and to further increase of the yield stress.
The response to a systematic succession of loading and
unloading steps highlights the progressive increase of the
yield stress with the plastic flow.

Strain hardening can lead to anisotropic mechanical
properties, with a smaller yield stress in directions dif-
ferent to that of the previously imposed plastic flow [6].
This is illustrated during a cycle of quasi-static traction
and compression in Fig. 1b: after a plastic flow in trac-
tion (σ, ε > 0), the yield stress σ′c measured in compres-

sion has a smaller value than the yield stress σt achieved
in traction; by contrast, for a non-plastified initial state,
the yield stress is independent of the loading direction,
σt and σc measured, respectively, in traction and com-
pression being equal. This anisotropy is not intrinsic but
is induced by a dependence of the mechanical properties
on the load history (its amplitude and/or its direction);
this phenomenon is called the Bauschinger effect.

Strain hardening is ubiquitous in solid materials:
it is found in metals and alloys [7] (crystals [8],
nanostructured metals [9], metallic glasses [10]), poly-
mer glasses [11, 12], composite materials [13], poly-
mer gels [14, 15], magnetorheological gels [16], colloidal
gels [17], and soft-glassy materials [18–21]. In crystalline
solids, reversible movements of atoms, thus elasticity,
cease when crystalline defaults (dislocations) appear and
move irreversibly, which is responsible for plasticity. Af-
ter a given plastic strain, the interaction with other pre-
existing defaults might prevent further displacement of
these defaults, which leads to an increase of the yield
stress in a proposed mechanism of strain hardening [22–
24]. Despite the absence of long-range order and thus
of dislocations, amorphous compounds such as metal-
lic glasses can also exhibit hardening [10]: the interplay
between shear and the density of microstructural units
(called shear-transformation zones) is here at play [25].

In complex fluids, plasticity is observed in soft-glassy
materials (concentrated emulsions, foams, microgel sus-
pensions, colloidal glasses...), also referred to as yield-
stress fluids. The focus has been for long on visco-
plasticity: their elasto-plastic behavior – especially rele-
vant for quasi-static flows at small shear rates – has been
largely disregarded. The elasto-plastic behavior of yield-
stress fluids has first been modeled as a perfect elasto-
plastic behavior [26]. However, when studied in detail, it
is observed that strain hardening occurs as well in these
materials. Recently, kinematic hardening was shown to
be relevant [19] and incorporated into continuum mod-
elling of the elasto-visco-plastic response of yield-stress
fluids [21]. As many elasto-plastic fluids can deform in-
definitely without experiencing any rupture – contrary
to elasto-plastic solids – they can experience successive
strain-hardening histories in different directions, which
makes them convenient model materials to study in de-
tail this phenomenon.

C. Suspension microstructure coupled to rheology

In suspensions, a microstructure emerges at the scale of
the suspended inclusions, which can then be considered
as the relevant ‘micro’ scale [27–29]. This microstructure
can exhibit an anisotropy, observed not only with elon-
gated inclusions but also with spherical rigid inclusions in
the form of a spatial distribution anisotropy. It finds its
origin in the fore-aft asymmetry of particle pair trajecto-
ries induced by direct interparticle contacts [27, 30]. This
effect, observed in Newtonian fluids, is amplified for non-



3

linear suspending materials such as plastic fluids [31, 32].
Moreover, this microstructure depends on the flow his-
tory [29, 33]. As the microstructure is coupled to the
macroscopic properties, the mechanical response should
then be affected by different flow histories and different
initial conditions [33, 34].

To investigate the possible role of microstructure in the
mechanical properties of elasto-plastic materials and ev-
idence a mechanism of strain hardening, we use model
suspensions of spherical inclusions in yield-stress flu-
ids. These inclusions are both solid spheres and non-
deformable bubbles, in order to highlight the role of solid
contacts. On one hand, we characterize their microstruc-
ture; on the other hand, we study their mechanical prop-
erties in the framework of elasticity, plasticity and strain
hardening. In particular, we apply different types of load-
ing (rotational shear, squeeze) to our samples and we
study their response to shear reversal to investigate the
Bauschinger effect and the dependence of the microstruc-
tural and macroscopic properties on the load history.

In part II, we present the materials and the experimen-
tal methods allowing us to do both macroscopic rheol-
ogy and microstructure characterization thanks to three-
dimensional imaging, which results are presented respec-
tively in parts III and IV. The results, obtained on both
suspensions of solid spheres and of non-deformable bub-
bles in yield-stress fluids, are compared and discussed in
part V.

II. MATERIALS AND METHODS

We study elasto-visco-plastic suspensions (Sec. II A) as
model composite materials. Different rheometric meth-
ods (Sec. II B) are used to prepare materials with various
strain histories and to characterize their elasto-plastic re-
sponse, in particular the evolution of the elastic modulus
and of the yield stress during their hardening. In parallel,
we characterize their microstructure with the methods
exposed in Sec. II C for the same shear histories.

A. Materials

Two types of suspensions are studied here: solid par-
ticles or non-deformable bubbles suspended in an elasto-
visco-plastic fluid. Fluids and particles of different prop-
erties, reported in Table I, are used. Their composition
is chosen in particular to guarantee their suitability to
the different methods used below – rheometry or X-ray
micro-tomography.

Elasto-visco-plastic fluids are concentrated emulsions.
A direct emulsion (i) is prepared by dispersing silicone
oil (V350) at a volume fraction 70% in a 36 wt%/64 wt%
mixture of water/glycerol, in which surfactant TTAB has
been added at 3% in mass. An inverse emulsion (ii) is
prepared by dispersing a water solution of iodine sodium
(15 wt%) at a volume fraction 77.5% in dodecane oil

containing surfactant SPAN80 (7.5 wt%) – iodine sodium
is used in the dispersed phase to stabilize the emulsion
and enhance contrast for X-ray imaging.

Air bubbles have a mean diameter d = 100 µm (0)
or d = 280 µm (1) and solid particles are polystyrene
(PS) spheres of mean diameter d = 80 µm (2) or d =
140 µm (3). With such sizes, particles and bubbles are
non-Brownian. Bubbles are used here as analogues of
frictionless and perfectly smooth rigid particles [35]; this
analogy is valid as long as the bubbles remain unde-
formed by the flow. As shown by Ducloué et al. [36],
bubbles of diameter d in a fluid of yield stress τ∞Y remain
undeformed at the onset of flow as long as the plastic
capillary number Caplast = τ∞Y /(4Γ/d) . 0.1, where Γ
is the yield-stress fluid surface tension (here, that of the
emulsion continuous phase (i), for which Γ = 35 mN.m−1,
τ∞Y = 20 Pa) and d = 100 µm (0) or d = 280 µm (1).
In our experiments, Caplast ' 0.01 (0) or ' 0.04 (1):
bubbles remain spherical. The bubbly suspensions are
prepared as described in Ducloué et al. [36].

In the following, suspensions (0,1) and (2) consist, re-
spectively, in air bubbles (0,1) and solid inclusions (2) in
the elasto-plastic fluid (i), whereas suspensions (3) have
solid inclusions (3) in the elasto-plastic fluid (ii).

Air (0) and solid (2,3) inclusions are approximately
monodisperse (their diameter standard deviation is
smaller than 20% of their mean diameter), whereas bub-
bles (1) are poyldisperse (their diameter standard devi-
ation is half of their mean diameter). Indeed, bubble
suspensions (1) consist of suspensions (0) prepared ∼1 h
before the experiments, due to incompressible delay times
before imaging, so that these bubbles have aged since
their preparation: their mean diameter has increased by
a factor 2.8 and their diameter distribution has widened
(see Fig. 15 in Appendix A); this coarsening is a classical
feature of foams [37]. Special attention has been paid to
the analysis of their microstructure to take into account
their polydispersity (Sec. II C).

TABLE I. Properties of the elasto-visco-plastic fluids, air bub-
bles and solid particles: density ρf , elastic shear modulusG′∞

and yield stress τ∞Y for the elasto-plastic properties, index n
and consistency k for the viscous properties of the suspend-
ing fluid; density ρ and average diameter d of the particles or
bubbles, volume fraction φ of the bubbles or particles in the
specified suspending fluid.

Elasto-visco-plastic fluid

Sample ρf G′∞ (Pa) τ∞Y (Pa) n k (Pa.sn)
(i) 1.01 650 20 0.45 0.9
(ii) 1.05 350 24.5 0.5 5

Bubbles/Solid particles in suspension

Sample Fluid Inclusions ρ d (µm) φ
(0) (i) Air 0.00 100± 20 0− 50%
(1) (i) Air 0.00 280± 140 30, 37.5%
(2) (i) PS 1.05 80± 5 0− 50%
(3) (ii) PS 1.05 140± 10 0, 35, 40%
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The droplet size of both concentrated emulsions is of
the order of 1 µm, much smaller than the particle and
the bubble size. This ensures that the emulsion is seen as
a continuous material – an elasto-visco-plastic fluid – by
the particles [33, 38, 39]. Solid PS particles and suspend-
ing fluids, of density ρ and ρf respectively, are approx-
imately density-matched to avoid any buoyancy effects,
whereas air bubbles are much lighter than the suspend-
ing fluid. However, the solid fraction φ of all suspensions
is observed to remain uniform within our rheological set-
ups (thanks to X-ray imaging [29]), consistent with the
long timescale that can be computed for significant shear-
induced sedimentation or shear-induced creaming within
our experimental conditions [40–42].

The steady-state visco-plastic behavior of our fluids is
well described by a Herschel-Bulkley law τ = τ∞Y + kγ̇n,
while their steady elasto-plastic behavior is accounted
for by their elastic shear modulus G′∞ and their yield
stress τ∞Y . In the following, we disregard viscous effects
as the Bingham number Bi = τ∞Y /(kγ̇ n) is large in the
experiments: Bi ' 150 and Bi ' 50 for fluids (i) and (ii)
respectively. We focus on the elasto-plastic behavior of
the suspensions and on the impact of shear history on
this behavior.

B. Macroscopic rheology

Our rheological set-ups are parallel plates geometries
(Fig. 2) of diameter D and gap H, controlled by a
Kinexus rheometer from Malvern (now Netzsch). The
plates of the shear cell are serrated to prevent slippage of
the suspension at the solid boundaries. The top plate is
rotated at a rate Ω while keeping fixed the bottom plate,
leading to a simple shear of the fluid in the azimuthal
plane (θz), the single non-zero value of the shear rate
tensor being:

γ̇(r) = 2dzθ(r) = Ωr/H, (1)

with an azimuthal velocity uθ(r, z) = Ωzr/H, (r, θ, z) be-
ing the cylindrical coordinates [43]. The rotational shear
is not homogeneous but depends linearly on the radial
direction r. As a convenient estimate of the overall shear
rate, we use here: γ̇ = 3ΩD/(8H). In the same paral-
lel plates geometry, a squeeze flow can be imposed by
translating vertically one plate at a velocity V . It can
be approximated by a simple shear flow in the radial
plane (rz), in the case of a large aspect ratio D/H and
of no slip at the solid boundaries [40, 43, 44]. In this case,
the shear rate γ̇⊥(r, z) = 2dzr(r, z) is inhomogeneous and
a priori unknown: it depends on the rheology of the
fluid of interest. As a convenient estimate of the overall
squeeze shear rate, we then use [40] γ̇⊥ = 3V D/(2H2).

These two simple shear flows are orthogonal, meaning
that their respective velocity gradient-velocity planes are
perpendicular to each other [40, 45]. In order to shear the
material in the parallel plates geometry, it is first poured
on the bottom plate, then it is squeezed by the top plate

FIG. 2. Scheme of a rotational shear flow in a parallel plates
set-up used for rheometry: the suspension velocity uθ(r, z)
is aligned with the azimuthal direction, Ω is the rotational
velocity of the top plate, D and H are the plates diameter
and gap. (r, θ, z) are the cylindrical coordinates.

to reach the required gap. So even if the interest is in
a rotational shear, the material always experiences first
a squeeze flow during its loading in the geometry, which
sets its initial state. That is why studying the response of
a material without any pre-shear is not strictly achievable
with our set-ups.

1. Probing the elasto-plastic response

A standard rheological test to measure a material yield
stress and to study its elasto-plastic response consists in
imposing a quasi-static plastic shear flow [46]. Two types
of tests are performed.
Shear-rate-controlled test. A small constant shear

rate γ̇ = 10−2 s−1 is imposed until a steady stress – the
yield stress τ∞Y – is observed (‘small’ shear rate means
that viscous effects can be neglected, which is quantified
by the Bingham number Bi).
Shear-stress-controlled test. Constant stresses τn =

n∆τ are applied, varied by 20 steps of ∆τ = τ∞Y /20 (each
step being applied for 10s) until the yield stress τ∞Y is
reached; the final step is imposed for a strain γ ∼ 3, suf-
ficient to reach a steady flow (at a shear rate ' 10−2 s−1).
Only the last step leads to a steady plastic flow; the other
steps are characterized by a transient plastic flow, with
a vanishing shear rate, as classically observed below the
yield stress in yield-stress fluids [46].
The interest of this procedure (see Sec. II B 3) is to mea-
sure continuously the elastic modulus evolution with the
help of parallel superposition, which can be used only in
controlled-stress mode with our rheometer. Prior deter-
mination of the yield stress τ∞Y in a shear-rate-controlled
test is necessary to set-up this stress-controlled test.

2. Shear histories

Such quasi-static shear flows are imposed in a direc-
tion – called reference direction – to suspensions that
have been pre-sheared in various directions, which ori-
entations are described relatively to the reference direc-
tion. This allows us to investigate the dependence of the
elasto-plastic behavior on shear history.
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Specifically, we focus on three cases. When the ma-
terial is pre-sheared in the same direction as that of
the quasi-static plastic flow (at the same shear rate
γ̇ = 10−2 s−1), it is denoted as ‘pre-shear +’ (or indicated
by the exponent +). When it is pre-sheared in the op-
posite direction, it is denoted as ‘pre-shear −’ (exponent
−). When it is pre-sheared in an orthogonal direction, it
is denoted as ‘pre-shear ⊥’ (exponent ⊥).

In practice, the quasi-static shear flow is obtained by
rotating the upper plate of the parallel plates geometry
in a given direction. The experiment with pre-shear −
is obtained by first rotating the plate in the opposite di-
rection: it corresponds to a shear reversal [34] and to an
initial condition that is the furthest from the steady plas-
tic state. The experiment with pre-shear⊥ is obtained by
squeezing the material between the plates [40, 45] before
rotating the upper plate.

3. Disentangling elasticity and plasticity

Unload-reload cycles (as in Sec. I B) and shear oscilla-
tions are used to measure both the current yield stress
τY (γp) and the current elastic shear modulus G′(γp) of
the suspensions throughout their shear histories, for dif-
ferent initial conditions. These current mechanical prop-
erties refer to the values measured on a given material
state (the ‘current state’) after a controlled plastic defor-
mation γp has been accumulated since the initial state.
By contrast, the steady values τ∞Y and G′∞ are measured
when the steady plastic flow is achieved (γp →∞).

Unload-reload cycles. In a shear-rate-controlled test
beginning from γ = 0, the flow is stopped (γ̇ = 0 s−1)
after a given deformation, the stress is reduced to 0 Pa –
corresponding to an unload step back to rest – the plastic
deformation γp accumulated since the initial condition is
recorded, and then the quasi-static plastic flow is started
again (γ̇ = 10−2 s−1) – corresponding to a reload step –
and this goes on for different values of the plastic defor-
mation γp. This is similar to the method illustrated in
Fig. 1a. The current yield stress τY (γp) is measured as
the stress threshold between reversible and irreversible
responses of the suspension during a load-unload-reload
cycle [6] for each plastic deformation γp.
In a shear-stress-controlled test, we emphasize that once
plastic flow has stopped at a given τn value, the material
can be unloaded/loaded reversibly from τn to 0, whereas
an additional plastic flow takes place for any τ > τn; τn
is thus the current material yield stress associated with
the plastic deformation γp(τn).

Elastic modulus. In shear-rate-controlled tests, for
each unload/reload cycle, when γ̇ and τ are zero just
before reload, the current elastic modulus G′(γp) is mea-
sured thanks to small amplitude shear oscillations ap-
plied at high frequency (f = 10 Hz) and low stress am-
plitude (δσ = 0.2 Pa), in the linear regime.
In shear-stress-controlled tests, at each step τn, the strain
increase γ(t) is recorded in time as plasticity slowly de-

velops. The elastic modulus G′(γ) can then be measured
continuously as a function of γ thanks to parallel su-
perposition, that is small amplitude shear oscillations
(f = 10 Hz, δσ = 0.2 Pa) superimposed to all stress
imposed steps τn. As will be shown in Sec. III, the plas-
tic strain is much larger than the elastic strain for the
experiments of interest (shear reversal): the strain γ can
thus be identified with the plastic deformation γp ac-
cumulated since the initial condition, and G′(γ) is thus
G′(γp). The main interest of this experiment is thus to
provide G′(γp) throughout hardening with a much finer
resolution on γp than in shear-rate-controlled tests. Note
however that for each value of γp, G

′(τ = 0) is mea-
sured at rest in the shear-rate-controlled tests, whereas
G′(τ = τn) is measured on the stressed material in the
shear-stress-controlled tests; there might then be some
differences between the measured values due to possible
nonlinear elasticity.

C. Microstructure characterization

1. X-ray imaging

We have used the X-ray micro-tomography device lo-
cated in Laboratoire Navier (described in detail in [29]),
made up of an Ultratom scanner designed and assembled
by RX Solutions (Annecy, France). Using the commercial
software Xact, based on the filtered retroprojection algo-
rithm adapted to cone-beam geometry [47], 3D images
encoding for the X-ray absorption field are reconstructed
from the recorded 2D radiographs (Fig. 3). Consistently
with the definition of the final 3D images, 1440 radio-
graphs have been recorded over 360◦. Note that for each
rotation angle, 6 radiographs (with an exposure time for
one radiograph of 1/3 s) have been averaged to improve
the signal to noise ratio. The final 3D images have a
resolution of 12 µm and a definition of 1840x1840x170
voxels.

Before X-ray imaging, the suspension is sheared in a
parallel plates geometry of diameter D = 2 cm and gap
H = 2 mm (Fig. 2). We built a dedicated geometry [29]
made of PMMA to ensure a low X-ray absorption by the
set-up. This set-up can be used in the rheometer for
shearing the material and characterizing its rheological
response. After a given shear history in the rheometer,
it can then be blocked thanks to a chuck, removed from
the rheometer and carefully moved to the X-ray set-up,
where it is put on the rotating stage for imaging. During
the whole duration of imaging, the parallel plates set-up
is blocked. We checked that these ex-situ experiments
lead to the same results as in-situ ones [29]. More details
can be found in Deboeuf et al. [29].

Special attention has been paid to reduce the delay to
a few minutes between the imposed shear history and the
subsequent 3D imaging of bubble suspensions, to avoid
any ageing of bubbles in between, so that the characteri-
zation of bubble size and suspension microstructure is as



6

(a) (b)

(c)

FIG. 3. The materials shown here are the elasto-plastic sus-
pensions of bubbles (1) on the left at a solid fraction φ ' 30%
and of particles (3) on the right at φ ' 35%. (a) X-ray ra-
diograph corresponding to the transmitted intensity of X-rays
through the suspensions within the parallel plates cell along
one linear path. (b) Reconstructed horizontal slice encoding
for X-ray absorption of voxels in the shear cell. (c) Zoom on
the white rectangle drawn in (b). The dark discs on (b) and
(c) are, respectively, the air bubbles and the PS particles.

close as possible to that induced by the shear history. To
this aim, the different shear histories have been imposed
to bubble suspensions (1) in-situ just before 3D imaging.

2. Pair distribution function

High definition 3D images (associated with subvoxel
identification of solid particle centers [29], but with a pre-
cision of 1 voxel only for bubble centers) and large statis-
tics based on numerous inclusions (150 000 solid parti-
cles, but 7 500 bubbles imaged in the whole gap) allow to
investigate the microstructure at the inclusion scale, i.e.
the spatial distribution of inclusions in the suspension. A
relevant quantity to describe the suspension microstruc-
ture is the pair distribution function (pdf) g(~r), that is
the probability of finding a pair of inclusions whose cen-
ters are separated by the vector ~r, normalized by the
mean particle density. For the quasi monodisperse solid
particle suspensions, the pair vector ~r (and its coordi-
nates) is normalized by the mean diameter d of the in-
clusions. For the polydisperse bubble suspensions, ~r is
normalized by the sum of each pair inclusion radii. In
both cases, it is denoted as ~r/d when normalized. Fur-
thermore, to tackle the effect of the bubble polydispersity
on the computed pdf, we consider only bubbles with a di-
ameter between 100 and 500 µm, without any bubble in
their close neighbourhood (‖~r‖ ≤ 2.5) outside of this di-
ameter range (Fig. 15 in Appendix A). This reduces the
number of analyzable bubbles in the whole gap to 4 000.

We focus on the suspension microstructure in the
velocity-velocity gradient plane of the simple rotational
shear flow imposed locally by the geometry, that is, re-
spectively along the azimuthal axis and the vertical axis.
To do so, we compute the 2D pdf gr(`, ξ), with (`, ξ) the

M

(r,α, z)

M0

(r0,α0, z0)

O

ξ

ℓ
r-r0

FIG. 4. Two inclusions M0 (r0, α0, z0) and M (r, α, z) in the
global cylindrical frame, separated by the pair vector ~r ≡−−−→
M0M defined in curvilinear coordinates (along circular flow
lines): ~r = (r − r0, `, ξ) with ` = r(α− α0) and ξ = z − z0.
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FIG. 5. (a) Color maps of the 2D pdfs in the three orthogonal
cylindrical planes gr(`, ξ), gθ(r − r0, ξ) and gz(r − r0, `) for
the particle suspension (3) at φ ' 35% within an unsheared
drop poured on a plate [29]. In the azimuthal plane, polar
coordinates of the pair vector are defined in the local frame
so that ` = ρ cos θ and ξ = ρ sin θ. (b) The 2D pdf gr(`, ξ) in
the azimuthal plane for the bubble suspension (1) at φ ' 30%
within an unsheared drop poured on a plate. In (a) and (b),
the continuous (red and black) curves show the average of
gr(ρ, θ) over all θ for both suspensions; in (b) is superimposed
the average for the particle suspension (red).

cylindrical coordinates of a pair located in the velocity-
velocity gradient plane r = r0 ± d/2: ` = r(α − α0) and
ξ = z−z0 with (r, α, z) and (r0, α0, z0) the inclusion cylin-
drical coordinates (Fig. 4). Alternatively to the global
cylindrical coordinates (`, ξ), one may use the polar co-
ordinates (θ, ρ), defined as ` = ρ cos θ and ξ = ρ sin θ
[Fig. 5(a)] with the velocity axis (ξ = 0) used as the
origin of the polar angle (θ = 0◦). In order to char-
acterize the microstructure for a roughly homogeneous
simple shear, we compute the pdf at a fixed radial posi-
tion R0 in the parallel plates geometry. In practice, to
get a good precision on the pdf, a toroidal region of suf-
ficient thickness ∆R is analysed. This leads us to choose
R0 = 0.72D/2 ± 0.12D/2. Obviously, the pdf gr(`, ξ) is
symmetric according to the origin (` = 0, ξ = 0) due to
rotational shear flow symmetry.

An example of 2D pdfs in the three orthogonal cylindri-
cal planes gr(`, ξ), gθ(r − r0, ξ) and gz(r − r0, `) is given
in Fig. 5a for the particle suspension (3) at φ ' 35%
within a drop [29], which is just poured on a plate and
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thus unsheared. Before any loading or shear history, we
observe that the material is isotropic, showing a circular
symmetry in each plane and being the same in the three
orthogonal planes. The same is qualitatively observed for
the bubble suspension (1) at φ ' 30% from the 2D pdf
gr(`, ξ) in Fig. 5b, although the lower precision on the
bubble centers, the smaller statistics and the size poly-
dispersity lead to a slightly blurry pdf [48]. In any case,
the average of gr(ρ, θ) over all θ, shown by continuous
(red and black) curves in Fig. 5, is approximately the
same for both suspensions [49]. More details are given
in Deboeuf et al. [29].

III. PARTICLE-INDUCED STRAIN
HARDENING

In this section, we focus on the elasto-plastic behavior
of the materials. The crucial role of particles on strain
hardening is evidenced by comparing the solid particle
suspensions to the pure suspending elasto-plastic fluid
and to the bubble suspensions. We investigate their
stress versus strain response to shear-stress-controlled
and shear-rate-controlled tests in Sec. III A. To disen-
tangle the evolutions of elasticity and plasticity in this
response, we subsequently determine both their current
yield stress and their current elastic modulus throughout
their transient hardening in Sec. III B.

A. Stress-strain response

The τ(γ) response of all the samples (pure fluid and
suspensions) to a quasi-static shear flow is typical of an
elasto-plastic behavior in shear-stress-controlled (Fig. 6)
as well as in shear-rate-controlled (Fig. 7) tests. The
stress first increases linearly with the strain at low
strain (likely corresponding to an elastic regime); the
stress/strain slope then decreases progressively until a
plastic plateau is reached. The observed transient be-
havior is the hallmark of strain hardening. As discussed
below, its exact characteristics depend much on the ma-
terial and on its shear history.

In order to characterize quantitatively strain harden-
ing, we define the characteristic hardening shear strain γh
as the plastic strain accumulated when τ reaches 0.9τ∞Y .
To better compare the various responses, it is convenient
to use rescaled stress and strain units as:

τ̃ = τ/τ∞Y (2)

and

γ̃ = γ G′∞/τ∞Y , (3)

Within this set of units, a perfect elasto-plastic behav-
ior is τ̃ = γ̃ for γ̃ ≤ 1 and τ̃ = 1 for γ̃ ≥ 1, and the
characteristic hardening shear strain γ̃h is the rescaled
plastic strain accumulated for τ̃ = 0.9; in practice,

this plastic strain is estimated by substracting the lin-
ear elastic strain γ̃e = 0.9 to the strain γ̃ reached at
τ̃ = 0.9 on the τ̃(γ̃) loading curve. γ̃−h and γ̃+h are
the characteristic hardening shear strains observed, re-
spectively, for the two initial pre-shear conditions −
and +. The Bauschinger effect can then be quantified
by ∆γ̃h = γ̃−h − γ̃+h . The values of γ̃−h , γ̃+h , and ∆γ̃h
determined for two different emulsions, a suspension of
bubbles and two suspensions of particles are reported in
Tab. II and commented below.

1. Pure emulsion

For a pure concentrated emulsion (Figs. 6a and 7a), the
different initial conditions (pre-shear + and pre-shear −)
do not change the steady yield stress τ∞Y and only slightly
change the characteristic hardening shear strain γh (γ−h '
2γ+h ). This slight effect is due to the alteration under
shear flow of the microstructure of the elasto-plastic fluid
at the scale of its composing droplets [50]. Moreover, in
a controlled shear-rate mode, an overshoot of the stress
τ > τ∞Y is observed before reaching the steady plastic
flow for pre-shear + [Fig. 7(a)]. However, the strain
γh for the strain hardening observed here (and studied
recently in the literature [19, 51, 52]) and ∆γh for the
Bauschinger effect are very small (only a few %), and
as shown below, are not significant compared to those
induced by the presence of solid particles; this will not
be discussed further in the paper. For our concern, the
suspending fluids – the emulsions – can be considered as
model elasto-plastic materials.

2. Bubble suspension

Figure 6b shows the stress-strain response of the bub-
ble suspension (0) at a volume fraction φ ' 37% for the
two initial conditions pre-shear + and −. Its mechanical
response is only slightly modified upon a shear rever-
sal, as for the pure fluid (φ = 0) [Fig. 6(a)]: the bubble
suspension does neither exhibit significant Bauschinger
effect nor significant strain hardening. When rescaled
units τ̃ and γ̃ are used [Figs. 6(d) and (e)], which ac-
counts for the possible decrease of the elastic modulus
when adding bubbles [53], the emulsion and the bubble

TABLE II. Rescaled values of the characteristic hardening
shear strains γ̃−h and γ̃+

h , and ∆γ̃h = γ̃−h − γ̃
+
h for 5 different

materials.

Sample γ̃+
h γ̃−h ∆γ̃h

Pure fluid (i) 3 6 3
Pure fluid (ii) 1 2 1

(0): φ = 37% bubbles in (i) 4 9 5
(2): φ = 40% solid part. in (i) 2 50 48
(3): φ = 35% solid part. in (ii) 2 48 46
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FIG. 6. (a)-(c) Stress-strain τ(γ) responses of (a) the pure fluid (i), (b) the bubble suspension (0) in the same fluid (φ ' 37%)
and (c) the particle suspension (2) in the same fluid (φ ' 40%) to shear-stress-controlled tests, for the two initial conditions
pre-shear + and pre-shear −. (d)-(e) Rescaled stress-strain τ̃(γ̃) responses for the three samples for the initial conditions (d)
pre-shear + and (e) pre-shear − (with a zoom in inset). Dashed lines show the characteristic rescaled plastic shear strain γ̃h
so that τ̃(γ̃h) = 0.9.
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FIG. 7. (a)-(b) Stress-strain responses τ(γ) during a shear-rate-controlled test for (a) the pure suspending fluid (ii) and (b)
for the particle suspension (3) in the same fluid (φ ' 35%) from different initial conditions: pre-shear +, pre-shear − and
pre-shear ⊥. (c) Comparison of these responses on the same plot with the help of rescaled units τ̃ = τ/τ∞Y and γ̃ = γ G′/τ∞Y ,
with a zoom in inset. Dashed lines show the characteristic rescaled plastic shear strain γ̃h so that τ̃(γ̃h) = 0.9.

suspension appear to have very close behavior in both
cases (pre-shear − and pre-shear +). Remarkably, the
rescaled values of the difference ∆γ̃h between the charac-
teristic hardening shear strains are similar, of the order
of 4, in the suspension of bubbles as in the emulsion (see
Tab. II).

The same is observed whatever the volume fraction φ
of bubbles is (see the rescaled stress-strain responses for
different bubble volume fractions φ from 0% to 44% in
Fig. 16a and b, Appendix B). This is obvious in Fig. 8
where the difference of rescaled characteristic hardening

shear strains ∆γ̃h is observed to be low and independent
of the bubble volume fraction φ. All the deviation from
a perfect elasto-plastic behavior observed in the bubble
suspensions can thus be attributed to the suspending
emulsion. To conclude, the bubbles and their interac-
tions do neither induce any significant strain hardening
nor any Bauschinger effect.
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FIG. 8. Bauschinger effect: rescaled difference ∆γ̃h = γ̃−h −γ̃
+
h

between the characteristic hardening shear strains for the two
initial pre-shear conditions (− and +) as a function of the
volume fraction φ of solid particles (2) – in black squares – or
bubbles (0) – in green circles – dispersed in the same elasto-
plastic fluid (i).

3. Particle suspension

PS spheres (2) and (3) have been added in the concen-
trated emulsion (i) and (ii) at a volume fraction φ ' 35%
and 40% respectively (Figs. 6c and 7b). In the presence
of particles, different initial conditions (pre-shear +, −
and ⊥) now lead to significantly different stress-strain
curves. The steady yield stress τ∞Y is the same for all the
initial conditions. However, the characteristic hardening
shear strain γh before reaching the steady plastic flow is
strongly dependent on the initial condition: whereas γ+h
is a few % for pre-shear +, the characteristic shear strain
γ−h is very large, of the order of 1, for pre-shear −, leading
to a dramatic increase of the difference ∆γh accounting
for the Bauschinger effect as compared to the suspend-
ing emulsion. By comparison, the suspension pre-sheared
in an orthogonal direction (pre-shear ⊥) has only little
hardening with γ⊥h ' 0.1 [Fig. 7(b)].

The rescaled τ̃(γ̃) curves displayed in Fig. 7c for the
pure suspending emulsion (ii) and for the particle sus-
pension (3), clearly show that particles suspended in the
elasto-plastic fluid present a very specific response to
shear reversal, which is dramatically different from the
limited Bauschinger effect found in the pure fluid and in
the bubble suspensions (see also Fig. 6e). Whereas very
close behaviors are observed for all materials with the
initial condition pre-shear +, the steady plastic behavior
for the particle suspension with the initial condition pre-
shear − is reached for a rescaled strain γ̃−h of the order
of 50 for φ ' 35%, 10 times larger than for the other
samples (see Tab. II).

The volume fraction φ of solid particles (2) suspended
in the fluid (i) has been systematically varied from 0%
to 50% for the two initial conditions pre-shear + and −
(see Fig. 16c and d in Appendix B). The initial condi-
tion has a strong influence on the elasto-plastic response
of solid particle suspensions for solid fractions φ & 30%.

Figure 8 shows the rescaled difference ∆γ̃h as a function
of the volume fraction φ: the larger φ is, the larger the
Bauschinger effect is. A dramatic increase of the charac-
teristic hardening strain γ̃−h and of ∆γ̃h is observed when
φ & 30%, with ∆γ̃c ∼ 50 for φ ' 50%. This is in strong
contrast with the behaviour of bubble suspensions. To
conclude, the solid particles and their interactions induce
a significant strain hardening for a preshear − and a dra-
matic Bauschinger effect, which are not observed in the
pure suspending emulsion.

B. Current yield stress and elastic modulus

To better characterize the strain hardening induced
by the solid particles, a suspension (3) at a solid frac-
tion φ ' 35% is submitted to a quasi-static plastic flow
in a shear-rate-controlled test associated with system-
atic unload-reload steps (see Sec. II B 3). Its stress-strain
response is shown in Fig. 9a by the colored curves for
the initial condition pre-shear −, the furthest one from
the steady state. For comparison, the response to the
same flow without unload-reload steps is shown in black:
both methods give the same macroscopic response, show-
ing that this experiment is not perturbative. The dot-
ted black curve corresponds to a flow from the initial
condition pre-shear +. At a given accumulated plastic
deformation γp, the two straight (colored) lines corre-
sponding to unload and reload superimpose nearly per-
fectly, showing that unload and reload happen elastically
for stresses below the current yield stress τY (γp). This
demonstrates that the stress-strain curve reflects the cur-
rent yield stress evolution with the accumulated plastic
strain. The same holds for a shear-stress-controlled test.

Figure 9b shows the current yield stress τY /τ
∞
Y (γp)

and elastic modulusG′/G′∞(γp), rescaled by their steady
values, for different accumulated plastic deformation γp.
When pre-sheared in the opposite direction, the suspen-
sion has low initial values of G′ and τY , which increase
transiently until their steady values, contrary to the case
of a suspension pre-sheared in the same direction, which
keeps constant elasto-plastic properties.

However, the decrease upon reversal of τY is abrupt
with a discontinuity, whereas the quick decrease of G′ is
continuous. This is clearer when measuring continuously
the elastic modulus G′(γp) as a function of the defor-
mation γp for a shear-reversal experiment (pre-shear −
initial state) in stress-controlled experiments thanks to
superposition of oscillations (see Sec. II B 3), as shown in
Fig. 10.

The same stress-controlled experiments have been per-
formed for the pure fluid (i), the bubble suspension
at φ ' 30% (0) and the solid particle suspension at
φ ' 37% (2). The dimensionless G′/G′∞(γ) data of all
materials are plotted in Fig. 10. Note that in this case,
G′ is initially larger than at steady-state in all materials
because it is measured at zero stress initially whereas it is
measured around τ = τ∞Y at steady-state: this difference
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FIG. 9. (a) Stress-strain τ̃(γ) response of a particle suspension (3) from the initial condition pre-shear − during a shear-
rate-controlled test associated with load-unload-reload steps. The black continuous curve is the stress-strain response to the
same flow without load-unload-reload steps, whereas the black dotted one corresponds to a flow from the initial condition
pre-shear +. (b) Current yield stress τY /τ

∞
Y (γp) (circles) and elastic modulus G′/G′∞(γp) (squares) at different accumulated

plastic deformation γp, rescaled by their steady values.
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FIG. 10. Current elastic modulus G′/G′∞ measured in
controlled-shear-stress experiments, rescaled by its steady
value, as a function of the deformation γp in a shear-reversal
experiment (initial state: pre-shear −) for a pure elasto-
plastic fluid, a solid particle suspension and a non-deformable
bubble suspension at similar volume fractions φ ≈ 35%.

only reflects the nonlinear elasticity of the material for a
same state.

The first important feature observed in these elas-
tic modulus measurements during shear-reversal exper-
iments is that the response of the pure emulsion and
that of the bubble suspension superimpose. Again, this
shows that the bubbles do not induce any strain hard-
ening in the elastoplastic emulsion; the only impact of
the bubbles is a change in the values of the macroscopic
properties [36, 53]. These responses are very different
from that observed in the particle suspension. All the
slow non-monotonous evolution of G′/G′∞ below 1 for
the particle suspension (2) can be attributed to the pres-
ence of the particles. In addition to the dramatic strain
hardening and Bauschinger effect, the elasto-plastic sus-
pensions are shown here to exhibit significant softening,
with a huge typical deformation of about 2.5 necessary

for the current elastic modulus G′ to reach 0.9G′∞ (6 to
recover its steady value G′∞). These typical deforma-
tions are much larger than the characteristic hardening
shear stress γ−h ∼ 1 for the current yield stress τY to
reach 0.9τ∞Y (∼ 2 to reach its steady value). This obser-
vation holds for both shear-stress-controlled (Figs. 6(c)
and 10) and shear-rate-controlled tests [Fig. 9(b)].

All these experiments finally demonstrate the ma-
jor role of the solid particles in the development of
strain hardening and softening, in addition to their well-
known effect on the steady mechanical properties [38, 39].
This highlights the crucial role of their evolving micro-
structure on the suspension behavior, which we investi-
gate in the next section.

IV. SHEAR-HISTORY DEPENDENT
MICROSTRUCTURE

To look for microscopic mechanisms responsible for the
dramatic hardening and softening of solid particle sus-
pensions, we investigate the spatial distribution of the
particles for different shear histories (see Sec. II C 2). We
focus on particle suspension microstructures during sta-
tionary flows and upon shear reversal. We also provide
for the first time – according to our knowledge – a char-
acterization of a bubble suspension microstructure. We
recall that both types of suspensions (solid particles and
air bubbles) have similar isotropic microstructures be-
fore any loading, as shown in unsheared drops poured on
a plate (Fig. 5).

A. Particle suspensions

Figure 11 shows a selection of color maps of pdfs in
the velocity-velocity gradient plane of the simple rota-
tional shear flow gr(`, ξ) ≡ gr(ρ, θ) for a suspension of
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FIG. 11. Color maps of pair distribution functions gr(`, ξ) ≡ gr(θ, ρ) in the velocity-velocity gradient plane of the simple shear
flow imposed locally by a parallel plates geometry for a suspension (3) of φ ' 35% particles in the concentrated emulsion (ii).
The four maps correspond to different accumulated plastic deformation γp = 0, 2, 20 and 200 since the initial condition (pre-
shear −). The first map (γp = 0) corresponds to the steady state for a suspension presheared in the opposite direction. The
two arrows symbolise the direction of flow and the amplitude of the strain experienced up to the imaging.
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FIG. 12. Pdf gr averaged over pairs of distance ρ equal to
d ± d/6, d being the particle diameter: 〈gr(θ)〉, for different
shear history (γp from 0 to 200). The black curve refers to an
isotropic pdf measured in a suspension drop, which was not
pre-sheared. Two representations are shown: (a) in a polar
frame (〈gr(θ)〉 cos θ, 〈gr(θ)〉 sin θ) and (b) in a Cartesian frame
(θ, 〈gr(θ)〉).

φ ' 35% particles in a concentrated emulsion (3). These
maps correspond to the accumulated plastic deformation
γp = 0, 2, 20 and 200 in a shear-reversal experiment (pre-
shear −). The first (a) and last (d) maps thus correspond

to steady microstructures for shear flows in two opposite
directions; in-between, maps correspond to intermediate
microstructures during hardening. For particles sepa-
rated by large distances ρ, the pdf gr is homogeneously
equal to 1, which implies the absence of any long range
organisation. All the angular and temporal variations of
the microstructure occur for particles in contact or close
to contact for which gr(ρ ' d) 6= 1.

A finer description is thus possible by computing the
radial average 〈gr(θ)〉 for distances ρ corresponding to
its maxima (ρ = d ± d/6), that is, in or close to con-
tact (superimposed on Fig. 11). We emphasize that it is
not possible to distinguish experimentally particles that
are actually in direct contact from those separated by a
thin fluid layer. Two representations are used to plot the
function 〈gr〉: either in a polar plot, where the coordi-
nates are (〈gr(θ)〉 cos θ, 〈gr(θ)〉 sin θ), or in an “unrolled”
Cartesian plot, where the coordinates are (θ, 〈gr(θ)〉), as
shown in Fig. 12 for many different values of the plastic
deformations γp (between 0 and 200) accumulated since
the initial condition (pre-shear −). The averaged pdf
for an isotropic microstructure is also plotted in black in
Fig. 12 [29]: at contact, due to excluded volume effects,
there is an excess of particle pairs as compared to long
distance, and gr ' 1.5 [54]. Over-population and deple-
tion of particle pairs can thus be identified, respectively,
with gr > 1.5 and gr < 1.5.
Stationary state. The initial steady microstructure

[Fig. 11(a)], shows a shear-induced anisotropic state,
characterized by different values of gr(ρ ' d) in or close
to contact in the domains of compression (0◦ ≤ θ ≤ 90◦)
and tension (90◦ ≤ θ ≤ 180◦) of the simple shear flow.
More precisely, the initial pdf 〈gr(θ)〉 shows two main
features. (1) There is a major over-population region
(gr ' 2) for θ = 10◦, which can be described as an
alignment with the flow as θ ≈ 0◦; this overpopula-
tion region extends over one third of the compression
region (i.e. for 0◦ . θ . 30◦). (2) There is a ma-
jor depletion region in the tension region (gr ' 0.5),
aligned with the direction θ = 150◦; this depletion re-
gion extends over two third of the tension region (i.e. for
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120◦ . θ . 180◦). Particle pairs in (or close to) contact
oriented along 60◦ . θ . 120◦ are statistically as present
as in an isotropic microstructure (gr ' 1.5). We also note
that there is a slight region of depletion as compared to
the isotropic structure (with gr ' 1.2) for 30◦ . θ . 60◦.

The steady microstructure in Fig. 11d corresponding
to the steady state under the reference direction is the
mirror of the initial one: the two pdfs are symmetric
according to the ` = 0-axis as expected from the flow
symmetry. Thus, the main differences between the two
mirror steady pdfs lie in the switch of directions between
θ = 150◦ and θ = 30◦ for the main depletion region
and in the slight ‘rotation’ of the direction of the over-
population aligned with the flow (i.e. from θ ≈ 10◦ to
θ ≈ −10◦), whereas 〈gr(60◦ . θ . 120◦)〉 keeps roughly
constant and close to 1.5.

This anisotropy, with a depleted zone in the tension
region, is referred to in the literature as a fore-aft asym-
metry; it is the hallmark of suspensions of rough rigid
particles [27] (see Sec. I). It reflects the existence of a
cut-off in the hydrodynamic repulsive force due to par-
ticle roughness and to the fact that interparticle contact
forces exist only in compression [28, 30, 31]. In addi-
tion, for a nonlinear interstitial fluid, this steady-state
microstructure slightly depends on the applied shear rate;
this is discussed in detail elsewhere [29, 31, 33]: our focus
here is on the impact of shear history.

Shear reversal. Obviously, during a shear reversal the
particle pair distribution has to evolve from a steady
state to its mirror. It is actually observed that the mi-
crostructure slowly changes and progressively ‘rotates’.
Figure 12a shows that the fraction of particle pairs sim-
ilar to the isotropic case (60◦ . θ . 120◦) does not
change significantly during a shear reversal, while the
maximum of over-population direction slightly ‘rotates’
from θ ≈ 10◦ to θ ≈ −10◦. In the same time, the two ob-
served depletion regions are progressively switched: Fig-
ure 12b shows that gr in the major and minor deple-
tion regions respectively increase and decrease (but not
simultaneously), leading to a switch in the direction of
the main depletion region from θ = 150◦ to θ = 30◦.
The minor depletion region in the compression region
(90◦ ≤ θ ≤ 180◦) for γp = 200 is likely a reminiscence
of the previous depletion of particle pairs, which might
become even slighter, at longer strain scales. Some addi-
tional characterization of the evolution of the microstruc-
ture of the solid particle suspension during a shear rever-
sal is given in Appendix C (see Fig. 17 and 18).

B. Bubble suspension: steady-state

Figure 13 shows the 2D pdf gr in the velocity-velocity
gradient plane of the simple rotational shear flow for a
bubble suspension (2) of φ ' 37.5% volume fraction, af-
ter a plastic shear, with γp ' 24, at a shear rate γ̇ ' 0.8
s−1. We recall that distances ρ between pairs of bubbles
have been normalized by the sum of their radii to take
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FIG. 13. Color map of the pdf gr in the velocity-velocity
gradient plane of the simple shear flow imposed locally by
a parallel plates geometry for the bubble suspension (1) of
φ = 37.5% volume fraction in the concentrated emulsion (i).
Pair distances ρ between bubbles have been normalized by
the sum of their radii.
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FIG. 14. Pdf 〈gr(θ)〉 averaged over pairs of distance ρ normal-
ized by the sum of radii equal to 1± 1/6 in a polar frame for
the sheared bubble suspension (1) (φ ' 37.5%) superimposed
to the steady shear-induced pdf of a solid particle suspension
(φ ' 35%).

into account the bubble polydispersity (see Sec. II C 2).
This pdf measured just after a steady shear flow (to avoid
any change of the bubble size and position between their
shear and their imaging) is very different from that mea-
sured in an unsheared drop [Fig. 5(b)].

Most important, it is drastically different from that
measured for a solid particle suspension. In the bubble
suspension, the variations of g are not localized to the re-
gion around ρ ' d within a circular ring, i.e. at (or close
to) contact. Its main characteristics are the symmetric
alignment of bubble pairs exactly with the flow (ξ = 0)
and the existence of a wide zone with fore-aft asymmetry,
with bubble depletion, extending to large ρ values.

Although all the information of the bubble suspension
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pdf is not only localized around ρ ' d, contrary to the
particle suspension pdf, it is useful to compute the aver-
age 〈gr(θ)〉 for bubble pairs in or close to contact (i.e.,
for distances ρ normalized by the sum of the bubble radii
equal to 1 ± 1/6) for a quantitative comparison of the
microstructure of bubble and solid particle suspensions.
The average 〈gr(θ)〉 for bubble suspension is superim-
posed on the 2D pdf colormap in Fig. 13. Figure 14
also shows the average 〈gr(θ)〉 for bubbles superimposed
to that of solid particles in a suspension of similar vol-
ume fraction φ, in the steady shear-induced anisotropic
state. These curves present strong differences, showing
that the physics at play in both systems is radically differ-
ent. In particular, by contrast with particle suspensions,
for which there is an excess of particles in the whole com-
pression quadrant, the zone of bubble accumulation at
contact is limited to θ ' 0, pointing to bubble alignment.

V. DISCUSSION AND CONCLUSION

Dispersing solid hard particles in an elasto-plastic ma-
terial leads to important shear-history dependence of the
behavior, namely strain hardening. It is observed here to
be particularly dramatic in a shear-reversal experiment.

During a shear reversal, the variations of both the
elasto-plastic properties and the microstructure of solid
particle suspensions happen in parallel. This observation
is reminiscent of the viscosity change upon shear reversal
in viscous suspensions [34, 55], which is also reflected in a
microstructure change [56], with features similar to those
we report here. As in this latter case, it is likely that
the microstructure evolution reflects the abrupt open-
ing of the contacts upon reversal in the tension region
(which was the compression region before reversal) as
well as the progressive accumulation of contacts in the
compression region (the depleted tension region before
reversal), as shown in numerical simulations of viscous
suspensions [55]. In concentrated suspensions, contacts
play indeed a major role in the stresses developed by a
suspension under shear [57], and any change in the con-
tact distribution has a dramatic impact on the mechani-
cal properties.

We note however that the pdf evolves over a larger
strain scale than the rheological properties: a transient
symmetric microstructure [Fig. 11(c)] is observed for a
plastic strain of the order of 20 for which the steady yield
stress and the steady elastic modulus have already been
reached, whereas a plastic strain of the order of 200 is
needed to reach a steady microstructure. It is likely due
to the fact that the experimental pdf captures both par-
ticles in contact and particles separated by a thin fluid
layer: contacts are formed more rapidly and have the
main impact on the mechanical properties.

The role of the solid particle interactions in strain hard-
ening is highlighted thanks to the comparison with sus-
pensions of non-deformable bubbles. As shown here, the
bubbles do not induce any additional history dependence

to the emulsion elasto-plastic behavior. Two main differ-
ences may be at the origin of this difference with solid
particles: (1) bubbles are smooth, which may prevent the
formation of contacts; (2) there is no static friction force
between two bubbles. Bubbles can thus be considered
as smooth frictionless particles. From the literature of
suspensions, it seems that the roughness is crucial in the
development of fore-aft asymmetry [28, 30]. The smooth-
ness of the bubbles is thus likely the main point explain-
ing the absence of strain hardening in bubble suspensions.
Based on this argument, one could expect the bubble sus-
pension to develop a symmetric microstructure, which is
not what we observe here. However, the microstructure
of bubble suspensions is dramatically different from that
of particle suspensions. The fore-aft asymmetry is lim-
ited to the contact region for the solid particle suspen-
sions, whereas it extends far from contact for the bubble
suspension. This points to a hydrodynamic origin of this
asymmetry in the case of bubbles. As visco-plastic inter-
actions do not induce any asymmetry in the interaction
of pairs of smooth particles [31], elasticity might addi-
tionally play a crucial role in the long-range asymmetry
observed in the case of bubbles [32, 58].

To conclude, in this paper, by conducting both fine rhe-
ological experiments (steady characterization and shear
reversal in elasto-plastic regimes) and microstructure
characterization (thanks to 3D imaging) on suspensions
of solid particles and bubbles, we have observed dramatic
strain hardening, Bauschinger effect, softening and de-
pendence on shear history attributed to the solid nature
of inclusions. In particular, we have evidenced that this
important shear-history dependence is related to shear-
history dependent particle pair distribution functions.
Roughness and interparticle contacts likely play a ma-
jor role, as replacing hard particles by non-deformable
bubbles suppresses strain hardening and modifies the sus-
pension microstructure. Beyond suspensions, our study
provides a new insight in the understanding and the con-
trol of strain hardening in composite materials.
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Appendix A: Bubble size distribution

Figure 15 shows the bubble (1) diameter histogram
that we measured thanks to 3D imaging (X-ray tomog-
raphy). These bubbles have a wide diameter distribution
as they consist of bubbles (0) prepared ∼ 1 h before imag-
ing, due to incompressible delay times, so that they have
aged since their preparation; this coarsening is a classi-
cal feature of foams [37]. However, special attention has
been paid to the analysis of their microstructure to take
into account their polydispersity: we consider only bub-
bles with a diameter between 100 and 500 µm, without
any bubble in their close neighbourhood outside of this
diameter range.

Appendix B: Shear-stress-controlled tests for bubble
and particle suspensions

Figure 16 shows the rescaled stress-strain responses
τ̃(γ̃) to shear-stress-controlled experiments for the two

initial conditions pre-shear + [(a) and (c)] and − [(b)
and (d)], for two types of suspensions: bubble suspen-
sions (2) [(a) and (b)] and solid particle suspensions (3)
[(c) and (d)] for various volume fractions φ of inclusions
from 0% to 50% in the same elasto-plastic fluid (i). For all
bubble volume fractions, the initial condition pre-shear +
and the initial condition pre-shear − lead to similar re-
sponse, with non-significant Bauschinger effect. By con-
trast, for solid particles, increasing the particle volume
fraction leads to stronger and stronger strain hardening
for the initial condition pre-shear −, which demonstrates
a remarkable Bauschinger effect related to the solid na-
ture of the inclusions.

Appendix C: Microstructure

Figure 17 shows the angle θmin of the depletion region
of the microstructure (global minima of the pdf 〈gr〉) as
a function of the plastic deformation γp applied from the
initial state pre-shear −. The change of the angle of the
depletion region from θ = −30◦ ≡ 150◦ to θ = +30◦

is abrupt; it occurs here for a typical deformation γp of
about 20, for which the microstructure looks symmetric
according the ` = 0-axis (see Fig. 11c).

Figure 18 shows the values of gmin at its two minima
(at angles θ = 30◦ and θ = 150◦) as a function of the plas-
tic deformation γp accumulated since the initial condition
(pre-shear −). Initially, the depletion region in the ten-
sion region is aligned with θ = 150◦ and 〈gr(θ = 150◦)〉 is
minimal (' 0.5); upon shear reversal, 〈gr(θ = 150◦)〉 in-
creases towards ' 1, while 〈gr(θ = 30◦)〉 decreases below
1 until reaching ' 0.5. This demonstrates the transi-
tion of the main depletion region from 150◦ to 30◦, while
illustrating the kinetics of this transition.
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