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Highlights 
 A new approach is developed for large scale urban morphological studies 
 The Canton of Geneva (60,000 buildings) is selected as a case study 
 40 morphological features are investigated towards rooftop insolation 
 Moderate Pearson coefficients (R2=0.2/0.4) are found for the whole dataset 
 Densest municipalities exhibit higher correlation levels (R2=0.4/0.6) 
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Abstract. Building rooftops represent one of the most valuable resources to harvest solar 11 
energy in cities. Nevertheless, this potential is limited by the urban morphology impacting the 12 
shading conditions. This study suggests a general methodology to assess the impact of urban 13 
form on solar harvesting. To this aim, a new GIS-based approach is developed to extract 14 
meaningful morphological parameters at a very large scale. The rooftop overall shading rate is 15 
here defined as a benchmark, and it is measured through a scaled insolation representing the 16 
ratio between the insolation of a surface within the urban context and its unshaded theoretical 17 
maximum. A set of 40 morphological features is calculated for 60,000 buildings in the Canton 18 
of Geneva (Switzerland), and the scaled solar insolation of about 350,000 roof pieces is 19 
derived from the Solar Cadaster of Geneva. The results outline the insolation distribution 20 
within the city and as a function of urban morphology. The rooftop overall shading rate shows 21 
moderate Pearson coefficients (r=0.2/0.4) towards some parameters, namely building height, 22 
volume, and height difference with surroundings, while others seem irrelevant. Analysing the 23 
48 Geneva municipalities one at a time, the denser downtown areas reach higher correlation 24 
levels (r=0.4/0.6) compared to the suburban ones. 25 

Keywords: Urban Morphology; Rooftop Solar Radiation; Solar Cadaster; GIS; Correlation Analysis  26 

1 Introduction 27 
The decrease of building energy consumption and the exploitation of renewable resources are key 28 
goals of the current EU regulation toward energy transition in urban areas [1]. In Europe, the buildings 29 
and the building construction sector combined account for 35% of the total global final energy 30 
consumption but new constructions are expected to reduce considerably their energy use thanks to the 31 
more stringent policies [2]. However, if we take into account the growth of the world's population, 32 
urbanization and the low rate of renewal of the building stock (less than 1% per year), efforts have to 33 
be accentuated and ensure that buildings also produce energy. The relatively recent concept of Nearly 34 
Zero Energy Buildings (NZEB) and Districts (NZED), has helped to develop more awareness on 35 
on-site energy production issues [3,4]. In this context, solar energy stands out among renewable 36 
sources for its ease of adaptation to urban surfaces. Based on the International Energy Agency (IEA) 37 
projections more than 50% of the overall photovoltaic capacity will be installed on residential and 38 
commercial buildings by 2050 [5]. Thus, cities play a central role to boost renewable energy 39 
production at a larger scale than standalone building or district installations.  40 
The solar resource varies to a great extent with the time scale and location, and efficient exploitation 41 
requires a high level of knowledge on the actual resource. In the last decades, thanks to the great 42 
improvement in large scale simulation, open-source geographic datasets, and Light Detection and 43 
Ranging (LiDAR) data acquisition, it has been possible to assess the solar energy potential of a city at 44 
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a macroscale, resulting in a solar map or solar cadaster [6]. However, as it emerges from the study by 45 
Kanters et al. [7], there is still a restricted number of accurate city-scale solar cadasters. These solar 46 
cadasters give access to an average annual irradiation on the roofs or even an average annual energy 47 
production depending on the solar technology selected. Nevertheless, the main limiting factors are the 48 
complex shadowing conditions and building radiation interreflections [8] having an impact on 49 
computation time, and the high level of expertise required to set up radiation models and large scale 50 
simulations. Given the difficulty of computing the solar potential at an urban territory scale, another 51 
key issue regarding the distribution of solar radiation within the urban environment is to analyse the 52 
effects of the urban form, or morphology, on solar availability. This could contribute to create 53 
guidelines for urban planners at the early design stage and help municipalities to identify the most 54 
suitable areas to harvest solar energy.  55 
In the last decade, there has been a significant interest in investigating the effect of the urban form on 56 
both building energy performance [9 12] and solar power potential analyses [13 17]. Some 57 
parametric studies on elementary and ideal urban archetypes evidence strong correlations between 58 
morphological features and irradiance levels [18]. Despite being a very useful reference for designers 59 
and planners, this level of accuracy in the results cannot be expected when dealing with real and 60 
highly heterogeneous systems such as real cities. In the last few years, also thanks to the growing 61 
availability of 3D (or 2.5D) information about cities, there has been significant progress in managing 62 
real urban data. Chatzipoulka et al. [19] investigated the relationship between urban geometry and 63 
solar availability on building façades and open spaces of 24 neighbourhoods of London of the size of 64 
500 m x 500 m. Mohajeri et al. [20] studied the effects of 6 relevant urban compactness indicators on 65 
the solar potential of 16 districts (11,418 buildings) of the city of Geneva (Switzerland). Also, 66 
Morganti et al. [21] evaluated the impact of 7 morphological features on the façade solar irradiance of 67 
14 urban textures of Rome (Italy) and Barcelona (Spain). While these studies outline the relationship 68 
between solar potential and the urban texture, they are mostly focused on façades and the calculation 69 
of the morphological features is generally done at the neighbourhood level, averaging the building 70 
characteristics within a certain administrative border or cell of a squared grid. Additionally, the 71 
considered sample of buildings is often limited to a few thousand and the selection of the 72 
morphological features does not follow a rigorous methodology, being considerably variable 73 
depending on the research objectives.  74 
In the meantime, substantial advances have been done in the so-called Urban Morphometrics (UMM) 75 
[22 24], a branch of urban morphology study aiming at developing objective and reproducible 76 
methodologies to compute rigorously the geometrical attributes of a city to support scientific 77 
researches. In particular, Fleischmann et al. [25 28] developed a new approach to derive a meaningful 78 
spatial unit of an79 
allowing the calculation of several morphological attributes related to the buildings themselves and the 80 
adjacent surroundings. This process has been also implemented in a python library called Momepy 81 
[29], thus enabling automatization and reproducibility.  82 
The present study is intended to fill three main research gaps. Firstly, despite the recent improvements 83 
in solar cadasters, a lack of statistical analyses related to the solar radiation distribution within the 84 
urban context can be highlighted. These studies mainly concern the solar radiation model and 85 
computational issues, without any interpretation of the results with a view to urban morphology. 86 
Secondly, it has been pointed out the necessity to establish a systematic in-depth analysis to assess 87 
meaningful morphological features at the building scale and to investigate the correlations with 88 
insolation without averaging the urban characters. Finally, the use of very large building datasets 89 
seems to be still very restricted.  90 
The present research is related to calculating and analysing 40 morphological features (including 91 
building geometry, shape, density, spatial distribution) on each of the 60,000 buildings of the Canton 92 
of Geneva through GIS data and the Momepy library [29]. The yearly rooftop insolation data from the 93 
Solar Cadaster of Geneva [30,31] have been analysed in relation to urban morphology. Finally, 94 
Pearson correlation analysis has been performed without averaging the features at the neighbourhood 95 
level. The results provide interesting statistical findings regarding the potentially most influential 96 
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parameters for solar urban planning, but also the city-related morphological specificities and their 97 
impact on solar harvesting. 98 

2 Data and methods 99 
The following sections include an outline of the data sources and methods. The methodology is 100 
schematically represented in Figure 1Figure 1. The workflow highlights the three main phases of the 101 
developed approach, i. e. the computation of the scaled solar insolation (I*, as defined in Eq.9) derived 102 
by the Solar Cadaster of Geneva, the morphological tessellation and the consequent calculation of the 103 
40 selected parameters for each building, and finally the analysis of the results arising from the 104 
statistical correlations.  105 
 106 

 107 
 108 

Figure 1: Schematic representation of the developed methodology shown in a specific area of the Canton of 109 
Geneva.  110 

2.1 GIS data sources and case study 111 
The present paper proposes a general methodology to evaluate the impact of urban morphology on the 112 
rooftop solar potential for large city-scale studies. Worth noting, the developed approach is general 113 
and it applies to any urban area and considering any benchmark in addition to rooftop insolation.  114 
This methodology is then applied to a case study: 115 
Switzerland). Its total surface is 282 km2 and it comprises about 60,000 buildings subdivided into 48 116 
municipalities.  117 
The input data to the present GIS-based analysis comprise building geometry and solar radiation 118 
information in the form of geospatial vector data for Geographic Information Systems. One of the 119 
most common format to handle vector data is the shapefile, which stores a set of georeferenced 120 
attributes for each element (here the buildings), depending on the information needed. This study 121 
involves two shapefiles retrieved from the on-line repository of the Geneva territory (SITG: Le 122 
système d'information du territoire à Genève) [32], namely Cad.batiment.hors.sol and 123 
Ocen.solaire.irr.surface.utile. The first gathers general information about the building, such as period 124 
of construction, belonging municipality, final use and, most important here, the building height. The 125 
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second concerns solar radiation and geometrical information (slope and azimuth) of each piece of roof. 126
Figure 2 shows the two shapefiles within the QGIS environment with a non-exhaustive attribute table 127
of the most important information stored in each. The colour scale of Ocen.solaire.irr.surface.utile128
refers to the yearly average solar insolation (kWh/m2 year) received by each piece of the rooftop as 129
computed in [30,31] to build the Solar Cadaster of Geneva. One can note that the size of the two 130
shapefiles is different: Cad.batiment.hors.sol stores a set of information for each building (about 131
60,000 elements), whereas Ocen.solaire.irr.surface.utile is related to each piece of roof (about 132
350,000 elements).133

134

135
Figure 2: Insight of the two shapefiles, Cad.batiment.hors.sol and Ocen.solaire.irr.surface.utile, and the related 136

main attributes. Zoom on a specific area of Geneva.137

3 Definition of I*, the scaled solar insolation138
As briefly outlined in the Introduction section, the key issue of the developed approach relates to the 139
investigation of the relationship between the building rooftop overall shading rate and the 140
morphological parameters. A scaled solar insolation (I*) has been introduced as a measure of the 141
shading level of a building rooftop. I* has been defined as the ratio between the insolation of a roof 142
surface within the urban context and its unshaded theoretical maximum, as a function of its 143

. I* is a dimensionless parameter, ranging from 0 to 1, which represents the share of 144
theoretical maximum insolation (without any shading) that can be attained by a rooftop surface within 145
the urban context. The closer I* gets to 1, the lower is the building rooftop overall shading rate, 146
approaching the unshaded condition.      147
For the calculation of I*, the yearly average solar insolation (in kWh/m2 year) received by each piece 148
of rooftop (about 350,000 elements) within the Canton of Geneva has been retrieved from the 149
open-access Geneva Geoportail (SITG) [32] in the Energy section (shapefile 150
Ocen.solaire.irr.surface.utile). The city-scale insolation computation was carried out in the framework 151
of the development of the Solar Cadaster of Geneva [30,31,33]. The latter is a powerful integrated tool 152
involving the use of LiDAR, 2D and 3D cadastral data. The solar radiation modelling was 153
implemented through GIS in combination with Matlab, using the Hay anisotropic model for sky-154
diffuse radiation [34] and accounting for the shading coefficients on the direct and diffuse components 155
[35].156
For each piece of rooftop (i),157
insolation (I*roof) has been calculated as in Eq.999999158

159
(1)
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where Iroof is the surface yearly average solar radiation (in kWh/m2 year) of the ith surface extracted 160
from the Solar Cadaster of Geneva and Itheo-max is the unshaded theoretical maximum insolation that 161
corresponds to the ith surface, calculated from (i) (i)). In other words, 162
considering a specific piece of rooftop (i), can be seen as the yearly solar 163
radiation that would be received by this roof if it were not shaded by surroundings elements 164
(buildings, elements on the roof etc). Therefore a value of 1 corresponds to a roof that is not 165
shaded at all.166
The calculation of Itheo-max is based on the well-known plane-of-array (POA) solar radiation167
formulation, evaluating the incident insolation on a tilted surface from horizontal radiation data 168
(transposition model) as in Eq.2169

170
   (2)

171
where Idir, Idiff, Irefl are respectively the direct, the diffuse, and the reflected solar radiation components. 172
To be consistent with the calculations of the Solar Cadaster of Geneva, the Hay model has been 173
chosen for diffuse radiation, and the same (with respect to the Cadaster) horizontal monthly average 174
insolation data have been used as the input for the maximum unshaded insolation calculation. A 175
heuristic approach has been adopted for further validation: Itheo-max has been compared with the 176
maximum insolation value (Iroof-max) extracted from the Cadaster for each possible combination of 177

as in Eq.3178
179

(3)
180

The main idea behind the calculation of is that, considering the large number of roof 181
surfaces in the dataset, it could be expected that, for each possible combination of slope and azimuth, 182
there is at least one roof that should be unshaded so that 183

as in Eq.4184
185

(4)

Worth noting, to be consistent with the abovementioned assumption, Iroof-max can be compared to the 186
unshaded condition (Itheo-max) only when the number of surfaces (having the same slope and azimuth 187
values) is sufficient to assume that at least one among them is not shaded. This condition is not always 188

189
shaded from surroundings. Here, the minimum number of roof surfaces that is considered statistically 190

191
validation has been carried out for a reduced dataset, being the calculation of Itheo-max identical for all 192
the surfaces, the validation process can be extended to the whole dataset. Figure 3 shows the values of 193
Itheo-max (left), Iroof-max194
can be observed that the general appearance of Itheo-max and Iroof-max is very similar, with some punctual 195

196
cceptable. As 197

theo-max is generally higher than Iroof-max due to the 198
not-perfect unshaded conditions within the urban environment (despite the limitation set to 30 199
buildings).200

201
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202
Figure 3: Itheo-max (left), Iroof-max (centre), and the relative error203

azimuth ( )204
Since the evaluation of the morphological parameters is made for each building and not for each roof, 205
I*bld is introduced. It corresponds to the average area-weighted value of I*roof for each building and it is 206
calculated as in Eq.5:207

208
(5)

209
where Aroof is the area of each roof surface. As all the following analyses are related to the building210
elements, from now on, I*bld will be simply denoted as I* for the sake of brevity. At this point it is 211
worth mentioning that the proposed methodology is perfectly suitable for the study of insolation 212
received by façades. However, this information is still not available yet at the scale of the Canton of 213
Geneva. 214

4 Morphological tessellation and calculation of urban form features215
This study aims at evaluating the relationship between the building rooftop overall shading rate, 216
measured through I*, and the characteristics of the urban environment. A set of 40 meaningful217
morphological features have been selected and calculated for each building of the Canton of Geneva. 218
Differently from previous studies [19 21], where the urban morphological parameters were related to 219
average values within a predefined reference boundary (grid or municipality), here the objective is to 220
obtain a non-averaged unique value for each building. Indeed, meaningful indicators should capture 221
not only simple geometrical attributes of one building (namely the height, surface, volume, but 222
also its relationship with the surroundings (namely the inter-building distance, density, height 223
difference with neighbours, and more).224
From the 60,000 building footprints and the building height information stored in the shapefile225
Cad.batiment.hors.sol, a python script has been implemented to extract the selected urban metrics. To 226
this aim, a package named Momepy [29] has been exploited. The Momepy library is based on the 227
other hand on well-known python packages for GIS data analysis as GeoPandas [36], PySAL [37], and 228
networkX [38]. It provides several algorithms measuring six categories of features: dimension, shape, 229
intensity, spatial distribution, connectivity, and diversity, identified by the developers through detailed230
literature research [25]. In the present study, 40 among the attributes measuring building dimension, 231
shape, intensity, and spatial distribution have been selected. The list of features, as well as the related 232
equations and description, is reported in the Appendix for the sake of conciseness. The categories of233
connectivity and diversity (as defined in [29]) are not included in this research as they are mainly 234
related to network analysis and they are not representative for solar studies related to the resource235
spatial distribution.236
The dimension category concerns the basic geometrical attributes of a building (perimeter, footprint 237
and total floor areas, volume, longest axis length, and more), whereas the shape group includes some 238
shape descriptors (e. g. degree of elongation, compactness, squareness, shape index). Contrarily to the 239
previous categories, which are strictly related to the building geometry, the intensity category is more 240
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related to the urban fabric, comprising the calculation of the density. In urban studies, density is 241 
generally defined as the ratio between the footprint area (or the total floor area) and the unbuilt space. 242 
The calculation of the density requires the definition of a reference boundary that is often established 243 
using a grid or by simply considering the administrative limits of a district. However, this approach 244 
results in averaged values of a space portion, and it fails in capturing site-specific and building-related 245 
density information. To overcome this limitation, the Momepy morphological tessellation function is 246 
used to evaluate  The tessellation cell is a geometric 247 
derivative of Voronoi polygons obtained from building footprints. It represents the smallest spatial 248 
unit that delineates the portion of land around each building. Through the morphological tessellation, it 249 
is thus possible to capture the influence that each building exerts on the surrounding space as well as 250 
the building-related density information. Figure 4 shows the building footprints and the space 251 
subdivision into tessellation cells in a selected portion of the city of Geneva. The colour scale shows 252 
the intensity of the built environment in terms of building Coverage Area Ratio (CAR) expressed as 253 
the ratio between the building footprint area and the area of the related tessellation cell. As it can be 254 
observed from the figure, the darker is the colour the greater is the proportion of the tessellation cell 255 
covered by the building footprint, thus mapping precisely the densest areas within the urban fabric.   256 
 257 

 258 
Figure 4: Building footprints and related tessellation cells of a specific area of Geneva. The colour scale is 259 

related to the building Coverage Area Ratio (CAR) 260 
 261 
The spatial distribution aims at capturing the spatial relationships among buildings. Each building is 262 
influenced by its surroundings and it must be analysed within a spatial context, accounting for the 263 
neighbouring elements. This is possible using the spatial weights, i. e. mathematical structures used to 264 
detect the relationship between elements in the form of a binary matrix (1 = neighbours, 0 = not 265 
neighbours). In a few words, a building neighbour is a building whose tessellation cell is adjacent to 266 
the one under consideration as it is schematically represented in Figure 5.  267 
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268

269
Figure 5: Schematics representation of a building (red) and its neighbours identified by the spatial weights270

271
Once the neighbours are defined, some morphological features, such as the mean distance to 272
neighbouring constructions or averaged characters of the surroundings (average building height, 273
surface, volume, and many others on adjacent cells), have been calculated.274
Finally, a set of additional morphological parameters that are not included in the Momepy library has 275
been considered for this specific solar-related analysis. In more detail, the area-weighted average 276
rooftop slope is calculated as in Eq.6277

(6)

278
roof, and Aroof are respectively the slope and the area of each piece of roof (i). 279

The average Height to Width (HW) ratio, a useful measure for urban street canyon analyses, is 280
evaluated through Eq.7281

282
(7)

77777283
where H is the height of the reference284
neighbouring buildings. Nneigh is the number of neighbours and d(j) is the distance between the 285
reference building and its jth neighbour.286
The distance-weighted average height difference ( ) has been also introduced as in Eq.8287

288
(8)

289
where H(j) is the height of the jth neighbour, and w(j) are the distance-weights for the average. Here, 290
w(j) is the inverse of the distances between the reference building and its neighbours (w(j)=1/d(j)),291
thus giving more weight to the nearest constructions as they are expected to have a greater impact on 292
solar potential. Likewise, also the positive distance-weighted average height difference ( ) is 293
defined, including in the calculation only the neighbours that are higher than the building itself (H(j)>294
H). 295
Finally, , the average neighbourhood shading angle, is expressed through Eq.9296

297
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(9)

298
As for , the positive ( +) is also included considering only the neighbouring buildings that are 299
higher than the considered one (H(j)> H). 300

5 Data pre-processing301
A series of pre-processing operations have been performed to set up the statistical analysis and the 302
correlations between I* and the morphological parameters (Mn, with n ranging from 1 to 40). First,303
missing values have been checked and removed. The building dataset has been cleaned from not 304
significant elements, i. e. buildings having a footprint area below 20 m2 and/or a height lower than 305
3 m, representing approximatively the 0.03% of the total elements. In addition, when investigating the 306
correlations between I* and the morphological features, the outlier buildings, having height, footprint 307
area or tessellation area values significantly higher than the rest of the dataset, have been removed 308
using an Isolation Forest method implemented in a scikit-learn python package [39]. Finally, the data309
related to both the scaled insolation and the urban morphology have been merged using the building 310
ID (named in the shapefiles) thus obtaining a table of attributes, composed by the 40 311
morphological features plus one value of I*, for each building.312

6 Results and discussion313
In the following sections, the results are presented. The first two parts are related to the statistical 314
analysis on the distribution of I* (Section 6.1) and the morphological differences between the 315
buildings with respectively the lowest and highest values of I* (Section 6.2). To this aim, two groups316
of buildings have been identified within the dataset through quantiles. The first one (Q10) comprises all 317
the buildings having a I* value lower than the 0.1 quantile, whereas the second (Q90) is related to the 318
ones with I* higher than the 0.9 quantile. The morphological features of Q10 (lowest I*) and Q90319
(highest I*) have been analysed and compared interpreting boxplots.320
Sections 6.3 and 6.4 investigate the correlations between I* and the morphological features. The 321
Pearson Correlation coefficients (R2) and the scatter plots between I* and each morphological feature 322
(Mn) have been calculated and analysed to investigate the correlation between the dependent variable y 323
(I*) and the independent variable x (Mn). In some cases, Mn resulted in a non-normal distribution and, 324
to reduce the skewness of data and get a more linear relationship, different types of mathematical 325
transformations on the original dataset have been tested. Following Stevens [40], the logarithmic and 326
square-root transformations in some cases proved to be more effective to represent the relationship 327
between I* and Mn. The correlation study has been carried out in the first instance on the whole 328
building dataset (Section 6.3), and then within the different 48 municipalities of the Canton of Geneva 329
evidencing the differences as a function of the urban characteristics (Section 6.4). 330

6.1 I* distribution over the Canton of Geneva331
Figure 6 shows the histogram of the I* distribution over the 60,000 buildings. The I* values on the 332
x-axis have been subdivided into 50 homogeneous intervals and the y-axis represents the related333
percentage of buildings with respect to the total number. As it can be observed, the I* distribution is 334
characterized by a negative skewness, i.e. the mass of the distribution is concentrated on relatively 335
high I* values. 336
It can be also noticed that buildings with an I* value of 1.0 are also infrequent. This mean that the 337
urban morphology affects most of the time the building rooftop irradiance, either by affecting the 338
whole building or by affecting one piece of roof of the building since I* is an average value (see Eq.5). 339
Nevertheless, it is worth considering that there could be slight discrepancies between the calculation of340
Itheo-max and the insolation values as computed by the Solar Cadaster of Geneva. Indeed, even if, in the 341
present paper, same hypothesis regarding reflections and diffusion model were made, considering the 342
complexity of the calculation, the results might be affected by some minor differences. However, even 343
by considering an uncertainty of 10% (which corresponds to a rather conservative value of uncertainty 344
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with regards to the validation conducted in Section 3) it appears that more than 75% of the buildings 345 
have a I* below 0.9 and can therefore be considered as partly shaded.  346 
 347 

 348 
Figure 6: Distribution of I* on buildings 349 

 350 
The related cumulative distribution function of I* is shown in Figure 7. The mean I* value is 0.77 and 351 
the 25th percentile is 0.69 meaning that in general, despite the overall influence of the urban 352 
morphology on the solar resource, the shading levels are quite low.  353 

 354 
Figure 7: Cumulative distribution function of I* on buildings 355 

6.2 Statistical analysis of the shading conditions as a function of the urban morphology  356 
Figure 8 outlines a summary statistic (median and interquartile range) of the selected lower (Q10) and 357 
the upper (Q90) quantiles of I* with respect to the main meaningful morphological features, whose 358 
values are reported into the y-axis. In more detail, the size of the two groups is identical (both 359 
represent the 10% of the total number of buildings) but Q10 comprises all the buildings having an I* 360 
lower than 0.55, whereas Q90 includes the ones with an I* higher than 0.93. The analysis is aimed at 361 
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evidencing the main morphological differences between more shaded buildings (light blue, Q10) and 362
the less shaded ones (red, Q90). Boxplots show the minimum (lower cap), maximum (upper cap), 363
median (box middle line), 25th percentile (lower box limit), and 75th percentile (upper box limit) value 364
of the selected morphological features for the two groups.365
Concerning the height (H), the footprint area (A), and the total floor area (fA), the boxplots 366
representing the group Q90 are comparatively higher than the ones that represent Q10, meaning that367
taller and bigger (in terms of areas) constructions are more likely to be less shaded. The spread of the 368
boxplots represents the variability of a parameter. Observing the total floor area (fA), the variability is 369
much lower for Q10, meaning that in general the rooftop shading mainly affects small constructions, 370
with a fA typically lower than 250 m2. 371
The boxplots of the Volume to Façade Ratio (VFR) evidence that Q90 mainly comprises constructions 372
that have a big volume compared to the façade area. In other words, low-rise large buildings (with 373
higher VFR) are generally less shaded than the high-rise/tower-like ones. In terms of urban density, if 374
we refer to the building Floor Area Ratio (FAR), i. e. the ratio between the building total floor area 375
and the area of the related tessellation cell, it is possible to notice higher density values for less shaded 376
buildings (Q90). This is apparently in contrast with previous studies that evidence a negative 377
correlation between solar radiation and density. However, as highlighted in the Introduction, thanks to 378
the tessellation, here the calculation of the FAR density is not averaged within a selected area, but it is 379
computed within each tessellation cell, thus resulting in a building-related parameter independent from 380
the characteristics of the surroundings. 381
Contrarily, referring to the urban density as the average Floor Area Ratio of neighbouring 382
constructions ( ), lower values are associated to a lower shading rate, evidencing that less 383
shadowed buildings are mostly surrounded by low-density areas. The tendency that identifies 384
large-surface buildings being significantly less shaded, is also confirmed by the number of neighbours 385
(Nneigh). One could expect that a weaker shading may be related to buildings that have a few 386
neighbours. However, observing le boxplot of Nneigh the results show the opposite for this case study. 387
This can be explained by the fact that large-surface buildings are more likely to have more 388
neighbouring constructions compared to tower-like or small constructions. 389
The average distance with neighbouring constructions ( ) seems not significant to detect the 390
differences between Q10 and Q90, as it fails in capturing any information about the size (both in terms 391
of height and area) of the surrounding building. In contrast, as expected, the average height of the 392
building neighbours ( ) shows a small variability and comparatively lower values for less shaded 393
building (Q90). 394
Finally, as expected, the height difference with surrounding constructions ( ) is mostly positive for 395
more shaded buildings, i. e. neighbours are higher than the building itself, whereas it is negative or 396
near to zero for the less shaded ones. 397
  398
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399
400

Figure 8: Boxplots of Q10 (light blue) and Q90 (red). Boxplots show the minimum (lower cap), maximum (upper 401
cap), median (box middle line), 25th percentile (lower box limit), and 75th percentile (upper box limit).402

6.3 Correlation study403
As briefly outlined in Section 5 a series of data cleaning and pre-processing operations have been 404
performed before investigating the correlations between I* and the morphological features (Mn). 405
Figure 9 shows the detection, through the Isolation Forest method, of the removed outliers for the406
footprint area values. Each marker represents one building, labelled through its ID number (ranging 407
from 0 to 60,000) on the x-axis and the colours identify the inliers (grey points) and the outliers (red408
triangles). The same procedure has been applied also for the height and the area of the tessellation cell, 409
the diagrams are not displayed for the sake of conciseness. As a result, a total of about 150 outlier 410
buildings have been removed from the dataset before performing the correlation analysis. The aim of 411
such a pre-treatment operation is to exclude specific buildings with uncommon characteristics in the 412
statistical analysis in order to reduce the induced bias.413

414



13

415
Figure 9: Scatterplot representing the detection of outliers in footprint areas (m2) in red triangles, and the 416

inliers in grey points417
418

As a preliminary analysis to investigate the relationship between I* and the 40 morphological features 419
(Mn) here considered (see Appendix), the calculation of the Pearson correlation coefficients (R2) has 420
been performed on the whole dataset. Table 1 shows the R2 values between I* and each morphological 421
feature of the present study. The results are sorted in descending order of R2 absolute value with rows 422
and columns. The markers next to the parameter name specify if the R2 value is the result of a log-log 423
( ) or square root ( ) transformation, in case one of the two provided higher correlation coefficients 424
in absolute value compared to the not-transformed data. The parameters related to the height 425
difference between buildings ( , , +) and the building rooftop average slope ( ) shows 426
moderate (0.39-0.45) correlation coefficients. On the contrary, all the other spatial metrics related to 427
dimension, shape, density, and spatial distribution have very low or no significant correlations with I*.428
As a general comment, the parameters related to the building shape are the ones that exhibit the worst 429
correlation coefficients at it was expected.430

431
Table 1: Pearson correlation coefficients considering the whole building dataset432
-0.45 -0.17 Cco 0.09 Atess 0.07

-0.43 P 0.16 FrD -0.09 0.06

-0.39 LaL 0.15 -0.09 Ali -0.06
+ -0.25 FAR 0.14 LaLtess 0.09 Sqco 0.05

-0.25 Rug 0.14 -0.08 -0.04

V 0.21 -0.12 Elo 0.08 Rec 0.04

fA 0.20 -0.11 Squ -0.08 CovA 0.03

VFR 0.20 Nneigh 0.11 FoF -0.08 SWR 0.03

H 0.20 Adj 0.11 CAR 0.08 -0.01

A 0.18 ShIdx 0.09 HW 0.07 ERI 0.01
Square root transformation
)Log-log transformation

433
Despite the low correlation values, observing the scatterplots representing the relationship between I* 434

pattern can be noticed. More precisely, 435
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for the parameters related to the building dimension (namely A, H, V, P, fA, VFR, LaL), called Mn,dim436
for brevity, it is possible to define a relationship of the type (or 437

in case of log-log transformation) through a quantile regression. Figure 438
10 shows the scatterplot between I* (y-axis) and V (x-axis) after the log-log transformation. As it can 439
be noticed, the variability of log(I*) is so high for lower log(V) values, that the linear correlation 440
between the two, represented by the black regression line, is unsuitable to describe the data. On the 441
other hand, performing a quantile linear regression by considering the 0.01 quantiles of data (red 442
points) it is possible to define a regression line (red line) with R2=0.87. Despite it is not possible to 443
predict I* based on Mn,dim, using a quantile linear regression it is possible to define the most probable 444
range of I* values corresponding to a selected Mn,dim value. Worth noting that the same considerations 445
presented for V apply to the other dimensional features of the building (A, H, P, fA, VFR, LaL).446

447

448
Figure 10: Scatterplot between log(I*) and log(V). The black line represents the linear regression line and the 449

red line is related to the linear quantile regression line based on 0.01 quantiles (red points).450

6.4 Correlation analysis by municipality451
The Canton of Geneva is a rather heterogeneous territory, composed of 48 municipalities, some being 452
small rural municipalities, others being part of the urban area of the Geneva city itself. By analysing 453
the average morphological features characterising each of the 48 municipalities of the Canton of 454
Geneva, some evident differences can be noticed. In particular, four out of the 48 municipalities 455
appear overscale both in terms of building size and of built density. The four municipalities 456
correspond to the city centre district, having a denser urban morphology compared to the more open 457
residential suburbs. Figure 11 shows the boxplots related to the building volume (V) and the building 458
Floor Area Ratio (FAR) for each municipality, evidencing in red the four municipalities that 459
correspond to the Geneva city centre.460

461
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462
Figure 11: Boxplots of V and FAR of the 48 municipalities of the Canton of Geneva. The city centre districts are 463

highlighted with red boxes.464
465

The linear Pearson correlation coefficients have been calculated considering a reduced dataset of 466
buildings, including only the four city centre municipalities. The results are reported in Table 2. As it 467
can be observed, in this case, the correlations between I* and the morphological parameters are higher. 468
As in the previous case, the most relevant parameters to describe I* are the ones related to the height 469
difference with surrounding buildings (R2 about 0.6). Additionally, also some building dimension 470
features (namely H, fA, V, FoF, VFR, A) show moderate correlation coefficients towards I*471
(0.32-0.53).  472

473
Table 2: Pearson correlation coefficients considering the 4 city centre districts474

-0.60 Atess ) 0.29 ShIdx 0.22 0.12

-0.58 LaLtess ) 0.28 FrD ) -0.21 0.11

H 0.53 ) 0.27 Elo ) 0.20 Rec 0.09

fA 0.47 FAR ) 0.27 HW 0.20 Squ ) -0.09

V( 0.47 P ) 0.26 CovA ) 0.20 ) 0.08

FoF -0.38 Adj ) 0.25 ) 0.17 ) 0.07

VFR 0.35 Rug ) 0.25 0.17 ) 0.07

-0.32 -0.25 CAR 0.15 ERI 0.03

A 0.32 LaL ) 0.24 Sqco 0.15 SWR 0.03
+ -0.31 Cco 0.23 Nneigh ) 0.12 Ali 0.02

Square root transformation
)Log-log transformation

475
The most meaningful correlation is shown in Figure 12, representing the scatterplot between I* and the 476
building average height difference with surrounding ( ), after the square root transformation, as well 477
as the regression line with the related equation. In general, the greater is the height difference with the 478
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surroundings, the lower is the I* value, meaning that the buildings are more likely to be shaded by the 479
neighbouring constructions. 480

481

482
Figure 12: Scatterplot between I* and after the square root transformation. The black line represents the 483

linear regression line.484
485

The results arising from this correlation study evidence that some tendencies and meaningful 486
information about rooftop shading conditions, and more in general on solar radiation analyses, can be 487
extracted through detailed urban morphological studies. However, for most of the selected parameters488
the correlation coefficients are not sufficient to suggest accurate predictive models. The features 489
related to the building dimension and the height difference with the surrounding constructions are the 490
most useful to investigate the overall rooftop shading rate and they provide interesting qualitative 491
considerations both for researchers and planners. Contrarily to solar radiation on façades [19 21], the 492
analysed density-related parameters do not show meaningful relationship towards solar radiation 493
conditions. On the other hand, as it has been presented for the four downtown municipalities, the 494
density is a meaningful measure of the impact level of urban morphology on shading conditions. The 495
higher is the built density, the grater is the effect of surrounding constructions of rooftop solar 496
radiation. 497

7 Conclusions and perspectives498
In this paper we propose a new general methodology to investigate the relationship between rooftop 499
insolation and urban morphology. A comprehensive statistical analysis has been performed with 500
respect to rooftop solar producibility related to the Canton of Geneva, Switzerland. About 60 thousand 501
buildings have been considered for a detailed analysis based on 40 urban morphological parameters. 502
The selected morphological features refer to building dimension, shape, interbuilding geometrical 503
parameters as differences in height, distance, land area occupancy whose values have been calculated 504
thanks to a Pytho GIS-data.505
The independent variables (the urban morphological parameters) have been statistically processed 506
versus the dimensionless insolation, defined in the present study as the ratio of the Solar Cadaster 507
previously calculated insolation values and the unshaded insolation per roof portion.508
In the present studies it is showed that:509

- Within the studied area, more than 75% of the buildings is partly shaded. On the other hand, 510
75% of the buildings receive more than 69 % of the solar insolation that they would receive if 511
they were not shaded.512
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- The most shaded buildings (0.1 quantile) and least shaded (0.9 quantile) feature significantly 513
different morphological characteristics. The least shaded ones are more likely to be low-rise 514
large buildings (with big surfaces) rather than high-rise/tower-like constructions, as it could be 515
expected.516

- At the scale of the Canton of Geneva, correlations between the scaled irradiance and the 517
morphological are rather low, reaching a maximum R2 of 0.45 for . However, analysing the 518
municipalities, correlations are significantly improved for dense urban patterns (city centre), 519
with R2 coefficient that can reach up to 0.60.520

- In general, the morphological parameters that exhibit the best correlations are the ones related 521
to building dimension and interbuilding height difference, in particular referring to the city 522
centre municipalities. On the contrary, the features related to density and building shape have 523
low or irrelevant correlation coefficients. 524

- In some cases, according to the heterogeneity of the large dataset, correlation coefficient may 525
not appear as the most relevant indicator. Instead, a correlation of the lowest quantiles can 526
appear to well represent the dataset with correlation coefficient by up to 0.87.527

In order to pursue the proposed approach, it would be interesting to apply it to other territories with 528
different weather, latitude as well as urban morphology. However, this requires the access to large data 529
set of rooftop irradiance, which unfortunately is not common to find in open-access.530
As mentioned earlier, it is also worth mentioning that the proposed methodology can be applied to any 531
type of urban surface, including vertical façades. The latter would be extremely interesting since these532
surfaces are more likely to be sensitive to shadings from surroundings.533
Finally, the proposed approach is not limited to solar analysis. Indeed, it can be applied to any type of 534
variable related to the urban microclimate such as, for example pollution, or temperature.535
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544

8 Appendix545
546

Name Description Cat Symbol Equation Unit

Building 
height

Building height D H - [m]

Building area Building footprint area D A - [m2]

Building total 
floor area

Total floor area of the 
building, i.e. footprint area 

multiplied by the number of 
floors (n° floors)

D fA [m2]

Building 
volume

Building volume D V [m3]

Building 
perimeter

Sum of lengths of the 
building exterior walls

D P - [m]

Building 
longest axis 

length

Diameter of the minimal 
circumscribed circle around 

the building footprint
D LaL - [m]

Building 
volume to 

façade ratio

Ratio between building 
volume and the total area of 

façades
D VFR [m3/m2]

Building 
fractal 

dimension

Statistical index of the 
complexity of a geometry

D FrD

Building form 
factor

Quantity representing the 
3D unitless shape 

characteristics of a building 
envelope unbiased by the 

building size

D FoF [-]

Tessellation 
area

Area of the tessellation cell D Atess - [m2]

Tessellation 
longest axis 

length

Diameter of the minimal 
circumscribed circle around 

the tessellation cell
D LaLtess - [m]
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Building 
circular 

compactness

Index of the similarity of a 
shape with a circle. It is 
based on the area of the 
minimal enclosing circle 

(Ac)

S Cco [-]

Building 
square 

compactness

Measure of the compactness 
of the building footprint

S Sqco [-]

Building 
squareness

Mean deviation µ of each i 
corner of the building from 

90 degrees. Ncor is the 
number of corners

S Squ [-]

Building 
Rectangularity

Index of the similarity of a 
shape with a rectangle. It is 

based on the area of the 
minimal rotated bounding 
rectangle of the building 

(AMBR)

S Rec [-]

Building shape 
index

Shape index of the building 
footprint

S ShIdx [-]

Building 
equivalent 
rectangular 

index

Measure of shape 
complexity based on the 

area of the minimal rotated 
bounding rectangle of a 
building (AMBR) and its 

perimeter (PMBR)

S ERI [-]

Building 
elongation

Measure of the deviation of 
the building shape from a 
square based on the length 

of the minimal rotated 
bounding rectangle of a 
building (LMBR) and its 

width (lMBR)

S Elo [-]

Coverage area 
ratio

Ratio between the building 
footprint area and the area of 
the related tessellation cell

I CAR [-]

Floor area 
ratio

Ratio between the building 
total floor area and the area 
of the related tessellation 

cell

I FAR [-]
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Rugosity
Ratio between the building 
volume and the area of the 

related tessellation cell
I Rug [m3/m2]

Shared walls 
ratio of 
adjacent 
buildings

Ratio between the length of 
the perimeter shared with 
adjacent buildings (Pshared) 
and the building perimeter

SD SWR [-]

Number of 
neighbours

Number of neighbouring 
buildings

SD Nneigh - [-]

Alignment
Mean deviation of solar 

orientation (devsol) of 
neighbouring buildings 

SD Ali [-]

Building 
adjacency

Ratio between the number 
of joined adjacent structures 
(Nneigh,join) and the number of 

neighbouring buildings 
(Nneigh)

SD Adj [-]

Mean inter-
building 
distance

Mean distance between the 
building and the adjacent 

buildings
SD [m]

Mean 
coverage area 

ratio

Mean coverage area ratio of 
the neighbouring tessellation 

cells
SD [-]

Mean floor 
area ratio

Mean floor area ratio of the 
neighbouring tessellation 

cells
SD [-]

Covered area
Total area covered by the 

building itself and its 
neighbours

SD CovA [m2]

Average 
building area

Mean footprint area of 
building neighbouring 

constructions
SD [m2]

Average 
building height

Mean height of building 
neighbouring constructions

SD [m]
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Average 
building 
volume

Mean height of building 
neighbouring constructions

SD [m3]

Average 
building total 

floor area

Mean total floor area of 
building neighbouring 

constructions
SD [m2]

Average 
tessellation 

area

Mean tessellation area of 
building neighbouring 

tessellation cells
SD [m2]

D=dimension
S=shape
I=intensity
SD=spatial distribution

547
548
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