
HAL Id: hal-03703255
https://hal.science/hal-03703255v1

Submitted on 23 Jun 2022 (v1), last revised 16 Jul 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Recursive LSAWfP Models are Structured
Workflows

Milliam Maxime Zekeng Ndadji, Franck Bruno Tonle Noumbo, Maurice
Tchoupé Tchendji

To cite this version:
Milliam Maxime Zekeng Ndadji, Franck Bruno Tonle Noumbo, Maurice Tchoupé Tchendji. Non-
Recursive LSAWfP Models are Structured Workflows. CARI 2022, Oct 2022, Tunis - Yaoundé -
Dschang, Cameroon. �hal-03703255v1�

https://hal.science/hal-03703255v1
https://hal.archives-ouvertes.fr

Non-Recursive LSAWfP Models are Structured Workflows

M. M. ZEKENG NDADJI*1,2, F. B. TONLE NOUMBO1, M. TCHOUPÉ TCHENDJI*1,2

1Department of Mathematics and Computer Science, University of Dschang
2FUCHSIA Research Associated Team, https://project.inria.fr/fuchsia/

*E-mail : {ndadjimaxime, ttchoupe}@yahoo.fr

Abstract
Workflow languages play a key role in the discipline of Business Process Management (BPM):
they allow business processes to be modelled in order to simplify their automatic management by
means of BPM systems. Numerous workflow languages addressing various issues (expressiveness,
formal analysis, etc.) have been proposed. In the last decade, some workflow languages based on
context-free grammars (having then formal semantics) and offering new perspectives to process
modelling, have emerged: LSAWfP (a Language for the Specification of Administrative Workflow
Processes) is one of them. LSAWfP has many advantages over other existing languages, but it is
its expressiveness (which has been very little addressed in previous works) that is studied in this
paper. Indeed, the work in this paper aims to demonstrate that any non-recursive LSAWfP model
is a structured workflow. Knowing that the majority of commercial BPM systems only implement
structured workflows, the result of this study establishes that, although LSAWfP is still much more
theoretical, it is a language with commercial potential.

Keywords
BPM; LSAWfP; Structured Workflows; Dyck Language; Serialization

I INTRODUCTION

In Business Process Management (BPM), process modelling is a key phase [1]. It is done
using workflow languages and consists for a given process, in analysing it in order to define
in a graphical way or by means of rules, its tasks and their execution order (this is called the
process control flow), the actors in charge of executing these tasks and the data flow between the
tasks: the result is called a workflow model or process model1 [1]. Regarding the diversity of
application domains and professional needs for process modelling, researchers have proposed a
plethora of workflow languages; making it difficult to reach a consensus on which one to adopt
[1]. Among the most significant workflow languages are BPMN (Business Process Model and
Notation, considered as the de-facto workflow language) [2], WF-Net (Workflow Net) [3] and
YAWL (Yet Another Workflow Language) [3]. In 2020, Zekeng et al. proposed the Language
for the Specification of Administrative Workflow Processes (LSAWfP) [4] addressing several
problems encountered by classical languages, notably: the absence of formal semantics, the
use of processes as modelling units, the obtention of either non-executable specifications or

1Process and workflow are often used as synonyms: this is the case in this paper.

1

https://project.inria.fr/fuchsia/
mailto:

context-specific executable ones, etc. LSAWfP proposes to model the control flow of a given
process using a grammatical model called Grammatical Model of Workflow (GMWf).

This work is interested in the expressiveness of LSAWfP from its control flow perspective. In
the BPM domain, the study of the expressiveness of workflow languages is a common prac-
tice whose goal is to show their credibility; however, previous works on LSAWfP have paid
too little attention to this aspect. The work in [4] shows that, for its control flow, LSAWfP
supports the four basic routings, namely: sequential, parallel, alternative and iterative routings;
but, the results of this study don’t provide sufficient evidence to characterise the class(es) of
workflows supported by LSAWfP. The contribution of this paper is to formally establish that
LSAWfP models whose GMWf does not admit recursivity2 (non-recursive LSAWfP models)
are structured workflows. It is then established that the subclass of structured workflows that do
not admit iteration can be modelled using LSAWfP.

The concept of structured workflow has been popularised in works published in the early 2000s
[5] and has been the subject of several studies in the last two decades; it refers to a class of work-
flows for which several syntactic restrictions have been applied on the control flow. Throughout
these works, several formalizations of structured workflows and identification of their properties
were made. Furthermore, it was established that this class of workflows is supported by many
commercial BPM systems (TIBCO BPM Enterprise3, Signavio4, Bizagi5, SAP R/4HANA6,
etc.). The study carried out in this paper finds its relevance in showing that LSAWfP is ex-
pressive enough to be embedded in a commercial BPM system; and in this case, LSAWfP will
provide a new and advantageous tool for designing workflow models, while preserving the al-
ready existing commercialized knowledge.

The rest of this paper is organized as follows: some basic concepts useful for the understanding
of this paper are briefly presented in section II. The contribution is presented in section III.
Sections IV and V are dedicated respectively to a discussion and conclusion.

II BACKGROUND

2.1 Some basic concepts

A workflow is generally composed of a collection of activities/tasks, a set of actors, and de-
pendencies between activities. Activities correspond to individual steps in a business process,
actors are responsible for the enactment of activities, and dependencies determine the execu-
tion sequence of activities and the data flow between them. From the control flow perspective,
Kiepuszewski et al. [6] state that a workflow W consists of a set of process elements P , and
a transition relation Trans ⊆ P × P between elements. The set of process elements can be
further divided into a set Oj of or-joins, a set Os of or-splits, a set Aj of and-joins, a set As of
and-splits, and a set A of activities.

Generally, the main purpose of a workflow language is to provide tools (graphical or not) to
represent process elements and the relations between them. For example, the BPMN language

2Informally, a non-recursive grammar is a grammar in which there is no non-terminal symbol whose expansion
by means of productions allows to obtain a string containing this same symbol.

3https://www.tibco.com/products/business-process-management
4https://www.signavio.com/
5https://www.bizagi.com/
6https://www.sap.com/products/s4hana-erp.html

2

https://www.tibco.com/products/business-process-management
https://www.signavio.com/
https://www.bizagi.com/
https://www.sap.com/products/s4hana-erp.html

[2] represents the activities (elements of A) by rectangles, the elements of Oj , Os , Aj , As

by associated diamond shapes and their relations by arrows. One of the main criticisms of
workflow languages is that, they permit an arbitrary composition of process elements when
building workflow models. Indeed, this arbitrary character is illustrated by a lack of ordering
during the aggregation of the different elements constituting the workflows [6]. In order to
remedy this, Kiepuszewski et al. propose several concepts, in particular, that of structured
workflows.

2.2 Structured workflows

2.2.1 Definition

A Structured Workflow (SW) is intuitively defined as a workflow in which, each or-split has a
corresponding or-join and each and-split has a corresponding and-join [5]. This type of work-
flow guarantees significant properties: for example, a well-formed SW can’t deadlock [5]. This
class of workflows is one of the most requested by researchers in their formal analysis of work-
flows [7]. In a more formally way, Kiepuszewski et al [6] define a SW inductively as follows:

Definition 1: Structured Workflow (SW)

1. A workflow consisting of a single activity is a SW (Single-activity pattern).
2. Let X and Y be SWs. The concatenation of these workflows is a SW (Sequence pattern).
3. Let X1, · · · , Xn be SWs, oj an or-join and os an or-split. The workflow with os as initial

element, oj as final element, transitions between os and the initial elements of {Xi}1≤i≤n

and, other transitions between the final elements of {Xi}1≤i≤n and oj , is then also SW
(Or pattern).

4. Let X1, ..., Xn be SWs, aj an and-join and as an and-split. The workflow with as as
initial element, aj as final element, transitions between as and the initial elements of
{Xi}1≤i≤n, and other transitions between the final elements of {Xi}1≤i≤n and aj , is then
also SW (And pattern).

5. Let X and Y be SWs, oj an or-join and os an or-split. The workflow with oj as initial
element, os as final element, transitions between oj and the initial element of X , between
the final element of X and os , between os and the initial element of Y , and between the
final element of Y and oj , is then also a SW (Loop pattern).

Figure 1 shows minimum SWs corresponding to the five patterns in definition 1.

Figure 1: Illustration of structured workflows patterns

3

2.2.2 Some formalizations of SWs

Several studies have been focused on SWs during the last two decades; they proposed formal
tools for the smooth handling of SWs. Jussi Vanhatalo et al. [8] have proposed to represent a
structured workflow as a unique tree called Process Structure Tree (PST). This tree is obtained
after the decomposition of the workflow into Single Entry Single Exit fragments. A fragment of
a given SW is a subset of its process elements that form a graph. More precisely, the workflow is
split into canonical fragments7; then, these canonical fragments are arranged to form a PST. The
PST, computed in linear time, provides the necessary information about all the process elements,
as well as the precedence relations between them. Its tree structure also allows formalizing
operations such as well-structured and soundness verifications.

Another version of the PST called Redefined Process Structure Tree (RPST) has been proposed
by Jussi Vanhatalo et al [7]. Unlike PST, RPST guarantees that a local change on the initial SW
will only cause a local change on the resulting RPST. These tree-based formalizations of SWs
gives us confidence in the grammatical approach of the work done in this paper. Indeed, in this
paper, SWs are handled as Dyck words: i.e. as serializations of derivation trees for the grammar
of the well-formed parenthesis language (Dyck language). It is this connection between SW
and Dyck language that allows to establish the results presented in section III.

Besides PST and RPST, other studies [9, 10] have proposed Petri nets as a formal tool for
handling SWs. Thanks to the mathematical character of Petri nets and to the numerous existing
studies on their properties, they prove to be very useful for the study of the properties of SWs.

2.3 Non-recursive LSAWfP models

LSAWfP (a Language for the Specification of Administrative Workflow Processes) is a work-
flow language proposed by Zekeng et al [4]. In this one, the process control flow is modelled
using a grammar G = (S,P ,A) called Grammatical Model of Workflow (GMWf) in which :

• S is a finite set of grammatical symbols or sorts corresponding to various activities to
be carried out in the studied process;

• A ⊆ S is a finite set of particular symbols called axioms, representing activities that can
start an execution scenario, and

• P ⊆ S × S∗ is a finite set of productions decorated by the annotations "#" (is se-
quential to) and "∥" (is parallel to): they are precedence rules. A production P =(
XP (0), XP (1), · · · , XP (|P |)

)
is either of the form P : X0 → X1 # · · · # X|P |, or of the

form P : X0 → X1 ∥ · · · ∥ X|P |. The first form P : X0 → X1 # · · · # X|P | (resp.
the second form P : X0 → X1 ∥ · · · ∥ X|P |) means that activity X0 must be executed
before activities

{
X1, · · · , X|P |

}
that must be (resp. can be) executed in sequence (resp.

in parallel) from the left to the right. A production with the symbol X as left-hand side is
called a X-production. Given a production P , |P | designates the length of its right-hand
side.

The obtained specification after modelling a process with LSAWfP is called a LSAWfP model.
A preliminary study of LSAWfP’s expressiveness in [4], shows that it supports the basic routings
pattern (sequential, parallel, alternative, iterative) in the definition of control flows. But, in this
study, we are interested in a restricted form of LSAWfP models named non-recursive LSAWfP
models that can be defined as follows:

7A canonical fragment is a fragment containing as few process elements as possible and whose combination
corresponds to one of the patterns defined in [8], making it convertible into one or more elements of a PST.

4

Definition 2: Non-recursive LSAWfP model
A non-recursive LSAWfP model is a LSAWfP model whose GMWf (its grammar) is non-
recursive.

We are interested in non-recursive LSAWfP models because they are the subclass of LSAWfP
models in which activities are joined in a non-arbitrary way, using GMWf productions; this
is actually their common point with structured workflows. Despite the fact that non-recursive
LSAWfP models do not directly express iterative routing between process activities, they are
useful in several practical cases; especially for administrative processes in which the recursivity
(the number of repetitions) is generally bounded [11].

III SERIALIZING NON-RECURSIVE LSAWFP MODELS INTO WORDS OF A VER-
SION OF DYCK’S LANGUAGE DEDICATED TO LOOPLESS STRUCTURED
WORKFLOWS SPECIFICATION

Let’s remind that the goal of this paper is to establish that any non-recursive LSAWfP model is a
SW. To achieve this, we will first consider a restriction of SWs class called Loopless Structured
Workflows (LSW); and, we will establish that the workflows in this new class can be assimilated
to words of a version of Dyck’s language that will be presented. Conversely, the words in this
version of Dyck’s language which we refer to as Dyck’s language for LSW (denoted DyckLSW),
are LSW. Finally, we will present a production rewriting algorithm to serialize any non-recursive
GMWf into a word of DyckLSW (i.e., into a SW through transitivity).

3.1 Loopless Structured Workflows (LSW)

Inspired by the notion of fragment used in the definition of PST and RPST (see section 2.2.2),
we introduce the notion of structured fragments. A structured fragment can be defined as a
fragment corresponding to one of the five patterns in definition 1, allowing to recursively define
SW. Intuitively, a LSW is a SW in which no structured fragment matches the loop pattern of the
SW definition (definition 1). Therefore, a LSW can be defined inductively as follows:

Definition 3: Loopless Structured Workflow (LSW)

1. A workflow consisting of a single activity is a LSW (Single-activity pattern).
2. Let X and Y be LSWs. The concatenation of these workflows is a LSW (Sequence

pattern).
3. Let X1, · · · , Xn be LSWs. The "Or pattern" as defined in definition 1, applied to X1, · · · , Xn,

results to a LSW (Or pattern).
4. Let X1, · · · , Xn be LSWs. The "And pattern" as defined in definition 1, applied to

X1, · · · , Xn, results to a LSW (And pattern).

Given the only four patterns considered in the definition of LSWs, these can be expressed as
words in a version of Dyck’s language: the Dyck’s language for LSW (DyckLSW). As a re-
minder, the Dyck language consists of strings of equal number of opening and closing brackets,
and the number of closing brackets is never more than the opening brackets in any prefix of the
string [12]. Indeed, if we follow definition 3, we can represent a single activity workflow by the
following DyckLSW ’s word : ⟨(i)i⟩. In this representation, ⟨ and ⟩ represent the start and end
events of the process and, (i)i is a pair of colored parentheses representing the single activity
being considered. The language DyckLSW is denoted by the grammar of definition 4:

5

Definition 4: DyckLSW ’s grammar
The grammar for the language DyckLSW is defined by GDyckLSW = (N , T ,P , F low) where:

• N = {Flow,Dyck} is the set of non-terminals;
• T = {⟨, ⟩, [∨,]∨, [∧,]∧} ∪ {(i,)i}1≤i≤n is the set of terminals; these are colored brackets

that specify respectively, the start event, the end event, the or-split, the or-join, the and-
split, the and-join and the different activities that make up processes;

• P is the set composed by the following productions:

Flow −→ ⟨Dyck⟩
Dyck −→ (i)i Dyck | [∨Dyck]∨ | [∧Dyck]∧ | ϵ

• Flow is the axiom.

The above grammar can be refined to avoid denoting uninteresting words such as ⟨ ⟩, ⟨[∨]∨⟩,
etc. This is also done in order to group blocks, in classical parentheses to avoid ambiguity when
necessary. The new productions of GDyckLSW are the following:

p1 : Flow −→ ⟨Frag NextFrag⟩
p2 : Frag −→ Seq | Or | And
p3 : Seq −→ (i)i NextSeq
p4 : NextSeq −→ Seq | ϵ
p5 : Or −→ [∨Frag NextFrag]∨ | [∨(Frag) NextFrag]∨
p6 : And −→ [∧Frag NextFrag]∧ | [∧(Frag)NextFrag]∧
p7 : NextFrag −→ Frag | (Frag) | ϵ

One can observe from the productions p5 and p6 of GDyckLSW , that in any word of DyckLSW , to
each or-split (resp. and-split) corresponds an or-joint (resp. and-joint). Moreover, the produc-
tions p1, p2, p3 and p4 show that the simplest words accepted by GDyckLSW are of the form ⟨(i)i⟩:
they are LSWs consisting of a single activity. In the end, GDyckLSW allows to recognize words
made of (loopless) structured fragments combined only by means of the operators CONCAT ,
OR and AND defined as follows:

Definition 5:
Let ⟨w1⟩ , ⟨w2⟩ , ⟨w3⟩ , · · · , ⟨wn⟩ be DyckLSW ’s words (LSWs) :

1. The concatenation of these words is done using the operator CONCAT that acts as
follows: CONCAT (⟨w1⟩ , ⟨w2⟩ , ⟨w3⟩ , · · · , ⟨wN⟩) = ⟨w1w2w3 · · ·wn⟩ The operator
CONCAT helps to reproduce the sequence pattern of definition 3.

2. The or pattern (definition 3) is reproduced using the operator OR defined by:
OR (⟨w1⟩ , ⟨w2⟩ , ⟨w3⟩ , · · · , ⟨wN⟩) = ⟨[∨(w1) (w2) (w3) · · · (wn)]∨⟩ or
OR (⟨w1⟩ , ⟨w2⟩ , ⟨w3⟩ , · · · , ⟨wN⟩) = ⟨[∨w1w2w3 · · ·wn]∨⟩ when there is no ambiguity.

3. The and pattern (definition 3) is reproduced using the operator AND defined by:
AND (⟨w1⟩ , ⟨w2⟩ , ⟨w3⟩ , · · · , ⟨wN⟩) = ⟨[∧(w1) (w2) (w3) · · · (wn)]∧⟩ or
AND (⟨w1⟩ , ⟨w2⟩ , ⟨w3⟩ , · · · , ⟨wN⟩) = ⟨[∧w1w2w3 · · ·wn]∧⟩ when there is no ambigu-
ity.

4. In addition, CONCAT (⟨w⟩), OR (⟨w⟩) and AND (⟨w⟩) are identities:
i.e. CONCAT (⟨w⟩) = OR (⟨w⟩) = AND (⟨w⟩) = ⟨w⟩

6

Apart from the words respecting the patterns presented above, the grammar GDyckLSW cannot
recognize other words. It can therefore only recognize LSWs written with colored parentheses
(the serialized form of these LSWs): i.e. any word conforming to this grammar is a LSW.

3.2 Non-recursive LSAWfP models serialization to Dyck words

Having established that any LSW can be serialized as a DyckLSW ’s word and that any word in
the DyckLSW language is a LSW, the second part of this paper’s contribution consists in showing
how to serialize any non-recursive LSAWfP model (its GMWf) into a DyckLSW ’s word.

3.2.1 The serialization principle

To serialize a given GMWf G = (S,P ,A) into a DyckLSW ’s word, one should proceed by suc-
cessive rewritings of the right-hand sides of productions such as to obtain pieces of DyckLSW ’s
words (more precisely, DyckLSW ’s words stripped of their start and end events (their symbols))
in these right-hand parts. This rewriting is done according to the principle described below :

• Productions of the form X −→ ϵ (epsilon productions) are considered rewritten;
• A production p of the form p : X0 → X1 # · · · # X|p| is rewritten as follows :

X0 −→ _CONCAT
({

(i)i _OR
(
rhs (RPXi1

) , · · · , rhs
(
RPXimi

))}
1≤i≤|p|

)
In this rewriting, the

{
RPXij

}
1≤i≤|p|;1≤j≤mi

are the rewritten versions of the Xi-productions
of the GMWf G, and rhs designates their right-hand sides (thus pieces of DyckLSW ’s
words). The rewriting therefore produces a piece of DyckLSW ’s word in the right side.

• Analogously, a production p of the form p : X0 → X1 ∥ · · · ∥ X|p| is rewritten :

X0 −→ _AND
({

(i)i _OR
(
rhs (RPXi1

) , · · · , rhs
(
RPXimi

))}
1≤i≤|p|

)
After rewriting all productions, the serialized version (DyckLSW ’s word) of the GMWf G is
obtained as follows:

Ser(G) =
〈

_OR
({

(Ai
)Ai

_OR
(
rhs (RPAi1

) , · · · , rhs
(
RPAimi

))}
1≤i≤|A|

)〉
where the

{
RPAij

}
1≤i≤|A|;1≤j≤mi

are the rewritten versions of Ai-productions and the {Ai ∈ A}
are the axioms of G. Note that in these rewritings, we use the _CONCAT , _OR and _AND
operators, respectively analogous to CONCAT , OR and AND, but which act (similarly to
their counterparts) on DyckLSW ’s words stripped of their start and end events (pieces of DyckLSW ’s
words).

3.2.2 An illustrative example

To better illustrate the presented concepts, let us take as an application case, the serialization
of the LSAWfP model coming from the running example of [13]. The considered GMWf
G = (S,P ,A) is the one describing a peer review process. In it, S (the set of activities) is
given by S = {A,B,C,D, S1, E1, E2, F,G1, G2, H1, H2, I1, I2}, A (the set of axioms) is
given by A = {A} and, the productions are the ones listed in the leftmost column of table 1.
By applying the rewrite principle described in section 3.2.1, one should obtain the rewritten
productions listed in the rightmost column of table 1. The serialized version of the GMWf G
is finally obtained by applying the formula presented in section 3.2.1, and its value is as follows:
Ser(G) = ⟨(A)A[∨((B)B (D)D) ((C)C(E)E [∧((G1)G1(H1)H1(I1)I1) ((G2)G2(H2)H2(I2)I2)]∧ (F)F (D)D)]∨⟩
Figure 2 gives a graphical representation of the structured workflow described by the obtained
DyckLSW ’s word.

7

Productions Rewritten Productions
P1 : A → B # D RP1 : A → (B)B (D)D
P2 : A → C # D RP2 : A → (C)C(E)E [∧((G1)G1(H1)H1(I1)I1) ((G2)G2(H2)H2(I2)I2)]∧ (F)F (D)D
P3 : C → E # F RP3 : C → (E)E [∧((G1)G1(H1)H1(I1)I1) ((G2)G2(H2)H2(I2)I2)]∧ (F)F
P4 : E → G1 ∥ G2 RP4 : E → [∧((G1)G1(H1)H1(I1)I1) ((G2)G2(H2)H2(I2)I2)]∧
P5 : G1 → H1 # I1 RP5 : G1 → (H1)H1 (I1)I1
P6 : G2 → H2 # I2 RP6 : G2 → (H2)H2 (I2)I2
P7 : B → ε RP7 : B → ε
P8 : D → ε RP8 : D → ε
P9 : F → ε RP9 : F → ε
P10 : H1 → ε RP10 : H1 → ε
P11 : I1 → ε RP11 : I1 → ε
P12 : H2 → ε RP12 : H2 → ε
P13 : I2 → ε RP13 : I2 → ε

Table 1: GMWf productions and their rewritten versions

Figure 2: Workflow diagram corresponding to our GMWf

IV DISCUSSION AND FURTHER WORK

The work done and presented in this paper has established that a class of workflows modelled
with LSAWfP is equivalent to the class of LSWs. The results obtained reinforce the idea that
LSAWfP language is defined on a solid formal basis that can facilitate the study of the properties
of LSAWfP models. Most of the existing studies like [14], aiming at showing the equivalence
between two classes of workflows specified in two different languages, proceed by converting
models from one language to the other. This is what has been done in this paper with the
particularity that, it was first necessary to find a formal mean (the language DyckLSW) to specify
structured workflows. The methodology used in this paper could be strengthened by proofs
of several properties of the manipulated mathematical tools. Moreover, the paper was only
interested in a sub-language of the LSAWfP language (the non-recursive LSAWfP models);
an extension of the work done here to the whole LSAWfP language would certainly be more
beneficial.

The result presented here opens the way to several potential works, notably: the conversion of
LSAWfP specifications into classical formats such as those of the BPMN language, the verifica-
tion of LSAWfP models and the use of a version of the Dyck language as a workflow language.

V CONCLUSION

In this paper, we have conducted some formalization studies in order to show the equivalence
between a subset of structured workflows (LSW) and a subset of workflows that can be mod-
elled with the LSAWfP language (non-recursive LSAWfP models). We used a variant of Dyck’s
language as an intermediate mathematical tool between the two manipulated subsets. The re-
sults of this paper help to promote LSAWfP by revealing a little more its commercial potential

8

and, offers some interesting perspectives in the analysis of its expressiveness. Immediate re-
search avenues that could be of interest to potential researchers are: analysis and verification
of LSAWfP specifications, conversion of an LSAWfP specification into a BPMN specification,
integration of LSAWfP as a process modelling method in various commercial BPM systems.

REFERENCES

[1] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers. Fundamentals of Business Pro-
cess Management, Second Edition. Springer, 2018. ISBN: 978-3-662-56508-7.

[2] B. P. Model. “Notation (BPMN) version 2.0”. In: OMG Specification, Object Manage-
ment Group (2011), pages 22–31.

[3] W. M. P. Van Der Aalst and A. H. M. Ter Hofstede. “YAWL: yet another workflow
language”. In: Information systems 30.4 (2005), pages 245–275.

[4] M. M. Zekeng Ndadji, M. Tchoupé Tchendji, C. Tayou Djamegni, and D. Parigot. “A
Language and Methodology based on Scenarios, Grammars and Views, for Administra-
tive Business Processes Modelling”. In: ParadigmPlus 1.3 (2020), pages 1–22.

[5] B. Kiepusewski. “Expressiveness and suitability of languages for control flow modelling
in workflows”. PhD thesis. Queensland University of Technology, Brisbane, 2003.

[6] B. Kiepuszewski, A. H. M. ter Hofstede, and W. M. P. van der Aalst. “Fundamentals of
control flow in workflows”. In: Acta Informatica 39.3 (2003), pages 143–209.

[7] J. Vanhatalo, H. Völzer, and J. Koehler. “The refined process structure tree”. In: Data &
Knowledge Engineering 68.9 (2009), pages 793–818.

[8] J. Vanhatalo, H. Völzer, and F. Leymann. “Faster and more focused control-flow analysis
for business process models through sese decomposition”. In: International Conference
on Service-Oriented Computing. Springer. 2007, pages 43–55.

[9] N. R. Adam, V. Atluri, and W.-K. Huang. “Modeling and analysis of workflows using
Petri nets”. In: Journal of Intelligent Information Systems 10.2 (1998), pages 131–158.

[10] D. Liu, J. Wang, S. C. Chan, J. Sun, and L. Zhang. “Modeling workflow processes with
colored Petri nets”. In: computers in industry 49.3 (2002), pages 267–281.

[11] M. M. Zekeng Ndadji. “A Grammatical Approach for Distributed Business Process Man-
agement using Structured and Cooperatively Edited Mobile Artifacts”. PhD thesis. Uni-
versity of Dschang, Cameroon, 2021.

[12] X. Yu, N. T. Vu, and J. Kuhn. “Learning the Dyck language with attention-based Seq2Seq
models”. In: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP. 2019, pages 138–146.

[13] M. M. Zekeng Ndadji, M. Tchoupé Tchendji, C. Tayou Djamegni, and D. Parigot. “A
projection-stable grammatical model for the distributed execution of administrative pro-
cesses with emphasis on actors’ views”. In: Journal of King Saud University - Computer
and Information Sciences (2021). ISSN: 1319-1578.

[14] S. Pornudomthap and W. Vatanawood. “Transforming YAWL workflow to BPEL skele-
ton”. In: 2011 IEEE 2nd International Conference on Software Engineering and Service
Science. 2011, pages 434–437.

9

http://dx.doi.org/10.1007/s00236-002-0105-4
http://dx.doi.org/10.1007/s00236-002-0105-4
http://dx.doi.org/https://doi.org/10.1016/j.jksuci.2021.07.019
http://dx.doi.org/https://doi.org/10.1016/j.jksuci.2021.07.019
http://dx.doi.org/https://doi.org/10.1016/j.jksuci.2021.07.019
http://dx.doi.org/10.1109/ICSESS.2011.5982346
http://dx.doi.org/10.1109/ICSESS.2011.5982346

	I Introduction
	II Background
	2.1 Some basic concepts
	2.2 Structured workflows
	2.2.1 Definition
	2.2.2 Some formalizations of SWs

	2.3 Non-recursive LSAWfP models

	III Serializing non-recursive LSAWfP models into words of a version of Dyck's language dedicated to loopless structured workflows specification
	3.1 Loopless Structured Workflows (LSW)
	3.2 Non-recursive LSAWfP models serialization to Dyck words
	3.2.1 The serialization principle
	3.2.2 An illustrative example

	IV Discussion and further work
	V Conclusion

