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We consider a particle evolving in the quadratic potential and subject to a time-inhomogeneous frictional force and to a random force. The couple of its velocity and position is solution to a stochastic differential equation driven by a symmetric α-stable Lévy process with α ∈ (1, 2] and the frictional force is of the form t -β sgn(v)|v| γ . We identify three regimes for the behavior in long-time of the couple velocity-position with a suitable rescaling, depending on the balance between the frictional force and the index of stability α of the noise.

1 Introduction and main results

Model and motivations

In this paper, we study the long-time behavior of a stochastic system modelling a particle, with velocity V ∈ R and position X ∈ R. The particle evolves in the quadratic potential U : x → x 2 2 , and is subject to a time-inhomogeneous frictional force b and to a random force L. The dynamics of the particle is described by the following stochastic damping Hamiltonian system driven by an α-stable process L with α ∈ [START_REF] Albeverio | Long time behavior of nonlinear stochastic oscillators: The onedimensional Hamiltonian case[END_REF][START_REF] Applebaum | Levy Processes and Stochastic Calculus[END_REF]      dV t = dL tb(t, V t ) dt -∇U(X t ) dt, dX t = V t dt, (V t0 , X t0 ) = (v 0 , x 0 ), t 0 > 0 being fixed.

(

The driving process L models a random force coming from the interaction of the particle with its environment represented by a surrounding heat bath. As in the classical Langevin model (see [START_REF] Langevin | Sur la théorie du mouvement brownien[END_REF]), L can be a Brownian motion denoted by B in the sequel. It corresponds to take α = 2. It is natural to consider other types of noises such as Lévy processes, which are also largely used to model physical and biological systems (Lévy flights and anomalous diffusion), see e.g. [START_REF] Mann | Growing fractal interfaces in the presence of selfsimilar hopping surface diffusion[END_REF] for the physical point of view, [START_REF] Ditlevsen | Observation of α-stable noise induced millennial climate changes from an ice-core record[END_REF] in stochastic climate dynamics, and [START_REF] Jourdain | A Probabilistic Approach for Nonlinear Equations Involving the Fractional Laplacian and a Singular Operator[END_REF] for the mathematical point of view. The case where L is an α-stable process is of particular interest. It is a generalization of the Brownian motion with jumps since it satisfies that for any c > 0, (c 1 α L t/c ) t has the same 1 distribution as L (self-similarity property).

Degenerate systems like [START_REF] Albeverio | Long time behavior of nonlinear stochastic oscillators: The onedimensional Hamiltonian case[END_REF] have been intensively studied for several years. In particular, the existence and uniqueness of solutions to degenerate SDEs have been discussed in many works. These models are called degenerate because the noise is only present in one component of the system but can be transferred into others by drift terms. The well-posedness of these systems, when their deterministic version is ill-posed, can be proved by taking advantage of the regularizing effect of the noise and of its propagation through the whole system. The case of Brownian degenerate SDEs has been of course wildly explored, see e.g. [START_REF] Fedrizzi | Regularity of stochastic kinetic equations[END_REF], [START_REF] Wang | Degenerate SDEs in Hilbert Spaces with Rough Drifts[END_REF], [START_REF] Zhang | Stochastic Hamiltonian flows with singular coefficients[END_REF], [START_REF] De Raynal | Strong existence and uniqueness for degenerate SDE with Hölder drift[END_REF], [START_REF] Honore | Strong regularization by Brownian noise propagating through a weak Hörmander structure[END_REF] and references therein. The time-dependence is treated in the last four cited papers. The case of a Lévy driving process is more recent, see e.g. [START_REF] Zhang | Densities for sdes driven by degenerate α-stable processes[END_REF] in a time-homogeneous setting, and [START_REF] Marino | Weak well-posedness for degenerate SDEs driven by Lévy processes[END_REF] for drifts depending on time.

From another point of view, stochastic Hamiltonian systems, as [START_REF] Albeverio | Long time behavior of nonlinear stochastic oscillators: The onedimensional Hamiltonian case[END_REF] with b = 0, have been widely studied. An interesting problem is to understand their asymptotic behaviors. The Hamiltonian process associated with this system is defined, for t ≥ t 0 , by H t := 1 2 |V t | 2 + U(X t ). For example, the long-time dynamics of the Hamiltonian process under a suitable rescaling is studied in [START_REF] Albeverio | Long time behavior of nonlinear stochastic oscillators: The onedimensional Hamiltonian case[END_REF]. The case of time-homogeneous damping Hamiltonian systems is tackled in [START_REF] Wu | Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems[END_REF] (see also references therein).

The long-time behavior of a particle evolving in a free potential, i.e. U = 0, has already been studied, see e.g. [START_REF] Gradinaru | Existence and asymptotic behaviour of some timeinhomogeneous diffusions[END_REF], [START_REF] Fournier | One dimensional critical Kinetic Fokker-Planck equations, Bessel and stable processes[END_REF], [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF], [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF] and references therein. In this case, The velocity process can be studied independently on the position process. Even in the time-homogeneous case, various asymptotic behaviors can appear. Whenever the random force is supposed to be Brownian, a particular non-linear Langevin's type SDE was studied in [START_REF] Fournier | One dimensional critical Kinetic Fokker-Planck equations, Bessel and stable processes[END_REF]:

V t = v 0 + B t - ρ 2 t 0 V s 1 + V 2 s
ds and X t = x 0 + t 0 V s ds.

In that case, the frictional force asymptotically behaves as -ρ v , which induces the velocity process to "behave", far away from zero, like a (signed) Bessel process of dimension 1ρ. Various asymptotic behaviors of the position process appear, depending on the moment order of Bessel excursion area (which depends itself on the value of ρ). More precisely, when ρ ≥ 5, the moment is of order 2, hence, using a suitable rescaling, the authors show that the position process behaves asymptotically as a Brownian motion. An α-stable process appears as limiting dynamics when ρ ∈ [START_REF] Albeverio | Long time behavior of nonlinear stochastic oscillators: The onedimensional Hamiltonian case[END_REF][START_REF] Ditlevsen | Observation of α-stable noise induced millennial climate changes from an ice-core record[END_REF]. The index of stability α is a function of ρ, which interpolates the power of the rescaling from 1 2 (Brownian motion) to 3 2 (integrated Bessel process). This last behavior occurs when ρ ∈ (0, 1). However, the tools used in [START_REF] Fournier | One dimensional critical Kinetic Fokker-Planck equations, Bessel and stable processes[END_REF], such as invariant measure, scale function and speed measure, are limited to time-homogeneous coefficients.

In [START_REF] Gradinaru | Existence and asymptotic behaviour of some timeinhomogeneous diffusions[END_REF], [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF] and [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF], the drift coefficient b is allowed to depend on time under an homogeneity condition. More precisely, the following system is considered

   dV t = dL t -ρ sgn(V t ) |V t | γ t β dt, dX t = V t dt.
The frictional force is time-inhomogeneous, depending on non-negative parameters β, γ and ρ.

When the particle moves slowly, classical mechanics ensures that the frictional force is linear, i.e. γ = 1. Whereas in the turbulent regime, when the particle moves faster, thanks to fluid dynamics, the frictional force depends quadratically on the velocity, i.e. γ = 2. That is why in a broader framework, we assume that the frictional force has a space component of the form v → -ρ sgn(v) |v| γ . Moreover, the frictional force can depend on time through a friction coefficient t → ρ t . For a particle evolving in a fluid, it can be the case for example when the viscosity of the fluid or the geometry of the particle change with time. For this reason, a time dependence is added to the function b in [START_REF] Gradinaru | Existence and asymptotic behaviour of some timeinhomogeneous diffusions[END_REF], [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF] and [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF]. In these works, it is assumed that ρ t = ρ t β . The main goal behind the study of this model is to understand the competition between the frictional force, which tends to immobilize the system and the random force perturbing it. Notice that, by the self-similarity property satisfied by L, E [|L t |] is proportional to t 1 α . This shows that the noise L t acts with a typical scale t 1 α and thus, when α decreases, it perturbs the velocity with higher typical values. The interest of the works mentioned above is to study the long-time behavior of the system through the prism of the competition between these two opposite actions.

Let us mention two relevant examples in the Brownian case before explaining the results obtained in [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF][START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF]. When β = 0, the friction coefficient does not decrease with time. By ergodicity, the velocity converges towards its invariant distribution and thus, the rescaled position process (ε 1 2 X t/ε ) t behaves as a Brownian motion as ε tends to 0. When "β = +∞", i.e. when there is no frictional force, the rescaled velocity-position process (ε

1 2 V t/ε , ε 3 2 X t/ε ) t converges in distribution towards B t , t 0 B s ds t .
When β > 0, the frictional force is evanescent: it slows down the system but less and less efficiently as time increases and we expect a transition between the two extreme cases mentioned above, both on the limiting processes and on the rescaling.

In [START_REF] Gradinaru | Existence and asymptotic behaviour of some timeinhomogeneous diffusions[END_REF], the authors study the convergence in distribution, when t tends to +∞, of r t V t , for a certain rate of convergence r t in the case where L is a Brownian motion. In [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF], the authors extend the results obtained in [START_REF] Gradinaru | Existence and asymptotic behaviour of some timeinhomogeneous diffusions[END_REF] to the whole process given by the couple velocity-position. Namely, the authors study the limit in distribution of the rescaled process (r ε,V V t/ε , r ε,X X t/ε ) t for two appropriate rates of convergence r ε,V and r ε,X . Results were further generalized in [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF] to an α-stable driving process. To be more precise, the authors highlight three regimes, depending on the balance between β, γ and α, the index of stability of L.

• Whenever the frictional force is sufficiently "small at infinity", i.e. if β is large enough, the rescaled process behaves as if there was no frictional force. It thus converges in distribution towards the Kolmogorov process (L,

• 0 L), as in the particular case "β = +∞" mentioned above in the Brownian case and with the same rescaling (r ε,V , r ε,X ) = (ε

1 α , ε 1+ 1 α ).
• When the two forces offset, the rescaling remains the same as in the preceding regime and the limiting process is still of kinetic form (V,

• 0 V), but the process V is henceforth ergodic. • Whereas, when the drag force swings with the random process, i.e. when β is small enough, the limiting process is no longer kinetic and the rescaling is not the same as in the two preceding regimes. The rescaled velocity process converges in finite dimensional distributions towards a white noise. Here, the asymptotic behavior is somehow an interpolation between the two extreme cases β = 0 and "β = +∞", which is explained by the slow decrease of the frictional force with time.

The proofs are essentially based on the self-similarity of the driving process and on moment estimates of the velocity process.

In this paper, we are interested in the long-time behavior of the solution to the following system of SDEs, defined on the time interval [t 0 , +∞), where t 0 > 0 and

x 0 , v 0 ∈ R are fixed        dV t = dL t -sgn(V t ) |V t | γ t β dt -X t dt, dX t = V t dt, (V t0 , X t0 ) = (v 0 , x 0 ), (SKE)
Here γ, β > 0 and L is a symmetric α-stable process on R with α ∈ [START_REF] Albeverio | Long time behavior of nonlinear stochastic oscillators: The onedimensional Hamiltonian case[END_REF][START_REF] Applebaum | Levy Processes and Stochastic Calculus[END_REF]. More precisely, our goal is to study the asymptotic behavior, as ε → 0, of the rescaled velocity-position process

(Z (ε) t ) t := r ε X t/ε V t/ε t ,
for an appropriate rate of convergence r ε . Our first motivation is to study how the presence of the quadratic potential influences the results obtained in [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF][START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF] through a confining effect on the position X. Indeed, the confining effect is here related to the position of the particle and does not disappear asymptotically contrary to the frictional force. It has thus an effect both on the limiting processes and on the rescaling. Here, it is a competition of the quadratic potential and the frictional force, which confines and slows down the system, against the noise which perturbs it.

Notice that our system without noise and frictional force is nothing else than the classical harmonic oscillator

v ′ t = -x t , x ′ t = v t .
The intrinsic oscillatory behavior induced by the quadratic potential prevents the rescaled process Z (ε) from converging as a process. However, we prove that each of its one-dimensional marginal distributions converges. In order to obtain the convergence of the whole process, the key idea is to remove the oscillations present in the system. Namely, we set for t ≥ t 0 Θ t := cos(t) sin(t) sin(t) cos(t) and

Y t := Θ -1 t X t V t ,
where Θ t is the rotation on R 2 of angle -t and we study the behavior of (r ε Y t/ε ) t as ε tends to 0, for a certain rate of convergence r ε .

Notations, main results and comments

Let us first introduce some notations used throughout the paper. For simplicity, we shall write C and D respectively for C((0, +∞), R 2 ), the space of continuous functions defined on (0, +∞) and D((0, +∞), R 2 ), the Skorokhod space of functions defined on (0, +∞) which are càdlàg on every compact subinterval of (0, +∞). For x, y ∈ R 2 , x represents the Euclidean norm of x, and x • y the inner product of x and y. If x ∈ R 2 , for each i ∈ {1, 2}, x (i) denotes its i-th component. The minimum between two reals is denoted by ∧. We call I 2 the identity matrix of dimension 2 and A T is the transpose matrix of a matrix A. Finally, we denote by C some positive constant, which may change from line to line, and we use subscripts to indicate the parameters on which it depends when it is necessary. For the sake of simplicity, we denote by C t0 a positive constant depending only on t 0 , x 0 and v 0 , which are fixed throughout the paper.

We can now state our results. The following theorem deals with convergences in distribution in the space C endowed with topology of uniform convergence on every compact set of (0, +∞).

Theorem 1.1 (Brownian case i.e. α = 2). Define q := β γ+1 , r ε := ε q∧ 12 and set (Y

(ε) t ) t≥εt0 := r ε Θ -1 t/ε (X t/ε , V t/ε ) T t≥εt0
. Let B be a standard two-dimensional Brownian motion on R 2 .

(i) (Super-critical regime i.e. 2q > 1). The rescaled process

Y (ε) converges in distribution towards B t 2 t>0
.

(ii) (Critical regime i.e. 2q = 1). Assume that γ = 1. The rescaled process Y (ε) converges in distribution towards

1 √ 2t t 0 √ s dB s t>0
, which is the centered Gaussian process with covariance kernel K(s, t)

= (s∧t) 2 4 √ st I 2 .
(iii) (Sub-critical regime i.e. 2q < 1). Assume that γ = 1 and β ∈ 1 2 , 1 . The rescaled process Y (ε) converges in finite dimensional distributions towards the centered Gaussian process with covariance kernel K(s, t) = 1 2 s β 1 {s=t} I 2 . Let us denote by ψ the characteristic exponent of the symmetric stable process L. It follows from Theorem 14.15 p. 86 in [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF] that there exists a > 0 such that for all ξ ∈ R,

ψ(ξ) = -a|ξ| α . (2) 
In the next theorem, the convergences occur in the space D endowed with the Skorokhod metric.

Theorem 1.2 (Stable case i.e. α ∈ (1, 2)). Assume that γ ∈ (0, α). Define q := β γ+α-1 , r ε := ε q∧ 1 α and set (Y (ε) t ) t≥εt0 := r ε Θ -1 t/ε (X t/ε , V t/ε ) T t≥εt0
. Let L be the rotationally invariant stable process on R 2 , whose characteristic exponent is given by

ξ ∈ R 2 → -C ξ α , with C := a 2π 2π 0 |cos(x)| α dx.
(i) (Super-critical regime i.e. αq > 1). The rescaled process Y (ε) converges in distribution towards (L t ) t>0 .

(ii) (Critical regime i.e. αq = 1). Assume that γ = 1. The rescaled process Y (ε) converges in distribution towards the Lévy-type process 1

√ t t 0 √ s dL s t>0 .
(iii) (Sub-critical regime i.e. αq < 1). Assume that γ = 1 and β ∈ 1 2 , 1 . Then, for all

(t 1 , • • • , t d ) ∈ (0, +∞) d , Y (ε) t1 , • • • , Y (ε) t d converges in distribution towards the product measure µ t1 ⊗ • • • ⊗ µ t d , where µ t is the distribution with characteristic function ξ ∈ R 2 → exp - 2 α C ξ α t β .
Remark 1.3. The symmetry of L is only required to ensure the well-posedness of (SKE) when γ < 1 using [START_REF] Marino | Weak well-posedness for degenerate SDEs driven by Lévy processes[END_REF].

Remark 1.4. At first sight, the parameter α does not seem to appear in the limiting process of Theorem 1.2 (ii) contrary to the Brownian case where there is a factor 1 stochastic integral. The reason is that the constant α is hidden in the constant C which defines the α-stable process L in Theorem 1.2. Indeed, if we formally take α = 2 in Theorem 1.2 (ii), we recover the limiting process of Theorem 1.1 (ii). Let us justify it. When α = 2, the constant C can be computed explicitly and is equal to 1 4 . As the characteristic exponent of L is given by

ξ ∈ R 2 → - ξ 2 4 ,
we deduce that (L t ) t≥0 = (B t/2 ) t≥0 in distribution. When α = 2, the limiting process in 1.2 (ii) is thus given, for all t > 0, by

1 √ 2t t 0 √ s √ 2 dB s/2 ,
which is equal in distribution to the limiting process of Theorem 1.1 (ii) using the self-similarity of B. We similarly notice that if we formally take α = 2 in Theorem 1.2 (i) and (iii), we recover the same limiting processes as in Theorem 1.1 (i) and (iii) with the same rescaling.

Remark 1.5. The Hamiltonian process associated with the system is given by

H t := 1 2 |V t | 2 + 1 2 |X t | 2 = 1 2 Z t 2 = 1 2 Y t 2 .
Combining the preceding results with the continuous mapping theorem, we deduce the convergence of the rescaled energy process (H

(ε) t ) t>0 := (r 2 ε H t/ε
) t>0 as ε → 0 either as a process in the critical and super-critical regimes, or for finite dimensional distributions in the sub-critical regime. For example in the super-critical regime with α = 2, the limiting energy process

(H 0 t ) t≥0 := ( 1 2 B t 2 
2 ) t≥0 is the squared Bessel process, which is the solution to the following equation

dH 0 t = H 0 t dB t + 1 2 dt, H 0 0 = 0,
where B is a standard one-dimensional Brownian motion. Note that we recover the limiting energy process obtained in Theorem 2.1 in [START_REF] Albeverio | Long time behavior of nonlinear stochastic oscillators: The onedimensional Hamiltonian case[END_REF] for the non-damped Hamiltonian system. The interpretation is that if the frictional force decreases sufficiently quickly as t → +∞, namely if β is large enough, then the rescaled Hamiltonian process converges as if there were no damping.

We obtain furthermore the convergence in distribution as t → +∞ of t -q∧ 1 α (X t , V t ) T in the following corollary.

Corollary 1.6. Let us define (Z (ε) t ) t≥εt0 := (r ε (X t/ε , V t/ε ) T ) t≥εt0 , where r ε := ε q∧ 1 α . The rescaled process Z (ε) does not converge in distribution. However, we deduce from Theorems 1.1 and 1.2 and under the same assumptions, the convergence in distribution of r 1/t (X t , V t ) T towards explicit limits, as t → +∞.

In the Brownian case, the limit is either N (0, 1 2 I 2 ) in the super-critical and sub-critical regimes, or N (0, 1 4 I 2 ) in the critical regime.

In the stable case, keeping the same notations as in Theorem 1.2, the characteristic function of the limit is given, for all ξ ∈ R 2 , by

(i) exp -C ξ α in the super-critical regime, (ii) exp -1 + α 2 -1 C ξ α in the critical regime, (iii) exp -2 α C ξ α in the sub-critical regime.
The switch between the three regimes results in different scale parameters of the limiting distributions. Let us also notice that in the Brownian setting, the position X and the velocity V become independent in large time since the covariance matrix of the limiting Gaussian distribution is diagonal. However, this is false for the stable case. Indeed, the limit is a rotationally invariant stable distribution on R 2 , which cannot have independent coordinates.

As in [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF][START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF], we highlight three regimes for the asymptotic behavior of the system. However, the rate of convergence of the position X is different from that found in [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF][START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF], when U = 0. Indeed, contrary to the free potential system, the position process is somehow more diffusive. This is due to the structure of our model. Namely, the presence of the quadratic potential allows the noise to propagate more efficiently from the velocity component to the position one (see [START_REF] Fedrizzi | Regularity of stochastic kinetic equations[END_REF] for more details). This explains why both the limiting processes and the rate of convergence are different between our work and [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF][START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF]. Let us also note that the position process grows more slowly in our case than when U = 0. For example, in the Brownian super-critical regime, X t asymptotically behaves as N (0, t

2 ) when t tends to infinity in our framework, but as N (0, t 3

3 ) in the free potential one. This difference can also be seen in moment estimates established for the position process X (see Remarks 2.3 and 3.4). This is explained by the fact that the quadratic potential confines the position of the particle through a spring force.

Strategy and plan of the paper

In our model, the particle is no longer free, contrary to [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF][START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF], and the equations on the position and the velocity are intrinsically linked to each other. Therefore, we can no longer separate by components the study of the velocity-position process. Writing the system (SKE) in a vector viewpoint, as done in [START_REF] Fedrizzi | Regularity of stochastic kinetic equations[END_REF], we use a variation of constants method to return to the study of a two-dimensional system in a free potential. We then adapt the methods used in [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF][START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF]. In the super-critical regime, the proof is essentially based on the self-similarity of the driving process and on moment estimates of V and X. In the critical and sub-critical regimes, we need to restrict ourselves to a linear drag force, i.e. γ = 1, in order to rely on the study of the asymptotic behavior of the solution to the underlying non-autonomous ordinary differential equation (ODE). Whenever the driving process is Brownian, we take advantage of the theory of Gaussian processes. The convergence is thus characterized by the study of the mean and covariance functions. In the case of a stable driving process, we need to study the convergence, in distribution and as a process, of a Wiener-Lévy integral (i.e. the integral of a deterministic function integrated against a stable process). The key point here is to use the fact that a Wiener-Lévy integral is a process with independent increments. Our paper is organized as follows. We consider the case of a Brownian driving process in Section 2, and we follow the same structure for an α-stable driving process in Section 3. For the sake of clarity, we opt for separating the two cases since the tools used are different. Finally, we state and prove some technical results in Appendix A and Appendix B.

Study of the system driven by a Brownian motion

In this section, the driving process L is supposed to be a standard Brownian motion, i.e. α = 2. It will be denoted by B to keep standard notations. To be precise, (SKE) becomes

       dV t = dB t -sgn(V t ) |V t | γ t β dt -X t dt, dX t = V t dt, (V t0 , X t0 ) = (v 0 , x 0 ). (3) 
The previous system can be written in a vector viewpoint. Indeed, we set, for all t ≥ t 0 and v ∈ R,

Z t := X t V t , W t := 0 B t , A := 0 1 -1 0 , Γ := 0 0 0 1 and F (t, v) :=   0 sgn(v) |v| γ t β   .
Thereby, the system (SKE) can be rewritten as

dZ t = Γ dW t + AZ t dt -F (t, V t ) dt, Z t0 = z 0 := (x 0 , v 0 ) T . (4) 
Notice that the matrix A is the rotation matrix of angle π 2 and that, for all t ∈ R,

Θ t := e tA = cos(t) sin(t) -sin(t) cos(t) .
We also define, for any t ≥ t 0 , Y t := e -tA Z t . We easily check, with Itô's formula, that Y is given by

dY t = e -tA Γ dW t -e -tA F (t, V t ) dt. (SDE Y )

Existence up to explosion

Theorem 2.1. The system of SDEs (3) admits a unique (global) strong solution if γ ∈ (0, 1].

And if γ > 1, there exists a unique strong solution defined up to its explosion time τ ∞ .

Proof. In the case γ > 1, the coefficients of the SDE (4) are locally Lipschitz continuous with respect to the space variable, uniformly in time. By a standard localization argument as mentioned in [13, p. 417, after (13)], there exists a unique solution up to explosion. We also refer to [18, Theorem 2.8 p. 154] for a proof of the existence of a solution, up to explosion, in the more general case of path-dependent SDEs.

Assume now that γ ≤ 1. We will use Theorem 1 in [START_REF] Honore | Strong regularization by Brownian noise propagating through a weak Hörmander structure[END_REF]. Keeping the same notations, we have in our case, for any [START_REF] Honore | Strong regularization by Brownian noise propagating through a weak Hörmander structure[END_REF] are obviously satisfied. Let us now remark that F 1 is γ-Hölder with respect to v ∈ R uniformly with respect to t ≥ t 0 and x ∈ R, and is Lipschitz continuous with respect to x, uniformly with respect to t and v. With the notations used in [START_REF] Honore | Strong regularization by Brownian noise propagating through a weak Hörmander structure[END_REF], we have β 1 = γ and β 2 = 1. Thus, Assumption (T β ) is satisfied. Finally, we check that Assumption (H η ) is satisfied. Since ∂ v F 2 = 1, we can conclude, taking η small enough and E 1 = {1}, that there exists a unique strong solution to (3).

(x, v) ∈ R 2 and t ≥ t 0 , F 1 (t, v, x) := -sgn(v)|v| γ t -β -x, F 2 (t, v, x) := v and σ(t, v, x) = 1. Assumptions (ML) and (UE) in

Moment estimates and non-explosion

In this section, we state and prove moment estimates of Z. It will be useful to control some stochastic terms appearing later. For all n ≥ 0, define the stopping time

τ n := inf{t ≥ t 0 , Z t ≥ n}.
Set τ ∞ := lim n→+∞ τ n the explosion time of Z.

Proposition 2.2. The explosion time of Z is a.s. infinite and, for all κ ≥ 0 and t ≥ t 0

E [ Z t κ ] ≤ C κ,t0 t κ 2 . ( 5 
)
Remark 2.3. Let us mention that the moment estimate obtained for the position process X is a priori smaller in our case than in the free potential case [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF]. It is explained by the confining effect of the quadratic potential.

Proof. The proof is adapted from [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF] to two-dimensional processes. For the sake of completeness, we sketch the proof in our context. Using Itô's formula applied to the function f : (x, v) → x 2 + v 2 and the fact that for all z ∈ R 2 , z • Az = 0, we deduce that, for all t ≥ t 0 ,

Z t∧τn 2 ≤ z 0 2 + t t0 21 {s≤τn} Z s • (Γ dW s ) - t∧τn t0 2Z s • F (s, V s ) ds + (t -t 0 ).
Remark that for any

s ≥ t 0 , Z s • F (s, V s ) = V s sgn(V s ) |V s | γ s -β ≥ 0. Taking expectation yields E Z t∧τn 2 ≤ z 0 2 + (t -t 0 ) ≤ C t0 t.
Thanks to Lemma B.1, we can conclude that the explosion time of Z is a.s. infinite. Set κ ∈ [0, 2], so, by Jensen's inequality and Fatou's lemma

E [ Z t∧τ∞ κ ] ≤ E Z t∧τ∞ 2 κ 2 ≤ lim inf n→∞ E Z t∧τn 2 κ 2 ≤ C κ,t0 t κ 2 . ( 6 
)
This leads to [START_REF] Ditlevsen | Observation of α-stable noise induced millennial climate changes from an ice-core record[END_REF].

When κ > 2, v → v κ is a C 2 -function, so by Itô's formula, for all t ≥ t 0 , Z t∧τn κ ≤ z 0 κ + t∧τn t0 κ Z s κ-2 Z s • (Γ dW s ) - t∧τn t0 κ Z s κ-2 Z s • F (s, V s ) ds + t∧τn t0 C κ Z s κ-2 ds.
In addition, it follows from the hypothesis on the sign of the drift function that

Z t∧τn κ ≤ z 0 κ + t t0 κ1 {s≤τn} Z s κ-2 Z s • (Γ dW s ) + t∧τn t0 C κ Z s κ-2 ds. (7) 
Taking expectation in [START_REF] Fournier | One dimensional critical Kinetic Fokker-Planck equations, Bessel and stable processes[END_REF], we have

E [ Z t∧τ∞ κ ] ≤ lim inf n→∞ E [ Z t∧τn κ ] ≤ z 0 κ + t t0 C κ E Z s κ-2 ds.
When 0 ≤ κ -2 ≤ 2, we can upper bound E Z s κ-2 by injecting [START_REF] Fedrizzi | Regularity of stochastic kinetic equations[END_REF] and get

E [ Z t∧τ∞ κ ] ≤ z 0 κ + t t0 C κ,t0 s κ-2 2 ds ≤ C κ,t0 s κ 2 .
The method is then applied inductively to prove the inequality for all κ > 2.

Asymptotic behavior of the solution

We gather in this section the proof of Theorem 1.1. The strategy is to prove the convergence of the finite dimensional distributions (f.d.d.) of the process Y (ε) , as ε → 0, and its tightness in the critical and super-critical regimes. We first focus on the tightness.

Lemma 2.4. If 2q ≥ 1, then the family ( √ εY t/ε ) t≥εt0 , ε > 0 is tight on every compact interval [m, M ], with 0 < m ≤ M .
Proof. We use the Kolmogorov criterion stated in Problem 4.11 p. 64 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]. Take ε 0 small enough such that for all ε ≤ ε 0 , we have εt 0 ≤ m. Fix m ≤ s ≤ t ≤ M and a > 4. Define, for t ≥ εt 0 , the local martingale term appearing in (SDE Y )

M (ε) t := √ ε t/ε t0 e -sA Γ dW s = √ ε t/ε t0 -sin(s) cos(s) dB s . (8) 
Using Jensen's inequality, moment estimates (see Proposition 2.2) and Burkholder-Davis-Gundy's inequality (see Theorem 4.4.22 p. 263 in [START_REF] Applebaum | Levy Processes and Stochastic Calculus[END_REF]), we have

E Y (ε) t -Y (ε) s a ≤ C a E M (ε) t -M (ε) s a + C a E √ ε t/ε s/ε e -uA F (u, V u ) du a ≤ C a E M (ε) t -M (ε) s a + C a ε 1-a 2 (t -s) a-1 E t/ε s/ε F (u, V u ) a du ≤ C a E Tr M (ε) • -M (ε) s t a/2 + C a ε 1-a 2 (t -s) a-1 t/ε s/ε u γa 2 -βa du ≤ C a (t -s) a 2 + C a,m,M ε a(β-γ+1 2 ) (t -s) a-1 ≤ C a,m,M (t -s) a 2 .
Since a 2 > 2 and β ≥ γ+1 2 the upper bound is independent of ε ≤ 1. Furthermore, by moment estimates (Proposition 2.2), sup

ε≤ε0 E Y (ε) m ≤ √ m < ∞.
Thus, Kolmogorov's criterion can be applied, proving the tightness result.

We will now prove the convergence of the finite-dimensional distributions of Y (ε) . Thanks to the previous lemma, this will yield the weak convergence on every compact set (see Theorem 13.1 p. 139 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF]). The convergence in distribution on the whole space C will follow, for 2q ≥ 1, from Theorem 16.7 p. 174 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF], since all processes considered are continuous.

Convergence of the f.d.d. in the super-critical regime

Assume here that 2q > 1. Recall that (Y

(ε) t ) t≥εt0 := ( √ εY t/ε ) t≥εt0 .
Proof of Theorem 1.1 (i).

Step 1. We first prove the convergence of the f.d.d. of the local martingale term

M (ε) =: (M (ε,1) , M (ε,2) ) T appearing in (SDE Y ).
Recall that the stochastic integral M (ε) was defined in [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF]. It is a centered Gaussian process with covariance kernel defined, for any (s, t) ∈ [εt 0 , +∞) 2 , by

K (ε) (s, t) := Cov(M (ε) s ) Cov(M (ε) s , M (ε) t ) Cov(M (ε) t , M (ε) s ) Cov(M (ε) t )
,

where

Cov(M (ε) s , M (ε) t ) = Cov(M (ε,1) s , M (ε,1) t ) Cov(M (ε,1) s , M (ε,2) t ) Cov(M (ε,2) s , M (ε,1) t ) Cov(M (ε,2) s , M (ε,2) t ) ,
and Cov(M

(ε) s ) = Cov(M (ε) s , M (ε) 
s ). Thus, the convergence of the f.d.d. of M (ε) is reduced to the study of the limit of K (ε) , when ε converges to 0. Let us fix εt 0 ≤ s ≤ t. Using that M (ε) has independent increments and by Itô's isometry, we find that

Cov(M (ε) s , M (ε) t ) = ε s/ε t0 sin(u) 2 du -ε s/ε t0 sin(u) cos(u) du -ε s/ε t0 sin(u) cos(u) du ε s/ε t0 cos(u) 2 du
.

We get that, for all 0 < s ≤ t,

Cov(M (ε) s , M (ε) t ) -→ ε→0 1 2 s 0 0 s .
We recognize the covariance kernel of the process

B t 2 t>0
, where B denotes a standard Brownian motion on R 2 . Since mean and covariance functions characterize Gaussian process (see Lemma 13.1 (i) p. 250 in [START_REF] Kallenberg | Foundations of Modern Probability. Probability and Its Applications[END_REF]), we have thus proved that (M

(ε) t ) t≥εt0 converges in f.d.d. towards B t 2 t>0
.

Step 2. Pick T > 0. We prove that

E sup εt0≤t≤T Y (ε) t -M (ε) t -→ ε→0 0.
Let us fix ε > 0 small enough such that εt 0 ≤ T . We have

sup εt0≤t≤T Y (ε) t -M (ε) t ≤ √ ε z 0 + √ ε T /ε t0 e -sA F (s, V s ) ds. E √ ε T /ε t0 e -sA F (s, V s ) ds = E √ ε T /ε t0 F (s, V s ) ds ≤ E √ ε T /ε t0 |V s | γ s -β ds ≤ √ εC γ,t0 T /ε t0 s γ 2 -β ds ≤ C γ,t0 (ε β-γ+1 2 T γ 2 -β+1 + √ εt γ 2 -β+1 0 
).

Hence, setting r := min(β -γ+1 2 , 1 2 ), which is positive by assumption, we get

E sup εt0≤t≤T Y (ε) t -M (ε) t = O ε→0 (ε r ).
We conclude the proof using Theorem 3.1 p. 27 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF].

Convergence of the f.d.d. in the critical and sub-critical regimes

In this section, we consider the linear case, i.e. γ = 1.

Pick β ∈ 1 2 , 1 . Recall that (Y (ε) t ) t≥εt0 := (ε q Y t/ε ) t≥εt0 ,
where q = β γ+1 .

Proof of Theorem 1.1 (ii) and (iii). Leaving out the Brownian term, the underlying ODE of our system is the following

x ′′ (t) + x ′ (t) t β + x(t) = 0, t ≥ t 0 . ( 10 
)
Pick the basis of solutions given in Lemma A.3 and denote by R its resolvent matrix which is the solution to

R ′ t = 0 1 -1 -1 t β R t , t ≥ t 0 .
It follows by differentiating the inverse function that

(R -1 ) ′ t = -R -1 t 0 1 -1 -1 t β , t ≥ t 0 .
Using Itô's product rule for R -1 t Z t , the fact that the quadratic covariation of (R -1 t ) t≥t0 and (Z t ) t≥t0 is equal to zero and (4) with γ = 1, we get that for all t ≥ t 0 ,

R -1 t Z t = R -1 t0 Z t0 + t t0 R -1 s dZ s + t t0 (R -1 ) ′ s Z s ds = R -1 t0 Z t0 + t t0 R -1 s Γ dW s .
Let us define f the rate of decrease of R (see Lemma A.3) by

∀t > 0, f (t) :=    1 √ t if β = 1, exp -t 1-β 2(1-β) else. (11) 
Set, for t ≥ εt 0 ,

Φ t := e -tA R t f (t) and M (ε) t := ε q f t ε t/ε t0 R -1 s Γ dW s . ( 12 
)
Pick t ≥ εt 0 . To study the convergence of Y (ε) we decompose it into

Y (ε) t = ε q f t ε Φ t/ε R -1 t0 Z 0 + Φ t/ε M (ε) t . ( 13 
)
Step 1. Convergence of Φ and simplification the problem.

Using the asymptotic expansion of the resolvent matrix (Lemma A.3), we can write, for t ≥ εt 0 ,

Φ t = I 2 + O t→∞ t 1-2β .
As a consequence, since 1 -2β < 0, Φ t/ε converges to the identity matrix I 2 , as ε → 0 and for any t > 0. Let us notice that, for any t > 0, ε q f t ε converges to 0, as ε → 0. We thus obtain that

ε q f t ε Φ t/ε R -1 t0 Z 0 -→ ε→0 0.
Therefore, we can forget the first term appearing in the decomposition [START_REF] Kallenberg | Foundations of Modern Probability. Probability and Its Applications[END_REF] of Y (ε) (see Theorem 3.1 p. 27 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF]). It is thus enough to prove the convergence of the f.d.d. of the centered Gaussian process (Φ t/ε M (ε) t ) t to deduce the convergence of the f.d.d. of Y (ε) towards the same limit.

Step 2. Computation of the covariance kernel of (Φ t/ε M (ε) t ) t and convergence in f.d.d.

We have, for all εt 0 ≤ s ≤ t < +∞,

Cov Φ s/ε M (ε) s , Φ t/ε M (ε) t = Φ s/ε Cov( M (ε) s , M (ε) t )Φ T t/ε . (14) 
Using the expression of the Wronskian obtained in Lemma A.3, we obtain, for all t ≥ εt 0 ,

M (ε) t = ε q f (t/ε) t/ε t0 f (u) -2 -y 2 (u) y 1 (u) dB u .
It is a centered Gaussian process and for any εt 0 ≤ s ≤ t, we have

Cov( M (ε) s , M (ε) t ) = ε β f (t/ε)f (s/ε) s/ε t0 f (u) -4 y 2 2 (u) -y 2 (u)y 1 (u) -y 2 (u)y 1 (u) y 2 1 (u) du.
Using the asymptotic expansion of the solutions and Lemma B.3, we get, for all εt 0 < s ≤ t,

Cov( M (ε) s , M (ε) t ) = ε β f (t/ε)f (s/ε) s/ε t0 f (u) -2 sin 2 (u) -sin(u) cos(u) -sin(u) cos(u) cos 2 (u) du + O ε→0 ε 2β-1 f (t/ε)f (s/ε) -1 .
Moreover, using asymptotic expansions of these integrals (see Lemmas B.2 and B.3),

ε β f (t/ε)f (s/ε) s/ε t0 f (u) -2 cos 2 (u) du = ε β f (t/ε)f (s/ε) 1 2 s/ε t0 f (u) -2 du + o ε→0 f (t/ε)f (s/ε) -1 .
The same equality holds for

ε β f (t/ε)f (s/ε) s/ε t0 f (u) -2 sin 2 (u) du,
and we have

ε β f (t/ε)f (s/ε) s/ε t0 f (u) -2 cos(u) sin(u) du = o ε→0 f (t/ε)f (s/ε) -1 .
Thanks to Lemma B.3, this leads to

Cov( M (ε) s , M (ε) t ) = 1 2 ε β f (t/ε)f (s/ε) s/ε t0 f (u) -2 du I 2 + o ε→0 f (t/ε)f (s/ε) -1 = k β f (t/ε) f (s/ε) s β I 2 + o ε→0 f (t/ε)f (s/ε) -1 ,
where

k β := 1 4 if β = 1, 1 2
else.

It follows from the definition of f given in [START_REF] Honore | Strong regularization by Brownian noise propagating through a weak Hörmander structure[END_REF] and the fact that s ≤ t that

Cov( M (ε) s , M (ε) t ) -→ ε→0 1 4 (s∧t) 2 √ st I 2 if β = 1, 1 2 s β 1 {s=t} I 2 else.
Using the preceding convergence, [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] and Step 1, we have proved the convergence of the f.d.d. of Y (ε) . Note that whenever 2q = 1, i.e. β = 1 since γ = 1, we recognize the covariance kernel of the process

1 √ 2t t 0 √ s dB s t>0
, where B denotes a standard Brownian motion on R 2 .

Remark 2.5.

• The proof relies on the asymptotic expansion of the resolvent matrix of [START_REF] Gradinaru | Existence and asymptotic behaviour of some timeinhomogeneous diffusions[END_REF]. We were able to prove it only for β ∈ 1 2 , 1 . However, if β = 0, the resolvent matrix is explicit and following the same lines, we can prove that Z t/ε t≥εt0 converges in f.d.d. towards a centered Gaussian process with covariance kernel (s, t) → 1 2 I 2 1 {s=t} . This behavior can be explained by the fact that the frictional force does not decrease along time. This cancels somehow the rotation bearing, which prevents Z (ε) from converging as a process when β > 0.

• The asymptotic expansion of the resolvant matrix is also known in the super-critical regime, i.e. β > 1. Therefore, one can prove the result in the linear case, i.e. γ = 1, following the same lines.

Proof of Corollary 1.6

Proof of Corollary 1.6. We start by proving the convergence in distribution of r 1/T Z T , as T → +∞. We claim that it follows from Theorem 1.1. Indeed, it is enough to remark that the convergence results stated in Theorem 1.1 imply the convergence in distribution of the marginal distribution at time t = 1 of Y (ε) . Let us also recall that Z T = e T A Y T . Setting T = 1 ε , the convergence of r 1/T Z T is therefore a direct consequence of Lemma B.4. We now show that the rescaled process Z (ε) does not converge in distribution. We do the proof only in the super-critical regime. Assume by contradiction that it is the case. Hence, each of its coordinates shall converge too. We thus have the convergence of the rescaled process X (ε) . Using (SDE Y ), we can write

√ εX t/ε = √ εx 0 + √ ε t/ε t0 sin t ε -s dB s - √ ε t/ε t0 sin t ε -s F (s, V s ) ds.
As in the proof of Theorem 1.1 (i), the last term converges in probability uniformly on compact intervals towards zero. Hence, the following term shall converge in distribution

I (ε) t := √ ε t/ε t0 sin t ε -s dB s .
The process (I

(ε)
t ) t≥εt0 is Gaussian, thereby its limit shall be Gaussian too and its covariance function shall converge (see Lemma 13.1 (i) p. 250 in [START_REF] Kallenberg | Foundations of Modern Probability. Probability and Its Applications[END_REF]). However, using Itô's isometry, one can compute, for εt 0 ≤ s ≤ t,

E I (ε) t I (ε) s = ε s/ε t0 sin t ε -u sin s ε -u du = ε 1 2 cos t -s ε s ε -t 0 + 1 2 sin t -s ε -sin t + s ε -2t 0 = 1 2 s cos t -s ε + o ε→0 (1) 
.

This term does not converge if s = t, and that concludes the proof.

3 Study of the system driven by an α-stable process

In this section, L is a symmetric α-stable Lévy process. We call ν its Lévy measure, which can be written as ν(dz) = a |z| -1-α 1 {z =0} dz with a > 0. As a Lévy measure, it satisfies R * (1 ∧ z 2 )ν(dz) < +∞. We denote by N the Poisson random measure associated with L and by N its compensated Poisson measure. Using Lévy-Itô's decomposition (see [21, Remark 14.6 and Theorem 14.7 iii)]), we have, for all t ≥ 0,

L t = t 0 R * z N (ds, dz). ( 15 
)
As in the previous section, we set, for all t ≥ t 0 and v ∈ R,

Z t := X t V t , S t := 0 L t , A := 0 1 -1 0 , Γ := 0 0 0 1 and F (t, v) :=   0 sgn(v) |v| γ t β   .
Thereby, the system (SKE) can be rewritten as

dZ t = Γ dS t + AZ t dt -F (t, V t ) dt, Z t0 = z 0 := (x 0 , v 0 ) T . (16) 
We define, for any t ≥ t 0 , Y t := e -tA Z t . We easily check, with Itô's formula, that Y is given by

dY t = e -tA Γ dS t -e -tA F (t, V t ) dt. (SDE Y )

Existence up to explosion

Theorem 3.1. The system (SKE) admits a unique weak solution if γ ∈ (0, 1]. If γ > 1, there exists a unique strong solution defined up to its explosion time τ ∞ .

Proof. In the case γ > 1, the coefficients of the SDE ( 16) satisfied by Z = (X, V ) are locally Lipschitz continuous with respect to the space variable, uniformly in time. So we can apply Theorem 6.2.11 in [START_REF] Applebaum | Levy Processes and Stochastic Calculus[END_REF] (see Theorem 119 in [START_REF] Situ | Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering[END_REF] for a detailed proof), which ensures the existence of a unique solution to ( 16) defined up to explosion.

Assume now that γ ≤ 1. We check that we can use Theorem 1 in [START_REF] Marino | Weak well-posedness for degenerate SDEs driven by Lévy processes[END_REF]. Using the same notations, we have

A = 0 -1 1 0 ,
and for any (t,

x 1 , x 2 ) ∈ [t 0 , +∞) × R 2 , F 1 (t, x 1 , x 2 ) = -sgn(x 1 )|x 1 | γ t -β , F 2 (t, x 1 , x 2 ) = 0 and σ(t, x 1 , x 2 ) = 1.
Assumptions (UE) and (ND) are clearly satisfied. Since F 2 does not depend on x 1 and since [ A] 2,1 = 1 is different from 0, we deduce that Assumption (H) is satisfied. We easily check that Theorem 1 in [START_REF] Marino | Weak well-posedness for degenerate SDEs driven by Lévy processes[END_REF] can be applied with β 1 = γ, and β 2 = 1.

Remark 3.2. For α ∈ (0, 2), employing the technique of Picard iteration and the interlacing procedure, one can deduce that (16) has a unique solution in the linear setting γ = 1 (see [2, p. 375]).

Moment estimates and non-explosion

Let Z be the unique solution up to explosion time to [START_REF] Luschgy | Moment estimates for Lévy Processes[END_REF]. As in the continuous setting, define, for all r ≥ 0, the stopping time

τ r := inf{t ≥ t 0 , Z t ≥ r}.
Set τ ∞ := lim r→+∞ τ r the explosion time of Z. For the sake of simplicity, since there is no jump on the position component, for z ∈ R, we shall write Z s-+ z for (X s , V s-+ z) in the following. We adapt the proof of [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF] to two-dimensional processes.

Proposition 3.3. For any γ ≥ 0 and β ≥ 0, the explosion time τ ∞ is a.s. infinite and for κ ∈ (0, α), there exists C κ,t0 such that

∀t ≥ t 0 , E [ Z t κ ] ≤ C κ,t0 t κ α . ( 17 
)
Remark 3.4. Note that, as in the Brownian case, the moment estimates obtained for the position process X is a priori smaller in our case than in the free potential case [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous stochastic differential equation driven by an α-stable Lévy process[END_REF]. It is explained by the confining effect of the quadratic potential.

Proof. The key idea is to slice the small and big jumps in a non-homogeneous way with respect to the characteristic scale of an α-stable process ξ → ξ 1 α .

Pick ξ ≥ t 0 . Using [START_REF] Langevin | Sur la théorie du mouvement brownien[END_REF], the α-stable symmetric Lévy driving process can be written as

L t -L t0 = t t0 |z|≤ξ 1 α z N (ds, dz) + t t0 |z|>ξ 1 α
zN (ds, dz).

Indeed, the term

t t0 |z|>ξ 1 α zν(dz) ds
is equal to 0 since ν is a symmetric measure.

Step 1. We first apply Itô's formula (see Theorem 4.4.7 p. 251 in [START_REF] Applebaum | Levy Processes and Stochastic Calculus[END_REF]) and estimate the expectation of each term for κ ≤ 1, in order to get [START_REF] Mann | Growing fractal interfaces in the presence of selfsimilar hopping surface diffusion[END_REF].

Fix η > 0 to be chosen latter and define the C 2 -function f : (x, v) → (η + x 2 + v 2 ) κ/2 . We use the fact that for all y ∈ R 2 , y • Ay = 0, and observe that for any s ≥ t 0 and

(x, v) ∈ R 2 , (x, v) T • F (s, v) = |v| γ+1 s -β ≥ 0.
In the sequel, we write, for simplicity, f (Z s -+ z) for f (X s -, V s -+ z). For all t ≥ t 0 , by Itô's formula, we have

f (Z t∧τr ) ≤ f (z 0 ) + M t + R t + S t ,
where

M t := t t0 0<|z|<ξ 1 α 1 {s≤τr} (f (Z s-+ z) -f (Z s-)) N (ds, dz), R t := t t0 |z|≥ξ 1 α 1 {s≤τr } (f (Z s-+ z) -f (Z s-))N (ds, dz), ( 18 
)
S t := t t0 0<|z|<ξ 1 α 1 {s≤τr } [f (Z s-+ z) -f (Z s-) -∇f (Z s-).z] ν(dz) ds. ( 19 
)
Moreover, remark that for all k > α,

0<|z|<ξ 1 α |z| k ν(dz) = 2a k -α ξ k α -1 , (20) 
and for all k < α,

|z|≥ξ 1 α |z| k ν(dz) = 2a α -k ξ k α -1 . (21) 
We estimate expectations of M , R and S.

To that end, we first show that the local martingale (M t ) t≥t0 is a martingale. Fix q ≥ 2 and r ≥ 0. Moreover, we set

I t (q) := t t0 0<|z|<ξ 1 α 1 {s≤τr } |f (Z s-+ z) -f (Z s-)| q ν(dz) ds.
Thanks to Taylor-Lagrange inequality, for all (x, v) ≤ r and |z| ≤ ξ

1 α , |f (x, v + z) -f (x, v)| ≤ sup{ ∇f (y) , y ∈ [0, r + ξ 1 /α ]} |z| ≤ C r,ξ,κ |z| ,
so we have

I t (q) ≤ C r,ξ,κ t t0 0<|z|<ξ 1 α 1 {s≤τr} |z| q ν(dz) ds.
Hence, it is a finite quantity, since q ≥ 2 and (20) holds. Therefore, for q ≥ 2, by Kunita's inequality (see Theorem 4.4.23 p. 265 in [START_REF] Applebaum | Levy Processes and Stochastic Calculus[END_REF]), there exists D q > 0 such that

E sup t0≤s≤t |M s | q ≤ D q E I t (2) q 2 + E [I t (q)] < +∞.
Hence, by Theorem 51 p. 38 in [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF], M is a martingale.

We estimate now the finite variation part S defined in [START_REF] Marino | Weak well-posedness for degenerate SDEs driven by Lévy processes[END_REF]. Note that for all (x, v) ∈ R 2 , the Hessian matrix of f is given by

Hess(f )(x, v) = κ(x 2 + v 2 + η) κ 2 -1     1 + (κ -2) x 2 x 2 + v 2 + η (κ -2) xv x 2 + v 2 + η (κ -2) xv x 2 + v 2 + η 1 + (κ -2) v 2 x 2 + v 2 + η     .

Its matrix norm is bounded by

C κ η κ 2 -1 . Assume that |z| < ξ 1 α
. Using Taylor-Lagrange's inequality and injecting [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF] we get the almost sure following bound, for all s ≥ t 0 ,

0<|z|<ξ 1 α (f (Z s-+ z) -f (Z s-) -∇f (Z s-) • z) ν(dz) ≤ C κ η κ 2 -1 2a 2 -α ξ 2 α -1 . (22) 
It remains to study the Poisson integral R defined in [START_REF] Mao | Stochastic Differential Equations and Applications[END_REF]. Recall that κ ≤ 1. Let us note that for all x, v, z ∈ R, by Hölder property of power functions, one has

|f (x, v + z) -f (x, v)| ≤ η + x 2 + (v + z) 2 κ 2 -x 2 + (v + z) 2 κ 2 + x 2 + (v + z) 2 κ 2 -x 2 + v 2 κ 2 + x 2 + v 2 κ 2 -η + x 2 + v 2 κ 2 ≤ 2η κ 2 + | (x, v + z) κ -(x, v) κ | ≤ 2η κ 2 + |z| κ .
Injecting [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF], we deduce that

|z|≥ξ 1 α |f (Z s-+ z) -f (Z s-)| ν(dz) ≤ η κ 2 2a α ξ -1 + 2a α -κ ξ κ α -1 . ( 23 
)
Moment estimate of the Poisson integral follows from Theorem 2.3.7 p. 106 in [START_REF] Applebaum | Levy Processes and Stochastic Calculus[END_REF]. Gathering ( 23) and ( 22), we obtain

E [ Z t∧τr κ ] ≤ E [f (Z t∧τr )] ≤ E [f (Z t0 )] + tξ -1 η κ/2 2a α + 2a α -κ ξ κ α + C κ η κ 2 -1 2a 2 -α ξ 2 α
.

Choosing η = t 2 α and ξ = t, we get

E [ Z t∧τr κ ] ≤ E [f (Z t0 )] + t κ α 2a α + 2a α -κ + C κ 2a 2 -α ≤ C κ,t0 t κ α .
Thanks to Lemma B.1, we can conclude that the explosion time of Z is a.s. infinite, and letting r → +∞ with Fatou's lemma, for all κ ∈ [0, 1],

E [ Z t κ ] ≤ C κ,t0 t κ α . ( 24 
)
Step 2. Pick κ ∈ (1, α). We estimate R in another way, using again Theorem 2.3.7 p. 106 in [START_REF] Applebaum | Levy Processes and Stochastic Calculus[END_REF].

By the Hölder property of power function and ( 21), we get

|z|≥ξ 1 α |f (Z s-+ z) -f (Z s-)| ν(dz) ≤ |z|≥ξ 1 α 2zV s-+ z 2 κ 2 ν(dz) ≤ C κ 2a α -κ ξ κ α -1 + |V s-| κ 2 2a α -κ 2 ξ κ 2α -1 . ( 25 
)
Gathering ( 22) and ( 25), one has

E [ Z t∧τr κ ] ≤ E [f (Z t0 )] + t C κ 2a α -κ ξ κ α -1 + C κ η κ 2 -1 2a 2 -α ξ 2 α -1 + C κ 2a α -κ 2 ξ κ 2α -1 t t0 E |V s | κ 2 ds.
Injecting ( 24) applied with κ 2 , choosing η = t 2 α and ξ = t, we get

E [ Z t∧τr κ ] ≤ C κ,t0,α t κ α .
The conclusion of the proof follows, letting r → +∞.

Asymptotic behavior of the solution

We gather in this section the proof of Theorem 1.2. The strategy is to prove the convergence of the f.d.d. of the process Y (ε) , and then its tightness both in the super-critical and critical regimes. We first prove the tightness when αq ≥ 1. Recall that q = β γ+α-1 .

Lemma 3.5. Assume that αq ≥ 1, then the family (ε

1 α Y t/ε ) t≥εt0 , ε > 0 is tight on every compact interval [m, M ], for 0 < m ≤ M .
Proof. We check the Aldous's tightness criterion stated in Theorem 16.10 p. 178 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. Let a, η, T be positive reals. Let τ be a discrete stopping time with finite range T , bounded by T and fix δ > 0 and ε > 0 small enough to be chosen later. Let us define the Wiener-Lévy integral appearing in (SDE Y ) M (ε) by, for all t ≥ εt 0 ,

M (ε) t := ε 1 α t/ε t0 e -sA Γ dS s = ε 1 α t/ε t0 -sin(s) cos(s) dL s = ε 1 α t/ε t0 R -sin(s) cos(s) z N (ds, dz), (26) 
using the representation (15) of L. Notice that it is a martingale. By the triangle inequality, one has

E Y (ε) τ +δ -Y (ε) τ ≤ E M (ε) τ +δ -M (ε) τ + E ε 1 α (τ +δ)/ε τ /ε |V u | γ u -β du . ( 27 
)
Writing M (ε) =: M (ε),1 , M (ε),2 T , the quadratic variations of M (ε),1 and M (ε),2 satisfy, by [START_REF] Applebaum | Levy Processes and Stochastic Calculus[END_REF] (see (4.15) p. 257), for all t ≥ εt 0

Tr M (ε) t , M (ε) t 
:= M (ε),1 t , M (ε),1 t + M (ε),2 t , M (ε),2 t = t/ε t0 R ε 1 α -sin(u) cos(u) z 2 N (du, dz).
Using Burkholder-Davis-Gundi's inequality (see Theorem 48 p. 193 in [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF]), we deduce that for some constant C > 0 independent of τ, δ and ε which may change from line to line

E M (ε) τ +δ -M (ε) τ ≤ CE Tr M (ε) τ +δ , M (ε) 
τ +δ -M (ε) τ , M (ε) τ 1 2 ≤ CE   (τ +δ)/ε τ /ε R |ε 1 α z| 2 N (du, dz) 1 2   = CE L (ε) τ +δ , L (ε) 
τ +δ -L (ε) τ , L (ε) τ 1 2 , where (L (ε) 
t ) t≥0 := (ε

1 α L t/ε
) t≥0 has the same distribution as L by its self-similarity property. Using this and the lower-bound in Burkholder-Davis-Gundi's inequality, we deduce that

E M (ε) τ +δ -M (ε) τ ≤ CE sup 0≤s≤δ |L τ +s -L τ | = CE sup 0≤s≤δ |L s | = CE sup 0≤s≤δ δ 1 α |L s/δ | = Cδ 1 α E sup 0≤s≤1 |L s | ,
where the first equality stems from the strong Markov property satisfied by L and the second one from the self-similarity property of L again. Note that E sup 0≤s≤1 |L s | is finite thanks to [START_REF] Luschgy | Moment estimates for Lévy Processes[END_REF] (see Section 3) since α > 1.

Since τ ∈ [m, M ] a.s., the last term in ( 27) can be handled as in (9) using moment estimates of V (see Proposition 3.3). It yields

E ε 1 α (τ +δ)/ε τ /ε |V u | γ u -β du ≤ C m,M ε β-γ+α-1 α .
Since η > 0 and by Markov's inequality, we obtain for δ and ε small enough

P Y (ε) τ +δ -Y (ε) τ ≥ a ≤ Cδ 1 α + C m,M ε β-γ+α-1 α a ≤ η.
Moreover, by Markov's inequality and the moment estimates again, we deduce that for all t ∈ [m, M ],

lim a→+∞ lim sup ε→0 P Y (ε) t ≥ a ≤ lim a→+∞ lim sup ε→0 E Y (ε) t a ≤ lim a→+∞ Ct 1 α a = 0.
By Corollary and Theorem 16.8 p. 175 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF], this concludes the proof of the tightness on every compact interval of (0, +∞).

We will now prove the convergence of the f.d.d. of Y (ε) . Thanks to the previous lemma, this will yield the weak convergence on every compact set (see Theorem 13.1 p. 139 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF]) in the super-critical and critical regimes. The convergence in distribution on the whole space D will follow from Theorem 16.7 p. 174 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF], since all processes considered are càdlàg.

Convergence of the f.d.d. in the super-critical regime

Assume that αq > 1. Recall that (Y (ε) t ) t≥εt0 := (ε 1 α Y t/ε ) t≥εt0 .
Proof of Theorem 1.2 (i).

Step 1. We first prove the convergence of the f.d.d. of the Wiener-Lévy integral appearing in (SDE Y ). Recall that the local martingale M (ε) was defined in [START_REF] Zhang | Densities for sdes driven by degenerate α-stable processes[END_REF].

Step 1a. We begin with the convergence in distribution of M (ε)

s,t := M (ε) t -M (ε) s , for εt 0 ≤ s ≤ t.
To this end, we study the characteristic function φ

(ε) s,t of M (ε)
s,t . Let us recall that ψ denotes the characteristic exponent of L, and is given, for all ξ ∈ R, by

ψ(ξ) = -a|ξ| α .
The characteristic function of the Wiener-Lévy integral can be computed as p. 105 in [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF], hence one has, for all ξ :

= (u, v) ∈ R 2 , φ (ε) s,t (ξ) = E exp -iuε 1 α t/ε s/ε sin(y) dL y + ivε 1 α t/ε s/ε cos(y) dL y = E exp iε 1 α t/ε s/ε (-u sin(y) + v cos(y)) dL y = exp t/ε s/ε ψ ε 1 α [-u sin(y) + v cos(y)] dy = exp -aε t/ε s/ε | -u sin(y) + v cos(y)| α dy . Using Lemma B.2, we deduce that φ (ε) s,t (ξ) converges, as ε → 0, to exp -a(t -s) 1 2π 2π 0 |-u sin(y) + v cos(y)| α dy .
Step 1b. We now compute explicitly the scale parameter of the stable limiting process. We denote by λ the uniform probability distribution on the circle S 1 . Thanks to a change of variable and the symmetry of λ, setting ω := ξ ξ for ξ = (u, v) ∈ R 2 \ {0}, we have

1 2π 2π 0 |-u sin(y) + v cos(y)| α dy = S 1 |ξ • λ| α dλ = ξ α S 1 |ω • λ| α dλ.
Since λ is rotationally invariant, we deduce that S 1 |ω • λ| α dλ does not depend on ω ∈ S 1 . Taking ω = (1, 0) T , we set

C := a 2π 2π 0 |cos(x)| α dx. (28) 
We have thus proved that, for any

ξ ∈ R 2 , φ (ε) 
s,t (ξ) -→ ε→0 exp -(t -s) C ξ α .
Thus, the following convergence in distribution holds

M (ε) s,t = M (ε) t -M (ε) s =⇒ ε→0 L t-s . (29) 
Following the same lines, we show that, for any t > 0,

M (ε) t =⇒ ε→0 L t . (30) 
Step 1c. We now prove the convergence in f.d.d. of M (ε) to L, as ε tends to 0.

Let us fix 0 < t 1 ≤ t 2 ≤ • • • ≤ t d . Note that (M (ε) 
t ) t≥εt0 is a càdlàg process with independent increments, since the integrands in its definition are deterministic and because L is a Lévy process. Thus, the random variables (M

(ε) t1 , M (ε) t1,t2 , . . . , M (ε) 
t d-1 ,t d ) are mutually independent. We deduce from the convergence results established in (29) and (30), and the fact that L has stationary and independent increments that

(M (ε) t1 , M (ε) t1,t2 , . . . , M (ε) t d-1 ,t d ) =⇒ ε→0 (L t1 , L t2 -L t1 , . . . , L t d -L t d-1 ).
The continuous mapping theorem yields the convergence in f.d.d. of M (ε) to L.

Step 2. Pick T > 0. We prove that

E sup εt0≤t≤T Y (ε) t -M (ε) t -→ ε→0 0.
Let us fix ε > 0 small enough such that εt 0 ≤ T . We have

sup εt0≤t≤T Y (ε) t -M (ε) t ≤ ε 1 α z 0 + ε 1 α T /ε t0 e -sA F (s, V s ) ds. E ε 1 α T /ε t0 e -sA F (s, V s ) ds = E ε 1 α T /ε t0 F (s, V s ) ds ≤ E ε 1 α T /ε t0 |V s | γ s -β ds ≤ ε 1 α C γ,t0 T /ε t0 s γ α -β ds ≤ C γ,t0 (ε β-γ+α-1 α T γ α -β+1 + ε 1 α t γ α -β+1 0 
).

Hence, setting r := min(β -γ+α-1 α , 1 α ), which is positive by assumption, we get

E sup εt0≤t≤T Y (ε) t -M (ε) t = O ε→0 (ε r ). (31) 
The conclusion follows from Theorem 3.1 p. 27 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. In this section, we consider the linear case, i.e. γ = 1 and we assume that

β ∈ 1 2 , 1 . Recall that (Y (ε) t ) t≥εt0 = ε q Y t/ε t≥εt0 .
Proof of Theorem 1.2 (ii) and (iii). The proof follows the same lines as in the Brownian setting.

Leaving out the noise, recall that the underlying ODE is the following

x ′′ (t) + x ′ (t) t β + x(t) = 0, t ≥ t 0 . ( 32 
)
We pick again the basis of solutions given by Lemma A.3, and we still denote by R its resolvent matrix and by f its rate of decrease. Recall that it is given by

∀t > 0, f (t) :=    1 √ t if β = 1, exp -t 1-β 2(1-β) else. ( 33 
)
We set, for all t ≥ εt 0 ,

M (ε) t := ε q f (t/ε) t/ε t0 R -1 s Γ dS s . (34) 
Keeping the same notations as in the Brownian case, we decompose

(Y t ) t≥t0 = (e -tA Z t ) t≥t0 into ε q Y t/ε = ε q f (t/ε)Φ t/ε R -1 t0 Z 0 + Φ t/ε M (ε) t .
Reasoning as in the Brownian case, it remains to study the convergence of M (ε) since the first term converges towards 0. Using the expression of the Wronskian obtained in Lemma A.3, we obtain, for all t ≥ εt 0 ,

M (ε) t = ε q f (t/ε) t/ε t0 f (u) -2 -y 2 (u) y 1 (u) dL u .
Let us fix 0 < s < t. We study the convergence in distribution of the couple ( M

(ε) s , M (ε) 
t ) when ε tends to 0. The convergence in distribution of a general d-dimensional distribution ( M (ε) t1 , . . . , M (ε) t d ) relies on the same computations. Let us fix (ξ 1 , ξ 2 ) ∈ R 2 ×R 2 . Using that L has independent increments, the characteristic function φ

(ε) s,t of ( M (ε) s , M (ε) t ) is given by φ (ε) s,t (ξ 1 , ξ 2 ) = E exp iε q f (s/ε) ξ 1 • s/ε t0 f (u) -2 -y 2 (u) y 1 (u) dL u +f (t/ε) ξ 2 • t/ε t0 f (u) -2 -y 2 (u) y 1 (u) dL u = E exp iε q (f (s/ε) ξ 1 + f (t/ε) ξ 2 ) • s/ε t0 f (u) -2 -y 2 (u) y 1 (u) dL u (35) × E exp iε q f (t/ε) ξ 2 • t/ε s/ε f (u) -2 -y 2 (u) y 1 (u) dL u .
Let us recall that the characteristic exponent of L is given, for all ξ ∈ R, by

ψ(ξ) = -a|ξ| α .
The characteristic function of the Wiener-Lévy integral can be computed as p. 105 in [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]. Indeed, if G : R → R is a continuous function, then we have for all

z ∈ R E exp iz t s G(u) dL u = exp -a t s |G(u)z| α du .
Using this with z = 1 and

G : u ∈ [t 0 , +∞) → ε q (f (s/ε) ξ 1 + f (t/ε) ξ 2 ) • f (u) -2 -y 2 (u) y 1 (u)
to compute the first expectation in (35) and the corresponding function G for the second expectation, one has

φ (ε) s,t (ξ 1 , ξ 2 ) = exp -aε β s/ε t0 f (u) -2α (f (s/ε) ξ 1 + f (t/ε) ξ 2 ) • -y 2 (u) y 1 (u) α du × exp -aε β t/ε s/ε f (u) -2α f (t/ε) ξ 2 • -y 2 (u) y 1 (u) α du .
Using the asymptotic expansion of the resolvent matrix (Lemma A.3), we can write, for any u ≥ t 0 , -y 2 (u)

y 1 (u) = f (u) -sin(u) cos(u) + g(u) ,
where g : [t 0 , +∞) → R 2 is a function satisfying for all u ≥ t 0 ,

|g(u)| ≤ Cu 1-2β .
We set

K (ε) 1 := exp -aε β s/ε t0 f (u) -α (f (s/ε) ξ 1 + f (t/ε) ξ 2 ) • -sin(u) cos(u) + g(u) α du (36) 
and

K (ε) 2 := exp -aε β t/ε s/ε f (u) -α f t ε ξ 2 • -sin(u) cos(u) + g(u) α du .
We thus obtain φ

(ε) s,t (ξ 1 , ξ 2 ) = K (ε) 1 × K (ε) 2 , (37) 
Step 1. We start by justifying that we can omit g to study the limit when ε → 0. More precisely, we prove that, for all function

ζ : R → R 2 such that ζ(ε) f (s/ε) -1 = O ε→0 (1) 
,

R (ε) := ε β s/ε t0 f (u) -α ζ(ε) • -sin(u) cos(u) + g(u) α -ζ(ε) • -sin(u) cos(u) α du -→ ε→0 0. ( 38 
)
Thanks to the mean value theorem applied to | • | α (since α ≥ 1), and the domination of g, we obtain that, for some constant C > 0,

R (ε) ≤ Cε β ζ(ε) α s/ε t0 f (u) -α u 1-2β du = O ε→0 ( ζ(ε) α f (s/ε) -α ε 2β-1 ),
where the last equality follows from Lemma B.3. This proves (38) since β > 1 2 .

Step 2. We focus on the first term

K (ε) 1 defined in (36). Since f is decreasing, notice that ζ(ε) := f (s/ε) ξ 1 + f (t/ε) ξ 2 = O ε→0 (f (s/ε)).
Then we have to study the convergence of I (ε) defined by

I (ε) := aε β s/ε t0 f (u) -α (f (s/ε) ξ 1 + f (t/ε) ξ 2 ) • -sin(u) cos(u) α du.
Its limit differs according to the value of β.

Step 2a. Assume first that β = 1. Then, using the expression of f (see (33)),

I (ε) = aε 1+ α 2 s/ε t0 f (u) -α ξ 1 √ s + ξ 2 √ t • -sin(u) cos(u) α du.
We proved in Step 1B of the super-critical regime that there exists a constant C > 0 given in (28) such that, for all

ζ ∈ R 2 , a 2π 2π 0 ζ • -sin(u) cos(u) α du = C ζ α . (39) 
Using Lemma B.2, we can compute the following asymptotic expansion

I (ε) = ε 1+ α 2 C ξ 1 √ s + ξ 2 √ t α s/ε t0 f (u) -α du + o ε→0 ε 1+ α 2 s/ε t0 f (u) -α du .
Therefore, it follows from Lemma B.3 that

K (ε) 1 -→ ε→0 exp -C 1 + α 2 -1 ξ 1 √ s + ξ 2 √ t α s 1+ α 2 .
Step 2b. Let us consider now β ∈ 1 2 , 1 . Let us notice that I (ε) can be decomposed into the sum

I (ε) = I (ε) 1 + I (ε) 2 (40)
of the two following terms

I (ε) 1 := aε β s/ε t0 f (u) -α f s ε ξ 1 • -sin(u) cos(u) α du and 
I (ε) 2 := aε β s/ε t0 f (u) -α (f (s/ε) ξ 1 + f (t/ε) ξ 2 ) • -sin(u) cos(u) α -f (s/ε) ξ 1 • -sin(u) cos(u) α du.
Using again the mean value theorem and Lemma B.3, we get that for some positive constant C ξ1 , ξ2 ,

|I (ε) 2 | ≤ Cε β f (s/ε) α-1 f (t/ε) s/ε t0 f (u) -α du = O ε→0 f (t/ε)f (s/ε) -1 = o ε→0 (1), (41) 
since β < 1. Using Lemma B.2, we can compute the following asymptotic expansion of

I (ε) 1 I (ε) 1 = aε β f s ε α s/ε t0 f (u) -α ξ 1 • -sin(u) cos(u) α du = aε β f s ε α 1 2π 2π 0 ξ 1 • -sin(u) cos(u) α du s/ε t0 f (u) -α du + o ε→0 s/ε t0 f (u) -α du .
Thanks to (39) and the asymptotic expansion's results given in Lemma B.3, there exists an explicit constant k β,α given in Lemma B.3, such that

I (ε) 1 -→ ε→0 k β,α Cs β ξ 1 α . (42) 
Combining (38), (40), ( 41) and (42), we have proved that K (ε)

1 , defined in (36), converges as ε → 0 towards exp -k β,α Cs β ξ 1 α .

Step 3. It remains to deal with the limit of

K (ε) 2 . Notice that ζ(ε) := f (t/ε) ξ 2 = O ε→0 (f (t/ε)) = O ε→0 (f (s/ε)) .
Hence, thanks to Step 1, we are reduced to study, for r ∈ {s, t},

J (ε) r := aε β f t ε α r/ε t0 f (u) -α ξ 2 • -sin(u) cos(u) α du. (43) 
Asymptotic expansion's results (Lemmas B.2 and B.3) and (39) yield

J (ε) r = C ξ 2 α ε β f (t/ε) α r/ε t0 f (u) -α du + o ε→0 f (t/ε) α f (r/ε) -α = C ξ 2 α k β,α r β f (t/ε) α f (r/ε) -α + o ε→0 f (t/ε) α f (r/ε) -α .
Hence,

J (ε) t -→ ε→0 C ξ 2 α k β,α t β (44) and J (ε) s -→ ε→0 C ξ 2 α k β,α s β s t α 2 1 {β=1} . ( 45 
) Since K (ε) 2 = exp -J (ε) t + J (ε) s ,
we thus obtain that, for all 0 < s ≤ t, φ

s,t (ξ 1 , ξ 2 ) -→ ε→0    exp -k β,α Cs β ξ 1 α exp -k β,α Ct β ξ 2 α if β < 1, exp -k β,α C ξ1 √ s + ξ2 √ t α s 1+ α 2 + ξ 2 α t -ξ 2 α s t α 2 s if β = 1. (ε) 
Step 4. We can compute the characteristic function of the process 1

√ t t 0 √ s dL s t>0
in the same manner, and thus recognize the limiting process in the critical regime.

Remark 3.6.

• As in the Brownian setting, if β = 0, the resolvent matrix is explicit and following the same lines, we can prove that Z t/ε t≥εt0 converges in f.d.d. towards the product of the measure µ, whose characteristic function is given by ξ → exp -a +∞ 0 e -αu ξ • h(u) α du , h being an explicit periodic function depending on the resolvent matrix.

• As in the Brownian setting, since the asymptotic expansion of the resolvant matrix is also known in the super-critical regime, i.e. β > 1, one can prove the result in the linear case, i.e. γ = 1, following the same lines.

Proof of Corollary 1.6

Proof of Corollary 1.6. We start by proving the convergence in distribution of r 1/T Z T . Reasoning as in the Brownian setting, it follows from Theorem 1.2 that r 1/T Y T converges. The conclusion is a consequence of Lemma B.4, noting that the limiting distribution is invariant under rotations thanks to the expression of its characteristic function.

Let us now prove that the rescaled process Z (ε) does not converge in distribution. We state the proof in the super-critical regime. Assume by contradiction that it is the case. Reasoning as in the Brownian case, we prove that this implies the convergence in distribution of the process I (ε) defined, for t ≥ εt 0 , by

I (ε) t := ε 1 α t/ε t0 sin t ε -u dL u .
In particular, for s < t, the random variable

I (ε) t -I (ε) s shall converge in distribution.
Let us denote by φ (ε) the characteristic function of

I (ε) t -I (ε)
s , which is supposed to converge on R. Using that L has independent increments, we have

φ (ε) (1) = E exp ε 1 α t/ε s/ε sin t ε -u dL u E exp ε 1 α s/ε t0 sin t ε -u -sin s ε -u dL u =: φ (ε),1 φ (ε),2 .
Recall that ψ defined in (2), denotes the characteristic exponent of L. Using a change of variables, we have in particular

φ (ε),1 = exp t/ε s/ε ψ ε 1 α sin t ε -u du = exp -aε t/ε s/ε sin t ε -u α du = exp -aε (t-s)/ε 0 |sin (u)| α du .
Lemma B.2 ensures that φ (ε),1 has a limit when ε converges to 0. Similarly, we obtain

φ (ε),2 = exp s/ε t0 ψ ε 1 α sin t ε -u -sin s ε -u du = exp -aε s/ε t0 sin t ε -u -sin s ε -u α du = exp -a2 α sin t -s 2ε α ε s/ε t0 cos t + s 2ε -u α du = exp -a2 α sin t -s 2ε α ε t+s 2ε -t0 t-s 2ε |cos (u)| α du . (46) 
The change of variables u = v + π yields, for all ε > 0, Coming back to (46), we see that φ (ε),2 does not converge when ε tends to 0. This is a contradiction.

A Study of the deterministic underlying ODE

The deterministic ODE behind the system, i.e. without frictional force and without noise, is the following

x ′′ (t) + x ′ (t) t β + x(t) = 0, t ≥ t 0 . (47) 
The solutions form a vector space of dimension 2. Let us take two solutions y 1 and y 2 which are linearly independent. Then, we introduce the fundamental system of solutions (resolvent matrix) R to (47) defined, for t ≥ t 0 , by

R t = y 1 (t) y 2 (t) y ′ 1 (t) y ′ 2 (t)
.

It satisfies, for all t ≥ t 0 ,

R ′ t = 0 1 -1 -1 t β R t .
We recall that the Wronskian w is defined, for all t ≥ t 0 , by

w(t) = y 1 (t)y ′ 2 (t) -y ′ 1 (t)y 2 (t).
Let us finally set, for t > 0, ). Following the proof of the method of variation of parameters, there exists a 0 , b 0 ∈ R such that, for any t ≥ t 0 , u(t) = a 0 cos(t) + b 0 sin(t) -t t0 u(s)h(s) sin(ts) ds.

f (t) :=    1 √ t if β = 1, exp -t 1-β
Using that h ∈ L 1 ((t 0 , +∞)) since β > 1 2 , we obtain by Grönwall's lemma that u is bounded on [t 0 , +∞). We deduce that the functions s → u(s)h(s) cos(s) and s → u(s)h(s) sin(s) belong to L 1 ((t 0 , +∞)). Thus, up to changing the constants a 0 and b 0 , one has, for all t ≥ t 0 , u(t) = a 0 cos(t) + b 0 sin(t)sin(t) 

B Some technical results

We collect here some technical results used in our proofs. Recall first a sufficient condition for the non-explosion of the solution to a SDE. The proof can be found in [START_REF] Gradinaru | Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion[END_REF]. Then τ ∞ = +∞ a.s.

We now state and prove a result on the periodic-averaging phenomenon.

Lemma B.2. Let us fix t 0 > 0 and h : [t 0 , +∞) → R a continuous m-periodic function, with m > 0. Let g : [t 0 , +∞) → R + be a continuously differentiable function which is not integrable on [t 0 , +∞). We assume moreover that (i) g ′ (t) = o t→+∞ (g(t)), Let us remark that the functions g 1 and g 2 defined for t ∈ R, r ≥ 0 and β ∈ [0, 1) by g 1 (t) := t r and g 2 (t) := exp(rt 1-β ), satisfy the preceding assumptions made on g.

Proof. Let us define h

:= h -1 m t0+m t0
h(u) du, and H a primitive of h. The function H is bounded on [t 0 , +∞) since the average of h on its period is equal to 0. To prove the lemma, we only need to justify that By integration by parts, we obtain that, for all t ≥ t 0 , t t0 g(u) h(u) du = g(t) H(t)g(t 0 ) H(t 0 ) - else.

Then for any t > 0, we have Proof. When β = 1, the results follow from direct computations because of the expression of f . Assume now that β ∈ 1 2 , 1 . For the first point, the integration by parts formula ensures that

t/ε t0 f (u) -α u 1-2β du = 2 α f (u) -α u 1-β t/ε t0 - 2 α (1 -β) t/ε t0 f (u) -α u -β du = O ε→0 (f (t/ε) -α ε β-1 ) + O ε→0 (f (t/ε) -α ) = O ε→0 (f (t/ε) -α ε β-1 ).
For the second asymptotic expansion, it follows again from an integration by parts that Lemma B.4. Let (X n ) n be a sequence of random variables with values in R 2 , and which converges in distribution to a random variable X. We assume that the distribution of X is invariant under rotations, i.e. for any orthogonal matrix R ∈ M 2 (R), the random variables X and RX have the same distribution. Then for all sequence (R n ) n of orthogonal matrices in M 2 (R), we have R n X n =⇒ n→+∞ X.

Proof. Let us denote by φ Z the characteristic function of a random variable Z. Using Theorem 5.3 p. 86 in [START_REF] Kallenberg | Foundations of Modern Probability. Probability and Its Applications[END_REF], we know that (φ Xn ) n converges to φ X uniformly on every compact subset of R 2 . The characteristic function of the random variable Y n := R n X n is given by ξ → φ Yn (ξ) = φ Xn (R n ξ).

Thus, by assumption, we have, for all ξ ∈ R 2 , φ X (R n ξ) = φ X (ξ).

It follows that, for any ξ ∈ R 2 and n ≥ 0,

|φ Yn (ξ) -φ(ξ)| = |φ Xn (R n ξ) -φ X (R n ξ)| ≤ sup z∈R 2 , z = ξ |φ Xn (z) -φ X (z)| ,
which converges to 0, as n → +∞. This ends the proof of the lemma.
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|

  cos(u)| α du.

  )h(s) cos(s) ds + cos(t) ∞ t u(s)h(s) sin(s) ds. (49)It follows from the fact that u is bounded thatu(t) = a 0 cos(t) + b 0 sin(t) + O t→+∞ ∞ t ds s (2β)∧(β+1) .

Lemma B. 1 .

 1 Let (Y t ) t≥t0 be a càdlàg process, solution to a SDE. For all n ≥ 0, define the stopping timeτ n := inf{t ≥ t 0 , Y t ≥ n}. (50)Set τ ∞ := lim n→+∞ τ n the explosion time of Y . Assume that there exist two measurable and non-negative functions φ and b such that(i) φ is non-decreasing and lim n→∞ φ(n) = +∞,(ii) b is finite-valued, (iii) and for all t ≥ t 0 , sup n≥0 E [φ(|Y t∧τn |)] ≤ b(t).

g

  ′ (u) H(u) du.Using the fact that H is bounded, that g ′ (t) = o t→+∞ (g(t)) and that ∞ t0 g(u) du = +∞, we deduce thatt t0 g ′ (u) H(u) du = o t→+∞ t t0 g(u) du .The conclusion follows from the fact that g(t) H(t)g(t 0 ) H(t 0 ) = o t→+∞ t t0 g(u) du , since we have assumed that g(t) = o t→+∞ t t0 g(u) du and that ∞ t0 g(u) du = +∞. Lemma B.3. Let f be given by (48) for β ∈ 1 2 , 1 , and pick α ∈ (1, 2]. Define k β,α := (1 + α/2) -1 if β = 1, 2 α

f

  (u) -α u 1-2β du = O ε→0 (f (t/ε) -α ε β-1 ), and t/ε t0 f (u) -α du = k β,α f t ε t/ε) -α ε -β ).

f

  (u) -α u β-1 du.Remarking that f (u) -α u β-1 = o u→+∞ (f (u) -α ), since β < 1, we deduce that t/ε t0 f (u) -α u β-1 du = o

  Lemma A.1. Pick β ∈ 1 2 , +∞ and consider a solution y to (47). Then, there exist a ∈ R and φ ∈ [0, 2π) such that y(t) = af (t) cos(t + φ) + O

			2(1-β)	else.	(48)
			t→∞	f (t)t -(2β-1)∧β
	and		
	y f ′ (t) f (t)	= -	1 2t β ,
	we obtain that h(t) = O t→+∞	(t -(2β)∧(β+1)	

′ (t) = -af (t) sin(t + φ) + O t→∞ f (t)t -(2β-1)∧β . Proof. Let us set, for t ≥ t 0 , u(t) = f (t) -1 y(t). We easily check that u satisfies u ′′ (t) + u(t) [1 + h(t)] = 0, where h(t) := f ′′ (t) f (t) + f ′ (t) f (t)t β .

Since for all t ≥ t 0
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Thus, there exist a ∈ R and φ ∈ [0, 2π) such that u(t) = a cos(t + φ) + O t→+∞ (t -(2β-1)∧β ).

This proves the asymptotic expansion of y. Differentiating (49) and using that h

Since u is bounded and f ′ (t) = O t→+∞ (f (t)t -β ), we finally obtain that

This concludes the proof of the asymptotic expansion of y ′ .

Remark A.2. Note that if β = 1, the Bessel functions of the first kind J 0 and of the second kind Y 0 form a basis of solutions. Their asymptotic expansions can be found in [24, Chap VII].

Lemma A.3. Pick β ∈ 1 2 , +∞ . There exists a basis of solutions y 1 and y 2 to (47) such that the resolvent matrix R satisfies

Moreover, its Wronskian w is given for any t ≥ t 0 by

Proof. It is well-known that the Wronskian satisfies, for all t ≥ t 0 ,

Thus, there exists w 0 ∈ R \ {0} such that, for all t ≥ t 0 , w(t) = w 0 f (t) 2 . Moreover, thanks to Lemma A.1, for i ∈ {1, 2}, there exist a i ∈ R and φ i ∈ [0, 2π) such that

As a consequence,

Up to dividing by a i , we can assume that a i = 1, and up to considering a linear combination of y 1 and y 2 , we can assume that φ 1 = 0 and φ 2 = -π 2 . Thus, we have w 0 = 1. This concludes the proof.