
HAL Id: hal-03703165
https://hal.science/hal-03703165

Submitted on 23 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-invasive I2C Hardware Trojan Attack Vector
Mohamed Amine Khelif, Jordane Lorandel, Olivier Romain

To cite this version:
Mohamed Amine Khelif, Jordane Lorandel, Olivier Romain. Non-invasive I2C Hardware Trojan At-
tack Vector. IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotech-
nology Systems (DFT 2021), Oct 2021, Athènes, Greece. pp.1-6, �10.1109/DFT52944.2021.9568347�.
�hal-03703165�

https://hal.science/hal-03703165
https://hal.archives-ouvertes.fr

Non-invasive I2C Hardware Trojan Attack Vector
Mohamed Amine Khelif1,2, Jordane Lorandel1, Olivier Romain1

1ETIS Laboratory UMR 8051, CY Cergy Paris University, ENSEA, CNRS, F-95000 Cergy, France
2ESIEE-IT, 8 rue Pierre de Coubertin, 95300 Pontoise, France

{mohamed-amine.khelif, jordane.lorandel, olivier.romain}@ensea.fr

Abstract—In smartphones, and more generally in IoT devices,
manufacturers focus their efforts on securing communications
with the outside world that are more exposed to attack while
considering communications between secure components. By
doing this, it results in internal communication buses with little
or no security against attackers. I2C is the most used internal
communication bus in IoT devices to communicate with sensors
and memories. It is also used in recent smartphones to connect
the Trusted Execution Environments (ARM TrustZone, Apple
SEP, or Google Titan M) to a dedicated EEPROM memory that
contains secret information such as encryption keys, anti-replay
counter, or the boot ROM.
In this paper, we propose a non-invasive attack through a
hardware trojan on the I2C bus, which will allow us to perform
two attack scenarios: a heart bleeding type attack which will
allow retrieving additional information at each memory read,
and a buffer overflow attack which will allow writing additional
data in the memory at each write which can result in modifying
secret information such as password or counters. These attacks
can be performed on any device using the I2C bus. In the context
of smartphones, these attacks will allow the extraction of sensitive
information stored in the secure EEPROM memory.

Keywords-Hardware attack, Hardware Trojan, Security, I2C,
smartphones, IoT.

I. INTRODUCTION

Smartphones have been massively adopted by consumers
for the last decades. However, there are still many challenges
related to security, especially for these devices containing a lot
of sensitive and personal data. In 2020, the number of smart-
phone users worldwide exceeds 3.6 billion [1], representing
more than 30% of all circulating non-IoT devices [2]. On the
other side, the number of IoT devices also grows these last
years, up to 11.7 billion in 2020 [2]. This proliferation and
the amount of personal information contained in these devices
make them a privileged attack target for hackers.
In order to protect these devices, a new standard was created
under the name of Trusted Execution Environments (TEE).
They work under a simple idea of isolating trusted security
applications from other applications into two execution envi-
ronments. Figure 1 represents TEE’s simplified architecture.

As we can see in this figure, the Rich Execution Environ-
ment which is abbreviated as REE in literature is the Normal
World. This environment has its operating system (OS), iOS,
or Android for the most popular ones, and executes client
applications. On the other side, we have the TEE which is
isolated from the REE in three different forms depending on

Shared components Dedicated components

Trusted Execution Environment Rich Execution Environment
Secure WorldNormal World

TEE OSREE OS

Communication buses

Trusted Application

Crypto

Engine

PMUMemoryCrypto

Engine

Application

RAM
ROM

Clocks
Sensors

Security

Sensors

Dedicated

memory

Fig. 1. Simplified architecture of a TEE principle.

the vendor: virtual processor, internal co-processor (inside the
SoC), or external co-processor. The TEE executes only trusted
applications and it has its own OS and dedicated components
(depending on the vendor) such as crypto-engine, security
sensors, dedicated memory, etc. . It also shares components
with the REE such as various memories, power management
unit (PMU), Clocks, Crypto-engine, etc. . All the exchanges
between the TEE and these components are performed using
communication protocols. The most used are I2C and SPI
protocols. I2C bus, in particular, is used as a data bus between
the dedicated EEPROM memory and the TEE for example in
iPhones [3].
In this paper, we study the impact of an I2C hardware trojan
attack using a new semi-invasive approach based on clock
and data signal control. The attacker will be connected to the
I2C bus and will act as an invisible malicious component that
modifies the communication in real-time. Two attacks will be
thus performed: a heartbleed attack by reading more informa-
tion from the memory than requested by the master, and a
buffer overflow by writing additional data into the memory.
These attacks are performed on a test platform composed of
an STM32 micro-controller communication with EEPROM
memory. The choice of this set-up was motivated by two main
constraints: being as close as possible to a TEE/EEPROM
communication behavior and control the transaction in order
to verify the results of the attack. In addition, STM32 is one
of the most used micro-controllers in IoT devices using the
HAL standard I2C communication library, which makes the
impact of these attacks potentially important.
This paper is organized as follows. First, section II presents978-1-6654-1609-2/21/$31.00 ©2021 IEEE

the different technologies of TEE used in smartphones and
IoT devices with a focus on Apple’s Secure Enclave security
mechanisms and state-of-the-art attacks on communication
buses. Then, section III details the I2C protocol and the
implementation of the different attack scenarios. Finally, ex-
perimental results are given in section IV before the conclusion
in section V.

II. RELATED WORKS

A. Smartphones security

In smartphones, security is managed by a Trusted Execution
Environment. TEEs are secure execution environments that
monitor the integrity and security of the system and user’s
data [4]. Among the various tasks that are assigned to them,
they mainly have to ensure a secure boot of the device
through a bootRom, ensure the confidentiality of personal
data by performing encryption and decryption, as well as
the protection of the different counters and passwords of the
smartphone.

There are three types of TEE in the market based on
different technologies [5]:

Virtual Processor: the most widely known is the ARM
TrustZone (TZ) [6], which operates by adding an additional
privilege level in addition to the classic levels (user, kernel,
and hypervisor). This new level is called Secure Monitor and
has two execution states: secure and non-secure. The ARM
TrustZone and the main system share the different controllers
and devices of the SoC. The TZ also have a dedicated
operating system called TEE-OS, a Unique ID (UID) of the
smartphone fused in the SoC, and a dedicated I2C and SPI
bus that are used to connect the TZ to a dedicated EEPROM,
to a fingerprint sensor, etc. . These shared components depend
on the smartphone architecture.

Internal Co-Processor: this technology is used by Apple
in their smartphones with the name of Secure Enclave Pro-
cessor (SEP) [7]. In iPhones [3], the SEP manages security,
protection keys (password, fingerprint, faceID, GID, UID...)
and data encryption/decryption. It uses encrypted memory and
integrates a hardware true random number generator (TRNG).
It has its own operating system, SEPOS, as well as its own
devices (crypto-engine and random number generator) and its
own hardware inputs and outputs (GPIO, UART, etc.). It also
has shared hardware as a PMU, a memory controller, a clock
generator, and the RAM. It is also connected to a dedicated
EEPROM memory through the I2C bus. Communications
between the Secure Enclave and the application processor are
limited to an interrupt triggered mailbox.

External Co-Processor: such as Google Titan M processor
which is used from 2018 in pixel 3. Titan M [8] is used as an
interposer between the SoC and the boot flash in order to verify
the boot firmware loaded. To do that, the processor has only
dedicated components such as a cryptography co-processor, a
hardware TRNG, a RAM, a ROM, a flash memory, and several
communication buses such as I2C and SPI. It also embedded
a dedicated operating system and a memory built-in self-test
to guarantee the integrity of the processor.

B. Apple iPhone’s SEP as a case of study

Apple iPhones are known to be the most secure smartphones
on the market thanks to its TEE security system Secure
Enclave. As said previously, the secure enclave processor
is an internal co-processor integrated into Apple’s devices
from Apple A7 SoC. A lot of information about about the
operation process of the SEP can be retrieved from Apple
patent [9], iOS security guide [7] [10] and other research and
reverse engineering studies [3] [11]. Figure 2 gives a simplified
overview of the interaction of the SEP with the application
processor (AP) and the other peripherals.

SoC
AP

Mailbox

SEP

TRNG

AES
Engine

Secure Enclave

M
em

or
y

P
ro

te
ct

io
n

Touch ID
Sensor

Dedicated
EEPROM

AES
EngineNVMe

I2C bus I2C bus

P
C

Ie
 b

us

Shared
components

PMGR

RAM

CPU
boot ROMC

om
m

un
ic

at
io

n
fa

br
ic

Encryption key

Data

Fig. 2. Simplified architecture of Apple’s SoC and interaction between AP
and SEP.

The Secure Enclave (SE) is physically isolated from the AP
inside the SoC and communicates through a mailbox. The SE
is based on the Secure Enclave Processor which is a 32-bit
ARMv7 processor working under a specific operating system
called SEPOS [3]. Secure Enclave also has an integrated
secure AES engine and hardware TRNG used to guarantee the
security of the SEP and generate encryption keys by deriving
them from various keys such as UID, GID (both are fused
in the SoC), and user password. It also integrates various
hardware protocols such as JTAG, UART, SPI, I2C. For JTAG
and UART they are deactivated in production smartphones in
order to mitigate the security risks. For SPI and I2C, they
are used to communicate with dedicated components outside
of the SoC such as a dedicated EEPROM or various security
sensors like touch ID and FaceID. This EEPROM is also called
anti-rollback memory and it ensures the protection of the pass-
word attempt counter and the secure boot. The Secure enclave
shares multiple components with the application processor
such as boot ROM, PMGR, and an encrypted RAM partition in
order to prevent attacks from malicious applications. Finally,
the SE protects the data stored in the non-volatile memory
(NVMe) by providing encryption keys that will be used to
encrypt the data before writing them in the memory inside.
This mechanism ensures the protection of personal information
against off-board memory reading and bus listening besides
high communication rates of the PCIe bus.

C. Attacks on communication Bus
In Trust Zones, and more generally in SoCs used in IoT

devices and smartphones, the utilization of data buses to
communicates with other chips of the device is of utmost
importance. These buses rely on commonly used protocols that
already have been the target of attacks more or less developed.
From the most used we have:

1) I2C: Inter-Integrated Circuit protocol is used in smart-
phones and in IoT devices in general, as a communication
bus between the processor/microcontroller and various sensors
and/or EEPROM memory. The main attack performed on this
bus targets the clock signal which has a critical role in a syn-
chronous protocol such as I2C. These clock glitching attacks
[12] affect the system and result in a global malfunction or a
denial of service. I2C can also be targeted by attacks that aim
to recover the data and firmware stored in an EEPROM [13]
[14].

2) SPI: Serial Peripheral Interface is also one of the most
used communication buses in smartphones and IoT devices. It
is also very similar in peripheral type usage as I2C, except that
SPI is faster and requires more space for implementation (one
additional wire per slave). The bus is also vulnerable to attacks
that aim to recover data and firmware from components [13].

3) PCIe: Peripheral Component Interconnect express is
a high-performance communication bus originally used in
computers to connect high-speed components such as GPU,
WiFi cards, or SSD to the motherboard. Nowadays, it is used
in iPhones from the 6s version and newer as an internal
bus connecting the SoC to the non-volatile memory. As
demonstrated by [15] and [16], this bus can also be targeted
by hardware attack in order to passively extract information
using a sniffer approach or actively interacting with the packets
exchanged using a Man-in-the-Middle.

4) UART: Universal Asynchronous Receiver-Transmitter
which can be an external component or integrated into the
chip which allows two components to communicate without
using a clock. This bus has many functionalities depending
on the device and that can be exploited by an attacker,
from which we denote debugging, get an unauthenticated root
shell, or even access the boot loader [13]. UART is generally
poorly protected which makes the attack not very difficult to
undertake.

5) JTAG: is a protocol developed by the Joint Test Action
Group and which is named after. The JTAG is used for testing,
programming, debugging, and validation of devices [17]. This
protocol is embedded from the most basic IoT device to the
most evolved smartphone. As with previous protocols, JTAG
is also targeted by attacks such as fault injection [18] in order
to gain privilege escalation. Considering its usage and the
attack opportunities allowed by this protocol, the manufacturer
deactivates it at the production step in order to limit the risks.
For example, in iPhones, this bus is disabled, but recently it
can be enabled by exploiting a checkM8 vulnerability [19].

6) USB: Universal Serial Bus is used as the wired
communication protocol used in smartphones for different
purposes such as interfacing/communicating with a computer

and/or recharge the device. This bus has also been targeted
by various attacks, the most known are Juice jacking attacks.
These types of attacks consist of integrating a malicious
device in a USB charging connector that will inject malware
in a smartphone [20].

Being the most used communication protocol in IoT and
non-IoT devices, the I2C bus represents a valuable source of
information for attackers. In recent smartphones, it is used
to connect the TEE to the secure EEPROM memory. This
memory store critical information such as password counter,
encryption keys, etc.

In the state of the art, researchers focus on clock glitching
the I2C clock, sniffing the communication, and randomly
modify the payload in order to generate errors [14]. With
a hardware trojan attack based on controlling both SCL and
SDA lines that we propose, we can perform more advanced
scenarios comparing to the state of the art. with our approach,
we can read or write the memory or any other device without
modifying the hardware to avoid detection, simply by probing
the lines through pull-up resistors.

III. METHODOLOGY

A. I2C protocol

The need for a universal bus that would be simple, inexpen-
sive, space-saving, and easy to implement led Phillips to create
the I2C bus in 1982 [21]. This bus allows connecting several
peripherals together with relatively low communication rates.
The classic architecture consists of a single master with multi-
ple slaves that can be sensors or memories. It is also possible
to have multi-master configurations with arbitration to control
the communication. Initially, the I2C specification defined a
maximum clock frequency of 100 kHz, later increased through
three modes: fast with 400 kHz, high speed with 3.4 MHz, and
ultra-fast 5 MHz. Although it is less efficient than the SPI bus
in terms of throughput, the I2C has the main advantage of
having a small surface requirement thanks to the fact that it is
composed of only 4 wires (VCC, GND, SDA, and SCL) for
a maximum of 128 slaves (in the 7-bit address configuration).
This feature spreads its utilization in many IoT and non-IoT
devices.
Two types of communication are possible in I2C, allowing to
write data into the slave and to read data from the slave. For
read communication, there are three main types of packets:

• Current Address Read: read-only one byte of payload
from the memory address accessed by the previous
packet.

• Sequential Read: read n bytes of payload from the mem-
ory address accessed by the previous packet.

• Random Read: this sequence is composed of two packets:
a first write packet without payload in order to update the
last memory address accessed then followed by a read
packet with n byte payload.

For write communication, there are two types of packets:
• Byte Write: write only one byte of payload size.

• Page Write: write n bytes of payload, with n is the size
of a memory page in the case of an EEPROM.

Figure 3 represents the different communication format
in I2C. Write packets includes Byte and Page write, and
read packet includes current address and sequential read. For
random read as it is a sequence composed of two packets:
write packets without payload and a read packet separated by
a restart signal, it is represented separately in the figure below.

Device
address

1-2 Bytes

Wr

A
ck

A
ck Memory

address

A
ckData

A
ck Data

A
ck Data

n Bytes Payload

S
top

S
tart

Write Packet

Device
address Rd

A
ck

N
ackData

A
ck Data

A
ck Data

n Bytes Payload

S
top

S
tart

Read Packet

Random Read sequence
Device
address

Device
address RdWr

A
ck

A
ck

A
ck Memory

address
1-2 Bytes

N
ackData

A
ck Data

A
ck Data

n Bytes Payload

S
top

S
tart

R
e

S
tart

Fig. 3. I2C communication frame types.

The communication on the I2C bus can only happen be-
tween the master and a slave device, at the initiative of the
master. It imposes a clock signal on the SCL wire by driving
the line to 0 and releasing it to 1 in order to generate the
signal. When the clock is generated the communication can
start following these steps:

Idle: the bus is not used, SDA and SCL lines are in a high
state.

Start condition (and restart or repeated start): when the
master wants to communicate with the slave after the idle state,
it generates a start condition by first driving the SDA line low,
while SCL remains high. For a restart condition, it is similar
to a start condition in driving signals, the master directly sends
another packet without stopping the communication to avoid
conflict with potential other masters.

Device address: the master sends 7 bits corresponding to
the device slave address.

Read/Write bit: the slave address is directly followed by
the R/W bit that will define the rest of the packet format.

Ack/Nack: each byte is followed by an Ack/Nack bit. For
write packets and if there is no error in the communication,
the slave will acknowledge each byte. For read packets, the
slave acknowledges the first byte (device address and R/W bit)
then the master will acknowledge every byte received from
the slave until the last byte where the master sends a negative
acknowledgment bit to stop the slave from sending data.

Memory address: this information is only available in write
packets, and depending on the type of the peripheral it can
be one byte (ex. temperature sensor) or two bytes long (ex.
EEPROM).

Payload: is the data in the packet.
Stop condition: when the communication is over, the

master generates a stop condition by releasing first the SCL
line and then the SDA line.

B. Experimental set-up

The experimental set-up is composed of an STM32 Nucleo-
F446RE kit communicating with an AT24C128 EEPROM
128kB memory from ATMEL through the I2C bus. In order to
know precisely the data contained in the memory, the STM32
initializes each page with different data using a sequence of the
page write, with a 64 bytes payload size (corresponding to one
page in this EEPROM). Then, the micro-controller starts the
communication with the memory by using a sequence of reads
and writes that we target through our attack. For verification,
we use also a Digilent Analog Discovery 2 to monitor signal
with both the scope and the protocol decoder features. The
experiment set-up is represented in Figure 4
The architecture of the attacker was implemented onto an
FPGA Zedboard platform from Digilent, and the design runs
at a clock frequency of 100MHz in the PL part.

SDA

SCL

Master
Analog Dicovery

Decoder Scope
Attacker
FPGA

Slave
EEPROM

Fig. 4. experimental set-up architecture.

C. Approach

The proposed approach is based on two phases: a sniffing
phase and an attack phase which can be one of the two
proposed scenarios.

The sniffing step is performed by the FPGA in order to
retrieve the necessary information about the system such as:

Master/Slaves addresses: this information can be found by
sniffing the first 7 bits of each packet new packet and it will
be necessary to know all slave addresses on the bus.

Number of slaves: from the previous information it will be
easy to determine the number of slaves because each one has
a unique address on the bus

Memory addressing format: to identify a random read
sequence involving the targeted slave. To do that, we need to
find in the logged communication a write packet followed by
a read packet, separated by a restart condition. The size of the
write packet will then provide information about the memory
addressing format. If the packet is two bytes long the memory
address format is one byte. If the packet is three bytes long
then the memory address is on two bytes. Two bytes address
format corresponds to a memory address which means that the
slave is a memory, in our case an EEPROM.

Sniffing the I2C communication can be performed by many
devices such as the protocol decoder of the analog discovery
2, but we choose to develop an FPGA architecture in order
to synchronize attack scenarios with particular events on the
bus. This can also be used by attackers to perform an offline
depth analysis of the recorded packets with advanced algo-
rithms in order to find sensitive information even in encrypted
communications.

In our case we decided to perform the following attacks:

1) Heartbleed attack: This attack will be used to over-
read the memory by controlling SDA and SCL. In order
to not create conflict on the bus and been stopped by an
unfortunate stop condition generated by the master, the attack
will be performed by corrupting a legitimate read packet from
the Master. The principle of this attack is to perform an
on-the-fly analysis of the first byte of each packet looking
for a read packet sent to the targeted slave. Then, from the
acknowledgment of the first byte (device address + R/W bit),
the FPGA attacker will control both SCL and SDA lines. For
SCL, in order to avoid the release of the clock when the master
has finished reading data, the FPGA attacker will generate a
synchronized clock with the original one. For the SDA line,
ack/nack bit sent by the master bit will be set to zero, forcing
the communication to continue. Then, the memory will answer
all the stored information byte by byte and page by page.

2) Buffer overflow attack: This attack will allow
overwriting a section of the memory in order to replace
security information in the memory such as encryption keys,
counters, etc. The principle of the attack needs as for the
previous one, to analyze the communication and to take
control of both the SDA and SCL lines. We first analyze the
communication looking for a write packet, and then from
the acknowledgment bit of the first byte, we generate our
synchronized clock on SCL and force SDA to zero. This will
avoid the generation of stop condition and making possible
to write data to the slave up to one page, which in the case
of our memory is 64 bytes.

In a practical approach, this I2C hardware trojan can be
inserted into an IoT device without modifying the device. In
the case of these devices, the attacker will need to locate I2C
pull-up resistors and interface directly by soldering wires on
them or using a probing machine in order to be non-invasive.

IV. RESULTS AND DISCUSSION

To demonstrate the effectiveness of the proposed attacks,
we realized the following experiments:

A. Sniffing I2C communication

For this experimentation, we decided to add another slave
(temperature sensor) in the presented set-up in order to detect
and define the specification of each device. Table I resume
the information extracted from 30 s of I2C sniffing. The first
information that we got from sniffing is the presence of two
slaves because of the two different device addresses 0x18 and
0x50 with respectively 8 bits and 16 bits memory addressing
format. This information is determined from the memory
address of the write packet in a random read sequence.
Memory addressing format gives also information about the
type of slave. For 8 bits format, the slave may be a sensor
because of the small number of registers embedded, and for 16
bits format, it probably corresponds to a memory chip because
of the need for more addressing space. These assumptions can
also be correlated to the known I2C slave address database
which lists the known devices using their address [22]. For

addresses, 0x18 only accelerometers and temperature sensors
are listed, and for 0x50 it can be a memory or a PWM driver
(not so common in IoT devices).

TABLE I
SPECIFIC METRICS EXTRACTED FROM I2C RECORDED TRAFFIC USING THE

SNIFFER.

Information from analysis Slave 1 Slave 2
Address 0x18 0x50
Memory format 8 bits 16 bits
Byte Write No Yes
Page Write Yes Yes
Current Address Read No No
Sequential Read No No
Random Read Yes Yes

We analyze also the type of packet used for each device in
order to ensure that the attacks can be performed: read packets
for heart bleeding and write packets for buffer overflow. This
architecture can also be used to sniff all the packets in order to
perform a communication analysis and data mining relayed on
multiple parameters such as the number of packets, the time
between packets, payload size, etc.

B. Heart bleeding

Heart bleeding attack aims to extract more information from
memory than asked by the master by a read request. To achieve
this goal, the attacker must control SDA and SCL. Figure 5
shows the experimental results of the attack recorded by the
analog discovery 2 protocol analyzer connected to the I2C bus.
The first graph represents the normal read request sequence
between the master and the memory, with a write packet to
update the memory address and a read packet with 4 bytes of
payload. The second graph represents the result of the attack,
which forces all ack/nack bit to zero in order to avoid the
negative acknowledgment that stops the memory. The attacker
regenerates the clock by driving SCL to zero. This attack
permitted us to extract all the data stored in memory.

When performing the preliminary tests of the attack, we
noticed that the I2C clock generated by the master is at 100
kHz but the duty cycle is not at 50%. It is 47% in the high state
and 53% in the low state, which has to be taken into account
in order to generate a correct clock for the attack. In fact,
to avoid some glitches occurring when regenerating the clock
with the FPGA, we chose to generate a clock that will have a
ratio of 43% in the high state and 57% in the low state. This
modification will make the falling edge occurring sooner than
normal in order to have a more stable SDA signal and reduce
the chances to be stopped by a potential stop condition sent by
the master. It could be also interesting to explore the degree
of resilience of the system when the high state is reduced as
low as possible, and what impact will it have on the system.

C. Buffer overflow

Figure 6 shows the experimental results of the buffer
overflow attack. This attack will overwrite a complete page
of the memory even if the attacker wants to write only one
byte. the attack is limited to one page (64 bytes) because of
the limitation of the memory that needs to temporize between

Normal

behavior

System

under attack

Start StopAck Re-Start Nack

Start of the attack

Fig. 5. Experimental results of heart bleeding attack (recorded with analog discovery 2 Logic analyzer).

Normal

behavior

System

under attack

Start StopAck

Start of the attack

Fig. 6. Experimental results of buffer overflow attack (recorded with analog discovery 2 Logic analyzer).

writing two pages. In Figure 6, the first graph represents a
normal 4 bytes payload write packet, and the second graph
is the result of the attack. In order to perform the attack, the
FPGA forces the SDA line to zero and generates the SCL clock
from the first ack bit after the memory address. This control
of SDA will corrupt the data stored in the memory and makes
it impossible a stop condition. This attack will overwrite up
to one page of the memory, depending on where the master
starts writing.

V. CONCLUSION

In this paper, we proposed a hardware trojan capable of
sniffing and attacking the I2C bus. This bus even massively
used in IoT and non-IoT devices are still poorly secured. It is
also used as a communication bus between the TEE and its
secure memory in recent security mechanisms of smartphones.
The architecture proposed proves that an attacker device
connected to the I2C bus can interact with the system by
manipulating data and clock signals in order to extract all the
data stored in the memory through a heart bleeding attack or
to overwrite up to one page of the memory through a buffer
overflow attack. These attacks could be performed without
being detected by neither the master nor the slaves. If the
memory is not encrypted, the attacker can directly access the
secrets otherwise the sniffed communication can be analyzed
in order to extract other relevant information.

In future work, the architecture will be improved to perform
a hardware man-in-the-middle attack, in order to fully control
the bus in order to analyze and modify data on the fly. We
will also study the countermeasures against our attack, such as
analyzing bus behavior by the master or through implementing
a dedicated chip capable of recognizing attacks.

REFERENCES

[1] S. O’Dea, “Number of smartphone users worldwide from 2016 to 2026,”
Online, https://bit.ly/3fp82Ag, Mars 2021, accessed: 2021-05-25.

[2] L. S. Vailshery, “Internet of things (iot) and non-iot active device connec-
tions worldwide from 2010 to 2025,” Online, https://bit.ly/2SwKVuB,
Mars 2021, accessed: 2021-05-25.

[3] T. Mandt, M. Solnik, and D. Wang, “Demystifying the secure enclave
processor,” Black Hat Las Vegas, 2016.

[4] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution en-
vironment: what it is, and what it is not,” in 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 1. IEEE, 2015, pp. 57–64.

[5] M. Peterlin, A. Adamski, and J. Guilbon, “Breaking samsung’s arm
trustzone,” Blackhat US, 2019.

[6] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[7] M. Gulati, M. J. Smith, and S.-Y. Yu, “Security enclave processor for a
system on a chip,” September 2014, uS Patent 8,832,465.

[8] R. Triggs, “Will google’s titan m make it harder for the
roming scene?” Online, https://www.androidauthority.com/
titan-m-security-chip-915888/, October 2018, accessed: 2021-05-
25.

[9] M. Gulati, M. J. Smith, and S.-Y. Yu, “Security enclave processor for
a system on a chip,” U.S. Patent US8 832 465B2, September 09, 2014.
[Online]. Available: https://patents.google.com/patent/US8832465B2/en

[10] A. P. Security, “Secure enclave,” Online, https://support.apple.com/fr-fr/
guide/security/sec59b0b31ff/web, May 2021, accessed: 2021-05-25.

[11] M. Renard, “Investigation numérique & terminaux apple ios: Acquisition
de données,” in SSTIC conference, 2014.

[12] F. Gomez-Bravo, R. J. Naharro, J. M. Garcı́a, J. G. Galán, and M. Raya,
“Hardware attacks on mobile robots: I2c clock attacking,” in Robot
2015: Second Iberian Robotics Conference. Springer, 2016, pp. 147–
159.

[13] A. Gupta, The IoT Hacker’s Handbook: A Practical Guide to Hacking
the Internet of Things. Apress, 2019.

[14] A. Jha, “Iot security - part 16 (101 - hardware attack surface: I2c),”
Online, https://bit.ly/3pGsH6C, September 2020, accessed: 2021-05-25.

[15] M. A. Khelif, J. Lorandel, O. Romain, M. Regnery, D. Baheux, and
G. Barbu, “Toward a hardware man-in-the-middle attack on pcie bus,”
Microprocessors and Microsystems, vol. 77, p. 103198, 2020.

[16] M. A. Khelif, J. Lorandel, O. Romain, M. Regnery, and D. Baheux,
“A versatile emulator of mitm for the identification of vulnerabilities of
iot devices, a case of study: smartphones,” in Proceedings of the 3rd
International Conference on Future Networks and Distributed Systems,
2019, pp. 1–6.

[17] A. Sguigna, “Mitigating jtag as an attack surface,” in 2019 IEEE
AUTOTESTCON. IEEE, 2019, pp. 1–7.

[18] F. Majéric, B. Gonzalvo, and L. Bossuet, “Jtag fault injection attack,”
IEEE Embedded Systems Letters, vol. 10, no. 3, pp. 65–68, 2017.

[19] axi0mX, “Checkm8: Open-source jailbreaking tool for many ios de-
vices,” Online, https://github.com/axi0mX/ipwndfu, November 2019,
accessed: 2021-05-25.

[20] B. Lau, Y. Jang, C. Song, T. Wang, P. H. Chung, and P. Royal, “Mactans:
Injecting malware into ios devices via malicious chargers,” Black Hat
USA, 2013.

[21] S. B. Jean-Marc Irazabal, “I2c manual” application note,” NXP Semi-
conductors, Tech. Rep., 2003.

[22] J. Romkey, “I2c address list,” Online, https://i2cdevices.org/devices/
pca9685, March 2020, accessed: 2021-05-25.

https://bit.ly/3fp82Ag
https://bit.ly/2SwKVuB
https://www.androidauthority.com/titan-m-security-chip-915888/
https://www.androidauthority.com/titan-m-security-chip-915888/
https://patents.google.com/patent/US8832465B2/en
https://support.apple.com/fr-fr/guide/security/sec59b0b31ff/web
https://support.apple.com/fr-fr/guide/security/sec59b0b31ff/web
https://bit.ly/3pGsH6C
https://github.com/axi0mX/ipwndfu
https://i2cdevices.org/devices/pca9685
https://i2cdevices.org/devices/pca9685

	Introduction
	Related Works
	Smartphones security
	Apple iPhone's SEP as a case of study
	Attacks on communication Bus
	I2C
	SPI
	PCIe
	UART
	JTAG
	USB

	Methodology
	I2C protocol
	Experimental set-up
	Approach
	Heartbleed attack
	Buffer overflow attack

	Results and discussion
	Sniffing I2C communication
	Heart bleeding
	Buffer overflow

	Conclusion
	References

