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Abstract

We consider high-order discretizations of a Cauchy problem where the evolution operator
comprises a hyperbolic part and a parabolic part with diffusion and stiff relaxation terms. We
propose a technique that makes every implicit-explicit (IMEX) time stepping scheme invariant-
domain preserving and mass conservative. Following the ideas introduced in Part I on explicit
Runge–Kutta schemes, the IMEX scheme is written in incremental form. At each stage, we
first combine a low-order and a high-order hyperbolic update using a limiting operator, then we
combine a low-order and a high-order parabolic update using another limiting operator. The
proposed technique, which is agnostic to the space discretization, allows to optimize the time
step restrictions induced by the hyperbolic sub-step. To illustrate the proposed methodology,
we derive four novel IMEX methods with optimal efficiency. All the implicit schemes are
singly diagonal. One of them is A-stable and the other three are L-stable. The novel IMEX
schemes are evaluated numerically on a stiff ODE system and a scalar nonlinear conservation
equation.

Keywords. Time integration, implicit-Explicit time integration methods, conservation equations,
hyperbolic systems, invariant-domains, high-order method.
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1 Introduction
This work is the second part of a project started in [10] whose objective is to develop Runge–Kutta
time stepping schemes that are invariant-domain preserving (IDP) and conservative. The scope of
the present work lies in the approximation of the following Cauchy problem posed on the space
domain D ⊂ Rd and the time interval J := (0, T ) with T > 0:

∂tu + f(u) + g(u,∇u) = 0 in D × J, u(0) = u0 in D, (1)

supplemented with appropriate boundary conditions. The dependent variable u takes values in
Rm with m ≥ 1. The operator f : A → Rm represents the hyperbolic part of the problem, and
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the operator g : A×Rm×d → Rm represents the parabolic part, typically associated with diffusion
and (stiff) relaxation processes. Here, A is the domain of f and A× Rm×d is the domain of g. In
the applications we have in mind, these operators have the following structure:

f(u) = ∇·f(u), g(u,∇u) = ∇·d(u,∇u) + r(u), (2)

with the hyperbolic flux f : A → Rm×d, the diffusive flux d : A × Rm×d → Rm×d, and the
relaxation operator r : A → Rm.

As it is out of the scope of this paper to discuss the existence and uniqueness of solutions to
(1), we assume that this problem admits a reasonable class of solutions. We also assume that the
set A ⊂ Rm is an invariant domain for this solution class. This means that if u0(x) ∈ A for a.e.
x in D (and up to perturbations resulting from boundary conditions which go beyond the scope
of this paper), then any admissible solution to (1) takes values in A at a.e. x in D at a.e. time
t ∈ [0, T ]. The set A may depend on u0. A simple example is the scalar convection-diffusion
equation (i.e., m = 1), in which case the interval A := [ess infx∈D u0(x), ess supx∈D u0(x)] ⊂ R is
an invariant domain. Two more elaborate examples are the compressible Euler equations and the
compressible Navier–Stokes equations. For these equations, the conserved variable u takes values
in Rd+2 and its components are the density, the momentum, and the total mechanical energy (i.e.,
m = d + 2). An invariant domain for the compressible Euler equations is the set A composed of
those states with positive density, positive internal energy, and specific entropy s(u) larger than
ess infx∈D s(u0(x)). An invariant domain for the compressible Navier–Stokes equations is the set
A composed of those states with positive density and positive internal energy. Another important
property of (1) is conservation. Letting (ri)i∈{1:m} be the components of r, we assume that there
is an index subset C ⊂ {1:m} := {1, . . . ,m} such that rp(u) = 0 for all p ∈ C. This means that the
relaxation process does not affect the dependent variables indexed in the subset C. Then, again in
the absence of perturbations due to the boundary conditions, the following conservation property
holds: ∫

D

up(t, ·) dx =

∫
D

u0,p dx, ∀t ∈ J, ∀p ∈ C. (3)

The objective of this work is to construct high-order discretizations in space and time that are
conservative and leave the set A invariant. Such methods are called invariant-domain preserving
for A, or (IDP) for short. To stay general, our starting point is a system of ordinary differential
equations (ODEs) obtained after discretization in space of the conservation equation (1). We
mainly focus in this paper on the time discretization. The time discretization methods we are
going to present can be combined with various space discretization techniques (e.g., discontinuous
and continuous finite elements, finite volumes, finite differences, etc.). We assume that the ODE
system takes the following generic form:

M∂tU = F(U) + G(U), ∀t ∈ J, U(0) = U0. (4)

The mass matrixM is induced by the space discretization (it is the Gram matrix associated with the
global shape functions of the space approximation). The dependent variable U(t) takes values in
(Rm)I where I ≥ 1 is the number of degrees of freedom (dofs) employed in the space discretization.
We set V := {1:I} := {1, . . . , I} and write U(t) := (Ui(t))i∈V . For all i ∈ V, the local state vector
Ui(t) = (Up,i(t))p∈{1:m} is viewed as an approximation of the exact solution u(t, ·) at some point
in D, say xi. The nonlinear mappings F ∈ C0(AI ; (Rm)I) and G ∈ C0(AI ; (Rm)I) result from the
space discretization of the operators −f and −g in (1), respectively, and U0 ∈ AI is an appropriate
approximation in space of the initial datum u0. We loosely refer to the mappings F and G as the
hyperbolic flux and the parabolic flux, respectively. Assuming that Ui(0) ∈ A for all i ∈ V, a
natural requirement for the space approximation is that it is invariant-domain preserving, i.e.,

U(t) ∈ AI , ∀t ∈ J. (5)
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A second requirement is that conservation holds:∑
i∈V

miUp,i(t) =
∑
i∈V

miUp,i(0), ∀t ∈ J, ∀p ∈ C. (6)

Using an implicit scheme to discretize in time the ODE system (4) is often too expensive owing
to the nonlinearities involved in the fluxes F and G, whereas using an explicit scheme results in
a severe restriction on the time step owing to stiffness induced by the parabolic flux G. A well
known remedy to this conundrum is to resort to implicit-explicit (IMEX) schemes, where the
numerical flux F is treated explicitly, and the numerical flux G is treated implicitly. The origin of
IMEX schemes can be traced back to Crouzeix [9], Varah [28]. We also refer the reader to Ascher
et al. [1, 2], Burman and Ern [5], Kennedy and Carpenter [17], Pareschi and Russo [24, 25], Zhong
[32] for other developments. Despite these advances, a crucial question that still remains open
is how to reconcile the use of an IMEX time stepping scheme with the above invariant-domain
property, while at the same time ensuring conservation. Building on [10], we propose an answer
to this question in this paper. More precisely, we introduce a technique that makes every IMEX
Runge–Kutta (RK) time stepping method invariant-domain preserving (IDP) and conservative.
The resulting schemes are called “IDP-IMEX” schemes.

This work is organized as follows. In Section 2, we outline the discrete setting in space and
time, we identify the key assumptions underlying this work, and we exemplify these notions for
the Euler IDP-IMEX scheme. In Section 3, we extend these ideas and build higher-order IDP-
IMEX schemes. We introduce a generic IDP-IMEX algorithm composed of the steps (51) to (61)
whose properties are stated in Theorem 3.3. In Section 4, we review some examples of higher-order
IMEX schemes and we derive some novel examples with optimal efficiency. Finally, in Section 5,
we present numerical illustrations on stiff ODEs and a nonlinear scalar conservation equation.

2 Preliminaries
The goal of this section is threefold: (i) introduce the discrete setting in space and time; (ii)
identify the key ideas and assumptions underlying this work; (iii) exemplify these notions for the
Euler IDP-IMEX scheme. All this material is used in Section 3 where we introduce the novel
higher-order IDP-IMEX schemes.

2.1 Time discretization and quasi-linearization
Let tn ∈ [0, T ] be the current time with n ∈ {0:N}, t0 := 0, and tN := T . Let τn be the current
time step and let tn+1 := tn+τn. To simplify the notation, we henceforth write τ instead of τn. Let
Un be the approximation of the solution to (4) at the discrete time tn. The key invariant-domain
property we want to achieve is the following:

(Un ∈ AI) =⇒ (Un+1 ∈ AI), ∀n ≥ 0. (7)

Moreover, we want to achieve this goal while maintaining conservation. The notion of conservation
will be made more precise below, but for the time being, conservation is expressed at the global
level by requiring that ∑

i∈V
miUn+1

p,i =
∑
i∈V

miUn
p,i, ∀p ∈ C. (8)

To avoid solving a nonlinear problem at each time-step when the parabolic fluxes are made
implicit, we introduce a quasi-linearization process (the way this is done is made more precise in
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§2.2 and §2.3). We consider a quasi-linearized parabolic flux Glin ∈ C0(AI×(Rm)I ; (Rm)I) that is
consistent with G, i.e.,

Glin(W; W) = G(W), ∀W ∈ AI . (9)

We assume that this flux is such that for all W ∈ AI , the problem consisting of seeking U ∈ (Rm)I

so that
MU− τGlin(W; U) = MW (10)

is well-posed and easy to solve. For instance, this problem could only involve linear solves. Notice
that this does not mean that the mapping U 7→ G(W; U) is linear; see §5.1 for an example. Owing
to the above quasi-linearization process, we reformulate (4) over the time interval Jn := [tn, tn+1]
as follows: Find U ∈ C1(Jn; (Rm)I) so that U(tn) = Un and for all t ∈ Jn,

M∂tU = F(U) + G(U)− Glin(Un; U)︸ ︷︷ ︸
explicit

+ Glin(Un; U)︸ ︷︷ ︸
implicit

. (11)

2.2 Space discretization and conservation structure
Let us now give details on the space discretization. We consider two space discretizations. The
first one is low-order accurate and referred to with the superscript L. The second one is high-
order accurate and referred to with the superscript H. The low-order scheme is based on a low-
order invertible mass matrix ML ∈ RI×I and low-order fluxes FL,GL : AI → (Rm)I . The high-
order scheme is based on a high-order invertible mass matrix MH ∈ RI×I and high-order fluxes
FH,GH : AI → (Rm)I .

We assume that MH is symmetric positive-definite with entries (mij)i,j∈V and ML is diagonal
with entries (δijmi)i,j∈V . For all i ∈ V, we introduce the subset I(i) ( V such that mij 6= 0 for all
j ∈ I(i). We call I(i) stencil at i. The notion of stencil is symmetric, i.e., j ∈ I(i) if and only if
i ∈ I(j) because mij = mji. Finally, we assume that

mi =
∑
j∈V

mij =
∑
j∈V

mji, ∀i ∈ V, (12)

In the finite element terminology, this means that the low-order mass matrix ML is the lumped
version of the high-order mass matrixMH. For every matrixM ∈ RI×I and every vector V ∈ (Rm)I

with components Vp,i, with p ∈ {1:m} and i ∈ V, the components of the vector MV ∈ (Rm)I are
defined to be (MV)p,i :=

∑
j∈V mijVp,j for all p ∈ {1:m} and i ∈ V.

The components of the low-order and high-order hyperbolic fluxes are denoted FL
i (V) ∈ Rm

and FH
i (V) ∈ Rm for all i ∈ V and all V ∈ AI . To account for the fact that the hyperbolic fluxes

are associated with a conservation principle, we assume that these fluxes admit the following
stencil-based decomposition:

FL
i (V) =

∑
j∈I(i)

FL
ij(V), FH

i (V) =
∑
j∈I(i)

FH
ij(V), ∀V ∈ AI , (13)

where FL
ij ,F

H
ij ∈ C0(AI ;Rm), and we assume the following skew-symmetry property:

FL
ij(V) = −FL

ji(V), FH
ij(V) = −FH

ji(V), ∀i ∈ V, ∀j ∈ I(i). (14)

The same structure is assumed for the parabolic fluxes, namely (for brevity, we only write the
statements for the high-order fluxes)

GH
i (V) =

∑
j∈I(i)

DH
ij(V) + RH

i (V), DH
ij(V) = −DH

ji(V), ∀i ∈ V, ∀j ∈ I(i). (15)



Invariant-domain preserving IMEX methods 5

Consistently with our assumption that rp(u) = 0 for all p ∈ C, we assume that RH
p,i(V) = 0 for all

p ∈ C and all i ∈ V.
The quasi-linearization process mentioned in (11) is performed for both the low-order and

high-order parabolic fluxes. This leads to quasi-linearized parabolic fluxes GL,lin,GH,lin ∈ C0(AI ×
(Rm)I ; (Rm)I) which we assume satisfy the following decompositions and properties:

GL,lin
i (W; V) =

∑
j∈I(i)

DL,lin
ij (W; V) + RL,lin

i (W; V), (16)

GH,lin
i (W; V) =

∑
j∈I(i)

DH,lin
ij (W; V) + RH,lin

i (W; V), (17)

DL,lin
ij (W; V) = −DL,lin

ji (W; V), DH,lin
ij (W; V) = −DH,lin

ji (W; V), (18)

RL,lin
p,i = RH,lin

p,i = 0, ∀p ∈ C, ∀i ∈ V. (19)

In conclusion, we are going to consider two versions of the ODE system (11) over the time interval
Jn = [tn, tn+1]. One corresponds to the low-order space discretization:

ML∂tUL = FL(UL)︸ ︷︷ ︸
explicit

+ GL,lin(Un; UL)︸ ︷︷ ︸
implicit

. (20)

The other one corresponds to the high-order space discretization:

MH∂tUH = FH(UH) + GH(UH)− GH,lin(Un; UH)︸ ︷︷ ︸
explicit

+ GH,lin(Un; UH)︸ ︷︷ ︸
implicit

. (21)

Consistently with our assumption on (10), we assume that for all V ∈ (Rm)I and all W ∈ AI , the
problems consisting of seeking UL,UH ∈ (Rm)I so that

MLUL − τGL,lin(W; UL) = MLV, MHUH − τGH,lin(W; UH) = MHV, (22)

are well-posed and easy to solve.

2.3 Structural IDP assumptions
To gently introduce our ideas, let us consider the well-known IMEX method consisting of combining
the forward and the backward Euler time steppings. We call this method Euler IMEX. Let us apply
the method to the low-order ODE system (20). Let Un ∈ AI . The first step is explicit and consists
of computing the hyperbolic prediction

WL,n :=
(
I + τ(ML)−1FL)(Un). (23)

The second step is implicit and consists of computing the final state UL,n+1 by solving the quasi-
linear problem (

I− τ(ML)−1GL,lin(WL,n; ·)
)
(UL,n+1) = WL,n. (24)

Altogether, we have

MLUL,n+1 = MLUn + τFL(Un) + τGL,lin(WL,n; UL,n+1). (25)

This leads us to formulate the following two key structural assumptions on the low-order fluxes:

Assumption 2.1 (Low-order fluxes). There exists τ∗ > 0 s.t. for all τ ∈ (0, τ∗],
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(i) the low-order hyperbolic flux satisfies the following property:{
V ∈ AI

}
=⇒

{ (
I + τ(ML)−1FL)(V) ∈ AI

}
. (26)

(ii) the low-order quasi-linearized parabolic flux satisfies the following property:{
V ∈ AI

}
=⇒

{ (
I− τ(ML)−1GL,lin(V; ·)

)−1
(V) ∈ AI

}
. (27)

The following result prefigures what we are aiming at. We omit the proof since it is somewhat
standard.

Lemma 2.2 (Low-order Euler IDP-IMEX scheme). Assume that Un ∈ AI and τ ∈ (0, τ∗]. Then,
the low-order Euler IMEX scheme (25) is well-defined. Moreover, it is IDP and conservative, i.e.,
UL,n+1 ∈ AI and

∑
i∈V miUL,n+1

p,i =
∑
i∈V miUn

p,i for all p ∈ C.

Remark 2.3 (Time step restriction). In many situations, the time step restriction τ ∈ (0, τ∗] is
only required for the invariant-domain property of the hyperbolic step (26). The invariant-domain
property of the parabolic step (27) can often be shown to hold for every time step τ > 0.

Of course, the above result is of little interest since what we actually want is to use a high-
order approximation in space. The Euler IMEX scheme applied to the high-order ODE system
(21) consists of seeking UH,n+1 ∈ (Rm)I so that

MHUH,n+1 = MHUn + τFH(Un) + τGH,lin(Un; UH,n+1). (28)

Similarly to (25), the method (28) is composed of two steps. The first one consists of computing the
forward Euler prediction WH,n :=

(
I+τ(MH)−1FH)(Un). The second one consists of computing the

parabolic update UH,n+1 by solving the quasi-linear problem
(
I−τ(MH)−1GH,lin(Un; ·)

)
(UH,n+1) =

WH,n. Unfortunately, even though we are using forward and backward Euler time stepping, there
is no guarantee that UH,n+1 belongs to AI , i.e., the high-order counterpart of Lemma 2.2 does not
hold true in general.

This problem is solved in the literature by using nonlinear limiting operators; see Boris and
Book [3], Harten [16], Osher and Chakravarthy [23], Zalesak [29]. Limiting is realized in the dis-
continuous Galerkin and finite volume settings by squeezing the high-order approximation towards
the piecewise constant approximation over each mesh cell (see Sanders [26, Thm. 2.1], Coquel and
LeFloch [7, Thm .4.3], Liu and Osher [21, Thm. 1], and Zhang and Shu [30, Thm. 2.5]). A well-
known limiting method for scalar conservation equations is the so-called flux-corrected transport
(FCT) technique of Boris and Book [3] and Zalesak [29]. The reader is also referred to Kuzmin
and Turek [19] and Kuzmin et al. [20] for other extensions on this method in the context of finite
elements. When the bounds to be enforced are non-affine (as is often the case for hyperbolic sys-
tems), one has to use nonlinear methods like in, e.g., [26, Lem. 3.3], [7, Thm .4.3], [21, Thm. 2], or
Zhang and Shu [31, Lem. 2.4], or other nonlinear variants like convex limiting (see, e.g., Guermond
et al. [12, 13]). The key idea common to all the above techniques is the decomposition of the flux
over the stencils in skew-symmetric components as in (13), (14), and (15).

In the present work, we are going to consider two limiters: one to compute the hyperbolic
prediction and another to compute the parabolic update. We now introduce the corresponding
notation. Let L be the collection of the sparse symmetric matrices with coefficients in [0, 1] and
with the sparsity pattern induced by the stencils (I(i))i∈V . We also let M be the collection of
the skew-symmetric matrices in (Rm)I×I with the block-sparsity pattern induced by the stencils
(I(i))i∈V . Finally, we define B := {z := (z1, . . . ,zm) ∈ Rm | zp = 0,∀p ∈ C}.



Invariant-domain preserving IMEX methods 7

Definition 2.4 (Conservative hyperbolic limiter). Let
(
Vi + τ

mi

∑
j∈I(i) Aij

)
i∈V be an hyperbolic

prediction, with V := (Vi)i∈V ∈ AI and A := (Aij)i∈V,j∈I(i) ∈M. We call conservative hyperbolic
limiter any operator `hyp : AI×M 3 (V,A) 7→ (`ij)i∈V,j∈I(i) ∈ L s.t. the following holds:

Vi +
τ

mi

∑
j∈I(i)

`ijAij ∈ A, ∀i ∈ V. (29)

For brevity, the state (Vi +m−1i τ
∑
j∈I(i) `ijAij)i∈V ∈ AI is denoted `̀̀hyp(V,A).

Definition 2.5 (Conservative parabolic limiter). Let
(
Vi + τ

mi

∑
j∈I(i) Aij + τ

mi
Bi
)
i∈V be a

parabolic update with V := (Vi)i∈V ∈ AI , A := (Aij)i∈V,j∈I(i) ∈ M, and B := (Bi)i∈V ∈ BI . We
call conservative parabolic limiter any operator `par : AI×M×BI3(V,A,B) 7→

(
(`aij)i∈V,j∈I(i), (`

b
i )i∈V

)
∈

L×[0, 1]I s.t. the following holds:

Vi +
τ

mi

∑
j∈I(i)

`aijAij +
τ

mi
`biBi ∈ A, ∀i ∈ V. (30)

For brevity, the state Vi + τ
mi

∑
j∈I(i) `

a
ijAij + τ

mi
`biBi is denoted `̀̀par(V,A,B).

The existence of limiters is guaranteed since the trivial limiters `̀̀hyp(V,A) = V (i.e., `ij = 0 for
all i ∈ V and all j ∈ I(i)) and `̀̀par(V,A,B) = V (i.e., `aij = `bi = 0 for all i ∈ V and all j ∈ I(i))
are always admissible because V ∈ AI . Of course, the trivial limiters are inefficient. The goal of
limiters is to construct the limiting coefficients `ij , `aij and `bi as close to 1 as possible. Regardless
of the values taken by the limiters, an important property of the limiters is conservativity.

Lemma 2.6 (Conservation). For all (V,A,B) ∈ AI×M×BI , all p ∈ C, we have∑
i∈V

mi`̀̀
hyp(V,A)p,i =

∑
i∈V

miVp,i,
∑
i∈V

mi`̀̀
par(V,A,B)p,i =

∑
i∈V

miVp,i. (31)

Proof. For the parabolic limiter, we have
∑
i∈V mi`̀̀

par(V,A,B)p,i =
∑
i∈V miVi+τ

∑
i∈V

∑
j∈I(i) `

a
ijAij

for all p ∈ C because B ∈ BI . But the symmetry property `aij = `aji and the skew-symmetry prop-
erty Aij = −Aji imply that

∑
i∈V

∑
j∈I(i) `

a
ijAij = 0, whence the assertion. The proof for the

hyperbolic limiter is similar.

2.4 Euler IDP-IMEX scheme
All the ingredients are now in place to make the Euler IMEX scheme invariant-domain preserving
with high-order space discretization. Given Un ∈ AI , the scheme is decomposed into the following
four steps:

Un (1)−→ (WL,n+1,WH,n+1)
(2)−→︸ ︷︷ ︸

hyperbolic step

Wn+1 (3)−→ (UL,n+1,UH,n+1)
(4)−→︸ ︷︷ ︸

parabolic step

Un+1. (32)

Let us now give the details of the four steps. We essentially follow Zalesak’s limiting strategy [29,
Eq. (4)] for both the hyperbolic and the parabolic steps.
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Hyperbolic steps (1) and (2)

Step (1) consists of computing the low-order and high-order hyperbolic updates

MLWL,n+1 := MLUn + τFL(Un), (33)

MHWH,n+1 := MHUn + τFH(Un). (34)

In Step (2), we apply the hyperbolic limiting operator. Subtracting (33) from (34) and using (13)
and (14), elementary manipulations show that for all i ∈ V,

WH,n+1
i = WL,n+1

i +
τ

mi

∑
j∈I(i)

Anij , (35)

with

Anij := FH
ij(U

n)− FL
ij(U

n) +
miδij −mij

τ
(WH,n+1

j −Un
j −WH,n+1

i + Un
i ). (36)

Notice that An is indeed skew-symmetric. Then using Definition 2.4, the conservative IDP hyper-
bolic high-order update is obtained by setting

Wn+1 := `̀̀hyp(WL,n+1,An). (37)

Parabolic steps (3) and (4)

Step (3) consists of computing the low-order and high-order parabolic updates by solving

MLUL,n+1 − τGL,lin(Wn+1; UL,n+1) := MLWn+1, (38)

MHUH,n+1 − τGH,lin(Un; UH,n+1) := MHWn+1. (39)

The quasi-linearization in (38) is based on Wn+1 to invoke Assumption (27). The quasi-linearization
in (39) is based on Un to be consistent with the higher-order case to be explained in the next sec-
tion (see also Remark 3.1). In Step (4), we apply the parabolic limiting operator. Subtracting (38)
from (39) and using (16), (17), and (18), elementary manipulations show that for all i ∈ V,

UH,n+1
i = UL,n+1

i +
τ

mi

∑
j∈I(i)

Anij +
τ

mi
Bni , (40)

with

Anij := DH,lin
ij (Un; UH,n+1)−DL,lin

ij (Wn+1; UL,n+1)

+ τ−1(miδij −mij)(UH,n+1
j −Wn+1

j −UH,n+1
i + Wn+1

i ), (41)

Bni := RH,lin
i (Un; UH,n+1)− RL,lin

i (Wn+1; UL,n+1). (42)

Notice that An is indeed skew-symmetric and Bn ∈ BI . Then using Definition 2.5, the conservative
IDP parabolic high-order update is obtained by setting

Un+1 := `̀̀par(UL,n+1,An,Bn). (43)



Invariant-domain preserving IMEX methods 9

Conclusion

The main result for the above construction is the following.

Lemma 2.7 (High-order Euler IDP-IMEX scheme). Let Assumption 2.1 hold and assume τ ∈
(0, τ∗]. Assume that the limiters match Definitions 2.4-2.5. Let Un ∈ AI . Then, the above Euler
IMEX schemes (33)–(43) satisfies the following properties:

(i) It is well defined;

(ii) It is IDP, i.e., it satisfies (7);

(iii) It is conservative, i.e., it satisfies (8).

Proof. (1) Let us first prove the assertions (i) and (ii). Since Un ∈ AI , invoking Assumption 2.1(i)
gives WL,n+1 ∈ AI . The definition of the hyperbolic limiter then implies that Wn+1 ∈ AI .
Invoking Assumption 2.1(ii) then shows that UL,n+1 is well-defined and UL,n+1 ∈ AI . Finally, the
definition of the parabolic limiter implies that Un+1 ∈ AI .
(2) Conservativity follows from the following identities for all p ∈ C:∑

i∈V
miUn+1

p,i =
∑
i∈V

miUL,n+1
p,i =

∑
i∈V

miWn+1
p,i =

∑
i∈V

miWL,n+1
p,i =

∑
i∈V

miUn
p,i,

where the first and third equalities follow from Lemma 2.6, whereas the second and fourth equalities
follow from the skew-symmetry assumption on the low-order fluxes.

3 High-order IDP-IMEX schemes
In this section, we extend the construction described in §2.4 to any IMEX scheme combining an
explicit Runge–Kutta (ERK) scheme with a diagonally implicit RK scheme whose first stage is
fully explicit (EDIRK). We assume that both schemes consist of s stages, s ≥ 2. The main original
ideas of this paper are in this section.

3.1 Butcher tableaux
The ERK and EDIRK schemes are described by their respective Butcher tableau which we assume
to have the following form:

0 0
c2 ae2,1 0
c3 ae3,1 ae3,2 0
...

...
. . . . . . . . .

cs aes,1 aes,2 · · · aes,s−1 0

be1 be2 · · · bes−1 bes

0 0
c2 ai2,1 ai2,2
c3 ai3,1 ai3,2 ai3,3
...

...
. . . . . . . . .

cs ais,1 ais,2 · · · ais,s−1 ais,s
bi1 bi2 · · · bis−1 bis

(44)

Notice that ael,k := 0 for all k ≥ l, ail,k := 0 for all k > l. Here, the superscript e refers to the ERK
scheme and the superscript i refers to the EDIRK scheme. Recall that the coefficients cj define the
intermediate time steps tn,j := tn+cjτ . Notice that both schemes share the same set of coefficients
(cj)j∈{1:s}. For convenience, we set cs+1 := 1. We assume that c1 = 0 and cj ≥ 0 for all j ∈ {2:s}.
To simplify some expressions, we set aes+1,j := bej and ais+1,j := bij for all j ∈ {1:s}. Whenever
aii,1 = 0 for all i ∈ {1:s+ 1}, the EDIRK scheme is called zero-padded. If all the diagonal entries
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aii,i are equal (except the first one which is zero), we speak of singly diagonal EDIRK scheme
(ESDIRK).

We are going to assume that∑
l∈{1:j}

aej,l =
∑

l∈{1:j}

aij,l = cj , ∀j ∈ {1:s}. (45)

This is one of Butcher’s simplifying assumptions for each RK scheme. This assumption implies
that ae1,1 = ai1,1 = 0. Moreover, since consistency requires that

∑
j∈{1:s} b

e
j =

∑
j∈{1:s} b

i
j = 1, the

identity (45) also holds true for j = s+ 1. Finally, we use the convention that ais+1,s+1 := 0.

3.2 High-order IMEX scheme in incremental form
Following the ideas developed in [10] for ERK schemes, we write the IMEX scheme in incremental
form. To this purpose, for all l ∈ {2:s+ 1}, we define the stage index l′(l) to be the largest index
in {1:l− 1} so that cl− cl′(l) is the minimal value of cl− ck for all k ∈ {1:l− 1} so that cl− ck ≥ 0:

l′(l) := min{k ∈ {1:l − 1} | cl − ck ≥ 0}, ∀l ∈ {2:s+ 1}. (46)

Owing to the assumption cl ≥ 0 = c1 for all l ∈ {2:s+1}, we infer that 1 ∈ {k ∈ {1:l−1} | cl−ck ≥
0}, which means that the set {k ∈ {1:l − 1} | cl − ck ≥ 0} is nonempty and the above definition
makes sense. The definition of l′(l) remains meaningful for so-called confluent RK methods for
which several cl’s take the same value. If the sequence (cl)l∈{1:s} is nondecreasing, then l′(l) = l−1
for all l ∈ {2:s+ 1}. The reason for looking for the smallest difference cl − cl′(l) is to minimize the
CFL restriction on the time step (see Assumption 2.1(i)). For further reference, we define

∆cmax := max
2≤l≤s+1

(
cl − cl′(l)

)
. (47)

Notice that ∆cmax ≥ 1
s and ∆cmax = 1

s whenever all the stages of the ERK method are equi-
distributed, i.e., cl = l−1

s , l ∈ {1:s + 1}. In the rest of this paper, we simply write l′ instead of
l′(l) to simplify the notation.

We can now approximate in time the high-order ODE system (21) by using the IMEX method
defined by the two Butcher tableaux in (44). We first set Un,1 := Un. Then, for all l ∈ {2:s+ 1},
the l-th stage of the IMEX scheme consists of computing the following high-order update:

MHUn,l := MHUn,l′ + τ
∑

k∈{1:l−1}

(ael,k − ael′,k)
(
FH(Un,k) + GH(Un,k)− GH,lin(Un; Un,k)

)
+ τail,lG

H,lin(Un; Un,l) + τ
∑

k∈{1:l−1}

(ail,k − ail′,k)GH,lin(Un; Un,k).

This incremental form of the IMEX scheme is obtained by subtracting the equation defining the
IMEX update at stage l′ from the equation defining the update at stage l. We decompose the
above problem into one hyperbolic prediction followed by one parabolic update as follows:

MHWn,l := MHUn,l′ + τ
∑

k∈{1:l−1}

(ael,k − ael′,k)FH(Un,k), (48)

MHUn,l − τail,lG
H,lin(Un; Un,l) := MHWn,l + τ

∑
k∈{1:l−1}

(ail,k − ail′,k)GH,lin(Un; Un,k)

+ τ
∑

k∈{1:l−1}

(ael,k − ael′,k)
(
GH(Un,k)− GH,lin(Un; Un,k)

)
. (49)
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Notice that, following (11), the quasi-linearization process uses the initial state Un at all stages.
We now explain how to make the method (48)-(49) IDP.

3.3 IDP-IMEX scheme
We proceed as in §2.4 to make the scheme (48)-(49) invariant-domain preserving. Given Un ∈ AI ,
we set Un,1 := Un and we decompose each stage l ∈ {2:s+ 1} into the following four steps:

Un,l′ (1)−→ (WL,l,WH,l)
(2)−→︸ ︷︷ ︸

hyperbolic step (48)

Wn,l (3)−→ (UL,l,UH,l)
(4)−→︸ ︷︷ ︸

parabolic step (49)

Un,l. (50)

Hyperbolic steps (1) and (2)

The IDP realization of the hyperbolic update (48) is done as in [10]. One first computes the
low-order and high-order hyperbolic updates defined by

MLWL,l := MLUn,l′ + τ(cl − cl′)FL(Un,l′), (51)

MHWH,l := MHUn,l′ + τ
∑

k∈{1:l−1}

(ael,k − ael′,k)FH(Un,k). (52)

By proceeding as in (35)-(36), we have

WH,l
i = WL,l

i +
τ

mi

∑
j∈I(i)

An,lij , ∀i ∈ V, (53)

with An,lij :=
∑

k∈{1:l−1}

(ael,k − ael′,k)FH
ij(U

n,k)− (cl − cl′)FL
ij(U

n,l′) (54)

− τ−1(mij −miδij)(WH,l
j −Un,l′

j −WH,l
i + Un,l′

i ).

Notice that An,l is skew-symmetric in compliance with Definition 2.4. Using the hyperbolic limiter,
we then set

Wn,l := `̀̀hyp(WL,l,An,l). (55)

Parabolic steps (3) and (4)

We now compute the low-order and high-order parabolic updates defined by solving the following
two problems:

MLUL,l − τ(cl − cl′)GL,lin(Wn,l; UL,l) := MLWn,l, (56)

MHUH,l − τail,lG
H,lin(Un; UH,l) := MHWn,l (57)

+
∑

k∈{1:l−1}

τ(ail,k − ail′,k)GH,lin(Un; Un,k)

+
∑

k∈{1:l−1}

τ(ael,k − ael′,k)
(
GH(Un,k)− GH,lin(Un; Un,k)

)
.

The update Un,l is obtained by employing the conservative parabolic limiter and by proceeding as
for the Euler IMEX scheme. Subtracting (56) from (57) yields

UH,l
i = UL,l

i +
τ

mi

∑
j∈I(i)

An,lij +
τ

mi
Bn,li , ∀i ∈ V, (58)
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with An,lij :=
∑

k∈{1:l−1}

(ael,k − ael′,k)
(
DH
ij(U

n,k)−DH,lin
ij (Un; Un,k)

)
− (cl − cl′)DL,lin

ij (Wn,l; UL,l) +
∑

k∈{1:l}

(ail,k − ail′,k)DH,lin
ij (Un; UH,l) (59)

− τ−1(mij −miδij)
(
UH,l
j −Wn,l

j −UH,l
i + Wn,l

i

)
,

and Bn,li :=
∑

k∈{1:l−1}

(ael,k − ael′,k)
(
RH
i (Un,k)− RH,lin

i (Un; Un,k)
)

− (cl − cl′)RL,lin
i (Wn,l; UL,l) +

∑
k∈{1:l}

(ail,k − ail′,k)RH,lin
i (Un; UH,l). (60)

Notice that An,l is skew-symmetric and Bn,l ∈ BI , in compliance with Definition 2.5. Using the
parabolic limiter, we finally set

Un,l := `̀̀par(UL,l,An,l,Bn,l). (61)

At the end of the loop, the final update is obtained by setting Un+1 := Un,s+1.

Remark 3.1 (Quasi-linearization). We observe that the high-order update (21) involves a quasi-
linearization based on Un. It is essential that the quasi-linearization for the high-order update be
the same for all the stages of the IMEX scheme to preserve the high-order accuracy in time of the
method. But, the quasi-linearization for the low-order update at each stage l ∈ {1:s + 1} is based
on Wn,l; this allows us to invoke the invariant-domain property stated in Assumption (27).

Remark 3.2 (Complexity). The low-order update (56) requires solving a quasi-linear system for
all l ∈ {2:s+1}. The high-order update (57) requires solving a quasi-linear system for all l ∈ {2:s}
and amounts to an explicit update for l = s + 1 because ais+1,s+1 = 0. Thus, the above method
requires solving (2s− 1) quasi-linear systems over each time interval.

Conclusion
The main result motivating the construction introduced above is the following assertion.

theorem 3.3 (s-stage IDP-IMEX). Let Assumption 2.1 hold and let

τ ∈
(

1,
τ∗

∆cmax

]
. (62)

Assume that the limiters `̀̀hyp and `̀̀par match Definitions 2.4-2.5. Let Un ∈ AI . Consider the
s-stage IMEX scheme composed of the steps (51)–(61) for l ∈ {2:s+ 1}. This scheme satisfies the
following properties:

(i) It is well defined;

(ii) It is IDP, i.e., it satisfies (7);

(iii) It is conservative, i.e., it satisfies (8).

Proof. Assume (62) and Un ∈ AI . We are going to show by induction that all the intermediate
updates (Un,l)l∈{1:s+1} are well defined and are in AI . The definition Un,1 := Un implies that the
assumption holds true for l = 1. Let now l ∈ {2:s+ 1}. We make the following observations: The
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low-order hyperbolic update (51) has the same structure as (33); the high-order hyperbolic update
(53)-(54) has the same structure as (35)-(36); the low-order parabolic update (56) has the same
structure as (38); the high-order parabolic update (58)–(61) has the same structure as (40)–(43).
Hence we can apply Lemma 2.7 to the scheme (51)–(61) provided the effective time step (cl− cl′)τ
used in the low-order hyperbolic and parabolic stages (51) and (56) is in the interval (0, τ∗]. But
this is the case owing to the assumption (62). Then Lemma 2.7 implies that Un,l is well defined
and is in AI . This establishes (i) and (ii). Notice that Lemma 2.7 also asserts that∑

i∈V
miUn,l

p,i =
∑
i∈V

miUn,l′

p,i , ∀p ∈ C.

An induction argument readily gives
∑
i∈V miUn,l

p,i =
∑
i∈V miUn

p,i for all l ∈ {1:s + 1}, and the
conservation property (8) follows from Un+1 := Un,s+1. This proves (iii).

Following Shu and Osher [27] (see also [10, Def. 2.2]), the quantity

ceff :=
1

s∆cmax
, (63)

is called efficiency ratio of the s-stage IMEX scheme. Recall that ∆cmax is defined in (47). By
construction, we have ceff ≤ 1. Theorem 3.3 shows that the IMEX scheme is IDP for all τ ∈
(0, ceffsτ

∗]. Hence it desirable to have an efficiency ratio as large as possible for computational
efficiency. In particular, the largest time allowed is s×τ∗ when ceff = 1. The optimal value ceff = 1
is attained when the coefficients cj are equi-distributed, i.e., cj := j−1

s for all j ∈ {1:s}.

4 Examples of IMEX schemes
In this section, we review some examples of IMEX schemes and introduce some novel schemes. We
only consider schemes with p-order accuracy where p ∈ {2, 3, 4}. Recall that the IMEX schemes
under consideration combine an ERK scheme and an EDIRK scheme. Both schemes consist of
s ≥ p stages and are described by the Butcher tableaux introduced in (44). In what follows, we use
the terminology IMEX(s, p; ceff) for an IMEX scheme with s stages, order p, and efficiency ratio
ceff. Four new schemes with optimal efficiency and the following characteristics are introduced in
this section:
(1) IMEX(3, 3; 1), singly diagonal, A-stable implicit part, (81);
(2) IMEX(4, 3; 1), singly diagonal, L-stable implicit part, (82);
(3) IMEX(5, 4; 1), singly diagonal, L-stable implicit part, (83);
(4) IMEX(6, 4; 1), singly diagonal, L-stable implicit part, (84).

4.1 Main properties of IMEX schemes
Three important notions for IMEX schemes are the consistency order, the stability of the implicit
scheme, and the efficiency ratio. We now briefly discuss these three properties.

For simplicity, we focus on IMEX schemes for which we have bei = bii =: bi for all i ∈ {1:s}. We
denote by B the row vector in Rs having components (bi)i∈{1:s}. We denote by C the column vector
in Rs having components (cj)j∈{1:s}. We also use the notation Cp, p ≥ 0, for the column vector in
Rs having components (cpj )j∈{1:s}. To be coherent with the literature we set U := C0 = (1, . . . , 1)T

and use the symbol C instead of C1. We denote by B�C the row vector in Rs having components
(bjcj)j∈{1:s}. We denote by Ae (resp., Ai) the square matrix of order s with entries (aei,j)i,j∈{1:s}
(resp., (aii,j)i,j∈{1:s}). Notice that Ae is strictly lower triangular, whereas Ai is lower triangular.
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We adopt the following terminology often used in the literature. The identity matrix of order s is
denoted Is.

Consistency order

Recall that necessary consistency conditions for the explicit and the implicit methods to be sepa-
rately of order p are

BAr−1Cq−1 =
(q − 1)!

(q − 1 + r)!
, ∀r ∈ {1:p}, q ∈ {1:p− r + 1}. (64)

These conditions are sufficient for p ≤ 2. They are also sufficient for all p ≥ 2 if the ODE
systems are autonomous and linear. Additional nonlinear conditions must be enforced for nonlinear
autonomous systems when p ≥ 2. Coupling conditions must be added for IMEX schemes to be of
order p ≥ 2.

The consistency properties of IMEX methods are reviewed in Pareschi and Russo [25, §2.1]
and Kennedy and Carpenter [18, §2.2]. The analysis therein is based on the following simplifying
assumption (see (45)), which we systematically enforce:

AeU = C, AiU = C. (65)

The (linear order) conditions to achieve second-order are

BU = 1, BC = 1
2 , (66)

while the conditions BAeU = BAiU = 1
2 follow from (65) and (66).

The conditions to achieve third-order accuracy are (65)-(66) together with the following (linear
order) conditions

BC2 = 1
3 , BAeC = BAiC = 1

6 , (67)

while the conditions B(Ae)2U = B(Ai)2U = 1
6 follow from (65) and (67).

The conditions to achieve fourth-order accuracy are (65), (66), (67), together with the (linear
order) conditions

BC3 = 1
4 , BAeC2 = BAiC2 = 1

12 , B(Ae)2C = B(Ai)2C = 1
24 , (68)

the (nonlinear order) condition

(B�C)AeC = (B�C)AiC = 1
8 , (69)

and the coupling condition
BAeAiC = BAiAeC = 1

24 . (70)

The conditions B(Ae)3U = B(Ai)3U = 1
24 follow from (65) and (68).

Finally, we are also going to make use of the fifth-order linear order conditions for a six-stage,
fourth-order method

BC4 = 1
5 , BAeC3 = BAiC3 = 1

20 ,

B(Ae)2C2 = B(Ai)2C2 = 1
60 , B(Ae)3C = B(Ai)3C = 1

120 .
(71)

The conditions B(Ae)4U = B(Ai)4U = 1
120 follow from (65) and (71).
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Stability

The amplification function associated with a DIRK scheme is

R(z) := 1 + zB(Is − zAi)−1U, z ∈ C. (72)

Recall that the RK scheme is said to be A-stable if |R(z)| ≤ 1 for all z ∈ C s.t. <(z) ≤ 0 (see Hairer
and Wanner [15, Def. IV.3.3]). The scheme is said to be L-stable if it is A-stable and R(t)→ 0 as
t → −∞ (see [15, Def. IV.3.7]). For DIRK schemes, Ai is invertible if all the diagonal entries of
Ai are nonzero. In this case, L-stability amounts to B(Ai)−1U = 1. However, for EDIRK schemes,
the first diagonal entry of Ai is zero. In this case, one considers the block decompositions

Ai =

(
0 0

α Ã

)
, B = (β, B̃), (73)

with α ∈ Rs−1 (column vector), Ã ∈ Rs−1,s−1, β ∈ R, and B̃ ∈ Rs−1 (row vector). Then, the
amplification function defined in (72) can be rewritten as

R(z) = 1 + zβ + zB̃(Is−1 − zÃ)−1(Ũ + zα), (74)

where Ũ ∈ Rs−1 is the column vector having all entries equal to one. Assuming that Ã is invertible,
one readily verifies that the EDIRK scheme is L-stable if it is A-stable and if the following holds:

β = B̃Ã−1α, B̃Ã−1Ũ + B̃Ã−2α = 1. (75)

Notice that the first condition in (75) implies that limt→−∞R(t) = 1− B̃Ã−1Ũ − B̃Ã−2α, and the
second condition then implies that limt→−∞R(t) = 0.

4.2 Second-order IMEX schemes
A first possibility to obtain a two-stage, second-order IMEX method consists of combining Heun’s
second-order scheme with the Crank–Nicolson (A-stable) scheme. The Butcher tableaux are

0 0
1 1 0

1 1
2

1
2

0 0
1 1

2
1
2

1 1
2

1
2

(76)

We have l′(l) = l − 1 for all l ∈ {2:3}, and the efficiency ratio is ceff = 1
2 . We call this method

IMEX(2, 2; 1
2 ).

A second possibility consists of combining the explicit and implicit (A-stable) midpoint rules.
The corresponding Butcher tableaux are

0 0
1
2

1
2 0

1 0 1

0 0
1
2 0 1

2

1 0 1

(77)

We have l′(l) = l−1 for all l ∈ {2:3}, and in this case the efficiency ratio reaches the optimal value
ceff = 1. We call this method IMEX(2, 2; 1). The amplification function is R(z) = 2+z

2−z for the
Crank–Nicolson scheme and the midpoint rule. It is remarkable that the amplification function
is the same for both schemes. However, the efficiency of the Crank–Nicolson scheme is only 1

2 ,
whereas that of the midpoint rule is 1.
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A third possibility (see Ascher et al. [2, Sec. 2.5]) is to consider a three-stage, second-order
scheme in which the implicit scheme is an L-stable, zero-padded, two-stage ESDIRK scheme. The
Butcher tableaux are

0 0
γ γ 0
1 δ 1− δ 0

1 0 1− γ γ

0 0
γ 0 γ
1 0 1− γ γ

1 0 1− γ γ

(78)

with γ := 1 − 1√
2
≈ 0.29289 and δ is an adjustable parameter for which the value δ = − 2

3

√
2

is recommended. We have l′(l) = l − 1 for all l ∈ {2:4}, but the efficiency ratio is only ceff =
1
3 (1− γ) ≈ 0.24. We call this method IMEX(3, 2; 0.24).

Remark 4.1 (Strang’s splitting). Strang’s splitting can be rewritten as an IMEX scheme. Consider
for instance that the explicit (resp., implicit) midpoint rule is used for the explicit (resp., implicit)
steps. One can verify that the whole process can be rewritten as a five-stage IMEX scheme with
the following Butcher tableaux

0 0
1
4

1
4 0

1
2 0 1

2 0
1
2 0 1

2 0 0
3
4 0 1

2 0 1
4 0

1 0 1
2 0 0 1

2

0 0
1
4 0 0
1
2 0 0 1

2
1
2 0 0 1 0
3
4 0 0 1 0 0

1 0 0 1 0 0

As expected, there is only one implicit substep (the third one). We have l′(l) = (1, 2, 3, 4, 5) for
l ∈ {2:6} with maxl∈{2:6}(cl − cl′) = 1

4 . Notice that the fourth substep does not involve extra
flux computations with respect to the third substep. Hence, the efficiency ratio is ceff = 4s̃−1 with
s̃ = 4 (rather than ceff = 4s−1 with s = 5), i.e., the method has optimal efficiency. A variant of
this method is implemented in [14] to solve the compressible Navier-Stokes equations (the method
SPPRK(3, 3) is used therein instead of the midpoint rule though).

4.3 Third-order IMEX schemes
In this section, we consider third-order IMEX schemes composed of three or four stages. Three-
stage schemes in which the implicit scheme is A-stable are available in the literature, but none
of these methods has optimal efficiency. We derive here a three-stage IMEX scheme achieving
optimality and whose implicit tableau is A-stable. We also construct a four-stage scheme with
optimal efficiency whose implicit tableau is L-stable.

4.3.1 Three-stage schemes

A first possibility to obtain a three-stage, third-order IMEX method consists of using the two-stage,
third-order, zero-padded ESDIRK scheme (Crouzeix [8], Nørsett [22]) for the implicit scheme and
combining it with the three-stage, third-order ERK scheme sharing the same coefficients cj and
bj . The corresponding Butcher tableaux are (see Ascher et al. [2, Sec. 2.4])

0 0
γ γ 0

1− γ γ − 1 2− 2γ 0

1 0 1
2

1
2

0 0
γ 0 γ

1− γ 0 1− 2γ γ

1 0 1
2

1
2

(79)
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with γ := 1
2 + 1

2
√
3
≈ 0.78867 (i.e., γ2 = γ − 1

6 ). The amplification function is

R(z) =
1 + (1− 2γ)z + ( 1

3 − γ)z2

(1− γz)2
. (80)

The zero-padded ESDIRK scheme is A-stable, but not L-stable because we only have limt→−∞R(t) =
1−
√

3 ≈ −0.73205. Finally, we observe that the values for l′ are (1, 1, 2), and the efficiency ratio
is only ceff = 1

3γ ≈ 0.26. We call this method IMEX(3, 3; 0.26).
We now propose a three-stage, third-order IMEX method with optimal efficiency. We call this

method IMEX(3, 3; 1). We use the third-order Heun method for the ERK part, and we design the
corresponding three-stage, third-order EDIRK scheme. To this purpose, we first request that the
EDIRK scheme has the same set of coefficients cj and bj as Heun’s method, so that there remains
to determine the matrix Ai. Since this matrix is lower triangular, of order three, and ai1,1 = 0,
this leaves five entries to be determined. Four equations can be enforced: two from Butcher’s
simplifying assumption (65) (there are two equations corresponding to the rows i ∈ {2, 3} in (65)
since the row corresponding to i = 1 is trivial), one is the (linear order) condition BAiC = 1

6 stated
in (67) (the remaining linear order conditions are already satisfied), and one is the first stability
condition in (75). One can show that it is not possible to enforce the second equality in (75)
(there would be no solution). The fifth condition we use to close the system consists of minimizing
limt→−∞R(t). Solving this problem leads to an A-stable method with limt→−∞R(t) = 1 −

√
3.

Incidentally, the implicit scheme turns out to be singly diagonal, although this property has not
been enforced explicitly. The Butcher arrays of the ERK and ESDIRK scheme are as follows:

0 0
1
3

1
3 0

2
3 0 2

3 0

1 1
4 0 3

4

0 0
1
3

1
3 − γ γ

2
3 γ 2

3 − 2γ γ

1 1
4 0 3

4

(81)

with (again) γ := 1
2 + 1

2
√
3
≈ 0.78867. We have l′(l) = l − 1 for all l ∈ {2:4}, and the efficiency

ratio reaches the optimal value ceff = 1. Quite remarkably, the amplification function for the above
ESDIRK scheme is still given by (80). Hence, the amplification functions of the methods described
by the Butcher tableaux (79) and (81) are identical, but the efficiency of (79) is only 1

3γ ≈ 0.26,
whereas that of the new method (81) is 1.

4.3.2 Four-stage schemes

It is possible to devise a four-stage, third-order IMEX method with optimal efficiency in which the
implicit part is an ESDIRK L-stable scheme. We call this method IMEX(4, 3; 1). We set cl := l−1

4
for all l ∈ {1:4} to achieve optimal efficiency. There are 13 coefficients to be determined: 9
entries in the matrix Ai and the four components of the vector b. We enforce Butcher’s simplifying
assumption (65) (3 equations), the (linear) order conditions (66) and (67) (4 equations), and the
two conditions in (75) which are necessary for L-stability. This gives 9 equations. We additionally
require that the scheme be singly diagonal, giving the two additional equations ai2,2 = ai3,3 = ai4,4,
and that BC3 = 1

4 (this is the first of the fourth-order (linear) conditions in (68)). The resulting
under-determined set of nonlinear equations (12 equations, 13 unknowns) is solved using julia
with 10−15 tolerance. The following solution is found:

0 0
1
4

−0.1858665215084591 0.4358665215084591
1
2

−0.4367256409878701 0.5008591194794110 0.4358665215084591
3
4

−0.0423391342724147 0.7701152303135821 −0.4136426175496265 0.4358665215084591

1 0 2
3

− 1
3

2
3

(82a)
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This ESDIRK scheme is L-stable.
The companion ERK method that shares the same set of coefficients cj and bj has already

been proposed in Ern and Guermond [10]. The six coefficients of the matrix Ae are obtained by
enforcing the fourth-order linear consistency conditions (three linear equations from (65), one linear
equation form (67), one linear and one nonlinear equation from (68)) This is the only four-stage,
third-order ERK method with optimally distributed coefficients that is also fourth-order accurate
on linear problems. Its Butcher tableau is as follows:

0 0
1
4

1
4

0
1
2

0 1
2

0
3
4

0 1
4

1
2

0

1 0 2
3

− 1
3

2
3

(82b)

Near the origin along the imaginary axis, we have |Re(iε)| = 1+ρe6ε
6+O(ε8) with ρe6 = −2B(Ae)4C+

2B(Ae)3C −B(Ae)2C + 1
36 = − 1

72 .

Remark 4.2 (Other four- and five-stage methods). A third-order IMEX method combining a
four-stage ERK method with a four-stage L-stable DIRK method is described in Ascher et al. [2,
Sec. 2.7] (the DIRK method has actually three stages since the third and fourth stages are identical).
The efficiency ratio is close to ceff = 0.46. A variant of the implicit four-stage scheme is studied
in Calvo et al. [6]. A method combining a five-stage ERK method with a five-stage L-stable DIRK
method is described in [2, Sec. 2.8] (the DIRK method has actually four stages since the fourth and
fifth stages are identical). The efficiency ratio is only ceff = 1

8 .

4.4 Fourth-order IMEX schemes
Some fourth-order IMEX methods composed of five and six stages are discussed in Kennedy and
Carpenter [18, Sec. 3.2 & 3.3], but the efficiency ratio of these methods is far from being optimal.
Here, we devise five- and six-stage, fourth-order IMEX schemes with optimal efficiency; the implicit
scheme is L-stable in both cases. We call these methods IMEX(5, 4; 1) and IMEX(6, 4; 1).

4.4.1 Five-stage scheme

We set cl := l−1
5 for all l ∈ {1:5} to achieve optimal efficiency. There are 19 coefficients to be

determined: 14 entries in the matrix Ai and the five components of the vector b. We enforce
Butcher’s simplifying assumption (65) (4 equations), the (linear) order conditions (66), (67), and
(68) (7 equations), the (nonlinear) order condition (69) (one equation), and the two conditions in
(75) which are necessary for L-stability. This gives 14 equations. We additionally require that the
scheme be singly diagonal, giving the three additional equations ai2,2 = ai3,3 = ai4,4 = ai5,5, and that
ai5,1 = 0, giving one additional equation. The resulting under-determined set of nonlinear equations
(18 equations, 19 unknowns) is solved using julia with 2×10−16 tolerance. The following solution
is found:

0 0
1
5 −0.37281606248213511 0.57281606248213512
2
5 −0.66007935107985416 0.48726328859771911 0.57281606248213512
3
5 −0.69934543274239502 1.82596107935553742 −1.09943170909527743 0.57281606248213512
4
5 0 −0.05144383172900784 1.17898889035791732 −0.90036112111104449 . . .

1 −0.10511678454691901 0.87880047152100838 −0.58903404061484477 0.46213380485434047 . . .

4
5 . . . 0.57281606248213512

1 . . . 0.35321654878641495
(83a)
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This ESDIRK scheme is L-stable. Along the imaginary axis near the origin, we have |Ri(iε)| =
1 + ρi6ε

6 +O(ε8) with ρi6 ≈ −0.0846, where ρi6 = −2B(Ai)4C + 2B(Ai)3C − 1
72 .

We now devise the companion ERK scheme that shares the same set of coefficients cj and bj .
There are 10 unknowns (the entries of the strictly lower triangular matrixAe). We enforce Butcher’s
simplifying assumption (65) (4 equations) and the (linear) order conditions (67) involving the
matrix Ae (three equations, since the remaining order conditions have already been accounted for in
the design of the ESDIRK scheme above), the (nonlinear) order condition (69) (one equation), and
the two coupling conditions (70). This gives 10 equations. The resulting set of nonlinear equations
(10 equations, 10 unknowns) is solved using julia with 2×10−16 tolerance. The following solution
is found:

0 0
1
5 0.2 0
2
5 0.26075582269554909 0.13924417730445096 0
3
5 −0.25856517872570289 0.91136274166280729 −0.05279756293710430 0
4
5 0.21623276431503774 0.51534223099602405 −0.81662794199265554 0.88505294668159373 . . .

1 −0.10511678454691901 0.87880047152100838 −0.58903404061484477 0.46213380485434047 . . .

4
5 . . . 0

1 . . . 0.35321654878641495
(83b)

We have |Re(iε)| = 1 + ρe6ε
6 +O(ε8) with ρe6 ≈ −0.0148 along the imaginary axis near the origin,

where ρe6 = 2B(Ae)3C − 1
72 (notice that 2B(Ae)4C = 0).

4.4.2 Six-stage schemes

A six-stage, fourth-order method with L-stable (actually, stiffly accurate) implicit scheme is de-
signed in Calvo et al. [6] using a L-stable, six-stage (actually five distinct stages) fourth-order
SDIRK method from Hairer and Wanner [15]. More precisely, the explicit tableau is given by
Equation (14) in [6] and the implicit tableau is given by Equation (IV.6.16) in [15] (see also Ta-
ble IV.6.5). The efficiency ratio of this method is only ceff = 1

12 ≈ 0.08. We call this method
IMEX(6, 4; 0.08).

We now propose a six-stage, fourth-order IMEX method with optimal efficiency. We set cl :=
l−1
6 and l′(l) = l − 1 for all l ∈ {1:6} to achieve optimal efficiency. There are 26 coefficients to

be determined for the EDIRK scheme: 20 entries in the matrix Ai and the six components of
the vector b. We enforce Butcher’s simplifying assumption (65) (5 equations), the (linear) order
conditions (66), (67), (68) (7 equations), the (nonlinear) order condition (69) (one equation), and
the two conditions in (75) which are necessary for L-stability. We also enforce the fifth-order linear
order conditions (71) (4 equations). This gives 19 equations. We additionally require that the
scheme be singly diagonal, giving the four equations ai2,2 = ai3,3 = ai4,4 = ai5,5 = ai6,6. We also set
b4 = 0.47, giving six additional equations. The resulting set of nonlinear equations (24 equations,
26 unknowns) is solved using julia with 4×10−16 tolerance. The following solution is found:

0 0
1
6 −0.1113871744697862 0.2780538411364528
2
6 −0.7193507615705692 0.7746302537674498 0.2780538411364528
3
6 0.5518029866688972 0.1104050865166429 −0.4402619143219927 0.2780538411364528
4
6 0.2044212940947437 0.7369116313032833 −0.6137248254193539 0.0610047255515406 . . .
5
6 0.0660767687645300 0.0489052670268613 0.2501367454670004 0.5829521002593755 . . .

1 0.083 0.135 0.13 0.47 . . .

4
6 . . . 0.2780538411364528
5
6 . . . −0.3927913893208868 0.2780538411364528

1 . . . −0.285 0.467

(84a)
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We have |Ri(iε)| = 1+ρi6ε
6+O(ε8) along the imaginary axis near the origin, with ρi6 ≈ −1.06×10−3,

where we recall that ρi6 := −2B(Ai)4C + 2B(Ai)3C − 1
72 = −2B(Ai)4C + 1

360 .
We now proceed to find a companion ERK scheme sharing the same set of coefficients cj and bj .

There are 15 unknowns (the entries of the strictly lower triangular matrixAe). We enforce Butcher’s
simplifying assumption (65) (5 equations), the (linear) order conditions (67), (68) involving the
matrix Ae (three equations), the (nonlinear) order condition (69) (one equation), and the two
coupling conditions (70). This gives 11 equations. We also enforce the fifth-order linear order
conditions (71) (4 equations). In total we have 14 equations. The resulting under-determined set
of nonlinear equations (14 equations, 15 unknowns) is solved using julia. The following solution
is found with 4×10−16 tolerance:

0 0 0 0 0
1
6 0.1666666666666667 0 0 0
2
6 −0.4447518666865896 0.7780852000199229 0 0
3
6 0.0893971199002357 0.1913734465774906 0.2192294335222737 0
4
6 0.0635170175925033 0.1428758587504802 0.1359933602040186 0.3242804301196646
5
6 0.0727304753901258 0.2698992458411843 −0.0619049508228351 0.2187862524098492 . . .

1 0.083 0.135 0.13 0.47 . . .

5
6 . . . 0.3338223105150092 0

1 . . . −0.285 0.467
(84b)

We have |Re(iε)| = 1+ρe6ε
6+O(ε8) along the imaginary axis near the origin, with ρe6 ≈ −9.67×10−5,

where ρe6 := −2B(Ae)4C + 2B(Ae)3C − 1
72 = −2B(Ae)4C + 1

360 . The value of the coefficient b4 is
adjusted to the value 0.47 to make ρe6 negative.

5 Numerical illustrations
We illustrate the IMEX methods proposed in the paper. We start with convergence tests on an
ODE system. Then we solve a scalar nonlinear conservation equation with hyperbolic and parabolic
fluxes.

5.1 Convergence tests
We test the convergence properties of the new IMEX methods proposed in this paper and compare
them to the other published methods listed in Section 4. Following Kennedy and Carpenter [18,
§5.1], we consider the 2×2 ODE system

∂ty1(t) = −2y1 + ε−1(y22 − y1), ∂ty2(t) = y1 − y2 − y22 , (85)

with ε > 0 and initial condition y1(0) = y2(0) = 1. The solution is y1(t) = y22(t), y1(t) = e−t. As
ε → 0, the above problem degenerates into the index-1 differential algebraic equation ∂ty2(t) =
y1− y2− y22 with y1 = y22 . We denote by U := (u1, u2)T the approximate solution produced by the
IMEX methods. Referring to (11) for the notation, we set M := I2, where I2 is the 2×2 identity
matrix, and

F(U) := (−2u1, u1 − u2 − u22)T, G(U) := (ε−1(u22 − u1), 0)T, Glin(W,U) := G(U). (86)

Notice that Glin is not linear, but solving the problem (10) is simple:

(I− τGlin(W, ·))−1(W) = ( 1
ε+τ (εw1 + τw2

2),w2)T. (87)



Invariant-domain preserving IMEX methods 21

We test all the methods mentioned in Section 4 by solving the above problem over the time
interval [0, T ] with T = 4, the initial data (u1(0), u2(0)) = (1, 1), and for ε ∈ {1, 10−6}. For each
method, we compute the errors |u1(T )−y1(T )|/|y1(T )+y2(T )| and |u2(T )−y2(T )|/|y1(T )+y2(T )|.
The results are reported in Figures 1, 2, 3. The symbols “y1,e0”, “y1,e-6”, “y2,e0”, and “y2,e-6” in
the legend refer to the error on the variable y1 with ε = 100, the error on the variable y1 with
ε = 10−6, the error on the variable y2 with ε = 1, and the error on the variable y2 with ε = 10−6,
respectively.
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Figure 1: Convergence test on problem (85) for the second-order methods IMEX(2, 2; 1
2 ),

IMEX(2, 2; 1), IMEX(3, 2; 0.24) (with the Butcher tableaux (76), (77), (78) from left to right).

The three panels in Figure 1 show the results for the second-order methods IMEX(2, 2; 1
2 ),

IMEX(2, 2; 1) and IMEX(3, 2; 0.24) (from left to right and with the Butcher tableaux (76), (77),
(78)). We observe that they all deliver second-order accuracy uniformly with respect to ε for both
y1 and y2.

The results for the methods IMEX(3, 3; 0.26), IMEX(3, 3; 1), IMEX(4, 3; 1) (see (79), (81), and
(82) respectively) are shown in Figure 2. We observe third-order accuracy for the three methods on
both variables when ε = 1, but as expected, the convergence on y1 reduces to second-order when
ε = 10−6. This order reduction in the pre-asymptotic range (i.e., ε < τ) is well documented in the
literature and we refer the reader to Boscarino and Pareschi [4] for an analysis of this phenomenon.
We observe that the two new methods introduced in this paper (i.e., IMEX(3, 3; 1), IMEX(4, 3; 1))
perform as expected. Recall that IMEX(3, 3; 0.26) and IMEX(3, 3; 1) are both three-stage, third-
oder methods. The efficiency of IMEX(3, 3; 0.26) is only 0.26 whereas that of IMEX(3, 3; 1) is
optimal. The implicit components of these methods are A-stable. They also have the same
amplification functions. The method IMEX(4, 3; 1) is composed of four stages, has efficiency 1,
and its implicit component is L-stable.

Finally, the results for the three fourth-order methods IMEX(5; 4; 1) (see (83)), IMEX(6; 4; 0.08),
and IMEX(6, 4; 1) (see (84)) are shown in Figure 3. We observe fourth-order accuracy for the three
methods on both variables when ε = 1. The convergence rate on y2 is still 4 when ε = 10−6,
but the convergence rate for y1 reduces to second order when ε = 10−6. We observe that the two
new methods introduced in this paper (i.e., IMEX(5; 4; 1) and IMEX(6; 4; 1)) perform as expected.
Recall that IMEX(5; 4; 1) has five stages with efficiency ceff = 1, IMEX(6; 4; 0.08) has six stages
with efficiency ceff = 0.08, and IMEX(6; 4; 1) has six stages with efficiency ceff = 1. The implicit
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Figure 2: Convergence test on problem (85) for the third-order methods IMEX(3, 3; 0.26),
IMEX(3, 3; 1); IMEX(4, 3; 1) (with the Butcher tableaux (79), (81), (82) from left to right).

components of these three methods are L-stable.

5.2 Nonlinear scalar conservation equation
In this section, we illustrate the method on the following scalar nonlinear conservation equation:

∂tu+∇·f(u)− ε∆u = 0, x ∈ D∞, t > 0, (88)

posed in the two-dimensional domainD∞ := R×(0, 1). The flux is defined by f(u) := (u(1−u), 0)T.
With the notation x := (x, y), the initial data is

u0(x) := µ+ δ tanh
(
δ
ε (x− x0)

)
, µ := 1

2 (uL + uR), δ := 1
2 (uR − uL). (89)

Assuming homogeneous Neuman boundary conditions on the top and bottom parts of the domain,
the solution to this Cauchy problem is a wave moving at speed s := 1− 2µ:

v(x, t) = u0(x− st) with s := (s, 0). (90)

The method described in this paper is implemented using continuous finite elements. The
tests are done with continuous P1 and P3 finite elements. The low-order solution method for the
hyperbolic subproblem is fully described in [11]. The high-order method and the limiting are
described in [12, 13]. We use FCT to perform the limiting as the problem is scalar-valued. Local
bounds are used at every grid point. Relaxation of the bounds guaranteeing high-order convergence
is done as explained in [12, §4.7.1] and [13, §7.6].

We set uL := −1 and uR := 1, so that the solution to (88) is a wave moving at speed s = 1. The
numerical simulations are done in the truncated computational domain D := (xL, xR)×(yB , yT )

with xL = yB := 0, xR := 1, yT := 1
4 . Let ∂Dhyp

D = ∂Dpar
D := {xL, xR}×(yB , yT ), := ({xL} ∪

{xR})×(yB , yT ), and ∂Dpar
N := (xL, xR)×{yB , yT } (it happens here that ∂Dhyp

D = ∂Dpar
D because

1− 2uR < 0). At each stage of the IMEX method, Dirichlet boundary conditions are enforced at
∂Dhyp

D for the hyperbolic subproblems and at ∂Dpar
D for the parabolic subproblems. Homogeneous
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Figure 3: Convergence test on problem (85) for the fourth-order methods IMEX(5; 4; 1),
IMEX(6; 4; 0.08) and IMEX(6, 4; 1) (with the Butcher tableaux (83) and (84) for IMEX(5; 4; 1)
and IMEX(6, 4; 1)). IMEX(6; 4; 0.08) is defined in the first paragraph of §4.4.2.

Neumann conditions are enforced on ∂Dpar
N for the parabolic subproblems. The enforcement of the

boundary condition for the hyperbolic subproblems is done at the end of each stage of the IMEX
step.

In all the tests, the time step is computed by using the expression

τ := CFL×s×τ∗, (91)

where CFL > 0 is a fixed parameter, s is the number of stages of the IMEX method, and τ∗ is
the maximum time step for which the low-order hyperbolic update is IDP; see Assumption 2.1(i).
This definition guarantees that for a given simulation time T , the total number of flux evaluations
(which is a measure of the algorithmic cost) is approximately s×Tτ = s× T

CFL×s×τ∗ = T
CFL×τ∗ .

Hence, for a given mesh, a given final time T , and a given CFL number, the algorithmic cost of
two IMEX methods with different number of stages is approximately identical. The simulations
are done up to T = 1

2 for ε = 2×10−n, n ∈ {2, 3, 4}. We use unstructured Delaunay meshes. We
test the following five methods: IMEX(2, 2; 1); IMEX(3, 3; 1); IMEX(4, 3; 1); IMEX(5, 4; 1); and
IMEX(6, 4; 1). All the errors are evaluated at T and are relative.

We show the errors and the convergence rates for continuous P1 elements in Table 5.2. We
observe that the methods deliver second-order accuracy when the mesh size is small enough to
capture the viscous layer of size ε. The accuracy is limited to second-order due to our using P1

elements. We also notice that all the methods deliver first-order accuracy when the mesh size
cannot capture the viscous layer. First-order accuracy is optimal in this case.

We show the errors and the convergence rates for continuous P3 elements in Table 5.2. The
methods deliver optimal accuracy when the mesh size is small enough to capture the viscous layer,
that is, second-order for IMEX(2, 2; 1) and fourth-order for the other methods. There seems to be
some super-convergence effect for the third-order methods IMEX(3, 3; 1) and IMEX(4; 4; 1). Here
again, all the methods deliver first-order accuracy when the mesh size cannot capture the viscous
layer.
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Table 1: Problem (88) for ε = 2×10−n, n ∈ {2, 3, 4}. P1 finite elements. Error in the L1-norm.
First row: IMEX(2, 2; 1). Second row: IMEX(3, 3; 1) and IMEX(4, 3; 1). Third row IMEX(5, 4; 1)
and IMEX(6, 4; 1).

ε = 10−2

I IMEX(2,1;1) rate
106 1.98E-02 –
360 4.13E-03 2.56
1309 8.12E-04 2.52
4825 2.03E-04 2.13
18846 4.99E-05 2.06
74510 1.25E-05 2.01

ε = 10−3

(2,1;1) rate
3.36E-02 –
1.61E-02 1.20
7.60E-03 1.16
2.88E-03 1.49
7.01E-04 2.07
1.29E-04 2.46

ε = 10−4

(2,1;1) rate
3.60E-02 –
1.52E-02 1.41
7.64E-03 1.07
4.02E-03 0.98
1.99E-03 1.03
9.83E-04 1.03

ε = 10−2

I IMEX(3,3;1) rate IMEX(4,3;1) rate
106 1.97E-02 – 1.97E-02 –
360 4.13E-03 2.56 4.13E-03 2.56
1309 8.26E-04 2.49 8.27E-04 2.49
4825 2.04E-04 2.15 2.04E-04 2.15
18846 5.00E-05 2.06 5.00E-05 2.06
74510 1.25E-05 2.02 1.25E-05 2.02

ε = 10−3

(3,3;1) rate (4,3;1) rate
3.36E-02 – 3.36E-02 –
1.62E-02 1.20 1.61E-02 1.20
7.62E-03 1.17 7.60E-03 1.17
2.88E-03 1.49 2.88E-03 1.49
7.03E-04 2.07 7.04E-04 2.07
1.32E-04 2.44 1.32E-04 2.44

ε = 10−4

(3,3;1) rate (4,3;1) rate
3.60E-02 – 3.60E-02 –
1.52E-02 1.41 1.52E-02 1.41
7.66E-03 1.06 7.63E-03 1.06
4.03E-03 0.98 4.01E-03 0.98
2.00E-03 1.03 1.99E-03 1.03
9.84E-04 1.03 9.82E-04 1.03

ε = 10−2

I IMEX(5,4;1) rate IMEX(6,4;1) rate
106 1.98E-02 – 1.97E-02 –
360 4.13E-03 2.56 4.10E-03 2.57
1309 8.26E-04 2.49 8.11E-04 2.51
4825 2.03E-04 2.15 2.03E-04 2.13
18846 4.99E-05 2.06 4.99E-05 2.06
74510 1.25E-05 2.02 1.25E-05 2.02

ε = 10−3

(5,4;1) rate (6,4;1) rate
3.36E-02 – 3.35E-02 –
1.62E-02 1.20 1.59E-02 1.22
7.65E-03 1.16 7.42E-03 1.18
2.93E-03 1.47 2.81E-03 1.49
7.22E-04 2.06 6.95E-04 2.05
1.33E-04 2.47 1.28E-04 2.46

ε = 10−4

(5,4;1) rate (6,4;1) rate
3.60E-02 – 3.59E-02 –
1.52E-02 1.41 1.50E-02 1.42
7.65E-03 1.07 7.56E-03 1.06
4.01E-03 0.99 3.98E-03 0.99
1.99E-03 1.03 1.96E-03 1.04
9.86E-04 1.02 9.63E-04 1.04

6 Conclusions
A new time stepping technique making every IMEX method invariant-domain preserving has been
introduced. New IMEX methods with optimal efficiency have been constructed. The numerical
experiments done in §5.1 and §5.2 demonstrate that the new IMEX methods proposed in this
paper behave as predicted by the theory. All the methods tested are invariant-domain preserving
and deliver the expected accuracy. A natural perspective of this work is to show how present
methodology can be used to solve nonlinear systems of conservation equations like the compressible
Navier–Stokes equations.
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