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RADIAL BEHAVIOR OF MAHLER FUNCTIONS

M. POULET AND T. RIVOAL

Abstract. Many papers have been recently devoted to the study of the radial behavior
as z → 1− of transcendental r-Mahler functions holomorphic in the open unit disk. In
particular, Bell and Coons showed in 2017 that, in a generic sense, r-Mahler functions
behave like (1 + o(1))C(z)/(1 − z)ρ for some ρ ∈ C and C(z) is a real analytic function
of z ∈ [0, 1] such that C(z) = C(zr). They did not provide any formula for C(z) which
has been explicited only in a few examples of r-Mahler functions of order 1 and 2, and
for specific values of r. In this paper, we first provide an explicit expression of C(z) as
an exponential of a Fourier series in the variable log log(1/z)/ log(r) for every r-Mahler
function of order 1. Then, extending to a large setting a method introduced by Brent-
Coons-Zudilin in 2016 to compute C(z) associated to the Dilcher-Stolarsky function (a
4-Mahler function of order 2 in Q[[z]]), we provide an explicit expression of C(z) for every
r-Mahler function of order 2 under mild assumptions on the coefficients in R(z) of the
underlying r-Mahler equations. This applies in particular to the generating function of the
Baum-Sweet sequence. We do the same for r-Mahler functions solutions of inhomogeneous
Mahler equations of order 1 and we conclude the paper with possible generalizations to
r-Mahler equations of order ≥ 3.

1. Introduction

1.1. Context. We fix an integer r ≥ 2. A r-Mahler function of order d is a formal series
f ∈ C[[z]] which is solution of a r-Mahler equation of order d, that is a functional equation
of the form

d∑
j=0

pj(z)y(z
rj) = 0 (1.1)

where the pj’s are in C[z] and p0pd ̸= 0. (From now on, we will drop “r-” in front of
Mahler when we refer to functions or equations because there will be no ambiguity.) If
there exists a formal solution f ∈ C[[z]] of (1.1) then, unless f(z) is a rational function,
f(z) is a transcendental function holomorphic at z = 0, meromorphic in the unit open disk
D(0, 1) and the unit circle is a natural boundary for f (this is a theorem of Randé [16,
Theorem 4.3]; see also [6]). The generating functions of automatic sequences with values
in C (generated by a finite-state automaton) are known to be r-Mahler functions for some
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r ≥ 2 (which can be any integer such that the r-kernel of the sequence is finite), but the
converse is not true, see [3].

When f is meromorphic in D(0, 1), many works have been devoted to understand the
asymptotic behavior of f(z) as z → 1 radially, and more generally as z tends radially to z0 of
modulus 1 (usually, z0 is a root of unity). For instance, Bell and Coons proved the following
result. Let aj := pj(1) and let P (X) be the characteristic polynomial a0X

d+· · ·+ad−1X+ad
of (1.1). Assume that a0ad ̸= 0 and that P (X) has only one non-zero root of greatest
modulus and let λ be this root. Then [5, Theorem 1] provides the following asymptotic
result for a solution f of (1.1):

f(z) =
C(z)

(1− z)logr(λ)
(1 + o(1)), z → 1− . (1.2)

They proved in particular that the function C(z) is real analytic in [0, 1], such that 0 <
c1 ≤ C(z) ≤ c2 < ∞ for some constants c1, c2 that depend on F , and C(z) = C(zr).
But they did not give any explicit expression for C(z). An asymptotic expansion like in
(1.2) has many applications, for instance in transcendance theory or to compute effective
solutions to Mahler equations; see [1, 4, 8].

In this paper, we shall be interested in making more precise Bell and Coons’ result
by expliciting the function C(z) in the form of the exponential of a Fourier series in the
variable log log(1/z)/ log(r). This is already a difficult task for Mahler functions of order 1
and our first main result deals with this case in full generality. A general treatment of
Mahler functions of order ≥ 2 seems currently out of reach, thought other sporadic results
have been obtained: we shall also determine C(z) associated to Mahler functions solutions
of an equation of order 2 with relatively mild assumptions on the coefficients pj(z) of this
equation, though we emphasize here that they are not necessary as the example studied in
detail in [7] shows. Our final result will deal with the intermediate case, ie Mahler functions
solutions of an inhomogeneous Mahler equation of order 1, y(z) = p(z)y(zr) + q(z) with
p(z), q(z) ∈ C(z): again, we shall determine C(z) with relatively mild assumptions on p(z)
and q(z). The problem of expliciting C(z) for Mahler equations of order ≥ 3 is open in
full generality; the methods of the present paper can in principle be adapted to this case
as well but with stronger and stronger restrictions on the coefficients pj(z) when the order
of the equation increases.

Notations. In this paper, r is an integer greater than or equal to 2. We define log(z) =
ln |z| + i arg(z) with the principal determination of the argument −π < arg(z) < π and
logr(z) := log(z)/ log(r). Of importance in the sequel is the polylogarithm function defined
by Lis(α) :=

∑∞
n=1 α

n/ns for any s ∈ C and any α ∈ C such that |α| < 1. The analytic
continuation of this function with respect to s and/or α was studied by Jonquière [14].

The (meromorphic continuations of the) Gamma function Γ(s) :=
∫ +∞
0

ts−1e−tdt and of
the Riemann zeta function ζ(s) :=

∑∞
n=1 1/n

s will also be used. We shall need the following
facts. If s ∈ Z≤0, Lis(α) reduces to a rational function of α with only one pole, at α = 1.
If 0 < |α| < 1 is fixed, Lis(α) is an entire function of s. If s is fixed and ℜ(s) > 0, then
Lis(α) is an analytic function of α ∈ C \ [1,+∞), and in fact it is a holomorphic function
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of (s, α) in this region. We set ℓ(α) := ∂Lis(α)
∂s

∣∣
s=1

, which is analytic in α ∈ C \ [1,+∞). In
particular,

Li1+z(α) = − log(1− α) + ℓ(α)z +O(z2), z → 0.

For any r ∈ R, we set D(0, r) := {z ∈ C : |z| < r} and Hr := {z ∈ C : ℜ(z) > −r}. We
denote v0(f) the order of vanishing of a formal series f(z) ∈ C[[z]]: it is the largest integer
v ∈ N such that f belongs to zvC[[z]]. Finally, in a big O estimate of the form Oε(f(x)),
the presence of ε means that the implicit constant depends on ε.

We now review our main results.

1.2. Mahler equations of order 1. The setting is as follows. We consider a Mahler
equation of order 1:

y (zr) = P (z)y(z) (1.3)

where P ∈ C(z) is such that P (0) = 1. We write

P (z) :=

∏n
i=1(1− αiz)∏m
i=1(1− βiz)

where αi, βi ∈ C \ {0}. Since P (0) = 1, we know that

f(z) :=
+∞∏
k=0

P
(
zr

k)−1
(1.4)

is a solution of (1.3), holomorphic at z = 0 and meromorphic in the open unit disk.
Conversely, any function of this form is solution of an equation like (1.3). We want to
understand the asymptotic bahaviour of the Mahler function f(z) when z → 1− radially.
We shall consider this problem only when none of the α’s and β’s are in ]1,+∞[. Otherwise
f(z) has a sequence of real zeros or poles accumulating at z = 1 and we cannot say much.
In order to do that, we first consider the case P (z) = 1 − αz, α ̸= 0, and the Mahler

function fα(z) :=
∏+∞

k=0

(
1−αzr

k)−1
, where the integer r ≥ 2 will be considered fixed from

now on. We use the change of variables z = e−s with s > 0.

Theorem 1. For all α ∈ C \ [1,+∞), α ̸= 0, and all s > 0 small enough, we have

fα(e
−s) = exp

(
φ1(α, s) + φ2(α, s) + φ3(α, s)

)
, (1.5)

where

φ1(α, s) :=
1

ln(r)

∑
k∈Z\{0}

Γ
(2iπk
ln(r)

)
Li1+ 2iπk

ln(r)
(α)s−

2iπk
ln(r)

φ2(α, s) :=
∞∑
n=1

(−1)n

n!

1

1− rn
Li1−n(α)s

n

φ3(α, s) :=
(
γ + ln(s)

)
logr(1− α)− log(1− α)

2
+

ℓ(α)

ln(r)
.

The function exp(φ1(α, s)) is invariant by the change of variables s 7→ rs.
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The “small enough condition” on s depends on α and will be made more precise in the
proof. Our method does not technically work for α = 1, where a kind of “phase transition”
occurs: a single pole becomes a double pole and the analysis of the situation must be
performed differently. It turns out that this analysis was done long ago by de Bruijn [10]
who obtained the following result: for every s such that 0 < s < 2πr, we have

log
(
f1(e

−s)
)
=

ln(s)2

2 ln(r)
− 1

2
ln(s)

+
1

ln(r)

∑
k∈Z\{0}

Γ
(2iπk
ln(r)

)
ζ
(
1 +

2iπk

ln(r)

)
s−

2iπk
ln(r) +

∞∑
n=1

Bn

n!n

sn

rn − 1
, (1.6)

where (Bn)n≥1 is the sequence of the Bernoulli numbers. In other words,

f1(z) =
e(ln ln(1/z))2/(2 ln(r))√

ln(1/z)
C(z)(1 + o(1)), z → 1−

where C(e−s) is the exponential of the Fourier series in (1.6). Observe that this expansion
is not of the form covered by [5, Theorem 1] because the characteristic polynomial of
y(z) = (1− z)y(zr) is X, which is not admissible because the assumption a0ad ̸= 0 is not
fullfilled.

It is possible that (1.6) could be deduced from (1.5) by letting α → 1 in a suitable way,
but this seems a non-trivial task. The series involving the Γ and ζ functions is invariant
by s 7→ rs, and is the analogue of φ1(α, s) in Theorem 1.

Corollary 1. Let α1, . . . , αn, β1, . . . , βm in C\ [1,+∞). For any s > 0 small enough (with
respect to the αj’s and βj’s), we have

f(e−s) = exp
( n∑

j=1

(
φ1(αj, s)+φ2(αj, s)+φ3(αj, s)

)
−

m∑
j=1

(
φ1(βj, s)+φ2(βj, s)+φ3(βj, s)

))
,

where f(z) is defined in (1.4). In this formula, if some of the αj’s are equal to 1, resp.
some of the βj’s are equal to 1, then the corresponding term φ1(αj, s)+φ2(αj, s)+φ3(αj, s),
respectively the corresponding term φ1(βj, s)+φ2(βj, s)+φ3(βj, s), must be replaced by the
right-hand side of (1.6).

Remark 1. • In particular, the function C(z) (z ∈ [0, 1]) in the Bell-Coons asymptotic
expansion (1.2) (see also [9] in this “order 1” case), is given in our situation by

C(e−s) := exp
( n∑

j=1

(
φ1(αj, s) + γ logr(1− αj)−

log(1− αj)

2
+

ℓ(αj)

ln(r)

)
−

m∑
j=1

(
φ1(βj, s) + γ logr(1− βj)−

log(1− βj)

2
+

ℓ(βj)

ln(r)

))
(and its suitable adaptation with the series over k ∈ Z \ {0} in (1.6) when some of the
αj’s or βj’s are equal to 1). It is clearly invariant by s 7→ rs, which corresponds to the
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invariance C(zr) = C(z), and for all z ∈ [0, 1], we have 0 < |C(z)| < +∞. Moreover, for
z > 0, z → 1−, we have

f(z) =
C(z)(1 + o(1))

(1− z)
∑m

j=1 logr(1−βj)−
∑n

j=1 logr(1−αj)
=

C(z)

(1− z)logr(1/P (1))
(1 + o(1))

when none of the αj’s or βj’s is equal to 1.

1.3. Mahler equations of order 2. The authors of [7] studied a 4-Mahler function

F (z) := 1 + z + z2 + z5 + z6 + z8 + z9 + z10 + · · ·

solution of the Mahler equation of order 2: y(z) = (1 + z + z2)y(z4) − z4y(z16). This
function had been introduced in [11] where it is proved that its coefficients are in {0, 1}.
In [7, Proposition 1], the asymptotic behavior of F (z) is given when z → 1− radially. The
second aim of this article is to extend the approach of [7] to a general context. More
precisely, given an integer r ≥ 2, we consider Mahler equations of order 2 of the form

y(z) = a(z)y(zr) + b(z)y(zr
2

) (1.7)

where a(z), b(z) ∈ R(z) are such that

(H1) a(z), b(z) ∈ R+[[z]];
(H2) a(0) + b(0) = 1;
(H3) a(z) and b(z) are defined at z = 1;
(H4) a(z) and b(z) have no pole in D(0, 1);
(H5) a(z) and b(z) are not both constant;
(H6) For all z ∈ [0, 1], |rzr−1b(z)| < a(zr)2.

For instance, Assumptions (H1)–(H6) hold (1) when a(z) = 1+ rz/2 and b(z) = z. If they
hold for a particular instance of (1.7), then (H6) shows that there are only finitely many

integers s ≥ r such that they also hold for the equation y(z) = a(z)y(zs) + b(z)y(zs
2
).

Without loss of generality, we shall assume that b(1) > 0, otherwise necessarily b(z) = 0
identically and (1.7) reduces to a Mahler equation of order 1. Hence, (H6) for z = 1 implies
that

0 < rb(1) < a(1)2 < µ2
1

where µ1 := (a(1) +
√

a(1)2 + 4b(1))/2 is the largest root of the characteristic polynomial
X2 − a(1)X − b(1) (these roots are real numbers because a(1)2 +4b(1) > 0). Let us define
α > 1 such that rαb(1) = a(1)2. We still have rαb(1) < µ2

1.
We shall prove in Proposition 1 in §3.1 that the Mahler equation (1.7) has a solution

f(z) holomorphic on the open unit disk, which is unique up to a multiplicative constant
equal to f(0). Without loss of generality, we assume that f(0) = 1 so that, as we shall
prove, all the Taylor coefficients of f(z) are in R+ and f(z) > 0 for every z ∈ [0, 1). To

1Throughout the paper, when we write “(Pn)–(Pm) hold” where P∈{A,H} and n < m are integers, we
mean that for k = n to m, all the assumptions (Pk) hold simultaneously.
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study the asymptotic behavior of f(z) when z → 1−, we introduce µ(z) := f(z)/f(zr)
which is well defined and positive for z ∈ [0, 1). We set

M(s) :=

∫ +∞

0

ln(µ(e−t))ts−1dt,

which is defined for s ∈ H0 as we will see in Section 3.2. Note that µ(z) is a solution of
the non-linear Mahler equation y(z) = a(z) + b(z)/y(zr), which together with the value
µ(0) = 1 completely determines µ(z) without making reference to the function f(z). We
shall prove the following result.

Theorem 2. Under Assumptions (H1)–(H6), M(s) can be meromorphically continued to
Hmin(α,2) (with simple poles at s = 0 and s = −1) and there exist explicit constants c0 and
c1 such that, for any ε > 0, we have

f(e−s) =

exp
(
logr(µ1) ln(1/s) + c0 +

1

ln(r)

∑
k∈Z\{0}

M
(2ikπ
ln(r)

)
s−

2ikπ
ln(r) + c1s+Oε(s

min(α,2)−ε)
)
, (1.8)

when s > 0, s → 0+.

Remark 2. • The proof shows that c0 = κ0/ ln(r)+ ln(µ1)/2 where κ0 is the constant term
in the Laurent expansion of M(s) at s = 0, and that c1 = µ′

1/((r − 1)µ1) where µ′
1 is the

left-derivative of µ(z) at z = 1 (that will be proved to exist and to be finite).
• The series over k ∈ Z \ {0} in (1.8) converges absolutely for all s > 0 and is invariant

by the change of variables s 7→ rs. As a consequence of (1.8), the function C(z) in 1.2 is
given by

C(e−s) = exp
(
c0 +

1

ln(r)

∑
k∈Z\{0}

M
(2ikπ
ln(r)

)
s−

2ikπ
ln(r)

)
(1.9)

and, for z > 0, z → 1−, we have

f(z) =
C(z)

(1− z)logr(µ1)
(1 + o(1)).

• The core of the method in [7] is to prove that µ(z) > 0 for all z ∈ [0, 1), and that

µ(e−s) = µ1 − sµ′
1 +O(smin(α,2)), µ′(e−s) = µ′

1 +O(smin(α−1,1))), µ′′(e−s) = O(smin(α−2,0))
(1.10)

as s → 0+, for some constants α > 1, µ1 > 1, µ′
1 > 0. We shall prove that such estimates

hold under assumptions (H1)–(H6). An asymptotic expansion of the form (1.8) can be
obtained by methods of Analysis of Singularities, through standard properties of the Mellin
transform.

• Our assumptions (H1)–(H6) on the rational functions a(z) and b(z) are sufficient to
ensure that (1.10) holds, but they are not necessary. For instance, (H2)–(H6) hold for the
specific function F (z) studied in [7], and not (H1), but these authors directly checked the
validity of (1.10) in this case and proved an expansion of the form (1.8) for F (z) (see also
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the last remark below). Our method to prove Theorem 2 follows the steps of [7], but is
often different on the verification of the technical details.

• We shall prove in §4 that (H1)–(H5), but not (H6), hold for the generating function
of the celebrated Baum-Sweet sequence. We will then directly check that (1.10) holds so
that Theorem 2 can thus also be applied to this generating function. The specific method
used in this case could likely be used in other interesting situations.

• (H1), (H2), (H4) and (H5) ensure that (1.7) has a solution in R[[z]] with radius of
convergence 1 and with Taylor coefficients all of the same sign, which is a crucial property
for us (see Proposition 1 in §3.1). Instead, we could also assume (H3)–(H6), the existence
of such a solution and b(1) ̸= 0, and neither (H1) nor (H2): our proof of Theorem 2 would
still work (see the footnote in Lemma 10). This is in particular the case of the function
in [7].

1.4. Inhomogeneous Mahler equations of order 1. Between Mahler equations of or-
der 1 and those of order 2, lies the class of inhomogeneous Mahler equations of order 1:

y(z) = p(z)y(zr) + q(z) (1.11)

where p(z), q(z) ∈ C(z). A solution of such an equation is also solution of a Mahler equation
of order 2. Before [5], a few results had been obtained in the literature concerning the
asymptotic behavior as z → 1− of holomorphic solution in D(0, 1) of such inhomogeneous
equations. For instance, Hardy [13] studied the series

∑∞
n=0 z

rn , solution of the equation
f(z) = f(zr) + z; we recall his result in §5.1. So far, there is no uniform treatment of
solutions of (1.11) and, in spirit of the results in §1.3, we now present a general result
when p(z), q(z) are in R(z) and satisfy the following assumptions:

(A1) p(z), q(z) ∈ R+[[z]];
(A2) q(0) = 0;
(A3) p(z) and q(z) are defined at z = 1:
(A4) p(z) and q(z) have no pole in D(0, 1);
(A5) p(1) > r.

These assumptions are satisfied by p(z) = rz + 1 or p(z) a constant > r, and q(z) = z for
instance.

Remark 3. • Though this is not necessary strictly speaking, we shall also assume that q(z)
is not constant because otherwise it must be identically 0 by (A2). The problem then
reduces to the study of a Mahler equation of order 1.

• It is also possible to relax (A2) to “(A2∗) p(0) = 0 or q(0) = 0”, and Theorem 3 below
still holds. The only new case with respect to (A2) is “p(0) = 0 and q(0) ̸= 0”, the solution
f(z) to consider being given by (1.13) below. We will not give the details in this case; it
requires only minor changes to the proof when the assumption q(0) = 0 is used.
• Assumption (A1) can be dropped if we know in advance that we work with a solution

f(z) ∈ R[[z]] of (1.11) with Taylor coefficients all of the same sign.
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We shall prove that, under (A2)–(A4), (1.11) has solutions in C[[z]] which turn out to
be holomorphic in the open unit disk D(0, 1). If p(0) = 1, then the solutions are given by

f(z) := f0

∞∏
n=0

p(zr
n

) +
∞∑
n=0

p(z)p(zr) · · · p(zrn−1

)q(zr
n

), (1.12)

where f0 is a free parameter, which turns out to be equal to f(0). On the other hand, if
p(0) ̸= 1, then necessarily f(0) = 0 (by (1.11) evaluated at z = 0) and the unique possible
solution in C[[z]] is then given by

f(z) :=
∞∑
n=0

p(z)p(zr) · · · p(zrn−1

)q(zr
n

). (1.13)

Hence, in all cases the choice of f0 determines a unique solution f(z) ∈ C[[z]] of (1.11).
We shall assume that f0 ≥ 0, so that (A1) implies that f(z) ∈ R+[[z]] (2). We define
ω := v0(f) ≥ 0. If ω ≥ 1, then ω = v0(q). We have f(z) = fωz

ω + O(zω+1) with fω > 0,

and we normalize f(z) by defining f̂(z) = f(z)/(fωz
ω) ∈ 1 + zR+[[z]].

We define µ̂(z) := f̂(z)/f̂(zr) = z(r−1)ωf(z)/f(zr) ∈ 1 + zR[[z]]. For all z ∈ [0, 1), we
have µ̂(z) > 0. We set

M̂(s) :=

∫ +∞

0

ln(µ̂(e−t))ts−1dt,

which is defined and analytic for s ∈ H0 as we shall see in §5. We set η := logr(p(1)) > 1
(by (A5)).

Theorem 3. Under Assumptions (A1)–(A5) and f0 ≥ 0, M̂(s) can be meromorphically
continued to Hmin(η,2) (with a simple pole at s = 0) and there exist explicit constants ĉ0
and ĉ1 such that, for any ε > 0, we have

f(e−s) =

exp
(
η ln(1/s) + ĉ0 +

1

ln(r)

∑
k∈Z\{0}

M̂
(2ikπ
ln(r)

)
s−

2ikπ
ln(r) + ĉ1s+Oε(s

min(η,2)−ε)
)
, (1.14)

when s > 0, s → 0+.

Remark 4. • The proof shows that ĉ0 = κ̂0/ ln(r) + ln(p(1))/2 where κ̂0 is the constant

term in the Laurent expansion of M̂(s) at s = 0, and that ĉ1 = ω + p′(1)/((r − 1)p(1)).
• The series over k ∈ Z \ {0} in (1.14) converges absolutely for all s > 0 and is invariant

by the change of variables s 7→ rs. As a consequence of (1.14), the function C(z) in (1.2)
is given by

C(e−s) = exp
(
ĉ0 +

1

ln(r)

∑
k∈Z\{0}

M̂
(2ikπ
ln(r)

)
s−

2ikπ
ln(r)

)
2If one takes f0 < 0, the positivity of the Taylor coefficients of f(z) is no longer guaranteed and this

leads to various complications we don’t know how to overcome in a simple manner.
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and, for z > 0, z → 1−, we have

f(z) =
C(z)

(1− z)logr(p(1))
(1 + o(1)).

• Our assumptions (A1)–(A5) on the rational functions a(z) and b(z) are sufficient to
ensure that (1.10) holds (with µ(z) replaced by µ̂(z)), but they are not necessary. On the
other hand, a solution of the equation y(z) = p(z)y(zr) + q(z) is also a solution of

y(z) =
q(z) + q(zr)p(z)

q(zr)
y(zr)− q(z)p(zr)

q(zr)
y(zr

2

).

By (A2), q(z)p(zr)/q(zr) has a pole at z = 0 and Theorem 2 cannot be applied. Hence,
Theorem 3 enables us to determine the asymptotic behavior as z → 1− of certain solutions
of Mahler equations of order 2 that do not fall under the scope of Theorem 2.

The rest of the paper is organized as follows. In §2, we first prove in §2.1 various lemmas
necessary for the proof of Theorem 1 given in §2.2. We adopt the same presentation in §3,
where lemmas are first proved in §3.1 and then Theorem 2 is proved in §3.2. In §4, we show
how to adapt the proof of Theorem 2 to the case of the generating function of the Baum-
Sweet sequence. In §5, we first recall a classical result of Hardy on the series

∑∞
n=0 z

rn ,
and then we give the proof of Theorem 3: as it is similar to the proof of Theorem 2, we
adopt a less formal presentation. Finally, in §6.1, we present interesting Mahler functions
of order 2 to which our results can unfortunately not be applied, and in §6.2 we display a
strategy to extend our theorems to Mahler equations of higher order.

Acknowledgements. Both authors have been partially supported by the ANR project
De Rerum Natura (ANR-19-CE40-0018) for this research.

2. Proof of Theorem 1

2.1. Preparatory results. We assume for the moment that α ∈ (−1, 1) and s > 0 are
real numbers; the assumption on α can be relaxed in certain lemmas proved below, while
s can be subject to certain restriction that depend on α. We define

Gα,n(s) := −
n∑

k=0

log
(
1− α exp(−srk)

)
and since we deal with real numbers, we have

lim
n→+∞

Gα,n(s) = ln(fα(e
−s)).

For simplicity, we set Gα(s) = ln(fα(e
−s)).

Lemma 1. Fix α ∈ (−1, 1), s > 0. For any a > 0, we have

Gα(s) =
1

2iπ

∫ a+i∞

a−i∞
s−zΓ(z)Li1+z(α)

1− r−z
dz .
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Proof. We have

Gα(s) = −
+∞∑
k=0

log
(
1− α exp

(
−srk

))
=

+∞∑
k=0

+∞∑
m=1

m−1αme−srkm.

Using the Cahen-Mellin formula (see [10])

e−ω =
1

2iπ

∫ a+i∞

a−i∞
Γ(z)ω−z dz for a > 0, ω > 0, (2.1)

and using the fact that∫ a+i∞

a−i∞

+∞∑
k=0

+∞∑
m=1

∣∣∣Γ(z)m−1αm
(
srkm

)−z
∣∣∣ dz
≤

∫ a+i∞

a−i∞

+∞∑
k=0

+∞∑
m=1

∣∣∣Γ(z)m−1
(
srkm

)−z
∣∣∣ dz < +∞,

we have

Gα(s) =
1

2iπ

∫ a+i∞

a−i∞

+∞∑
k=0

+∞∑
m=1

Γ(z)m−1αm
(
srkm

)−z
dz

because the exchange of integral and series is justified. Now, the series on k is a geometric
one and the series on m is a polylogarithm, so that

Gα(s) =
1

2iπ

∫ a+i∞

a−i∞
s−zΓ(z)Li1+z(α)

1− r−z
dz

as expected. □

We now want to shift the vertical line a + iR to the left in order to obtain another
expression for Gα(s). We need a few lemmatas, that holds for α a complex number.

Lemma 2. Let α ∈ C be such that 0 < |α| < 1. Then,

|Li1+z(α)| ≤

{
1

1−|α| if ℜ(z) ≥ −1

ζ(2) (1−ℜ(z))1−ℜ(z) (e ln(1/|α|))ℜ(z)−1 otherwise.

Proof. We recall that

Li1+z(α) =
+∞∑
n=1

αn

n1+z
.

The first case is clear since
∣∣ αn

n1+z

∣∣ = |α|n
n1+ℜ(z) ≤ |α|n. For the second case,

|Li1+z(α)| ≤ max
n≥1

(
|α|n

nℜ(z)−1

)
ζ(2) .
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Let t := 1 − ℜ(z) > 2 and y := |α| < 1. The maximum of the function u : x 7→ yxxt for
x > 0 is

u
(
− t

ln(y)

)
=

( t

−e ln(y)

)t

,

which concludes the proof. □

Lemma 3. Assume that α ∈ C is such that 0 < |α| < 1. Let s be such that 0 < s <
r ln(1/|α|). We have

lim
n→+∞

1

2iπ

∫ −n+1/2+i∞

−n+1/2−i∞
s−zΓ(z)Li1+z(α)

1− r−z
dz = 0.

Proof. We study

In (α) :=

∫
R
sn−1/2−iyΓ(1/2− n+ iy)Li3/2−n+iy(α)

1− rn−1/2−iy
dy .

We have

|Γ (1/2− n+ iy)|2 = π

cosh(πy)

1
n∏

k=1

((k − 1/2)2 + y2)
≤ π

cosh(πy)

1

1/4(n− 1)!2
,

and, from Lemma 2, for n ≥ 2,∣∣Li3/2−n+iy (α)
∣∣ ≤ ζ(2) (n+ 1/2)n+1/2 (e ln(1/|α|))−n−1/2

.

For n ≥ 2, we obtain

|In (α)| ≤
c

ln (1/|α|)

(
s

r ln (1/|α|)

)n−1/2
(n+ 1/2)n+1/2e−n

(n− 1)!︸ ︷︷ ︸
:=d(n)

rn−1/2

rn−1/2 − 1

with c := 2
√
πζ(2)e−1/2

∫
R

1√
cosh(πy)

dy < +∞. From Stirling’s formula,

d(n) ∼
n→+∞

e1/2√
2π

n

and, since 0 < s < r ln (1/|α|), we have lim
n→+∞

In (α) = 0. □

Lemma 4. Assume that α ∈ C is such that 0 < |α| < 1. Let s be such that 0 < s <
r ln (1/|α|) and we write

Jn (α) :=
1

2iπ

∫ in−∞

in−1

s−zΓ(z)Li1+z(α)

1− r−z
dz .

We have

lim
n→+∞

Jn (α) = 0 and lim
n→−∞

Jn (α) = 0 .
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Proof. We study the following integral:∫ +∞

1

sx−inΓ(in− x)Li1−x+in(α)

1− rx−in
dx.

Let x ≥ 1. We have:

•
∣∣∣ sx−in

1−rx−in

∣∣∣ ≤ 2 sx

rx
,

• |Li1−x+in(α)| ≤ ζ(2)(1 + x)1+x (e ln(1/|α|))−1−x for x > 1 from Lemma 2,
• Γ(in− x) = (in− x− 1)Γ(in− x− 1) and

Γ(in− x− 1) ∼
√
2π(in− x− 1)in−x−3/2e−in+1+x

as x → +∞. Hence,

|Γ(in− x)| ∼
x→+∞

√
2π

ex+1√
(x+ 1)2 + n2

x+1/2
e−n arg(in−x−1).

It remains to study(
s

r ln (1/|α|)

)x (
(1 + x)2

(1 + x)2 + n2

)
︸ ︷︷ ︸

≤1

x
2
+ 1

4√
1 + xe−n arg(in−x−1).

If n ≥ 0 then−n arg(in−x−1) ≤ −nπ
2
, which is negative. If n < 0 then−n arg(in−x−1) ≤

nπ
2
, which is also negative. We obtain the desired result. □

Lemma 5. Assume α ∈ C is such that 0 < |α| < 1. Let s > 0 and a > 0. Let

Ky (α) :=
1

2iπ

∫ iy+a

iy−1

s−zΓ(z)Li1+z(α)

1− r−z
dz.

There exists an increasing (resp. decreasing) sequence (un)n∈N (resp. (vn)n∈N) such that
un ∈ N (resp. vn ∈ Z≤0) and such that

lim
n→+∞

Kun (α) = 0 and lim
n→+∞

Kvn (α) = 0.

Proof. We want to avoid the poles of 1
rx+in−1

for x ∈ [−a, 1]. We have

|rx+in − 1|2 = r2x − 2rx cos (n ln(r)) + 1
≥ sin2 (n ln(r))

(because the minimum of X2 − 2X cos (n ln(r)) + 1 is attained at X = cos (n ln(r))).

Now ln(r)
2π

̸∈ Q otherwise we would have eπ ∈ Q (a contradiction), so that by Weyl’s
equidistribution theorem, there exists an increasing sequence (un)n∈N such that un ∈ N
and such that |rx+iun − 1| ≥ 1/2 for all n ∈ N. Moreover,

• |Li1−x+in(α)| ≤ 1
1−|α| by Lemma 2,

• |Γ(in− x)| ∼
n→+∞

√
2πex|in− x|−(x+1/2)e−n arg(in−x).
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Since if n ̸= 0, −n arg(in − x) < −|n|c where c is a positive constant, the first point is
proved. The second point is similar. □

Lemma 6. Let α ∈ C \ [1,+∞). Let ωα be any number in (0, π/2) if |α| ≤ 1, and any
number in (0, arctan(| arg(α)|/ ln |α|)) if |α| > 1. Then, for any y ∈ R, x > 0, we have

|Γ(x+ iy)Lix+iy(α)| ≤ e−ωα|y|Isign(y)ωα(x)

where

Iω(x) := |α|
∫ +∞

0

ux−1

|eueiω − α|
du < +∞.

Proof. For any α ∈ C \ [1,+∞) and any s such that ℜ(s) > 0, we have

Lis(α) =
α

Γ(s)

∫ +∞

0

ts−1

et − α
dt.

(This provides the analytic continuation of Lis(α) to this region.)
If |α| ≤ 1, then et −α vanishes for no t such that ℜ(t) > 0. Then, by Cauchy’s formula,

we have ∫ +∞

0

ts−1

et − α
dt =

∫ eiω∞

0

ts−1

et − α
dt

= eiωs
∫ +∞

0

us−1

eueiω − α
du.

for any ω ∈ (−π/2, π/2) \ {0}. Therefore, we have

|Γ(x+ iy)Lix+iy(α)| ≤ e−ωyIω(x)

where

Iω(x) := |α|
∫ +∞

0

ux−1

|eueiω − α|
du.

If y > 0, we take ω > 0 while if y < 0, we take ω < 0, and eventually we set ωα := |ω|.
If |α| > 1, then et − α vanishes for no t such that ℜ(t) > 0 and

arg(t) ∈
(
− arctan

( | arg(α)|
ln |α|

)
, arctan

( | arg(α)|
ln |α|

))
.

We conclude as above. □

2.2. Completion of the proof of Theorem 1. The function

gα,s(z) = s−zΓ(z)Li1+z(α)

1− r−z

has the following poles in the the plane Re(z) < a (a > 0):

• simple poles at 0,−1,−2, . . . ,−n, . . . of Γ whose residue is (−1)n

n!
;

• simple poles at zk :=
2iπk
ln(r)

, k ∈ Z of 1
1−r−z .

The residue of gα,s at
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• z = −n, n a positive integer, is

sn
(−1)n

n!

1

1− rn
Li1−n(α) ,

where Li1−n(α) is a rational function (of the variable α).
• z = 2iπk

ln(r)
, k a nonzero integer, is

1

ln(r)
s−

2iπk
ln(r)Γ

(
2iπk

ln(r)

)
Li1+ 2iπk

ln(r)
(α) .

• z = 0 (double pole) is

(
γ + ln(s)

)
logr(1− α)− log(1− α)

2
+

ℓ(α)

ln(r)
.

Let us define the rectangle Cm,n with vertices −m+ 1
2
+ iun, −m+ 1

2
+ ivn, a+ ivn and

a + iun where m ≥ 2 is an integer and (un)n≥0, (vn)n≥0 are defined as in Lemma 5. We
have

1

2iπ

∫
Cm,n

gα,s(z)dz =
m−1∑
ℓ=1

sℓ
(−1)ℓ

ℓ!

1

1− rℓ
Li1−ℓ(α)

+
1

ln(r)

∑
k∈Z\{0},vn<| 2πk

ln(r)
|<un

s−
2iπk
ln(r)Γ

(
2iπk

ln(r)

)
Li1+ 2iπk

ln(r)
(α)

+
(
γ + ln(s)

)
logr(1− α)− log(1− α)

2
+

ℓ(α)

ln(r)
. (2.2)

We shall now let m,n → +∞ in (2.2). We first need two lemmas.

Lemma 7. The series

φ1(α, s) :=
1

ln(r)

∑
k∈Z\{0}

s−
2iπk
ln(r)Γ

(
2iπk

ln(r)

)
Li1+ 2iπk

ln(r)
(α)

converges for all α ∈ C \ [1,+∞) and all s in a sector {s ∈ C∗ : | arg(s)| < Ωα}, where
Ωα := π

2
if |α| ≤ 1, and Ωα := arctan(| arg(α)|/ ln |α|) if |α| > 1. This defines domains of

C on which φ1 is a holomorphic function of one of its variable when the other is fixed.

Proof. By Lemma 6 applied to x + iy := 1 + 2iπk
ln(r)

, for every α ∈ C \ [1,+∞), for all

k ∈ Z \ {0}, we have ∣∣∣Γ(2iπk
ln(r)

)
Li1+ 2iπk

ln(r)
(α)

∣∣∣ ≪α,r exp
(
− 2πωα

ln(r)
|k|

)
,
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where ωα is defined in Lemma 6. Assuming that | arg(s)| < ωα, we have for all k ∈ Z \ {0}∣∣∣Γ(2iπk
ln(r)

)
Li1+ 2iπk

ln(r)
(α)s−

2iπk
ln(r)

∣∣∣
≪α,r exp

(
− 2π

ln(r)

(
|k|ωα − k arg(s)

))
≤ exp

(
− 2π|k|

ln(r)

(
ωα − | arg(s)|

))
.

The result follows because ωα can be chosen arbitrarily close to Ωα. □

Lemma 8. The series

φ2(α, s) :=
∞∑
n=1

sn
(−1)n

n!

1

1− rn
Li1−n(α)

converges for all α ∈ C \ {1} and all s ∈ C such that |s| < r|α − 1|min(1, 1/|α|). This
defines domains of C on which φ2 is a holomorphic function of one of its variable when
the other is fixed.

Proof. Without loss of generality, we can assume below that n ≥ 2. We have

Li1−n(α) =
1

(1− α)n

n−2∑
k=0

A(n− 1, k)αn−1−k,

where A(n − 1, k) are Eulerian numbers (see for example the introduction of [15]). Since
n−2∑
k=0

A(n− 1, k) = (n− 1)! ,we have

|Li1−n(α)| ≤ |α|max(1, |α|)n−2

|α− 1|n
(n− 1)!

and since 1
rn−1

≤ 2
rn

for all n ≥ 2, we obtain

|φ2(α, s)| ≤
|s|

(r − 1)|α− 1|
+ 2|α|

∑
n≥2

1

n

(
s

r|α− 1|

)n

max(1, |α|)n−2.

The result follows. □

We also set

φ3(α, s) :=
(
γ + ln(s)

)
logr(1− α)− log(1− α)

2
+

ℓ(α)

ln(r)
.

This is a holomorphic function of (α, s) ∈ (C \ [1,+∞))× (C \ (−∞, 0]).
On the one hand, by Lemmas 7 and 8, asm,n → +∞, the right-side of (2.2) converges to

φ1(α, s)+φ2(α, s)+φ3(α, s) for any α ∈ C\[1,+∞) and any s ∈ C such that | arg(s)| < Ωα

and 0 < |s| < r|α− 1|min(1, 1/|α|).
On the other hand, Lemmas 1 to 5 ensure that, asm,n → +∞, the left-hand side of (2.2)

converges to ln(fα(e
−s)) for any 0 ̸= α ∈ (−1, 1) and any s such that 0 < s < r log(1/|α|).

Therefore, the identity

fα(e
−s) = exp

(
φ1(α, s) + φ2(α, s) + φ3(α, s)

)
(2.3)
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holds at least for every non-zero α ∈ (−1, 1) and every s ∈ R such that 0 < s < r ln(1/|α|)
and 0 < s < r|α − 1|min(1, 1/|α|). Now, the function fα(e

−s) is holomorphic in (α, s) ∈
C × {ℜ(s) > 0}. Hence given the analyticity properties of the involved functions, the
assumptions on α and s under which (2.3) holds can be relaxed to 0 ̸= α ∈ C\ [1,+∞) and
0 < s < rmax(ln(1/|α|), |α− 1|min(1, 1/|α|)). This completes the proof of Theorem 1.

3. Proof of Theorem 2

3.1. Preparatory results. Let r ≥ 2 be an integer. We consider equations of the form

y(z) = a(z)y(zr) + b(z)y
(
zr

2)
(3.1)

and we want to find conditions on a and b to apply a construction similar to [7] for giving
an asymptotic expansion of a solution f of (3.1) when z → 1−.
We recall that we assume a(z), b(z) ∈ R(z) to be such that

(H1) a(z), b(z) ∈ R+[[z]];
(H2) a(0) + b(0) = 1;
(H3) a(z) and b(z) are defined at z = 1;
(H4) a(z) and b(z) have no pole in D(0, 1);
(H5) a(z) and b(z) are not both constant;
(H6) For all z ∈ [0, 1], |rzr−1b(z)| < a(zr)2.

Without loss of generality, we assume a(z), b(z) ̸= 0 because if one of them is identically 0
then Eq. (3.1) is reduced to an equation of order 1.

We write

a(z) =
+∞∑
n=0

αnz
n and b(z) =

+∞∑
n=0

βnz
n

their Taylor series expansions. We first prove the existence of a unique holomorphic solution
of Eq. (3.1) in the open unit disk.

Proposition 1. Under Assumptions (H1)–(H6), Eq. (3.1) has a unique solution f (up to
multiplying f by a constant) which is holomorphic on the open unit disk D(0, 1).

Let
∑+∞

i=0 fnz
n be the Taylor expansion of f(z) at z = 0. If f0 > 0, respectively f0 <

0, then the coefficients fn are non-negative, respectively non-positive, and the radius of
convergence is equal to 1. If f0 = 0, then f is identically equal to 0.

Remark 5. • Only Assumptions (H1), (H2), (H4) and (H5) are needed in the proof of
that proposition. In fact, Assumption (H5) is only needed to prove that the radius of
convergence is equal to 1, see the remark after the proof.

Proof. From (3.1), we deduce a recurrence relation between the coefficients fn: for any
n ≥ 0, we have

fn =
n∑

k=0

αn−kf̃k +
n∑

k=0

βn−kf̂k (3.2)
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where

f̃k :=

{
fk/r if r divides k

0 otherwise

and

f̂k :=

{
fk/r2 if r2 divides k

0 otherwise .

If n = 0, then f0 = α0f0+β0f0: this relation is satisfied if f0 = 0, and also if f0 ̸= 0 because
α0 + β0 = a(0) + b(0) = 1 by assumption. For n ≥ 1, we see that on the right-hand side
of (3.2) we have the numbers fm for m ≤ n − 1 and not for m = n, so that the sequence
(fn)n≥0 is defined by (3.2) in a unique way from the value f0. Moreover it is readily check
by induction on n that fn ≥ 0 for all n ≥ 0 if f0 > 0, respectively fn ≤ 0 for all n ≥ 0 if
f0 < 0, because αn ≥ 0 and βn ≥ 0 for all n ≥ 0. Moreover, if f0 = 0, then it follows again
by induction that fn = 0 for all n ≥ 0.

We now prove that f is holomorphic on a neighborhood of 0 to begin with. Since a and
b are holomorphic functions at 0, there exist u1, u2 ∈ R+ and v1, v2 ∈ R+ such that for all
k ∈ N, we have |αk| ≤ u1v

k
1 and |αk| ≤ u2v

k
2 . Up to taking larger numbers v1 and v2, we

can assume that u1 = u2 = 1 and v1 = v2 := v. Moreover, we assume that v ≥ 27. Let
d ∈ N be such that |f0| ≤ d. Let us prove by induction on n ∈ N that for all n, we have

|fn| ≤ d(3v)n .

This result holds for n = 0. Let us prove that it holds for n ≥ 1 if we assume that it holds
for all k ≤ n− 1. From Equation (3.2), we have

|fn| ≤ d
n∑

k=0

vn−k(3v)k/r + d
n∑

k=0

vn−k(3v)k/r
2

≤ 2dvn
n∑

k=0

( r
√
3

v(r−1)/r

)k

= 2dvn
1(

v(r−1)/r
)n (v(r−1)/r

)n+1 − r
√
3
n+1

v(r−1)/r − r
√
3

≤ 2dvn
v(r−1)/r

v(r−1)/r − r
√
3
.

Since v ≥ 27 ≥ 3(r+1)/(r−1), we have v(r−1)/r ≥ 3 r
√
3 so that 2v(r−1)/r ≤ 3(v(r−1)/r − r

√
3)

and 2 v(r−1)/r

v(r−1)/r− r√3
≤ 3 ≤ 3n. Thus, |fn| ≤ d(3v)n, which concludes the induction.

From Eq. (3.1), the function f can be continued to a holomorphic function on the open
unit disk D(0, 1). Indeed, we have proved above that f is holomorphic on D(0, ε), the

open unit disk of radius ε for a certain ε ∈ (0, 1). Thus, z 7→ f(zr) and z 7→ f(zr
2
) are

holomorphic functions on D(0, r
√
ε) and on D(0, r2

√
ε) respectively. By Eq. (3.1) and the

fact that a(z) and b(z) are holomorphic on D(0, 1) (at least), this implies that f(z) can be
continued to a holomorphic function on D(0, r

√
ε). We repeat this process by replacing ε

by r
√
ε etc. Since rn

√
ε → 1 when n → +∞, we obtain that f can be analytically continued

to a holomorphic function on D(0, 1). It follows that the radius of convergence of the series∑
n≥0 fnz

n is ≥ 1.
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From [16, Theorem 4.3] (see also [6]) either the Taylor expansion of f has a radius of
convergence equal to 1, or f is a rational function. Let us now prove that this radius is
equal to 1 when f0 > 0. We first observe that there exists an integer c ≥ 1 such that
fc > 0. Indeed, taking the terms corresponding to k = 0 in the recurrence relation (3.2),
we have fc ≥ (αc + βc)f0 for any c ≥ 1. Since a and b are not both constant, there exists
at least one value of c ≥ 1 such that (αc + βc)f0 > 0, so that fc > 0.
If β0 = 0 (hence α0 = 1), we take n = crm+1 in (3.2) for any m ≥ 0, and only the term

for k = n in the two sums: we obtain fcrm+1 ≥ fcrm so that fcrm ≥ fc > 0 for all m ≥ 0
and thus the radius of convergence of

∑
n≥0 fnz

n must be ≤ 1.

We now assume that β0 ̸= 0. We take n = crm+2 in (3.2) for any m ≥ 0, and only the
term for k = n in the two sums: we have

fcrm+2 ≥ α0fcrm+1 + β0fcrm .

By induction on m ≥ 0, we deduce that fcrm ≥ gm for all m ≥ 0 where the sequence
(gm)m≥0 is defined by the Fibonacci-like recurrence relation gm+2 = α0gm+1 + β0gm and
g0 = fc > 0, g1 = fcr ≥ 0. There exists γ1 and γ2 such that gm = γ1δ

m
1 + γ2δ

m
2 where

δ1, δ2 are the roots of the characteristic polynomial X2 − α0X − β0. Since α0 + β0 = 1,
we have δ1 = 1 and δ2 = −β0. Moreover, γ1 and γ2 are determined by the equations
γ1 + γ2 = g0 = fc and γ1 − β0γ2 = g1 = fcr. We deduce that, for all m ≥ 0,

gm =
β0fc + fcr
1 + β0

+
fc − fcr
1 + β0

(−β0)
m.

If fc ≥ fcr, then fcrm ≥ gm ≥ β0fc+fcr
1+β0

> 0 for all even integers m ≥ 0. If fc < fcr, then

fcrm ≥ gm ≥ β0fc+fcr
1+β0

> 0 for all odd integers m ≥ 1. Hence, in both cases, the radius of

convergence of
∑

n≥0 fnz
n must be ≤ 1. □

Remark 6. • In the above proof, the assumption that a(z) and b(z) are not both constant
is only used to ensure that the radius of convergence of the Taylor expansion of f(z) is
≤ 1, while it had already been proved to be ≥ 1. Let us now keep all our assumptions
on a(z) and b(z), except that we assume a(z) and b(z) to be constant functions, denoted
by a ≥ 0 and b ≥ 0 respectively. Then the solutions f(z) :=

∑∞
n=0 fnz

n of the equation

y(z) = ay(zr) + by(zr
2
) are reduced to the constant functions. The function f(z) = 0 is a

solution, and if we seek a non-zero solution, then we have seen in the proof of Proposition 1
that we must have a + b = 1 and f0 ̸= 0. We now assume that f0 > 0, the case f0 < 0
begin delt in a similar way. We know that f is holomorphic at the origin with radius of
convergence of its Taylor expansion ≥ 1, and let us assume that f is not a constant. Since
fn ≥ 0 for all n ≥ 0 and fm > 0 for at least one m ≥ 1, f is increasing on [0, 1). Thus for

any z ∈ (0, 1), we have f(zr) < f(z). But f(z) = af(zr) + bf(zr
2
) ≤ (a+ b)f(zr) = f(zr),

contradiction.

Without loss of generality, we assume from now on f0 > 0 (up to replacing f(z) by −f(z)
in Eq. (3.1) if f0 < 0). We now set µ(z) := f(z)/f(zr): this is a well-defined function
for z ∈ [0, 1) because f(z) > 0 on [0, 1). We have µ(z) ≥ 1 for all z ∈ [0, 1) because f is
increasing on [0, 1). Moreover, µ(z) is independent of the choice of f0 > 0 and it is C∞ on
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[0, 1). (The radius of convergence of the Taylor expansion of µ at the origin is |ξ1/r| where
ξ is a zero of minimal modulus of f in D(0, 1) such that f(ξ1/r) ̸= 0; if there is no such ξ,
then µ is analytic in D(0, 1).) From (3.1), we have

µ(z) = a(z) +
b(z)

µ(zr)
. (3.3)

This non-linear Mahler equation is crucial to understand the analytic properties of µ(z)
for z ∈ [0, 1), which are stated in the next lemmas.

Lemma 9. The limits of µ(z) and of µ′(z) when z → 1− exist. They are denoted by µ1

and µ′
1 respectively: we have µ1 > 1 and µ′

1 > 0.

Proof. Let ℓ := lim inf
z→1−

µ(z) and L := lim sup
z→1−

µ(z). Since µ(z) ≥ 1, we have 1 ≤ ℓ ≤ L.

From (3.3), if L = +∞ then ℓ = a(1) < +∞ and thus L = a(1) + b(1)/ℓ < +∞, which is
a contradiction. Therefore, L < +∞ and ℓ < +∞. From (3.3), we obtain

ℓ = a(1) +
b(1)

L
and L = a(1) +

b(1)

ℓ

so that a(1)(ℓ−L) = 0. Since a(1) > 0 (because a(z) ∈ R+[[z]] \ {0}), we thus have ℓ = L
and the limit of µ(z) when z → 1− exists. Moreover, ℓ is a solution ofX2−a(1)X−b(1) = 0.
This equation has only one nonnegative solution, hence

µ1 =
a(1) +

√
a(1)2 + 4b(1)

2
> 0.

The function µ′(z) satisfies

µ′(z) = ρ(z) + σ(z)µ′(zr) where ρ(z) = a′(z) +
b′(z)

µ(zr)
, σ(z) = −rzr−1 b(z)

µ(zr)2
. (3.4)

We have

µ′(z) =
N∑

n=0

(σσr . . . σrn−1ρrn)(z) + µ′(zrN+1) N∏
n=0

σrn(z)

where ρk(z) := ρ(zk) and σk(z) := σ(zk). Since we assume (H6), ie |rzr−1b(z)| < a(zr)2 for
all z ∈ [0, 1], we have for all z ∈ [0, 1]

|rzr−1b(z)| < a(zr)2 ≤ µ(zr)2,

the last inequality coming from the fact 0 ≤ a(z) ≤ µ(z) by (3.3). Thus, for all z ∈ [0, 1],
|σ(z)| < 1. Since σ is a continuous function on [0, 1], there exists c ∈ (0, 1) such that
|σ(z)| ≤ c. Therefore, for all z ∈ [0, 1],

lim
N→+∞

N∏
n=0

σrn(z) = 0.
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Moreover, lim
z→0

µ′(z) = f1/f0 < +∞. Thus, for all z ∈ [0, 1),

µ′(z) =
+∞∑
n=0

mn(z) where mn := σσr . . . σrn−1ρrn . (3.5)

We know that µ′ is a continuous function on [0, 1). Moreover, there exists d ∈ R+ such
that |ρ(z)| ≤ d for all z ∈ [0, 1]. Thus, the series given in (3.5) is normally convergent
on [0, 1] because

∑+∞
n=0 ||mn||∞ ≤ d

∑+∞
n=0 c

n < +∞. Therefore, the limit of µ′(z) when
z → 1− exists and

lim
z→1−

µ′(z) =
+∞∑
n=0

mn(1) =

(
a′(1) +

b′(1)

µ1

) +∞∑
n=0

(
−rb(1)

µ2
1

)n

= µ1
a′(1)µ1 + b′(1)

µ2
1 + rb(1)

.

Moreover, since a and b are in R+[[z]] and are not both constants, we have either a(1) >
a(0) or b(1) > b(0), and either a′(1) > 0 or b′(1) > 0. It follows that

µ1 =
a(1) +

√
a(1)2 + 4b(1)

2
>

a(0) +
√
a(0)2 + 4b(0)

2
.

Hence, since a(0) + b(0) = 1 (and in particular a(0) ≤ 1), we have that
√
a(0)2 + 4b(0) =

|a(0)− 2| = 2− a(0). Consequently, µ1 >
a(0)+2−a(0)

2
= 1. Finally, µ′

1 > 0 because

µ′
1 = µ1

a′(1)µ1 + b′(1)

µ2
1 + rb(1)

> 0.

This completes the proof. □

Remark 7. • The existence and the computation of the value of the limit of µ(z) as z → 1−

can be obtained from Theorem 1 of [5], which can be applied here because the roots of
X2 − a(1)X − b(1) have distinct modulus. We then have

f(z)

f(zr)
=

C(z)(1− zr)logr(µ1)

C(zr)(1− z)logr(µ1)
(1 + o(1)) =

(1− zr)logr(µ1)

(1− z)logr(µ1)
(1 + o(1)) → µ1, z → 1−

because C(z) = C(zr). Our proof is more direct and does not use that theorem.
• The existence and the computation of the value of the limit of µ′(z) as z → 1− could

be much simplified if we knew a priori that µ′(z) ≥ 0 in an interval [1 − ε, 1). Indeed,
let ℓ′ = lim infz→1− µ′(z) and L′ = lim infz→1− µ′(z). Taking lim sup in (3.4), we obtain
L′ = ρ(1)+σ(1)ℓ′ ≤ ρ(1) because σ(1) ≤ 0 and ℓ′ ≥ 0. Hence L′ is finite and taking lim inf
in (3.4) we obtain that ℓ′ = ρ(1) + σ(1)L′. It follows that (σ(1) + 1)(L′ − ℓ′) = 0. But
σ(1) = −rb(1)/µ(1)2 ̸= −1 by (H6), so that L′ = ℓ′.

Lemma 10. Under Assumptions (H1)–(H6), for any β ∈ (0, 2] such that b(1)rβ < µ2
1, we

have (3)

µ′′(e−t) = O(tβ−2), t → 0+.

3In this Lemma, the real assumption used is 0 < |b(1)|rβ < µ2
1, which is equivalent to b(1)rβ < µ2

1 in
our situation; this could be useful in other contexts.
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Proof. Let δ := 1 + b(1)rβ/µ2
1. By construction, we have 1 < δ < 2. Let d > 0 be such

that (1 + d)δ < 2 + d. Since z 7→ 2 + z − δ(1 + z) takes a positive value at z = 0, there
exists such a d. Differentiating both sides of (3.4) gives

µ′′(z) = A(z) +B(z)µ′′(zr)

where A(z) is a continuous function on [0, 1] and B(z) = −r2z2(r−1)b(z)/µ(zr)2. Let
M ∈ R+ be such that |A(z)| ≤ M for all z ∈ [0, 1]. Let z = e−t with t ∈ (0,+∞).
Thus, from the previous equation,

µ′′(e−t) = A(t) + B(t)µ′′(e−rt) (3.6)

where A(t) := A(e−t) and B(t) := B(e−t).
Since

B(t) = −r2e−2(r−1)t b(e−t)

µ(e−rt)2
= −r2b(1)

µ2
1

+O(t), t → 0+,

there exists 0 < ε < 1 such that

∀t ∈ (0, ε), |B(t)| < r2b(1)

µ2
1

(1 + d).

Let t0 ∈ (0, ε). The function |µ′′(e−t)|/tβ−2 is non-negative and continuous on [t0, ε]. We
denote by m its maximum on [t0, ε]. We choose

C > max
(
m,

M

2 + d− δ(1 + d)

)
.

We prove by induction on k ≥ 0 that

∀t ∈
[ t0
rk
, ε
)
,

∣∣µ′′(e−t)
∣∣ ≤ Ctβ−2.

The case k = 0 is an immediate consequence of the choice of C. Assume it is true for
k = k0 ≥ 0, then if t ∈

[
t0

rk0+1 ,
t0
rk0

]
, we have by Eq. (3.6)

|µ′′(e−t)| ≤ M + |B(t)|C(rt)β−2

≤ M + b(1)

µ2
1
rβ(1 + d)Ctβ−2 = M + C(δ − 1)(1 + d)tβ−2.

However, since 0 ≤ M ≤ C(2 + d− δ(1 + d)) and 0 ≤ t2−β ≤ 1, we have

t2−βM ≤ C(2 + d− δ(1 + d)) = C(1 + (1− δ)(1 + d))

so that M + C(δ − 1)(1 + d)tβ−2 ≤ Ctβ−2 and∣∣µ′′(e−t)
∣∣ ≤ Ctβ−2,

which concludes the induction and proves the lemma. □

Corollary 2. Under Assumptions (H1)–(H6), we have

µ′(e−t) = µ′
1 +O(tmin(α−1,1)) and µ(e−t) = µ1 − tµ′

1 +O(tmin(α,2)), t → 0+

where α > 1 is defined by rαb(1) = a(1)2.
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Proof. We can apply Lemma 10 with β := min(α, 2) ∈ (1, 2] because rαb(1) < µ2
1. Hence,

µ′′(e−t) = O
(
tβ−2

)
, t → 0+.

With t = ln(1/z) = 1− z + o(1− z) when z → 1−, we deduce that

µ′′(z) = O
(
(1− z)β−2

)
, z → 1−.

Because β > 1, we can integrate twice over the interval [z, 1] and we obtain

µ′(z) = µ′
1 +O

(
(1− z)β−1

)
, µ(z) = µ1 + µ′

1(z − 1) +O
(
(1− z)β

)
, z → 1−

We now make the change of variables z = e−t: we have

µ′(e−t) = µ′
1 +O(tβ−1), µ(e−t) = µ1 + µ′

1(−t+O(t2)) +O
(
tβ
)
, t → 0+

and the result follows. □

3.2. Completion of the proof of Theorem 2. In order to obtain the precise asymptotic
behavior of f(z) as z → 1−, we consider the two Mellin transforms:

F(s) :=

∫ +∞

0

ln(f(e−t))ts−1dt

and

M(s) :=

∫ +∞

0

ln(µ(e−t))ts−1dt.

The integrands are well defined because f(e−t) > 0 and µ(e−t) > 0 on (0,+∞). These
integrals are convergent for s ∈ H0 because:

1) f(z) = 1+O(z) and µ(z) = 1+O(z) as z → 0+, which ensures the convergence of both
integrals at t = +∞ because ln(f(e−t)) and ln(µ(e−t)) are both O(e−t) when t → +∞.
2) µ(1) is finite and, since the equation X2 − a(1)X − b(1) has two distinct roots with

µ1 > 1 the one having the greatest absolute value, Theorem 1 of [5] implies that f(z) =
O
(
(1 − z)− logr(µ1)

)
when z → 1−. Hence ln(µ(e−t)) = O(1) and ln(f(e−t)) = O(ln(1/t))

when t → 0+. This ensures the convergence of both integrals at t = 0.

Therefore both F(s) and M(s) define analytic functions on the half plane H0. Our goal
is to meromorphically continue F and M to a larger domain. By definition of µ(z), we
trivially have

(1− r−s)F(s) = M(s), ℜ(s) > 0.

We define

µ̃(t) := ln(µ(e−t))− ln(µ1)e
−λt, (3.7)

where

λ :=
µ′
1

µ1 ln(µ1)
> 0

by Lemma 9.
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Lemma 11. Under Assumptions (H1)–(H6), we have

µ̃(t) = O(e−min(λ,1)t), t → +∞.

and

µ̃(t) = O(tmin(α,2)), t → 0+.

Proof. Since ln(µ(e−t)) = O(e−t), we deduce from (3.7) that µ̃(t) = O(e−min(λ,1)t) when
t → +∞. By Corollary 2, we have

µ̃(t) =
t→0+

(λ ln(µ1)− µ′
1/µ1)t+O(t2) +O(tmin(α,2)) = O(tmin(α,2))

because λ ln(µ1)− µ′
1/µ1 = 0. □

Now, we have for s ∈ H0:

M(s) = M̃(s) + ln(µ1)λ
−sΓ(s) (3.8)

where

M̃(s) :=

∫ +∞

0

µ̃(t)ts−1dt.

Under Assumptions (H1)–(H6), Lemma 11 implies that M̃(s) converges for s in Hmin(α,2)

on which it is an analytic function. Consequently, M(s) and F(s) can both be meromor-

phically extended toHmin(α,2). Since M̃(s) has no singularities inHmin(α,2), the singularities

of M(s) are those of ln(µ1)λ
−sΓ(s). Since F(s) = M(s)

1−r−s , the singularities of F in Hmin(α,2)

are:

(1) a double pole at s = 0 coming from the pole of Γ and the fact that 1− r−s vanishes
at s = 0 ;

(2) simple poles at s = 2ikπ/ ln(r) for k ∈ Z \ {0}, where 1− r−s vanishes.
(3) a simple pole at s = −1, which is a pole of Γ.

Lemma 12. Let x ∈ R and y ∈ R∗. Under (H1)–(H6), the functions M(x + iy) and

M̃(x+ iy) are both Ox (|y|−2) when y → ±∞ for any x > −min(α, 2).

Proof. The proof is similar to the one given in [7, p. 9]. Under (H1)–(H6), by lemma (11),
we have that µ̃(t) = O(tmin(α,2)) as t → 0+ and µ̃(t) = O(e−min(λ,1)t) as t → +∞. Hence,
for x > −min(α, 2) and y ∈ R⋆, an integration by parts gives

M̃(x+ iy) =

∫ +∞

0

µ̃(t)tx+iy−1dt

=

[
µ̃(t)

tx+iy

x+ iy

]+∞

0

−
∫ +∞

0

µ̃′(t)
tx+iy

x+ iy
dt = − 1

x+ iy

∫ +∞

0

µ̃′(t)tx+iydt.

The second integral converges for x > −min(α, 2) because µ̃′(t) = −e−tµ′(e−t)/µ(e−t) +
λ ln(µ1)e

−λt = O(tmin(α−1,1)) as t → 0+ and µ̃′(t) = O(e−min(λ,1)t) as t → +∞. We can
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perform a second integration by parts for x > −min(α, 2):

M̃(x+ iy) =

[
− µ̃′(t)tx+iy+1

(x+ iy)(x+ 1 + iy)

]+∞

0

+

∫ +∞

0

µ̃′′(t)tx+iy+1

(x+ iy)(x+ 1 + iy)
dt

=
1

(x+ iy)(x+ 1 + iy)

∫ +∞

0

µ̃′′(t)tx+iy+1dt.

The second integral converges (absolutely) because µ̃′′(t) = O(tmin(α−2,0)) as t → 0+ and
µ̃′′(t) = O(e−min(λ,1)t) as t → +∞. Therefore, for all x > −min(α, 2) and y ̸= 0, we have∣∣∣M̃(x+ iy)

∣∣∣ ≤ 1

|y|2

∫ +∞

0

|µ̃′′(t)|tx+1dt = Ox(1/|y|2), y → ±∞.

Moreover, by Stirling’s formula and λ > 0, λ−(x+iy)Γ(x+ iy) = Ox(e
−πy/2) when y → ±∞.

From Eq. (3.8), we obtain the desired bound for M(x+ iy) itself. □

Proof of Theorem 2. First, we look at the double pole at s = 0 of F . We have

Γ(s) =
1

s
− γ +O(s) and

1

1− r−s
=

1

ln(r)

1

s
+

1

2
+O(s).

Thus,

F(s) =
ln(µ1)

ln(r)

1

s2
+

c0
s
+O(1),

where

c0 =
κ0

ln(r)
+

ln(µ1)

2

and κ0 is the constant term in the Laurent expansion of M(s) at s = 0. From the
“Mellin dictionary” in [12, pp 762–765], this contributes the term logr(µ1) ln(1/s) + c0 in
the expansion (1.8).

The simple pole at s = 2ikπ/ ln(r) of F for k ∈ Z \ {0} has residue

1

ln(r)
M

(2ikπ
ln(r)

)
.

Thus, for the simple pole at 2ikπ/ ln(r), the dictionary provides the term

Mk(s) :=
1

ln(r)
M

(2ikπ
ln(r)

)
s−

2ikπ
ln(r) .

in the expansion (1.8). The series
∑

k∈Z\{0}Mk(s) converges because, by Lemma 12 with

x = 0, M(iy) = O (|y|−2) as y → ±∞.
Finally, the simple pole of F at s = −1 has residue c1 := λ ln(µ1)/(r−1) = µ′

1/((r−1)µ1),
and this contributes to the term c1s in the expansion (1.8).
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Adding all these contributions proves the expansion (1.8) of ln(f(e−s)) as s → 0+. The
error term Oε(s

min(α,2)−ε) is a consequence of the inverse Mellin transform (see [12, p. 764,
(47)]): for any c > −min(2, α) and any s > 0, we have

1

2iπ

∫ c+i∞

c−i∞
s−zM̃(z)dz = Oc(s

−c)

because M̃(z) is analytic in Hmin(α,2) and its modulus decays like 1/ℑ(z)2 as ℑ(z) → ±+∞
by Lemma 12. □

4. The generating function of the Baum-Sweet sequence

The Baum-Sweet sequence (bn)n≥0 ∈ {0, 1}N is a celebrated automatic sequence intro-
duced in [2] and defined recursively by the relations b0 = 1, b2n+1 = bn, b4n = bn and
b4n+2 = 0. The generating function S(z) :=

∑∞
n=0 bnz

n is a solution of the 2-Mahler
equation of order 2:

y(z) = zy(z2) + y(z4). (4.1)

We have S(z) = 1 + z + z3 + z4 + z7 + . . . ∈ 1 + zR+[[z]], so that µ(z) := S(z)/S(z2) =
1 + z − z2 + 2z4 − 3z6 + z8 − 4z10 + 6z12 + . . . is holomorphic at z = 0, ≥ 1 on [0, 1) and
in C∞([0, 1)). (4) Eq. 4.1 satisfies Assumptions (H1)–(H5) but not (H6). From the proof
of Theorem 2, it follows that µ1 := limz→1− µ(z) exists and is equal to the largest root of
X2 −X − 1, ie µ1 =

1
2
(
√
5 + 1) > 1. Though (H6) does not hold, we shall now prove by a

direct computation that

µ′
1 := lim

z→1−
µ′(z) =

1

1 + δ
> 0 (4.2)

where δ := 2/µ2
1 ≈ 0.76, and that there exists α ∈ (1, 2] such that

µ′′(e−t) = O(tα−2). (4.3)

We fix z0 ∈ (0, 1); its value is irrelevant in the sequel. On [z0, z
1/2
0 ], we have u0 :=

minµ′(z) ≤ µ′(z) ≤ maxµ′(z) =: v0, where min and max are taken on this interval. We
are going to define by induction two particular sequences (uk)k≥0 and (vk)k≥0 such that for

all k ≥ 0 and all z ∈ [z
1/2k

0 , z
1/2k+1

0 ] we have uk ≤ µ′(z) ≤ vk.
This is already done for k = 0 and let us assume uk and vk are defined for k = n. Let

xn, yn ∈ [z
1/2n

0 , z
1/2n+1

0 ] be such that µ(xn), respectively µ(yn), is the minimal, respectively
the maximal value taken by µ on this interval. Since µ ≥ 1, we have in particular µ(xn) ̸=
0 and µ(yn) ̸= 0. Note that clearly, limn→+∞ µ(xn) = limn→+∞ µ(yn) = µ1. For all

z ∈ [z
1/2n

0 , z
1/2n+1

0 ], we have

0 < tn :=
2z

1/2n+1

0

µ(yn)2
≤ 2z1/2

µ(z)2
≤ 2z

1/2n+2

0

µ(xn)2
=: sn

4From the functional equation µ(z) − z = 1/µ(z2), it is clear that µ(z) − z =
∑∞

n=0 mnz
2n. It seems

that for all n ≥ 0 (−1)nmn ≥ 0 (and possibly > 0); this property is not essential for us. Since we prove
that limz→1− µ(z) exists, the sign of mn cannot eventually always be the same.
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and un ≤ µ′(z) ≤ vn. Let

αn :=

{
sn if vn ≥ 0

tn if vn < 0
and βn :=

{
tn if un ≥ 0

sn if un < 0.

By construction, we have

βnun ≤ 2z1/2

µ(z)2
µ′(z) ≤ αnvn

for all z ∈ [z
1/2n

0 , z
1/2n+1

0 ]. Now, from the functional equation (4.1) for S(z), we deduce

that µ′(z1/2) = 1− 2z1/2

µ(z)2
µ′(z). Hence, for all z ∈ [z

1/2n

0 , z
1/2n+1

0 ],

un+1 ≤ µ′(z1/2) ≤ vn+1 where

{
un+1 := 1− αnvn
vn+1 := 1− βnun.

In other words, for all z ∈ [z
1/2n+1

0 , z
1/2n+2

0 ], we have un+1 ≤ µ′(z) ≤ vn+1 . This completes
the recursive definition of the sequences (uk)k≥0 and (vk)k≥0.

We shall now prove that whatever is the value chosen for z0 ∈ (0, 1), we have

lim
n→+∞

un = lim
n→+∞

vn =
1

1 + δ
. (4.4)

Since un ≤ µ′(z) ≤ vn for all z ∈ [z
1/2n

0 , z
1/2n+1

0 ] and z
1/2n

0 → 1 as n → +∞, Eq. (4.2) will
follow. (Note that the value of µ′

1 is of course the one given by the functional equation
µ′(z) = 1− 2zµ′(z2)/µ(z2)2 when we let z → 1− on both sides.)
Since un+1 = 1− αnvn and vn = 1− βn−1un−1 , we have

un+1 = 1− αn + αnβn−1un−1. (4.5)

Let us assume n is odd. Iterating (4.5), we have

un+1 = u0

(n−1)/2∏
k=0

(αn−2kβn−2k−1) +

(n−1)/2∑
j=0

(
(1− αn−2j)

j−1∏
k=0

(αn−2kβn−2k−1)
)
.

Since αn and βn → δ := 2/µ2
1 < 1 because both tn and sn → δ := 2/µ2

1, we have

lim
n→+∞

(n−1)/2∏
k=0

(αn−2kβn−2k−1) = 0.

Moreover for any fixed j ≥ 0,

lim
n→+∞

(1− αn−2j)

j−1∏
k=0

(αn−2kβn−2k−1) = (1− δ)δ2j

and for all n, j ≥ 0, we have

|1− αn−2j|
j−1∏
k=0

(αn−2kβn−2k−1) < C(0.6)j
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(the left-hand side is even equal to 0 if j > (n − 1)/2) because there exists k0 ≥ 0 (that
depends on z0 only) such that for all k ≥ k0, we have 0 < αkβk−1 < 0.6. The constant C
depends only on α1, β0, . . . , αk0 , βk0−1 and neither on j nor on n. Since

∑
j(0.6)

j < +∞,

we can apply Tannery’s theorem (ie dominated convergence for series) and deduce that

lim
n→+∞,n odd

un+1 = (1− δ)
∞∑
j=0

δ2j =
1

1 + δ
.

We proceed similarly when n is even with minor changes, and also for the sequence
(vn)n≥0 which satisfies vn+1 = 1 − βn + αn−1βnvn−1. We eventually obtain Eq. (4.4) and
then Eq. (4.2) as expected.

Let us now prove that there exists α ∈ (1, 2] such that (4.3) holds. Indeed, the equation
2β = µ2

1 has a unique solution β0 := 2 log2(µ1) ≈ 1.39 ∈ (1, 2]. We can thus apply
Lemma 10 with β any fixed number in (1, β0). The proof of Lemma 10 can then be readily
adapted mutatis mutandis and this proves (4.3). Since β ∈ (1, 2], we are now exactly in
the same situation as in the proof of Theorem 2 starting from Corollary 2, with of course
a different definition of α because (H6) does not hold (not even for z = 1). Therefore, the
same analysis enables us to deduce that the conclusions of Theorem 2 hold for S(z) with
α := β0 (because of ε > 0); we have in particular

S(z) =
C(z)

(1− z)log2(
√
5+1)−1

(1 + o(1)), z → 1−,

where the function C(z) is given by (1.9).

5. Proof of Theorem 3

Using the variation of constants method, we see that the general solution of an inhomo-
geneous equation of order 1 of the form y(z) = p(z)y(zr) + q(z) (where p(z), q(z) ∈ C(z))
is formally given by

c
∞∏
n=0

p(zr
n

) +
∞∑
n=0

p(z)p(zr) · · · p(zrn−1

)q(zr
n

), c ∈ C.

This formula defines an analytic solution in the open unit disk D(0, 1) when, for instance,
p(z) ∈ 1+ zC[[z]] and q(z) ∈ zC[[z]] both do not have poles in this disk. The product falls
under the scope of Theorem 1 but when z → 1−, there does not seem to exist a general
method to study the precise behavior of the series.

In the rest of this section, we recall as a starter a result of Hardy, the proof of which is
similar to the proof of Theorem 1. Then we proceed with the proof of Theorem 3.

5.1. Hardy’s expansions. A classical case is p(z) = 1 and q(z) = z: the series

Hr(z) :=
∞∑
n=0

zr
n
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is solution of y(z) = y(zr)+z. It is also solution of the order 2 Mahler equation zr−1y(z) =

(1+ zr−1)y(zr)−y(zr
2
), which cannot be treated by Theorem 1 of [5] because 1 is a double

root of the characteristic polynomial X2 − 2X + 1 of the equation. However, in [13, p.
283], Hardy showed that, for any s > 0,

Hr(e
−s) =

∞∑
n=1

(−s)n

n!(1− rn)
− ln(s)

ln(r)
+

1

2
− γ

ln(r)
− 1

ln(r)

∑
k∈Z\{0}

Γ
(2iπk
ln(r)

)
s−

2iπk
ln(r) , (5.1)

which provides the exact behavior ofHr(z) as z → 1−. Hardy’s method might have inspired
de Bruijn because to prove (5.1) Hardy first justified that, for any a > 0,

Hr(e
−s) =

1

2iπ

∫ a+i∞

a−i∞

Γ(z)s−z

1− r−z
dz,

where (2.1) is used. This is an expression similar to the integral identity in Lemma 1.
Eq. (5.1) follows by the residue theorem applied to the poles of the integral on the right-

hand side: the poles are at 0 (double), 2iπk/ ln(r) (k ∈ Z \ {0}, simple) and k ∈ Z≤−1

(simple). The method can be generalized to the series Hr,β(z) :=
∑∞

n=0 β
nzr

n
, |β| ≥ 1

because

Hr,β(e
−s) =

1

2iπ

∫ a+i∞

a−i∞

Γ(z)s−z

1− βr−z
dz.

Hardy considered in detail the case β = −1 in [13, pp. 276–282]. However, his method

is very specific and it cannot be applied to the series
∑∞

n=0 p(z)p(z
r) · · · p(zrn−1

)q(zr
n
) in

general. A solution of an equation y(z) = p(z)y(zr) + q(z) is also a solution of

y(z) =
q(z) + q(zr)p(z)

q(zr)
y(zr)− q(z)p(zr)

q(zr)
y(zr

2

). (5.2)

But it seems difficult to apply Theorem 2 to this equation. This explains our more direct
approach to the solutions of the equation y(z) = p(z)y(zr)+ q(z). This approach, reflected
in Theorem 3, works in particular for Hr,β(z) for any β > r.

We conclude with the following remark. The function (which is a Hahn series; see [17])

F (z) :=
∞∑
n=0

(1− z1/2
n

)

is defined and holomorphic in C \ (−∞, 0], and it is a solution of the Mahler equation
y(z) = y(z2) + 1− z. This equation looks similar to the above equation for H2(z), but in
fact it does not have a solution defined at z = 0 (simply because y(0) ̸= y(0) + 1). The
asymptotic expansion of F (z) for z → 0+ is given in [12, p. 765, (49)]: for all ε > 0, we
have

F (e−s) =
ln(s)

ln(2)
+

γ

ln(2)
+

1

2
+

1

ln(2)

∑
k∈Z\{0}

Γ
( 2iπk

ln(2)

)
s−

2iπk
ln(2) +Oε(s

ε), s → +∞.

Observe the similarity with (5.1) for H2(e
−s), when s → 0+ this time.
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5.2. Proof of Theorem 3. We recall that we consider an inhomogeneous Mahler equation
of order 1

y(z) = p(z)y(zr) + q(z) (5.3)

where p(z), q(z) ∈ R(z) satisfy the following assumptions:

(A1) p(z), q(z) ∈ R+[[z]];
(A2) q(0) = 0;
(A3) p(z) and q(z) are defined at z = 1:
(A4) p(z) and q(z) have no pole in D(0, 1);
(A5) p(1) > r;

Note that if q is a constant, it is identically equal to 0 by (A2). Hence (5.3) reduces to
a Mahler equation of order 1, which is the subject of Theorem 1. Hence, there is no real
loss of generality in the sequel in assuming that q is not a constant, and we make this
assumption from now on.

a) We set p(z) =
∑∞

n=0 αnz
n and q(z) =

∑∞
n=0 βnz

n. Given any f0 ∈ C, Equation (5.3) has
a unique solution f(z) =

∑∞
n=0 fnz

n where the sequence (fn)n≥0 satisfies the recurrence
relation

fn =
n∑

k=0

αn−kf̃k + βn (5.4)

f̃k :=

{
fk/r if r divides k

0 otherwise

The case n = 0 reads f0 = α0f0 + β0 = α0f0: if α0 = 1, f0 is a free parameter, while
if α0 ̸= 1, f0 = 0 necessarily. For n ≥ 1, fn appears on left-hand side of (5.4) while on
the right-hand side there are only values fm with m < n; hence the sequence (fn)n≥0 is
uniquely determined once the value of f0 is fixed. By the same method used in §3.1 it can
be proved that f(z) is analytic in D(0, 1).

b) We are in fact in a situation where the formal solution of (5.3) is an analytic one, ie we
have

f(z) = f0

∞∏
n=0

p(zr
n

) +
∞∑
n=0

p(z)p(zr) · · · p(zrn−1

)q(zr
n

), z ∈ D(0, 1). (5.5)

The series converges on D(0, 1) and defines an analytic function because q(0) = 0. The
product defines an analytic function of D(0, 1) when p(0) = 1, while if p(0) ̸= 1, then
necessarily f0 = 0 and it is then understood that the right-hand side of (5.5) reduces to
the series. It is then clear from the expression of f(z) in (5.5) that the radius of convergence
of

∑∞
n=0 fnz

n is equal to 1 by positivity of the Taylor coefficients of p(z) and q(z).

c) Let us assume that p(z) is not a constant. Then we have p′(z) =
∑∞

n=1 nαnz
n ∈ R+[[z]]

and at least one of nαn is positive (for n = n0 ≥ 1 say). Hence,

p′(1) = lim
x→1−

∞∑
n=1

nαnx
n−1 ≥ lim

x→1−
n0αn0x

n0−1 = n0αn0 > 0.
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If p(z) is a constant, it is > r by (A5). This forces f0 = 0 and we shall see how to use this
information in g) below.

d) We assume from now on that f0 ≥ 0. By non negativity of αn and βn for all n ≥ 0, fn
is also non negative for all n. Moreover, since q is not a constant, there exists n1 ≥ 1 such
that βn1 > 0, which implies that fn1 > 0, hence that f(z) is not a constant. The function
f(z) is in f0 + zR+[[z]], is increasing and > 0 on (0, 1), all its derivatives are in R+[[z]],
increasing and ≥ 0 on [0, 1).

e) Recall that f(z) is solution of the second order Mahler equation (5.2). Following [5],
the associated characteristic equation is X2 − (p(1) + 1)X + p(1) = 0, whose solutions are
1 and p(1) > r ≥ 2. Hence, by Theorem 1 of [5], we have

f(z) =
C(z)

(1− z)logr(p(1))
(1 + o(1)), z → 1−,

where there exist two constants c1, c2 such that 0 < c1 ≤ C(z) ≤ c2 < +∞ for all z ∈ [0, 1].
We deduce from this that, for all z ∈ [1/2, 1),

c3
(1− z)logr(p(1))

≤ f(z) ≤ c4
(1− z)logr(p(1))

(5.6)

for some constants c3, c4 > 0. Moreover, for all z ∈ [1/2, 1),

0 ≤ f ′(z) ≤ c5
(1− z)logr(p(1))+1

, 0 ≤ f ′′(z) ≤ c6
(1− z)logr(p(1))+2

(5.7)

for some constants c5, c6 > 0. Indeed, by the mean value theorem, for all z ∈ [1/
√
2, 1),

there exists ζ ∈ (z2, z) such that

0 ≤ f ′(z2) ≤ f ′(ζ) =
f(z)− f(z2)

z − z2
≤ f(z)

z − z2
≤

√
2c4(1− z)− logr(p(1))−1

and similarly, there exists ζ ′ ∈ (z2, z) such that

0 ≤ f ′′(z2) ≤ f ′′(ζ ′) =
f ′(z)− f ′(z2)

z − z2
≤ f ′(z)

z − z2
≤ 2c4(1− z)− logr(p(1))−2.

(We used the fact that f , f ′ and f ′′ are increasing on [0, 1).)

f) We define ω := v0(f) ≥ 0. If ω ≥ 1 (ie if f0 = 0), then ω = v0(q). We have

f(z) = fωz
ω +O(zω+1) with fω > 0, and we normalize f by defining f̂(z) = f(z)/(fωz

ω) ∈
1 + zR+[[z]]. We also define µ̂(z) := f̂(z)/f̂(zr) = z(r−1)ωf(z)/f(zr) ∈ 1 + zR[[z]]; for all
z ∈ [0, 1), we have µ̂(z) ≥ 1, and moreover µ̂(z) is holomorphic at z = 0 and

µ̂(z) = p̂(z) +
q̂(z)

f(zr)
. (5.8)

where p̂(z) = z(r−1)ωp(z) and q̂(z) = z(r−1)ωq(z).
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Remark 8. • Note that the non-linear Mahler equation (deduced from Eq. (5.2))

µ̂(z) =
(
z(r−1)ω q(z)

q(zr)
+ z(r−1)ωp(z)

)
− z(r

2−1)ω q(z)p(z
r)

q(zr)
· 1

µ̂(zr)
(5.9)

and the value µ̂(0) = 1 if ω ≥ 1 (respectively the value µ̂(ℓ)(0) = p(ℓ)(0) + q(ℓ)(0)/f0 if
ω = 0, where ℓ := v0(q) ≥ 1) uniquely determine the coefficients of the Taylor expansion
µ̂(z) :=

∑∞
n=0 δnz

n (hence µ̂(z) itself in D(0, 1)) without any reference to f(z). Indeed, if
ω ≥ 1 it follows from the fact that

z(r−1)ω q(z)

q(zr)
+ z(r−1)ωp(z) ∈ R[[z]] and z(r

2−1)ω q(z)p(z
r)

q(zr)
∈ R[[z]].

If ω = 0, then f0 ̸= 0 by Eq. (5.5), which forces p(0) = 1, and µ̂ = µ. From Eq. (5.8),
µ̂(z) is of the form p(z)+ zℓ βℓ

f(zr)
+ zℓ+1h(z) with h(z) ∈ R[[z]], thus µ̂(z) and p(z) have the

same coefficients in their expansion from the order 0 to the order ℓ− 1 (included) and the
coefficient of order ℓ of µ̂ is µ̂(ℓ)(0)/ℓ! where µ̂(ℓ)(0) = p(ℓ)(0) + q(ℓ)(0)/f0. We know all the
coefficients δk for k ≤ ℓ and to determine a recurrence relation for δk with k > ℓ, we look
at the coefficient of order k + ℓ(r − 1) in the following equation:

q(zr)

q(z)
µ(z)µ(zr) = µ(zr)

(
1 +

p(z)q(zr)

q(z)

)
− p(zr) ,

(which follows from Eq. (5.9)).

g) For simplicity, we set η := logr(p(1)) > 1 (by (A5)). Since f(zr) → +∞ when z → 1−,
we deduce from (5.8) that

µ̂1 := lim
z→1−

µ̂(z) = p̂(1) = p(1) > r.

Moreover, we have

µ̂′(z) = p̂′(z) +
q̂′(z)

f(zr)
− rzr−1q̂(z)

f ′(zr)

f(zr)2
. (5.10)

The bounds (5.6) and (5.7) for f(zr) and f ′(zr) for z close to 1 implies that as z → 1−, we
have ∣∣∣∣ f ′(zr)

f(zr)2

∣∣∣∣ ≪ (1− z)η−1 → 0

because η > 1. Hence from (5.10),

µ̂′
1 := lim

z→1−
µ̂′(z) = p̂′(1) = (r − 1)ωp(1) + p′(1).

Moreover,

µ̂′′(z) = p̂′′(z) +
q̂′′(z)

f(zr)
− rzr−1q̂′(z)

f ′(zr)

f(zr)2

− (rzr−1q̂(z))′
f ′(zr)

f(zr)2
− (rzr−1)2q̂(z)

f ′′(zr)

f(zr)2
+ 2(rzr−1)2q̂(z)

f ′(zr)2

f(zr)3
.
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Since, as z → 1−,∣∣∣∣ f ′(zr)

f(zr)2

∣∣∣∣ ≪ (1− z)η−1,

∣∣∣∣f ′(zr)2

f(zr)3

∣∣∣∣ ≪ (1− z)η−2,

∣∣∣∣f ′′(zr)

f(zr)2

∣∣∣∣ ≪ (1− z)η−2,

and it follows that (5)

µ̂′′(z) = p̂′′(1) +O
(
(1− z)η−2

)
, z → 1−.

Since η − 2 > −1, we can integrate twice over the interval [z, 1], and we obtain

µ̂′(z) = p̂′(1) + p̂′′(1)(z − 1) +O
(
(1− z)η−1

)
, z → 1−.

and

µ̂(z) = p̂(1) + p̂′(1)(z − 1) +
1

2
p̂′′(1)(z − 1)2 +O

(
(1− z)η

)
, z → 1−.

With the change of variables z = e−t, these estimates become

µ̂′′(e−t) = p̂′′(1) +O
(
tη−2

)
, t → 0+,

µ̂′(e−t) = p̂′(1) +O
(
tmin(η−1,1)

)
, t → 0+.

and

µ̂(e−t) = p̂(1)− p̂′(1)t+O
(
tmin(η,2)

)
, t → 0+.

They are analogous to those given in Corollary 2.

h) In order to obtain the asymptotic expansion of f(z) as z → 1−, we consider the two
Mellin transforms:

F̂(s) :=

∫ +∞

0

ln(f̂(e−t))ts−1dt

and

M̂(s) :=

∫ +∞

0

ln(µ̂(e−t))ts−1dt.

The integrands are well defined because f̂(e−t) > 0 and µ̂(e−t) > 0 on (0,+∞). These
integrals are convergent for s ∈ H0 because:

1) f̂(z) = 1+O(z) and µ̂(z) = 1+O(z) as z → 0+, which ensures the convergence of both

integrals at t = +∞ because ln(f̂(e−t)) and ln(µ(e−t)) are both O(e−t) when t → +∞.

2) µ̂(1) is finite and f̂(z) = O
(
(1 − z)−η

)
when z → 1−. Hence ln(µ̂(e−t)) = O(1) and

ln(f̂(e−t)) = O(ln(1/t)) when t → 0+. This ensures the convergence of both integrals at
t = 0.

Therefore both F̂(s) and M̂(s) define analytic functions on the half plane H0. Our goal

is to meromorphically continue F̂(s) and M̂(s) to a larger domain. By definition of µ̂(z),
we have

(1− r−s)F̂(s) = M̂(s), ℜ(s) > 0.

5The term p̂′′(1) is negligeable if η ≤ 2 but not if η > 2.
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We define

λ̂ :=
µ̂′
1

µ̂1 ln(µ̂1)
=

p̂′(1)

p̂(1) ln(p̂(1))
.

We have p̂′(1) = (r − 1)ωp(1) + p′(1) > 0: indeed, note that if p(z) is not a constant,
then p̂′(1) ≥ r(r − 1)ω + p′(1) ≥ p′(1) > 0 (see c) above), while if p(z) is a constant then
necessarily f0 = 0, so that ω ≥ 1 and thus p̂′(1) = (r − 1)ωp(1) > r(r − 1) > 0. Moreover,

p̂(1) = p(1) > 2, so that λ̂ > 0.
Consider now ˜̂µ(t) := ln(µ̂(e−t))− ln(p(1))e−λ̂t.

We have ˜̂µ(t) = O(e−min(λ̂,1)t), t → +∞ and ˜̂µ(t) = O(tmin(η,2)), t → 0+.

Now, we have

M̂(s) =
˜̂M(s) + ln(p(1))λ̂−sΓ(s)

where ˜̂M(s) :=

∫ +∞

0

˜̂µ(t)ts−1dt.

Under Assumptions (A1)–(A5), this last integral converges in the half-plane Hmin(η,2), to

which M̂(s) and F̂(s) can now both be meromorphically extended. Since
˜̂M(s) has no

singularities in Hmin(η,2), the singularities of M̂(s) are those of ln(p(1))λ̂−sΓ(s). Since

F̂(s) = M̂(s)
1−r−s , the singularities of F̂ in Hmin(η,2) are:

(1) a double pole at s = 0 coming from the pole of Γ(s) and the fact that 1 − r−s

vanishes at s = 0 ;
(2) simple poles at s = 2ikπ/ ln(r) for k ∈ Z \ {0}, where 1− r−s vanishes.
(3) a simple pole at s = −1, which is a pole of Γ(s).

Moreover, an adaptation of the proof of Lemma 12 shows that under Assumptions (A1)–
(A5), we have for all x > −min(η, 2):

M̂(x+ iy) = Ox

(
|y|−2

)
, y → ±∞.

We can now complete the proof of Theorem 3 exactly as for Theorem 2, mutatis mutandis.

6. Beyond our theorems

In this section, we first present examples of interesting Mahler functions of order 2 which
are not covered by our theorems. We then discuss the case of Mahler equations of order
≥ 3.
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6.1. Mahler functions of order 2. Theorem 2 does not apply to functions f(z) which
are solutions of equations of the form y(z) = y(zr)+ g(z) for a rational function g. Indeed,
in this case the function f is solution of the Mahler equation of order 2

y(z) =

(
1 +

g(z)

g(zr)

)
y(zr)− g(z)

g(zr)
y(zr

2

)

and a(z) := 1 + g(z)
g(zr)

, b(z) := − g(z)
g(zr)

cannot both have non-negative coefficients (without

being both constant). Nonetheless, we have given in Theorem 3 sufficient conditions on
g(z) to estimate the asymptotic behavior of the solutions of y(z) = y(zr) + g(z). But
neither Theorem 2 nor Theorem 3 can be applied to

• f1(z) =
∑∞

n=0 z
2n/(1 + z2

n
) which corresponds to the case g(z) = z

1+z
, a(z) =

1+z+2z2

z(1+z)
, b(z) = − 1+z2

z(1+z)
and r = 2;

• f2(z) =
∑∞

n=0 z
2n/(1− z2

n
) which corresponds to the case g(z) = z

1−z
, a(z) = 1+2z

z
,

b(z) = −1+z
z

and r = 2.

Theorem 1 of [5] does not apply to f1(z) because 1 is a double root of the characteristic
polynomial X2 − 2X + 1. The function (1 − z)f2(z) is solution of the equation y(z) =
1

1+z
y(z2) + z: Theorem 3 cannot still be applied directly, but it is possible that its proof

could be adapted to obtain the precise asymptotic behavior of f2(z) as z → 1−, beyond
the easy fact that limz→1−(1−z)f2(z) = 2 (and thus the associated function C(z) is simply
constant equal to 2).

6.2. Mahler equations of order larger than 3. It is natural to wonder if the methods of
this paper could be extended to the case of Mahler equations of order ≥ 3. This is possible
in principle but the technical details lead to conditions (like (H6)) on the coefficients of the
equations whose complexity increases with the order and are certainly not best possible.
Consider for instance a general r-Mahler equation of order 3:

y(z) = a(z)y(zr) + b(z)y(zr
2

) + c(z)y(zr
3

) (6.1)

where a, b, c ∈ C(z).

a) We first have to ensure the existence of a solution f(z) of (6.1) holomorphic in D(0, 1).
A sufficient condition for this is that a, b, c have no poles in D(0, 1). If a(0)+b(0)+c(0) = 1,
we can also ensure that v0(f) = 0; we assume this for simplicity.

b) It is simpler that f(z) had non-negative Taylor coefficients, and a sufficient condition
for this is that a, b, c ∈ R+[[z]].

c) It is also simpler for the analysis to assume that the characteristic equation X3 −
a(1)X2 − b(1)X − c(1) of (6.1) has roots with pairwise distinct modulus, so that by [5],
f(z) = (1 + o(1))C(z)/(1 − z)logr(µ1), where C(z) = C(zr) and µ1 is the root with largest
modulus, which is thus necessarily > 0 because f has real Taylor coefficients. Note that
to write down the characteristic equation, it is implicitely assumed that a(1), b(1) and c(1)
are defined.
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d) Since f is positive and increasing on [0, 1), we can define the function µ(z) := f(z)/f(zr) ≥
1 on [0, 1). It satifies the non-linear Mahler equation

µ(z) = a(z) +
b(z)

µ(zr)
+

c(z)

µ(zr)µ(zr2)
. (6.2)

e) By the Bell-Coons estimate, we have

µ(z) =
C(z)(1− zr)logr(µ1)

C(zr)(1− z)logr(µ1)
(1 + o(1)) =

(1− zr)logr(µ1)

(1− z)logr(µ1)
(1 + o(1)) → µ1, z → 1−.

f) The first real difficulty arises when we want to justify that

µ′
1 := lim

z→1−
µ′(z)

exists and is finite. The only reasonable way to do that is by differentiation of (6.2):

µ′(z) = ρ(z) + σ(z)µ′(zr) + τ(z)µ′(zr
2

)

where

ρ(z) := a′(z) +
b′(z)

µ(zr)
+

c′(z)

µ(zr)µ(zr2)
,

σ(z) := − rzr−1

µ(zr)2
(b(z) + c(z)/µ(zr

2

)), τ(z) := − r2zr
2−1c(z)

µ(zr)µ(zr2)2
.

Then one could perform an analysis like in the proof of Theorem 2: this requires assump-
tions on a, b, c like (H6) to succeed.

g) Moreover, we want to prove that µ′′(z) = O((1 − z)η−2) with η > 1. This is used to
find an asymptotic expansion as t → 0+ of µ′(e−t) and of µ(e−t) in O(tη−1) and in O(tα)
respectively, where α := min(η, 2). It is also used to prove the convergence of the series
involving the Mellin transform (see Eq. (6.3)) by an analogue of Lemma 12.

h) Another difficulty to pursue the analysis is that we need to have µ′
1/(µ1 ln(µ1)) > 0.

Assuming this holds, we then have everything to prove that

f(e−s) = exp
(
logr(µ1) ln(1/s)+c0+

1

ln(r)

∑
k∈Z\{0}

M
(2ikπ
ln(r)

)
s−

2ikπ
ln(r)+c1s+Oε(s

α−ε)
)
, (6.3)

where α ∈ (1, 2], c0 and c1 are explicitable constants and

M(s) =

∫ +∞

0

ln(µ(e−t))ts−1dt

is a priori analytic on H0 but can be meromorphically continued to Hα.

i) This approach can be generalized to higher order Mahler equations: it is possible to
provide sufficient conditions on the coefficients pj(z) ∈ R(z) of the equation

d∑
j=0

pj(z)y(z
rj) = 0
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that ensure the existence of a unique transcendental solution f(z) of the equation, holo-
morphic in D(0, 1), with f(0) = 1 and with asymptotic behavior as z → 1− given by (6.3),
mutatis mutandis.
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