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Abstract: Symmetry in nature is a result of biological self-organization, driven by evolutionary
processes. Detected by the visual systems of various species, from invertebrates to primates, symmetry
determines survival relevant choice behaviors and supports adaptive function by reducing stimulus
uncertainty. Symmetry also provides a major structural key to bio-inspired artificial vision and shape
or movement simulations. In this psychophysical study, local variations in color covering the whole
spectrum of visible wavelengths are compared to local variations in luminance contrast across an
axis of geometrically perfect vertical mirror symmetry. The chromatic variations are found to delay
response time to shape symmetry to a significantly larger extent than achromatic variations. This
effect depends on the degree of variability, i.e., stimulus complexity. In both cases, we observe linear
increase in response time as a function of local color variations across the vertical axis of symmetry.
These results are directly explained by the difference in computational complexity between the two
major (magnocellular vs. parvocellular) visual pathways involved in filtering the contrast (luminance vs.
luminance and color) of the shapes. It is concluded that color variability across an axis of symmetry
proves detrimental to the rapid detection of symmetry, and, presumably, other structural shape
regularities. The results have implications for vision-inspired artificial intelligence and robotics
exploiting functional principles of human vision for gesture and movement detection, or geometric
shape simulation for recognition systems, where symmetry is often a critical property.

Keywords: mirror symmetry; local shape properties; luminance contrast; color; shape computing
pathways; complexity; uncertainty; choice; decision time

1. Introduction

Symmetry in biological and physical systems is a product of self-organizing evolutionary
processes [1]. It conveys a salient feature to living objects, from molecules, cellular struc-
tures [2–6] and animal bodies [7–12] to man-made constructs and visual graphics [13–15].
The shapes of various species and their pattern colors often display close-to-perfect vertical
mirror symmetry, yet, imperfections are also common. Localized “holes” [7] are sometimes
observed in the bilateral symmetry of animal bodies or their ornamental coloration, and
such “holes” were reported to affect sexual selection by mate choice in fish species [7]. This
may explain other observations from the animal kingdom, showing that individuals with
imperfections in ornamental symmetry statistically resort to showing “their best side” to
stand a better chance of getting chosen [8]. Geometric symmetry describes regularities in
a pattern the two halves of which are mirror images of each other (Figure 1). In visually
perceived patterns assembling many local shape elements of variable color, perfect geo-
metric and perceptual mirror symmetry has also been referred to as “symmetry of things
in a thing” [6]. The visual perceptual systems of various species in the animal kingdom
are capable of detecting colored patterns, and the symmetry thereof, in the ornamental
displays of conspecific individuals [7,8]. Perceptual qualities of animal ornaments include
pattern symmetry as an indicator of individual mate fitness [9–11], and a signal that facili-
tates conspecific recognition [12]. Symmetry is adaptively exploited by the human brain
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from an early age [16,17]. In the context of information processing [18–20], symmetry is a
carrier of information because it reduces physical or perceptual complexity and, thereby,
facilitates the detection [18], and the further analytical processing [19], of structural regu-
larities in complex environments. In human vision, symmetry detection [20,21] involves
brain processes from lower to higher levels of functional system organization. Vertical
mirror, or bilateral, symmetry is a particularly salient form of structural regularity [16,22],
and the reliability with which it is detected depends on local display features and their
image context [23–25]. As a shape property, bilateral symmetry attracts attention [26] and
enhances the perceptual salience [27] of objects in the visual field. Aesthetic judgments
and preferences [28] are strongly influenced by object symmetry, and the ability to exploit
it for behavioral choice is not only found in vertebrates, but also in invertebrate species,
such as insects [29,30]. Whether there may be color-selective symmetry channels in the
visual brain, is unclear. As suggested previously [31,32], symmetry perception is sensitive
to color-correlations across the symmetry axis. Also, symmetry detection may benefit from
color-driven attention [33,34], although visual sensitivity to symmetry does not appear to
be color selective [32]. Variations in color saturation, hue, or luminance across the axis of
symmetry affect the time a perceptual system takes to detect and respond to patterns [35–38].
The neural networks of the magnocellular pathway (m-channel) of the visual brain are
mainly devoted to achromatic contrast coding for perception, whereas the neural networks
of the parvocellular pathway (p-channel) mainly subserve chromatic spatial vision [36–38].
Transcranial magnetic stimulation (TMS) over the visual cortex produces inhibition of
magnocellular (achromatic) stimuli faster, compared with parvocellular (color) stimuli, and
the inhibition is measurably stronger for magnocellular (achromatic) patterns [36]. This
particular vulnerability of achromatic contrast vision to TMS is correlated with distinct
physiological properties of this pathway, such as faster conduction velocity of the neural
networks producing shorter response times in behavior [37,38]. Simple reaction times
measured in response to chromatic and achromatic stimuli have led to suggestions that
the chromatic system involves slower, sustained neural processing, while the achromatic
luminance system processes input faster in a so-called transient functional regime [38,39].
The underlying visual pathways display fundamental differences in temporal mechanisms,
with distinguished functional properties measurable in the millisecond domain in the hu-
man brain by fMRI [39]. These results open perspectives for modeling brain responses with
millisecond precision to better understand the temporal dynamics of neural computations
in vivo and to breathe functional realism into biologically inspired robotic vision. Artificial
vision systems based on neural interactions have great difficulty to process spatial relations
between symmetric objects with the same accuracy as human perception without resorting
to augmenting the artificial neural network with planar/reflection symmetry scores along
multiple axes to produce improvements in classification accuracy across categories [40,41].
Artificial vision thus benefits from insight into spatiotemporal mechanisms that determine
human visual perception. The latter uses self-organizing biological learning [42] to adapt
to steadily changing external environments of the physical world. Neural network models
based on self-organizing visual mapping [43,44] have proven sensitive to mirror symme-
try uncertainty in visual color patterns [45,46] in a similar way as the human perceptual
system [45]. The emerging consensus under the light of current state of the art biological
vision converges towards the assumption that symmetry detection is accounted for by a
multiple-channel model, where the response of each channel represents a combination
of the output of early symmetry detectors (mechanisms) and the output of additional
processing resources required to deal with external and/or intrinsic sources of noise [22,47].
Bilateral symmetry across the vertical axis represents one of the most important cue features
for the rapid detection of symmetry in biological vision [47].
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Figure 1. The antagonistic functional organization of receptive fields of the magnocellular (M-system)
pathway is selective to luminance contrast, and colorblindness, and generates fast transient signals
(left). The receptive fields of neurons of the parvocellular (P-system) pathway have the same antago-
nistic functional organization, but are selective to the spectral wavelengths of color, while preserving
full sensitivity to the luminance contrast of the colors (right). How many different wavelengths of
the visible spectrum are filtered selectively by the neural networks of the retina is not known. The
additional coding spectrum of the P-system inevitably implies a higher degree of computational
complexity, by comparison with the M-system.

Here, we vary perceptual symmetry uncertainty by giving local shape elements vari-
able parameters for hue, saturation, or achromatic luminance contrast across the vertical
axis of symmetry. The shape pairs and all local elements always display perfect geometric
mirror symmetry. Yet, geometrically perfect symmetry neither reflects the true state of
nature and the universe [48], nor does it entail faithful receptor encoding and represen-
tation by the perceptual system. Factors such as contextual noise [22,47], viewing angle
or perspective [49], rotation [50], and differences in luminance or non-matching contrast
polarities across the axis of symmetry [51] affect the perceptual salience of geometrically
perfect mirror symmetry. Moreover, vision includes a system of low-level neural networks
that filter luminance contrast and color information through receptive fields on the retina
by way of two parallel processing streams [35–39] prior to processing shape and stimu-
lus geometry at higher (cortical) levels of brain integration. The antagonistic functional
organization of receptive fields of the magnocellular (m-channel contrast vision) pathway is
selective to luminance contrast, and colorblindness, and generates fast transient signals
(Figure 1, left). The receptive fields of neurons of the parvocellular (p-channel color vision)
pathway, which generates slow, sustained signals, have the same antagonistic functional
organization, but are selective to the spectral wavelengths of color, while preserving sen-
sitivity to the luminance contrast of these colors (Figure 1, right). How many different
wavelengths of the visible spectrum are filtered selectively by the neural networks of the
retina is not known. However, there is little doubt that the additional coding spectrum
of p-channel vision requires additional computational complexity at the earliest levels of
processing, and entails further network complexities at higher (cortical) stages of shape
analysis. The properties of the stimuli in this experiment were designed to directly tap the
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properties of m and p channels [35–39], with the goal of probing how local variations in
contrast or color across an axis of bilateral symmetry differentially affects the time course
of symmetry detection under conditions where it is geometrically perfect. How many
colors of the visible spectrum need to be processed in the stimulus is presumed relevant
for human detection and for biologically inspired robot vision and for symmetry detection
models based on positional RGB coding [52].

2. Materials and Methods

Choice response times of human observers were measured as the psychophysical
consequence of stimulus uncertainty [53,54] in a task-design with minimized symmetry
detection error and no speed–accuracy trade-off [55,56]. This was ensured by the fact that
shape pairs with vertical mirror symmetry were presented in optimal planar view and
in the absence of contextual visual noise. The systematic variations in the symmetry of
things in a thing within the shape pairs were made operational experimentally by giving
the local shape elements in the two-dimensional patterns (Figure 2) variable appearance
and luminance contrast (Tables 1 and 2). All the shape pairs and elements therein had
geometrically perfect vertical mirror symmetry. Symmetry uncertainty was introduced only
through physical color and/or intensity variations across the axis of symmetry between
shapes on either side in a pair.

Figure 2. Images used in the choice response time experiment. Shape pairs displaying perfect
geometric vertical mirror symmetry within and between shapes of any pair were presented to human
individuals in random order. Variations in the symmetry of things in a thing of the shapes in a pair
were generated by giving the local shape elements variable local hues or contrasts, producing five
levels of increasing variability between the two shapes. This resulted in five arbitrary, experimentally
operational levels of local shade variability producing perceptual system uncertainty from lowest (1)
to highest (5). In (2), (3) and (5). The locus of variability between left and right was counterbalanced
between experimental sessions.

Table 1. Physical color parameters and photometric luminance (L in candela per square meter)
generating variability of appearance in the experimental stimuli.

Appearance Hue (deg) Saturation (%) L (cd/m2) R-G-B

Saturated
Colors

Blue 240 100 14 0-0-255
Red 0 100 36 255-0-0

Green 120 100 79 0-255-0
Magenta 300 100 50 255-0-255

Desaturated
Colors

Yellow 60 100 115 255-255-0
Cyan 180 100 75 0-255-255

Pale Blue 240 25 62 190-190-255
Pale Red 0 25 87 255-190-190

Pale Green 120 25 90 190-255-190
Pale Magenta 300 25 92 255-190-255
Pale Yellow 60 25 100 255-255-190
Pale Cyan 180 25 97 190-255-255
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Table 1. Cont.

Appearance Hue (deg) Saturation (%) L (cd/m2) R-G-B

Achromatic
Tones

Black 0 0 0 0-0-0
Dark Grey1 0 0 15 80-80-80
Dark Grey2 0 0 20 90-90-90

Medium Grey1 0 0 50 150-150-150
Medium Grey2 0 0 60 170-170-170

Light Grey1 0 0 70 190-190-190
Light Grey2 0 0 99 215-215-215

White 0 0 129 255-255-255

Table 2. Michelson contrast ratios (C) of each shape in a pair as a function of the hue condition and
local variability/complexity (from 1 to 5 as shown in Figure 2).

1 2 3 4 5

Color
0.7/0.7 0.7/0.63 0.7/0.63 0.8/0.8 0.8/0.43
d = 0 d = 0.13 d = 0.13 d = 0 d = 0.37

Achromatic
0.53/0.53 0.53/1 0.53/1 1/1 1/0.74

d = 0 d = 0.47 d = 0.47 d = 0 d = 0.26

2.1. Images and Display Calibration

The images displaying the mirror symmetric shape pairs (Figure 2) were designed to
be displayed on a medium grey (R = 130, G = 130, B = 130) computer screen background
with a photometric luminance of 40 candela per square meter (cd/m2 covering a surface of
2560 × 1361 pixels. The image displays were generated in Photoshop 12 using a high-
resolution professional computer screen for color design (EIZO COLOR EDGE CG 275W,
2560 × 1440 pixels resolution) connected to a DELL computer equipped with a high-
performance graphics card (NVIDIA 385.73, WDDM user mode, with a total memory
capacity of 10180 MB, and a memory clock capacity of 1504 MHz).

Color and luminance calibration of the RGB channels of the monitor was performed
using Color Navigator self-calibration software, which was delivered with the screen and
ran under Windows. The photometric luminance values of RGB combinations were given
here in cd/m2 (Table 1) and were all cross-checked with a CAMBRIDGE RESEARCH
SYSTEMS photometer. Variable appearance in terms of hue, saturation, and luminance of
local shape elements was obtained by selectively manipulating local color parameters in
Adobe RGB color space. The local color variations (chromatic displays) for the complexity
levels (4) and (5) explained in Figure 2 included all wavelengths of the spectrum visible to
the human eye. The corresponding physical parameters and photometric luminance values
are given in Table 1.

The resulting variations in local luminance produced variable shape pattern contrast
intensities. These were calculated in terms of Michelson [57] pattern contrast ratios (C),
which vary between 0 and 1 and refer to the contrast of patterns, relative to the average
contrast value of the whole visual image. When C = 0, then the pattern has no luminance
contrast, and when C = 1, it has maximum contrast. C was computed on the basis of

C = (Lmax − Lmin)/(Lmax + Lmin) (1)

These computations resulted in the values given in Table 2 for each shape in a given
pair as a function of appearance (hue) and level of variability or complexity, (from 1 to
5 as shown in Figure 1). The contrast differences (d) between shapes of a given pair are
indicated underneath.

2.2. Choice Response Time Experiment

The response time experiments were run between September and December 2019.
Human decision uncertainty was quantified in a choice response time experiment where an
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individual had to decide as quickly as possible whether the two shapes in a given pair were
symmetrical or not (yes or no) using a classical psychophysical forced-choice procedure.

2.2.1. Participants

Fifteen healthy young individuals, all undergraduate volunteers (mostly law students)
and/or young professionals with normal or corrected-to-normal visual acuity participated
in the test phase. The Ishihara plates [58] were used prior to individual testing to ensure
that all participants had normal color vision. The experiments were run under conditions
in full conformity with the Helsinki Declaration for scientific experiments on humans. All
individuals signed an informed consent to participate; their identities were not revealed.
The consent form used to that effect is made available in Figure S1 of the Supplementary
Materials Section. The procedure adheres to the rules and regulations formulated by the
ethics board of the corresponding author’s host institution (CNRS) for response data collec-
tion from healthy human individuals in non-invasive psychophysical tasks. Examination
of the experimental protocol by a specific ethics committee is not mandatory for this kind
of psychophysics.

2.2.2. Procedure

The tests were run on a portable PC workstation (HP Zenbook) equipped with a
high- performance graphics card (NVIDIA 385.73, WDDM user mode, with a total memory
capacity of 10180 MB, and a memory clock capacity of 1504 MHz). Individual participants
were seated in front of the screen of the workstation, with their eyes at a distance of about
80 cm from the center of the screen, as measured with a tape. The floor was marked for
positioning the chair, and the height of the seat was adjusted to individual head height
with respect to the screen. Experiments were run in a semi-dark office room with all stores
down to filter daylight, and with no other light source in the room apart from the computer
screen. Subjects’ eyes were adapted to the lighting conditions for about five minutes. The
adaptation luminance was 2.5 cd/m2, which corresponds to mesopic viewing conditions.
Prior to testing, each individual participant was shown a geometrically perfect mirror
symmetric shape pair (two dark shapes on a light background with no local variations in
hue or luminance contrast) as an image example of a mirror symmetric display. In the test
sessions, images were displayed in random order. Each image was preceded by a brief
alert sound (a 1000 Hz frequency pure sound). The ten test images corresponding to the
different hue variability conditions were presented twice to each participant in each of
two successively repeated sessions to allow for a counterbalanced order of locus of hue
variability in left and right shapes of a pair within, and between, the experimental sessions.
Participants received instructions stating that images with two abstract patterns, one on
the left and one on the right, would be shown to them and that their task was to “decide as
quickly as possible and as soon as an image comes up on the screen whether or not the two
patterns in the given image are mirror symmetric or not”. A keyboard response had to be
issued by pressing ‘1′ for ‘yes’ or ‘2’ for ‘no’.

The flowchart of a trial sequence for a given individual session is shown in Figure 3.
Prior to testing, individuals were given a few practice trials with black and white example
images to ensure that they all had understood the instructions and maintained index and
middle fingers of their dominant hands hovering over the critical numbers on the keyboard
to press a key without any motor response delay. A choice response time corresponded
to the time between image onset and the moment an adequate response key (1 or 2) was
pressed. The number corresponding to a response choice was recorded and stored in a
labeled data column of an Excel file in the Central Processing Unit (CPU). The response
time code associated with a ‘yes’ or ‘no’ decision was stored in another labeled data column
of the same Excel file. As soon as a response was given, the current image disappeared
from the screen, and 800 milliseconds later the next image was delivered. Image presen-
tation and response data encoding were, as in our previous work [45,59], controlled by a
program written in Python 2.7 for Windows using the Spyder 2.0 environment. The Python
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codepages relative to image presentation and experimental session control are provided in
the Figures S2 and S3 of the Supplementary Materials Section.

Figure 3. Flowchart of a trial sequence for a given individual session.

3. Results

With 10 image configurations presented twice (2 × 10) in a random order in an
individual session, two successive sessions per participant, and 15 participants, a total
of 600 choice response time (RT) data were recorded in the test sessions. Since all shape
pairs in the images were mirror-symmetric, ‘no’ responses were rare (20 of the 600 recorded
choice responses gave ‘2′ for ‘no’, which corresponded to less than four percent of the total
number of observations), as could be expected. In these rare cases, response times giving ‘1′

for ‘yes’ only among the four recorded were used for computing the average individual RT
for the given image configuration. The individual RT data, averaged over repeated trials for
each factor level (image) and participant, were submitted to a 2-Way Analysis of Variance
(ANOVA) using the Sigmaplot 11 statistics modules developed by SYSTAT. The individual
data fed into the analysis are included in Table S1 in the Supplementary Materials. The full
ANOVA report is provided in Table S2 of the Supplementary Materials.

3.1. Two-Way ANOVA

The statistical analysis corresponded to a Cartesian Design plan H5 x C2 x 15, with
two levels (chromatic, achromatic) of the ‘Hue’ factor and five levels (1,2,3,4,5 as shown in
Figure 2) of the ‘Variability’ factor, and with 15 individual response times (RT) per factor
level, averaged over four repeated presentations for each of the ten images. This analysis
plan yielded a total number of N = 150 data with N-1 = 149 degrees of freedom (DF). The
means and standard errors for the different factor levels and their interactions are given in
Table 3. The ANOVA exploited the standard errors as inferential measure of the statistical
strength of a given mean. The results from the ANOVA, with the F statistics and their
corresponding probability limits, are shown in Table 4.

The means for the two levels of the hue factor (Table 3) signal longer RT for chromatic
displays by comparison with achromatic displays, with a difference of 1122.8 − 1031.8 = 93
milliseconds (msec). This effect of the hue factor was statistically significant, as shown in
the ANOVA results displayed in Table 4. The means for the five levels of the variability
factor (Table 3) signal a systematic increase of RT, from 589.6 to 1489.1 for factor levels 1 to
5, with increasing variability across the axis of symmetry. This effect of the variability factor
was statistically significant, as shown in the ANOVA results displayed in Table 4. Mean RT
as a function of the combinations of levels of the two factors, shown under Interactions at
the bottom of Table 3, reflected a significant interaction, as shown in Table 4, between the
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hue and variability factors. This led to the conclusion that the effect of one factor depended
on the effect of the other. A graphic illustration of these effects, and their interaction, is
provided in the plot showing the individual RT data, averaged over repeated stimuli, of
the 15 subjects for color and achromatic conditions in Figure 4 below.

Table 3. Means and Standard Errors for the different Factor Levels and their Interactions.

Hue Mean Standard Error

Chromatic 1121.5 10.2
Achromatic 1033.1 8.9
Variability

1 589.6 9.6
2 954.1 10.4
3 1055.6 13.5
4 1298.1 13.6
5 1489.1 14.4

Interactions

Chromatic × 1 512.6 11.9
Chromatic × 2 885.6 12.4
Chromatic × 3 1112.6 12.9
Chromatic × 4 1408.9 13.5
Chromatic × 5 1687.6 16.2

Achromatic × 1 666.6 9.3
Achromatic × 2 1022.6 11.0
Achromatic × 3 998.6 11.9
Achromatic × 4 1187.2 12.3
Achromatic × 5 1290.6 12.9

Table 4. Results from the two-way analysis of variance. Degrees of Freedom (DF), Sums of Squares
(SS), the corresponding F statistic, and the associated probability limit (p) for each of the two factors
and their interaction.

DF SS MS F p

Hue 1 292,640 292,604 64.27 <0.001
Variability 4 14,754,969 3,538,742 777.3 <0.001
Interaction 4 1,674,091 418,523 91.92 <0.001

Residual 140 637,422 4553
Total 149 16,759,087 112,477

Figure 4. Individual Response Times (RTs) in milliseconds of the fifteen subjects, averaged over
repeated stimuli, in the achromatic and chromatic image conditions. The longest RTs are, as could be
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expected in light of the processing model given in Figure 1, observed for the variability/complexity
levels 4 and 5 of the chromatic shapes containing all wavelengths of the visible spectrum.

3.2. Linear Regression Analysis

The average data from each of the two levels of the hue factor, as a function of the
five levels of the variability factor, displayed a systematic increase in RT with increasing
color/contrast variability (levels 1 to 5) for chromatic as well as achromatic displays, as
shown under Interactions in Table 3, plotted graphically in Figure 5. The error bars in
the graphs indicate the standard deviations of the means, which is a descriptive measure
of dispersion of the observed data from their means, while Table 3 displays the standard
errors of the means, which reflect the standard deviation divided by the square root of the
number of observations. The standard error was used as a statistical decision criterion by
the ANOVA. To further quantify these effects and their interactions, the corresponding
average RT data were submitted to linear regression analyses. The results from these
analyses are shown in Table 5 in terms of linear model functions, intercepts (a), slopes (b),
and regression coefficients (R2). The standard errors for intercept and slope estimates were
38.15 and 11.50, respectively, for ‘color’, and 97.62 and 29.43, respectively, for ‘achromatic’.

RT to both colored and achromatic image displays was shown to increase linearly with
the level of local color or contrast variability (complexity) across the principal axis of vertical
mirror symmetry between two shapes of a pair. The results plotted in Figure 5 show a
steeper slope (b) of the linear model function for color by comparison with the linear model
function for achromatic; the intercept (a) of the model for color was smaller by comparison
with that of the model for achromatic. The linear model here reflected the homoscedastic
distribution of the data in each condition (color and achromatic). The individual datapoints
were, in both cases, about the same distance away from the regression line for each level
of the x-axis. The error bars in Figure 5 are consistent with homoscedastic distributions.
The descriptive plot of the individual data provided in Figure 4 further illustrates the
homoscedasticity of the distributions for color and achromatic. The goodness of the linear
fits on the means (Table 3), reflected by the regression coefficient R2, was satisfactory for
both model functions, but signaled a better linear fit for color (R2 = 0.99) by comparison
with achromatic (R2 = 0.88). Figure 5 graphically displays the means and the linear model
fits for these two experimental conditions (color versus achromatic).

Figure 5. Average Response Time (RT) in milliseconds as a function of the two levels of the hue
factor and the five levels of the variability factor reflecting increasing local color/contrast variations
(complexity) across the axis of symmetry in the shape pairs. The error bars here indicate the standard
deviations from the means. A linear model provides a good fit to the data for color (red regression
line) and for achromatic (black regression line) data, with a moderately better fit in the case of color
(R2 = 0.99) by comparison with achromatic (R2 = 0.88).
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Table 5. Results of the linear regression analysis on average RT for the two levels of the hue factor as
a function of the five levels of the variability factor.

Coefficients ‘Color’ Model Function Coefficients
‘Achromatic’ Model Function

x f(x) x f(x)

Intercept (a) = 546.8
Slope (b) = 288

R 2 = 0.9951972709

0 546.8

Intercept (a) = 750.6
Slope (b) = 140.6
R 2 = 0.883791256

0 750.6
0.08 569.84 0.08 761.84
0.16 592.88 0.16 773.09
0.24 615.92 0.24 784.34
0.32 638.96 0.32 795.59
0.40 662.00 0.40 806.84
0.48 685.04 0.48 818.08
0.56 708.08 0.56 829.33
0.64 731.12 0.64 840.58
0.72 754.16 0.72 851.83
0.80 777.20 0.80 863.08
0.88 800.24 0.88 874.32
0.96 823.28 0.96 885.57
1.04 846.32 1.04 896.82
1.12 869.36 1.12 908.07
1.20 892.40 1.20 919.32
1.28 915.44 1.28 930.56
1.36 938.48 1.36 941.81
1.44 961.52 1.44 953.06
1.52 984.56 1.52 964.31
1.60 1007.60 1.60 975.56
1.68 1030.64 1.68 986.80
1.76 1053.68 1.76 998.05
1.84 1076.72 1.84 1009.30
1.92 1099.76 1.92 1020.55
2.00 1122.80 2.00 1031.80
2.08 1145.84 2.08 1043.04
2.16 1168.88 2.16 1054.29
2.24 1191.92 2.24 1065.54
2.32 1214.96 2.32 1076.79
2.04 1238.00 2.40 1088.04
2.48 1261.04 2.48 1099.28
2.56 1284.08 2.56 1110.53
2.64 1307.12 2.64 1121.78
2.72 1330.16 2.72 1133.03
2.80 1353.20 2.80 1144.28
2.88 1376.24 2.88 1155.52
2.96 1399.28 2.96 1166.77
3.04 1422.32 3.04 1178.02
3.12 1445.36 3.12 1189.27
3.20 1468.40 3.20 1200.52
3.28 1491.44 3.28 1211.76
3.36 1514.48 3.36 1223.01
3.44 1537.52 3.44 1234.26
3.52 1560.56 3.51 1245.51
3.60 1583.60 3.60 1256.76
3.68 1606.64 3.68 1268.00
3.76 1629.68 3.76 1279.25
3.84 1652.72 3.84 1290.50
3.92 1675.76 3.92 1301.75
4.00 1698.80 4.00 1313.00

4. Discussion

Symmetry detection is an interesting case of pattern and shape analysis because it
requires the matching of novel patterns without the benefit of prior recognition. A vertical
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axis of bilateral symmetry is an important image feature in this regard. Here, it was
shown that shape pairs with geometrically perfect vertical mirror symmetry, but a non-
homogenous appearance, produced by local variations in hue, saturation, or luminance
contrast across the vertical axis of symmetry between shapes in a given pair produced longer
times to respond to detected symmetry. The fact that local variations in visual parameters
increased human symmetry uncertainty, by delaying conscious choice response time, is an
ecologically relevant [50,51] observation, consistent with theoretical frameworks explaining
the perceptual integration of complex shapes and their local characteristics on the basis of
interactions between low-level (sensorial) and high level (cognitive) mechanisms [60]. The
linear increase in RT as a function of the increase in local color or contrast variability is a
direct consequence of processing (system) complexity and consistent with the Hick-Hyman
Laws [54,55] in psychophysics. The significantly longer RT observed with the colored
displays by comparison with the achromatic shape displays directly reflects the functional
properties of the color (p-channel) and contrast (m-channel) processing networks of the
brain [35–38]. Color may either facilitate or inhibit the emergence of pattern saliency,
as previous work has shown [61–64]. Quantifying the effects of varying amounts and
types of noise on detection time and error rates represents a worthwhile effort for further
experiments with speed-accuracy trade-offs in symmetry detection comparing m-channel
to p-channel mediated contextual modulations. The findings and their discussion here
apply to mirror symmetric patterns without signal-to-noise ratio. When pattern noise is
added (Figure 6), the saliency of any bilateral symmetry pattern, with or without variability
in color or contrast or across the axis of symmetry, will be more or less severely affected by
contextual modulation [22,47].

Figure 6. When additional noise is added, the saliency of any bilateral symmetry pattern will be
more or less severely affected.

Variability in color across an axis of symmetry implies greater complexity of the
underlying brain networks at all stages of processing, as further illustrated in Figure 7.
The results make a case for color-blind contrast-only vision models in shape computation
for action. In related fields at the intersection of artificial intelligence and robotics, such
relevance matters in current developments in bionics and AI technology for devices that
mimic human vision properties, for gesture detection and recognition based on time-
harmonic electromagnetic wave point signals [65,66], or 2D and 3D geometric shape
simulation, by prescribing a set of relevant characteristics of a specific object [67].
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Figure 7. Local variability in color, saturation or contrast (bottom) across an axis of perfect geometric
mirror symmetry involves higher levels of brain network complexity with longer processing times,
by comparison with the same geometric configuration not presenting such variability (top). The
complexity here originates from the initial complexity of contrast sensitive and wavelength selective
computations at the level of visual neurons of the p-pathway in the retina (Figure 1), and affects all
further brain computations at higher levels of processing.

Algorithmic approaches that resort to computing shapes as wholes may not always
deliver the best solution. Brain inspired neural architectures with the properties of spiking-
based feed-forward networks [68] enable mirror symmetry representation by strictly local,
coincidence-detection-based computations and delay-specific spike inhibition [69]. These
models rely on hierarchically organized processing cascades akin to those found in the
visual brain and are capable of effective shape analysis between many sets of variable data
with varying complexity [69].

5. Conclusions

Bilateral shape symmetry is an abundant feature in nature and physics, and sometimes
close to geometrically perfect. Perception, however, filters geometrically perfect stimulus
geometry depending on the processing channels stimulated by a given configuration. Color
and luminance contrast may either facilitate or inhibit the perceptual saliency of mirror
symmetry, depending on spatial configuration. The delay with which this saliency is
processed by the brain depends on the processing characteristics of M-system and P-system
neural networks in the visual brain (Figure 1). The P-system, because it is selective to
spectral wavelength in addition to being contrast sensitive, requires additional network
resources for shape computations, including the detection of symmetry, as shown here
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quite clearly. This difference in computational complexity, and the ways in which it affects
visual processing, has direct implications for bioinspired robot vision and for symmetry
detection algorithms, based on RGB coordinates of local shape pixels and their mirror
positions across an axis of symmetry. In the case of medical image processing [70,71], the
results invite the employment of color-contrast-based augmented reality cogently and with
caution across any axis of clinically relevant symmetry.
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