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Introduction

Today's society is critically dependent on a secure energy supply. The increasing integration of intermittent renewable energy sources and electric vehicles into the conventional electric grid incites the transition from passive to active distribution networks. Thus, the implementation of radically new system concepts is incontrovertible. Microgrids, also known as the « building blocks of smart grids », are perhaps the most promising, novel network structure [START_REF] Hatziargyriou | Microgrid: architectures and control[END_REF]. They are expected to become part of the next electric power system evolution, both in rural remote areas and in urban zones. As microgrids can lower the costs of energy supply and enhance the utility grid reliability and resilience, their planning and design must be optimized to ensure long-term stability. There are two key factors influencing the microgrid sizing: the operation strategy, which determines the power flows in the microgrid, and the uncertainties on the input data [START_REF] Li | Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation[END_REF].

The stochastic nature of renewable power generation, the impossibility of predicting with total accuracy future energy prices, and the uncertainty of the long-term energy demand patterns and climate outlook, all highlight the importance of uncertainty considerations. To tackle this issue, Stochastic Programming (SP) is the most widely used approach to develop microgrid design models for decision-making under uncertainty [START_REF] Mavromatidis | Design of distributed energy systems under uncertainty: A twostage stochastic programming approach[END_REF].

In terms of solutions, microgrid operation strategies can be divided into two types: rule-based and optimization-based operation strategies [START_REF] Li | Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation[END_REF], [START_REF] Ehsan | Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques[END_REF]. In the rule-based operation strategies, a set of priority-rules determines, at each time step, the state (on/off) and the production level of the microgrid's energy sources and storage units. As in HOMER Pro, a widely used software for microgrids sizing [START_REF] Lambert | Micropower System Modeling with Homer[END_REF], there are two traditional strategies for scheduling: Load Following (LF) and Cycle Charging (CC). These rules prioritize renewable generation capacity, followed by storage units and finally fuel-fired generators. Each time a generator operates, it produces only enough power to meet the load when LF is used, while it operates at full output power when CC is used. In the optimization-based operation strategies, the operational variables are optimized with perfect foresight over the entire operation horizon. The optimization methods can be further classified in two categories: Mathematical Programming (MP) techniques such as mixed-integer programming (MIP) and heuristic optimization methods such as Particle Swarm Optimization (PSO) which are suitable for solving non-linear and non-convex problems [START_REF] Twaha | A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems[END_REF]. These two operation strategies mainly differ regarding their real-life implementation capability. A rule-based simulator has a realistic operation policy that accesses to past and current information. Conversely, an optimization-based control strategy is anticipative over a project's lifetime and therefore unrealistic for real-time application, as it requires full access to past, current, and future information. Long-term look-ahead control strategy may differ from the one implemented in real life.

Concerning microgrid design, components sizing can be chosen from a set of discrete values or optimized using MP or heuristic methods. The paper [START_REF] Micangeli | Optimal Design of Isolated Mini-Grids with Deterministic Methods: Matching Predictive Operating Strategies with Low Computational Requirements[END_REF] presents a comparison of two deterministic methods for rural mini-grid design: a mixedinteger linear programming model that optimizes the mini-grid sizing and operation assuming perfect prediction of load and generation profiles, and a heuristic PSO method that implements classical dispatch strategies (LF, CC). Nevertheless, to the best of our knowledge, there are no existing studies that evaluate the gaps between the two models' solutions and computation times when the number of decision variables is increased and when uncertainties are considered. Among all the possible combinations of sizing and operation co-optimization methods, we are interested in comparing two approaches. The first one, which we call White Box (WB), optimizes both the microgrid sizing and operation using MP. In the second one, which we call Black Box (BB), the sizing is optimized using heuristic optimization algorithm, and the operation is rule-based. We thus aim to study the impact on microgrid optimization when operating it in a nonrealistic manner and to compare the computation time of the two methods in both deterministic and stochastic cases.

The paper is organized as follows. Section 2. describes the mathematical formulation of the WB model, while section 3. details the BB model. Then, section 4. presents the case study and results. Finally, conclusions are drawn in section 5.

White Box (WB) model

Description

The purpose of this section is to describe the mathematical formulation of the WB optimization problem to obtain the most cost-effective design of a microgrid composed of a photovoltaic plant (PV), battery storage, and a diesel generator. This WB model, illustrated in Figure 1.a, conjointly optimizes both the design and operation of the microgrid by means of Linear Programming (LP), a mathematical model represented by linear dependencies that can achieve the global optimum. The objective is to minimize the Levelized Cost of Energy (𝐿𝐶𝑂𝐸) of the system. 𝐿𝐶𝑂𝐸 accounts for both the investment and operating costs, and the energy served to the load. Operating charges are evaluated considering a typical year's simulation at an hourly resolution, which is a reasonable trade-off between problem tractability and results optimality. The model is written in YALMIP, a MATLAB toolbox for optimization modeling, and solved using the "linprog" solver from MATLAB optimization toolbox. The objective is to minimize the 𝐿𝐶𝑂𝐸 of the system, shown in Eq. ( 2), which reflects the cost of consumed electrical energy. The 𝐿𝐶𝑂𝐸 is the ratio of the total annualized cost 𝐶 𝑡𝑜𝑡 to the annual electricity delivered to the load 𝐸 𝑠𝑒𝑟𝑣 . 𝐶 𝑡𝑜𝑡 the sum of all costs over the chosen period, including the annualized investment costs 𝐶 𝑐𝑎𝑝 as well as the fixed and variable operation and maintenance (O&M) costs 𝐶 𝑜𝑝 .

𝐿𝐶𝑂𝐸 = 𝐶 𝑡𝑜𝑡 𝐸 𝑠𝑒𝑟𝑣 = 𝐶 𝑐𝑎𝑝 + 𝐶 𝑜𝑝 𝐸 𝑠𝑒𝑟𝑣 (2) 
𝐶 𝑐𝑎𝑝 = 𝑁 𝑔𝑒𝑛 × 𝑎𝑛𝑛𝑢𝑖𝑡𝑦 𝑔𝑒𝑛 + 𝑁 𝑝𝑣 × 𝑎𝑛𝑛𝑢𝑖𝑡𝑦 𝑝𝑣 + 𝑁 𝑏𝑎𝑡 × 𝑎𝑛𝑛𝑢𝑖𝑡𝑦 𝑏𝑎𝑡 (3) 
𝑎𝑛𝑛𝑢𝑖𝑡𝑦 𝑡𝑒𝑐 = 𝑟 × 𝑐 𝑐𝑎𝑝,𝑡𝑒𝑐 1 -(1 + 𝑟) -𝑇 𝑡𝑒𝑐 (4) 𝐶 𝑜𝑝 = 𝑁 𝑔𝑒𝑛 × 𝑓𝑂𝑀 𝑔𝑒𝑛 + 𝑁 𝑝𝑣 × 𝑓𝑂𝑀 𝑝𝑣 + 𝑁 𝑏𝑎𝑡 × 𝑓𝑂𝑀 𝑏𝑎𝑡 + ∑ 𝑃 𝑔𝑒𝑛,ℎ × 𝑣𝑂𝑀 𝑔𝑒𝑛 ℎ (5) 𝑣𝑂𝑀 𝑔𝑒𝑛 = 𝐹 𝑠𝑙𝑜𝑝𝑒 × 𝑐 𝑓𝑢𝑒𝑙 (6)
Where 𝑎𝑛𝑛𝑢𝑖𝑡𝑦 𝑔𝑒𝑛 , 𝑎𝑛𝑛𝑢𝑖𝑡𝑦 𝑝𝑣 and 𝑎𝑛𝑛𝑢𝑖𝑡𝑦 𝑏𝑎𝑡 are the annualized investment costs of the generator, PV, and battery; 𝑟 is the discount rate; 𝑇 𝑡𝑒𝑐 is the technology (generator, PV, battery) lifetime and 𝑐 𝑐𝑎𝑝,𝑡𝑒𝑐 is its capital cost; 𝑓𝑂𝑀 𝑔𝑒𝑛 , 𝑓𝑂𝑀 𝑝𝑣 and 𝑓𝑂𝑀 𝑏𝑎𝑡 represent fixed O&M costs of the generator, PV and battery; 𝑃 𝑔𝑒𝑛,ℎ is the generator production at hour ℎ; 𝑣𝑂𝑀 𝑔𝑒𝑛 represents variable O&M cost of the generator related to fuel consumption and is evaluated as the slope of fuel consumption curve 𝐹 𝑠𝑙𝑜𝑝𝑒 multiplied by the fuel price 𝑐 𝑓𝑢𝑒𝑙 : the underlying assumption is that diesel efficiency is considered constant whatever the generator operating point.

Eq. ( 7)-( 14) are the model's constraints required to describe the system's energy balance and other operational and technical constraints. Eq. ( 7) guarantees that the operational decisions are made for balancing the energy production and demand at each time step ℎ. If enough electricity is generated to meet the demand, the excess can be stored in the battery or curtailed.

𝑃 𝑔𝑒𝑛,ℎ + 𝑃 𝑝𝑣,ℎ ≥ 𝑃 𝑑𝑒𝑚𝑎𝑛𝑑,ℎ + 𝑃 𝑏𝑎𝑡,𝑖𝑛,ℎ -𝑃 𝑏𝑎𝑡,𝑜𝑢𝑡,ℎ

According to Eq. ( 8), the energy stored by the battery at time ℎ + 1 is equal to the energy stored at time ℎ added to the difference between the incoming and outgoing energy of the battery at time ℎ, considering the round-trip conversion efficiency 𝜂 𝑟𝑡 ∈ [0,1]. The cyclicity constraint given by Eq. ( 9) applies to the first hour of the year and states that the stored energy at the beginning of the year must be equal to the stored energy at the end of the year. This constraint is useful as we optimize only over one year and then extrapolate over the project lifetime by treating all years as identical. 

As the time step selected for optimization is fixed to one hour, the relationship between hourly-production and installed capacity can be derived using Eq. ( 10)-( 13), where 𝑃 𝑏𝑎𝑡 is the battery storage capacity. Eq. ( 14) limits the available energy volume that can be stored by the battery. 

Stochastic case

When the input uncertainties are considered, the microgrid optimal design becomes an uncertain optimization problem. The decision-making structure involved in this issue can be captured in a two-stage SP model, which splits the decisions into first-and second-stage decisions, representing decisions that must be taken respectively before and after uncertainty is revealed [START_REF] Mavromatidis | Design of distributed energy systems under uncertainty: A twostage stochastic programming approach[END_REF], [START_REF] Birge | Introduction to Stochastic Programming[END_REF]. Our application of the two-stage SP for optimal microgrid design is a scenario-based approach, which assumes that the parameters' uncertainty can be represented by a finite number of 𝑁 𝑠 scenarios. Each scenario 𝑠 is assumed to have a probability 𝑝 𝑠 .

The first stage involves design and operation variables 𝑋 𝑠𝑡𝑎𝑔𝑒 1 with no information on the realization of uncertainty. The second stage involves also design and operation decisions 𝑋 𝑠𝑡𝑎𝑔𝑒 2 that need to be made according to the actual realization of uncertain parameters, but also to the first-stage decisions. 

)
As it is commonly the case in two-stage SP, the final objective function, which is the 𝐿𝐶𝑂𝐸 in our model, is stated as the sum of the first-stage 𝐿𝐶𝑂𝐸 and the expected value of the second-stage 𝐿𝐶𝑂𝐸, as shown in Eq. ( 17).

𝐿𝐶𝑂𝐸 = 𝐿𝐶𝑂𝐸 𝑠𝑡𝑎𝑔𝑒1 + Ε s [𝐿𝐶𝑂𝐸 𝑠 ] = 𝐿𝐶𝑂𝐸 𝑠𝑡𝑎𝑔𝑒1 + ∑(𝑝 𝑠 × 𝐿𝐶𝑂𝐸 𝑠 ) 𝑁 𝑠 𝑠=1 (17) 
Constraints that include only first-stage variables are expressed similarly to deterministic models Eq. ( 7)-( 14). However, constraints that also contain second-stage variables are indexed per scenario 𝑠. Given the objective function and the constraints, the WB model simultaneously optimizes the first-and second-stage decision variables.

Black Box (BB) model

Description

The proposed BB model, illustrated in Figure 1.b, is a heuristic approach which, in our case, is based on a PSO algorithm. The objective function is identical to the WB one that minimizes the 𝐿𝐶𝑂𝐸. Unlike the WB, in which the operation variables are optimized assuming perfect forecasting of load and renewable profiles over the optimization period, the BB operation strategy is based on priority-rules. In this paper, we only consider the LF strategy, which is the most common operating strategy used in real-life applications owing to its modest hardware and computational requirements [START_REF] Micangeli | Optimal Design of Isolated Mini-Grids with Deterministic Methods: Matching Predictive Operating Strategies with Low Computational Requirements[END_REF].

Thereafter, the PSO procedure iteratively generates multiple size configurations for the microgrid components. The rulebased simulator simulates the system operation of each configuration for the entire year and subsequently evaluates the corresponding costs. Afterwards, the method calculates the 𝐿𝐶𝑂𝐸 of the system and other Key Performance Indicators (KPIs). Once the convergence criteria of the PSO are reached, the procedure stops, and the optimal components are evaluated.

Mathematical formulation

Deterministic case

This subsection presents the deterministic BB model, in which the decision variables 𝑋 are only the design variables (size of the assets detailed in 2.2.1) of the microgrid. The objective function, shown in Eq. ( 19), is to minimize the 𝐿𝐶𝑂𝐸 of the system. To ensure energy balance, a penalty on load shedding is added to the objective function. Hence, the PSO algorithm will seek to find the design that minimizes the LCOE while ensuring a 100% load supply rate.

𝑋 = {𝑁 𝑏𝑎𝑡 , 𝑁 𝑝𝑣 , 𝑁 𝑔𝑒𝑛 } (18) 𝐿𝐶𝑂𝐸 = 𝐶 𝑡𝑜𝑡 𝐸 𝑠𝑒𝑟𝑣 (19) 
At each time step, a rule-based control strategy determines the operating variables without considering future load and PV production profiles. Hence, the BB model does not include the constraints presented in the WB (Eq. ( 7)-( 14)).

Stochastic case

To include uncertainties in the microgrid design, the BB model employs the same scenario-based approach used in the WB model ( 2 

Case study 4.1 Description

The proposed WB and BB sizing methodologies are tested on a real microgrid composed of a PV, a battery, and a fuelfired generator. The demand and PV production profiles were estimated using real data, with a yearly peak demand of 2084 kW. We assumed a 30-year time horizon with 5% discount rate. Also, we assumed linear specific costs: 1200 $/kWp for the PV, 350 $/kWh for the battery, and 400 $/kW for the generator. Maintenance costs are expressed as yearly values proportional to the size component: 20 $/kWp/y for the PV, 10 $/kWh/y for the battery, and 20 $/kW/y for the generator for an average of 1000 working hours per year and a cost of 0.02 $/kW/h. The components' lifetimes are as follows: 30 years for the PV, 15 years for the battery, and 15 years for the generator. The battery round-trip efficiency is considered 90%. The fuel price is assumed to be 1 $/L and the fuel consumption curve slope is 0.24 L/kW.

The same economic and technical parameters, load and renewable generation profiles were considered for both WB and BB models so that the two methods could be compared on equal basis. Calculation time step is one hour. The optimization period is the typical year based on which the multi-year behavior of the system is approximated.

Results

WB versus BB -Deterministic case

The deterministic optimal microgrid design is first obtained with the LP WB model, and then with the PSO-based BB with a LF strategy. The resulting designs are included in the techno-economic comparison shown in Table 1, where 𝑁𝑃𝐶, 𝜏 𝑠ℎ𝑒𝑑𝑑 and 𝜏 𝐸𝑛𝑅 are the Net Present Cost, the load shedding rate and the renewable energy share rate, respectively. It is worth noticing that the components sizing is quite different in the two models. The fuel generator in BB optimal design, equal to the yearly peak demand, is reduced using the WB model. Indeed, since WB scans the possible system behavior in advance, a smaller genset can be used and operated to charge a much larger battery. This also implies that the WB global optimum stands theoretically for the lowest value with respect to rule-based strategies: BB solution is 1.512% higher than WB solution in terms of LCOE. Yet, BB allows significant execution time reduction by a factor of 4.7.

Besides, we calculated the LCOE in the case where the system is sized based on the WB operation strategy and then operated with the BB operation strategy. The simulation results depicted in Table 2 underline the drawbacks of using an anticipative operation strategy in the optimization phase different than the one actually used: a 0.81% increase in LCOE and 0.25% load shedding. Note that, in real life, 𝜏 𝑠ℎ𝑒𝑑𝑑 could be higher due to the lack of switching equipment close to the users. 

Figure 1 .

 1 Figure 1. Diagrams of White Box (a) and Black Box (b) models for microgrid design optimization.2.2 Mathematical formulation2.2.1 Deterministic caseThis subsection presents the deterministic WB model, where all parameters are known with absolute certainty. Model's decision variables 𝑋 are both design and operation variables. The design variables are the size of the microgrid assets: maximum energy capacity of the battery 𝑁 𝑏𝑎𝑡 , and maximum power of PV 𝑁 𝑝𝑣 and diesel generator 𝑁 𝑔𝑒𝑛 . The operation variables are the power flows or production of generation and storage units at every time step: charging 𝑃 𝑏𝑎𝑡,𝑖𝑛 and discharging 𝑃 𝑏𝑎𝑡,𝑜𝑢𝑡 power from the battery, state of charge of the battery 𝐸 𝑏𝑎𝑡,𝑠𝑜𝑐 , and hourly production of PV 𝑃 𝑝𝑣 and diesel generator 𝑃 𝑔𝑒𝑛 .

  𝑏𝑎𝑡,𝑜𝑢𝑡 ≤ 𝑃 𝑏𝑎𝑡 (13) 0 ≤ 𝐸 𝑏𝑎𝑡,𝑠𝑜𝑐 ≤ 𝑁 𝑏𝑎𝑡 (14)

  To show the dependency between both stages' decisions, the second-stage decisions cannot discard the PV installed in the first stage, given that diesel and battery lifetimes are reached by the end of the first stage. One can only keep the PV or increase the installed power. It is worth noting that, in the deterministic WB model, single values are calculated for the design variables and single vectors holding time step values are calculated for the operation variables. In the stochastic case, the same procedure is applied in the first stage, generating a single 𝐿𝐶𝑂𝐸. While in the second stage, these variables must be computed for each individual uncertain scenario s, thus generating a 𝐿𝐶𝑂𝐸 for each scenario, noted 𝐿𝐶𝑂𝐸 𝑠 . Eventually, the number of decision variables is multiplied by 𝑁 𝑠 + 1.𝑋 𝑠𝑡𝑎𝑔𝑒 1 = {𝑁 𝑏𝑎𝑡 1 ,𝑁 𝑝𝑣 1 , 𝑁 𝑔𝑒𝑛 1 , 𝑃 𝑏𝑎𝑡,𝑖𝑛 1 , 𝑃 𝑏𝑎𝑡,𝑜𝑢𝑡 1 , 𝐸 𝑏𝑎𝑡,𝑠𝑜𝑐 1 , 𝑃 𝑝𝑣 1 , 𝑃 𝑔𝑒𝑛 1 } (15) 𝑋 𝑠𝑡𝑎𝑔𝑒 2 = {𝑁 𝑏𝑎𝑡 2,𝑠 , 𝑁 𝑝𝑣 2,𝑠 , 𝑁 𝑔𝑒𝑛 , 𝑃 𝑏𝑎𝑡,𝑖𝑛 2,𝑠 , 𝑃 𝑏𝑎𝑡,𝑜𝑢𝑡 2,𝑠 , 𝐸 𝑏𝑎𝑡,𝑠𝑜𝑐 2,𝑠 , 𝑃 𝑝𝑣 2,𝑠 , 𝑃 𝑔𝑒𝑛 2,𝑠 } (16

  .2.2). Clearly, design variables are the only first-and second-stage variables. The BB technique is applied to the first stage and to each individual scenario 𝑠 in the second stage: the iterative routine between the PSO optimizer and the rule-based simulator is applied 𝑁 𝑠 + 1 times in order to optimize 𝑋 𝑠𝑡𝑎𝑔𝑒 1 and 𝑋 𝑠𝑡𝑎𝑔𝑒 2 and the corresponding 𝐿𝐶𝑂𝐸.

	Finally, the total objective function is calculated using Eq. (16).	
	𝑋 𝑠𝑡𝑎𝑔𝑒 1 = {𝑁 𝑏𝑎𝑡 1 , 𝑁 𝑝𝑣 1 , 𝑁 𝑔𝑒𝑛 1 }	(20)
	𝑋 𝑠𝑡𝑎𝑔𝑒 2 = {𝑁 𝑏𝑎𝑡 2,𝑠 , 𝑁 𝑝𝑣 2,𝑠 , 𝑁 𝑔𝑒𝑛 2,𝑠 }	(21)

Table 1 . Optimal microgrid design with deterministic WB and BB models.

 1 𝑁 𝑔𝑒𝑛 [𝑘𝑊] 𝑁 𝑝𝑣 [𝑘𝑊𝑝] 𝑁 𝑏𝑎𝑡 [𝑘𝑊ℎ] 𝐿𝐶𝑂𝐸[$/𝑀𝑊ℎ] 𝑁𝑃𝐶[𝑘$] 𝜏 𝑠ℎ𝑒𝑑𝑑 [%] 𝜏 𝐸𝑛𝑅 [%]

	Model Time [s] WB 33	1548	2643	2794	227.7	24553	0	32.3
	BB	7	2084	1828	89	231.1	24924	0	21.8

Table 2 . Simulation of the microgrid designed with an optimization-based strategy and operated with a rule-based one (LF).

 2 

	Simulation strategy	Design obtained with	𝐿𝐶𝑂𝐸[$/𝑀𝑊ℎ] 𝑁𝑃𝐶 [𝑘$] 𝜏 𝑠ℎ𝑒𝑑𝑑 [%] 𝜏 𝐸𝑛𝑅 [%]
	BB	WB	229.6	24690	0.25	32.5

WB versus BB -Stochastic case

For a simplified stochastic case, we only consider fuel price uncertainty. Annual variations of fuel price were not considered in this study. The cost remains constant (1 $/L) until the 15th year, from that point it can either decrease by 90%, remain constant or increase by 90% over the remaining 15 years of the project lifetime. These three realizations, corresponding to scenarios 𝑠 1 , 𝑠 2 and 𝑠 3 , are taken as equiprobable. The results presented in Table 3 show the dependency between the first-and second-stage designs. In 𝑠 3 , a larger PV and battery are installed in both WB and BB to reduce the consumption of fuel whose price increases. Nevertheless, a large generator is still required to satisfy the peak load in the BB. As in the deterministic case, optimal component sizes are different between the two models with an overall LCOE of 1.502% higher in the BB than in the WB. Also, note that the WB is more time-consuming than BB by a factor of 3.5. 

Conclusion

This paper compares two approaches for microgrid sizing. Firstly, we presented an anticipative LP WB model that conjointly optimizes microgrid sizing and operation assuming perfect knowledge of load and renewable patterns over the project lifespan. Then, we presented a responsive PSO-based BB model that heuristically optimizes the sizing of microgrid whose operation is controlled by a rule-based simulator that determines at each time step the optimal generation dispatch. The microgrid sizing and operation are obtained by solving the deterministic and two-stage stochastic forms of the two models. The case study results highlighted the importance of selecting a sizing method that copes with the actual operating strategy of the project to avoid design failures and costs increase. Furthermore, the results showed that BB outperformed the WB in terms of computational requirements. Among the avenues for future work, we would like to validate this comparison by studying other microgrid projects and by testing the sensitivity of the models' computational requirements when the number of decision variables is expanded, and other uncertainties are considered.