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Abstract: 

A direct determination of the Young’s modulus and the Poisson’s ratio in a 140 nm polycrystalline 

tungsten thin film deposited by ion-beam sputtering on a polyimide substrate has been performed by 

coupling x-ray diffraction measurements with in situ tensile testing. The method described in this 

letter to extract the Young’s modulus of thin films from the evolution of the sin2ψ curves as a 

function of applied load only requires to know the substrate Young’s modulus. The determination 

of the thin film Poisson’s ratio can be realized without knowing any of the substrate elastic 

constants. In the case of the tungsten thin film, the obtained Young’s modulus was close to the bulk 

material one whereas the Poisson’s ratio was significantly larger than the bulk one. 
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For a few years, there has been an increasing interest about the mechanical properties of thin films. 

Literature data show clearly that the elastic properties of metallic thin films and multilayers can 

differ significantly from the bulk metal ones1,2,3. In previous papers4,5,6, we presented a graphical 

method (called the “intersection method”) to extract the Poisson’s ratio in thin films or multilayers 

deposited on substrates from the evolution of the sin2ψ curves as a function of the applied strain. 

The presented method needed the knowledge of the substrate Poisson’s ratio. 

In this paper, we describe a more accurate analytical method. It allows to determine the Poisson’s 

ratio of a supported thin film without using any of the elastic constants of the substrate, thus the 

Poisson’s ratio of the thin film can be obtained even if the substrate is unknown. Concerning the 

Young’s modulus of the thin film, the only data to know is the Young’s modulus of the substrate. 

The method is based on the “sin2ψ method” which has already been extensively described 

elsewhere7,8. It consists in applying a uniaxial tensile force to the sample in situ in an x-ray 

diffractometer. The thin film elastic constants are determined by studying the evolution of the sin2ψ 

curves as a function of the applied load. The main assumption in the following calculations is the 

elastic and linear behavior of both the substrate and the thin film. 

Using x-ray diffraction, the strain εφψ measured in the direction eφψ defined in the specimen 

coordinate system (e11, e22, e33) by the two Euler angles φ and ψ (Fig. 1) is given by 
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where dφψ (resp. d0) is the (resp. unstrained) lattice plane spacing of the {hkl} planes, θφψ and θ0 the 

angular positions of the corresponding diffraction peaks through Bragg’s law.  

For polycrystalline specimen with a random crystalline orientation and negligible shear stress and 

stress gradient in the x-ray depth probed, the strain ε depends linearly upon sin2ψ, ψ being the angle 

between the normal to the diffracting planes and the sample surface normal. In particular for φ=0, 
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Then for an elastic isotropic material, Hooke’s laws give the linear relationships between the strains 

and stresses via the Young’s modulus and Poisson’s ratio.  

The tensile tester supporting the sample is placed at the center of the goniometer so that the loading 

direction corresponds to the e11 sample axis. Assuming a uniaxial applied stress state (σ22
Af = σ33

Af 

= 0), the stress σ11
Af applied to the thin film is related to the load F by 
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where b is the sample width, ef (resp. es) the film (resp. substrate) thickness and Ef (resp. Es) the thin 

film (resp. substrate) Young’s modulus. Then, combining relations (1), (2) and (3), we obtain the 

following equation for a given {hkl} plane family: 
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νf is the thin film Poisson’s ratio; the A (resp. r) index refers to the applied (resp. residual) stresses. 

Plotting P1
f versus the applied force F, we obtain a linear curve. Its slope is P* 
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Similarly, the curve of m1f versus F is linear; its slope m* is 
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Then we can deduce the Young’s modulus Ef of the thin film from the sum of P* and m*, only 

knowing the substrate Young’s modulus Es 
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and its Poisson’s ratio by a simple combination of these two experimental data without any 

other information on the substrate nor on the film 
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Furthermore, the combination of the “intersection method”4,5 and this analytical method also allows 

to extract the substrate Poisson’s ratio νs: 
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where sin2ψ0
f is the abscissa of the intersection point of the thin film sin2ψ curves plotted for 

several loaded states. Here νf is the value deduced from Eq. (8). 

Indeed, the hypothesis of uniaxial stress state induces a much smaller error than one can imagine at 

a first sight. In fact, the difference ∆ν=νf-νs between the Poisson’s ratios of the thin film and the 

substrate induces in the film a transverse applied stress σ22
Af ≈ σ11

Af.∆ν while σ22
As ≈ 0. 

Eq (3) becomes 
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which results in 
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Finally the film modulus calculated under a biaxial stress state (Ef(bi)) can be estimated by 

 )uni(ffss**
f

f)bi(f E)1(eE
)mP(b

1

e

1
)1(E ν∆ν−=














−

+
ν∆ν−=  (13) 

where Ef(uni) is the film modulus calculated under uniaxial stress state (Eq.7). Consequently it is 

sufficient to first measure the Young’s modulus under the uniaxial stress hypothesis and then 

correct the obtained value by means of Eq (13). 

 

A 140 nm thick tungsten film was deposited on a 127.5 µm thick polyimide (Kapton) dogbone 

substrate by ion beam sputtering at room temperature. It was then submitted to an Ar2+ ion 
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irradiation (340 keV – 7.1014 ions/cm2) to improve its crystalline quality9.The in-plane sample 

dimensions were 8×3 mm2. Tungsten was chosen because of its isotropic mechanical behavior and 

its high x-ray scattering factor. The external load was applied by means of a 300 N Deben tensile 

module. This tensile tester is equipped with a 75 N load cell enabling the force measurement with a 

precision higher than 0.1 N; it can be easily fitted to most goniometers thanks to its small volume 

(90 × 60 × 30 mm3) and low weight (350 g). Because of the low film thickness and small grain size 

(≥ 10 nm), X-ray diffraction measurements were performed using a four-circle goniometer on the 

H10 beam line at the French synchrotron radiation facility LURE (Orsay, France). A large 

wavelength (λ = 0.2248 nm) was chosen to analyze {211} family tungsten planes for each applied 

load. 

The evolution of the sin2ψ curves as a function of the applied load is shown in Fig. 2. T0 

corresponds to the unloaded state while T1, T2 and T3 are related to increasing loading states. As 

assumed, theses curves as linear. Their slope is directly related to the total stress in the film. The 

residual stresses are compressive; with increasing applied stress (from T1 up to T3), the total stress 

value decreases and becomes then tensile for T2 and T3. Table I presents the values of the applied 

force, the slope and the intercept of the least squared linear regression for each loaded state. Fig. 3 

shows the evolution of (a) the slope P1
f and (b) the origin ordinate m1f of the sin2ψ curves versus the 

applied force F. As predicted by Eq. (4), P1
f and m1

f depend linearly upon F. The slopes are 

respectively P* = 6.2324.10-4 and m* = -1.4733.10-4. Having previously found by direct 

measurement the value of 5.17 GPa for the substrate Young’s modulus, Eq. (7) leads to a value of 

390 ± 40 GPa for the thin film Young’s modulus (Ef), very close to the tungsten bulk value (388 

GPa)10. The film Poisson’s ratio deduced from Eq. (8) is νf = 0.310 ± 0.015, which is significantly 

larger than the bulk value (0.284).  

It should be noted that, since tungsten is elastically isotropic, the measurement of Ef and νf allows to 

calculate the thin film stiffness constants C11, C44 and C12. The obtained values are C11=541 GPa, 

C44=149 GPa and C12=243 GPa, while the literature values for bulk tungsten are respectively 501, 
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151 and 198 GPa10. We can observe that an increase of νf (with a constant Ef) results in a decrease 

of C11 and C12 whereas C44 remains unchanged. This is an important result which shows the 

advantage of the method used in this study; an interpretation in terms of microstructure 

modification and interatomic potentials constitutes another work and is still under progress. Finally, 

we can extract the Poisson’s ratio of the Kapton substrate thanks to Eq. (9). As it can be seen on 

Fig. 1, all the sin2ψ curves present a common intersection point which abscissa (sin2ψ0
f) is equal to 

0.235. This leads to νs=0.312. We can then estimate the “biaxial correction” for the tungsten 

Young’s modulus: according to Eq. (13), Ef(bi)/Ef(uni) = (1-νf.∆ν) = 1.0006. Consequently the error 

committed here when assuming a uniaxial applied stress state is less then 0.1%. Thus it is perfectly 

justified to extract the thin film elastic constants in a very simple way under the uniaxial hypothesis. 

 

In conclusion, an experimental technique for the determination of the Young’s modulus and 

Poisson’s ratio in thin films on substrates has been elaborated by combining x-ray diffraction strain 

measurements and in situ tensile testing. This method presents the following main advantages: (i) 

the unstrained lattice parameter of the film needs not to be known, (ii) no elastic constant of the 

substrate or the film is necessary to determine the Poisson’s ratio of the film, and (iii) the only data 

needed to extract the Young’s modulus of the film is the substrate Young’s modulus. The precision 

will be improved thanks to an optimization of the sample dimensions. Currently we are engaged in 

the study of W sublayers in W/Cu multilayers to analyze the possible evolution of the W Young’s 

modulus and Poisson’s ratio when reducing the thickness period. 
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Figure captions 

 

Fig.1: Deben tensile tester with the sample coordinate (X1, X2, X3) and the x-ray measurement 

direction Xφψ. 

 

Fig.2: Sin2 ψ curves relative to the {211} planes of the tungsten thin film in the unloaded state (T0) 

and for three progressive loading states (T1 to T3). The straight lines represent the linear regression 

on the experimental data. 

 

Fig.3: Slope P1f (a) and intercept m1f (b) of the sin2ψ curve versus the applied force F for four 

increasing loading states. The straight lines represent the linear regression on the experimental data; 

their slopes allow to calculate Ef and νf. 
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TABLE I: Slopes and intercepts of the sin2ψ curves relative to the tungsten {211} family planes for 

four force values. 

 

N° of the loading state 
 
0 1 2 3 

Applied force F (N) 
 

1.0 3.0 4.8 6.5 

Slope P1f 
 

-0.001986 -0.001001 0.000254 0.001408 

Intercept m1
f 

 
0.142221 0.141993 0.141681 0.141424 
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Fig. 1 K.F. Badawi et al, APL 
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Fig. 2, K.F. Badawi et al., APL 
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Fig. 3(a), K.F. Badawi et al, APL 
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Fig. 3(b), K.F. Badawi et al, APL 


