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Measuring thin-film and multilayer elastic constants by coupling in situ tensile testing with x-ray diffraction

A direct determination of the Young's modulus and the Poisson's ratio in a 140 nm polycrystalline tungsten thin film deposited by ion-beam sputtering on a polyimide substrate has been performed by coupling x-ray diffraction measurements with in situ tensile testing. The method described in this letter to extract the Young's modulus of thin films from the evolution of the sin 2 ψ curves as a function of applied load only requires to know the substrate Young's modulus. The determination of the thin film Poisson's ratio can be realized without knowing any of the substrate elastic constants. In the case of the tungsten thin film, the obtained Young's modulus was close to the bulk material one whereas the Poisson's ratio was significantly larger than the bulk one.

For a few years, there has been an increasing interest about the mechanical properties of thin films.

Literature data show clearly that the elastic properties of metallic thin films and multilayers can differ significantly from the bulk metal ones 1,2,3 . In previous papers 4,5,6 , we presented a graphical method (called the "intersection method") to extract the Poisson's ratio in thin films or multilayers deposited on substrates from the evolution of the sin 2 ψ curves as a function of the applied strain.

The presented method needed the knowledge of the substrate Poisson's ratio.

In this paper, we describe a more accurate analytical method. It allows to determine the Poisson's ratio of a supported thin film without using any of the elastic constants of the substrate, thus the Poisson's ratio of the thin film can be obtained even if the substrate is unknown. Concerning the Young's modulus of the thin film, the only data to know is the Young's modulus of the substrate.

The method is based on the "sin 2 ψ method" which has already been extensively described elsewhere [START_REF] Noyan | Residual Stress Measurement by diffraction and Interpretation[END_REF][START_REF] Hauk | Structural and residual stress analysis by non destructive methods: evaluation, application, assessment[END_REF] . It consists in applying a uniaxial tensile force to the sample in situ in an x-ray diffractometer. The thin film elastic constants are determined by studying the evolution of the sin 2 ψ curves as a function of the applied load. The main assumption in the following calculations is the elastic and linear behavior of both the substrate and the thin film.

Using x-ray diffraction, the strain εφψ measured in the direction eφψ defined in the specimen coordinate system (e11, e22, e33) by the two Euler angles φ and ψ (Fig. 1) is given by
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where dφψ (resp. d0) is the (resp. unstrained) lattice plane spacing of the {hkl} planes, θφψ and θ0 the angular positions of the corresponding diffraction peaks through Bragg's law.

For polycrystalline specimen with a random crystalline orientation and negligible shear stress and stress gradient in the x-ray depth probed, the strain ε depends linearly upon sin 2 ψ, ψ being the angle between the normal to the diffracting planes and the sample surface normal. In particular for φ=0, ( )
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Then for an elastic isotropic material, Hooke's laws give the linear relationships between the strains and stresses via the Young's modulus and Poisson's ratio.

The tensile tester supporting the sample is placed at the center of the goniometer so that the loading direction corresponds to the e11 sample axis. Assuming a uniaxial applied stress state (σ22 Af = σ33 Af = 0), the stress σ11 Af applied to the thin film is related to the load F by
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where b is the sample width, ef (resp. es) the film (resp. substrate) thickness and Ef (resp. Es) the thin film (resp. substrate) Young's modulus. Then, combining relations (1), ( 2) and ( 3), we obtain the following equation for a given {hkl} plane family:
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νf is the thin film Poisson's ratio; the A (resp. r) index refers to the applied (resp. residual) stresses.

Plotting P1 f versus the applied force F, we obtain a linear curve. Its slope is P *

        + ν + = f f s s f * e E e E 1 b 1 P . (5) 
Similarly, the curve of m1 f versus F is linear; its slope m * is
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Then we can deduce the Young's modulus Ef of the thin film from the sum of P * and m * , only knowing the substrate Young's modulus Es Furthermore, the combination of the "intersection method" 4,5 and this analytical method also allows to extract the substrate Poisson's ratio νs:
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where sin 2 ψ0 f is the abscissa of the intersection point of the thin film sin 2 ψ curves plotted for several loaded states. Here νf is the value deduced from Eq. ( 8).

Indeed, the hypothesis of uniaxial stress state induces a much smaller error than one can imagine at a first sight. In fact, the difference ∆ν=νf-νs between the Poisson's ratios of the thin film and the substrate induces in the film a transverse applied stress σ22 Af ≈ σ11 Af .∆ν while σ22 As ≈ 0.

Eq (3) becomes
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Finally the film modulus calculated under a biaxial stress state (Ef(bi)) can be estimated by
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where Ef(uni) is the film modulus calculated under uniaxial stress state (Eq.7). Consequently it is sufficient to first measure the Young's modulus under the uniaxial stress hypothesis and then correct the obtained value by means of Eq (13).

A 140 nm thick tungsten film was deposited on a 127.5 µm thick polyimide (Kapton  ) dogbone substrate by ion beam sputtering at room temperature. It was then submitted to an Ar 2+ ion irradiation (340 keV -7.10 14 ions/cm 2 ) to improve its crystalline quality [START_REF] Durand | [END_REF] .The in-plane sample dimensions were 8×3 mm 2 . Tungsten was chosen because of its isotropic mechanical behavior and its high x-ray scattering factor. The external load was applied by means of a 300 N Deben™ tensile module. This tensile tester is equipped with a 75 N load cell enabling the force measurement with a precision higher than 0.1 N; it can be easily fitted to most goniometers thanks to its small volume (90 × 60 × 30 mm 3 ) and low weight (350 g). Because of the low film thickness and small grain size (≥ 10 nm), X-ray diffraction measurements were performed using a four-circle goniometer on the H10 beam line at the French synchrotron radiation facility LURE (Orsay, France). A large wavelength (λ = 0.2248 nm) was chosen to analyze {211} family tungsten planes for each applied load.

The evolution of the sin 2 ψ curves as a function of the applied load is shown in Fig. 2. T0 corresponds to the unloaded state while T1, T2 and T3 are related to increasing loading states. As assumed, theses curves as linear. Their slope is directly related to the total stress in the film. The residual stresses are compressive; with increasing applied stress (from T1 up to T3), the total stress value decreases and becomes then tensile for T2 and T3. Table I presents the values of the applied force, the slope and the intercept of the least squared linear regression for each loaded state. Fig. 3 shows the evolution of (a) the slope P1 f and (b) the origin ordinate m1 f of the sin 2 ψ curves versus the applied force F. As predicted by Eq. ( 4), P1 f and m1 f depend linearly upon F. The slopes are respectively P * = 6.2324.10 -4 and m * = -1.4733.10 -4 . Having previously found by direct measurement the value of 5.17 GPa for the substrate Young's modulus, Eq. ( 7) leads to a value of 390 ± 40 GPa for the thin film Young's modulus (Ef), very close to the tungsten bulk value (388 GPa) [START_REF] Smithells | Metals Reference Book[END_REF] . The film Poisson's ratio deduced from Eq. ( 8) is νf = 0.310 ± 0.015, which is significantly larger than the bulk value (0.284).

It should be noted that, since tungsten is elastically isotropic, the measurement of Ef and νf allows to calculate the thin film stiffness constants C11, C44 and C12. The obtained values are C11=541 GPa, C44=149 GPa and C12=243 GPa, while the literature values for bulk tungsten are respectively 501, 151 and 198 GPa [START_REF] Smithells | Metals Reference Book[END_REF] . We can observe that an increase of νf (with a constant Ef) results in a decrease of C11 and C12 whereas C44 remains unchanged. This is an important result which shows the advantage of the method used in this study; an interpretation in terms of microstructure modification and interatomic potentials constitutes another work and is still under progress. Finally, we can extract the Poisson's ratio of the Kapton  substrate thanks to Eq. ( 9). As it can be seen on Fig. 1, all the sin 2 ψ curves present a common intersection point which abscissa (sin 2 ψ0 f ) is equal to 0.235. This leads to νs=0.312. We can then estimate the "biaxial correction" for the tungsten Young's modulus: according to Eq. ( 13), Ef(bi)/Ef(uni) = (1-νf.∆ν) = 1.0006. Consequently the error committed here when assuming a uniaxial applied stress state is less then 0.1%. Thus it is perfectly justified to extract the thin film elastic constants in a very simple way under the uniaxial hypothesis.

In conclusion, an experimental technique for the determination of the Young's modulus and

Poisson's ratio in thin films on substrates has been elaborated by combining x-ray diffraction strain measurements and in situ tensile testing. This method presents the following main advantages: (i) the unstrained lattice parameter of the film needs not to be known, (ii) no elastic constant of the substrate or the film is necessary to determine the Poisson's ratio of the film, and (iii) the only data needed to extract the Young's modulus of the film is the substrate Young's modulus. The precision will be improved thanks to an optimization of the sample dimensions. Currently we are engaged in the study of W sublayers in W/Cu multilayers to analyze the possible evolution of the W Young's modulus and Poisson's ratio when reducing the thickness period. 
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  and its Poisson's ratio by a simple combination of these two experimental data without any other information on the substrate nor on the film
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 1 Fig.1: Deben™ tensile tester with the sample coordinate (X1, X2, X3) and the x-ray measurement
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 2 Fig.2: Sin 2 ψ curves relative to the {211} planes of the tungsten thin film in the unloaded state (T0)
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 3 Fig.3: Slope P1 f (a) and intercept m1 f (b) of the sin 2 ψ curve versus the applied force F for four
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TABLE I :

 I Slopes and intercepts of the sin 2 ψ curves relative to the tungsten {211} family planes for four force values.

	N° of the loading state	0	1	2	3
	Applied force F (N)	1.0	3.0	4.8	6.5
	Slope P1 f	-0.001986	-0.001001	0.000254	0.001408
	Intercept m1 f	0.142221	0.141993	0.141681	0.141424