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We propose a new cosmological paradigm in which our observed expanding phase is originated from an

initially large contracting Universe that subsequently experienced a bounce. This category of models,

being geodesically complete, is nonsingular and horizon-free and can be made to prevent any relevant

scale to ever have been smaller than the Planck length. In this scenario, one can find new ways to solve the

standard cosmological puzzles. One can also obtain scale invariant spectra for both scalar and tensor

perturbations: this will be the case, for instance, if the contracting Universe is dust-dominated at the time

at which large wavelength perturbations get larger than the curvature scale. We present a particular

example based on a dust fluid classically contracting model, where a bounce occurs due to quantum

effects, in which these features are explicit.

DOI: 10.1103/PhysRevD.78.063506 PACS numbers: 98.80.Cq, 04.60.Ds, 98.70.Vc

I. INTRODUCTION

With the recent release of Wilkinson microwave anisot-
ropy probe (WMAP) data [1,2], the inflation paradigm [3–
7] has been set on firmer ground. Apart from solving some
of the standard cosmological puzzles (horizon, flatness,
isotropy), the simplest models predict an almost scale
invariant spectrum of long wavelength scalar perturba-
tions, as observed, with low amplitude tensor perturba-
tions. This successful paradigm suffers, however, from
some weakening issues and omissions. The existence of
an initial singularity (a point where no physics is possible)
in the standard cosmological model is not addressed by
inflation [8]. There is no consensus yet as to whether
inflation really solves the homogeneity problem [9,10] as
long as one still needs special initial conditions in a rela-
tively large patch to initiate inflation [10–12]. It seems that
we cannot go forward on this problem without a precise
knowledge of how the Universe leaves the Planck scale
and/or a theory of initial conditions, i.e. without having an
unambiguous and complete theory of quantum gravity
[10]. Furthermore, some cosmologically relevant wave-
lengths must, at some early stage, have been trans-
Planckian [13–16]; this can cast doubts on the validity of
the cosmological perturbation predictions of inflation.
Finally, the usual and simpler models of inflation need a
scalar field [17], whose theoretical properties demanded
for setting up the inflationary phase are not obviously
compatible with those obtained from well-motivated fun-
damental particle physics theory [18,19] (a new perspec-
tive was, however, suggested [20]). In view of these
difficulties, the question can be asked whether the infla-
tionary solution is unique.

Mechanisms that eliminate the initial singularity belong
to one of the following scenarios: either they assume a
quantum creation of a small but finite Universe and hence a
beginning of time [21,22], or they are based on an eternal
Universe, hence with no beginning of time. This last pos-
sibility can itself be divided into two distinct categories: a
monotonic time dependence of the scale factor, i.e. an
expansion lasting forever, or different phases including
contractions and expansions, and therefore bounces. The
first situation is realized in the pre-big-bang (PBB) sce-
nario [23,24]; it requires a long accelerated phase originat-
ing from either an asymptotically zero volume flat
spacetime or from a finite but small compact region
[25,26] before the usual decelerated expansion of the stan-
dard model. As for bouncing models, they can be em-
bedded in many theoretical situations [27–39], including
classically singular cases [40–42]. In a string approach,
both situations are in practice equivalent due to the pres-
ence of the dilaton which allows for a field reparametriza-
tion (as opposed to conformal transformation as is usually,
and erroneously, stated): the PBB evolution of the Jordan
(or string) frame is turned to a bounce in the Einstein
frame.
Up to now, there is not a single observation which favors

one of these three scenarios (time creation, eternal expan-
sion or bounce) with respect to the others, rendering these
three possibilities susceptible to physical investigation,
without prior preferences.
Bouncing models differentiates, however, very strongly

from the other two scenarios above in one important as-
pect: initial conditions may not be anymore put in a very
small region, perhaps with Planckian size, but in a very
large and almost flat Universe. In this framework, the
flatness and the homogeneity problems are viewed from a
very different perspective. Hence, bouncing models not
only solve, by construction, the singularity problem, but
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they may also possibly solve, as we discuss in this work,
other important puzzles of the standard model without the
need for an inflationary phase.1

Note also that a transition from contraction to expansion
demands nonstandard or nonclassical physics, and/or non-
standard matter in order to avoid the singularity in be-
tween. If, for having inflation, violation of the strong
energy condition is necessary and sufficient, for bouncing
models it may not be sufficient, requiring also violation of
the null energy condition in most cases (i.e. Friedmann
models with nonpositive spatial hypersurface curvature
[43]). This suggests that there could possibly be observa-
tional implications to which we shall come later. For now,
we turn to the way a bounce addresses the usual puzzles,
before presenting an actual model in which these features
can be readily implemented.

II. COSMOLOGICAL PUZZLES

Bouncing models lead to a new framework for uncover-
ing completely new solutions to the standard cosmological
puzzles. Let us list them in what follows.

(i) Singularity: Bouncing universes are, by construc-
tion, geodesically complete, and hence singularity-
free, so this point, not addressed by inflation, is a
nonissue here.

(ii) Horizon: The size dH of the horizon is given by the
time integral dHðtÞ � aðtÞRtti a�1ð�Þd�, with ti
some initial value. If the dynamics is driven by a
perfect fluid with constant equation of state ! �
p=�, with p and � the pressure and energy density,
respectively, of the fluid, the scale factor behaves,

for flat hypersurfaces, as aðtÞ / jtj2=½3ð1þ!Þ� [here
and in what follows, we assume for simplicity that
the bounce takes place at t ¼ 0, so that t < 0 (t > 0)
represents the contracting (expanding) phase].
Integrating, we obtain the horizon as

dH ¼ 3ð1þ!Þ
1þ 3!

fjtijð1þ3!Þ=½3ð1þ!Þ� � jtj2=½3ð1þ!Þ� þ tg:
(1)

If !>� 1
3 , then clearly, as ti ! �1 (bouncing

case), dH diverges. At any finite time before or after
the bounce, the horizon is infinite and remains so for
all subsequent times. Note that this solution would
cease to be valid if, as seems to be the case now, the
Universe had been dominated by some kind of dark
energy (!<� 1

3 ) in the contracting phase. This

observation thus appears to require a nonsymmetric
bounce.

(iii) Flatness: The problem stems from the classical
equation giving the density �ðtÞ relative to the
critical one �cðtÞ ¼ 3H2ðtÞ=ð8�GNÞ, with H �
_a=a the Hubble expansion rate, through

d

dt
j�� 1j ¼ �2

€a

_a3
; (2)

where � � �=�c. As � is close to unity now,
implying almost flat spatial sections (the term in-
volving the spatial curvature K would be negli-
gible in the Friedmann equation), Eq. (2) implies
that it must have been arbitrarily closer in the past
in the usual big-bang scenario based on decelerated
( €a < 0) expansion ( _a > 0) since then j�� 1j is an
ever-increasing function of time. To solve this
problem, one must have had a long enough period
during which j�� 1j decreases. This can be ac-
complished either through an inflationary expan-
sion phase ( €a > 0 and _a > 0) or through a long
decelerated contracting phase ( €a < 0 and _a < 0). In
the latter framework, we would say that the
Universe is seen to be almost flat now because it
has expanded much less than it has contracted
before.

(iv) Homogeneity: This is perhaps the deepest problem
of the standard model. There are essentially two
approaches to this issue. The first, exemplified here
by the Weyl curvature hypothesis [44,45] (other
examples on this approach have been proposed
[21,22], based on boundary conditions on the
wave function of the Universe), is to provide
some theory of initial conditions.2 The second pos-
sibility, of which inflation is prototypical, is to
invoke a dynamical process which wipes out any
preexisting inhomogeneity and anisotropy. In both
cases, the outcome should be the outstandingly
special Friedman-Lemaı̂tre-Robertson-Walker
(FLRW) geometry. It is unquestionable that infla-
tion, providing such a mechanism, significantly
alleviates the problem [9,10,12], but it is not clear
whether it precludes special initial conditions
[10,11] to be imposed. It seems likely that a combi-
nation of these two approaches will turn out to be
necessary. One expects that whenever (if ever) a

1Note that, strictly speaking, the bounce itself could be seen as
including an inflationary phase since €a > 0 near the bounce.
However, inflation is usually assumed (as we do in the present
work) to be not only a period of acceleration, but one inducing
many efolds of expansion in a very short time. This is clearly not
the case during a bounce.

2Based on thermodynamical considerations, the Weyl curva-
ture hypothesis consists in saying that the arrow of time implies
the Universe to have an initially very low total entropy. It turns
out that, if its gravitational part, the dominant one, depends only
on the Weyl tensor, as the conjecture states, then it suffices to
argue that the latter should be initially negligible. Note, however,
that this particular hypothesis is not sufficient by itself to
guarantee homogeneity as long as the conformal factor of the
metric may have non-negligible spatial gradients at the
beginning.
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consistent theory of quantum gravity is consensu-
ally accepted, it will, once applied to cosmology,
provide the required initial conditions to homoge-
nize the primordial Universe.

In bouncing models, one may indeed envisage a solution
for this problem using a mixture of the above-mentioned
two approaches within a complete new perspective. In a
very large and dilute Universe, the energy-momentum
tensor of matter, and hence the Ricci tensor, should be
very small. This requirement, by itself, does not ensure that
the geometry is almost flat since Einstein equations do not
fix the Weyl tensor. Under the Weyl curvature hypothesis,
however, geometry should be almost flat at that time,
which we take to be our initial condition. The question
then becomes: do the initial inhomogeneities grow?

Consider first the initial regime where the Universe is
very large, rarefied and, as discussed above, almost flat.
Then the self-gravitation of any inhomogeneity, even with
��=� * 1, is negligible, as long as � is very small. Note
that this would not be true if we were to take initial
conditions at a time for which the Universe is small and
dense. These original inhomogeneities therefore get dissi-
pated in much the same way as air gets rapidly homoge-
neous if perturbed (sound waves do not condense). By
assumption, neither gravity nor its entropy are relevant in
this regime. By the Hamilton theorem, the entropy of
matter grows undisturbed for a long time and thus can
reach its maximum value.

Let us now go one step forward and assume a matter-
(dust-) dominated cosmological contraction. In that case,
the dust field velocity evolves as v / a�1, its number
density n / a�3, and consequently its mean free path reads
�MFP ¼ ðn�Þ�1 / a3, where � is the dust cross section
(necessarily small for the dust approximation to make
sense).

In a very large dust-dominated Universe, the Jeans

length is �ph
J ¼ cS½�=ðGN�Þ�1=2 / a1=2 and can be made

larger than any large scale we see today. The dissipation
time td for a given inhomogeneity of wavelength � smaller
than the Jeans length is given by

td ¼ �

v

�
1þ �

�MFP

�
(3)

and this time ought to be compared with the Hubble time

scale. For dust, a / R2=3
H , where we set RH ¼ yR0 the

Hubble radius at any time and R0 its present value.
Writing � ¼ xR0 and �MFP ¼ AR2

H, A being a constant,
Eq. (3) transforms into

td / xy2=3
�
1þ C

x

y2

�
T0; (4)

where T0 is the value of the Hubble time today and C�1 ¼
AR0. Comparing with the Hubble time tH ¼ yT0, Eqs. (1)
and (4) yield

td
tH

/ x

y1=3

�
1þ C

x

y2

�
: (5)

The dependence of (5) on y obtained by the simple calcu-
lation above shows that, for a sufficiently large RH ¼ yR0,
any scale up to the size of our Universe today becomes
homogeneous, being dissipated before gravity can play any
role. In fact, depending on the amount of time spent in this
dust contraction regime, and this time can be fixed arbi-
trarily large, even infinite if one wishes, the dissipation is
so effective that only quantum fluctuations given by the
uncertainty principle survive. This provides, as a bonus,
unique initial conditions for the perturbations: vacuum
fluctuations.

(i) Dark energy: This problem is not addressed by in-
flation, and the simplest bouncing cases also remain
silent here. However, as discussed above, although
dark energy is mostly harmless as inflation proceeds,
it may be problematic (see the horizon problem
above) for bouncing models. Hence, either dark
energy was produced near or after the bounce, or it
cannot have dominated in the asymptotic past, as in
the transient dark energy example [46]. In this case,
one could turn this potential difficulty into a means
of reducing the spectral index of perturbations: with
a small amount of dark energy in the primordial
fluctuation enhancement epoch, the effective equa-
tion of state could be made negative, thus implying a
slightly red spectrum (see below). This is something
to be investigated in more detail in the future.

III. INITIAL CONDITIONS FOR STRUCTURE
FORMATION

The main achievement of the inflation paradigm was the
realization that, due to the quantum fluctuations of the
scalar field and the metric, initial conditions for semiclas-
sical perturbations could be set in a natural way, demand-
ing that at some stage the relevant scales had been in a
vacuum quantum state. Implementing this condition then
led to the prediction that the spectral index of scalar
perturbations is close to 1 [4]. What similar initial con-
ditions can be imposed in bouncing models, if any, and
what do they lead to in terms of observations?
Setting vacuum initial conditions is in fact even more

natural in a bouncing case. Indeed, the Universe is sup-
posed to be very large in the far past and in fact, for the idea
to make any sense at all, much larger than any observable
scale today. This means that, for any given scale of interest,
there exists a time, sufficiently before the bounce, for
which the scale in question is much smaller than the
curvature scale. As a result, one can safely work in the
tangent Minkowski space. Furthermore, imposing vacuum
for the corresponding perturbations at that time is then not
only a plausible requirement but also a necessary conse-
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quence of the homogeneity solving scenario discussed
above, where inhomogeneities are dissipated up to quan-
tum vacuum fluctuations in a huge and slowly contracting
Universe.

In the simple quantum cosmology background presented
in the following section, stemming from action (8), explicit
calculations starting with vacuum initial conditions yields,
for the scalar and tensor spectral indices, respectively [47–
50]

nS ¼ 1þ 12!

1þ 3!
(6)

and

nT ¼ 12!

1þ 3!
: (7)

In the dust (pressureless) limit !! 0, one can easily get a
scale invariant spectrum for both tensor and scalar pertur-
bations, in agreement with observations. Furthermore, fit-
ting the amplitude of the perturbations with cosmic
microwave background (CMB) data leads to the nice con-
straint that the curvature scale at the bounce should be
greater than roughly a thousand Planck lengths, ensuring
that the model is not spoiled by some discrete nature of
spacetime such as induced by string effects [47].

The above calculations might erroneously lead one to
believe that the model necessarily involves only one fluid
and that it ought to be dust at all times. Clearly, this would
ruin the central idea. In fact, it is not mandatory that the
fluid dominating the dynamics during the bounce be dust.
This is fortunate since densities and temperature increase
as the Universe contracts, eventually reaching the point
above which particle masses becomes negligible and the
Universe becomes radiation-dominated. This would also
happen as time goes on if an initial bunch of monopoles
and antimonopoles were to annihilate. In any case, a matter
to radiation transition is expected.

The reason why it is not necessary that dust dominate
also during the bounce is the following: the spectra of the
growing and constant modes of the Bardeen potential in the
contraction phase are obtained far from the bounce, and
they do not change in a transition, say, from matter to
radiation domination (although amplitudes may change
[51]). The effect of the bounce is essentially to mix these
two coefficients (this also happens in other frameworks
[52,53]): the constant mode in the expansion phase is thus
very likely (although this is a model-dependent statement
[54]) to acquire the scale invariant piece previously built
up. This happens whatever the fluid dominating at the
bounce [47]. Hence, the bounce may be dominated by
any other fluid, such as radiation. In short, providing the
perturbations enter the potential during an almost dustlike
epoch, one expects the spectrum to be almost scale invari-
ant. We shall generally assume this hypothesis, bearing in
mind that it ought to be checked explicitly afterwards [55].

Other bouncing representations have been discussed,
among which are purely classical fluids, one of which,
whose role is restricted to the bounce itself, is of negative
energy [56,57]. Such a negative energy classical fluid
might also be an effective fluid originated from interactions
among ordinary fluids in the early Universe [58]. Again, a
scale invariant spectrum can be recovered provided the
positive energy fluid dominating at the early stage, when
the Universe is large, has an equation of state close to
vanishing (dust), irrespective of the negative energy fluid
which drives the bounce. Finally, and even though they are
not mandatory, classical scalar fields can also lead to
bouncing models with a scale invariant spectrum [48].
Hence this result is quite robust and not a mere particular
feature of a given specific model.
We now turn to our specific case which exemplifies all of

the basic requirements for the bounce paradigm we wish to
defend as a would-be ‘‘challenger’’ to inflation. We would
like to emphasize that, although it possesses all of the
features expected for a data-reproducing bounce, its use
merely serves the purpose of exhibiting how it can practi-
cally be realized. As for inflation, many other solutions can
be found, each with its specificities; present [1,2] or future
[59] observational constraints might, however, hopefully
discriminate between the many possibilities.

IV. A QUANTUM COSMOLOGICAL BOUNCE

What could be more simple for cosmology than to use
Einstein action sourced by a constant equation of state
perfect fluid in 4 dimensions? Amazingly enough, such
an overwhelmingly simple framework manages to repro-
duce all of the cosmic data, as we want to emphasize here.
The theory we deal with is thus

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�gp �

R

6‘2Pl
þ �

�
; (8)

with R the Ricci scalar and � the energy density with
associated pressure p ¼ !�, assuming ! to be a constant.
We restrict our attention, to begin with, to homogeneous

and isotropic models and thus choose to consider the subset
of metrics of the FLRW form, namely,

d s2 ¼ gð0Þ��dx�dx� ¼ N2ð�Þd�2 � a2ð�Þ	ijdxidxj; (9)

with 	ij ¼ ð1þ 1
4Kx2Þ�2�ij the 3-space metric and að�Þ

the scale factor. Note that we do not assume flat spatial
sections, so the spatial curvature K is free, although
normalizable: K 2 f0;�1g. Finally, the lapse function
can be chosen as N ¼ a3!, so that � is identified with
cosmic time if the fluid is made of dust and conformal
time if it is made of radiation.
Going on to perturbations around such a background, we

write the full metric as

d s2 ¼ ðgð0Þ�� þ �g��Þdx�dx�: (10)

PATRICK PETER AND NELSON PINTO-NETO PHYSICAL REVIEW D 78, 063506 (2008)

063506-4



This, in principle, provides a full set of quantum observ-
ables. Let us consider an arbitrary quantum state
 ½g��ðxÞ; . . .�, where the dots stand for whatever other

degree of freedom is present. Consistency of the linear
quantum perturbation approach in this case might be as-
serted, or at least addressed, provided that, for nonvanish-
ing values of the background expectation values, the
constraint

h j�g��j i � h�g��i � hgð0Þ��i (11)

holds.
In the perturbed FLRW case in the longitudinal gauge,

considering scalar and tensor perturbations only3

d s2 ¼ N2ð1þ 2�Þd�2 � a2½ð1� 2�Þ	ij þ hij�dxidxj;
(12)

the constraint (11) amounts to ðh�i ; h�i ; hhiji Þ � 1.

Note that the tensor modes are traceless and divergence-
free, i.e. 	ijhij ¼ 0 and hij;j ¼ 0, with the covariant de-

rivative taken with respect to 	ij.

The crucial point concerning this expansion is that it can
be shown [60] that the Fourier modes of these perturba-
tions, in the restricted case of a constant equation of state
perfect fluid, satisfy equations of motion that are exactly
those of the classical theory. In fact, at least in the flatK ¼
0 situation, they can be obtained without any appeal to the
background field equations and therefore can be used
straightforwardly in the quantum regime [47,60–62]. A
consistent Hamiltonian constraint H ¼ H 0 þ �H was
obtained, where H 0 describes the background geometry
while �H is the Hamiltonian constraint for the perturba-
tions written in very simple form and suitable for Dirac
quantization.

The way to proceed is to go a step forward with respect
to the usual approach, where perturbations are quantized
and the background remains classical, and use the whole
Hamiltonian constraint above to Dirac quantize both the
background and the perturbations,4 making a wave func-
tion separation into zeroth and second orders as

 ¼  ð0Þða; �Þ �  ð2Þ½a;�ðxÞ;�ðxÞ; hijðxÞ; ��; (13)

and solve the zeroth order using a Bohmian approach
[64,65], where actual trajectories can be calculated. In
the case of a perfect fluid, the Bohmian quantum trajectory
for the scale factor reads [47]

að�Þ ¼ a0

�
1þ

�
�

T0

�
2
�
1=½3ð1�!Þ�

; (14)

where a0, the value of the scale factor at the bounce,
5 and

T0 are arbitrary constants to be eventually determined by
observations, and the time parameter � is related to con-
formal time 
 through

d
 ¼ ½að�Þ�3!�1d�: (15)

Note that this solution has no singularities and tends to the
classical solution when �! �1.6 Hence, once an initial
condition has been given, að�Þ can really be understood as
a mere function of time. This function is henceforth
plugged into the Fourier mode equations for the perturba-
tions, where it serves as a source for ‘‘particle production’’
just as in the usual inflation calculations. This mode equa-
tion reads [60]

v00k þ
�
!k2 � a00

a

�
vk ¼ 0; (16)

where v reduces to the Mukhanov-Sasaki variable [51]
when the background satisfies the classical Einstein equa-
tions and a prime means derivative with respect to confor-
mal time. The potential V ¼ a00=a, which yields the scale

of curvature of the bouncing quantum background ‘C �
aV�1=2, has the same qualitative properties as the potential
for perturbations in inflation: it is negligible when j
j ! 1
and has its maximum around 
 ¼ 0. As an explicit ex-
ample, its form for a radiation fluid reads

Vrad ¼ 1

T2
0ð1þ 
2

T2
0

Þ2
; (17)

whereas the dust case reads

Vdust ¼ 2a20
9T2

0

3þ x2

ð1þ x2Þ4=3 ; (18)

where we have set x � �=T0. In both cases, the potential is
vanishing in the limit j�j ! 1, i.e. far from the bounce,
and reaches its maximum at the bounce itself. Hence, as in
inflation, scales of physical perturbations are much smaller
than the curvature scale in the far past (they are above the
potential, i.e. k2 � V), where they oscillate and can be set

3Both at classical and quantum levels, scalar, vector and tensor
perturbations decouple, and vectors are rapidly diluted away by
the expansion as / a�2; they are not measurable today, so one
merely needs to ensure they never spoiled the linear
approximation.

4An attempt in this direction was done [63], which, however,
could not be taken much forward due to the complicated form of
�H they use.

5The background wave function at the bounce, which is a
Gaussian centered at the singular point a ¼ 0, gives the proba-
bility of having a particular value for a0, and it is very low when
evaluated at sufficient big values of a0 that can describe the large
Universe in which we live. However, if one takes background
wave functions at the bounce consisted of Gaussians traveling
away from the singular point a ¼ 0 with speed parameter u, this
problem can be overcome and large Universes can be obtained
with reasonable probabilities [66]. This is an example of the fact
that the scales of the Universe are not uniquely determined by
the Planck scale but also on parameters appearing in its quantum
state.

6As all quantum trajectories, and hence the mean value of a,
have this same functional form, then using a probabilistic
interpretation, like the many worlds interpretation [67], will
presumably give the same forthcoming results: we expect the
explicit use of a Bohmian interpretation for quantum mechanics
to be of no practical consequence.
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in quantum vacuum state. When the bounce approaches,
these scales get larger with respect to the curvature scale
and eventually enter the potential (k2 � V), where they get
amplified. Finally, they become smaller again than the
curvature scale in the far future (exit from the potential),
where they oscillate again, now amplified. Most of the
time, i.e. far from the bounce itself, the background scale
factor thus obtained is undistinguishable from the solution
classical Einstein (Friedmann) equation. As all of the
effects discussed in the previous section take place in these
regimes, one can consistently assume Einstein gravity
throughout the relevant history of the Universe.

In this category of models, the index nS of Eq. (6) can be
tuned as close to unity as one wishes, but from above. This
means the spectrum is expected to be slightly blue, as
opposed to at least the simplest single field inflationary
models in which it is slightly red. The latest WMAP3 [1,2]
observations do not currently favor this prediction but do
not rule it out either, especially if nS is sufficiently close to
1 [68].

The amplitude of the perturbations needs be calculated
numerically. The free parameters of the background must
then be adjusted in order to fit observational data and
theoretical consistency and completeness constraints. On
the observational side, one must have a background com-
patible with the large Universe we see today and perturba-
tions which fit the CMB data. As for the theoretical issues,
one must impose that the gauge invariant variables always
remain in the linear regime and, at least in principle, that
scales of cosmological interest were never smaller than the
Planck length in order to avoid any trans-Planckian prob-
lem by construction.

Taking into account the constraints on the parameters
due to the normalization conditions and the compromise
that the model should describe our real Universe in fact
leads to imposing that the scale factor at the bounce must
be large in Planck units. Once this is done, there is no trans-
Planckian problem [13,14] and no departure from linearity.

Finally, we should like to emphasize a major, possibly
observable in the future, difference between inflation and
such bouncing models: the so-called consistency [51] re-
lation between the tensor-to-scalar ratio T=S and the spec-
tral index. While a typical inflation predication is a linear
relation, the bounce case, on the other hand, predicts [47]
T=S / ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nS � 1
p

. In the case the scalar index is very close to
1, which is the current best fit with WMAP data [68], then
T=S would be very small. Further improved data, notably
on B modes in the CMB, will provide a very stringent, and
hopefully discriminating, test as they will have the ability
to provide a measure of T=S up to values [69] of order
10�3.

V. CONCLUSIONS

The theory of linear quantum perturbations has been
successfully applied in the framework of a classical infla-

tionary background: only the perturbations were quantized,
leading to a sort of semiclassical approximation to quan-
tum gravity [4]. We have developed a Hamiltonian formal-
ism where not only the perturbations but also the
background could be quantized [47,60–62]. This led to a
picture of quantum perturbations evolving in a nonsingular
bouncing background spacetime from a vacuum state
yielding spectral indices and amplitudes that can be
made to agree with observations provided the dominant
fluid in the background when the perturbation scale be-
comes smaller than the curvature radius is dust. The cur-
vature scale at the bounce can always be set larger than the
Planck length, and hence the calculations are not spoiled
by higher order quantum gravity effects. Finally, such a
model can be extended to include a radiation-dominated
decelerating phase before nucleosynthesis without corrupt-
ing its main features properties. This thus provides a simple
theoretical framework where only the basic principles of
general relativity and quantum mechanics, together with
the assumption of the existence of a dustlike fluid (dark
matter?), yield what can be argued to be a sensible model.
Furthermore, such behaviors can also be obtained in other
nonquantum bouncing models [48,56,57], indicating that
these are not particular properties of the specific models
here discussed.
We have also argued that general bounces provide differ-

ent perspectives on old issues such as flatness and homo-
geneity. In fact, these problems may be alleviated or solved
using simple physical arguments which can be applied only
in this context.
There are, however, many open questions left to be

addressed and some weak points. Let us list them below.

(i) Baryogenesis and dark energy are not addressed, but
the latter could actually provide a means of obtaining
a redder spectrum.

(ii) Was radiation always there, or it was produced at the
bounce, e.g. through the evaporation of mini black
holes or monopolonium bound states? Does its
presence alter the amplitude of the perturbations,
and if so, how?

(iii) As primordial perturbations are enhanced at the
bounce, similarly one could think that they also
might lead to large amounts of particle production.
The relic density of these particles needs be eval-
uated for each model.

(iv) Although spatial curvature is expected to be negli-
gible during most of the evolution, particularly in
the expanding phase, it may be quite important at
the bounce itself and modify the amplitude of the
perturbations.

All of the properties of bouncing models and their open
issues show that they seem to provide a robust alternative
to inflation. A less ambitious role, although still very
important, should be that they can complement inflation
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by solving the singularity problem, ease the homogeneity
problem and yield appropriate initial conditions for it [52].
In any case, bounce cosmology leads to numerous new,
hopefully measurable [70], ideas and effects, yet to be
investigated. The tensor-to-scalar prediction is already an
example of such an effect rendering the paradigm testable.

As a final remark, we would like to stress that, in
contradistinction with models in which time begins, there
is no point to asking what the probability is of the appear-
ance of some particular eternal model out of nothing.
Contrary to the usual perspectives, one can as well assume
existence to be conceptually prior to nonexistence, i.e.
existence itself may not be deserving explanation. This is

the idea underlying our category of models: the Universe
always existed and its ‘‘appearance’’ is thus a nonquestion.
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