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Abstract

We extend to a certain class of compound concepts the binary
model classically used for the representation of simple concepts. This
class consists of concepts that are determined or modified by a single
feature. The treatment of such a mixed composition shows the need
to differentiate between exceptional and non exceptional modifiers. In
the first case, typicality is easily retrieved from the components of
the composition, while, in the second case, it is necessary to isolate
the characteristic features of the initial concept that contradict the
modifier. The distinction between exceptional and non exceptional
modifiers plays a key role in the evaluation of resemblance with mixed
compositions.

Keywords categorization, prototype theory, categorial membership, typi-
cality, resemblance theory, concept, feature, relative clause.

1 Introduction

The study of concept combination may be seen as the touchstone of con-
cept theories. Indeed, while elementary concepts can be suitably represented
through different models (see [2], [5], [17], [29], [22], [34], [37] or [27] for a gen-
eral overview), the extension to compound concepts of such representations



requires a robustness of the model that may be lacking in the original theory.
Except for some particular cases, the basic notions linked with concept theo-
ries are not compositional. The evidence of some paradoxical results showed
the difficulty to treat concept composition with the tools of set theory, and
led to alternative approaches ([38], [1], [10], [41]).

In [13] and [14], we studied a certain family of concepts, which we called
featured concepts. This family consists of concepts that can be described
by a simple version of the binary model proposed by [37] and [34]. We
showed that, for this class of concepts, the notions of categorial membership
and typicality could be modeled by simple order relations. Such an order
adequately translates the fact that an object may be more or less a member
of a category, or that, inside this category, it appears as more or less typical.
After having been a ‘matter of degree’ (see [33]), categorial membership
and typicality could be therefore treated as intuitive ordinal notions. The
membership and the typicality orders that a concept induces among the
objects of the universe were shown to provide a satisfactory solution, in
the framework of featured concepts, to the problems classically linked with
categorial membership, typicality, resemblance and concept induction.

One might think it odd to build a mathematical theory on items - e.g.
concepts - for which there exists no mathematical definition. This apparent
contradiction however disappears if one keeps in mind that we work on a
representation of concepts and not on concepts themselves. As in the case
of almost all theories of concept, we propose a mathematical model and
use mathematical tools to investigate problems like categorial membership,
typicality, concept composition and concept based induction. The solutions
brought by this model can be then evaluated in the perspective of cognitive
psychology.

The model built to acount for simple featured concepts easily extends
to the combination of two such concepts, although the resulting concept is
generally not a featured concept. An important side-result is the possibility
of describing and explaining in our model the guppy effect as well as the
conjunction fallacy (see [29]and [40]), showing that our approach successfully
models concept conjunction.

In our representation of compound concepts, a problem was however left
aside, which is that of compound mized concepts. These concepts result from
the conjunction of a single attribute with a featured concept, e.g. a black-dog,
an aquatic-bird, an English-physician. The class of compound mixed concepts
deserves a study of its own because these concepts are omnipresent in every-



day language as adjective-noun combinations. Furthermore, feature-concept
combination seems simpler to investigate than concept-concept combination.

We shall devote this paper to the analysis of this kind of composed con-
cepts.

It is clear that compound mixed concepts cannot receive a uniform treat-
ment: it will be indeed necessary to distinguish between the simple determi-
nation of a concept, where the head feature can be integrated as a supple-
mentary attribute of the concept (e.g. to-be-a-black-dog), and a modification
of the concept, where the head feature is considered as exceptional because
it stands in contradiction with one or several attributes of the original con-
cept (e.g. to-be-a-silent-dog, to-be-a-walking-bird). For each type of feature,
we shall build a set of characteristic attributes of the resulting mixed con-
cept. We shall see that, in the principal cases, this concept can be given the
structure of a featured concept, to which we can apply our preceding results.
We shall devote a particular attention to questions linked with resemblance.
In particular, the presence of the head feature in resemblant objects will be
debated, as it has no obvious solution: an animal that is said to resemble a
black-dog is expected to be black itself, but a plant that resembles a tropical-
flower need not have grown in the tropics.

Plan of the paper

In order to make this paper self-contained, we recall in section 2 the basic
notions and results that are necessary to understand the questions evoked
in the remainder of the paper. Section 3 introduces the notion of mixed
concepts and explains the difference between exceptional and non-exceptional
modifiers. In Section 4, after having recalled some results on simple concept
resemblance, we examine the problem of resemblance relative to compound
mixed concepts. We conclude in Section 5.

The proofs of the propositions and theorems are given in the Appendix.

2 Tools for categorization

2.1 Concepts, features and objects

The universe of discourse consists of a set of objects O that a human agent
has at his disposal at a given time, a set of concepts C, and a set of features



F. The set of concepts reflects the agent’s knowledge of his environment and
is used by the agent to build his reasoning process. For simplification, we
shall adopt the original presentation of Frege [11] who assimilated concepts
with one-place predicates. In this perspective, concepts will be generally
introduced through the auxiliary to-be, followed by a noun: to-be-a-bird, to-
be-a-vector-space, to-be-a-democracy. Objects are entities that are identified
as such by the agent. The process of identification gives rise to a binary
relation between concepts and objects. This relation is satisfied between an
object x and a concept a when the agent considers that x falls under «, or
that a applies to x. For example, one may say that ‘Beethoven’s opus 111
falls under the concept to-be-a-piano-sonata’, or that ‘The dog Tobby does
not fall under the concept to-be-a-cat’.

An object that falls under a concept is said to be an ezemplar or an
instance of this concept. The set Exta of exemplars of a concept a forms
its associated category or extension.

Features are usually introduced in the form of a verb (e.g. to-fly), of the
auxiliary to-have followed by a noun (e.g. to-have-a-beak), or of the auxiliary
to-be followed by an adjective (e.g. to-be-tall).

Features, like concepts, apply to the objects at hand but, contrary to
concepts, they are context-sensitive: they borrow part of their significance
from the concept to which they are attached. Properties like to-be-tall, to-
be-rich or to-be-red take their full meaning only in a given context, that is
when qualifying a well-defined entity. Even simple verbal forms like to-fly, to-
run, to-live-in-water, to-be-made-of-metal need a principal referent concept to
fully seize the strength with which they apply to different items. The concept
to which a feature applies may be seen itself as a contextual determination of
this feature. To summarize, the meaning of a feature depends on the context
where the feature is used, contrary to the meaning of a concept, which, for
a given agent, exists by itself.

To account for the fact that we are dealing with a phenomenal repre-
sentation of cognitive structures, we suggested in [13] and [14] to evaluate
the applicability of a feature f to objects by a degree function ¢y from O
to a finite subset of [0, 1] (see [16] for the diference between scientific and
phenomenal representations).

The mathematical model we presented in [14] and which we recall in this

section describes the structure of concepts as well as the main relations that
exist between concepts, like hierachy, resemblance or induction. We did not
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- and we shall not - examine the question of concept formation. Research
in this domain may be found in [4], [6], or [7]. The question of how agents
acquire concepts will be therefore set aside. Our purpose is to investigate in
a mathematical framework what it is, for an agent, to have a concept.

In the classical view of categorization, concepts are apprehended by their
features: vertebrates that have beaks and feathers will be labelled birds, a coat
is an outer garment with sleeves that opens down the front, and, (following
Plato), a man is a featherless biped. Exemplar and Prototype theory evaluate
categorial membership through the common features an item may have with
a concept. Features also play a fundamental role in Formal Concept Analysis
([15]), where, in a given context, a concept is defined by a pair (A4, B), where
Ais a set of objects and B a set of features. Features may be also retrieved
in the quality dimensions of the geometrical model of Géardenfors ([17] and,
more recently, [30]), where a concept is characterized by a region in the space
of its quality dimensions.

In this paper, we shall start from the binary model of [34] and [37]. There,
a concept « is described by means of two auxiliary sets of features, the
defining feature set and the characteristic set, which we shall detail now.

First of all, the defining feature set A(«) of a concept a gathers features
that, in the agent’s mind, are individually necessary and collectively sufficient
to decide, in a given context, whether or not an item is an exemplar of a.
Categorization relative to a concept is then evaluated through categorization
relative to its defining features. For example, if, for some agent, the defining
feature set associated with the concept to-be-a-bird consists of the four fea-
tures to-be-warm-blooded, to-have-a-beak, to-have-feathers and to-have-wings,
then, for this agent, the degree with which each of these features apply to
a given item will determine its birdhood. Similarly, to quote an example
of Putnam [32], the meaning of the term tiger is to be searched by refer-
ence to the terms yellow feline, fierce, black stripes, and jungle: the defining
features associated with the concept to-be-a-tiger consist of the properties to-
be-a-yellow-feline, to-have-black-stripes, to-live-in-the-jungle and to-be-fierce.
The defining set of a concept may also include as features the potential ac-
tions that are expected from instances of the concept and that our perception
is aware of ([28]). Thus, to-drive-in-nails may be listed among the defining
features of the concept to-be-a-hammer.

We have to underline that, given a concept, the choice of its associated
defining feature set is purely subjective. For a same concept «, the set A(a)
may vary from an agent to another, as it may vary over time for a same agent.



It may also be the case that, for some agent, a concept has a corresponding
set of defining features, while being deprived of such a set for another agent.

Concepts defined by a conjunction of features form an exceptional sub-
class. Fodor for instance [9] argued that there exists practically no examples
of successful definition around. Without being so radical, it is clear that
a great deal of concepts are deprived of any set of defining features: what
list of attributes could be attached to concepts like to-be-a-game, to-be-a-lie,
or to-be-a-heap ? However, it appears that the hypothesis of a defining set
of features is justified for certain well-defined families of concepts: such is
for instance the case for most nominal concepts, i.e. concepts that are con-
ventionally defined, like to-be-a-mammoal, to-be-a-theft or to-be-a-refugee. In
particular, this remains true for scientific concepts, like to-be-a-vortex or to-
be-a-square. Finally, it may happen that a concept, first grasped through its
exemplars, is thereafter sharpened with the help of a set of defining features,
like the concept to-be-a-bird, a natural kind concept that was revisited by
naturalists and turned into the pseudo-nominal to-have-feathers + to-have-
a-beak + to-have-wings.

All the features that the agent has chosen to form the set A(a) do not
necessarily have the same importance. For example, as far as birdhood is
concerned, to-have-wings may be judged as a more important feature than
to-have-a-beak. To account for this fact, it appears necessary to equip the set
A(a) with a salience ordering >a(q) that reflects the relative importance of
its elements. This is done in the classical models through a salience degree
that is attached to every defining feature. Then, the degree with which a
concept applies to an object is evaluated through the degree with which ev-
ery defining feature applies to this object, together with the relative salience
degree of this feature (for an example of such a calculation, see [19] or [21]).
In fact, as we argued in [14], comparing the salience of the defining features
is easier than assigning to each of them a numerical degree. For this reason,
we shall only suppose that, in the agent’s mind, the set A(«) is equipped
with a strict partial order >a(,) which, in this paper, we shall suppose non
empty. This salience order is, again, subjective, depending on the state of
mind, at a given time, of a given agent. Moreover, it is independant of the
relations that may exist between two features: an agent may consider that
a feature f is more salient than a feature g even in the case where falling
under f implies falling under g. Our model is supposed to reflect the agent’s
mind as it is, with its posible apparent contradictions.



The defining feature set associated with a concept is not enough to fully
understand the link between this concept and the objects of the agent’s
universe. Indeed, all instances of a concept do not have the same status:
some of them can be considered as typically representing this concept, while
other ones may be viewed as exceptions among the concepts exemplars. Thus,
a robin may be a judged as typical in the category of birds, contrary to an
ostrich or a penguin.

To account for this difference among the elements of Ext«, the binary
model adds to the defining feature set a second set of features, called the
characteristic set of a, which will be denoted by x(a). This set consists of
the features that an exemplar of a concept should have to be qualified as
typical of this concept. Thus, an example of a characteristic set relative to
the concept to-be-a-bird could be {to-fly, to-sing, to-eat-seeds, to-live-in-the-
trees}: any bird to which apply all these feature will be qualified as typical.
Note that the sets A(«) and x(«) are disjoint : contrary to a defining feature,
a characteristic feature is not supposed to apply to each instance of a concept.

As was the case for the defining feature set, salience has to be taken into
account among the set of characteristic features. This will be done by means
of a non-empty strict partial order >, ).

The above considerations lead to the following notion of featured concepts
(see [14], definition 1 and 5):

Definition 1 A featured concept « is a concept for which there exists a finite
non-empty strictly ordered set of defining features (A(a),>a()) and a finite
non-empty strictly ordered set of characteristic features (x(a),>y()) that
satisfy the following three properties:

1. Ala)Nx(a) =0

2. For every defining or characteristic feature f, the corresponding appli-
cability function §; takes a finite number of values in [0, 1]

3. There exists at least one object z such that §;(z) = 1 for all defining
and characteristic features f.

The extension Fxt a of o can be retrieved as the set of all objects z such
that 0;(z) = 1 for all f in A(a).

The set Typ a of typical instances of o gathers all objects z such that
dr(2) = 1 for all f in A(a) U x(«). Condition 3 above guarantees that
Typ a # B for every featured concept «.
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2.2 The impact of a featured concept in the binary
model

A featured concept structures an agent’s universe of discourse. In this section,
we will show how such a structure can be represented by order relations
among objects.

2.2.1 Induced orders

We first describe how to build an preorder relation in O from a finite ordered
subset of features. This will enable us to build the membership and typicality
orders of a concept from its defining and characteristic sets.

Given a finite set of features X equipped with a non-empty strict partial
order >y, we define on a subset T of O the relation <7 by:

(1) o =37 yiff Vf € X :05(y) < dp(x), Ig € X, g >x [ dy(x) < 5(y)-

That is, we have # <5 y if every feature of X that applies less to y than to
x is dominated in X by a feature that applies more to y than to x.

It may be helpful to interpret this relation in the framework of Social
Choice Theory: supposing that a certain number of voters have to decide
between two candidates x and y, and supposing that the voters voices do not
matter the same, the candidate y will be preferred over the candidate x if,
for each voice in favor of x, there exists a more important voice in favor of y.

Lemma 1 The relation <7 is a preorder. For two elements x and y of T,
one has simultaneously x <5 y and y <3 x iff, Vf € X, 6;(x) = 6;(y). The
strict partial order <5 associated with <3 satisfies:

(2) x <3 yiffr 23 yand If € X : 6;(x) < 5(y).

We shall refer to the relation jj)f as to the order induced on T by X.

Note that the jj)f -maximal elements z of T are those for which one has
d7(z) = 1Vf € X. These elements satisfy x <3 z for all elements x that are
not <4 -maximal.

The above construction leads to the two notions that govern concept
representation.



The first one is the membership order <E. It is induced on O by the
defining set A(a), that is =¥ = jé(a). For z and y in O, we have therefore

(3) v 2hyiff Ve Ala) : dp(y) < 6f(2), g € Ala), g >aq) f:
dg(z) < d,(y).

The following example was proposed in [14]

Example 1 Let a be the concept to-be-a-bird, and suppose that, from the
point of view of a particular agent, its defining feature set in the context
of living beings is the set {to-have-two-legs, to-lay-eggs, to-have-a-beak, to-
have-wings}, equipped the salience order: to-have-a-beak >, to-lay-eggs >
to-have-two-legs, and to-have wings > to-lay-eggs>, to-have-two-legs. Sup-
pose for the sake of simplicity that, in the agent’s mind, membership to any
of these features is a two-valued function. Let s, m, t, b and d respectively
stand for a sparrow, a mouse, a tortoise, a bat and a dragonfly. Then the
induced membership order is determined by the following array :

two — legs | lay — eggs | beak | wings
sparrow * * * *
mouse
tortoise * *
bat * *
dragonfly * *

One readily checks that d <, s, m <, t, and m <, b. Note that one has
b <. d, since the concept to-have-two-legs under which the bat falls, contrary
to the dragonfly, is dominated by the concept to-lay-eggs that applies to the
dragonfly and not to the bat. On the other hand, one does not have d <, b, as
nothing compensates the fact that the dragonfly lays eggs and the bat does not.
This yields b <, d. Note also that the tortoise and the bat are incomparable:
one has neither b <, t, nort <, b.

The strict a-membership order therefore reads:

VA
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The maximal elements of <A form the extension Exta of . One has
x <k z for every element z € Ext o and z ¢ Ext .

The second order we shall deal with is the typicality order <X7. It is
induced on Exta by the characteristic set x(a), that is <7 = j}%ﬁ)a. For z

and y in Ext a, we have then:

4)  z=2Lyiff Vf e x(a): dp(y) <ds(x), Ig € X(@), g >y [

dg(x) < 6,4(y).
The <7 -maximal elements of Fxta form the set Typ v of typical instances
of a. One has = <7, z for every element z € Typa and = ¢ Typ .

The sets Ext o and Typ a can be used to investigate the notion of subcon-
cept. A subconcept of « is a concept § such that Fxt f C Exta. In [14] we
showed the necessity of refining this notion and isolating two particulalrly
interesting kinds of subconcepts. The first one is that of smooth subcon-
cept ([14] definition 11): a subconcept [ of « is smooth in « if it satisfies
Typ B C Typa. For instance, to-be-a-white-bird is smooth in to-be-a-bird.
The second one is that of a typical subconcept: B is a typical subconcept of
a if Ext B C Typa. Thus, to-be-a-robin is a typical subconcept of to-be-a-
bird. These notions play an important role in concept-based induction. The
interested reader may report to the chapter 7 of [14].

Remark 1 [t is interesting to compare the notions of salience and the re-
suting typicality order with the Typicality Criterion defined by Osta-Vélez
and Gdardenfors in [31]. There, contrary to our approach, the authors define
salience from typicalty: they propose a salience quasi order > defined on x(«)
by f > g iff Vo : 05(x) = 0,3y : §4(y) = 0: = =7, y. Note that f >\ ) ¢
implies f > g, provided there exists an object y that does not fall under g but
falls under all other characteristic features of a.

Given a feature f, let us denote by Euxt f the set of elements x € O
such that d;(z) = 1. We have then clearly Exta = (\;cp(,) Eot f. One has
similarly Typa = Exta N ﬂfex(a) Ezxt f: an object z is a typical exemplar
of a concept «a if and only if §;(z) =1V f € A(a) U x(«)

The knowledge of the membership and the typicality orders induced by
a concept renders possible the process of categorization. Not only does it
choose among the set O the objects that fall under the concept, and, among
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them, those that can be considered as typical, but it also establishes a rela-
tion among the environing objects, comparing their distance to the referred
category.! Note however that two agents may agree on the membership and
the typicality orders of a concept, while having in mind a different defining
set or a different characteristic one. This observation leads to the following
notion:

Definition 2 Two concepts a and § are equivalent, written o = (3, if they
induce the same membership and typicality orders.

One has clearly Exta = Ext 8 and Typ o = Typ 3 whenever a = (3, but the
converse need not be true. For instance, we may have A(«a) = A(f), while
>A(e) 7 >Aa(p)- In this case, the extensions will agree, but the associated
membership orders may not be the same.

2.2.2 Concept determination

Concept composition is a blending operation that yields a new concept from
two components. The problem of how to form such a composition and of
determining the properties inherited by the resulting concept has been at
the origin of numerous articles (see in particular [29], [20], [23], [25] and
41)).

We proposed on [12] to introduce a determination connective that ac-
counts for a specific kind of concept combination. This idea was developed
in [14].

The determination of a concept o by a concept [ is possible whenever
Extp N Exta # (). Tt yields a compound concept, denoted by 8 x a, that
corresponds to a noun-noun combination - like in to-be-a-pet-fish, or to-be-a-
barnyard-bird - and, more generally, to a relative clause that will be globally
encapsulated by the concept 8 (e.g. to-be-an-American-who-lives-in-Paris).
Typically, the determiner S becomes a simple feature of the compound con-
cept 8 x a. Its role can be considered as secondary, compared with that
played by the principal concept a: to-be-a-woman becomes a feature of to-
be-physician-that-is-a-woman. Unlike conjunction, concept determination is
not commutative : to take a well-known example, the concept of games-that-
are-sports differs from the concept of sports-that-are-games. It is important

!The distance of an object = to a category Ext o may be defined as the maximal length
of a chain x <t 1 <k xo <4 ... <k x, with z,, € Fzta.

11



to keep in mind that only the intersective conceptual combinations are ac-
counted for: we consider the determination of o by /5 in the only case where
Extan Ext B # 0 (see [25] for the distinction between intersective and non-
intersective determiner). This shows that the determination connective
is only a partial operator: given arbitrary a and 3, it may be meaningless
to build the concept 8 x a. For instance, there is no sense in talking of a
violin-bus or a wolf-frog. Such pseudo-concepts correspond to nothing, and
no object, real or fictitious, can be thought of falling under them, contrary
to imaginary concepts like a plane-car, or a Martian-teacher: these latter
definitely have a non-empty extension, because we can imagine a car that
flies and a teacher who comes from Mars.

Given two featured concepts o and 3 such that Exta N Ext 3 # (), the
determination o of a by 8 can be described by a membership order <% |
and a typicality order <7,  defined as follows:

(5) for z,y € 0,0 2, yiff 2 <4y and (z <4y or x <5 y).

(6) fora,y € Extan Ext B,z <3, yiff v <[ y and (z <7, y or z <} y).
Note that both orders give priority to a over 5.

The set of <, -maximal elements of O forms the extension Ext (3 )
of the concept (8 x ). One has Ezt (S *a) = FExta N Ext 5.

The set of <7, -maximal elements of Ext (f*«) forms the set Typ (fx )
of typical instances of (5 ).

Typicality is not compositional: typical pet-fish are not typical fish that
are typical pets. However, in the particular case where Typa N Typ 8 # 0,
it can be shown that Typ (8 *a) = TypaNTyp [ ([14], Theorem 2). In this
case, 0 x a has the structure of a featured concept with membership order
equal to <% and typicality order equal to <7, .

As shown in [13], the above construction provides a faithfull interpreta-
tion of conjunction fallacy and is free of some shortcomings encountered in
classical theories. Our task is now to extend this construction to the case
where a feature is used as a concept modifier.

12



3 Features as concept determiners

3.1 The impact of a mixed compound concept

The representation of compound concepts proposed in the preceding section
can be extended to the determination of a featured concept a by a single
feature h. As we shall see, it is indeed possible to build an ordinal model
that accounts for simple constructions of adjective-noun type.

Definition 3 Let a be a featured concept and h a feature. Suppose that
EzxthN Exta # (. The membership order <) = on O is defined by :
(7) x =3 yiffe =by and x <ty or op(x) < di(y).

—hxa

We denote by Ext(h % a) the set of <) -maximal elements of O. It
consists of the elements = of O such that d;(x) = 1Vf € A(a) U {h}. One
has immediately Ezt (h*a) = Ext hN Ext a.

We now turn to the definition of the typical order on the set Ext (h*«
Note that if x and y are two elements of this set, one has d§;(z) = d,(y) =

This justifies the following definition:

).
1.

Definition 4 The typicality order =<7, of the concept hx« is the restriction

—h*xa

to the set Exth N Ext o of the order <7,.

Using the notation paragraph 2.2.1, we have <7, ==<X*

Definition 5 The <}, -maximal elements of Exth N Exta form the set

—hxa

Typ (h*«) of typical instances of the concept hx cv.

In the general case, there exists no link between Typ v and Typ (h * «). As
we shall see now, the nature of h, considered as a modifier of «, plays an
important role in evaluating the typicality of Typ (h * «).

3.2 Exceptional and non-exceptional modifiers

There exists an important distinction concerning the structural changes that
the determination of a concept by a feature may bring to this concept. This
question was evoked in [5] and [24], where was studied the impact of a blank
predicate on a predicate-noon combination, and in [35] (thereafter developed
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in [36]), where was operated a distinction between compatible, not compatible
and neutral adjectives.

To give an idea of what is involved, consider for instance the concept to-
be-a-bird. If we compose this concept with the feature to-be-black, we get the
concept to-be-a-black-bird, whose typical instances are the typical birds that
are black. But if we compose it with the feature to-live-on-water, we get as
a result the concept to-be-an-aquatic-bird, whose typical instances have little
to do with typical birds. The difference between these two examples is that,
in the first example, the feature to-be-black does not stand in contradiction
with the features that are specifically attributed to typical birds. In the sec-
ond example, on the contrary, the feature to-live-on-water (or to-be-aquatic)
stands in contradiction with the feature to-live-in-the-trees that an agent
may consider as applying to all typical birds: for this agent, no typical bird
lives on water.

This observation lead to the following definition, proposed in [12]:

Definition 6 A feature h is exceptional for a if Typa N Exth = (), that
1s if h applies to no typical instance of a. On the contrary, h is said to be
non-exceptional for o if Typa N Exth # ().

Recalling that Typa = Exta N (;eyq) B2t f), we see that a feature h is
exceptional for a if and only if Exth N Exta N (e, (o) Lot f) = 0.

An important result concerning the determination of a featured concept
a by a non-exceptional feature h is given by the following:

Theorem 1 Let h be a feature that is not exceptional for a. Then one has
Typ(h*x«a) = ExthNTypa. The concept h* « is equivalent to a featured
concept whose defining feature set A(hxa) is equal to {h} UA(«), and whose
characteristic set x(hx «) is equal to x(«) if h ¢ x(«), and to x(a) \ {h} if

h € x(a).

By the first part of the theorem, we see that h*« is a smooth subconcept
of . More precisely, the typical instances of (h*«) are the typical instances
of a to which applies the attribute h: thus, a typical black-bird is simply a
typical bird that is black. In this particular case, typicality is compositional.

Example 2 Suppose that the defining fatures of the concept to-be-a-bird
consist of the set {to-be-warm-blooded, to-have-a-beak, to-have-feathers, to-
have-wings}, and that its characteristic set is equal to {to-fly, to-sing, to-live-
in-the-trees, to-eat-seeds}. Then the concept to-be-a-flying-bird is equivalent
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to a featured concept with defining feature set equal to {to-fly, to-be-warm-
blooded, to-have-a-beak, to-have-feathers, to-have-wings}, and the charac-
teristic set is {to-sing, to-live-in-the-trees, to-eat-seeds}: the feature to-fly
has simply moved from the characteristic set of to-be-a-bird to the defining
set of to-be-a-flying-bird.

Theorem 1 has attractive consequences for a particular class of features:

Definition 7 Given a featured concept o and a feature g, we say that g is
a typical attribute of a if g applies to all typical elements of «, that is if
Typa C Extg.

By Theorem 1, we see that if i is not exceptional for «, a typical attribute
for a remains a typical attribute for h*«. Thus, to take a well-known exam-
ple, knowing that ducks have webbed feet, the model predicts that quacking
ducks have webbed feet.

It is interesting to translate this result in the framework of inference
relations: given a concept a and a feature g, let us say that a generally
implies g, or that a typically implies g, written al~ g, if g is a typical attribute
of a. Then the meaning of a conditional like al~—h is that h applies to no
typical instance of «, that is that h is exceptional for a.. It is therefore natural
to write as—h to express the fact that h is not exceptional for . Using
this formalism, we see that Theorem 1 can be translated into the well-known
rule of Rational Monotony (see [18], or [26] for a general presentation of
preferential inference relations).

al~ g, ad—h

Rational Monotony hxal~g

For example, knowing that birds generally live in the trees and that there
exists typical birds that are black, our model predicts that black birds generally
live in the trees.

It is clear that a typical attribute of « is non exceptional for a. Apply-
ing Theorem 1 in the case where h is a typical attribute of «, we get the
interesting

Corollary 1 For any typical attribute h of o, one has Typ(h*a) = Typ «.

It follows from this that a feature g is a typical attribute of « if and only
if g is a typical attribute of h x . Translating this result in the framework
of non-monotonic inference relations enables us to retrieve two fundamental
rules of preferential logic :
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Cautious Monotony —O“;jz‘f‘}’f

al~ h, hxal~ f

Cut ol f

These two rules may be reinterpreted in the framework of Concept Based In-
duction. The first one provides a solution to the problem of Within-Category
Induction: the subconcept h x « inherits the typical attributes of a. Thus,
knowing that birds generally eat seeds and birds generally fly, we may deduce
that fying-birds generally eat seeds. The second one is an answer to the Over-
Category induction problem: the concept « inherits the typical attributes of
its subconcept h * a. For instance, knowing that flying birds are generally
small and that birds generally fly, we can conclude that birds are generally
small.

As we shall see, the result of Theorem 1 can be extended to the exceptional
case, provided this exceptionality is due to a single characteristic feature of
«. Before examining this situation, we need to establish a technical result:

Proposition 1 Let h be a feature and k a characteristic feature of a such
that ExthN Exta N Extk =0 but Exth N Ext a0 (e, @) E2t f # 0.
Suppose that Oy is a two-valued function, so that we have & : O — {0,1}.
Then one has Typ (hx ) = Exth N Ext a0 () ey o) B2t f-

It follows from this proposition that the typical elements of h x a are easily
determined, even in this exceptional case: they correspond to the instances
of a to which h applies, and to which applies every characteristic feature
of a different from k. For instance, if the characteristic set of to-be-a-dog
consists of the features to-bark, to-run-after-sticks and to-gnaw-bones, we
deduce from this proposition that typical silent dogs run after sticks and
gnaw bones, although they do not bark.

Definition 8 A feature h for which the hypotheses of proposition 1 are sat-
i1sfied is said to be k-exceptional for a; the resulting concept hxa will be called
a k-exceptionally modified concept.

We shall speak of an elementary feature when referring to a feature whose
applicability is given by a two-valued function.

We now prove that, as in the non-exceptional case, a k-exceptionally
modified concept is equivalent to a featured concept:
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Theorem 2 If k is an elementary feature, the k-exceptionally modified con-
cept hxa is equivalent to a featured concept whose defining feature set A(hxa)
is equal to A(a) U{h} and characteristic set x(h* ) equal to x(«) \ {k}.

Theorem 1 and Theorem 2 show that the family of featured concepts is stable
under feature determination when the determiner contradicts at most one of
the characteristic features of the original concept. This is an interesting
result, as it renders possible the study of k-exceptionally modified concepts
with the tools used for elementary featured concepts.

4 Resemblance to modified concepts

We now turn to an important problem of the categorization process, which
concerns the link that exists between categorial membership, typicality and
resemblance. The notion of resemblance (or similarity) plays a key role in
most theories of concepts (see for instance [33], [40], [42], and more recently
[30] or [3]).

We shall briefly recall the basis of our approach before examining how
resemblance theory can be applied to the case of mixed compound concepts.

4.1 The stereotypical set as a tool for resemblance
evaluation

As noted in [14], resemblance may be considered as a binary relation between
objects (Henry resembles his brother), between concepts (the wolf resembles a
dog), or between an object and a concept (Henry’s dog resembles a wolf). We
shall only treat the two latter cases, in which the ‘referent’ of the comparison
is a concept.

We observed in [14] that resemblance between an object and a concept
has to be evaluated through the typical instances of this concept. Thus,
looking at a bat, one may say it resembles a bird just because it has wings,
flies, and has the size or the shape of a bird. Conversely, an animal may be
declared mot to resemble a bird if it does not resemble a typical bird, even
though this animal is known to be a bird. For instance, looking at a penguin,
an assertion like ‘this animal does not resemble a bird’ is perfectly justified.
Resemblance first deals with the typical attributes of a concept.
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Similarly to what was done for the notions of categorial membership
and typicality, resemblance theory can be modeled through a qualitative
approach, so that it is possible to compare the resemblance of two objects
to a given concept. Such an ordinal model would account for judgments like
Henry’s dog resembles more a wolf than Jack’s wolfhound. For this purpose,
given a featured concept «, we could equip the set A(a) U x(«) with the
salience order that extends the salience orders of A(a) and x(a) and makes
every element of x(«) more salient than the elements of A(a). Then the
corresponding resemblance order could be defined as the order jé(a)UX(a)
induced on O byA(«a) U x(«). However, the preeminence this order would
give to hierarchy over number, together with the fact that A(a) U x(«) con-
tains more elements that A(«) and y(a), may pose a problem. For instance,
if v is the concept to-be-a-bird, and if to-fly has maximal salience in x(«),
bird-resemblance will principally rest of the ability of an item to fly; con-
sequently, bats will be more bird-resemblant than kiwis, although having
feathers, singing, having a beak and building nests taken together should, at
least compensate the fact that kiwis do not fly.

Another reason to consider changing our paradigm and letting aside the
qualitative model is that it makes more sense to speak of a degree of resem-
blance than to speak of a membership or a typicality degree. For instance, to
evaluate the a-membership degree of an item z, one has to take into account
not only x and «, but also all the objects that stand between x and the cate-
gory Ext a (see footnote 1). In contrast, to evaluate resemblance of an object
with a concept, one has only to deal with the properties the concept shares
with the object. It is a fact that, since the first work of Tversky ([39]), it is
exclusively with quantitative approaches that resemblance has been studied.

For these reasons, we chose in [14] to work in a wunitary model, more
adapted than the binary model that was used in the representation of cat-
egorial membership and typicality. Thus, we proposed to attach with every
featured concept its stereotypical set I1(«) (see [5], [8], or [24]). This set con-
sists of the union of the defining feature set A(«) and the characteristic set
X (), on which we put a salience order that gives priority to the characteristic
features over the defining ones.

More precisely, we equip the set II(a) = A(a) U x(a) with the order
>11(o) that extends the orders >, ,) on x (o) and >a,) on A(a) and satisfies
furthermore f >p,) g for all f € x(«) and g € A(«). This latter condition
is justified by the fact that, as previously noted, resemblance with a concept

18



is first resemblance with the typical instances of this concept.

This salience order on II(«) yields, for each f € Il(«), a salience degree
So(f) that reflects the number of stereotypical features that f dominates.
This degree is defined by s.(f) = 1+ [{h € II(c); [ >1(a) h}I-

We define the weight w(cr) of the concept a by w(ar) = Efera)salf), and

we denote by €(«) the number e(a) = %Ez))'.

It is now possible to introduce the a-resemblance degree of an object x:

Definition 9 The degree to which an object x resembles a featured concept

b))
« is the number p,(z) = fe H((Ziggf)af(x)

It is immediate that p,(x) = 1 if and only if x € T'yp a. Note that one has
pa(x) > €(a) for all objects x € Exta: an object that falls under a concept
cannot be totally dissimilar to this concept.

Example 3 Suppose that the defining feature set associated with to-be-a-
bird is the set {l = to-have-two-legs, e = to-lay-eggs, b =to-have-a-beak,
w = to-have-wings} with salience order: b >A(a) € >A@) b and w >a@q)
e >a() l. Suppose also that the corresponding characteristic set consists of
the three features: n = to-build-nests, s = to-sing, and f = to-fly, with the
order : f >y n, and [ >y@a) 5. We have s,(l) = 1,54(e) = 2,5,(b) =
Sa(w) = 3,84,(n) = sa(s) = 5 and so(f) = 7. This yields w(a) = 26
and e(a) = 4/26. If the applicability of all features is given by elementary
functions, the bird-resemblance degrees of a bat ba, a penguin pe, a kiwi k
and a plane pl is given by pa(ba) = 11/26, pa(pe) = 9/26, pa(k) = 19/26
and po(pl) = 10/26. Note that the bat, which is not a bird, is more bird-
resemblant than the penguin - which is a bird.

Remark 2 The notion of concept resemblance that results from Definition
8 is not based on the impact of a concept, that is on its induced membership
and typicality orders. Rather, it rests on its Gestalt, giving priority to its
defining and characteristic set.

Note that resemblance degrees allow comparing the resemblance that an
object may have with different concepts: it makes possible to express judg-
ments like ‘Henry’s dog resembles more a fox than a wolf’.

The notion of resemblance between objects and concepts can be easily
enlarged to that of resemblance between concepts. Indeed, the resemblance
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between two concepts is best evaluated as a resemblance of their typical
instances: to say that a concept [ resembles a concept o amounts to saying
that every typical instance of 3 resembles «. This justifies the following
definition:

Definition 10 The a-resemblance degree p,(5) of a featured concept [ is
the number Mingery, s pa(x).

One has immediately p,(5) = 1 if and only if Typ 6 C Typ a.

The resemblance degree provides a similarity measure that can be used
in Concept-Based Induction (see [30] for an overview of different ways of
modeling CBI and a geometrical approach of similarity). Note that the value
of this resemblance degree is context-dependent: it rests on the features that,
at a given time, an agent decides to consider as characteristic of a concept.
For instance, the attributes of the concept to-be-a-piano are not the same if
considered by an agent in the context of music or in the context of removal.

The following result shows that there exists a resemblance threshold :
any object whose a-resemblance is large enough must fall, at least partially,
under the characteristic features of a:

Theorem 3 Let x be an object such that po(z) > 1 — €(c). Then one has
dg(x) > 0 for all elements g of Il(a) such that |A(a)| < sa(g).

In particular, we see by this theorem that an object that is sufficiently a-
resemblant will inherit every elementary characteristic feature of a. Thus,
in Example 3, the resemblance threshold is equal to 22/26 and any item
whose bird-resemblance degree is greater than 22/26 has, to some degree,
the properties of flying, singing and building a nest...2

From the construction of the order >y, it follows from Theorem 3 that
the elementary characteristic features of o apply to any typical instance of
a concept that sufficiently resembles «. This result can be translated in
the framework of concept-based induction: using the formalism described in
section 3.2, we can display the following similarity rule, valid when g is an
elementary feature:

Similarity Rule 222)>1=¢cla).g ex(a)
Y By

2If the characteristic features of Example 3 are elementary features, noting that only
birds fly, sing and build nests, an item with resemblance degree greater than 22/26 is
necessarily a (typical) bird.
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4.2 The case of compound mixed concepts

The results of the preceding section can be applied to evaluate resemblance
to compound mixed concepts, either in the non-exceptional case, or in the
case of a k-exceptionally modified concept. To do this, we can directly make
use of the results of Theorem 1 and Theorem 2, assimilating h x o with a
featured concept and applying the results of the preceding section. This leads
us to define the h x a-resemblance degree of an object x by

e n(hra)Shra(f)0r(2)
Prva() = w(h * )

We have then, as an analogue of theorem 3, the

Corollary 2 Let x be an object such that o}, (r) > 1 —e(h*a), and g an

elementary feature of TI(hx ) such that |A(hx )| < Spwa(g). Then g applies
to x.

A particular attention has to be given to the state of the modifier h in
the set II(h * ). Observe indeed that, whether h is a non-exceptional or
a k-exceptional feature, it results from the proofs of Theorem 1 and Theo-
rem 2 that the salience order >yy(p.a) gives to h a salience s(.q)(h) that is
always less or equal than |A(a)|. By this we see that h does not generally
satisfy the conditions of corollary 2, and nothing guarantees that this feature
should apply to objects that are sufficiently h* a-resemblant. This may lead
to paradoxical results. For instance, our model built on the salience order
>11(hea) Predicts that an animal that strongly resembles a bird should fly, but
that this will not be the case for an animal that strongly resembles a flying
bird ! Indeed, the most salient characteristic feature of «, f = to-fly, became
the least salient defining feature of f %, and we have sg.q)(f) = 1.

This remark provides an important clue concerning the choice of the right
salience order in II(hx«). If the feature h is not expected to apply to objects
that are h x a-resemblant, the original order >p.) need not be changed.
But if h is expected to apply to objects similar to h x «, it is necessary to
increase the salience degree of h to a number greater than |A(h x a)|.

Another problem may occur in the case of a modification of « by a feature
that is part of x(«): to take the above example, reducing to 1 the salience
of f will make a bat more bird-resemblant (p,(b) = 11/26) than flying-bird
resemblant (pp.a(b) = 7/26). In any way, we expect that determining a
concept by one of its characteristic features emphasizes its importance.
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To remedy these shortcomings, in the case where h is expected to apply to
h x a-resemblant objects, we propose to consider the salience degree function
sy, that agrees with sp., on II(Axa)\ {h} and gives to h a salience s, (h)
equal to |A(h x «)|. With these changes indeed, we will have in all cases
sy (h) > |A(h % a)|, so that Corollary 2 will apply to h, provided h is an
elementary feature.

To give an idea of what is involved, consider the following examples:

1. « stands for to-be-a-dog and h for to-be-black

2. « stands for to-be-a-flower and h for to-be-striped
3. « stands for to-be-a-dog and h for to-be-young

4. « stands for to-be-a-flower and h for to-be-tropical.

In the first two cases, we expect the modifier to apply to any item similar to
the compound concept: one would not say that an animal resembles a black
dog unless this animal is black; similarly, one would not say that an object
resembles a striped flower unless this object has stripes. On the contrary, in
the two last examples, the modifier is not expected to apply to objects that
are h*a resemblant: an animal that is said to resemble a young dog need not
be young itself, and an item may resemble a tropical flower without having
grown in the tropics.

It is difficult to decide which type of modified concept requires a model
of the first or of the second kind. We conjecture that when the feature used
to determine a concept has a simple ‘physical’ significance, directly related
with one of our senses, strong resemblance to the modified concept implies
the presence of this feature in any resemblant item. The situation is different
when the modifier is more sophisticated. This may happen in particular
when it shows, in the context of the principal concept, a certain number of
proper characteristic attributes; it is these attributes, more than the feature
itself, that are expected to be retrieved through resemblance. An animal that
resembles a young dog has the behavior of a young dog, likely to be clumsy,
cute and playful, a plant that resembles a tropical flower is expected to
have large leaves and flourishing colors. When used in a comparison, such a
feature may be considered as the conjunction of some undisplayed attributes.
In the young dog example, these attributes would be to-be-clumsy, to-be-cute
and to-be-playful. Then, (to-be-young-dog) may be assimilated to the simple
concept (to-be-a-puppy).
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More generally, if the modifier h shows, in the context of «, a certain
number of charateristic attributes, this modifier may be assimilated with a
featured concept. Then the composition h * a can be operated as described
in section 2.2.2. This shows that features with attributes deserve a special
treatment. On one hand, they cannot be considered as simple features, be-
cause their applicability cannot be measured by a degree function. On the
other hand, they cannot be considered as concepts because they have no
significance outside of a precise context. This tends to show that our model
finds its limits in the representation of such a kind of hybrid item.

Another point that deserves to be underlined is that, apart from its simple
significance, the link between a feature and the concept it modifies has to be
taken into account. An exceptional modifier has more weight in the modified
concept than a non exceptional one: to-be-unfriendly is expected from an
animal that resembles an unfriendly dog, although to-be-unfriendly, in the
context of dogs, is an aggregate of several attributes.

From now on, we shall denote by IT*(hx«) the set I[I(hx«a) endowed with
the salience order induced by s;,.,, and by p;,, the corresponding degree
function.

4.3 Comparing o and h x a-resemblance

In this paragraph, we shall compare the a-resemblance and the hAxa-resemblance
degree of an object. Making use of Definition 10, we shall also determine to
what extent a concept a resembles its modified version hxa, and consequently
to what extent the modified version differs from the head concept.

4.3.1 The non-exceptional case

Given a non exceptional modifier A, our aim is to compare the resemblance
degrees p, and ppiq-
We need first to establish some technical results:

Lemma 2 The salience degrees sp. and sy, are given by:

o In the case where h ¢ A(a) U x(a):
Shxa(h) =1,
smxa(f) = 1+ sa(f) Vf € () \ {h},
Shaa(h) = 1+ |A(0)],
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Shaa(f) = sa(f) Vf € 1l(a) \ {h}
o [n the case where h € A(a):

Shxa(f) = sa(f)Vf € II(a),

Sha(P) = [A(a)],

Shualf) = 8a(f) VI € (@) \ {R}

e [n the case where h € x(«a):

Sh*a( )
Shea(f) =1 +Sa( )Vf € Ala),
sixa(f) = salf) if | € X(@), [ >xa) Iy
Shwa(f) =14 sa(f) if [ € X(@), [ Fyah,
Shaa () = sa(f)Vf € H(a).

This result enables us determining the link between the weights w(a) and
w(h* a).

Proposition 2 One has

w(h*a)=1+w(e)+ [I(a)] if h ¢ Ala) U x(a),

w(hxa)=w(a) if h € Ala) if h € x(«),

w(hxa) =w(a) +1+|A(a)] = sa(h) + [{f € x() \ {h}, [ Ay}l

The weights w(h * a) being given as above, we can now compare the h * a-
resemblance of an object and its a-resemblance:

Proposition 3 The h * a resemblance degree pp.o(x) of an element x € O
satisfies:

w(hx &) pea(t) = Erex(a)r () +w(a)pa(r) + (L+ |A(a)])on(x) if h ¢ ()
w(h* @) ppea(r) = Efen(a>5f( ) + w(@)pa(r) + 0n(x) if h & Il(e),

Pra(T) = po(z) if h € Ala), and, if h € x(«a),

w(h * @) phia(®) = wla)pa(z) = sa(h)0n() + 0n(r) + Erenm(a)\nr#, W ndr ().

Example 4 In the context of birds, consider the feature h = to-be-european,
and let us compute how much a bat ba resembles an european-bird. Since we
do not expect an animal that resembles an european bird to be itself european,
we use the salience function sp.o(f). We have then w(h *x a) = 34; ba
falls under the three characteristic features to-have two-legs, to-have-wings,
to-fly. We saw that w(a) = 26, and d,(ba) = 11/26. This shows that
Insa(ba) = 14/34.
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Applying Proposition 3 to the elements x of T'yp a enables us to determine
the h * o resemblance of the concept a:

Theorem 4 In the non exceptional case, given the order >1i(hea) on Il(hxa),
the h x a resemblance of « is given by

pheal@) = 1 — b if h ¢ Il{0),

Pra(a) =1 if h € I(a).

Concerning the a-resemblance degree of h * «, things are much simpler:
indeed, given an element = of T'yp (h x ), one has x € Typ o by Theorem 1,
and therefore p,(x) = 1. Tt follows that p,(h*a) = 1: a black dog maximally
resembles a dog, although a dog does not maximally resemble a black dog.

The model with salience functions $p..(f) is inadequate when the mod-
ifier h is expected to apply to items that are sufficiently h x a-resemblant,
and in particular when h is a characteristic feature of a. Suppose for ex-
ample that, in the context of birds, h is the feature to-fly. Then a com-
putation of the flying-bird-resemblance of a penguin through the functions
Shxa(f) shows that its degree is equal to 13/26, and therefore greater than
its bird-resemblance degree, which we found equal to 9/26. This paradox
is a consequence of the fact that resemblance with a concept is, before all,
resemblance with the typical instances of the concept. The feature to-fly,
which became a defining feature of to-be-a-flying-bird, is no more a salient
characteristic feature of this concept. As we shall see now, the use of the
salience degree s;, , can remedy this situation.

Suppose that the salience on II(h*«) is given by the function s, . Then
the analogue of Proposition 2 for the weight w*(h x ) reads:

Proposition 4 One has

w*(hxa) =1+ w(a)+ |A(a)| for h ¢ Ala) U x(a),
w*(hx a) = w(a) = sa(h) +[A(a)] if h € Aa),
w*(h*a) =w(a) if h € x(a).

The link between pj,  (z) and p,(z) is then given by the

Proposition 5 The h* a-resemblance degree of an element x € O satisfies:
W (10) (1) = ey (2) +10(0)pa(@) + (L+]A(a) )0 () if b ¢ TI(a),
W (hx0) () = () (2) 50130 (2)— S s a1 01 () H A (@) 1)
when h € A(a), and

Phaa(T) = palz) tf h € X().
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The paradox evoked above desappears when salience is evaluated by the
function sy, : we find that the flying-bird-resemblance of a penguin becomes
equal to its bird-resemblance.

Example 5 We take again the bird example and compute the resemblance of
a bat with the concept to-be-a-white-bird. An animal resembling a white-bird
is expected to be white, and we shall therefore use the salience s;, .. We have
w*(hxa) = 31, and it follows from the first line of the above proposition that
Pro(ba) =12/31. A bat resembles less a white-bird than an european-bird.

From Proposition 5 we deduce the h * a-resemblance of a featured concept
a:

Theorem 5 In the non exceptional case, we have:
Pheal@) = KEILELD) i b ¢ TH(a),
Phrnalc) = 1if h € TI(a).

Example 6 If h is the feature to-be-white and o stands for to-be-a-bird we
have w*(h * a) = 31, |x(a)| = 3 and w(a) = 26. Birds resemble white birds
to the degree 29/31.

4.3.2 The exceptional case

In the case where h is k-exceptional, we recall that it follows from the proof
of Theorem 2, that y(hxa) = x(a) \ {k} and A(hx«) = {h} UA(«a). The
order in this latter set makes h less salient than any element of A(«). The
salience order >yp.q) is defined as in the case of simple featured concepts
(see the begining of section 4.1). Similarly to what was done in the preceding
paragraph, we will also consider the salience order sl*-[(h*a), in which A is given
a salience equal to 1 + |A(a)].
For k-exceptionally modified concepts, the analogue of Lemma 2 reads:

Lemma 3 If h is k-exceptional, the salience degrees in II(h*a) are given by

Sh*a(h) = 1,

Shxa(f) = 1+ 8a(f) Vf € U(hx a) \ {h}, [ Prirea)k
Shsa(f) = 8a(f) for all other elements of II(h x «v) \ {h}.
San(h) = |A(a) | + 1,

o) = salf) V1 € TH(@)\ {}).
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From this we draw the relation between the weight of h x a and the weight
of a.

Proposition 6 Suppose that h is k-exceptional for a. Then

w(hxa) =w(a) +|A(@)]+ 1= sa(k) + {f € x()\{k}, [ Ax@k}-
w*(h*a) =w(a) — sq(k) + 1+ |A(a)].

The two above results allow the calculation of the h x o resemblance
degrees when h is k-exceptional for a:

Proposition 7 In the k-exceptional case, the h x a-resemblance degrees of
an object x are given by:

w(lh k@) () = w(@)pa () + (x) — 50 (K)5H(2) + Sermnups5e05(2)

W (hx )30, (2) = w(@)pal) — sak)elx) + (A(a) + 1)1 ().

Example 7 Let us compute how much a penguin pe resembles a walking-
bird. By Proposition 6, we have w(h*«a) =26 +4+1— 742 = 26, and by
Proposition 7 and Ezample 3, 26 - ppio(pe) = 26 - (9/26) +1 — 0+ 4 = 14,
showing that ppa(pe) = 14/26. Then w*(h* ) = 26 — 7+ 14 = 24, so
2467 (pe) =26-9/26 — 044+ 1 = 14, which yields &7, (pe) = 14/24.

h*xa hxa

Let us finally evaluate the resemblance between a concept and its modi-
fication by an exceptional feature:

Proposition 8 The resemblance of a concept with its modification by a k-
exceptional feature is given by:

preal@) =1 = oy
o (a)=1—¢e(hxa)

hxa

Contrary to what we saw in the non-exceptional case, the resemblance of
a k-exceptionally modified concept with its original head concept is no longer
equal to 1:

Proposition 9 One has po(h*xa) =1 — sa(k)

w(a)

The « resemblance of h * a is maximal when the relative salience of
k in x(a) is >y()-minimal. This translates the fact that, due to the k-
exceptionality of h, k£ is no longer an element of the characteristic set of
h x a. For instance, if we think that to-live-in-the-trees is not a salient
attribute of birds, we are ready to consider that typical aquatic birds are not
really dissimilar to birds.
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5 Conclusion

The model that we studied in [14] to represent the basic notions linked with
categorization can be carried over to mixed concept composition. It pro-
poses a rigorous definition of notions that were shown to play an important
role in concept study, like those of smooth subconcept, concept equivalence
and concept resemblance, as well as the necessary distinction between excep-
tional and non-exceptional modfiers. It provides interesting results in the
domain of concept composition, even in the exceptional case where the mod-
ifier stands in contradiction with some characteristic feature of the original
concept. Problems linked with categorial membership, typicality, and resem-
blance can be then treated as in the elementary case, leading to interesting
and non-trivial results. At the same time, such an ordinal model has the
advantage of being intuitive and user-friendly, as it does not require the use
of sophisticade mathematical tools.

However this study needs to be improved in several points. It appeared
for instance that the notion of feature is not fully determined. In particular,
we noticed an ambiguity concerning the treatment features should receive
within the classical binary model. Apart from the limit case where the
modifier has an hybrid status that stands half-way between a feature and
a concept, two possible issues were considered, each leading to a different
solution. In the first one, the modifier of a concept will apply to objects that
sufficiently resemble the modified concept. In the second case, the modifier
is not preserved by resemblance. In the end, it appears that the criteria on
which we should base feature representation remain unclear at this stage,
showing the necessity of refining our primitive model and investigate more
closely the different ways a feature relates with a concept.

We are also aware that this model lacks experimental confirmations.
Thus, we considered several times as granted some common sense state-
ments. We claimed for instance that ordering the elements of a set provides
a simpler and more accurate way of comparing them than attributing to each
of them a degree number. This should be supported by experiments. Above
all, the main results proposed by the model concerning membership ordering
and resemblance evaluation definitely need to be confirmed by experiments.
At this stage, this work can only be taken as an hypothetical construction.
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A  Proofs

Lemma 1 The relation =< is a preorder. For two elements x and y of T,
one has simultaneously x <5 y and y <3 x iff, Vf € X, 6;(x) = 6;(y). The
strict partial order <5 associated with <3 satisfies:

(8) r <3 yiffr 23 yand f € X : 6;(x) < 5(y).

Proof: For the first part of the lemma, the reflexivity is immediate, and
we have only to prove transitivity.

Let therefore z, y and z be three elements of T' such that z <% y and
y =% z; suppose that there exists f € X such that d;(z) < d;(z). We have
to show that there exists a feature g € X, g more salient than f, such that
d4(x) < 0,(2). We consider two cases:

e Suppose first that d¢(x) < d¢(y). Then we have d¢(2) < ds(y), and
there exists a feature g of X, g >x f, such that d,(y) < d,(2). We
can suppose that g is maximally salient in X for this property (recall
that X is finite). If 04(x) < 6,(y), we get dy(x) < 0,(z) and we are
done. Otherwise, we have §,(y) < d,(z). Since we supposed z <% ,
this implies that there exists a feature h € X, h more salient than g,
such that d5(z) < 0(y). We cannot have §;(2) < 5(y) otherwise there
would exist £ € X, k more salient than h, and therefore more salient
than g, such that dx(y) < dx(z) contradicting the choice of g. We have
therefore 65 (y) < dx(2), hence 0,(x) < Ji(2) as desired.

e Suppose now that d¢(y) < ds(x). Then there exists k € X, k more
salient than f such that dx(z) < dx(y), and we can again suppose k
maximally salient for this property. In the case where dx(y) < dx(z), we
get 0 (z) < dx(2) and we are through. Otherwise, we have 0y(2) < 6k (y)
and there exists g more salient than k such that d,(y) < d,4(z). Let us
show that d,(x) < d,(y): if this were not the case, we would have
dy(y) < d4(x), so that there would exist h more salient than g such
that dp(z) < dx(y). But then h would be more salient than k, which
is impossible. We have therefore d,(x) < d0,4(y), hence d,(z) < d4(2),
which completes the proof of the transitivity.

Concerning the second part of the lemma, we observe that one has z <% y
and y <% z whenever §;(z) = d;(y) Vf € X. Conversely, suppose that
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one has z <% y and y <% =z, and let us show that d;(x) = d;(y) for all
f € X. If this were not the case, there would exist a feature f of X such
that 67(x) # 07(y), f being > x-maximal for this property. We have either
dp(z) < &4(y), or d¢(y) < (). In the first case, the hypothesis y <3 =
implies the existence of a feature g of X, g >x f, such that d,(y) < d,(z),
which contradicts the choice of f. In the second case, the hypothesis z <7 y
leads again to a contradiction.

For the last part of the lemma, by definition of the strict partial order
associated with a preorder, we have r <2 y iff z <X y and not y <% z. This
latter condition is equivalent to the existence of a feature f of X that satisfies
d¢(z) < 6¢(y) and such that d,(z) < 6,(y) for all features g € X, g >x f.
The RHS of equation (1) then clearly follows from the LHS. If now the RHS
is satisfied, that is if we have z <% yand 3f € X such that §;(z) < &;(y),
then, by what precedes, we cannot have y <% z. This completes the proof
of the lemma. |

Theorem 1 Let h be a feature that is not exceptional for . Then one has
Typ (h*«a) = ExthNTypa. The concept h x « is equivalent to a featured
concept whose defining feature set A(hxa) is equal to {h} UA(«), and whose
characteristic set x(h «) is equal to x(a) if h ¢ x(«), and to x(a) \ {h} if
h e x(a).

Proof: Let z be an element of Exth N Typa. Choose an element x in
Ext hN Ext o that is not in T'yp a. We have then z <7, 2. Since x and z are
elements of Exth N Ext «, it follows from Definition 4 that x <j,, z. This
shows that the <7, -maximal elements of Ext h N Ext o are the elements of
ExthNTypa.

We now prove the second part of the theorem.

A) We suppose first that h ¢ A(a) U x(a).
To build the membership order jéh}UA(a), we define on the set {h}UA(«)

the salience order >sua() that extends the salience order on A(a) and

makes every element of A(a) more salient than h. We claim that one has
_<gz}uA(oz) Y

z =<}, yif and only if x

Given two objects = and y such that x -jgl}UA(a) y, let us indeed show
that « <), y. If f € A(a) is a feature such that d;(y) < 0s(z), the
hypothesis implies that there exists g € {h} U A(«), g more salient than f,

such that d4(z) < d4(y). By the choice of the salience order in {h} U A(a),
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we have necessarily g # h, so g € A(«), and we have proven that z <¥ y.
If 0(z) < 0n(y), this implies = <4 y. If, on the contrary, d,(y) < on(z),
by the hypothesis, this implies the existence of a feature k € {h} U A(«), k
more salient than h, such that 0 (z) < dx(y). We have then k € A(a). By
Lemma 1, this leads to # <# y, from which follows x <% . In any case, we

have shown that z <}y whenever z <{h}UA(a) y

Conversely, suppose that one has x <}, y. To show that x %‘UL}UA( @) Y,
we suppose that d(y) < d¢(x) for some feature f of {h}UA(a). We have
to prove that there exists g € {h} U A(«), g more salient than f, such that
b,(2) < 0,(1).

-If f € A(w), the hypothesis z <}y, which implies  <# y, shows the
existence of a feature g € A(«), more salient than f, such that d,(z) < d,4(y).

-If f = h, it follows from the hypothesis # </ vy that we have x <* y.
Then, there exists g € A(a) such that d,(x) < d,(y). By the choice of the
salience order on A(h x «), g is more salient than h. In any case, we have
shown that z <{h}UA( @) Y.

The equality <, —<{h}UA( ®) is therefore established.

=7 a= 42(;:*%) Extar Tecall that, by definition 4, the orders
_<7'

=<7., and <7 agree on the set Exth N Exta. Since h ¢ x(a), we have by
hypothesis x(h x @) = x(a). The order <7 _ is therefore the restriction to

—hxa

- (h*a)
ExthnN Exta of the order <7, and thus equal to <§xt hOEt o

To check that <7

B) In the case where h € A(«).

The salience order on A(hx«) is that of A(«), and we have jg:jgl}UA(a).
Let us show that <#==<" : We know that = <} vy implies z <# y. Con-
versely, suppose that we have z <# y and let us show that x <}, y. We
have to prove that x < y or dx(z) < d5(y). But if we have d,(y) < op(x)
there exists g >a() h such that d4(x) < d,(y). This together with the fact
that x <Xt y 1mphes x < y as desired.

x (h*xa)

As for the typical order, the proof of the equality =7, ==5 ./ hAEet o Mil-

rors that made in case A).

C) In the case where h € x(«).

We have h ¢ A(«) and the proof that jg*a:jéh}UA(a) mirrors that made
in A).
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Concerning the typcality order, note first that that x(«) # {h}, since we
supposed the existence of a non-empty salience order on this set. We put on
X(a) \ {h} the restriction of the order >, (). Given two element z and y of

ExthN Ext o, we have to prove that <7 y iff x -<§($0;),>r{gxm Y.

Suppose first that <7, y and let f be a feature of x(«) \ {h} such that
d7(y) < é7(x). Then f € x(a), and there exists g € x(«), g more salient than
f, such that §,(z) < 6,(y). We cannot have g = h because 0,,(z) = d,(y) =1
We have then g € x(«a) \ {h}, showing that x %Eg:t)gé}gxm Y.

Conversely, suppose that © = E;t),}r{fg}m y. If 6¢(y) < 0s(z) for some
feature f € x(«), we have f # h by the choice of z and y, so f € x(a)\ {h}.
It follows that there exixts g € x(«) \ {h}, g more salient than f, such that
ds(x) < d,4(y). We have therefore x <] y as desired, and this completes the
proof of the theorem. [ |

Corollary 1 For any typical attribute g of o, one has Typ(g*a) = Typ .

Proof: Immediate. [ |

Proposition 1 Let h be a feature and k a characteristic feature of o such
that Exth 0 Extan Extk =0 but Exth 0 Exta 0 (e, @) B2t f # 0.
Suppose that 8 is a two-valued function, so that we have 6 : O — {0,1}.
Then one has Typ (hx a) = Exth N Ext N () ey (o)) B2 -

Proof: Let x be an element of T'yp (h x «), and suppose that there exists
a characteristic feature g # k such that d,(x) < 1. Take an element y
of ExthN Exta N (ﬂfEX(a)\{k})Extf We would have then x <7 y and
therefore x <7, v, which is impossible because, by the choice of z, z is
=7 .o-maximal in Ext (hxa). We have therefore proven that all characteristic
features g # k apply to the typical instances of h x a. This shows that
Typ(h*a) C Exth 0 Ext o0 (Ve ) Bt f-

Conversely, given an element x € Ext hN Ext aN (ﬂfex(a)\{k})E:L’tf, let
us prove that x is <], - maximal in Fxt (h * «). If this were not the case,
there would exist y € Ext (h* «) such that <}, vy, that is <7 y. By the
choice of z, this could be possible only if dx(z) < 0x(y), that is dx(y) = 1.
But then, this would imply y € Ext hN Exta N Extk = (), a contradiction.
We have therefore shown that Ext h Ext aN ([ ey (o) ) Ext [ is a subset
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of Typ (h * ), and this completes the proof of the proposition. |

Theorem 2 If k is an elementary feature, the k-exceptionally modified con-
cept hxa is equivalent to a featured concept whose defining feature set A(hxa)
is equal to A(a) U{h} and characteristic set x(h* ) equal to x(a) \ {k}.

Proof: Since h is exceptional for a, we cannot have h € A(a) U x(«). We
attach to (h x a) the defining set A(h * ) = A(a) U {h}, equipped with
the order >a(a)un) that extends the salience order of A(a) and makes h less
A(hxa) _ —<H

salient than every element of A(a). Then the proof that <, <ea 18
similar to that made in Theorem 1.
We equip the set x(h x «) with the restriction to x(«) \ {k} of the order

y- Recalling that, on Ext (h*«), the order <} is equal to <7, we have

—hxa
to prove that, for z and y in ot hN Ext o, one has x <7 yiff x %Ext)gélgxm Y.

Suppose first that one has = <7 y, and let f be an element of x(a) \ {k}
such that d;(y) < d(x). There exists g € x(«), g more salient than f, such
that d,(z) < 6,(y). If we had g = k, we would have dx(x) < 0x(y), that is,
since k is an elementary feature, dx(z) = 0 and 0x(y) = 1. But then y would
be an element of Ext hN ExtaN Ext k, contradicting the k-exceptionality of
h. This shows that g € x(«)\ {k}. Since g is more salient than f in this set,

we have proven that z < E(xt)%%}ma Yy

Conversely, suppose that we have z =< Eg:t)gr{ﬁlgxta y for two elements of

Exth N Exta. We have to show that x <7 y. If f € x(«) is such that
dr(y) < d¢(z), the same reasoning that before shows that f # k, that is
f € x(a)\ {k}. The conclusion follows. [

Theorem 3 Let x be an object such that p,(x) > 1

— €(a). Then one has
dg(x) > 0 for all elements g of II(a) such that |A(a)] < s

a(9)-

Proof: Suppose that g is a stereotypical feature such that |A(a)| < s.(g).

From 0 < s,(g9) — [A(a)|, we get ZfeH( WarSa(f) < Brensalf) - [A(Q)].
If §4(x) = 0, we would have X e 11(a)Sa(f)07(2) < Xgeni(a)sa(f) - |A(a)], and

therefore p,(z) <1 — A((Z))| =1- e(a), a contradiction. [

Corollary 2 Let x be an object such that ppio(z) > 1 —e(h*a), and g an
elementary feature of II(hx ) such that |A(hxa)| < Spwa(g). Then g applies
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to x.

Proof: Immediate. |

Lemma 2 The salience degrees sp. and s;,, are gien by:
e In the case where h ¢ A(a) U x(@): Spral(h) =1,
shsa(f) = 14 sa(f) Vf € () \ {h},
Shaa(h) = 1+ [A(@)],
Shaa(f) = sa(f) VS € Il(a) \ {h}
e In the case where h € A(«):
Shaa(f) = sa(f) Vf € I(a),
Shea(l) = [A(@)],
Shaa(f) = 5a(f) Vf € (a) \ {h}

e In the case where h € x(a):

Shaa(h) =1,
smwa(f) =1+ sa(f)Vf € Ala),
swxa(f) = sa(f) if f € x(@), [ >x(@) b,
Shwa(f) =1+ sa(f) if f € x(@), [ Byh
Shaa () = sa(f)Vf € H(a).
Proof: Straightforward from the definitions of sj., and sj,,,. [ |

Proposition 2 One has

w(hxa) =1+ w(e) + (o) if h ¢ Ae) U x(a),

w(h*a) =w(a) if h € Aa),

w(hxa) = w(e)+1+|A(a)|=sa(h)+[{f € x(a)\{h}, [ Pyahl ifh € x(a).

Proof: The proof directly follows from the preceding lemma. As an exam-
ple we shall only examine the last case where h € x(«). We have
w(hx o) = Xpeni(hra)Shxalf) = Zrex@n\ntShea(f) + Ereata)Simalf) + Shal(h)

= {f € x()\ {1}, [ Bx@h} + Erextaninsalf) + 1A(@)] + Ereat salf).
The result follows, noting that w(a) = s4(h) + Xfey@)\inySa(f)- [
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Proposition 3 The h x « resemblance degree ppio(x) of an element v € O
satisfies:

w(h % 0)phaa(2) = Spernrdy (@) + w(@)pa(x) + 6u(x) if b ¢ T(a),

ph*a(x) = pa(ﬂf) ifh e A(Oé), and, if h € X(Oz),

W(h ) phea() = (@) palE) = 50(A)3(E) + 0(x) + Sentapnsrunds (@)

Proof: By Theorem 1, w(h* ) phea (%) = Ereri(a)Shxa ()7 (2)+Shra(h)In ()
whenever h ¢ x(a). If h ¢ TI(«) this yields

wW(h* @) ppea() = Xpena)(1 + 5a(f))df(x) + 6p(x), that is

W(h * &) pria(r) = Bren)0f(x) + w(a)pa(x) + op(x) as desired.

If h € A(a), we have Spa(f) = so(f)V f € H(a), w(h * o) = w(a), and
therefore ppia () = pa(z).

If finally h € x(a), we get
W(h*Q)Opea (@) = Eex(a(hy Shea(f)O7(2)+Shua (1) 0n(2) +E rea(a) Shia ()05 ().

By Lemma 2, the first summand is equal to
X fex(a),f> 5ol F)07 (%) + Lrexaniay ity mn (L + 5a(f))05(2).

We have sp.(h) = 1.

The last summand is equal to Xrea()(1 + sq(f))0s(). We observe that
ZfEx(oz),f>X<o¢)hch(f)(sf (x)—f—zfex(a)\{hkf?‘x(a)h(Sa(f>)(5f (ZL’) = Efex(a)\{h}sa(f)(;f(x>,
and that X rex(@)\ (1), fyh0f (7) + Brea@dr(r) = Drenapn),fyends(@):
The result follows. u

Theorem 4 If h is not exceptional for a, the hxa resemblance of « is given
by

prrala) =1 — oo if h ¢ T(a),

Prxa() =1 if h € TI(a).

Proof: By definition 10, we have ppi () = Mingerypaphsa(x). If x is an
element of T'yp o, we have p,(z) = 1 and d¢(x) = 1V f € II(a). The result
then follows from Proposition 3, noticing that Mingerypaphra () is reached
when 6,(x) = 0.

If h € A(a), one has ppyq(a) = 1 from Proposition 2.

In the case where h € x(«), the result follows from Proposition 2 and
Proposition 3. One may also directly apply Corollary 1 of Theorem 1. N

Proposition 4 One has
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w*(hxa) =1+w(a) + |A(a)] for h & Ale) U x(a),
w(hx @) = w(a) — sa(h) + |A(@)] if h € Ala),
w*(h*a) =w(a) if h € x(a)

Proof: If h ¢ A(a), the result is immediate from Lemma 2. Suppose
h € A(a). We have X, (0)s7,o(f) = Xy(@Sa(f). Writing then the sum

Yfea(@)Shualf) 88 Brea(@N\ ). f>nwhShea (/) HErea@N\h). #uan Shea (1) 8500 (),
we apply the second part of Lemma 2. [ |

Proposition 5 Inn the non-exdeptional case, the h x a resemblance degree
of an element = € O satisfies:
w*(hxa) () = Brexo0r () +w(a)pa(r) + (1+]A(a)])
w*(hx a)pjq (1) = wla )pa( ) = sa(h)on(x) + [A(a)[0n(x)
Phial®) = palz) if h € x(a).

Proof: 1If h ¢ Il(a), we write
W (e @) (2) = SpteyShn (F)07(2) & Sira) St ()37 (2) + 5. ()30 (2),

and apply the first part of Lemma 2.

If h € A(a), the second part of Lemma 2 yields

W (5 ) (2) = Stte 15 (NF(2) + [A(0) 6 (2), that is w(h +
)hal) = (@) rsa) — 5B (2) + [ A5 (2).

If h € x(a), we write w*(h * @) p, (%) = Xr(a)Shea(f)df(x) and conclude
by Lemma 2, noting that w*(h * o) = w().

On(z) if h ¢ TI(«),
if h e Ala),

Theorem 5 In the non exceptional case, the salience s;,,, yields:
Phna(00) = PASIEE) if o ¢ (),
Prrala) =1 th e Il(a).

Proof: Apply Proposition 5 for x € T'yp a and take the minimum possible
value: If h ¢ II(«), we have 5, (z) = 0. If h € II(«), we have 0,(x) = 1. This
yields the result.

One may also remark that one has Typ (hxa) = Ext hNTyp o (Theorem

5): any typical instance of « that falls under h is a typical instance of h*a...
|
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Lemma 3 If h is k-exceptional, the salience degrees in II(hx«) are given by

Sh*a(h) = 1
Shea(f) =14 sa(f) VI € I(hxa) \ {h}, [ P
Shxa(f) = sa(f) for all other elements of H(h*oz) \ {h},
i) = [ (o) + 1.
Shaa () = 5a(f) Vf € II(e) \ {k}.
Proof: Straightforward. |

Proposition 6 Suppose that h is k-exceptional for o. Then

wlh*a) = w(a) +|A(@)] +1 = sa(k) + [{f € x(@) \ {k}, [ Px@h}]
w*(h*a) =w(a) — sq(k) + 14+ |A(a)].

Proof: The first equality is a direct consequence of the preceding Lemma.
For the second equality, we use once more the fact that

SreniniySalf) = w(a)pa = sa(k). u

Proposition 7 In the k-exceptional case, the hx a-resemblance degree of an
object x is given by:
w(h % @) phra() = w(@)pa() + 0n(2) — sa(k)ox(z) + 2feH(a)\{k} #4605 (),
w*(hx @)df, () = w(@)pa() = sa(k)dk(x) + Ala) +

Proof: For the first equality; we have
wW(h* @) ppea() = 0n(2) + Xreri(ha) (a} Shra(f)If(x). We then write
I(hxa)\{h} = {f € W(hxa)\{h}, [ Pu@}U{f € l(hxa)\{h}, [ >nw}

and apply Lemma 2. The second equality directly follows from Lemma 3.

Proposition 8 The resemblance of a concept with its modification by a k-
exceptional feature is given by:

prrala) =1 — oo

6 () =1—¢e(hxa)

hxa

Proof: If z is an element of Typ o, it follows from Proposition 7 that
w(h * @)ppsal(z) = w(a) — sq(k) + [{f € (a) \ {k},f /> k}|. Writing

{f e W) \{k}, [ Ak} ={f e x(a)\{k}, f A kY UL{f € Al)}, we get,
by Proposition 6
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w(h * @) ppsa(z) = w(h * a) — 1 whence the result.

Similarly, we have by Proposition 7 w”(h * @)ppsa(2) = w(a) — sq(k) =

w(h*a) — (|A(a) + 1)]. n

sa (k)

Proposition 9 One has p,(h*a) =1 — 2222,

w(@)

Proof: For any z € O,
w(a)pa(h*a) = B\ (k3 5a(f)0f(2) + sa(k)0k(2). If 2 € Typ (h*a), we have
d¢(2) = 1V f € By qry and dx(2) = 0 since h is k-exceptional. [ |
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