The most fundamental result in probability theory is the law of large numbers for a sequence (X n ) n 1 of independent and identically distributed real valued random variables. Define the empirical mean of (X n ) n 1 by

X n = 1 n n i=1 X i
The law of large numbers asserts that the empirical mean X n converges (almost surely) towards the theoretical mean E(X 1 ) provided that E(|X 1 |) is finite. The next fundamental results are the central limit theorem and Cramér's theorem. Both are refinements of the law of large numbers in two different directions. The central limit theorem describes the random fluctuations of X n around E(X 1 ). Cramér's theorem estimates the probability that X n deviates significantly from E(X 1 ) :

P X n E(X 1 ) + ε for ε > 0.
Such an event is called a "large deviations" event since it has a very small probability: it turns out that this probability decays exponentially fast with n. The first estimate of this kind can be traced back to Cramér's paper [START_REF] Cramér | Sur un nouveau théorème limite de la théorie des probabilités[END_REF] which deals with variables possessing a density. In [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF] Chernoff relaxed this assumption. Then coming from statistical mechanics Lanford imported the subadditivity argument in the proof [START_REF] Lanford | Entropy and equilibrium states in classical statistical mechanics[END_REF]. Cramér's theory was extended to infinite dimensional topological vector spaces by Bahadur and Zabell [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF]. The classical texts of Azencott [START_REF] Azencott | Grandes déviations et applications[END_REF], Deuschel and Strook [START_REF] Deuschel | Large deviations[END_REF] and Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF] take stock of the foregoing improvements. At this point in time classical proofs of Cramér's theorem in R resort either to the law of large numbers (see e.g. [START_REF] Dembo | Large deviations techniques and applications[END_REF]) or to Mosco's theorem (see e.g. [START_REF] Cerf | On Cramér's theory in infinite dimensions[END_REF]). We expose here a direct proof of Cramér's theorem in R based on convex duality. Not only is the proof shorter, but it can easily adapt to a broader setting.

Theorem (Cramér). Let (X n ) n 1 be a sequence of independent and identically distributed real valued random variables and let X n be the empirical mean:

X n = 1 n n i=1 X i
For all x ∈ R the sequence

1 n log P X n x converges in [-∞, 0] and lim n→∞ 1 n log P X n x = inf λ 0 log E e λX1 -λx
Let us define the entropy of the sequence

(X n ) n 1 by ∀x ∈ R s(x) = sup n 1 1 n log P X n x
and the pressure of X 1 (or the log-Laplace transform of the law of X 1 ) by

∀λ ∈ R p(λ) = log E e λX1
The entropy and the pressure may take infinite values. Our strategy is to show a dual version, in the sense of convex functions, of Cramér's theorem.

Proposition (dual equality). For all λ 0,

p(λ) = sup u∈R λu + s(u)
Proof. The classical Chebychev inequality will yield one part of the proof of the above equality. To prove the other part we condition X n to be bounded by K and then let K grow towards +∞. Since X 1 , . . . , X n are independent and identically distributed, we have for all λ 0

∀n ≥ 1 E e nλXn = E e λX1 n
Thus, for u ∈ R and n ≥ 1, it follows from Chebychev inequality that Next, we prove the converse inequality for λ = 0 : for all u ∈ R,

p(λ) = log E e λX1 = 1 n log E e nλXn
0 s(u) sup n 1 1 n log P X 1 u n = log P X 1 u
Hence, letting u go to -∞, we see that

sup u∈R s(u) = 0 = p(0)
Now let λ > 0 and K > 0. For all n 1, using the fact that X 1 , . . . , X n are independent and identically distributed, we have

log E e λX1 1 |X1| K = 1 n log E e λ(X1+•••+Xn) 1 |X1| K • • • 1 |Xn| K 1 n log E e nλXn 1 |Xn| K = 1 n log E e -nλK + Xn -K nλe nλu du 1 |Xn| K 1 n log e -nλK + E 1 -K u Xn 1 |Xn| K nλe nλu du
the last step being a consequence of Fubini's theorem. Since

E 1 -K u Xn 1 |Xn| K P X n u 1 |u| K e ns(u) 1 |u| K we get log E e λX1 1 |X1| K 1 n log e -nλK + K -K
nλe n(λu+s(u)) du

1 n log e -nλK + 2Knλ exp n sup u∈R λu + s(u)
Let K be large enough so that (recall that the supremum of s is 0)

-λK < sup u∈R λu + s(u)
Sending n to ∞ we obtain

log E e λX1 1 |X1| K sup u∈R λu + s(u)
Eventually sending K to +∞ we get

p(λ) sup u∈R λu + s(u)
To deduce Cramér's theorem from the dual equality we have just proved, we need some properties of the function s. First of all it follows from the definition of s that s is non-increasing.

Proposition. For all x ∈ R the sequence

1 n log P X n x converges in [-∞, 0] towards s(x). The function s : R → [-∞, 0] is concave.
Proof. Let x, y ∈ R with x y. Let also α ∈]0, 1[. Suppose that P X 1 y > 0 and let n m 1. Let n = mq + r be the Euclidian division of n by m. On the event

αq -1 k=0 m(k+1) i=mk+1 X i mx ∩ q-1 k= αq m(k+1) i=mk+1 X i my ∩ n i=mq+1 X i y
we have (remember that x y) : 

s αx + (1 -α)y αs(x) + (1 -α)s(y)
If y is such that P X 1 y = 0, then

∀n 1 1 n log P X n y = -∞
whence s(y) = -∞ and the concavity inequality still holds.

We now finish the proof of Cramér's theorem. At this point we know that for all x ∈ R inf

λ 0 p(λ) -λx = inf λ 0 sup u∈R λ(u -x) + s(u)
It remains to prove that the latter quantity equals s(x). The result is standard in convex functions theory. Let us give an elementary proof in our setting. The right-hand side of the previous equation is clearly superior or equal to s(x) : take u = x. To prove the converse inequality we set c = inf x ∈ R : P X 1 x = 0 and we distinguish the three cases x < c, x > c and x = c.

• Suppose x < c. Since s is concave and non-increasing let -λ = s g (x) 0 be the left derivative of s at point x. Then s(x) > -∞ and ∀u ∈ R s(u) s(x) -λ(u -x) from which the result follows.

• Suppose x > c. Then s(x) = -∞ and, for all λ 0, p(λ) -λx = log E e λ(X1-x) log e λ(c-x) = λ(c -x) so the infimum over λ 0 is indeed -∞.

• Suppose x = c. Then, for all λ 0 and ε > 0, p(λ) -λc = log E e λ(X1-c) 1 X1<c-ε + 1 c-ε X1 c log e -λε + P X 1 c -ε

Taking the infimum over λ 0 and sending ε to 0 we get inf λ 0 p(λ) -λx log P X 1 c s(c)
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