
HAL Id: hal-03702720
https://hal.science/hal-03702720

Submitted on 23 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Lightweight Southbound Interface for Standalone
P4-NetFPGA SmartNICs

Mario Patetta, Stefano Secci, Sami Taktak

To cite this version:
Mario Patetta, Stefano Secci, Sami Taktak. A Lightweight Southbound Interface for Standalone P4-
NetFPGA SmartNICs. 2022 1st International Conference on 6G Networking (6GNet), Jul 2022, Paris,
France. �10.1109/6GNet54646.2022.9830380�. �hal-03702720�

https://hal.science/hal-03702720
https://hal.archives-ouvertes.fr

A Lightweight Southbound Interface for Standalone
P4-NetFPGA SmartNICs

Mario Patetta, Stefano Secci, Sami Taktak
Cnam, Paris, France. Email: first-name.last-name@cnam.fr

Abstract—We present a lightweight Southbound Interface
(SBI) for P4→NetFPGA devices, aimed at enhancing the capabil-
ity of NetFPGA Smart Network Interface Cards (SmartNICs) to
work in standalone mode. We propose a custom protocol allowing
the control plane to remotely populate the board’s routing tables
and query runtime information. We achieve this thanks to the
implementation of a lookup table (LUT) extern function that can
be directly edited by the P4 program - a feature notably lacking
in the context of P4→NetFPGA.

Index Terms—P4, NetFPGA, Software-Defined Networking,
Southbound Interface

I. INTRODUCTION

Programmable switching hardware architectures provide
flexibility in terms of resources allocation in packet pro-
cessing, and the ability to implement custom functionalities.
The integration of the software-driven approach allows easy
deployment and update of novel designs.

P4 [1, 2] is the open source de facto standard programming
language used to describe packet processing and forwarding
in programmable network devices. P4 stands for Programming
Protocol-Independent Packet Processors and is maintained by
the P4 Language Consortium, a nonprofit entity hosted by the
Open Networking Foundation.

P4 leverages two main abstractions. Parsers are finite state
machines used to extract the headers out of the incoming
stream of bytes, according to a predetermined flowchart.
Match-action tables are then used to define how packet for-
warding and processing is performed. Despite providing such
specialized high level constructs for header manipulation, P4
lacks many others such as loops, recursion and pointers as well
as stateful operations. To address these limitations, P4 offers
the possibility to integrate some target-specific modules called
extern functions, that can be interacted with as black boxes by
P4 programs and that can implement additional functionalities.

The NetFPGA [3] is an open source hardware and software
platform developed to provide a basic infrastructure to design,
simulate and test networking platforms. The P4→NetFPGA
project [4, 5] offers a development environment based on the
Xilinx P4-SDNet toolchain [6]. The goal of this workflow
is to allow developers to describe how packets are to be
processed in the high-level P4 language, while still providing
the possibility for experienced hardware designers to include
custom extern functions described in Verilog or VHDL to the
P4 pipeline.

Although the NetFPGA boards, as the SUME version, can
be used in standalone mode, the P4→NetFPGA project relies

on a host computer connected over PCIe to populate lookup
tables [5]. In fact, P4-SDNet generates an Application Program
Interface (API) that allows the host computer to manipulate
registers and tables instantiated by the P4 program at runtime.

Allowing the boards to work autonomously as P4 switches
would strongly enhance the flexibility of such platforms. To
that purpose, we propose a basic SBI for P4→NetFPGA
SmartNICs, through which the control plane can populate and
update such tables, as well as retrieving runtime information
from the board. For that purpose, we designed an extern
module implementing a lookup table that can directly be edited
by the P4 program. This enables the SmartNIC to be controlled
through the SBI to interact with the P4 pipeline.

II. BACKGROUND

In this section, we offer a glimpse on the related work in
the scope of Southbound API and the use of SmartNICs to
compute metrics directly on the data plane.

A. Metric computation in SDN Switches
The main advantage of using programmable packet proces-

sors is the capability to execute user-defined operations on
top of forwarding. Some examples of tasks that can benefit
of this are congestion control, flow monitoring, and intrusion
detection. As opposed to centralized monitoring systems, data
plane computing dramatically reduces the overhead due to
information needing to be retrieved from switches as well as
speeding up the process, since at least part of the computation
can be performed at line rate.

An extensive and detailed survey on P4 applied research
can be found in [7]. In [8–10] several heavy hitter detection
algorithms are presented. BACON [11] and HashFlow [12]
focus on flow analysis. BACON leverages the combination of
data sketches for estimating flow cardinality, while HashFlow
summarizes records of mice flows and keeps detailed ones
for elephant flows in order to achieve a memory efficient yet
accurate traffic analysis performance. PINT [13] uses P4 to
add telemetry information into data packets with minimal over-
head, while IntSight [14] leverages in-band network telemetry
(INT) to monitor the network performance. P4Entropy [15]
introduces two algorithms to bypass P4’s lack of support for
logarithm and exponential functions and uses them to estimate
traffic entropy.

B. Southbound Interfaces
Some of the most widely used SBIs are P4Runtime [16],

NETCONF [17], and OpenFlow [18].

(a) LUT update/check message format

(b) Metric query/reset message format

Fig. 1: SBI control-plane message formats

P4Runtime is growing in popularity in the field of P4
switches. Its syntax is defined in Protobuf [19], an open-
source data format developed by Google that serves as a basis
for gRPC [20], an open-source remote procedure call (RPC)
library that runs on HTTP/2. P4 Runtime defines the communi-
cation between a gRPC server on the side of the switch and one
or more gRPC clients on the side of the controllers. Similarly,
also NETCONF uses an RPC paradigm. In this case, the data
format used is XML [21]. The P4→NetFPGA project does not
currently support any RPC server. It could be possible to build
one running on the host computer, but this would require the
platform not working in standalone mode.

OpenFlow is the most used and researched SBI. The main
reason why it is generally not used in P4 networks is that,
upon connecting, OpenFlow switches are supposed to actively
initiate a TCP session using a three-way handshake with the
SDN-Controller. However, regular P4 switches, including the
SimpleSumeSwitch (i.e., the P4 architecture currently defined
for the NetFPGA SUME), can only passively respond to pack-
ets. The Sume Event Switch, an experimental programmable
architecture in the P4→NetFPGA project, can respond to mul-
tiple data plane events rather than just ingress packet arrival.
This enhanced flexibility grants to the board the capability to
generate packets on its own. Although exploring the use of
the Sume Event Switch could be interesting for implementing
OpenFlow as SBI for P4→NetFPGA switches, we chose to
focus on a lightweight protocol that would be easier to manage
and adapt to the specific behavior defined by the P4 program.

III. SBI: CONTROL-PLANE MESSAGE FORMATS

The SBI we propose is composed of four control-plane
messages. Figure 1 illustrates the two control packet formats:
LUT update/check (a) and metric query/reset (b).

The first 48 bits are in common to both the formats.
Controller ID and Switch ID fields serve as a basic security
purpose such that control packets with wrong ID pair will be
dropped by the switch. Type field indicates whether the carried
message is of type (a) or (b), while ACK is set to 0 for packets
sent by the controller and to 1 for packets bounced back by
the switch. Finally, The Length field expresses the length of
the message in bytes: this value depends on the Key and LUT
address fields for the LUT update/check message, and on the
Result and Register Address fields for the Metric query/reset
message.

A. LUT update/check message

The Key field in LUT update/check messages corresponds
to the flow-rule for matching flows, while the Port field
determines the port where to route packets destined to such
flow. The Address field specifies the LUT address where to
store the rule. Finally, the Check field is used to distinguish
between LUT update and LUT check messages. In a controller
to switch message, when Check is 1, Key is set to the flow-rule
being checked (e.g. if the flow-rule is only based on destination
IP address information, the destination IP address), while Port
and Address are set to 0. Upon receiving such message, the
switch fills the Port field with the output port corresponding
to that Key and bounces the packet back to the controller.

In applications where multiple LUTs are used (i.e., if the
flow-rule is based on multiple fields criteria), an additional
LUT ID field may be added to discriminate them.

B. Metric query/reset message

In a metric query message, the controller sets the Register
Address to read from, while the SmartNIC fills the Result field
with the respective content. If the Reset field is set instead,
the switch sets to 0 the content of the register at the specified
address. These messages should be customized according to
the application running on the SmartNIC, as number and size
of the registers to query can vary as well as the bit size of the
data they store. As in the case of LUT update/check messages,
an optional Register ID field may be added.

IV. DATA PLANE OVERVIEW

Fig. 2: Data Plane Overview

Figure 2 shows a P4 program running on a standalone
NetFPGA SUME Board. The data plane traffic triggers the
metric update and is routed according to one or more lookup
tables. A remote controller can use the southbound interface
to interact with both stages of the pipeline. LUT update/check
messages are used to populate the lookup tables and to inspect
their status. Metric query/reset messages are used to read the
content of the registers or to clear it.

The remaining of this section describes the lookup table
extern function we propose and the functionality of the routing
engine.

A. Lookup Table Extern

#define LUT_READ 4w0

#define LUT_UPDATE 4w1

@CamLutKeyWidth(KEY_WD)

@CamLutAddressWidth(ADR_WD)

@CamLutNewValWidth(VAL_WD)

@Xilinx_MaxLatency(4)

@Xilinx_ControlWidth(0)

extern void <lut_name>_cam_lut(in bit<KEY_WD> key,

in bit<ADR_WD> address,

in bit<VAL_WD> newVal,

in bit<4> opCode,

out bit<1> match,

out bit<VAL_WD> result);

Fig. 3: LUT Extern Instantiation

Figure 3 shows the P4 instantiation of the exact match LUT
extern function we designed. It is based on the Ternary Content
Addressable Memory (TCAM) implementation in Verilog by
mcjtag [22]. The memory consists of three components: the
line array, which represents the actual Content Addressable
Memory; the line encoder, which converts the output of the
line array into a binary address for the RAM, that stores the
data. The line array is used to match the input key to an
address, that is used to read the corresponding data from the
RAM.

The P4 pipeline interfaces with the extern through six I/O
signals (i.e., extern metadata):

• key: when updating the LUT, it contains the new key to
be written inside the line array. When reading the LUT,
it is the data to look up for matches in the line array;

• address: it is the address inside both the line array and
the RAM where the new rule will be written. It is set to
0 during the reading operation;

• newVal: when updating the LUT, it contains the new data
to be written inside the RAM. It is set to 0 during the
reading operation;

• opCode: it is set to 0 to read the LUT or to 1 to update
it;

• match: it is set to 1 by the LUT when a reading operation
results in a match;

• result: it is the value stored in the RAM at the address
outputted by the line array if there is a match.

B. Routing Engine

The routing stage of the P4 pipeline is composed of two
phases.

In the first phase, the packet is inspected in order to set
the metadata for accessing the LUT extern. In case of data
plane traffic, the flow-rule is set as key and the opcode is set
to READ. In case of an update message, key, address and port
are set like the respective fields and the opcode is set to READ
or UPDATE according to the check field being 1 or 0.

In the second phase, the LUT extern is accessed. If the key
produces a match, the result is used as destination port for IP
packets or to fill the port field of check messages.

Control packets are always bounced back to the controller,
i.e., the destination port is the same as the source port, while
source and destination MAC addresses are swapped.

V. TECHNICAL DEMONSTRATION

In the technical demonstration, we showcase the operations
of the P4→NetFPGA SBI we propose. For the sake of
simplicity and without loss of generality, we only consider
IP addresses as single matching field for flow rule definition.

We use TCP Monitor [23] as the P4 metric update applica-
tion running on the SmartNIC; it is a basic TCP monitoring
program provided by the P4→NetFPGA project. It computes
the size of each flow that runs through the switch and, when
the flow has ended (i.e., when a TCP FIN packet is received),
it updates a histogram representing the distribution of flow
sizes.

We modified the P4 code to adapt it to our metric query/reset
messages, allowing us to read and reset the histogram register.
The code and demo video are shared in [24]

For the demonstration, we show how our proposed SBI
can be used by a remote controller to set the flow rules of a
standalone SUME Board SmartNIC as well as retrieve runtime
TCP monitoring metrics.

In the first part of the demo we populate the IP destination
address LUT with LUT update messages and check the success
of this operation by using LUT check messages.

Then, we send data plane traffic through the SmartNIC
and use metric query messages to collect the monitoring
information at runtime.

VI. FURTHER WORK

Even though instantiating lookup tables with hundreds or
thousands of entries should be feasible in terms of memory
footprint, it is not in terms of timing requirements. The size
of the line encoder scales linearly with the number of entries,
causing the presence of negative slack on the critical path. We
are currently working on a parallel implementation of the line
encoder in order to mitigate this phenomenon.

The SBI is currently using plain encapsulation over Ethernet
frame, but this can be easily changed to upper layer protocols
to favor interoperability, thanks to P4’s flexibility in terms of
protocol independence. This is one of the next steps of our
activity.

ACKNOWLEDGEMENTS

This work was funded by the H2020 AI@EDGE project
(https://aiatedge.eu; contract nb: 101015922) and the French
ANR HEIDIS project (https://heidis.roc.cnam.fr; contract nb:
ANR-21-CE25-0019).

REFERENCES

[1] P. Bosshart et al. “P4: Programming protocol-
independent packet processors”. In: ACM SIGCOMM
CCR 44.3 (2014), pp. 87–95.

[2] P4 Open Source Programming Language. URL: https:
//p4.org/.

[3] NetFPGA. URL: https://netfpga.org/.
[4] S. Ibanez et al. “The p4-netfpga workflow for line-rate

packet processing”. In: Proc. of the 2019 ACM/SIGDA
Intern. Symposium on FPGAs. 2019, pp. 1–9.

[5] P4-NetFPGA. URL: https://github.com/NetFPGA/P4-
NetFPGA-public/wiki.

[6] Xilinx. P4-SDNet User Guide. 2018. URL: https : / /
www.xilinx.com/support/documentation/sw manuals/
xilinx2017 4/ug1252-p4-sdnet.pdf.

[7] F. Hauser et al. “A survey on data plane program-
ming with p4: Fundamentals, advances, and applied
research”. In: arXiv:2101.10632 (2021).

[8] D. Ding et al. “An incrementally-deployable P4-enabled
architecture for network-wide heavy-hitter detection”.
In: IEEE TNSM 17.1 (2020), pp. 75–88.

[9] Y. Lin et al. “SDN Soft Computing Application for
Detecting Heavy Hitters”. In: IEEE TII 15.10 (2019),
pp. 5690–5699.

[10] V. Sivaraman et al. “Heavy-hitter detection entirely in
the data plane”. In: Proc. of the Symposium on SDN
Research. 2017, pp. 164–176.

[11] D. Ding et al. “In-Network Volumetric DDoS Vic-
tim Identification Using Programmable Commodity
Switches”. In: IEEE TNSM 18.2 (2021), pp. 1191–1202.

[12] Z. Zhao et al. “HashFlow for better flow record col-
lection”. In: 2019 IEEE 39th ICDCS. IEEE. 2019,
pp. 1416–1425.

[13] R. Ben Basat et al. “PINT: Probabilistic in-band net-
work telemetry”. In: Proc. of the Annu. Conf. of the
ACM Special Interest Group on Data Comm. on the
appl. technol. archit. and protocols for computer comm.
2020, pp. 662–680.

[14] J. Marques et al. “Intsight: Diagnosing SLO violations
with in-band network telemetry”. In: Proc. of CoNEXT
2020. 2020, pp. 421–434.

[15] D. Ding et al. “Estimating logarithmic and exponential
functions to track network traffic entropy in P4”. In:
NOMS 2020-2020 IEEE/IFIP. IEEE. 2020, pp. 1–9.

[16] P4.org API Working Group. P4Runtime Specification,
version 1.3.0. 2021. URL: https : / / p4 . org / p4 - spec /
p4runtime/main/P4Runtime-Spec.html.

[17] R. Enns et al. “Network configuration protocol (NET-
CONF)”. In: (2011).

[18] N. McKeown et al. “OpenFlow: enabling innovation
in campus networks”. In: ACM SIGCOMM CCR 38.2
(2008), pp. 69–74.

[19] Protocol Buffers. URL: https://developers.google.com/
protocol-buffers.

[20] gRPC - A High-Performance, Open-Source Universal
RPC Framework. URL: https://grpc.io/.

[21] S. Hollenbeck et al. “Guidelines for the use of exten-
sible markup language (XML) within IETF Protocols”.
In: RFC3470 (2003).

[22] TCAM (Ternary Content-Addressable Memory) on Ver-
ilog. URL: https://github.com/mcjtag/tcam.

[23] TCP Monitor. URL: https://github.com/NetFPGA/P4-
NetFPGA-live/tree/master/contrib-projects/sume-sdnet-
switch/projects/tcp monitor.

[24] NetFPGA-SBI. URL: https://github.com/cedric- cnam/
NetFPGA-SBI.

