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Abstract
The goal of this work is to study a ZIKA disease model using fractional derivatives in the Ca-
puto sense. After formulating the model, we compute the basic reproduction number R0 and give
rigorous proof of the existence of equilibrium points as well as stability analysis of these equilib-
rium points. Then, we study the existence and the uniqueness of the solutions of the fractional
model using the Banach fixed point theory. Numerical simulations are performed to validate our
analytical results, as well as to see the impact of varying the fractional parameter on the disease
dynamics
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I INTRODUCTION

Primarily transmitted to humans through the bite of an infected Aedes species mosquito (Ae.
aegypti and Ae. albopictus, which are are the same mosquitoes that spread dengue and chikun-
gunya viruses), Zika disease is caused by a flavivirus called Zika virus (ZIKV). It is a public
health problem in many Latina American countries which are experiencing the most serious
known outbreaks of Zika virus (ZIKV), and this, since 2005 [1]. In October 2015, an asso-
ciation between Zika virus infection and microcephaly was reported in Brazil. From then on,
epidemics and evidence of transmission quickly appeared in the Americas, Africa, and other
parts of the world. To date, a total of 86 countries and territories have reported evidence of
mosquito-borne Zika infection. The rise of microcephaly and Guillain-Barré syndrome is cor-
related with the rise of the spread of the Zika virus. Zika virus was first identified in Uganda in
1947 in monkeys, and later in humans in 1952. In 2007, the Island of Yap was the land of the
first large outbreak of the disease [1, 2]. Since then, outbreaks have appeared in many countries
(United Republic of Tanzania, India, Indonesia, Malaysia, Pakistan, Pacific islands, Brazil...).
On February 1, 2016, Zika disease became a Public Health Emergency of International Concern
[1, 2]. Since there is no available vaccine to prevent or treat Zika virus infection, the principal
control means are vector controls and protection means against mosquito bites [1, 2].

Mathematical modeling is a good tool for the projection and control of several infectious dis-
ease outbreaks. The current Covid-19 outbreak is an example [3, 4]. Several works to model,
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project, and control recent outbreaks of Zika virus disease in the world, were published [5, 6,
7, 8]. Fractional derivative theory has been more and more used in the last decades to model
natural phenomena like infectious diseases [9, 10]. The fact that classical derivatives do not
permit to describe fluctuations of different classes of population involved in infectious process,
and thus heterogeneity between compartment classes, do that the use of Fractional derivatives is
need nowadays [11]. Note that memory effect, which represents a great advantage of fractional
derivatives compared to classical derivatives, permit to predict epidemic peaks for various dis-
eases [12, 13]. Several papers using fractional derivatives were developed for Zika transmission
dynamics [14, 15, 16, 17]. Most of them use Caputo’s type derivatives. In this paper, we extend
the model of Yuan et al. in [8] replacing integer derivatives with Caputo derivative. After the
computation of the basic reproduction number R0, we prove the uniform asymptotically sta-
bility of the Zika-free equilibrium when R0 ≤ 1, despite the fact that the latter coexists with
an endemic equilibrium. For the case R0 > 1, we prove that the model admits two endemic
equilibrium points, one of them is stable and the other is unstable. To simulate the fractional
model, we construct two numerical schemes using the Adams-Bashforth Method (ABM) and
the Laplace Transform Adomian Decomposition Method (LTADM), respectively.

The outline of the paper is as follows: In section II, we recall the definition of the Caputo
derivative, and two precious results which is used top prove the existence and uniqueness of
solutions. Section III is devoted to model formulation and mathematical results. Numerical
simulation results are presented in Section IV. A conclusion round up the paper.

II USEFUL DEFINITION AND RESULTS

In this section, we present useful definitions of Caputo derivative, as well ass useful lemmas
which will be used in the model analysis (see [18, 19]).

Definition 1:
Given a function f : [a, b] → R of class Cn, the Caputo fractional derivative of f of order α is
defined by :

C
t0
Dα
t f(t) =

1

Γ(n− α)

∫ t

t0

(t− τ)n−α−1f (n)(τ)dτ (1)

where α /∈ N, n = [α] + 1.

Proposition 1:
Let f, g : [a, b] → R be such that C

t0
Dα
t f(t) and C

t0
Dα
t g(t) exist almost everywhere and let

c1, c2 ∈ R. Then C
t0
Dα
t (c1f(t) + c2g(t)) exists almost everywhere with C

t0
Dα
t (c1f(t) + c2g(t)) =

c1 × C
t0
Dα
t f(t) + c2 × C

t0
Dα
t g(t).

Lemma 1:
If 0 < χ < 1 and d ∈ N, then there exist positive constants Wχ,1 and Wχ,2 only dependent on
χ, such that

(d+ 1)χ−dχ ≤ Wχ,1(d+ 1)χ−1 and (d+ 2)χ+1− 2(d+ 1)χ+1 +dχ+1 ≤ Wχ,2(d+ 1)χ−1.

Lemma 2:
Assume that yq,m = (m − q)χ−1(q = 1, 2, ...,m − 1) & yq,m = 0 for q ≥ m,χ,Q,h,Y >
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0,kh ≤ Y & k ∈ N. Let
∑q=i

q=k yq,m|eq| = 0 for k > m ≥ 1. If

|em| ≤ Qhχ
m−1∑
q=1

yq,m|eq|+ |η0|, m = 1, 2, ...,k,

then
|ek| ≤ M|η0|, k = 1, 2, ...

whereM∈ R+ independent of k and h.

III THE FRACTIONAL ZIKA MODEL AND ASYMPTOTIC STABILITY RESULTS

3.1 The fractional Zika model

The basic model comes from the works of Yuan et al. (2021) [8] which consists of a system of
fives Ordinary Differential Equations. The human and mosquito populations are split into three
and two compartment according to their clinical status. We denoted by: Sh susceptible human,
Ih Infected humans, Rh recovered human, Sv susceptible mosquitoes, Iv Infected mosquitoes.
Since an infected mosquito is infected throughout its life, we do not consider removed class in
this model.

CDηSh(t) = µh(H − Sh)−
(
β
Ih
H

+ ab
Iv
H

)
Sh,

CDηIh(t) = −(γ + µh)Ih +

(
β
Ih
H

+ ab
Iv
H

)
Sh,

CDηRh(t) = −µhRh + γIh,

CDηSv(t) = µv(M − Sv − θIv)− ac
Ih
H
Sv,

CDηIv(t) = ac
Ih
H
Sv − µv(1− θ)Iv,

(2)

with the initial conditions Sh = Sh0, Ih = Ih0, Rh = Rh0, Sv = Sv0, and Iv = Iv0.

In model (2): CDη denotes the Caputo derivative with η ∈ (0, 1]; H := Sh + Ih + Rh repre-
sents the total human population, µh is the human natural mortality rate, β is the transmission
coefficient from infected humans to susceptible humans, a is the mosquitoes biting rate, b is the
transmission probability from an infectious mosquito to a susceptible human per bite, γ is the
recovery rate of humans, M := Sv + Iv is the total mosquito population, µv is the mortality rate
of mosquitoes, θ is the proportion of congenital infections in the offspring of infected female
mosquitoes, and c is the transmission probability from an infectious human to a susceptible
mosquito per bite.

Note that, as in the case of mathematical modeling of infectious disease epidemics, we consider
that human and mosquito populations are still constant during the Zika epidemic reported by
the Guillain-Barré Syndrome (GBS) surveillance data. Using the fact that S = H − I −R and
Sv = M − Iv, the study of the model (2) is reduced to the study of the following system

CDηIh(t) = −(γ + µh)Ih +

(
β
Ih
H

+ ab
Iv
H

)
(H − Ih −Rh),

CDηRh(t) = −µhRh + γIh,

CDηIv(t) = ac
Ih
H

(M − Iv)− µv(1− θ)Iv,

(3)
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which define a dynamical system in the following bounded and absorbed set

Σ =
{

(Ih, Rh, Iv) ∈ R3
+ : Ih +Rh ≤ H, Iv ≤M

}
.

3.2 The basic reproduction number and uniform asymptotic stability results

3.2.1 The basic reproduction number and stability of the Zika-free equilibrium

System (3) always has a Zika-free equilibrium E0 = (0, 0, 0). Setting R1 =
β

(γ + µh)
, R2 =

ab

(1− θ)µv
, and R3 =

acM

H (γ + µh)
, we can express using the next generation method [20], the

basic reproduction number of system (3) as follows:

R0 =

√
4R2R3 + R2

1 + R1

2
. (4)

The matrix of the system (3) evaluated at the disease-free equilibrium point E0 is given by

J (E0) =

 −(γ + µh) + β 0 ab
γ −µh 0

ac
M

H
0 −µv(1− θ)

 . (5)

The characteristic equation of J(E0) is therefore det (s[I − (1− η)J(E0)]− ηJ(E0)) = 0 [21].

Theorem 1:
The Zika-free equilibrium point E0 of the model (3) is locally asymptotically stable if R0 < 1
and unstable otherwise.

Proof. Setting M/H = α, 1 − θ = θ1, 1 − η = ρ, M = s[I − ρJ(E0)] − ηJ(E0). The
characteristic equation det(M) = 0 is equivalent to [(µhρ+ 1) s+ µhη] Φ(s) = 0, where
Φ(s) := e2s

2+e1s+e0 with e2 = ((1−R0)(1−R1 + R0)k1θ1ρ
2 + θ1ρ)µv+(1−R1) k1ρ+1,

e1 = (2(1−R0)(1−R1 + R0)k1θ1ηρ+ θ1η)µv+(1−R1) k1η, and e0 := (1−R0)(1−R1+
R0)k1θ1η

2µv.

Note that s1 =
−ηµh

1 + ρµh
< 0 is a solution of det(M) = 0. Since R0 < 1 =⇒ R1 < 1, it

follows that all coefficients e0, e1, and e2 of Φ(s) is always positive. Thus, we conclude that all
solutions of the equation det(M) = 0 have negative real part, which means that the Zika-free
equilibrium is locally asymptotically stable. This ends the proof.

Theorem 2:
The Zika-free equilibrium point E0 of the model (3) is uniformly asymptotically stable ifR0 < 1
and unstable otherwise.
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Proof. Let us consider the following Lyapunov function L =
µv(1− θ)

ab
Ih + Iv. The derivative

of L along the trajectories of (3), using Proposition 1, gives:

DηL =
µv(1− θ)

ab
DηIh +DηIv

= −µv(1− θ)
ab

(
β
I2h
H

+ β
IhRh

H
+ ab

IhIv
H

+ ab
RhIv
H

)
+ ac

M

H
Ih − ξ2µv(1− θ)Iv

− acIhIv
H

+
µv(1− θ)

ab
(β − (γ + µh)) Ih +

µv(1− θ)
ab

abIv

≤
[
ξ1 (β − (γ + µh)) + ξ2ac

M

H

]
Ih + [ξ1ab− ξ2µv(1− θ)] Iv

= ξ2
(γ + µh)µ(1− θ)

ab
(R0 − 1)(R0 + 1−R1)Ih

Finally, DηL ≤ 0 if and only if R0 ≤ 1. Thus, from [22], it follows that the Zika-free equilib-
rium E0 of the fractional model (2) is uniformly asymptotically stable whenever R0 ≤ 1.

3.2.2 The endemic equilibrium and its uniform stability

Equating the right-hand side of system (3) by zero, and solving the obtained system in term of
Iv, we have

Ih =
µvθ1HIv

ac (Hα− Iv)
, Rh =

γ

µh
Ih, (6)

where Iv is the solutions of the following equation Iv (σ2I
2
v + σ1Iv + σ0) = 0, with σ2 =

a3b2c (θ1µvk1 + acµh), σ0 = R0 (R0 − 1) (R1 −R0 − 1) (R1 −R0) k
2
1θ

2
1H

2µ2
vµh,

σ1 = k1θ1Habµv {θ1µvk1 ((R0 − 1)R1 −R2
0) + acµh [2R0R1 − 2R2

0 −R1 + 1]}.

Note that σ2 is always positive. Since R0 −R1 =
R2R3

R0

> 0 =⇒ R1 −R0 − 1 =
R2R3

R0

−

1 =
R2R3 −R0

R0

< 0, it follows that the sign of σ0 depends of the value of R0. Indeed,

R0 > 1⇐⇒ σ0 > 0 and R0 < 1⇐⇒ σ0 < 0. Also, we have R0 > 1 =⇒ σ1 < 0.

Since R0 > R1, it follows that ∆ > 0. We resume the above analysis as follows:

Theorem 3:
The number of equilibrium points os system (3) depend of the basic reproduction number as
follows:

1. If R0 ≤ 1, then system (3) has two equilibrium points: the Zika-free equilibrium E0 =

(0, 0, 0) and an endemic equilibrium point E† =
(
I†h, R

†
h, I
†
v

)
=

 µvθ1HI
†
v

ac
(
Hα− I†v

) , γ
µh

µvθ1HI
†
v

ac
(
Hα− I†v

) , I†v
,

where I†v =
−σ1 +

√
σ2
1 − 4σ2σ0

2
;

2. If R0 > 1, then system (3) has three equilibrium points: the Zika-free equilibrium
E0 = (0, 0, 0) and two endemic equilibrium points E± =

(
I±h , R

±
h , I

±
v

)
, with I±v =

−σ1 ±
√
σ2
1 − 4σ2σ0

2
.
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The above first case (R0 ≤ 1) means that there is a possibility that the Zika-free equilibrium
co-exists with an endemic equilibrium E† =

(
I†h, R

†
h, I
†
v

)
whenever the R0 ≤ 1. Nevertheless,

by Theorem 2, we conclude that this endemic equilibrium is always unstable whenever R0 ≤
1. Now, suppose that R0 > 1, which means that the Zika-free equilibrium E0 = (0, 0, 0)
becomes unstable, system (3) admits two endemic equilibrium points E± =

(
I±h , R

±
h , I

±
v

)
and

E‡ =
(
I‡h, R

‡
h, I
‡
v

)
. In what follows, we will show that one of these endemic equilibrium points

is stable which implies that the other is unstable. To this aim, we follow Yuan et al. [8] by
defining the following Lyapunov function for system (3)

L =
S∗h
H

(
Sh
S∗h
− 1− ln

Sh
S∗h

)
+
I∗h
H

(
Ih
I∗h
− 1− ln

Ih
I∗h

)
+
abS∗hI

∗
v

µvθ1

(
Iv
I∗v
− 1− ln

Iv
I∗v

)
,

where (S∗h, I
∗
h, I

∗
v ) represents one of the two endemic equilibrium points E±.

The equilibrium equations of system (2) lead to µh(H−S∗h) =

(
β
I∗h
H

+ ab
I∗v
H

)
S∗h, (γ+µh)I

∗
h =(

β
I∗h
H

+ ab
I∗v
H

)
S∗h, ac

I∗h
H
S∗v = µv(1 − θ)I∗v . By using these equalities in the derivative of L

along of trajectories of (2) leads to

L′ ≤ −µh
Sh

(Sh − S∗h)
2 − a2bcS∗hIh

µvθ1H2Iv
(Iv − I∗v )2 +

abS∗hI
∗
v

H

(
3− S∗h

Sh
− ShI

∗
hIv

S∗hIhI
∗
v

− IhI
∗
v

I∗hIv

)
+ β

S∗hI
∗
h

H2

(
2− Sh

S∗h
− S∗h
Sh

)
,

which, thanks to the inequality of arithmetic and geometric means, is negative. Also, L′
=

0 =⇒ (Sh, Ih, Iv) = (S∗h, I
∗
h, I

∗
v ). Using [22], we conclude that one of the both endemic equi-

librium points is globally stable. We therefore affirm the following result:

Theorem 4:
The Zika model (2) admits a unique endemic equilibrium in Σ which is globally asymptotically
stable whenever R0 > 1.

3.3 Existence and uniqueness of solutions

The objective of this part is to show by using the theory of the fixed points the existence and the
uniqueness of the solutions of the Zika fractional model (in the Caputo sense) with the initial
conditions. In this part, B is the Banach space for continuous functions with real values over an
interval I with the associated norms

‖ (Sh, Ih, Rh, Sv, Iv) ‖=‖ Sh ‖ + ‖ Ih ‖ + ‖ Rh ‖ + ‖ Sv ‖ + ‖ Iv ‖,

where ‖ Sh ‖= sup {| Sh(t) |: t ∈ I}, ‖ Ih ‖= sup {| Ih(t) |: t ∈ I}, ‖ Rh ‖= sup {| Rh(t) |: t ∈ I},
‖ Sv ‖= sup {| Sv(t) |: t ∈ I}, ‖ Iv ‖= sup {| Iv(t) |: t ∈ I} and B = ε(I) × ε(I) × ε(I) ×
ε(I) × ε(I), with ε(I) the Banach space for continuous functions with real values on I and the
above associated norms. The fractional system (2) can be written in the form:

CDη
t Sh(t) = G1(t, Sh),

C Dη
t Ih(t) = G2(t, Ih),

C Dη
tRh(t) = G3(t, Rh),

CDη
t Sv(t) = G1(t, Sv),

C Dη
t Iv(t) = G1(t, Iv),

(7)
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where Gi(t, x), i ∈ [0; 5] ∩ N, x ∈ {Sh, Ih, Rh, Sv, Iv}, represent the right-hand sides of model
(2).

By applying the fractional integral operator in equation (7), we obtain:

Sh(t)− Sh(0) =
1

Γ(η)

∫ t

0

(t− χ)η−1G1(χ, Sh)dχ, Ih(t)− Ih(0) =
1

Γ(η)

∫ t

0

(t− χ)η−1G2(χ, Ih)dχ,

Rh(t)−Rh(0) =
1

Γ(η)

∫ t

0

(t− χ)η−1G3(χ,Rh)dχ, Sv(t)− Sv(0) =
1

Γ(η)

∫ t

0

(t− χ)η−1G4(χ, Sv)dχ,

Iv(t)− Iv(0) =
1

Γ(η)

∫ t

0

(t− χ)η−1G5(χ, Iv)dχ,

(8)

The kernels Gi, i = 1, 2, 3, 4, 5, satisfy the Lipschitz and contraction conditions if the following
inequality holds:

0 ≤ Vi < 1, i = 1, 2, 3, 4, 5, (9)

where V1 =
(
µh + β + ab

ν

H

)
, V2 = (µh + γ) + β, V3 = µh, V4 = µv + ac, V5 = µv(1 − θ).

We thus claim the following result

Theorem 5:
The kernel G1 satisfies the Lipschitz condition if the following inequality is respected

0 ≤ V1 :=
(
µh + β + ab

ν

H

)
≤ 1 with ‖ Iv ‖= ν. (10)

Proof. Consider the kernel G1, and Sh, S1h any two functions. We have

‖ G1(t, Sh)−G1(t, S1h) ‖=‖ −µh (Sh − S1h)−
(
β
Ih
H

+ ab
Iv
H

)
(Sh − S1h) ‖ . (11)

Using the triangular inequality for the norms of (11) above, we get:

‖ G1(t, sh)−G1(t, s1h) ‖≤‖ µh (Sh − S1h) ‖ + ‖
(
β
Ih
H

+ ab
Iv
H

)
(Sh − S1h) ‖

≤‖
(
µh + β

Ih
H

+ ab
Iv
H

)
‖‖ (Sh(t)− S1h(t) ‖,

≤
(
µh + β + ab

‖ Iv ‖
H

)
‖ (Sh(t)− S1h(t) ‖,

=

V1︷ ︸︸ ︷(
µh + β + ab

ν

H

)
‖ Sh(t)− S1h(t) ‖ .

(12)

Therefore, the Lipschitz condition is fulfilled for G1, and if in addition, 0 ≤ V1 < 1, then it is
also a contraction. We get similar results for the other kernels:

‖ G2(t, Ih)−G2(t, I1h) ‖≤ V2 ‖ Ih(t)− I1h(t) ‖
‖ G3(t, Rh)−G3(t, R1h) ‖≤ V3 ‖ Rh(t)−R1h(t) ‖
‖ G4(t, Sv)−G4(t, S1v) ‖≤ V4 ‖ Sv(t)− S1v(t) ‖
‖ G5(t, Iv)−G5(t, I1v) ‖≤ V5 ‖ Iv(t)− I1v(t) ‖ .

(13)
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The expressions of the equation (8) can be written recursively as:

Shn(t)− Sh(0) =
1

Γ(η)

∫ t
0
(t− χ)η−1G1(χ, Sh(n−1))dχ,

Ehn(t)− Eh(0) =
1

Γ(η)

∫ t
0
(t− χ)η−1G2(χ,Eh(n−1))dχ,

Ihn(t)− Ih(0) =
1

Γ(η)

∫ t
0
(t− χ)η−1G3(χ, Ih(n−1))dχ,

Svn(t)− Sv(0) = I
1

Γ(η)

∫ t
0
(t− χ)η−1G4(χ, Sv(n−1))dχ,

Ivn(t)− Iv(0) =
1

Γ(η)

∫ t
0
(t− χ)η−1G5(χ, Iv(n−1))dχ,

(14)

The difference between successive terms for recursive formulas is written:

φ1n(t) = Shn(t)− Sh(n−1)(t) =
1

Γ(η)

∫ t

0

(t− χ)η−1
(
G1(χ, Sh(n−1))−G1(χ, Sh(n−2))

)
dχ,

φ2n(t) = Ihn(t)− Ih(n−1)(t) =
1

Γ(η)

∫ t

0

(t− χ)η−1
(
G2(χ, Ih(n−1))−G2(χ, Ih(n−2))

)
dχ,

φ3n(t) = Rhn(t)−Rh(n−1)(t) =
1

Γ(η)

∫ t

0

(t− χ)η−1
(
G3(χ,Rh(n−1))−G3(χ,Rh(n−2))

)
dχ,

φ4n(t) = Svn(t)− Sv(n−1)(t) =
1

Γ(η)

∫ t

0

(t− χ)η−1
(
G4(χ, Sv(n−1))−G4(χ, Sv(n−2))

)
dχ,

φ5n(t) = Ivn(t)− Iv(n−1)(t) =
1

Γ(η)

∫ t

0

(t− χ)η−1
(
G5(χ, Iv(n−1))−G5(χ, Iv(n−2))

)
dχ,

(15)

with initial conditions:

Sh0(t) = Sh(0), Ih0(t) = Ih(0), Rh0(t) = Rh(0), Sv0(t) = Sv(0), Iv0(t) = Iv(0).

(16)

Let us take the norm of the first expression of the equation (15)

‖ φ1n(t) ‖ =‖ Shn(t)− Sh(n−1)(t) ‖

=‖ 1

Γ(η)

∫ t

0

(t− χ)η−1(G1(χ, Sh(n−1))−G1(χ, Sh(n−2))dχ ‖,

≤ 1

Γ(η)
‖
∫ t

0

(t− χ)η−1(G1(χ, Sh(n−1))−G1(χ, Sh(n−2))dχ ‖ .

(17)

Using the Lipschitz condition we have:

‖ Shn(t)− Sh(n−1)(t) ‖≤
1

Γ(η)
V1

∫ t

0

(t− χ)η−1 ‖ Sh(n−1) − Sh(n−2) ‖ dχ. (18)

Thus, we obtain

‖ φ1n(t) ‖≤ 1

Γ(η)
V1

∫ t

0

(t− χ)η−1 ‖ φ1(n−1)(χ) ‖ dχ. (19)
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Similar reasoning makes it possible to have:

‖ φ2n(t) ‖ ≤ 1

Γ(η)
V2

∫ t

0

(t− χ)η−1 ‖ φ2(n−1)(χ) ‖ dχ,

‖ φ3n(t) ‖ ≤ 1

Γ(η)
V3

∫ t

0

(t− χ)η−1 ‖ φ3(n−1)(χ) ‖ dχ,

‖ φ4n(t) ‖ ≤ 1

Γ(η)
V4

∫ t

0

(t− χ)η−1 ‖ φ4(n−1)(χ) ‖ dχ,

‖ φ5n(t) ‖ ≤ 1

Γ(η)
V5

∫ t

0

(t− χ)η−1 ‖ φ5(n−1)(χ) ‖ dχ.

(20)

Note that Shn(t) =
∑n

i=1 φ1i(t), Ehn(t) =
∑n

i=1 φ2i(t), Ihn(t) =
∑n

i=1 φ3i(t), Svn(t) =∑n
i=1 φ4i(t), Ivn(t) =

∑n
i=1 φ5i(t).

Now let’s show the uniqueness of the model solution. We claim the following

Theorem 6:
The fractional model (2) admits a unique solution on t | [0, T ] if the following inequality is
satisfied

1

Γ(η)
Vib

η ≤ 1, i = 1, 2, ...5. (21)

Proof. The proof follows the proof of [18].

IV NUMERICAL SCHEME AND RESULTS

4.1 Numerical scheme

In what follows, we will use the Adams-Bashforth-Moulton method (see [15, 23]) to construct
a numerical scheme for the fractional model (3). To this aim, let us consider the uniform dis-
cretization of [0, a] given by tm = mℵ, m ∈ [0;N ] ∩ N where ℵ = a/m denotes the step size.
For a given approximation Uℵ(ti) ≈ U(ti), the next approximation Uℵ(ti+1) is obtain (using the
predictor-corrector method) as follows:

Predictor: Upℵ(tm+1) =
dϕe−1∑
l=0

tln+1

l!
U l0 +

1

Γ(η)

m∑
l=0

bl,m+1G (tl,Uℵ(tl)) ;

Corrector: Uℵ(tm+1) =
dϕe−1∑
l=0

tln+1

l!
U l0+

ℵη

Γ(2 + η)
G
(
tl+1,Uℵℵ (tl+1)

)
+

ℵη

Γ(2 + η)

m∑
l=0

cl,m+1G (tl,Uℵ(tl)) ;

with

cl,m+1 =


m1+ϕ − (m− ϕ)(m+ 1)ϕ, if l = 0,
(m− l + 2)1+ϕ + (m− l)1+ϕ − 2(m− l + 1)1+ϕ, if 1 ≤ l ≤ m,
1 if l = m+ 1,

and bl,m+1 =
ℵϕ

ϕ
[(m− l + 1)ϕ − (m− l)ϕ].
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4.2 Numerical results

For numerical simulation, we consider the same parameter values which came from parameter
estimation of the model (3) using the Guillain-Barré Syndrome (GBS) surveillance data (see
[8]). In [8], Yuan et al. obtained after model calibration a = 0.45, b = 0.3, c = 0.4, θ =
0.0034, γ = 0.14, µh = 4 × 10(−5), µv = 0.125, β = 0.05, ρ = 0.0024%, H = 105, and
M = 1.5H = 15 × 104. With these parameter values,R0 = 1.6349, which means that we are
in endemic state. Figure 1&2 illustrate the results of Theorems 1 and 4, respectively. It is

Figure 1: Time-series of Ih and Iv with R0 = 0.92 (we have set a = 0.225) for different val-
ues of the fractional order η ∈ {1; 0.9; 0.8; 0.7; 0.6}. Initial conditions are (Ih(0), Rh(0), Iv(0)) =
(40, 60000, 100).

Figure 2: Time-series of Ih and Iv with R0 = 1.63 for different values of the fractional order η ∈
{1; 0.9; 0.8; 0.7; 0.6}. Initial conditions are (Ih(0), Rh(0), Iv(0)) = (40, 60000, 100).

clear that, when R0 < 1, the solution approaches the Zika-free equilibrium for η = 1, and the
needed time is forward delayed as the fractional order η decreases (Fig. 1), and when R0 > 1,
the solution approaches the endemic equilibrium (Fig. 2).

Figures 1&2 also illustrates the impact of varying fractional order η on the Zika dynamics.
Indeed, we see that oscillations decrease when the fractional order decreases.

V CONCLUSION

In this work, we studied a transmission model of Zika disease with fractional derivatives in the
Caputo sense. After the formulation of the model which consists to replace integer derivative
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with fractional derivative in the Caputo sense, we computed the basic reproduction number R0

and gave rigorous proof of the existence of equilibrium points of both models as well as stability
analysis of these equilibrium points. Then, we studied the existence and the uniqueness of the
solutions of the fractional model using the Banach fixed point theory. We finally performed
numerical simulations to validate our analytical results, as well as to see the impact of varying
the fractional parameter η on the disease dynamics. Indeed, when the fractional order decreases,
the oscillation amplitude also decreases.
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