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Towards computing canonical lifts of ordinary elliptic curves in medium
characteristic

ABDOULAYE MAIGA AND DAMIEN ROBERT

ABSTRACT. Let p be a prime; using modular polynomial ®,, Satoh et al | , , ]
developed several algorithms to compute the canonical lift of an ordinary elliptic curve E
over Fpn with j-invariant not in F,2. When p is constant, the best variant has complexity
O(nm) Bit operations to lift E to p-adic precision m. As an application, lifting E to precision
m = O(n) allows to recover its cardinality in time O(n?). However, taking p into account the
complexity is O(p2nm), so Satoh’s algorithm can only be applied to small p.

We propose in this paper two variants of these algorithms, which do not rely on the modular
polynomial, for computing the canonical lift of an ordinary curve. Our new method yield
a complexity of O(pnm) to lift at precision m, and even O(\/ﬁnm) when we are provided a
rational point of p-torsion on the curve. This allows to extend Saoth’s point counting algorithm
to larger p.

Key words: Canonical lift of Elliptic curves, Isogeny computation, Point counting.

1. INTRODUCTION

Let E/F, be an elliptic curve over a finite field. Schoof’s method | | gives a polynomial
time algorithm to count the number of point of E. The complexity was later improved by Atkin
and Elkies to give the SEA algorithm | , , ]. The algorithm can be seen as an

incarnation of ¢-adic étale cohomology: if x(t) is the characteristic polynomial of the Frobenius g,
x(t) mod ¢ is computed modulo several primes ¢ by looking at the action of 7, on (a subgroup of)
the ¢-torsion E[¢]. The CRT algorithm allows to reconstruct x(¢) once we have enough precision
(as bounded by the Hasse-Weil bound). One can compute x mod £ in O ((£ + log ¢)¢log q), hence
reconstruct y in O (10g4 q))

In 2000, a second class of algorithms was introduced by Satoh | |, using the Lubin-Serre-
Tate Theorem. Let ¢ = p”, let Z, denotes the ring of Witt vectors of F,, and Q, = Frac(Z,)
the unique unramified extension of Q, of degree n. Then | ] establishes the existence of a
unique (up to isomorphisms) elliptic curve ET over Z, for every ordinary elliptic curves E/F, such
that the modulo p reduction of ET is E and End(E") = End(E) as a ring. The curve ET is called
the canonical lift of E. Then the trace of the Frobenius morphism is deduced using crystalline
cohomology. After improvements by Harley, Satoh’s algorithm can compute the canonical lift to
precision m in quasi-linear time Op(nm). Here the notation Op means that we assume that p
is a constant. We can then recover the inversible eigenvalue of the Frobenius at precision m in
the same time. By Hasse’s bound, it suffices to work at precision m = O(n) to recover the full
eigenvalue, so Satoh’s algorithm gives a point counting algorithm of quasi quadratic complexity

O, (n?).
We are interested in the dependency of p of the algorithm. We will now assume that p > 2
for simplicity For an ordinary elliptic curve E/F,, Satoh’s algorithm and its improvements

[ , ] proceeds in four steps:
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2 ABDOULAYE MAIGA AND DAMIEN ROBERT

(1) Compute the canonical lift ET/Z, at p-adic precision m by solving the equation ®,(j(E™), Z(j(E"))) =
0 via a Newton lift. Here j is the j-invariant, ®, the modular polynomial classifying
p-isogenies, and ¥ the (small) Frobenius on Z,.

(2) Lift the kernel E[p]e; of the Verschiebung to ET via a Newton lifts. The kernel of
the Verschiebung modulo p is defined by the z-coordinates of its points: H,(r) =
I perpos (@ — 2(P)), and its lift H, is the unique étale lift dividing the p-division
polynomial ¥, (ET).

(3) Compute the isogeny ET — ET/ pr using Vélu’s formula, and an isomorphism u between
E'/H and f](ET) Since Vélu’s isogenies are normalised, applying ¥ to this isomorphism
u gives (up to a sign) the action Ao of 7 on the tangent spaces dz/y and ¥(dz/y) of ET
and ET°.

(4) Compute the norm A\ = Ng,_/r, (No). This recovers the inversible eigenvalue of the big
Frobenius 7, at precision m, up to a sign. The correct sign is chosen using Hasse’s
invariant. The trace is then given by ¢t = A + ¢/A, and if m > (n + 5)/2, the value of t at
p-adic precision m is enough to recover ¢ in Z. Then x,(z) = 2% — tz +q.

The modular polynomial ®,(X,Y) is of total degree p + 1 and its logarithm height is h(®,) <
6plogp+18p (see | ]). Thus its total size is of O(p®), and there are quasi-linear algorithms to
compute it [ ]. Step 1 is done via Newton iterations, the dominating step is evaluating ®,, at
precision m in Zg, for a cost of O~(p2m logq) = O(p2mn). Step 2 is also done via Newton iterations,
the dominating step is evaluating the division polynomial ¥, (X), which is of degree (p? —1)/2
at precision m, for a total cost of O(p*mlogq) = O(p*mn). Step 3 is dominated by Vélu’s
formula and costs O(pmlog q) = O(pmn). In Step 4 the norm is done via a resultant, and also
costs O(pmlogq) = O(pmn). Since m = O(n), the final complexity of Satoh’s algorithm is thus
O(p® + p*mlogq) = O(p® + p*n?). By constrast, the SEA algorithm (in particular the version
of | ] which works in all characteristic) has a complexity of O(n*), so Satoh’s algorithm has
better complexity for small p and large n. We note that the complexity of O(p?’) comes from the
computation of ®,(x,y). This polynomial only depends on p, not on the elliptic curve, so this
part may be seen as a precomputation, and the real complexity of Satoh’s algorithm is O(p2n2).
Alternatively one could use the techniques of [ , § 5.3.8] to evaluate @, directly.

In 2002, given an affine equation f(z,y) = 0 of E, Kedlaya proposed in | ] to use the
Monsky-Washnitzer cohomology associated to AT = Q,((z,4))/f(x,y). The difference between
these two p-adic methods is the unicity of the canonical lift in Satoh’s method in contrast to
Kedlaya’s method where the lift is arbitrary. Kedlaya’s approach | ] thus computes a
non-specific lift with linear complexity in p and then reconstructs y with complexity in time
(and space) of O,(n3*¢). Havey in | ] improved the dependency on p of Kedlaya’s algorithm.
More precisely he shows that Kedlaya’s original algorithm can compute the Frobenius to p-
adic precision m with a complexity of O(anm), and Harvey improves the dependency on p to
O(\/ﬁns/Qm +n*mlogp) (at the cost of a worse dependency on m).

It is such natural to ask whether there exists an algorithm that has the Op(nm) quasi-linear
complexity of Satoh’s algorithm with respect to n and the precision m but improves the O(pQ)
dependency on p (which is even O(pS) if we take into account the precomputation of the modular
polynomial when we don’t use the direct evaluation strategy of | ]) to Harvey’s O(y/p).

Isogeny based key exchange protocols rekindled the interest of the second author on computing
canonical lifts to high precision m. (We stress that so far we are not aware of applications
other than point counting, which only require a precision m = O(n).) He proposed in | ,
Chapter 6] a new approach of Satoh’s method which works by only using the modular polynomial
®, to both lift the curve and the isogeny. This allows to dispense with the computation of
the division polynomial ¥,, but does not change the asymptotic because of the evaluation of
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the modular polynomial, so the algorithm is still in O(p?’ + p?nmlogp) (although with better
constants).

He proposed another method bypassing the need for the modular polynomial in | ,
Remark 6.6.2], assuming a point of p-torsion is given on E. More recently, he realized that by
working modulo H), directly allows to define a “formal” point of p-torsion to which to apply
[ , Remark 6.6.2]. This allows to bypass the need to find a point of p-torsion. These two
strategies (working with a rational point of Ee[p] or with its formal point defined by H,,) were
implemented in Pari/GP by the first author, who also carefully tracked the loss of precision. The
implementation showed that the resulting algorithms not only improve the theoretical complexity
but are also practical. This is the subject of the present work.

Indeed, we can keep the Op(nm) complexity of Satoh’s algorithm while improving the depen-
dency on p.

Theorem 1.1. Let E/F, be an ordinary elliptic curve, with j(E) ¢ Fp2. Then one can compute
the canonical lift ET/Zq and the trace of the Frobenius to p-adic precision m in time O(mnp).
_ In particular, for point counting where we need m = O(n), the complezity to compute xr is

O(pn?).

The main idea behind Theorem 1.1, is that when doing a Newton lift to lift the root of a
polynomial F(X), it is not necessary to be given F, one only needs to be able to evaluate it. We
can thus circumvent computing the modular polynomial ®, and the division polynomial ¥, in
Satoh’s algorithm by directly evaluating isogenies (ie solving the equation j(E") = j(E*) where
EY is computed via an isogeny) and the multiplication by [p] map.

Although we do not reach Harvey’s O(\/p?) complexity, in some cases a variant of our method
achieve such a complexity.

Theorem 1.2. Let E/F, be an ordinary elliptic curve with j(E) € Fp2, and assume that we are
given a rational étale point of p-torsion P. Let I(d,m,Z,) be the cost of evaluating at precision m
an isogeny of degree d on an elliptic curve E' over Z, given a generator P (defined over Z,) of
its kernel. Here by evaluating the isogeny, we only mean computing the equations of E'/ < P >
at precision m.

Then one can compute the canonical lift E‘/Zq and the trace of the Frobenius to p-adic
precision m in time O(mn logp+ I(p,m,Z,)).

Remark 1.3. We can also work on the Kummer line F/ + 1, that is given only the z-coordinate
xp of our point P, in which case I(d, m,Z,) should be the cost of evaluating the induced isogeny
E/+1— (E/<P>)/+1.

Using Vélu’s formula, we have I(p,m,Z,) = O(pmlogq) = O(pmn). A recent improvement of
Vélu’s formula | ] improves this complexity to O(\/f)m logq) = O(\/ﬁmn)

In general, the étale points of p-torsion will live in an extension of degree e < p — 1 (which we
can compute using Hasse’s formula), and to find one of them require computing a root of the
division polynomial ¥, modulo p, which can be done in time O(p? log ¢ +plog? q) = O(np? +pn?).
We explain how to improve this complexity to O(plog®¢) in Section 4.2 and get:

Corollary 1.4. Let e be the degree of the extension of F, where the étale points of p-torsion
lives. Then one can compute the canonical lift E/Zq and the trace of the Frobenius to p-adic
precision m in time O(plog? q + Vpmelogq) = O(pn? + vpmen). (If xx is already known the
complezity becomes O(log?(q¢) + Vpmelogq) = O(e*n? + Vpmen).)

In the worst case, e = O(p) so the complexity is O(plog? p + p*/>mlog q) = O(pn? + p3/?>mn)
is not better than Theorem 1.1. In the best cases, when e = O(logp); for instance if the trace t = 1
mod p (which implies e = 1); the complexity is O(plog® q + p'/*>mlogq) = O(pn? + p*/>mn). In
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general, to compute E at high p-adic precision, we improve on the complexity of Theorem 1.1
whenever e = O(,/p).

We organize this paper as follow. In Section 2, we recall the Serre-Tate theorem and Satoh’s
algorithm. We present our new approach to Newton lifts in Section 3. As a first application
we explain how to lift the p-torsion in Section 4, then we give our canonical lift algorithm in
Section 5.

1.1. Notation and Convention. In the following p is prime and ¢ = p"™ with n > 1.

We denote by QQ, the unramified extension of the field of p-adic numbers Q, and by Z, is the
valuation ring of Qq; it is also the ring W (F,) of the Witt vectors over F,. The extension Q4/Q,
has a cyclic Galois group of order n, generated by an element ¥ that reduces to the (small)
Frobenius automorphism o on the residue field F,. The large Frobenius (and its lift) will be
denoted by o, and 3, respectively, and sometime we will denote o by o, to emphasize we work
with the small Frobenius. As a convenience we let 6 = o0~ = g™ 1, S = ¥"~1, the “Verschiebung”
Galois elements.

Explicitly Q, = Q,[X]/M(X) and also Z, = Z,[X]|/M(X) with M is monic irreducible
polynomial of degree n over Z,[X] with irreducible reduction modulo p. The complexity of an
elementary operation require O(m log q) = O(mn) with Kronecker-Schénhage method at precision
m. By p-adic precision m, we mean that we are working modulo p™Z,. Furthermore, fast modular
composition | ] allows to efficiently evaluate ¥ and 3 in O(nm); it also allows to evaluate
& in O(log q) = O(n) rather than the slower O(nlogq) = O(n?) we get iterating the Frobenius
n — 1 times. It is also convenient to take for M the Teichmuller lift of an irreducible polynomial
M(X) of degree n over F,, this allows for a fast computation of ¥ without invoking modular
composition.

We recall the Frobenius o, induces an isogeny 7, : £ —+ E?, P — P?, and o, induces an
endomorphism ;. The Verschiebung # : E — E? is the dual of 7, : E — E (we warn that it
is not given on points by P + P?!). Both the Frobenius and Verschiebung lift uniquely to the
canonical lifts, we denote them by 7 and 7. In this article, ET we always denote the canonical
lift of F, while E will denote a candidate lift (which may or may not be canonical).

2. BACKGROUND

Let E/k be an elliptic curve, and ¥, its polynomial of ¢-torsion (or ¢-division polynomial)

associated with the equation of the curve. A point P = (x,y) on E is a point of {-torsion if and
only if its coordinates constitute a solution of W,.
An isogeny ¢ is a non trivial morphism between elliptic curves which is also a group morphism.
The multiplication morphism is identified with Z then Z C End(E). Furthermore when the
base field k is F, we have: Z[r,] C End(FE) where 7, is the Frobenius endomorphism. In the
case where F is ordinary: x(X) = X2 —tX + ¢ is the characteristic polynomial of 7, where ¢
is the trace of 7, and verifies the relation [t|< 2,/q called Hasse’s bound. Therefore, if we set
Dy, =t*—4q <0 then : #E(k) = ¢+ 1 —t and Z[ry] C End(FE) C Ok where K = Q[,/Dr,].

2.1. Vélu’s Algorithm. According to the inputs, the algorithms for calculating isogenies can be
classified into two large groups. The first ones initiated by Vélu | | takes an elliptic curve E
and a subgroup K of E then outputs an explicit form of isogeny ¢ : E — E/K and an equation
of E/K. Then for every P € E:

Top) =Tp + Z (tpyrg —zq) and yep)y =yp + Z (yp+q@ — YQ) -
QeK\{0O} QeK\{O}
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Considering the improvements made by D. Kohel | ] we arrive at the same results when
K = ker ¢ is represented by a polynomial h.

Example 2.1. When char(k) > 3 and an elliptic curve E over k is given by E : y? = f(z) =
%+ a4 + ag -

Let h be the polynomial defines the kernel K of a separable normalised isogeny ¢ of degree /¢
with domain E Set:

Q(z) = ged (f(x), h(x))
h(z)?/Q(x)

2 d T oyt —dyat

D(z)

Then for every point P(z,y) in E we have:
¢(z,y) = (a(z),ya(z))

where a(z) = lx —dyx — (32% + a4)_l;((x$)) —2f(x). (g’((;:))) .

And E/K is given by the equation:

y* =23 + (ag — 5v)x + (ag — Tw)

where v = aq(f — 1) +3(d? — 2dy) and w = 3asd; + 2a6(¢ — 1) + 5(ds — 3dydy + 3d3).
On the other hand, the modular polynomial ®, encodes directly the j-invariants of isgogeneous

elliptic curves.

2.2. Lubin Serre Tate theory.
Theorem 2.2. (Lubin-Serre-Tate) Consider E an ordinary elliptic curve over Fy, then there
exist a unique elliptic curve up to isomorphism ET over Zq such that.

e E is the reduction of ET modulo p ,
e End(E") = End(E),

E" is called the canonical lift of E, and is also uniquely characterised by the fact that the Frobenius
mq lift to ET, or that m, lift to an isogeny ET — E¥ ie by the equation

®,(j(ET),j(ET)¥)) =0.

Bt —— BT

.y

E —— E°

We refer to | ] for the statements (without proofs) and [ ] for proofs.

Remark 2.3. If ET/Z, is an elliptic curve, then it is the Néron model of its generic fiber E; .

Furthermore, by the property of Néron models, ET(Z,) = E}(Q,). Hence it is harmless to
consider the curve over Q.
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2.3. Modular Equations. We present Satoh’s (as improved by Harley) method to compute the
canonical lift E using the modular relation ®,(j(E"), (ET)*¥)) = 0.
We know that the modular polynomial satisfy the Kronecker’s relation:

2,(X,Y)=(XP-Y)(X—-YP) modp

Let j ¢ )2, the following statement is an immediate consequence of Kronecker’s relation:

od, o
£(,j°)= j»—j*=0 modp

5;%/( g —j#0 modp
Thus we deduce that the Frobenius ¢ has multiplicity 1 and the Verschiebung & has multiplicity
p. In fact we have over Q, two points (P, Q) on ET[p] that reduce to P and 0 respectively. The
p kernels (P + kQ) with 0 < k < p reduce to P (ie the kernel of the Vershiebung) and the last
(Q) reduces to (O) (ie the kernel of the Frobenius). So we have p-isogenies on ET which reduces
to the Verschiebung # modulo p. A more detailed analysis show that they reduce to different
isogenies modulo p?, hence:

2(5,5%)

Lemma 2.4. Let E/Z, be any lift of E/F, where j(E) ¢ F,2. Then ai( (E),j(E)%) is of

0X
valuation 1.
Proof. By | , Proposition 2], since j(E) # 0,1728, ®,(j(E),X) = (X — j(E)*)(X —
§(E)*)G(X) where G(X +j(E)*) is an Eisenstein polynomial. Since j(E) ¢ F2, j(E)* # j(E)*
and the result follows. O

_ This provides an algorithm to compute the lifted j-invariants of the p-isogenous curves FE and
E>.

We want to solve in Z, the equation ® (3 32) = 0 knowing j modulo p. Suppose that we can
compute e{'ﬁmently the Frobemus ¥ of Qq and j € Z, is an approximation of j at precision k i.e
j = j + pPe for some error e € Z, that we want to ﬁnd Using the modular equation and Taylor
expansion of ®, we have:

0=2,(j +pfe,j” + pFe”)

_ ai kz%-.z 2k
0=2=o,(j,7 )+peaX(JJ ) +pe 8Y(J,J ) +p™(..)

Dividing by p*, we get

0%,
u+e—L(5,57) +e 5 2, J

X ¥)=0 mod p".

0P oo,
If j ¢ Fp2, the Kronecker inequality implies that a—y?(j,jz) =0 mod p and a—Y(j JE) #0
mod p. Then to have the error e we must solve over Z, the following equation:

e+ Ae+ B = 0.

with A = 0 mod p and B # 0 mod p called “Artin-Schreier equation”in [ ]. Set
e=x+pFa with o € Zg, the error a can be determine using algorithm 2.3 (a general case of
Harley’s algorithm).
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Input a,b € Z,; and the precision m.
Output e such that e +ae+b=0 mod p" with a =0 mod p
If N =1 Return e the unique root of ¢ +b =0 mod p.
x < ArtinSchreier(a, b, N/2).
Lift arbitrarily « at precision p™.
V < (2% + ax + b)/pN/2.
e «+ ArtinSchreier(a, b’, N/2).
Return z + p™V/?e.

[\ 2 N 2 2

Algorithm 2.1 Artin-Schreier

2.4. Lift of the Weierstrass Equation. In odd characteristic the short Weierstrass equations
have two parameters that we denote A and B. Using the relation between the j-invariant and
those parameters, given the j-invariant j(E), one can lift the equation of the elliptic curves defined
over Fy to Z,. Take an arbitrary lift of one parameter, then the equation between the lifted
j-invariant and the second parameter provide a simple Newton algorithm to lift it. Furthermore
in characteristic > 5 Skjernaa | ] has suggested to simply take A = 3\ and B = 2\ with

_ &)

1728 — j(E)

This method is faster than the first. It needs only one inversion in Z, form the lifted j-invariant.

2.5. The division polynomial. If E/k is an elliptic curve with a short Weierstrass equation,

and P = (z,y), then £.P = (i%((z)), Z%Z))) where & and w, are expressible in terms of the
o2, Ve—1,%e,Vet1,Yet2, and the 1, satisfy a recurrence relation expression 9, and tgpy1 in
term of he ¥y_o,%p_1,%e,Yer1,%e12. In practice, the recurrence formula simply come from
computing £.P formally via the double and add algorithm. In particular, when ¢ is odd, the roots
of 1(x) are exactly the elements z(P) for P € E[/].

In this article we will use a slightly different version of the division polynomial: we let
Uy(x) = e(x) when ¢ is odd, and Wy(x) = ¢¢(z)/2y when ¢ is even. This reformulation is such
that W, is always in k[x] whether £ is even or odd. It is easy to adapt the recurrence formula to
compute the ¥, directly.

In the following, we will need to compute ¥,(x) and W} (x) for an elliptic curve E/Z, (at
precision m) modulo a polynomial H of degree d. In practice d will be equal to 1 when we want
to evaluate ¥, on a point zp (so H = (z — zp)), or d will be equal to (p — 1)/2 when we want to
evaluate ¥, modulo ﬁp a candidate lift of H,.

We remark that we can evaluate ¥, modulo H simply by evaluating the recurrence relation
modulo H. Also from the recurrence relation on Wy, we get a recurrence relation on ¥y, so we
can also evaluate it modulo H. We obtain

Lemma 2.5. Given an elliptic curve E/Zq and a monic polynomial H(x) of degree d, we can
evaluate V5 and \IJ’EP modulo H at precision m in time O(dmlogqlogp) = O(dmn).

2.6. Lifting the Verschiebung. Since the Frobenius 7, is inseparable, we lift the Verschiebung
Tp over Z, by lifting its kernel.
We set E,_; = E° and m; is the isogeny between E;;q and E; defined by (z,y) — (27, y7).

Then the Verschiebung 7, decomposes as follow:

Tg = Tpn—-1Tp—2" " TQ-
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ker(7) is a subgroup of order p of E[p] defined by the monic separable factor H, of the p-division
W, given by :

Hy@)= [ (@—aP)

Peker #\{O}

Let H, be the lift of H,, over Z,, then H, is a monic facteur of degree (p — 1)/2 of ¥, on E and
H,(z) = H,(z) mod p is square free. Furthermore ¥, (x) = H,(x)”? mod p i.e modulo p, the
factors H,(x) and ¥,(z)/Hp(z) are not coprime modulo p.
T.Satoh introduced in | , § 2] a variant of Hensel’s lift that compute H,, over Z,.

Let p be an odd prime, and suppose that we have a polynomial G in Z,[X] and h € F [X] a
monic factor of the reduction of G modulo p. We assume that h(z) is separable and relatively
prime with p~*G’(z) where ¢t = ord,(G’'(z)). Let u € N be such that G(x) = ¢(z)h(z) mod p“**.
Then the polynomial :

H(z) = h(z) + ( Gy @) mod h(x))

is a lift of h(x) at precision p?* and G(z) = Q(z)H(x) mod p” where v = 2u + min(t,u) (see
[ ]). This property provides an algorithm constructing a lift h with O((degh + deg G)?)
arithmetic operations over Z, at precision O(n).

Satoh then applies this construction to lift H,, by [ , Lemma 3.7], in this case ¢t = 1.

An alternative method when we are provided an étale point P of p-torsion is to lift the equation
(p'+1).P =p'.P where p=2p' + 1 as in | , Proposition A.7.], or to work with only the
z-coordinate to simply use the standard Newton method to lift ¥, (z,) = 0. This is faster than
the euclidean extended GCD used in Satoh’s formula above, we will revisit this in Section 4.

2.7. Application to point counting. When we have ET at sufficient precision m (given by
x

Hasse-Weil bounds), one can evaluate the action of the Verschiebung on the differential form —
Y

as detailed by Satoh’s diagram.

E™ =E"/K

Here the isogeny v is computed by Vélu’s algorithm from the lift flp of the kernel of the
Verschiebung.

Since the isogeny v is normalized, the action of the isogeny # on the differential form of ET is
given by the isomorphism +u on ET”; let us denote it by A;. Concretely, we have # = fu o v,
and if u(z,y) = (v?z,v?y), \1 = fu.

On the other hand, when we consider the ¢*"*-power Frobenius morphism decomposition:

E' BT .. gt

The action on the differential forms along the cycle will be given by the successive conjugates
of A1. Finally, by composition, the action of the dual endomorphism 7:1'q of T, on the main
differential form of E is given by the product of all these conjugates, i.e. by the norm of \;.
On the other hand the norm of Ng_/q,(A1) is simply given as the resultant of A\; modulo M (X)
in @,[X]. This method due to Harley can be asymptotically done in quasi-linear time in the
precision m using a fast GCD algorithm | ]. A slower alternative is to use the formula
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Input Coefficients (A4, A6) of E an elliptic curve of F, with ¢ =p”, n e N.
Output The Trace of Frobenius endomorphism of E.
> Using algorithm 5.1, compute ET at precision m = (n +5)/2 ;
- Compute the action A\; of an isomorphism u : BT — o ;
> Compute \2 = Ng, /0, (A%) ;
> Compute A the correct square root from A\* and ¢ = A+ ¢/A mod ¢ such that [t| < 2,/q ;
> Return x(X)=X?—-t-X +q.

Algorithm 2.2 Computing the characteristic polynomial of ordinary elliptic curve E

Ng, /0, (c) = exp (TrQq/Qp (logc)) using a specific implementation to compute it in time O(m3/n)
(available in | D

Since we only have A1 up to a sign, taking its norm A and then computing the trace t = A+ ¢/
only give ¢t up to a sign. One can use Hasse’s invariant to get the correct sign, see Section 4.2.
Let x(X) = X2 —t- X + ¢ be characteristic polynomial of the Frobenius of E, Hasse-Weil bound
states |t| < 2,/g. On the other hand we have #E(F,) = x(1). Then we deduce the following
result:

Theorem 2.6. Let E/F, be an ordinary elliptic curve. Given the canonical lift ET/Z, and
the lift H; of the kernel of the Verschiebung to precision m, one can compute the trace of the
Frobenius to p-adic precision m in time O(mnp).

In particular, for point counting where we need m = O(n), the complexity to compute xr once
we have ET and H] to precision m is O(pn?).

In the rest of this paper, we will explain how we can compute ET and H; to precision m in
time O(mnp) rather than in time O(mnp?). By Theorem 2.6, this will show that we have a point
counting algorithm in time O(n?p).

We also remark that we can bypass the computation of ETE (since S is typically more expensive
to compute than X) by applying the above method to ET®, the canonical lift of E7 instead.

3. REVISITING NEWTON’S METHOD

Let F(X) be a multivariate polynomial system defined over Z,, and suppose that we have
a solution x modulo p (in other words, at precision 1) of the equation F(x) = 0 (modulo p).
Assume furthermore that dF'(z) is inversible modulo p. Then there is a unique lift  of « in Z,
such that F'(Z) = 0 and Z =  modulo p. Newton’s method show that & can be approximated by
the sequence

(1) To=x, Top =k — dF(z)  F(2).

A standard computation shows that 3, approximates & to precision m = 2* and that F(zy) = 0
modulo p™.

Our trivial, but key remark which is at the core of this article, is that to use Newton’s method
we do not need to know F', we only need to be able to evaluate F' at some precision m. Indeed
from Equation (1) it is clear that we only need to be able to evaluate F' and dF. But we can
recover dF' from evaluations of F' at suitable points.

We illustrate this when F(X) is univariate. Then modulo p*™, F(z+p™y) = F(x)+ F'(x)p™y,
hence F'(z) = (F(x + p™) — F(x))/p™ modulo p™. We can thus recover F’(z) modulo p™ from
two evaluations of F' at precision 2m. The Newton process can thus be done as follow: given
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the solution z,, at precision m, we evaluate F(x,,) and F(z,, + p™) at precision 2m. Then
_ F(zm)
T2m = Em = Flan ™) —F @) /o7
More generally, when F' has N-variable, we can recover the Jacobian dF'(z) at precision m in
N + 1 evaluations of F' at precision 2m.

We have proved:

Lemma 3.1. Given a multivariate polynomial system F(X) in N variables and N equations,
and a solution o modulo p of the equation F(x) = 0 modulo p such that dF(xg) is inversible
modulo p. Let C(m,Z,) be the cost of evaluating F' at a point x at precision m and M(m,Zy) be
the cost of doing the standard arithmetic operations in Zq at precision m, and assume that both
C(m) and M(m) are superlinear.

Then one can compute the unique lift & of xo such that F(&) = 0 to precision m in time
O(N -C(2m,Zy) + N - M(2m,Z,)).

Remark 3.2. We note that if we have an approximation x(y of Z to precision m, then for our
method (and the convergence), we only need that F' is analytic at xy on the ball of center z¢ and
radius |[p™||.

More generally, Newton’s algorithm will converge whenever we have a zo modulo p°*! such
that f(x¢) = 0 modulo p?**! and p®dF(x) is inversible. Iterating the Newton process then gives
& modulo p*2" such that f(Z) = 0 modulo p2et?”,

When this is not the case, we need to push the Taylor expansion of F' further:

F(x+ epk) = pde(a:). te; + p*re; - d*F(z,z) - e; + O(p‘%).

Let J(z) = dF(x) be the Jacobian, and H(x) = d?F(z,z) be the Hessian matrix, we explain
how to evaluate them to precision m. We assume here for simplicity that N = 2 and p > 2.
Set e = (1,0), e2 = (0,1) and e5 = (1,1), set 1 =z + e1p™, T3 = & + exp™, x5 = & — e1p™,
Ty =T — eap™ and x5 = x + e5p™, and evaluate F(x;) modulo p3™.
We have modulo p?™:
F(z1) — F(x3)
2p™

F(xg) = F(Py)]

Ix(z) = 2pm

and Jy(z) =

and modulo p™:

Flxy) = Jx (z)p™
p2m

F(x) — Jy (x)p™
p2m

Hx(x): s Hy(l‘):

F(xs) — F(x) — Jx(2)p™ — Jy (2)p™ — Hx (x)p”™ — Hy (x)p*™
p2m .

ny(l‘) =

More generally, in N variables we may compute d*F(x) at precision m by O(k + N**1)
evaluations of F' at precision km when p is large enough.

4. LIFTING THE ETALE POINTS OF p-TORSION

Let E/Z, be a (non necessarily canonic here) lift of an ordinary elliptic curve E/F,.

In this section, we explain how to compute the polynomial H, which parametrizes E[pls; (this
is also the kernel of the Verschiebung) and how to lift it to F using Section 3. We also explain
how to find an étale point P € E[p] and how to lift it.

We first note that when F is an arbitrary lift of E, there is an obstruction to lifting an étale
point of p-torsion P: in general E [p] may not have points living in an unramified extension of Z,,
in particular even if P is rational, a lift of P to E[p|(Z,) will not exist. This obstruction vanish if
and only if j(E) = j(ET) mod p*:
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Proposition 4.1. Let E/Z, be an arbitrary lift of E/F,, and let ET)Z, be the canonical lift of
E. Let Z* be the mazimal unramified extension of Z,. The following are equivalent:

(1) Elpl(Zg") # {05}

(2) Elpl(Zg") is a lift of Eplet;
(8) Z,(E[p]) is tamely ramified;
(4) j(E) = j(E") mod p?.

If these conditions are satisfied, and [Fye is the smallest extension of Fy, where the points of
E[plet are defined, then E[p] = E°[p| @ E[p|(Zy-) where E° is the relative connected component of
E (ie the kernel of the reduction map E — E), and the points of E°[p] live in the tamely ramified
extension of Zqe given by adjoining a p-root of unity C,. Furthermore, if P € E[p](Z};r), then
UL (P) is of valuation 1.

Proof. We have a connected étale exact sequence | ]:
0—+E%— E— E*—0.

This exact sequence commutes with specialisation, so since Spec Z, is connected, EY is exactly the
kernel of the projection map E — E. In particular, since E°* [p] is étale and Z, is complete hence
Henselian, it is the unique étale lift of E[p]e;, and E°[p] is a lift of E[p]ie which is of multiplicative
type (since it is the Cartier dual of E[plct), hence its points live in a ramified extension of Z,. So
if P ¢ E[p) (Zy*) # 0, the subgroup generated by P induces a a splitting E[p] = E°[p] ® E°*[p],
in particular P ¢ E°[p]. This proves the equivalence of (1) and (2). The rest of the equivalences

are from [ , Theorem 3.1]. Furthermore we have E[p](Z}]“) = E°t [p(Zy") = Eet [pl(Z4e), and
since E°[p] is the Cartier dual of E°t its points live in Q,((p).
Finally, ¥7(P) = 1 by Satoh’s lemma | , Lemma 3.7]. O

4.1. Computing the kernel of the Verschiebung. To apply Section 2.6, we first need to
compute the kernel H, of the Verschiebung (or a rational point in this kernel).

We have W), = HJ, so an easy method is to compute ¥,, using the recursive formula for division
polynomials to get H,. But ¥, is of degree p?, so this will cost O(p?n) operations.

Let 7 be the Verschiebung. By definition [p] = n## = @m, so we have #(n(P)) = [p].P. In
particular we can efficiently evaluate the Verschiebung on the point 7(P). We can thus recover
the Verschiebung by interpolation, from which we get the kernel.

More precisely we only need to work with x-coordinates. We can then sample p-random
points z, € E°(F,)/ £ 1, and compute the values p.z, in x-coordinates only. Let R(x) be the
rational fraction of degree O(p) interpolating the points (7(zp), p.zp). Then the kernel Hy, of the
Verschiebung is simply the denominator of R.

In summary:

Lemma 4.2. Let E/F, be an ordinary elliptic curve. The kernel Hy(x) of the (small) Ver-
schiebung can be computed in time O(plogq) = O(pn).

4.2. Finding an étale point of torsion. If we furthermore need the z-coordinate of an étale
point P of p-torsion, we need to find a root of H,. First we need to compute the degree e of
the extension where the étale points of p-torsion live. Assume that we know A\, the inversible
eigenvalue of the Frobenius modulo p. Then o(P) = A.P, so e is the order of A.

There are two methods to find A to precision 1. The first one is to use Hasse’s formula. Using
the recurrence formula to compute the Hasse invariant A, (see [ , V.4.1]), this costs O(n?+np)
operations: O(np) to compute A,, then O(log® ¢) = O(n?) to compute A,.
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The other approach evaluates the Verschiebung from its kernel H), using Vélu’s formula, and
look at the action on the differentials (ie we apply Satoh’s algorithm at precision m = 1, so
without lifting), as in Section 2.7. This costs O(np) operations, but this only recovers £\.

Indeed, we compute an isomorphism u : E/H, ~ E°, (z,y) — (v?z,u3y), so if ¢ : E — E/H,
is given by Vélu’s formula, the Verschiebung is equal to +u o ¢. To know the correct sign, we
need to stop working in z-coordinate only and take a random point P € E(F,) and check whether
[p]6(P) = uwo ¢(P) or [p|6(P) = —uo ¢(P). Then replacing u by —u if necessary, we have
that A = Nf_/r, (u) since ¢ is normalised. To take P we need to compute a square root, so this
costs O(log® ¢) = O(n?), and the total cost to recover e exactly (rather than potentially 2e) is
O~(n2 + np) operations, like the computation of the Hasse invariant.

The factorisation of H), using an equal degree factorisation algorithm then costs O(p log? q) =
O~(pn2). We note that without the knowledge of e, we would need to use a distinct degree
factorisation algorithm insted, which would cost O(p'®n + pn?) by | ]. In summary:

Lemma 4.3. Let E/F, be an ordinary elliptic curve. The kernel Hy(x) of the (small) Ver-
schiebung can be computed and factorized in time O(pn?).

There is a faster method when we already know N = #E(F,). Compute e as above, and
N, = #E(F,). Take a random point @ € E(F4c) and multiply by the cofactor: P = N./p- Q. If
P # 0y we have found a point of p-torsion. A random point ) can be taken by taking a random
z¢g and trying to find a square root of x?(’;) + axg +b. We can also work in z-coordinates only,

this gains a square root. In any case, the total cost of this method is O(log? ¢°) = O(e?n?).

4.3. Lifting a point of p-torsion. We now assume that we are given a lift E that satisfy the
equivalent conditions of Proposition 4.1.
Given a point P of p-torsion on E, to lift it to E we apply Lemma 3.1 to the equation p.P = 0.
To stay in affine coordinates, we can rewrite this equation as (p’ 4+ 1).P = —p/.P for p = 2p’ + 1.
Evaluating this equation by a double and add algorithm takes O(logp) operations in Z, (at a
given precision m), hence by Lemma 3.1 we can compute P to precision m in time O(nm)
Remark that the p-torsion P points is defined equivalently by systems of the form:

{f(%y) 28 or {f(937y)=0

Up() g9(x,y) =0
where g(z,y) is one of the equation [p’ + 1]P = —[p/] P such that p = 2p’ + 1.
Since p # 2, we have ?(P) non null modulo p. The Jacobian of the system is given by:
Y
of of
() 0
Then using Satoh’s lemma | , Lemma 3.7], we conclude that the valuation the determinant

of the Jacobian of those system at P is 1:

it has the form (* *> at P
p 0

Thus in the Newton’s lifting steps, we lost 1 precision on the coordinates of P. Also to boostrap
at precision 1, it seems like we would need to compute the Hessian.

Fortunately, the situation simplifies if we only try to lift the z-coordinate of P, the system
then becomes ¥,(z) = 0. We never compute ¥, but evaluate it on « directly via the double
and add formula for z-coordinates (in other words via the standard recurrence formula for the
division polynomials) by Lemma 2.5. However, our lift is such that W} (z5) is of valuation 1 and
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U, (zp) is only of valuation 2 (by Proposition 4.1), not 3 as needed to bootstrap the Newton
method, see Remark 3.2. But since ¥”,(z5) = 0 modulo p (because ¥, = HY, the first iteration
of the Newton method does still allow to go to precision 3, as remarked in | , Aside 6.2.2].
We can then apply Remark 3.2: we compute x5 modulo p* such that U, (zp) = 0 modulo phtlL.
We can then lift yp by solving the square root via Newton’s algorithm.

In summary:

Lemma 4.4. Let E/Zq be a lift of E that satisfy the conditions of Proposition 4.1, and let P be
an étale point of p-torsion on E which lives in Fge. Then P can be lifted to a point of p-torsion
P € E[p|(Z4e) to precision m in time O(mlogqlogp) = O(mn).

4.4. Lifting all the étale p-Torsion. An alternative is to lift directly the kernel of the Ver-
schiebung H,. Suppose that we are given ﬁp at precision k, and we want to compute it at
precision 2k.

First we note that by employing the same strategy as in Section 4.3 but working over the
algebra A, = F,[u]/H,(u) rather than over Fc, we can find a lift P = u+p.a; (u) +p?.az(u) +- - -
of the formal point of p-torsion P : = u. Notably, P encodes simultaneously the lifts of all
points of p-torsion: if Py is the point of p-torsion with z-coordinate given by the root A of H,, its
lift Py is given by A + p.ui(A) + p?aug(N) + - - -

Then H,(z) is given by the resultant Res, (z — u, P). But it is not clear if this resultant can
be computed in quasi-linear time (the best generic algorithm in | ] is not quasi-linear, but in
our situation the roots of H, are deformations of the roots of H,, so there may be more efficient
algorithms.)

So rather than lifting the formal point P : = u over A,, we simply lift ﬁp directly. We give
two methods.

The first is to use Section 3 applied to the equation ¥, mod ﬁp =0 mod p?* (where 2k is
our target precision).

Indeed by Lemma 2.5, ¥,, can be evaluated modulo our candidate polynomial H;j via the
recurrence formula in quasi-linear time (so we never need to compute it fully, only modulo a
polynomial of degree p).

The Newton formula is as follow: take an arbitrary lift f{;, let @ = ¥, mod fl; and b=V,
mod (ﬁ; + p). Then the derivative of our Newton process is given by ¢ = (b — a)/p*, and we
solve the equation a + ¢p*@Q = 0 mod (f];,pzk) (since the equation is valid at precision k, this
equation does not depend on the choice of H; ). The correct lift is then ﬁp = E[; +pkQ.

The second one is to use the strategy of Section 2.6. Given pr at precision k, take an arbitrary
lift I:II’,k to precision 2k + 1, then we have

I . v, H*, -
H,=H,+e with e:T mod H,.
p
We can use Lemma 2.5 to compute e in quasi-linear time.
In summary both methods give:

Proposition 4.5. Given an ordinary elliptic curve E/F,, and a lift (not necessarily canonical)
E at precision m that satisfy the conditions of Proposition 4.1, the kernel H,, of the Verschiebung
can be lifted to precision m in quasi-linear time O(mplogq) = O(pmn).

Remark 4.6. As for Section 4.3, when E is given at precision m, f{p is only determined to
precision m — 1.

It is easy to see that we can extend the methods of this section to lift to E a subgroup G
of degree d of E[(], when p { £. (In this case there is no restriction on E since E[(] is étale.)
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This subgroup is defined by a polynomial Hg(z) (say when £ is odd) of degree (d —1)/2. The
standard method would be to lift Hg(X) as a factor of x, 5(X), which would cost O(f*mlog q)
at precision m. Ouerethod only computes y, modulo (potential) lifts of H¢, hence only cost

O(dlog tmlogq) = O(dlog¢mn) (where the log¢ comes from the recurrence formula for ¥, may
not be absorbed in the O notation here).

5. COMPUTING THE CANONICAL LIFT WITHOUT THE USE MODULAR POLYNOMIALS
In this section we will focus on the case where p is odd for simplicity.

Lemma 5.1. Let E an ordinary elliptic curve over F,, then ET is the unique elliptic curve up to
isomorphism over Zq such that.

o [ is the reduction of ET modulo p ,
o Let K C ET(QU™) be such that K reduces to E[ple; modulo p and v : ET — EV/K. Then

J(EM™) = j(EN.

Proof. Immediate by Section 2 and Theorem 2.2, d

We can then apply Lemma 3.1 to the equation of Lemma 5.1 to compute the j-invariant JT of
the canonical lift. We first note that Proposition 4.1 gives a convenient criteria to compute the
canonical lift ET to precision 2.

Lemma 5.2. Let E/F, be an O(dinary elliptic curve, P a point of p-torsion on E, and H,, the
kernel of the Verschiebung. Let E/Z, be a lift of E. Then j(E) = j(E") mod p? if and only if
Vg, (P) =0 modulo p?, if and only if V5, =0 modulo (p?, Hp).

Proof. We first note that the value of ¥ E,p(P) does does not depend on the choice of lift P of P
to precision 2 since W,(P) =0 mod p. The same hold for ¥z  modulo H,.
By Section 4, is \I/EP(P) = 0 modulo p? then Newton’s method lifts P to a point of p-torsion

on F, alternatively the existence of a point of p-torsion on E is given by [ , Theorem 3.1].
The lemma is then a direct application of Proposition 4.1. O

So E mod p? correspond to the~unique elliptic curve (up to isomorphism) E mod p? such
that U5 (P) =0 Such we look for £ : y? = 2%+ ax + b mod p? such that Vg ,(P)=0. Taking

a an arbitrary lift of a, we look for b = by + pby, and we solve for by by using the methods of
Section 3. If we have H,, instead, we do the same computation using the equation ¥z % H, =0
mod p?.

Assume that we have J at p-adic precision k > 2, we want to find it at precision 2k. We
assume here that we are given H,,, we explain how to adjust the algorithm when we are given a
point of p-torsion P instead afterwards.

We let F(X) be the following process (at precision 2k): given z such that = j(£) modulo p,

we construct the elliptic curve £ with j-invariant x, we let H,, be the lift of H), to £, and £¥ the

isogenous variety £/H,. Then z = j(£) is the lift we look for whenever F(z) = z*>.

We can evaluate F(X) using Vélu’s formula and Section 4, hence we can also evaluate F’(X)
by Section 3.

Lemma 5.3. Let J satisfy F'(J) = J* at precision k > 2, and take an arbitrary lift at precision 2k.
Let A= F(J) and B = F'(J). Then F(J + ep*) = A+ Bp*e, where B is of valuation —1.

Proof. By definition of F, if J' = J + p”e, we have ®,(J’, F(J')) = 0 modulo p?*. Write F(J') =
F(J) + pte, then ®,(J, F(J)) + 0®,/0.(J, F(J))pke + 0®,/0,(J, F(J))pke’ = 0 modulo p**,



Towards computing canonical lifts of ordinary elliptic curves in medium characteristic 15

Input E an elliptic curve of F; with ¢ = p”, n € N.

Output The canonical lift of E at precision m.
- Compute H, over [F, using Section 4.1 ;

Compute ET at precision 2 using the equation \IJ; mod H, = 0 at precision 2 ;
Compute H! mod p**!.
k=1
while k& < [(m —1)/2] ;

a. Compute at precision 2(k + 1) two lifts of the curve ET mod p*+! ;

b. Compute H, mod p?**! on these two curves using Section 4.4.

>
>
>
>

c. Solve the equation j(E") = j(E)® to recover the curve ET mod p?+1 ;

d. k= 2k;
Return ET at precision m .

2

Algorithm 5.1 Computing the canonical lift by lifting the étale p-torsion

hence B = 09,/0,(J, F(J))/0®,/0,(J, F(J)) is of valuation —1 by by Kronecker’s formula (see
Section 2.3 and Lemma 2.4). O

We look for a lift of the form J + pFe, and we want:
F(J+pe) = A+ Beeph = J5 + 5 pF = A% 4 BEpke®,

Since B is of valuation —1, evaluating F(X) only make sense modulo p?*~!. Concretely this stems
from the fact that given E at precision 2k, we can only compute ﬁp at precision 2k — 1, so the
corresponding isogeny at precision 2k — 1. So we solve F(J 4 pFe) = A+ (Bp)pF~te = J* 4 e¥p”
mod p?*—1.

By applying the Frobenius Y, we get:

A 4+ BE P pF = J 4 ep”
So dividing by (pB)p*~! (recall that pB is inversible), we obtain an equation of the form:
e +ae+b=0 mod p.

where a = 0 modulo p. We then solve this equation using algorithm Section 2.3.
This proves Theorem 1.1. The resulting algorithm is given in (Algorithm 5).

Computing the canonical lift from lifting a point of p-torsion. Instead of lifting H),
to compute the isogeny, we could also lift a point of p-torsion P directly and use an isogeny
algorithm that takes a point of the kernel as input to compute the isogenous curve £¥. This
second strategy gives the complexity stated by Theorem 1.2, the algorithms are summarized in
algorithms 5.2 and 5.3.

To illustrate the flexibility of Section 3, rather than working with the j-invariant, we also
illustrate a variant which works directly with the coefficients of E.

Suppose at precision k we have E : y*> = 2° + Az + B and P(z,y,) € Elp] — {O}.

Let (e, r) be the couple of error such that: xg —xp = e.pF and Yp —Yp = r.p*, then we can
obtain a lift of the coefficients A and B by taking A and B + 6.p*. These three errors e, r and 6
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Input Coefficients (a4, ag), p-torsion P and integer m the precision.
Output Coefficients (aj17 ag) at precision m.
> k=1,
> Use Initialization Phase (Lemma 5.2) to compute J at precision 2;
> While 2<k<(m+1)/2);
a. Use algorithm 5.3 to compute J' at precision 2k — 1;
b. Compute the lift (a], ag) of coefficients at 2k — 1 using JT and the method Section 2.4 ;

c. k=2k—-1,;
> Return (a),al) .

Algorithm 5.2 Lifting the coefficients (a4, ag) of an ordinary elliptic curve E.

constitute the unique root of system given by:

1
Then using the first equation we get: r = %00 [(z% + Azp+ B —y3)/p" + (3.c.ad + Ae+0)].
yp

And using the second equation, one can extract p.e from U, (z, + e.p*, A, B+ 6.pF) = 0 (since
from Satoh’s lemma we have W/ (z, + e.p*) has valuation 1).

On other hand, let A, and B, be the coefficients of the p-isogenous curve given by the Vélu’s
formula from the input (A4, B+ 6.p*, P, ) at the precision 2k where P.,. = (vp +e.p*, yp +7.p").
Since the curves £ and E* must be isomorphic, the equality between the corresponding j-
invariants gives the third equation:

A3 (B2 — (A®)3 B2 =0
After replacing in this equation r and p.e by theirs values, we obtain at precision 2k an equation
of the form:
0% +a.0 +b=0.

that can be solved using algorithm 2.3 to obtain 8, e and r. This variant is summarized in 7?7 5.4.
We note that the advantage of using all constraints at the same time, is that it automatically
solve the initialisation problem (see Lemma 5.2).

Example 5.4. Let E be an ordinary elliptic curve over r5[7)/m (1) with m(T) = 71043764375 +72 42744
given by the equation y2 = 23 + a4 + a¢ Where :

ay =37° 4477 +37% + 37 + T2 + 2T + 2 and ag =27° + T7 +27% + 27° + 47? + 37 + 3;
its j-inariant is
jo =277 + T8 + T° 4473 + T2 4 2T + 2;
and Py = (z0,v0) 1S its nonzero 5-torsion where:
20 =2T% +T7 +37% + T3 4+ 272 4 2T +3 and yo =47° + T8 + 77 +27° + 37* + 73 + T

The Teichmuller polynomial M of M at precision 13 is

N =710 + 7591705407° + 11870001357 + 43592786077 + 1154383168T° + 1177330303T° +
5123012457 + 661739075T° + 46449971T2 + 1140095647T + 1220703124
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Input Coefficients (al, ag) and p-torsion P at precision k.
Output J' = J + e.p* at precision 2k — 1.
> Choose nonzero r1 and 72 ;
> Set A6, = ag +rl.pF and A6, = ag +r2.pF ;
- Compute the Lift of P.; and P, in both cases (al, A6,1) (al, A6,2) ;
> Compute the j-invariants Jv,; and Jv,o of the curves (a;[, A6,1)" and (al, AG,2)" at precision
2k
P
Set J1 :Jinvariant(al, AG6,1) and Jo :Jinvariant(a;[, A6,9)

Then Ry = J,q — J and Ry = J,9 — J at precision p?* ;
JVrl = A+ B.Rl.pkil
Jv,o = A+ B.Rg.pkil

_ A —J
—)G,:_p(BE) ! and b:T
p

> e =Artin-Schreier(a, b, k) ;
> return( J + e.p*~1 ) at precision p¥;

N

1

= Solve the system of equations { at precision p?*~1 ;

) (BE)_1 at precision p* ;

Algorithm 5.3 Lifting the j-invariant by computing the Verschiebung via a point of p-torsion

Input The equation y*> = x3 + a4.x + ag of a curve E over Fpn, a p-torsion point P, a precision m.
Output The equation y? = 3 + al.x + ag of the curve ET at precision m.
> k=1,
> While k£ < [(m/2+1)] ;
1

a. Set r = Zur [(#% + as.xp 4+ ag — y3) /P + (B.e.x} + as.e +0)];
b. Extract p.e from ¥, (zp +ep ay, a6+ 9.pk) =0
c. Compute using A3.(a3)? — (a¥)3.B% = 0 the equation 6% +a.0 +b = 0.
d. Compute using 7?7 the error 6 then e, r .
e. ag=ag+0.p%, zp=xp+ep®, yp=yp+rp’ and k=2k;

> Return ay, ag and PT ;

Algorithm 5.4 Variant to compute the canonical lift when given a point of p-torsion

The above method computes the lifted coefficients 44, 4¢], the lifted j-invariant s and p-torsion
of I at precision 4:

01 = 2147° + 5107° + 32377 + 897 + 59T° + 38T% + 116T° + 166T2 + 68T + 600

p.er = (1801 + 13)T° + (18601 + 18)T® + (2001 + 11)T" + (401 + 20)T° + (01 + 4)T°
+ (24601 + 20)T* + (2201 + 10)T° + (901 + 17)T2 + (761 + 16)T + (2201 + 11)
r1 = (501 + 3e)TY + (2001 + (2e + 4))T® + (1361 + (5e + 18))T7 + (1901 + (13e + 24))T° + (1061 + (20e + 16))T°
+ (1401 + (de + 1))T* + (601 + (18e + 19))T + (1101 + (1de + 20))T2 + (61 + (23 + 12))T + (8071 + (de + 11))

e1 =T% +27% + 377 + 7% 4 47® +47® + T2 4T +3

r1 = 97T% +237% + 1077 + 107% + 97° + 237° + 1572 + 10T + 12
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