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Abstract
In this work, we study a mathematical model for the Hansen’s disease (leprosy) transmission
dynamics with both integer and fractional derivatives in the Caputo sense. After the model for-
mulation, we compute the leprosy reproduction numberR0 and prove the existence of two steady
states named the Leprosy-free equilibrium and the leprosy-endemic equilibrium which exists and
is unique if and only if R0 > 1. Using the general theory of Lyapunov, we prove the global
asymptotic stability of both steady states, for both models. The existence and uniqueness of the
solutions of the fractional model are proved using fixed point theory. We finally perform numer-
ical simulations to validate our analytical results, as well as to evaluate the impact of varying the
fractional-order parameter on the disease dynamics.

Keywords
Hansen’s disease (Leprosy), Fractional derivative, Caputo derivative, Asymptotic stability, Fixed
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I INTRODUCTION

Hansen’s disease, previously known colloquially as Leprosy, is a contagious disease that affects
the skin, mucous membranes, and nerves, causing discoloration and lumps on the skin and,
in severe cases, disfigurement and deformities. Hansen’s disease is now mainly confined to
tropical Africa and Asia [1]. In 2019, Hansen’s disease has reported by 153 countries to the
World Health Organization (WHO) among which 24 were from the Western Pacific region,
19 from the Eastern Mediterranean region, 31 from the region of the Americas, 11 from the
South-East Asia region, 30 from the European region, and 38 from the African region [2].

Several model was developed to study the spread of Hansen’s disease. To investigate the impact
of relapse cases and non-compliance with WHO multi-drug therapy among leprosy patients,
Mushayabasa et al. in [3] formulated a compartmental model. They computed the basic re-
production number and prove global stability of the steady states. Based on the understanding
of the biology of the infection, Smith et al. [4] proposed a compartmental model for Hansen’s
disease dynamics. After computed the basic reproduction number, She fitted the transmission
coefficients for the model and the rate of detection using real data of Hansen’s disease in 5
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regions of Brazil. In [5], Chiyaka et al. investigate non-compliant behavior by patients on
treatment and possible inadequacy of the prescribed treatments as the reason for the persistence
of the disease in the Sub-Saharan Africa region. To this aim, they construct compartmental
mathematical models of the transmission dynamics of Hansen’s disease, which are modified to
encapsulate non-compliance and inadequate treatment. In order to predict the transmission of
new patients and allow different groups of individuals to be analyzed in the face of exposure and
infection, Dias et al. in [6] studied a compartmental model which illustrates the dispersion of
leprosy in a population, seeking the impact on the understanding of transmission and planning
of disease control strategies. To control the infection, Haroun et al. [7] studied the benefits of
multi-drug therapy as a control measure. In this paper, we extend the recent work of Raza &
Rafiq [8] by replacing: (1) mass action incidence by standard incidences; (2) integer derivative
by fractional derivative in the Caputo’s sense. After the formulation of the news models (with
integer and fractional derivative), we compute the new basic reproduction numberR0 as well as
the steady states ( the leprosy-free equilibrium and the unique endemic equilibrium). We prove
the global asymptotic stability of these steady states depending on the value of R0, using Lya-
punov theory and LaSalle invariance principle [9]. The existence and uniqueness of solutions of
the fractional model are also proved. Through the Adams-Bashforth-Moulton method. we con-
struct a numerical scheme for the fractional model. Finally, several simulations are performed
to validate our analytical results, as well as to see the impact of varying the fractional parameter
on the disease spread.

The paper is organized as follows: In Section II, we present the definition of the Caputo operator,
as well as two results required for model analysis. The new leprosy models are formulated in
Section III, as well as the existence and stability analysis of steady states, the existence, and
uniqueness of solutions of the fractional model. Numerical simulation results, are presented in
Section IV. A conclusion round up the paper.

II PRELIMINARIES

Before formulating and studying the fractional model of Hansen’s disease (Leprosy) transmis-
sion dynamics, we first present a definition of the Caputo operator, as well as two results re-
quired for model analysis (see [10]).

Definition 1:
Let f ∈ C l[0; a], a > 0, η ∈ R, l ∈ N such that l − 1 < η < l. The fractional derivative in the
Caputo sense of order l, of f is given by

CDη
t f (t) =

{
dlf(t)
dtl

, η = l ∈ N
1

Γ(l−η)

∫ t
0

(t− φ)l−η−1f (l) (φ) dφ, l − 1 < η < l , l ∈ N.
(1)

Lemma 1:
If 0 < η < 1 and d ∈ N, then we can find nonnegative constants Wη,1 and Wη,2 only dependent
on η, such that

(d+ 1)η − dη ≤ Wη,1(d+ 1)η−1 and (d+ 2)η+1 − 2(d+ 1)η+1 + dη+1 ≤ Wη,2(d+ 1)η−1.

Lemma 2:
Assume that xq,i = (i− q)η−1(q = 1, 2, ..., i− 1) & xq,i = 0 for q ≥ i, η,Q, h, Y > 0, kh ≤ Y
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& k ∈ N. Let
∑q=i

q=k xq,i|eq| = 0 for k > i ≥ 1. If |ei| ≤ Qhη
i−1∑
q=1

xq,i|eq|+ |η0|, i = 1, 2, ..., k,,

then |ek| ≤ W |η0|, k = 1, 2, ...,, where W ∈ R+ is independent of k and h.

III MODEL FORMULATION AND BASICS RESULTS

The proposed model, which is a extension of the model proposed by Raza & Rafiq [8], is
presented as follows:

Dtx(t) = p− (βmz + βρw)x

x+ y + z + w
− µx,

Dty(t) =
(βmz + βρw)x

x+ y + z + w
− θy − µy,

Dtz(t) = fθy − µz,
Dtw(t) = θ(1− f)y − µw.

(2)

In model (2), Dt denotes the integer derivative with respect to time t; p is the annual recruitment
rate; µ is the death rate; βm is the Effective contact rate by multibacillary leprosy; βρ is the ef-
fective contact rate for paucibacillary leprosy; θ denotes the transmission rate of asymptomatic
individuals to the symptomatic individuals; f is the fraction of individual developed by multi-
bacillary leprosy while 1− f is the fraction of individual developed by paucibacillary leprosy;
x denotes susceptible individuals, y denotes asymptomatic infected individuals, w denotes in-
fected individuals by paucibacillary leprosy; and z denotes infected individual by multibacillary
leprosy.

The corresponding fractional model with Caputo derivatives is given by

CDη
t x(t) = p− (βmz + βρw)x

x+ y + z + w
− µx,

CDη
t y(t) =

(βmz + βρw)x

x+ y + z + w
− θy − µy,

CDη
t z(t) = fθy − µz,

CDη
tw(t) = θ(1− f)y − µw,

(3)

where CDη
t denotes the Caputo-type fractional derivative of order η. To system (3), we add the

following initial conditions: x(0) = x0 > 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0, and w(0) = w0 ≥
0.

Without loss of generality, the above model (2) (resp. (3)) is defined in the following absorbed

and bounded set Π =

{
(x(t), y(t), z(t), w(t))′ ∈ R4

+ : x(t) + y(t) + z(t) + w(t) ≤ p

µ

}
[8].

3.1 Existence of steady states

Let us defined the following threshold called the basic reproduction number

R0 =
θ (fβm + (1− f)βρ)

(θ + µ)µ
. (4)

The following result holds.
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Theorem 1:
Leprosy model (2) (resp. (3)) admits two staedy states: the Leprosy-free equilibrium E0 =(
p

µ
, 0, 0, 0

)′
, and an unique Leprosy-endemic equilibrium

E1 =
p

(µ (R0 − 1) + µ)

(
1,
µ (R0 − 1)

(θ + µ)
,
fθµ (R0 − 1)

µ(θ + µ)
,
(1− f)θµ (R0 − 1)

µ(θ + µ)

)
which exists if

and only ifR0 > 1.

Proof. Equating the right-hand sides of (2) (resp. (3)) by zero, and noting that x∗ + y∗ +

z∗ + w∗ =
p

µ
, it follows that model (2) (resp. (3)) has two equilibrium points: the disease-

free equilibrium E0 =

(
p

µ
, 0, 0, 0

)′
, and the endemic equilibrium E1 = (x∗, y∗, z∗, w∗)′ where

x∗ =
p

λ? + µ
, y∗ =

λx∗

(θ + µ)
, z∗ =

fθy∗

µ
, w∗ =

θ(1− f)y∗

µ
, with λ? = µ (R0 − 1). Note that

E1 exists if and only ifR0 > 1. This ends the proof.

3.2 Stability analysis of the Leprosy-free equilibrium

The Jacobian matrix of system (2) (resp. (3)) evaluated at the Leprosy-free equilibrium E0 =(
p

µ
, 0, 0, 0

)′
, is given by J (E0) =


−µ 0 −βm −βρ
0 −(θ + µ) βm βρ
0 fθ −µ 0
0 θ(1− f) 0 −µ

.

The characteristic polynomial ofJ (E0) is given byP(X) := −(X+µ) (a3X
3 + a2X

2 + a1X + a0) ,
where a3 = 1, a2 = 2µ+ (θ+µ), a1 = µ [µ+ (θ + µ)(2−R0)], and a0 = µ2(θ+µ)(1−R0).
The roots ofP(X) areX1 = −µ and those of the polynomialP1(X) := (a3X

3 + a2X
2 + a1X + a0).

Note that a0 > 0⇐⇒ R0 < 1. Also,R0 < 1 ensures that a3, a2, a1 > 0.

For the model (2), the characteristic equation [11] is given by det [s (I4 − (1− η)J (E0))− ηJ (E0)] =
0, which is equivalent to [s(1 + µη1) + µη]2 (A2s

2 + A1s+ A0) = 0, where
A2 =

[
k1 (1−R0) (η − 1)2 µ+ (1− η)µ+ k1(1− η) + 1

]
, A0 = k1η

2µ (1−R0), and A1 =
[2k1η (1−R0) (1− η)µ+ η (µ+ k1)], with η1 = 1− η, k1 = θ + µ.

Solutions of the above equation are s = − µη

1 + µη1

< 0 and those of (A2s
2 + A1s+ A0). The

conditions R0 < 1 ensures that coefficients A2, A1, and A0 are positive, and thus the solutions
of (A2s

2 + A1s+ A0) = 0 are always negative. We thus resume the above analysis as follows:

Theorem 2:

For the model (2) (resp. (3)), the Leprosy-free equilibrium E0 =

(
p

µ
, 0, 0, 0

)′
is locally asymp-

totically stable in Π wheneverR0 < 1.

We also claim the following result.

Theorem 3:

For the model (2) (resp. (3)), the Leprosy-free equilibrium E0 =

(
p

µ
, 0, 0, 0

)′
is globally (resp.

uniformly) asymptotically stable in Π wheneverR0 < 1.
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Proof. Let us consider the following Lyapunov function:

M(y(t), z(t), w(t)) := y(t) +
βm
µ
z(t) +

βρ
µ
w(t), (5)

The derivative ofM is given by

Ṁ (y(t), z(t), w(t))

= a1ẏ(t) + a2ż(t) + a3ẇ(t)

= a1

(
(βmz + βρw)x

x+ y + z + w
− (θ + µ)y

)
+ a2 (fθy − µz) + a3 (θ(1− f)y − µw)

≤ (a2fθ − a1(θ + µ) + a3θ(1− f)) y + (a1βm − a2µ) z + (a1βρ − a3µ)w

= a1(θ + µ)

(
βm

µ(θ + µ)
fθ +

βρ
µ(θ + µ)

θ(1− f)− 1

)
y

= a1(θ + µ) (R0 − 1) y.

(6)

It then follows thatR0 < 1⇐⇒ Ṁ < 0, and Ṁ = 0 if and only ifR0 = 1 or y = 0. Replacing
y = 0 in (2) (resp. (3)) gives x = x? =

p

µ
and z = w = 0. So that,

lim
t−→∞

(x(t), y(t), z(t), w(t)) −→
(
p

µ
, 0, 0, 0

)′
:= E0. Thus (by [12]), we conclude that the

Leprosy-free equilibrium point E0 of model (2) (resp. (3)) is globally (resp. uniformly) asymp-
totically stable in Π wheneverR0 < 1.

3.3 Stability analysis of the endemic equilibrium

The jacobian matrix of system (2) (resp. (3)) evaluated at the endemic equilibrium point E1 =
(x∗, y∗, z∗, w∗)′ is given by

J (E1) =


−µ−

(y∗ + z∗ + w∗)λ∗

N∗ −
λ∗x∗

N∗
−βmx∗(x∗ + y∗ + w∗) + βρx∗w∗

(N∗)2
−βρx∗(x∗ + y∗ + z∗) + βmx∗z∗

(N∗)2

λ∗(y∗ + z∗ + w∗)

N∗ −k1 −
λ∗x∗

N∗
βmx∗(x∗ + y∗ + w∗)− βρx∗w∗

(N∗)2
βρx∗(x∗ + y∗ + z∗)− βmx∗z∗

(N∗)2

0 fθ −µ 0
0 (1− f)θ 0 −µ



where N∗ = x∗ + y∗ + z∗ + w∗ =
p

µ
. The characteristic equation of J (E1) is given by

−(X + µ)2 (c2X
2 + c1X + c0) = 0, where c2 = R2

0k1 (bρ(1− f) + fbm) > 0,

c1 = (1− f)((R0 − 1)2R0µ
2 + (2R0 − 1)R0k1µ+R2

0k
2
1)βρ

+ (R0 − 1)2R0(fβm +R0k1)µ2 +R0(2R0 − 1)k1fβmµ+R2
0k

2
1fβm

> 0,

c0 = (R0 − 1)
{
µ(2 (R0 − 1)2 µ2 + (R0 − 1)R0k1µ+R0k

2
1)(1− f)βρ

+2(R0 − 1)2(fβm +R0k1)µ3 +R0k1(R0 − 1)(fβm +R0k1)µ2 +R0k
2
1fβmµ

}
,

Note that c2 and c1 are always positive, and c0 > 0⇐⇒ R0 > 1. Thus, we claim the following
result:
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Lemma 3:
The unique endemic equilibrium point E1 of model (2) is locally asymptotically stable in Π
wheneverR0 > 1.

We also claim what follows.

Theorem 4:
If R0 > 1, then the unique endemic equilibrium point E1 of model (2) (resp. (3)) is globally
asymptotically stable in Π provided that(

1− λ

λ∗

)(
1− x

x∗
y∗

y

)
≥ 0. (7)

Proof. To prove the global (uniformly) asymptotic stability of the unique endemic equilibrium
point E1 = (x∗, y∗, z∗, w∗)′ of model (2) (resp. (3)) when R0 > 1, we define the following
Lyapunov function ([13])

N =
(µz∗ + µw∗)

λ∗x∗

(
x− x∗ − x∗ ln

x

x∗

)
+

(µz∗ + µw∗)

λ∗x∗

(
y − y∗ − y∗ ln

y

y∗

)
+
(
z − z∗ − z∗ ln

z

z∗

)
+
(
w − w∗ − w∗ ln

w

w∗

) (8)

The time derivative of N is given by

Ṅ =
(µz∗ + µw∗)

λ∗x∗

(
1− x∗

x

)
x∗ +

(µz∗ + µw∗)

λ∗x∗

(
1− y∗

y

)
y∗ +

(
1− z∗

z

)
z∗ +

(
1− w∗

w

)
w∗

= b1

(
1− x∗

x

)
(p− λx− µx) + b2

(
1− y∗

y

)
(λx− θy − µy)

+

(
1− z∗

z

)
(fθy − µz) +

(
1− w∗

w

)
(θ(1− f)y − µw)

(9)

At the equilibrium we have the following relations p = λ∗x∗ + µx∗, λ∗x∗ = (µ+ θ)y∗, fθy∗ =
µz∗, and θ(1 − f)y∗ = µw∗. Using the these relations in Eq. (9), and after few algebraic
computations, we obtain

Ṅ =
1

λ∗x∗
(µz∗ + µw∗)µx∗

(
2− x

x∗
− x∗

x

)
+ µz∗

[
4− x

x∗
y∗

y
− z

z∗
− z∗

z

y

y∗
− x∗

x

]
+ µw∗

[
4− x

x∗
y∗

y
− w

w∗
− w∗

w

y

y∗
− x∗

x

]
− µz∗

(
1− λ

λ∗

)(
1− x

x∗
y∗

y

)
− µw∗

(
1− λ

λ∗

)(
1− x

x∗
y∗

y

)
.

(10)

The fist three terms of (10) are negative since the arithmetic mean exceeds the geometric mean.
Together with condition (7), it follows that the remaining last two terms of (10) are also negative.
Thus, Ṅ < 0. So lim

t−→∞
(x(t), y(t), z(t), w(t)) −→ (x∗, y∗, z∗, w∗). By the LaSalle invariance

principle [9], it follows that the unique endemic equilibrium point E1 of Leprosy model (2) is
globally asymptotically stable (GAS) in Π wheneverR0 > 1.

From [14], we note that the Lyapunov function N for (2) is also a Lyapunov function for the
Leprosy fractional model (3). Thus The unique endemic equilibrium of the fractional model (3)
is globally asymptotically stable wheneverR0 > 1.
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3.4 Existence and uniqueness of solutions of the fractional model

The objective of this part is to show, by using the theory of the Banach fixed point, the existence
and the uniqueness of the solutions of the fractional model (3) with the initial conditions. To
this aim, we denote by Q the Banach space for continuous functions with real values over an
interval K with the associated norms ‖ (x, y, z, w) ‖=‖ x ‖ + ‖ y ‖ + ‖ z ‖ + ‖ w ‖, where
‖ x ‖= sup {| x(t) |: t ∈ K}, ‖ y ‖= sup {| y(t) |: t ∈ K}, ‖ z ‖= sup {| z(t) |: t ∈ K},
‖ w ‖= sup {| w(t) |: t ∈ K}, and Q = ε(K)× ε(K)× ε(K)× ε(K), with ε(K) the Banach
space for continuous functions with real values on K and the above associated norms. The
fractional system (3) can be written in the form :

Dη
t x(t) = G1(t, x), Dη

t y(t) = G2(t, y), Dη
t z(t) = G3(t, z), Dη

tw(t) = G1(t, w), (11)

with

G1(t, x) = p− (βmz + βρw)x

x+ y + z + w
− µx,G2(t, y) =

(βmz + βρw)x

x+ y + z + w
− θy − µy,

G3(t, z) = fθy − µz,G4(t, w) = θ(1− f)y − µw.
(12)

By applying the fractional integral operator in equation (11), we obtain:

x(t)− x(0) =
1

Γ(η)

∫ t

0

(t− χ)η−1G1(χ, x)dχ, y(t)− y(0) =
1

Γ(η)

∫ t

0

(t− χ)η−1G2(χ, y)dχ,

z(t)− z(0) =
1

Γ(η)

∫ t

0

(t− χ)η−1G3(χ, z)dχ,w(t)− w(0) =
1

Γ(η)

∫ t

0

(t− χ)η−1G4(χ,w)dχ

(13)

The kernels Gi, i = 1, 2, 3, 4, satisfy the Lipschitz and contraction conditions if the following
inequality holds:

0 ≤ Vi < 1, i = 1, 2, 3, 4, (14)

where
V1 = (βmκ3 + βρκ4 + µ) , V2 = κ1 (βmκ3 + βρκ4 + µ) , V3 = V4 = µ,

‖ x ‖= κ1, ‖ y ‖= κ2, ‖ z ‖= κ3, ‖ w ‖= κ4.
(15)

We thus claim the following result

Theorem 5:
The kernel G1 satisfies the Lipschitz condition if the following inequality is respected

0 ≤ V1 = (βmκ3 + βρκ4 + µ) ≤ 1. (16)

Proof. Consider the kernel G1, and x, x1 any two functions. We have

‖ G1(t, x)−G1(t, x1) ‖

=‖ −(βmz + βρw)x

x+ y + z + w
− µx+

(βmz + βρw)x1

x1 + y + z + w
+ µx1 ‖

≤‖ (βmz + βρw)

(
(y + z + w)

(x+ y + z + w)(x1 + y + z + w)

)
+ µ ‖‖ (x− x1) ‖

≤ (βm ‖ z ‖ +βρ ‖ w ‖ +µ) ‖ (x− x1) ‖

=

V1︷ ︸︸ ︷
(βmκ3 + βρκ4 + µ) ‖ (x− x1) ‖ .

(17)
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Therefore, the Lipschitz condition is fulfilled for G1, and if in addition, 0 ≤ V1 < 1, then it is
also a contraction. We get similar results for the other kernels:

‖ G2(t, y)−G2(t, y1) ‖≤ V2 ‖ y(t)− y1(t) ‖, ‖ G3(t, z)−G3(t, z1) ‖≤ V3 ‖ z(t)− z1(t) ‖,
‖ G4(t, w)−G4(t, w1) ‖≤ V4 ‖ w(t)− w1(t) ‖ .

(18)

The expressions of the equation (13) can be written recursively as:

xn(t)− x(0) =
1

Γ(η)

∫ t
0
(t− χ)η−1G1(χ, xn−1)dχ,

yn(t)− y(0) =
1

Γ(η)

∫ t
0
(t− χ)η−1G2(χ, yn−1)dχ,

zn(t)− zn(0) =
1

Γ(η)

∫ t
0
(t− χ)η−1G3(χ, zn−1)dχ,

wn(t)− w(0) =
1

Γ(η)

∫ t
0
(t− χ)η−1G4(χ,wn−1)dχ

(19)

The difference between successive terms for recursive formulas is written:

φ1n(t) = xn(t)− xn−1(t) =
1

Γ(η)

∫ t

0

(t− χ)η−1 (G1(χ, xn−1)−G1(χ, xn−2)) dχ,

φ2n(t) = yn(t)− yn−1(t) =
1

Γ(η)

∫ t

0

(t− χ)η−1 (G2(χ, yn−1)−G2(χ, yn−2)) dχ,

φ3n(t) = zn(t)− zn−1(t) =
1

Γ(η)

∫ t

0

(t− χ)η−1 (G3(χ, yn−1)−G3(χ, yn−2)) dχ,

φ4n(t) = wn(t)− wn−1(t) =
1

Γ(η)

∫ t

0

(t− χ)η−1 (G4(χ,wn−1)−G4(χ,wn−2)) dχ,

(20)

with initial conditions:x0(t) = x(0), y0(t) = y(0), z0(t) = z(0), w0(t) = w(0). Let us
take the norm of the first expression of the equation (20)

‖ φ1n(t) ‖ =‖ xn(t)− xn−1(t) ‖

=‖ 1

Γ(η)

∫ t

0

(t− χ)η−1(G1(χ, xn−1)−G1(χ, xn−2)dχ ‖,

≤ 1

Γ(η)
‖
∫ t

0

(t− χ)η−1(G1(χ, xn−1)−G1(χ, xn−2)dχ ‖,

(21)

Using the Lipschitz condition we have:

‖ xn(t)− xn−1(t) ‖≤ 1

Γ(η)
V1

∫ t

0

(t− χ)η−1 ‖ xn−1 − xn−2 ‖ dχ. (22)

Thus, we obtain

‖ φ1n(t) ‖≤ 1

Γ(η)
V1

∫ t

0

(t− χ)η−1 ‖ φ1(n−1)(χ) ‖ dχ. (23)
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Similar reasoning makes it possible to have:

‖ φ2n(t) ‖ ≤ 1

Γ(η)
V2

∫ t

0

(t− χ)η−1 ‖ φ2(n−1)(χ) ‖ dχ,

‖ φ3n(t) ‖ ≤ 1

Γ(η)
V3

∫ t

0

(t− χ)η−1 ‖ φ3(n−1)(χ) ‖ dχ,

‖ φ4n(t) ‖ ≤ 1

Γ(η)
V4

∫ t

0

(t− χ)η−1 ‖ φ4(n−1)(χ) ‖ dχ.

(24)

Note that

xn(t) =
n∑
i=1

φ1i(t), yn(t) =
n∑
i=1

φ2i(t), zn(t) =
n∑
i=1

φ3i(t), wn(t) =
n∑
i=1

φ4i(t). (25)

Now let’s show the uniqueness of the model solution. We claim the following

Theorem 6:
The fractional model (3) admits a unique solution on t ∈ [0, T ] if the following inequality is
satisfied

1

Γ(η)
Vib

η ≤ 1, i = 1, 2, ..., 4. (26)

Proof. The proof follows the proof of Theorem 4 in [15].

IV NUMERICAL SCHEME AND RESULTS

4.1 Numerical scheme

In what follows, we will use the Adams-Bashforth-Moulton method (see [15, 16]) to construct
a numerical scheme for the fractional model (3). To this aim, let us consider the uniform dis-
cretization of [0, a] given by tm = mℵ, m ∈ [0;N ] ∩ N where ℵ = a/m denotes the step size.
For a given approximation Zℵ(ti) ≈ Z(ti), the next approximation Zℵ(ti+1) is obtain (using
the predictor-corrector method) as follows:

Predictor: Zpℵ(tm+1) =
dϕe−1∑
l=0

tln+1

l!
Z l0 +

1

Γ(η)

m∑
l=0

bl,m+1G (tl,Zℵ(tl)) ;

Corrector: Zℵ(tm+1) =
dϕe−1∑
l=0

tln+1

l!
Z l0+

hη

Γ(2 + η)
G
(
tl+1,Zℵℵ (tl+1)

)
+

ℵη

Γ(2 + η)

m∑
l=0

cl,m+1G (tl,Zℵ(tl)) ;

with

cl,m+1 =


m1+ϕ − (m− ϕ)(m+ 1)ϕ, if l = 0,
(m− l + 2)1+ϕ + (m− l)1+ϕ − 2(m− l + 1)1+ϕ, if 1 ≤ l ≤ m,
1 if l = m+ 1,

and bl,m+1 =
ℵϕ

ϕ
[(m− l + 1)ϕ − (m− l)ϕ].
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4.2 Numerical results

For numerical simulations, we consider the following set of parameter values:
1. p = 100; m = 1/55.5; βm = βρ = 0.019; θ = 0.19 and f = 0.7 which give R0 =

0.9632 < 1;
2. p = 100; m = 1/55.5; βm = βρ = 0.03; θ = 0.19 and f = 0.7 which give R0 =

1.5208 > 1;

Figure 1: Time-series of state variables forR0 = 0.9632 < 1 and different values of the fractional-order
η ∈ {1; 0.9; 0.7; 0.6}.

Figure 2: Time-series of state variables forR0 = 1.5208 > 1 and different values of the fractional-order
η ∈ {1; 0.9; 0.7; 0.6}.

The theoretical results of the fractional-order model are verified by varying the fractional-order
parameter η. Indeed, we demonstrate our obtained analytical results numerically in Section III.
In Figure 1, we see that when R0 < 1, the solutions converge to the Leprosy-free equilibrium,
while in Figure 2, the solutions converge to the endemic equilibrium point whenever R0 > 1.
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In Figure 2, we also see that the population of each class or compartment decreases when the
fractional-order decreases.

V CONCLUSION

In this work , we extended the works of Raza & Rafiq [8], which consists of a system of
Ordinary Differential Equations, by replacing integer derivatives with fractional derivative in
the Caputo sense, and mass action incidence by standard incidence. We computed the new basic
reproduction numberR0 and proved the existence of two steady states named the Leprosy-free
equilibrium which always exists, and the unique endemic equilibrium point which exists if
and only if R0 > 1. We also proved the global stability of both equilibrium points for both
models. Indeed, by constructing two lyapunov functions, we proved that the leprosy disease-
free equilibrium (resp. the unique endemic equilibrium point) is globally asymptotically stable
whenever the basic reproduction number is less that unity (R0 < 1) (resp. greater than unity
(R0 > 1)). Then, we studied the existence and the uniqueness of the solutions of the fractional
model using fixed point theory. Using the Adams-Bashforth-Moulton method to construct the
numerical scheme, we performed numerical simulations to validate our analytical results, as
well as to see the impact of varying the fractional parameter on the disease spread. Indeed, when
R0 < 1, the solutions converge to the Leprosy-free equilibrium while the solutions converge
to the endemic equilibrium point whenever R0 > 1. Also, the population of each class or
compartment decreases with the decrease of the fractional-order.
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