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Inferring a hierarchical majority-rule sorting model

Abstract

Real decision problems often involve a multitude of sub-problems that are in-
tertwined and that need to be solved together in order to provide a global rec-
ommendation. A hierarchical structure may be used to represent such problems
and we propose an indirect elicitation approach when each underlying problem
can be modeled as a majority-rule sorting problem. We limit our study to a
two level hierarchy structure, where the bounding profiles of the bottom layer
are provided while those of the top layer need to be inferred. We propose a
mathematical program to infer these profiles as well as the criteria weights and
majority thresholds of all considered models. We test this program on gener-
ated benchmarks in order to evaluate its performance and find its limitations.
The approach may furthermore be easily extended to more complex hierarchical
structures.

Keywords: multi-criteria decision aiding, majority-rule sorting, hierarchy of
models, model inference, mathematical programming

1. Introduction

Multi-criteria decision aiding (MCDA) is aimed at helping decision-makers
(DM) deal with complex problems involving multiple, potentially conflicting,
perspectives, or criteria, on the decision problem [1]. These problems generally
involve one out of three types of decisions: choice, or selecting the best alter-
natives, ranking, or ordering alternatives from the best one to the worst, and
sorting, or assigning alternatives into predefined ordered categories.

Usually, a decision aiding process is put in place [2], where, during the
initial phases, the decision problem is structured and the set of criteria and
alternatives are identified. Complex decision problems may involve multiple
decision levels or, in other cases, criteria that are used to form broader, more
general criteria. The latter has been formally studied as the Multiple Criteria
Hierarchical Process [3] and adapted to a multitude of decision problems and
preference models. The former, to our knowledge, has received less attention
as it may be seen as a generalization of the latter. As such, tuning multiple
preference models that form a hierarchy is still an open topic.

Providing the preference model parameters directly by the DM, or through
a protocol with the help of an analyst, is generally difficult even when the
problem does not hold a hierarchical structure. We therefore propose, in this
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work, to indirectly infer the parameters of what we call a hierarchical majority-
rule sorting model through the use of a mathematical programming approach.

We show that, using current computational resources, we are able to infer
accurate models in a relatively short amount of time when a two-level hierar-
chy is considered, using only holistic information on the output of the sorting
procedure. We also investigate the impact of erroneous information on the con-
vergence of the proposed approach, which becomes marginal when sufficient
information is provided in order to infer the preference model, requiring, how-
ever, a considerable increase in computational resources.

The paper is structured in the following way. Section 2 presents the state
of the art on the integration of hierarchies within a decision process as well
as on the indirect inference of preference models. Section 3 formally defines
the proposed hierarchical majority-rule sorting approach and illustrates it using
an intuitive example. In Section 4 we present and explain the mathematical
program that will be used to infer the model from a set of assignment examples,
also taking into account robustness considerations. Finally, Section 5 outlines
the experimental protocol and its results before ending with several concluding
remarks and perspectives for future work in Section 6.

2. State of the art

2.1. Integrating hierarchies of criteria into the decision process

MCDA focuses on helping DMs when alternatives evaluated on multiple,
often conflicting criteria are considered [1]. In the majority of applications,
criteria are considered to be on the same level and taken into account all at once,
while the decision problem is considered to be atomic, not being comprised of
multiple underlying decisions.

In certain cases, however, the criteria may form a hierarchical structure,
where a criterion is divided into sub-criteria. An introduction of MCHP to
ELECTRE methods may be found in [4], while the particular case of the
ELECTRE-Tri-B method was covered in [3]. In the latter, the process aggre-
gates sets of criteria in order to form new criteria using the ELECTRE-Tri-B
sorting mechanism, which then in turn may be further aggregated into new cri-
teria and so on, until reaching a top level node in this tree-like structure. The
majority-rule sorting method [5], on which this article is focused, is a particular
case of the ELECTRE-Tri-B method. The MCHP has also more recently been
adapted to sorting problems under uncertainty for the evaluation of the oper-
ational maturity of research institutions [6]. The ranking method ELECTRE
III has also been extended to incorporate a hierarchy of criteria in [7], with
interactions between the hierarchy of criteria and imprecision with respect to
their weights being covered in [8].

Decisions may also need to account for different scenarios or context varia-
tions. The most common way of dealing with such variations, when they affect
the potential evaluations of an alternative, is to integrate them by using a top-
down or bottom-up approach during the hierarchical construction of the set of
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criteria [9]. The variations are therefore aggregated into a single evaluation,
using for instance expert rules or other MCDA approaches for modeling the
sub-problem of constructing the criterion. In some cases, it may be important
for the DM to take into account these variations across all criteria differently
from one context to another. Few proposals have considered multi-criteria de-
cision problems and multiple contexts at the same time. We mention here the
work of Zheng et al. [10] proposing a methodology coupling context-aware rec-
ommender systems and multi-criteria recommender systems within a case study
linked to education and learning. Frini et al. [11] propose a new MCDA out-
ranking methodology called MUPOM which takes into account multiple periods
of time. Breaking time into periods allows to consider time as a context which
influences variations in the evaluations of alternatives. This work analyzes mul-
tiple time periods for sustainable development of forests and takes into account
time-specific factors such as continuity. For each time period, outranking rela-
tions are computed between any pair of alternatives aggregating multiple con-
cordance and discordance indices for each criterion and time step. Each time
period is then taken into account through the use of a distance measure that
uses the previously constructed relations. Finally, the overall outranking rela-
tion is then exploited in order to provide a recommendation. Nevertheless, due
to the complexity of the approach, the process of parameters elicitation may
prove to be difficult from the perspective of a DM.

Problems involving multiple DMs may also lead to a hierarchical structure,
this time in relation to a series of decisions that form the basis for higher level
decisions. One of the first contributions dealing with the sorting problem in
the context of group decision making is that of Dias and Cĺımaco [12], where
the case of aggregating the output of each DMs ELECTRE-TRI model may be
considered as a two-level hierarchical sorting model. Jabeur and Martel [13]
argue against the use of the same type of model, the same set of criteria and
alternatives evaluations as well as considering all DMs as equally important in
the construction of the final recommendation. They propose a method where
the DMs agree on the set of categories, criteria and evaluations of reference
alternatives, but where individual models on potentially different alternatives
evaluations are constructed for each DM and their outputs are later aggregated
using relative DM importance coefficients. In [14, 15] robust ordinal regression
was extended to deal with sorting problems and group decision making. The
FlowSort method was also extended to a group decision making context in [16].
A recent and extensive study covering sorting methods in MCDA, including
those dealing with group decision making may be found in [17].

2.2. Indirect inference of preference models

The indirect inference of a preference model generally seeks to overcome some
of the difficulties associated with requiring the DM to properly understand and
provide the parameters of a preference model [18]. Holistic judgements on the
desired output of the MCDA method on a subset of the decision problem are
hence provided by the DM and used by an analytical approach in order to infer
the parameters of the preference model. This topic has received a lot of interest,
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namely within the works of Jacquet-Lagreze and Siskos [19] in the Multiple At-
tribute Value Theory (MAVT; [9]) context and of Ngo The and Mousseau [20]
with respect to outranking methods. These approaches determine the param-
eters of the considered preference models in one go, using, often large, sets of
judgements provided by the DM. Incremental approaches, implying multiple and
successive interactions with the DM, may also be found, such as [21, 22, 23, 24]
in the MAVT context, to name a few. More recently, such approaches in an
outranking context have also been proposed [25, 26].

Within the context of outranking-based sorting models, several works have
been proposed for inferring the parameters of preference models, most being
linked to the Electre TRI method. In [27, 28, 20] it has been proposed
to find the model parameters through the use of assignment examples. More
specifically, the DM is initially asked to assign a few well known alternatives to
the predefined categories, followed by the use of linear or non-linear programs
in order to output the model parameters. More robust approaches compute for
each alternative a range of possible categories to which they may be assigned
when the parameters of the model are not completely determined [29, 12, 30].
Approaches that deal with inconsistencies in the assignments given by the DM
have also been explored in [31, 32].

In most cases, approaches using mathematical programming techniques in-
volving binary variables (e.g. in [5]) find the optimal solution, but require large
amounts of computational resources and time, being able to handle only in-
stances of reduced size. Sobrie et al. [33] have suggested to use a metaheuristic
to learn the parameters of the MR-Sort model, which has been adapted and
extended by Olteanu and Meyer [34] in order to also take into account veto
thresholds. Population-based metaheuristics have also been proposed for MR-
Sort models with coalitional veto [35], while a matheuristic approach (combining
metaheuristics and mathematical programming) was proposed in [36] in order
to infer an MR-Sort model able to deal with imprecise or missing evaluations.
Finally, exact elicitation approaches for inferring MR-Sort models containing
large performance differences, such as vetoes or dictators may be found in [37].

3. Hierarchical sorting problems

We consider extending the MR-Sort model [5, 33] to the case where the
sorting problem can be decomposed into multiple sub-problems and where each
sub-problem provides a partial aggregation of the evaluations of an alternative
on a set of criteria. This may be needed for multiple types of applications which
we will present hereafter, followed by a formal definition of what we call the
HMR-Sort model, which stands for Hierarchical Majority-Rule Sorting.

3.1. Considered problems

We depict in Figure 1 an example of a more or less generic hierarchical
structure for a sorting problem.

We observe a problem where each alternative a is evaluated on 9 criteria
(g1 through g9), that may be found at the bottom of the figure. Furthermore,
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Figure 1: Example of a hierarchical sorting problem

4 models are used to provide partial classifications taking as input different
subsets of criteria as well as the outputs of some of the other models. Each
model may be seen as a sub-problem, with the top model providing the final
recommendation. The first model uses the first three criteria as input in order
to provide as output the g10 aggregated criterion. Similarly, the second model
uses the last 3 criteria, while its output is regarded as an intermediate criterion
and used together with criteria g5 and g6 as input by the third model. Finally,
the intermediate criteria constructed by models 1 and 3, along with criterion
g4, are used by the fourth model in order to provide the final classification of
the alternative. We consider each model to correspond to a separate sorting
problem with its own parameters.

Based on the number of models and how the criteria evaluations of the
alternatives are shared by them, multiple scenarios may be identified. The
most basic scenario corresponds to a single model taking into consideration all
provided criteria. This represents a classical sorting problem. When multiple
models may be found, the hierarchical structure may be seen as an acyclic rooted
graph, with the model at the root providing the overall recommendation. When
all models are only connected directly to the root model, then the problem
corresponds to a two-level problem. Multi-level sorting problems may further
contain models that are connected to other sorting models instead of the root
model. In both cases, the underlying models may integrate potentially different
DMs.

Among the two-level scenario, we can additionally distinguish several classes
based on how the criteria are shared among the intermediate models:

• Identical criteria
This type of model considers that multiple DMs evaluate the same deci-
sion problem using the same criteria and the same evaluations however
have different preferences and will therefore provide potentially different
recommendations. A global DM then provides an overall recommendation
only considering the recommendations of the underlying DMs;
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• Partially identical criteria
This type of model is similar to the previous one except the underlying
models do not necessarily consider the same sets of criteria. This may
correspond to multiple DMs evaluating alternatives based on their field of
expertise and thus using criteria that are pertinent only to them. Then, a
global DM uses the recommendations of the underlying DMs in order to
provide a global one;

• Disjoint criteria
This model considers that no criterion is shared between the underlying
models.

The previous categories may further be separated based on how the alterna-
tives are evaluated on the criteria of the intermediate models:

• Identical evaluations
In this case, if criteria are shared between models, a specific evaluation
of an alternative on a given criterion will be identical on all models that
consider this criterion;

• Contextual evaluations
In this case, even if a criterion is shared by multiple models, the evaluations
of an alternative may differ from one model to another. This may be used
for problems where an alternative is evaluated on the same criteria w.r.t.
different contexts, such as, for instance, the productivity of a system based
on different imposed workload scenarios.

A further distinction may be made when the criteria are shared among mul-
tiple models while the alternatives evaluations on them differ from one model
to the next due to context differences. In this case, we may either have the
same DM that is shared across all models therefore having the same preferences
or different DMs with potentially different preferences. Such a situation may
be used to model problems where an alternative is evaluated across different
time periods or within different contexts using the same criteria, where the
performance expectations of the DM stay the same.

3.2. Hierarchical majority-rule sorting model

We continue by formally defining the Hierarchical Majority-Rule Sorting
model, or HMR-Sort.

Let us consider a finite set of alternatives A and a finite set of criteria indexes
J = {1, . . . ,m}. Each alternative a ∈ A is evaluated on any criterion through
a function gj : A → R, where gj(a) (j ∈ J) denotes the performance of the
alternative a on criterion gj . We assume without loss of generality that the
preference directions on each criterion are increasing. The alternatives are to
be sorted into a set of k ordered categories C = {c1, · · · , ck}, with c1 being the
least preferred category and ck the most preferred one.
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Table 1: The mapping function γ for the illustrative example

γ(i, j)
j

1 2 3

i

1 1 2 3
2 7 8 9
3 5 6 11
4 10 4 12

We also consider a decomposition of the decision problem into sub-problems,
which we denote using a set of indexes I = {1, . . . , n}. All sub-problems cor-
respond to sorting problems where MR-Sort models are used and are arranged
in order to form a rooted acyclic graph structure. The model corresponding to
the root gives the overall assignment for the sorting problem. We may refer to
this model as the global model and to the other models as intermediate mod-
els. We additionally consider that the global model index is equal to n. Each
model is used to assign an alternative to a category among a set of ordered
categories Ci = {ci1, · · · , ciki},∀i ∈ I, with category ci1 being the least preferred
and category ciki being the most preferred. Note that Cn ≡ C.

We denote the criteria for a sub-problem i ∈ I using indexes J i ⊆ {1, . . . ,m+
n}, where we denote mi = |J i|. The result of an MR-Sort model i ∈ I induces
what we call an intermediate evaluation of an alternative a ∈ A. In order to
aid in standardizing the subsequent definitions, we use for these intermediate
evaluations the same function g that is used to hold the evaluations of an alter-
native a ∈ A on any criterion j ∈ J , except that we will denote with gm+i(a)
the intermediate evaluation of a based on model i ∈ I. In order to identify the
evaluation of a model i ∈ I on a criterion j ∈ J i for an alternative a ∈ A, we use
a mapping function γ : N+×N+ → {1, . . . ,m+n}, such that gγ(i,j)(a) retrieves
this evaluation, be it real or intermediate.

An illustration of a mapping function for the example highlighted in Figure 1
may be found in Table 1.

Each MR-Sort model i ∈ I from a hierarchical sorting problem contains a
set of parameters such as :

• the bounding profilesBi = {bi0, · · · , biki}, where bih > bih−1,∀h ∈ {1, . . . , ki};

• the criteria weights wij ∈ (0, 1),∀j ∈ J i, where
∑
j∈Ji

wij = 1;

• the majority threshold λi > 0.5.

Each MR-Sort model i ∈ I outputs in gm+i the index h ∈ {1, . . . , ki} of
the category to which it assigns an alternative a ∈ A. Two rules to assign an
alternative to a class may be found in the literature, the pessimistic and the
optimistic assignment rules, out of which the first is the most commonly used.
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In this case, an alternative a is assigned to the highest possible category cih
such that a outranks the category’s lower frontier bih−1. Alternative a is said to
outrank bih−1 if and only if there is a sufficient coalition of criteria supporting
the assertion “a is at least as good as bih−1”. More precisely, partial concordance
indexes Cij are first defined to assess whether each criterion gγ(i,j) supports this
statement:

∀i, j, a, h ∈ I×J i×A×{1, . . . , k+1} : Cij(a, b
i
h−1) =

{
1, if gγ(i,j)(a) > gγ(i,j)(bh−1),
0, otherwise.

(1)
A global concordance index, denoted as Ci(a, bih−1),∀a ∈ A, h ∈ {1, . . . , ki+

1}, is then defined as:

Ci(a, bih−1) =
∑
j∈Ji

wijC
i
j(a, b

i
h−1). (2)

The global concordance index is compared to the majority threshold λi

and therefore a is said to outrank bih−1, i.e. aS bih−1 if Ci(a, bih−1) > λi. If
Ci(a, bih−1) < λ, the support in favor of aS bih−1 is not sufficient and so a does
not outrank bih−1, i.e. a 6S bih−1. To summarize, a ∈ cih ⇐⇒ aS bih−1 ∧ a 6S bih.

3.3. Illustrative example

Let us consider a potential application of the proposed model within an
industrial context. The choice of new equipment in the manufacturing industry
generally needs to take into account multiple criteria such as its initial cost,
production capacity and operation safety. Constructing these criteria, however,
is a difficult process and may hide a needed, more detailed, characterization of
the equipment based on different use contexts. For example, when the initial
investment is important and the production is known to fluctuate based on
different foreseen market factors, the industrial actor might prefer to have a
clear understanding of how the equipment will perform during these different
contexts and base their decision on it. Dividing the problem of determining
whether an equipment performs overall well may therefore benefit from splitting
the problem into multiple sub-problems linked to each use context.

We consider, in this example, that a company seeks to invest in a new
equipment for a specific production task. The initial investment costs are rather
similar and therefore the investor wishes to select an equipment that can adapt
to the market fluctuations and the subsequent production rhythms. Three such
rhythms are identified:

• nominal production, as determined by the manufacturer of the equipment;

• reduced production, which is characterized by large fluctuations due to
having fewer orders which arrive at a more or less unpredictable rate;

• intensive production corresponding to a rapid production rate in order to
handle a larger than usual order volume.
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Figure 2: Example of hierarchical problem structure

For each of the three cases, the same four criteria will be used to evaluate
the efficiency of the equipment:

• production rate as in units per hour, ranging between 0 and 20;

• operating cost, taking into account multiple factors such as energy con-
sumption, consumables, maintenance, etc., and ranging between 0 and
60;

• required operators from 0 to 4;

• safety index, given as ordinal levels from D to A++, with the former being
the worst and the latter being the best.

However, as each alternative will be evaluated in different working condi-
tions on these criteria, the criteria will naturally depend on these contexts and
therefore effectively be different criteria. As such, each alternative will hold 12
criteria evaluations.

It is clear that an investor would prefer an equipment that maximizes the
production rate, minimizes the operation costs, minimizes the needed number of
operators and maximizes safety, for all of the three previously defined scenarios.
An equipment that performs well across all of these criteria is very unlikely to
exist, hence a compromise solution needs to be found.

We define a set of three categories: Good (G), Medium (M) and Bad (B).
Since taking into account all four criteria for all three scenarios may prove diffi-
cult from the perspective of the DM, we divide the problem by first evaluating
the equipment based on each of the three scenarios and then using these evalu-
ations in order to determine its overall performance.

We present in Figure 2 the structure of the problem and in Table 2 the
parameters of the four models that constitute the HMR-Sort model for this
problem. We assume these parameters were elicited from the DM.

Figure 3 illustrates the assignment of an alternative x, which is evaluated on
the four criteria based on each of the three production rhythms. The alternative
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g13 g14 g15

b42 3 3 3
b41 2 3 2
w4 0.2 0.4 0.4
λ4 0.6

(a) Model 4 (global)

g1 g2 g3 g4

b12 10 30 2 A+

b11 8 50 3 B+

w1 0.3 0.2 0.3 0.2
λ1 0.7

(b) Model 1 (nominal)

g5 g6 g7 g8

b22 7 20 1 A+

b21 5 30 1 A
w2 0.1 0.3 0.3 0.3
λ2 0.7

(c) Model 2 (reduced)

g9 g10 g11 g12

b32 20 50 2 A+

b31 15 60 3 B−

w3 0.4 0.25 0.1 0.25
λ3 0.65

(d) Model 3 (intensive)

Table 2: Example of HMR-Sort model parameters

evaluations (on the original criteria as well as the intermediate ones) are depicted
in black.

We observe that, for a nominal context, x is at least as good as profile b11 on
all criteria and it is at least as good as profile b12 w.r.t. g1 (production capacity),
g3 (required number of operators) and g4 ( safety). This means that x outranks
both profiles (based on the criteria weights and majority threshold of Model 1)
and is therefore considered as a good equipment for this context. The output
of this model is therefore equal to 3, the index of the Good category.

Similarly, x is considered to be good for a reduced production context, as it
is at least as good as both profiles on all criteria except the first one.

Finally, for the intensive production context, x is at least as good as b31 on
all criteria except the second, therefore it outranks this profile, however it is at
least as good as b32 on only the last criterion (safety). In other words, x is only
considered to have a medium performance for this context. These assignments
give x an intermediate evaluation of (3, 3, 2), which is then used by the last
model. These evaluations make alternative x outrank profile b41 on all criteria
(which correspond to the overall performance for each production rhythm) and
also outrank profile b42 for the first two. Hence, alternative x is considered to be
overall good.

4. Inferring the parameters of the model

The process of eliciting an HMR-Sort model may be divided in two, as is
often the case in literature: direct elicitation or indirect elicitation. The first
considers that we have access to all the DMs involved in the decision process
and that they are able to provide the exact values of the parameters of each MR-
Sort model. We recall that for each MR-Sort model we have several bounding
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g1 g2 g3 g4

b11

b12

g5 g6 g7 g8

b21

b22

g9 g10 g11 g12

b31

b32

g13 g14 g15

b41

b42

3 3 1

3

10 38 2 A+ 3 15 1 A++ 17 65 3 A+x

Figure 3: Example of HMR-Sort assignment
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profiles, criteria weights and a majority threshold. The second approach consists
in inferring the parameters of each MR-Sort model from holistic information of
the DMs on the expected output, in other words the assignments of alternatives
to their corresponding categories, also called assignment examples.

We focus our attention on the indirect elicitation of an HMR-Sort model.
When all of the DMs are available, this process does not differ at all from an
indirect elicitation of MR-Sort models, except that multiple models need to be
inferred at the same time.

Interacting with multiple DMs, however, may prove difficult or even impos-
sible in practice. It may also be of particular interest to reconstruct a clear and
easy to understand model when information on partial decisions (the output of
the intermediate models) is difficult to come by. We consider therefore the case
of inferring an entire HMR-Sort model using the assignment examples of the
top level model without having access to the intermediate classifications.

4.1. Principle

We consider HMR-Sort models defined by:

• a set of m criteria with indexes J = {1, . . . ,m};

• a set of k ordered categories C = {c1, . . . , ck};

• a set of n subproblems with indexes I = {1, . . . , n}, each defined by:

– a set of mi criteria with indexes J i = {1, . . . ,mi};
– a set of ki ordered categories Ci = {ci1, . . . , ciki};

• a two-level hierarchy structure where:

– the intermediate problems correspond to models i ∈ {1, . . . , n − 1}
with their criteria being mapped to the set of real criteria γ(i, j) =
j,∀j ∈ {1, . . . ,m};

– the top problem corresponds to model n with its criteria being mapped
to the output of the intermediate problems γ(n, i) = m + i,∀i ∈
{1, . . . , n− 1};

We propose an indirect elicitation procedure in which a decision maker pro-
vides a list assignment examples in the form of a set of alternatives A and a list
K of their assignments to the set of categories C. We further consider that the
boundary profiles of the intermediate MR-Sort models (i ∈ {1, . . . , n− 1}) have
been elicited directly. This is motivated by the fact that considering each crite-
rion separately from the rest and identifying the thresholds that correspond to
ordinal performance levels is cognitively easy for a DM while evaluating the rel-
ative importance of criteria and the required overall levels of importance needed
to model an outranking relation is significantly more difficult.
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4.2. Mathematical Program for finding a feasible model

In this section, we define a mathematical formulation for learning, from
a given set of assignment examples provided by the DM, the criteria weights
wij ,∀i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi} and majority thresholds λi,∀i ∈ {1, . . . , n}
of all MR-Sort models of the previously defined HMR-Sort model as well as the
bounding profiles Bn = {bn0 , . . . , bnkn} of the top MR-Sort model.

The parameters that are considered as data in the proposed mathematical
model are provided in Table 3.

A the set of alternatives (N in total)
K the category assignments of the alternatives in the form of category indices

(N in total), with K(a) ∈ {1, . . . , k},∀a ∈ A
I the set of model indices (n in total)
J i the set of criteria indices for each model i ∈ I (mi in total)
ki the number of categories for each model i ∈ I
G the alternatives evaluations, or performance table, given as a matrix of size N ×M

(with ga,j ∈ [0, 1] containing the evaluation of alternative a ∈ A on criterion j ∈ J)
bih,j the performance of the bounding profiles of all models except the top one ∀i ∈ I\{n},

∀j ∈ J i, ∀h ∈ {1, . . . , ki − 1}
γij the criteria mapping for each model i ∈ I and their corresponding criteria j ∈ J i;

this corresponds to the either the index of the real criterion j ∈ J or the index of the
intermediate criterion i ∈ I\{n}

ε a small positive constant used to model strict inequalities

Table 3: Parameters of the mathematical model.

We consider, without loss of generality, that the criteria evaluations scales
are defined on the unit interval and that larger values are preferred to smaller
ones. In order to apply the proposed model to real problem instances, a simple
transformation of the criteria scales is required.

The variables considered in the mathematical program correspond to the
HMR-Sort parameters that are to be inferred (i.e, criteria weights wij and ma-

jority thresholds λi for all models i as well as bounding profiles bnh for the top
model), and additional “technical” variables which are necessary to formulate
the constraints. These variables are listed in Table 4.

The Mixed-Integer Linear Programming formulation for inferring an HMR-
Sort model does not have any objective function, as we are interested only in
finding a feasible solution according to the following constraints:

1 > λi > 0.5 + ε ∀j ∈ J i,∀i ∈ I (3)∑
j∈Ji

wij = 1, with wij > ε ∀j ∈ J i,∀i ∈ I (4)

1 > bnh+1,j > bnh,j > 0 ∀j ∈ Jn,∀h ∈ {1, . . . , ki-1}
(5)
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wij continuous : the criteria weights of each model, ∀i ∈ I, ∀j ∈ J i
λi continuous : the majority thresholds of each model, ∀i ∈ I
bnh,j continuous : the performance of the bounding profiles of the top model

∀j ∈ Jn, ∀h ∈ {1, . . . , kn − 1}
sia,h binary : 1 if alternative a outranks profile bih, and

0 otherwise ∀a ∈ A, ∀i ∈ I\{1}, ∀h ∈ {1, . . . , ki − 1}
δ+a,j binary : 1 if alternative a outranks the upper profile of its assigned category K(a)

of the top model on criterion j ∈ Jn, i.e. bnK(a),j , and 0 otherwise

∀a ∈ A, ∀j ∈ Jn
δ−a,j binary : 1 if alternative a outranks the lower profile of its assigned category K(a)

of the top model on criterion j ∈ Jn, i.e. bnK(a)−1,j , and 0 otherwise

∀a ∈ A, ∀j ∈ Jn
ω+
a,j continuous : equal to wnj if δ+a,j = 1 and to 0 otherwise, ∀a ∈ A, ∀j ∈ Jn
ω−a,j continuous : equal to wnj if δ−a,j = 1 and to 0 otherwise, ∀a ∈ A, ∀j ∈ Jn

Table 4: Variables of the mathematical model.

∑
j∈Ji

g
a,γi

j
>bih,j

wij > λi + sia,h − 1 ∀a ∈ A,∀i ∈ I\{n},∀h ∈ {1, . . . , ki-1}

(6)∑
j∈Ji

gi
a,γi

j
>bih,j

wij + ε 6 λi + sia,h · (1 + ε) ∀a ∈ A,∀i ∈ I\{n},∀h ∈ {1, . . . , ki-1}

(7)∑
h={1,...,ki-1}

s
γnj
a,h

ki-1
− bnK(a)−1,j > δ−a,j − 1 ∀a ∈ A,∀j ∈ Jn if K(a) > 1

(8)∑
h={1,...,ki-1}

s
γnj
a,h

ki-1
− bnK(a)−1,j + ε 6 δ−a,j · (1 + ε) ∀a ∈ A,∀j ∈ Jn if K(a) > 1

(9)∑
h={1,...,ki-1}

s
γnj
a,h

ki-1
− bnK(a),j > δ+a,j − 1 ∀a ∈ A,∀j ∈ Jn if K(a) < kn

(10)∑
h={1,...,ki-1}

s
γnj
a,h

ki-1
− bnK(a),j + ε 6 δ+a,j · (1 + ε) ∀a ∈ A,∀j ∈ Jn if K(a) < kn

(11)

wnj > ω−a,j > 0 ∀a ∈ A,∀j ∈ Jn (12)

14



δ−a,j > ω−a,j > δ−a,j + wnj − 1 ∀a ∈ A,∀j ∈ Jn (13)

wnj > ω+
a,j > 0 ∀a ∈ A,∀j ∈ Jn (14)

δ+a,j > ω+
a,j > δ+a,j + wnj − 1 ∀a ∈ A,∀j ∈ Jn (15)∑

j∈Jn
ω−a,j > λn ∀a ∈ A (16)

∑
j∈Jn

ω+
a,j + ε 6 λn ∀a ∈ A (17)

(18)

Constraint (3) limits the majority thresholds of all models to an interval
where the coalition of criteria in favor of an outranking corresponds to a qualified
majority.

Constraint (4) is needed to normalize the criteria weights. A non-zero lower-
bound is also added in order to have all the criteria play a role in the pairwise
comparisons of alternatives.

Constraint (5) is used to bound the profiles evaluations to the unit interval
and to ensure the dominance structure on the set of profiles. We assume here,
without loss of generality, that all criteria scales are in the unit interval and
that larger evaluations are preferred to lower ones.

Constraints (6) and (7) are used to model the outranking relations be-
tween an alternative a ∈ A and the profiles bih for any model i ∈ I\{n},
∀h ∈ {1, . . . , ki − 1}. The bottom profile of the lowest category and the top
profile of the highest category are not considered in order to reduce the number
of unnecessary variables and constraints. Since both the alternative and profiles
evaluations are known, we take the sum of the weights where the alternative
is at least as good as the profile and compare it to the majority threshold λi.
If the former is larger or equal to the latter then sia,h becomes 1, otherwise

sia,h becomes 0. sia,h corresponds to the global concordance relation between

a and bih. Also note that we use the mapping function γ in order to identify
the real criterion of alternative a that corresponds to the jth criterion of model
i ∈ I\{N}.

Constraints (8) and (9) construct the intermediate evaluation of alternative
a ∈ A on each criterion required by the top model by summing the values of the
corresponding s variables. This evaluation is used to model the partial concor-
dance index on the jth criterion of the top MR-Sort model between alternative
a and the bottom (respectively top) profile of the category (denoted through
K(a)) to which it should be assigned.

Constraints (12) and (13) fix ω−a,j to wnj if δ−a,j = 1 and to 0 otherwise.

Constraints (14) and (15) fix ω+
a,j to wnj if δ+a,j = 1 and to 0 otherwise.

Finally, constraints (16) and (17) model the overall assignment of alternative
a ∈ A by forcing the sum of ω−a,j to be greater or equal to the majority threshold
of model n, i.e. making alternative a outrank the lower profile of its assigned
category, and by forcing the sum of ω+

a,j to be strictly lower than this threshold,
i.e. making alternative a not outrank the upper profile of its assigned category.
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Since this mathematical program is used to infer a feasible HMR-Sort model,
we denote it as MIPfeas.

4.3. Robustness and inconsistencies

Since multiple sets of parameters values of an HMR-Sort model may perfectly
model the preference statements of a DM, we first consider adapting the previous
mathematical model in order to provide more robust solutions.

Our intention is to propose an HMR-Sort model such that slight variations in
its parameters would not invalidate some of the expressed preference statements.
We therefore seek to maximize the support of an alternative being assigned to
a given category, which corresponds to maximizing the sum of the weights of
the criteria on which it outranks the lower profile of the considered category
and minimizing the sum of the weights of the criteria on which it outranks the
upper profile. We do this for all MR-Sort models within our HMR-Sort model
and denote the mathematical model as MIProb.

The new model adds a single continuous variable σ. Constraints (6) and (7)
are updated as follows :∑

j∈Ji
g
a,γi

j
>bih,j

wij > λi + σ + sia,h − 1 ∀a ∈ A,∀i ∈ I\{n},∀h ∈ {1, . . . , ki-1}

(19)∑
j∈Ji

gi
a,γi

j
>bih,j

wij + ε 6 λi − σ + sia,h · (1 + ε) ∀a ∈ A,∀i ∈ I\{n},∀h ∈ {1, . . . , ki-1}

(20)

while constraints (16) and (17) are updated as follows :∑
j∈Jn

ω−a,j > λn + σ ∀a ∈ A (21)

∑
j∈Jn

ω+
a,j + ε 6 λn − σ ∀a ∈ A (22)

Finally, an objective function seeking to maximize σ is also included.
While the previous two mathematical models assume that an HMR-Sort

model consistent with all of the DMs statements can be found, in practice this
may not always be the case.

For both of the previously proposed mathematical models, we therefore de-
fine two new variants that seek to maximize the number of fulfilled assignments.
We require a new set of binary variables ta,∀a ∈ A, which, when equal to 1 will
enforce the assignment of alternative a to the desired category K(a) and when
equal to 0 will relax the constraints enforcing such an assignment.
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In the case of MIPfeas, constraints (16) and (17) become :∑
j∈Jn

ω−a,j > λn − (1− ta) ∀a ∈ A (23)

∑
j∈Jn

ω+
a,j + ε 6 λn + (1− ta) ∀a ∈ A (24)

Furthermore, the objective function seeks to maximize
∑
a∈A

ta. We denote

this program as MIPmax-assig.
In the case of MIProb, constraints (16) and (17) become :∑

j∈Jn
ω−a,j > λn + σ − (1− ta) ∀a ∈ A (25)

∑
j∈Jn

ω+
a,j + ε 6 λn − σ + (1− ta) ∀a ∈ A (26)

The objective function becomes a sequence of two objectives, the first seeking
to maximize the number of fulfilled assignments while the second seeking to find
a robust HMR-Sort model. The first objective takes precedence over the second,

which can be modeled as
∑
a∈A

ta +σ, since σ will never exceed a value of 0.5 due

to constraint (3). We denote this program as MIPmax-assig-rob.

5. Empirical validation

In order to test the proposed model we have set up a series of empirical tests
on a set of artificially generated benchmarks. The main goals of these tests were
to analyze: a) the computation time b) the ability of the proposed approach to
restore the original model c) its ability to handle noisy data.

5.1. Experiment design and implementation details

The experimental design is depicted in Fig. 4. We randomly construct an
initial HMR-Sort model, denoted with Ω, where:

• the number of models n, the number of criteria for each model mi,∀i ∈
{1, . . . , n}, and the number of categories for each model ki,∀i ∈ {1, . . . , n}
are randomly generated;

• the majority thresholds for each model λi ∈ {1, . . . , n} are randomly gen-
erated in the (0.5, 1] interval;

• the criteria weights for each model wi,∀i ∈ {1, . . . , n} are randomly gen-
erated using the method described in [38];
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Figure 4: Design of experiments

• the limit profiles for each model Bi,∀i ∈ {1, . . . , n} are constructed by
randomly generating ki − 1 values in the [0, 1] interval on each criterion
and then sorting them in ascending order, so as to respect the dominance
structure on the profiles;

A training set of ntr alternatives Atr is randomly generated, where the evalu-
ations of the alternatives on each criterion are drawn from a uniform distribution
in the unit interval. The assignment examples are constructed by applying the
Ω model on these alternatives in order to extract their global assignments. The
alternatives in Atr together with their global assignments are then used by the
proposed mathematical model in order to infer an HMR-Sort model, that we
denote Ω′. This model is then compared to the original model (Ω), however,
since multiple sets of parameters of an HMR-Sort model may express the same
preferences of a DM, we do not employ a direct comparison of the parameters
of these two models. Instead, we use a test set of nte alternatives Ate generated
in the same way as Atr and compare their assignments by the two models. We
motivate this firstly by the difficulty to propose a metric correctly combining
the multiple and heterogeneous parameters of an HMR-Sort model. Secondly,
our goal consists in modeling the preferences of a DM and not retrieving the
precise values of the parameters of model which inherently seeks to approximate
the DM’s perspective.

We have constructed two sets of experiments based on the complexity of
the generated HMR-Sort models. The first corresponds to smaller model in-
stances where n ∈ {4, 5}, mi ∈ {3, 4},∀i ∈ {1, . . . , n} and ki ∈ {3, 4},∀i ∈
{1, . . . , n}. The second corresponds to larger model instances where n ∈ {5, 6},
mi ∈ {4, 5},∀i ∈ {1, . . . , n} and ki ∈ {4, 5},∀i ∈ {1, . . . , n}. In both cases
nte = 5000.

We have generated 50 HMR-Sort models (Ω) for each of the two sets of
instances by randomly drawing the previously listed parameters from the given
pools of values. The experiments have been performed using the solver IBM
ILOG CPLEX 12.8 on an AMD Opteron TM 6176 SE machine with 250 GB
RAM. However, for the smaller instances we allowed for a parallelism of 4 cores
and up to 4 GB RAM for each execution, while for the larger instances we
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used twice as much resources. In both cases, the results should be equivalent
to using currently available personal computers. We have additionally set a 60
min timeout for each execution.

5.2. Results

We begin by presenting the results of the MIPfeas and MIPmax-assig ap-
proaches on the smaller sized instances in Figure 5. Each plot illustrates the
evolution of a different indicator when sets of assignment examples of different
sizes (from 5 to 100), are used as training data. Furthermore, four lines are
depicted corresponding different degrees of errors, or noise, that are introduced
in the assignments of the alternatives in the training data.

Figure 5a illustrates the average classification accuracy over the training
data, or the capacity of the considered approach to retrieve a model that matches
the assignments of the training set of alternatives. Error bars are also depicted
in order to indicate the variability of these results. We observe that, when
no errors are introduced in the assignment examples, the approach is able to
completely restore them every time. However, as more and more alternatives
receive errors in their assignments, the classification accuracy of the inferred
model also decreases. We see how these values converge asymptotically to the
95%, 90% and 85% levels when 5%, 10% and 15% of the assignment examples
get their categories changed respectively. When fewer assignment examples are
considered, however, we are able to retrieve HMR-Sort models that satisfy a
larger proportion of these assignment examples.

Figure 5b illustrates the average classification accuracy over the test data, or
the capacity of the considered approach to retrieve the original model. We see
that, as more assignment examples are considered, the inferred model comes
closer and closer to the original model. Adding errors in the training data
slightly decreases this ability, however to a smaller extent than when considering
the classification accuracy over the training data.

Figure 5c shows the proportion of times the approach was forced to use
MIPmax-assig as MIPfeas was not able to find a model satisfying the entire set
of assignment examples provided as training data. We again observe that when
no errors are present in the data, there is no need to use MIPmax-assig. We also
notice than when fewer assignment examples are provided, MIPfeas is able to
find a model satisfying all assignments in the training data even when errors
are included.

Finally, Figure 5d shows the average execution time of the entire approach,
including the time needed to execute MIPfeas as well as the time needed for
MIPmax-assig when this program is needed. The plot illustrates the time axis
on a logarithmic scale, which indicates an exponential increase in computation
time as a function of the number of provided assignment examples. A slight
top-off is observed which is due to the one hour limit that was enforced. We
observe that the presence of errors in the training data significantly increases
the time required to infer a model, which in part is due to the necessity of
solving the more complex MIPmax-assig in addition to MIPfeas. This is consistent
with the fact that the largest increase in computation time is observed between
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Figure 5: Results on the smaller instances using MIPfeas and MIPmax-assig
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the experiments containing 0% and 5% errors in the training data, while the
differences between the experiments containing larger proportions of errors are
less significant.

We continue by comparing these results to those when an objective function
seeking to construct more robust HMR-Sort models is used. We present the
results only for the cases where 0% and 10% errors are added to the training
data in order to improve the readability of the results in Figure 6.
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Figure 6: Results on the smaller instances comparing the approaches with and without a
centering criterion

When no errors are present, we see that there are no significant differences
w.r.t. the classification accuracy over the test data between the two approaches.
Furthermore, the approach seeking to infer a robust HMR-Sort model takes a
significant larger amount of time to finish. When errors are present in the
training data, there is a slight increase in the classification accuracy of the
second approach over the test data, however this comes at a significant cost
w.r.t. the required computational time. We may therefore conclude that using
the proposed robustness criterion in the mathematical program is not worth the
added computational effort required.

Finally, we look at the results of the approaches not using a robustness
criterion over the larger problem instances, which we depict in Figure 7.

We illustrate the results when only 0%, 5% and 10% errors are included in
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Figure 7: Results on the larger instances using MIPfeas and MIPmax-assig

22



the assignment examples due to the very high execution times required when
introducing 15% errors. Figure 7a shows the classification accuracy over the test
data and the results are consistent with those found on the smaller instances:
increasing the number of assignment examples leads to more accurate inferred
models, while errors in the assignment examples slightly lower this accuracy.
Figure 7b shows the required execution times, and again, the results show an
exponential increase with the number of assignment examples, capped by the
one hour time limit that we imposed. Figure 7c shows the percentage of problem
instances that could not be solved at all within this time limit. When no errors
are present in the assignment example we can solve all instances with up to
100 assignment examples. However, when errors are present, starting from 50
assignment examples for 5% errors and from 30 assignment examples for 10%
errors, we begin to not be able to solve some problem instances. For the case
of 10% errors, we can also notice that no problem instance can be solved in one
hour when considering more than 80 assignment examples.

6. Conclusions and perspectives

In this work we proposed an indirect inference approach based on mathe-
matical programming in order to construct a hierarchical majority-rule sorting
model that may be used to solve complex problems that can be divided into
sub-problems and require the input of multiple DMs. Several tests have been
performed on a large number of generated instances, which helped identify the
limits for applying this approach on real problems. We find that, using currently
available personal computers, we can infer accurate models within a relatively
short amount of time for smaller two level hierarchical problems when no errors
are present in the training data, while for larger problems we are limited to a
smaller amount of input information when errors are present.

The proposed approach may easily be extended to other sorting approaches
such as, for example, ELECTRE-Tri-B. Extending its applicability on larger
problem instances and when using larger amounts of information in the form of
assignment examples may be achieved by exploring metaheuristic alternatives
to the exact inference approach. Furthermore, additional heterogeneous infor-
mation related to the criteria weights and majority thresholds could also be
included in order to boost the performance of the proposed approach. A further
generalisation of the inference approach to more than two levels and to problem
structures that are not limited to a tree structure in an additional perspective
that merits further investigation.
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