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Abstract
In this study, we present an epidemic controlled SIRD model of a vaccinated population with
two types of control strategies: mask wear and screening. The aim of this study is to minimize
the number of the deceased while keeping a minimal cost of mask advertising and screening. The
model is proved to be well posed and to have an invariant region . Also, a study of the steady states’
stability is effected using the basic reproduction number. As for the optimal control analysis, we
study the existence of an optimal solution in two different cases: constant and variable mask wear.
The characterization of the optimal control is carried out using Pontryagin’s minimum principle in
both cases. Numerical simulations are conducted for the constant mask wear case with different
values of maximal screening for comparison. The findings of the optimal control analysis and
numerical simulations both reveal that combining vaccination with the optimal pair of strategies
contributes enormously to lowering the number of infected and dead individuals. Although zero
infection is not achieved in the population, this study implies that carrying an optimal approach
constitutes a major step in controlling the spread of the disease to the barest minimum.
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Optimal control, Structured models, COVID 19, Basic reproduction number

I INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 commonly known as SARS-CoV-2 is a novel
coronavirus that has caused the global pandemic of COVID-19 first reported in Wuhan China.
The virus has proved to be very difficult to contain out of the quarantine measures due to its
high contagion and lethalness. On the other hand, the economic pressure on the governments
has shown how inconvenient the lockdown strategy is and how much required it is to carry
on with a normal way of life. The problem has been treated biologically in the first place
by trying to develop vaccine and treatment. However, despite the implementation of several
vaccines and their use, many countries kept registering high numbers of deaths and infections.
For that, the problem was also considered from a mathematical point of view. This is not a first
as mathematical modeling has provided a very powerful tool for investigating the dynamics of
infectious diseases and controlling them. Previous studies have introduced different models
allowing to predict and assess intervention strategies during pandemic spread [7, 8] such as
Ebola [9], Tuberculosis [4] or the current Covid-19 [11, 15]. In our case, we consider a SIRD
model where we introduce the disease-caused death equation into the model dynamics as our
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focus, in the second part of this study, is on minimising the number of these deaths. The study
was conducted over an eight-month period as it is the vaccine-induced immunity time interval.
During that time, the population is supposed to be completely vaccinated. Thus, the ultimate
goal of this study is to minimise the number of deaths among a vaccinated population with
two basic strategies: mask wear and screening at a minimal cost. This presents the possibility
of containing the disease without any extreme measures such as lockdown. Modeling such
a situation represents a very good opportunity as it gives a larger view of the situation and
offers the chance of setting a good vaccination schedule that can lead to a total containment
of the disease. In this work, both the mathematical and numerical analysis of a controlled
epidemiological model of four subpopulations: susceptible, infectious, recovered, and dead are
presented. Section 2 is a study of the dynamics of the SIR model, its equilibria, and their
stability. Section 3 focuses on the optimal control problem that aims to reduce the number of
the deceased while keeping a minimal screening cost. Section 4 is dedicated to the numerical
simulations and the discussion. Then, a conclusion was drawn in the last section.

II MODEL DESCRIPTION AND ANALYSIS

This section outlines the formulation of a deterministic SIRD model for COVID-19. The total
population at time t is divided into four subpopulations: Susceptible, S(t); Infectious, I(t);
Recovered, R(t) and Dead, D(t). Two types of control u1(t) and u2(t) are used where 1−u1(t)
is the probability of mask wear and u2(t) is the screening rate. In the susceptible compartment,
S(t), people are recruited into the population at a constant rate, Λ, through birth. They exit this
compartment either through natural mortality, µ, or infection induced by the disease with the
force of infection, u1(t) β I(t) where β denotes the disease transmission coefficient. The infec-
tious compartment, I(t), gains population through infection induced by the disease at the rate
of u1(t) β S(t). A proportion, α, exits this compartment through recovery at a rate of u2(t) + δ
after screening or end of the incubation period, the remaining proportion, 1 − α, of the infec-
tious individuals leaves this compartment at a rate of u2(t) + δ towards the dead compartment
through disease induced death, D(t). Recovered individuals are assumed to develop immunity
to COVID-19, and compartments, S , I and R are assumed to have a natural mortality rate, µ.
Therefore, the epidemic model is given by the following system:

dS(t)
dt

= Λ− u1(t)βS(t)I(t)− µS(t)
dI(t)
dt

= u1(t)βS(t)I(t)− (u2(t) + µ+ δ)I(t)
dR(t)
dt

= α (u2(t) + δ) I(t)− µR(t)
dD(t)
dt

= (1− α) (u2(t) + δ) I(t)

(1)

subject to the following initial conditions

S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0

The whole population is assumed to be vaccinated, and all parameters of the model are positive.
Moreover, parameter α is less than 1.

In what follows, we will study the dynamic of the submodel, susceptible, infected and recovered
(SIR) model, in the case where controls are constants.

2.1 Analysis of the SIR model with constant controls

The SIR model corresponds to the first three equations of system (1):
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dS(t)
dt

= Λ− u1βS(t)I(t)− µS(t)
dI(t)
dt

= u1βS(t)I(t)− (u2 + µ+ δ)I(t)
dR(t)
dt

= α (u2 + δ) I(t)− µR(t)

(2)

We aim here to understand the impact of time-independent control parameters, i.e. u1(t) = u1

and u2(t) = u2, on the transmission dynamics of the COVID-19.

By the following, we prove that the solutions are uniformly bounded in a positive invariant
region

Ω =

{
(S, I, R) ∈ R3

+ : S + I +R ≤ Λ

µ

}
(3)

Theorem 1:
For any non-negative initial condition, the solution of system (2) remains non-negative and
positively bounded. In addition, the set Ω is positively invariant for the epidemic model (2).

Existence and global stability of equilibrium points

In this section, the existence and the stability of both the disease-free and the endemic equilibria
of model (2) are examined.

First, we need to define the basic reproduction number, R0. This quantity predicts the spread of a
disease in the population. It is defined as the average number of secondary infections generated
when an infected person is introduced into a host population where everyone is susceptible and
it is given by:

R0 =
∂IF (S, I, R)

∂IV (S, I, R)
|(Λ

µ
,0,0) =

u1βΛ

µ (u2 + µ+ δ)
(4)

where F (S, I, R) = u1(t)βS(t)I(t) and V (S, I, R) = (u2(t) + µ+ δ)I(t) denote respectively
the rates of the transfer in and out of the infected compartment.

Then, it is easy to show that the system (2) has two steady states: a disease-free equilibrium
(DFE) given by E∗

0 = (Λ
µ
, 0, 0) that exists for any value of the parameters and an endemic

equilibrium E∗
1 = (S∗, I∗, R∗) in the interior of Ω that exists if and only if R0 > 1 and where,

S∗ =
Λ

µR0

, I∗ =
Λ

u2 + µ+ δ

[
1− 1

R0

]
, R∗ =

α(u2 + δ)(R0 − 1)

u1β
.

For the global stability of the endemic equilibrium we use popular types of Lyapunov functions
i.e, the common quadratic and Volterra-type functions.

Theorem 2:
If R0 ≤ 1, then the DFE, E∗

0 , is globally asymptotically stable on Ω. If R0 > 1, then the
endemic equilibrium, E∗

1 , is globally asymptotically stable.
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III OPTIMAL CONTROL

In this section, we aim to reduce the number of deceased individuals while keeping a minimal
cost of screening. The cost of mask wear advertising campaign is treated in two cases: constant
in the first part and variable in the second. Note that the controls in this section are no longer
considered constant.

3.1 Constant mask wear cost

As aforementioned, the objective is to reduce the number of deceased individuals at a finite time,
D(tf ), with a minimal cost of screening

∫ tf

0
u2
2(t)dt. The constant cost of mask wear advertising

campaign has no effect on the objective function and is assumed equal to zero. Therefore, the
objective function that we seek to minimise over a finite time horizon [0, tf ] is given by:

J(u1, u2) = A1D(tf ) + A2

∫ tf

0
u2
2(t)dt

=
∫ tf

0
(A1 (1− α) (u2(t)+ δ)I(t) + A2u

2
2(t)) dt

(5)

Where the set of admissible controls U is given by:

U = {u = (u1, u2) ∈ (L∞(0; tf ))
2 | 0 ≤ umin

i ≤ ui(t) ≤ umax
i ≤ 1 , for i = 1, 2}

Theorem 3:
There exist an optimal control u∗ and a corresponding state variables vector (S0, I0, R0, D0)
that minimize the objective function.

Theorem 4:
Given optimal controls u∗

1(t) , u∗
2(t) and the corresponding solution S0(t) , I0(t) , R0(t) and

D0(t) of the corresponding state system (1) - (5), there exist adjoint variables λ1 , λ2 , λ3 and
λ4 that satisfy

λ̇1 = βI(λ1 − λ2)u1 + λ1µ

λ̇2 = βS(λ1 − λ2)u1 + λ2(u2 + µ+ δ)− A1(1− α)(u2 + δ)

λ̇3 = µλ3

λ̇4 = 0

(6)

with transversality conditions:

λi(tf ) = 0 , i = 1, 2, 3, 4. (7)

Furthermore, the optimal control is given by u∗ = (u∗
1, u

∗
2) where

u∗
1 =

{
umin
1 , if λ2 − λ1 > 0

umax
1 , if λ2 − λ1 < 0

u∗
2 =


(λ2−(1−α)A1)I

2A2
, if umin

2 < (λ2−(1−α)A1)I
2A2

< umax
2

umin
2 , if (λ2−(1−α)A1)I

2A2
< umin

2

umax
2 , if (λ2−(1−α)A1)I

2A2
> umax

2
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3.2 Variable mask cost

In this section we add the mask advertising campaign cost as a quadratic term −
∫ tf
0

A3u1(t) to
the previous objective function. The latter becomes:

J(u1, u2) =

∫ tf

0

(
A1 (1− α) (u2(t)+ δ)I(t) + A2u

2
2(t)− A3u

2
1(t)

)
dt (8)

For the same set of admissible controls aforementioned, one has the following results:

Theorem 5:
There exist an optimal control u∗ and a corresponding state variables vector (S0, I0, R0, D0)

that minimize the objective function (8) if and only if A3

A2
≤ (

u2 − v2
u1 − v1

), for all u, v ∈ U .

Theorem 6:
Given optimal controls u∗

1(t) , u∗
2(t) and the corresponding solution S0(t) , I0(t) , R0(t) and

D0(t) of the corresponding state system (1) - (8), there exist adjoint variables λ1 , λ2 , λ3 and
λ4 that satisfy

λ̇1 = βI(λ1 − λ2)u1 + λ1µ

λ̇2 = βS(λ1 − λ2)u1 + λ2(u2 + µ+ δ)− A1(1− α)(u2 + δ)

λ̇3 = µλ3

λ̇4 = 0

(9)

with transversality conditions:

λi(tf ) = 0 , i = 1, 2, 3, 4. (10)

Furthermore, the optimal control is given by u∗ = (u∗
1, u

∗
2) where

u∗
1 =

{
umin
1 , if umin

1 < βSI(λ2−λ1)
2A3

< 1 and H(umin
1 ) < H(umax

1 )

umax
1 , if 0 < βSI(λ2−λ1)

2A3
< umax

1 and H(umin
1 ) > H(umax

1 )

u∗
2 =


(λ2−(1−α)A1)I

2A2
, if umin

2 < (λ2−(1−α)A1)I
2A2

< umax
2

umin
2 , if (λ2−(1−α)A1)I

2A2
< umin

2

umax
2 , if (λ2−(1−α)A1)I

2A2
> umax

2

where H is the Hamiltonian of the model.

IV NUMERICAL SIMULATIONS AND DISCUSSION

In this section, system (1) is solved numerically for the constant mask wear case, and the results
obtained are presented below. The numerical simulations were carried out by implementing a
4th order Runge-Kutta Method (see, for example [5]). This iterative method consists of solving
the system of equations(1). Details of the application of this method are developed in [10].
The parameters used are presented in table 1. To start, the system is solved using the set of
parameters listed above and the following initial conditions

S(0) = 11718548; I(0) = 2629; R(0) = 0; D(0) = 0.
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Parameters Description Values References
α The rate at which infected individuals become cured ≈ 0.99 [12]
N(0) The total size of the population 11172177 [14]
β The disease transmission coefficient 0.24032955/N(0) Fitted
1/δ The mean duration of infection 5.073 days Fitted
µ The death rate 0.000017534 [14]
Λ The birth rate 510.5937 [14]
A1 The balancing factor associated with cost component 30 Assumed
A2 The balancing factor associated with cost component 10 Assumed
1− u1 Mask wear rate per unit of time 0.4 < u1 < 1 Assumed
u2 Screening rate per unit of time 0 < u2 < 0.2 Assumed

Table 1: Description and values of the parameters.

We introduced control and solved the optimality system. With the use of these parameters and
the adjoint variables dynamics, the following solutions for λ1 and λ2 were obtained. For this set
of parameters, λ2 − λ1 is always positive (see figure 1). According to the optimal control study
conducted above, this results in

u∗
1 = umin

1 .

For that value of u1, one has maximal constant mask wear while the screening rate starting at
0.2 remains almost constant during the first 150 days then decreases to 0 (see figure 2).

Figure 1: Adjoint variables λ1 and λ2

Figure 2: Optimal mask wear rate 1− u∗1 (left) and screening rate u∗2 (right) per unit of time

Figure 3: Dynamics of state variables per unit of time in two cases: without any control measures
1− u1 = u2 = 0 (a)(on the left) and with optimal control pair (u∗1, u

∗
2) (b)(on the right)
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Then, the state variables were plotted in two cases: controlled and uncontrolled. In the absence
of any form of control, the susceptible curve starts decreasing almost from the start until it
reaches a value near zero. On the other hand, the curve of the infected reaches a peak that
exceeds 2. 105 and the number of deaths reaches 4. 104. However, once the system is controlled,
a huge difference in the dynamics is observed. The susceptible number is increasing starting
from day 100 as opposed to the infections that start at a maximal value of 3. 104 then decrease
to 0. The dead curve is still increasing; however, to a maximal value of less than 450 ( see figure
3).

The coefficients, A1 and A2, are balancing cost factors. We assume that A1 associated with the
number of deaths D(tf ) is greater than or equal to A2, associated with the screening u2. The
fractions of the weighing factors, A1

A2
= 1, 3, 10 and 100, are presented in Figure (4). And to

illustrate the optimal strategy we have chosen the weighing factor, A1

A2
= 3 since the only change

observed was in the values of the controls rather than the behaviour.

Figure 4: The screening rate u∗2 per unit of time

Figure 5: Simulation of SIRD model for two values of maximal screening umax
2 = 0.2 (on the left),and

umax
2 = 0.5(on the right); and four different values of mask wear 1− umin

1 ∈ {0.2, 0.4, 0.6, 0.9}

In order to present the importance of maximal mask wear and screening values, the state vari-
ables were represented for two values of maximal screening umax

2 ∈ {0.2; 0.5} and four dif-
ferent values of mask wear 0.2, 0.4, 0.6, 0.9 (See figure 5). In both cases, the same behaviour
is observed: infections decrease, both the susceptible and recovered increase and deaths have
a maximal threshold. However, a difference in the pace is noticed as infections decrease much
faster for high screening values and the maximal value of deaths is lower: less than 450 with
high screening as opposed to over 600 for low screening.
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V CONCLUSION

In this work, a study of COVID-19 transmission for the case of Tunisia was carried out. A four-
compartmental mathematical model of a vaccinated population with mask wear and screening
as time-dependent control measures has been developed. The model is proven to have an in-
variant region where it is well-posed and makes biological sense to be studied for the human
population. Different properties of the model, including global stability analysis of the equi-
libria, have been studied. Some of the parameter estimates were taken from literature, and the
remaining parameters were estimated based on real daily data of COVID-19 confirmed cases in
Tunisia. An optimal analysis of the model for the purpose of assessing the effect of mask wear
by the individuals and screening campaigns was conducted. The results showed that the opti-
mal practice of a combination of these two strategies in a vaccinated population significantly
reduces the number of infections and deaths. And for quicker results, it is required to set higher
maximal values of screening and mask wear (see figure 5 ).

A ANNEX 1
Proof of Theorem 3. The existence of the optimal control pair can be obtained using a result from [5, 8].
In fact, one can easily verify that:
1. The set of controls and corresponding state variables is nonempty.
2. The admissible set U is convex and closed.
3. The right-hand side of the state system 1 is bounded by a linear function in the state and control variables.
4. The integrand of the objective functional L is convex on U and there exists constants ω1 > 0, ω2 > 0 and ρ > 1
such that

L(u) ≥ ω2 + ω1(|u1|2 + |u2|2)
ρ
2 .

Proof of Theorem 4. In order to determine the optimal control, Pontryagin’s Minimum Principle was used [5]. The
latter changes the optimality system into a study of the Hamiltonian variations through the use of adjoint functions.
The Hamiltonian is given by

H(t, u,X, λ) =< λ(t), Ẋ(t) > +A1 (1− α) (u2(t) + δ) I(t) +A2u
2
2(t)

where X = (S, I,R,D) is the vector of state variables and λ = (λ1(t), λ2(t), λ3(t), λ4(t)) is the vector of adjoint
variables and < ., . > is the scalar product. According to Pontryagin’s minimum principle, the adjoint functions
(λ1(t), λ2(t), λ3(t), λ4(t)) have the following dynamics

λ̇1 = βI(λ1 − λ2)u1 + λ1µ

λ̇2 = βS(λ1 − λ2)u1 + λ2(u2 + µ+ δ)− λ3α(u2 + δ)− (1− α)(u2 + δ)λ4 −A1(1− α)(u2 + δ)

λ̇3 = µλ3

λ̇4 = 0

with the final conditions
λ(tf ) = (0, 0, 0, 0).

From the third and fourth equations, we can deduce that λ3 ≡ 0 and λ4 ≡ 0.
Consequently, the Hamiltonian becomes

H = (Λ− u1(t)βS(t)I(t)− µS(t))λ1 + (u1(t)βS(t)I(t)− (u2(t) + µ+ δ)I(t))λ2

+A1 (1 α) (u2(t)+ δ)I(t) +A2u
2
2(t).

(11)

and the adjoint variables dynamics is reduced to

λ̇1 = βI(λ1 − λ2)u1 + λ1µ

λ̇2 = βS(λ1 − λ2)u1 + λ2(u2 + µ+ δ)−A1(1− α)(u2 + δ)
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Also, the Pontryagin’s Minimum Principle states that the optimal control u∗ minimizes the Hamiltonian, hence we
should seek the minimum of H . So we need to study the critical points of the Hamiltonian.{ ∂H

∂u1
= βSI(λ2 − λ1)

∂H
∂u2

= (−λ2 + (1− α)A1) I + 2A2u2

The equation ∂H
∂u2

= 0 implies that

u∗
2 =

(λ2 − (1− α)A1) I

2A2

whereas the first equation shows that the minimum is either reached at u∗
1 = umin

1 or u∗
1 = umax

1 according to the
sign of λ2 − λ1.

In fact, when u1 is considered constant, H would depend on u2 only and therefore u∗
2 is a minimum to H since

A2 > 0. In that case, one has
H(u1, u2) > H(u1, u

∗
2)

Since umin
1 ≤ u1 ≤ umax

1 then two scenarios are possible
• If βSI(λ2 − λ1) > 0 i.e. λ2 − λ1 > 0 then

(λ2 − λ1)u
min
1 ≤ (λ2 − λ1)u1 ≤ (λ2 − λ1)u

max
1

and consequently,
H(u1, u2) ≥ H(u1, u

∗
2) ≥ H(umin

1 , u∗
2)

• If βSI(λ2 − λ1) < 0 i.e. λ2 − λ1 < 0 then

(λ2 − λ1)u
min
1 ≥ (λ2 − λ1)u1 ≥ (λ2 − λ1)u

max
1

and consequently,
H(u1, u2) ≥ H(u1, u

∗
2) ≥ H(umax

1 , u∗
2)

Note that u∗
2 must satisfy umin

2 < u∗
2 < umax

2 to be taken into consideration. Otherwise,
• min

u2∈[umin
2 ,umax

2 ]
H = H(umin

2 ) if ∂H
∂u2

> 0 i.e. (−λ2 + (1− α)A1) I + 2A2u2 > 0

• min
u2∈[umin

2 ,umax
2 ]

H = H(umax
2 ) if ∂H

∂u2
< 0 i.e. (−λ2 + (1− α)A1) I + 2A2u2 < 0.

Assume now that there exists a subset [t0, t1] ∈ [0, tf ] such that ∂H
∂u = 0 for all t ∈ [t0, t1]. This implies that{

βSI(λ2 − λ1) = 0
(−λ2 + (1− α)A1) I + 2A2u2 = 0

And consequently  βSI(λ2 − λ1) = 0
(−λ2 + (1− α)A1) I = 0
A2 = 0

Since A2 > 0, we deduce that it is not possible to have ∂H
∂u2

= 0 and therefore we cannot discuss the case of
singular control in the usual terms. However, it is possible to have ∂H

∂u1
= 0 which implies that βSI(λ2−λ1) = 0.

Consequently, either S.I = 0 or λ2 − λ1 = 0. As the first possibility does not present quite an interesting case of
study, we move to the latter that yields to:

λ1 = λ2

⇒ λ̇1 = λ̇2

⇒ (u2 + δ)(λ1 −A1(1− α)) = 0

Thus, either u2 = −δ which is not taken into account since −δ /∈ [0;u∗
2] or λ1 = A1(1 − α) = λ2. However,

according to the co-state variables dynamics, one has λ̇1 = µλ1 which implies that λ1(t) = λ1(t0)e
µ(t−t0).

Consequently, λ1(t0)e
µ(t−t0) = A1(1 − α) , ∀t ∈ [t0, t1]. This equality is absurd except for one particular case

α = 1 and λ1(t0) = 0. Therefore, the existence of an interval [t0; t1] such that ∂H
∂u = 0 ∀t ∈ [t0; t1] is not

possible.
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Proof of Theorem 5. The two first conditions for the existence of optimal control are checked in the first case and
remain unchanged.
Now , let f(u) = A1 (1− α) (u2+ δ)I +A2u

2
2 −A3u

2
1 and u = (u1, u2), v = (v1, v2) ∈ U

f(u)− f(v) = (u1 − v1)
∂f
∂u1

+ (u2 − v2)
∂f
∂u2

−A2(u2 − v2)
2 +A3(u1 − v1)

2

f(u)− f(v) ≤ (u1 − v1)f
′
u1

+ (u2 − v2)f
′
u2

⇐⇒ A3

A2
≤ (

u2 − v2
u1 − v1

)2

Moreover, one has
f(u) ≥ ω1(|u1|2 + |u2|2)2/2 + ω2

where ω1 = A2 and ω2 < A1(1− α)(u2 + δ)− (A3 +A2)u
2
1

Proof of Theorem 6. Using Pontryagin’s minimum principle, one has the following dynamics for the adjoint func-
tions (λ1(t), λ2(t), λ3(t), λ4(t))

λ̇1 = βI(λ1 − λ2)u1 + λ1µ

λ̇2 = βS(λ1 − λ2)u1 + λ2(u2 + µ+ δ)− λ3α(u2 + δ)− (1− α)(u2 + δ)λ4 −A1(1− α)(u2 + δ)

λ̇3 = µλ3

λ̇4 = 0

with the final conditions
λ(tf ) = (0, 0, 0, 0).

Similarly to the first case, one can deduce from the third and fourth equations that λ3(t) = 0 and λ4(t) = 0.
Consequently, the Hamiltonian becomes

H = (Λ− u1(t)βS(t)I(t)− µS(t))λ1 + (u1(t)βS(t)I(t)− (u2(t) + µ+ δ)I(t))λ2

+A1 (1− α) (u2(t)+ δ)I(t) +A2u
2
2(t)−A3 u

2
1.

(12)

and the adjoint variables dynamics are reduced to

λ̇1 = βI(λ1 − λ2)u1 + λ1µ

λ̇2 = βS(λ1 − λ2)u1 + λ2(u2 + µ+ δ)−A1(1− α)(u2 + δ)

λ̇3 = µλ3

λ̇4 = 0

Also, the Pontryagin’s Minimum Principle states that the optimal control u∗ minimizes the Hamiltonian, hence we
should seek the minimum of H . So we need to study the critical points of the Hamiltonian. A critical point of H ,
u∗ = (u∗

1, u
∗
2), satisfies dH

du = 0 where{ ∂H
∂u1

= βSI(λ2 − λ1)− 2A3u1
∂H
∂u2

= (−λ2 + (1− α)A1) I + 2A2u2

The equation ∂H
∂u2

= 0 implies that

u∗
2 =

(λ2 − (1− α)A1) I

2A2

The first equation, shows that the critical value is ucrit
1 = βSI(λ2−λ1)

2A3
. However, it is easy to verify that this value

is a maximum to the parabola H(u2). In fact, one has three possible cases
• If ucrit

1 ∈ [umin
1 ;umax

1 ], then the minimum is umin
1 if H(umin

1 ) < H(umax
1 ) and umax

1 otherwise.
• If ucrit

1 > umax
1 , then the minimum is reached at umin

1 .
• If ucrit

1 < umin
1 , then the minimum is reached at umax

1 .
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B ANNEX 2

Parameter estimation
The root mean square error (RMSE) [6] is a frequently used method to measure the difference between the values
predicted by a model and the values observed in reality. Let Xobs be the vector of the observed values and Xmodel

the vector of modeled ones. The RMSE of a prediction model with respect to the estimated variable Xmodel is
defined as follows:

RMSE =

√√√√ 1

n

n∑
j=1

(Xmodel,j −Xobs,j)
2

Hence, to obtain optimal parameters {β, δ} for our model, one should solve the following problem:

min RMSE

Here, the fit is measured by computing the value of the RMSE function using data of deaths for the beginning of
the second wave in Tunisia which is calibrated from June 2021, provided by 1 as Xobs data. Xmodel is the death
data obtained by the SIRD model (1) subject to the following initial condition

S(0) = 1686692, I(0) = 34485, R(0) = 0, D(0) = 0

In addition, to minimize the RMSE function, we used the genetic method 2 to update the parameters β and δ.
Figure 6 shows the result of the fitted values using the optimal parameters β and δ.

Figure 6: The fitted value using the optimal parameters β = 1.3201448967113115e − 08 and δ =
0.098575
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