
HAL Id: hal-03702485
https://hal.science/hal-03702485

Submitted on 23 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Formal Specifications to Secure Implementations
Francis Jambon

To cite this version:
Francis Jambon. From Formal Specifications to Secure Implementations. Fourth International Con-
ference on Computer-Aided Design of User Interfaces, May 2002, Valenciennes, France. pp.51-62,
�10.1007/978-94-010-0421-3_4�. �hal-03702485�

https://hal.science/hal-03702485
https://hal.archives-ouvertes.fr

1

F. Jambon, “From Formal Specifications to Secure Implementations,” in Computer-
Aided Design of User Interfaces (CADUI'2002, Valenciennes, France), C. Kolski and J.
Vanderdonckt, Eds. Kluwer Academics, 2002, pp. [to be published].

From Formal Specifications to Secure
Implementations

Francis Jambon
LISI-ENSMA
BP 40109, 86961 Futuroscope cedex, France
e-mail: Francis.Jambon@ensma.fr
http://www.lisi.ensma.fr/members/jambon/

Abstract: This paper proposes a new tool-supported technique for the complete
development of safety-critical interactive systems from the specification to the
implementation step. Safety as well as usability properties are continuously
guaranteed during the development process. This technique relies on formal
specifications of the requirements and so uses the model-oriented formal
method B and a new ad-hoc software architecture model –CAV– which is an
hybrid of MVC and PAC models. At the implementation step, this technique
uses automatic code generation. Moreover, links from secure generated code
to native non-secure libraries are clarified. This development process is
illustrated by a fully implemented case study.

Key words: Safety-critical interactive system, formal specification, B method,
development process, usability property.

1. INTRODUCTION

Graphical user interfaces relying mostly on software, are being more and
more used for safety-critical interactive systems –for example aircraft glass
cockpits– the failure of which can cause injury or death to human beings.
Consequently, as well as hardware, the software of these interactive systems
needs a high level of dependability. Besides, on the one hand, the design
process must insure the reliability of the system features in order to prevent
disastrous breakdowns. On the other hand, the usability of the interactive

2 Francis Jambon

system must be carefully carried out to avoid user misunderstanding that can
trigger similar disastrous effects. So, the software dependability of these
safety-critical interactive systems rely as well on safety as on usability
properties. Usually, safety-critical systems act in the real-word, i.e., they
control the most of hardware –for example an aircraft engine. This
represents the major cause of their safety-critical characteristic. As a
consequence, most of the functional core of these systems are asynchronous,
i.e., the system state –for example the engine rotation speed– can be altered
independently of the user actions: a typical characteristic of process-control
systems.

The verification of safety as well as of usability properties of software
can be achieved by tests or proofs. For asynchronous systems, the former
technique is rather difficult to set up: the needed number of test sequences to
get a full cover may be not computable. That explains why the latter
technique –proofs– is a relevant one for the verification of safety-critical
interactive systems. In previous works, the adaptation of well-defined
approaches, combined with interactive models, brought partial but positive
results. For example, we can find the Interactors and related approaches [1,
2], model-oriented approaches [1], algebraic notations [3], Petri nets [4] or
Temporal Logic [5]. These techniques enable designers to prove some safety
as well as usability requirements. However, these formal techniques are used
in the development process in restricted conditions due to two constraints:
– They mostly rely on ad-hoc specification models –e.g. Interactors– and

do not use well-known software architecture models such as MVC or
PAC. The consequence is that these unusual models make the
specification task to most interactive systems designers uneasy to
achieve, and the refinement to implementation difficult to carry out.

– Few of them can preserve formal semantics of the requirements from the
specification to the implementation steps. Most of them can prove
usability properties at the specification level only. So, it cannot be proved
that the final software is exactly what has been specified.
Our development process uses the B formal method [6]. On the one hand,

compared to VDM and Z, the B method permits the definition of a
constructive process to build whole applications, respecting of all the rules
by the use of a semi-automatic tool [7]. Our first results [8] focus on low-
level interaction mechanisms, such as mouse and windows control and use
the Arch software architecture model [9]. Recent results detail the use of the
new CAV software architecture model for the specification of process-
control interactive systems [10]. We so demonstrated that the B method
might be used with profit in interactive system specification. This paper
shows that the B method and the CAV software architecture model can be
used to specify and thoroughly to implement a safety-critical interactive

From Formal Specifications to Secure Implementations 3

system. Moreover, a tool –Atelier B– is used to prove automatically all the
proof obligations and to generate C code. This work may be considered as a
new step towards the definition of an actual tool-supported interactive
development process based on formal approaches.

The paper is organized as follows: in section 2, our case study –the
battery control panel– is presented. Section 3 focuses on the specifications
and explains how the safety and usability requirements can be formally
checked. The B method and the CAV architecture model are also briefly
described. Then, in section 4, the implantation of the case study is detailed,
and at last, there is a discussion about used programming philosophies.

2. CASE STUDY

The case study is a control panel for a set of three rechargeable batteries.
The aim of this system is to produce continuous electric power supply. This
system may be a part of a more complex safety-critical system as avionics.
The operator is in charge of the selection of the switched battery.

(a)

Batteries

Load

Switches

ON

OFF

OFF

 (b)

Figure 1. Electric diagram (a) and interface layout (b) of the electric power supply

The functional core of the system is a set of three batteries and three
switches. As shown on figure 1-a, the load can be supplied by any battery. In
order to prevent short-cuts between batteries, only one switch must be in
position ON at the same time. Moreover, to ensure power supply continuity,
at least one switch must be in position ON. For the same reason, an empty
battery cannot be switched on. These three requirements of the functional
core deals with the safety of the system.

The operator interprets the system state via the positions –ON or OFF– of
the switches and the levels of the batteries –in percentage of maximum. The
operator can select the switched battery via three push-buttons. Figure 1-b
shows the user interface layout. When a switched battery level is below 10%
of its initial capacity, the percentage is replaced by a LOW warning message.

4 Francis Jambon

The user interface must ensure conformity, i.e., the interface state must
display exactly the functional core state. This last requirement deals with the
usability of the system.

This case study is an elementary safety-critical process-control system:
the operator can control side-effects on hardware –the switches– whereas the
hardware state –the batteries levels– is altered asynchronously. Both safety
and usability properties have to be ensured. We will reach such results
thanks to the formal method B.

3. SPECIFICATIONS

This first required step of our design process consists in modeling the
battery control panel requirements with the B language. Three kinds of
requirements must be fulfilled:
1. The system must be safe, i.e., the system must avoid short-cuts and it

must not be possible to switch on an empty battery.
2. The system must be conform, i.e., the user interface widgets must display

exactly the batteries levels and switches positions.
3. The system must be insistent, i.e., the system must warn the operator

when a battery is going to be empty.

3.1 The Control-Abstraction-View Model

Classic software architecture models as PAC or MVC are not compliant
with the drastic B language constraints. That is why we proposed a new
hybrid model from MVC and PAC to solve this problem. The design of this
new software architecture model –CAV– cannot be detailed here. The reader
should refers to [10] for a more detailed description of the model. Briefly
explained, the model uses the external strategy of MVC: the outputs of the
system are devoted to a specific module –the View– while inputs are
concerned by another one –the Control– that also manages symmetrical
inputs from the reactive system, that is directed by the third module –the
Abstraction. Like PAC, the Control module synchronizes and activates both
the View and the Abstraction modules in response to both user and
functional core system events, assuming though its role of dialogue
controller (center of figure 2).

3.2 Specifications Base

In the B method [6], abstract machines represent the specifications. The
typical B abstract machine starts with the keyword MACHINE and ends

From Formal Specifications to Secure Implementations 5

with the keyword END. A set of clauses can be defined in between. In our
case study, these clauses appear in the following order:
– INCLUDES is a programming in the large clause that allows to import

instances of other machines. Every component of the imported machine
becomes usable in the current machine. The included machine(s) can be
renamed by a prefix. This clause allows modularity capabilities.

– VARIABLES is the clause where all the attributes of the described model
are represented. Variables may be abstract or concrete, i.e. the latter can
be directly implemented, the former not.

– INVARIANT clause describes the properties of the attributes defined in
the VARIABLES clause. The logical expressions described in this clause
remain true in the whole machine and they represent assertions that are
always valid.

– OPERATIONS clause defines all the operations –functions and
procedures– that constitute the abstract data type represented by the
machine. Depending on the nature of the machine, the OPERATIONS

clause authorizes particular generalized substitutions to specify each
operation. The substitutions used in our specifications and their
semantics are described below.
Applying our CAV software architecture model to the case study is

straightforward: each module corresponds to a B abstract machine that
encapsulates few attributes in its VARIABLE clause. The AbsrBatt abstract
machine models the Abstraction of the system –the batteries– and the
variables of this abstract machine are the switches positions and the batteries
levels. These variables are altered through two operations: one to switch on a
battery and one to update the levels:

MACHINE
AbstBatt

ABSTRACT_VARIABLES
switch_batt1, level_batt1, ...

OPERATIONS
changeBattery (batt) = ...
updateLevels (level1, level2, level3) = ...

END

The ViewBatt abstract machine models the View –the interface layout–
and the variables of this abstract machine represent the state of each widget:
the batteries levels, the switches positions, the states –enabled or disabled–
of the warning messages LOW and pushbuttons (fig. 1-b). Operations of the
machine update the switches positions and the batteries levels:

MACHINE
ViewBatt

ABSTRACT_VARIABLES
display_level1, display_low1, display_on1, display_button1, ...

OPERATIONS
showOn (batt) = ...
showLevels (level1, level2, level3) = ...

END

6 Francis Jambon

The CtrlBatt abstract machine models the Control –the dialogue
controller– of the user interface. This abstract machine includes instances of
the View and of the Abstraction. The variables of the controller refers to the
validity of the events from the real word, i.e., if a button is disabled an event
is not supposed to be generated by this button. Operations of the controller
are events coming from the batteries or the user: the update of the batteries
levels and the activation of one of the pushbuttons.

MACHINE
CtrlBatt

INCLUDES
abst.AbstBatt, view.ViewBatt

ABSTRACT_VARIABLES
evt_valid1, ...

OPERATIONS
evtLevels (level1, level2, level3) = ...
evtButton (nb) = ...

END

The above specifications are incomplete: the INVARIANT clauses and the
operations bodies have not been specified yet. Now we are going to
complete some of them while specifying the usability and safety properties
of the system.

3.3 Usability Properties

Among the usability properties, the system is in charge of warning the
user if a battery is going to be empty. This usability requirement has to be
specified as: if the battery switch is in position ON and the level is below or
equal 10%, a warning message must be shown. This must be specified in the
INVARIANT clause of the View:

INVARIANT
((display_low1=TRUE) ⇔ (display_on1=TRUE ∧ display_level1≤10)) ∧ ...

The operations of the View must be specified to fulfill this invariant. For
the showLevels operation, the specification below means that for any new
value of the variables, they must satisfy the invariant, whatever the way they
are computed:

OPERATIONS
showLevels (level1, level2, level3) =
...
ANY low1, low2, low3 WHERE

((display_on1=TRUE ∧ level1≤10) ⇔ (low1=TRUE)) ∧ ...
THEN

display_low1 := low1 || ...
END || ...

This Insistence property specification is restricted to the View abstract
machine. So, it is fairly easy to handle. On the contrary, the Conformity
property requires the Control mediation between Abstraction and View. Its

From Formal Specifications to Secure Implementations 7

specification is similar to the specification of safety below and has not been
described in the paper for the explanation would be too long.

3.4 Safety Properties

Among the safety requirements, we detail now the prevention of user
error: the operator must not be able to switch on an empty battery. At first,
this safety requirement deals with the functional core of the system, i.e., it
must be specified in the Abstraction.

Moreover, this requirement is not a static but a dynamic property: the
battery can become empty while switched on, but an empty battery must not
be switched on. This requirement is not static predicate, so, it cannot be
specified in the invariant clause of the abstract machine. In the B language
semantics this category of requirement must be specified in a precondition
substitution of the operations.

In the Abstraction abstract machine this safety requirement is specified in
the PRE...THEN... substitution of the changeBattery operation. This
substitution means that the operation is defined only if the parameter is not
an empty battery. At this point, the specification sets the safety requirements
up. As a consequence, the B language semantics ensure that the operation
will never be called with an empty battery as parameter.

OPERATIONS
changeBattery (batt) =
PRE

batt ∈ 1..3 ∧
((batt=1) (level_batt1 0)) ...

THEN
...

END

In fact, we have delegated to the Control abstract machine –that includes
the Abstraction– the safety requirements, i.e. the Control is in charge of the
verification of the semantic validity of the parameters when it calls the
operation of the Abstraction abstract machine. We call this technique the
delegation of safety. This generates two consequences:
1. The operator cannot be aware of a battery could not be switched on.
2. An action on a pushbutton can be generated with a empty battery number

as parameter, so some required proofs obligations cannot be proved.
The first consequence is easy to set up. We have to improve the interface

layout and to update the state of the button: enabled or disabled. Of course, if
a button is disabled, it is well known that this button cannot emit an event.
This assertion may seem to be sufficient to solve the second consequence
above. That is not exact: the B semantics cannot ensure that a disabled
button cannot emit events because the graphic toolkit is not formally
specified. So, the Control abstract machine must filter the input events with

8 Francis Jambon

the button states specified in the View abstract machine. This is required by
the formal specification. The benefit of this consequence is that our system
is safe and so even if the user interface is defective.

MACHINE
CtrlBatt

INVARIANT
((abst.level_batt1 = 0) ⇒ (view.display_button1 = FALSE)) ∧
(¬(abst.level_batt1 = 0) ⇒ (view.display_button1 = TRUE)) ∧
((abst.level_batt1 = 0) ⇔ (evt_valid1 = FALSE)) ∧
(¬(abst.level_batt1 = 0) ⇔ (evt_valid1 = TRUE)) ∧ ...

OPERATIONS
evtButton (nb) =
PRE

nb ∈ 1..3
THEN

SELECT
((nb=1) ∧ (evt_valid1=TRUE)) ∨ ...

 THEN
abst.changeBattery(nb) || view.showOn(nb)

END
END ; ...

END

The total specification of the abstract machines is too long to be
reproduced in this paper, but the two latter requirements are characteristic
examples of the specification problems we had to deal with. Now we focus
on the second step of the development process: the implementation.

4. IMPLEMENTATION

This section details the second step of our development process, i.e., the
implementation of the control panel from the formal specifications carried
out in the previous section. The final objective of our study is to design a
working program. So, on the one hand we must implement secure code from
the formal specifications but on the other hand we need to link this code to
existing software libraries because it is not realistic –if ever possible– to
specify a complete system with formal methods.

4.1 Implementation of the CAV Model

The final program must be a set of software modules in which some of
them are formally specified and implemented, and some other are developed
with classic software engineering methods. In order to dissociate these two
antagonists types of modules, interfaces have been inserted in between. So,
at the implementation step, the CAV architecture supports some add-ons as
shown on figure 2. We now focus on these three types of modules: secure
code, interface and native modules.

From Formal Specifications to Secure Implementations 9

NativeEvents

Events

CtrlBatt

AbstBatt ViewBatt

Batteries Graphics

NativeBatteries NativeGraphics

Manual code (unsecure)

Generated code (secure)

Manually modified code (unsecure)

CAV Model

Control

ViewAbstraction

Figure 2. The CAV software architecture with interfaces and native modules

4.2 Secure Code

The core of the interactive system has been specified in three B abstract
machines. These machines specify the minimum requirements of the system
but do not give any implantation solution. To do so, the B method uses
implementation machines that refine abstract machines. The implementation
machines are programmed in BØ pseudo-code that shares the same syntax
with the B language and is close to a generic imperative programming
language. In implementation machines, the substitutions are executed in
sequence. BØ pseudo-code can be automatically translated into C code.

As implementation machines refine abstract machines, they must
implement all the operations of the abstract machines. Moreover, the B
method and semantics ensure that the side-effects on variables of the
implementation machines operations do respect the invariant as well as the
abstract machines operations they refine. Providing the proof obligations are
actually proved, the implementation machines respect the safety and
usability requirements. So, the code is secure whether the specifications are

10 Francis Jambon

adequate. As an illustration, we reproduce below the implementation of the
Control operation evtButton specified in the previous section. Note that the
SELECT...WHEN... non determinist specification is implemented by a
determinist classic CASE...EITHER....OR... instruction.

IMPLEMENTATION
CtrlBatt_i

REFINES
CtrlBatt

IMPORTS
abst.AbstBatt, view.ViewBatt

CONCRETE_VARIABLES
evt_valid1, ...

OPERATIONS
evtButton (nb) =
BEGIN

CASE nb OF
EITHER 1 THEN IF (evt_valid1=TRUE) THEN

abst.changeBattery(1) ; view.showOn(1) END
...

END
END ; ...

END

4.3 Native Code and Interfaces

A working program cannot be fully developed with formal methods
because most of graphic widgets and hardware drivers libraries are not yet
developed with formal methods. As a consequence, the battery control panel
uses three native modules:
– The NativeGraphics software module controls the graphic layout of the

user interface. It uses the GTk library.
– The NativeBatteries software module simulates the batteries with

lightweight processes. It uses the POSIX thread library.
– The NativeEvents software module is in charge of merging the events

coming from the user or the hardware and formats them to the data
structure used by the BØ translator.
These three modules are not secure. However, the modules can be tested

with a reduced set of test sequences because the procedures of these modules
are only called by the secure code that do respect the formal specification.
For example, the bar graph widget of NativeGraphics module is to be tested
with values from 0 to 100 only because the secure modules are proved to use
values from 0 to 100 only. Abnormal states do not have to be tested.

The interfaces modules roles are to make a syntactic filtering and
translation between native modules and secure code:
– The Events software module receives integer data and translates them to

1..3 or 0..100 types. This module is secure because it as been specified
and fully implemented in BØ but is called by non-secure modules.

From Formal Specifications to Secure Implementations 11

– The Graphics and Batteries modules are specified in B and the skeleton
of the modules is implemented in BØ and then manually modified to call
the native modules NativeBatteries and NativeGraphics respectively.

4.4 Programming Philosophies

At last, the project outcome is a set of C source files. Some of these files
are automatically generated from the BØ implementations, while others are
partially generated or manually designed. The formal specification and
implantation require about one thousand non obvious proof obligations to be
actually proved. All these proof obligations can be proved thanks to the
automatic prover in a few dozen of minutes with a standard workstation.

The core of the system is formally specified and developed. The
programming philosophy used is called the offensive programming, i.e., the
programmer do not have to question about the validity of the operations
calls. The B method and semantics ensure that any operation is called with
respect to the specifications. Most of the dialogue controller as well as the
logic of the View and the Abstraction are designed with this philosophy. As
a consequence, most of the dialog control of the system is secure.

On the opposite, the events coming from the real-word –user or
hardware– have to be syntactically and semantically filtered. This
programming philosophy is defensive. One the one hand the syntactic
filtering is done by the Event module that casts the parameters types –from
integer to interval. On the other hand, the semantic filtering is achieved by
the Control module that can refuse events coming from disabled buttons. So,
the system is resistant to graphic libraries bugs or transient errors with
sensors. This filtering is required by the proof obligations that force upon the
operations calls to be done with valid parameters.

There is no need to use the defensive programming philosophy in native
modules. The procedures of these modules are called only by secure
modules, so the parameters must be valid anytime. Neither verification nor
filtering is necessary. The programming philosophy looks like the offensive
philosophy except that the native modules are not formally specified but
must be tested, so we name this philosophy half-offensive. As a consequence
the development of high-quality native code can be performed with a
reduced programming effort.

CONCLUSION

A previous work tends to show that the B method can specifies WIMP
interactive systems [8] or process-control interactive systems [10]. This

12 Francis Jambon

paper now shows that we successfully achieved the complete development
of a safety-critical process-control interactive system from formal
specifications. We proved that the system respects the requirements that
deals with safety and usability. Moreover, this case study shows how the
Control-Abstraction-View software architecture model can be successfully
implemented. Some points may be enlightened:
– Safety and usability requirements may be specified by invariant or

operation preconditions of B abstract machines.
– Incremental development from specifications to implementation of an

interactive system can be achieved in a reasonable laps of time.
– Links between secure and insecure code are mandatory in the design of

working programs and require interfaces.
This work is a new step toward an actual method for specifying,

designing and implementing interactive systems with the formal method B
and the use of an industrial tool. The next step is to overcome the lack of
secure graphic libraries. That is the reason why we are currently developing
a formal graphical widget library.

REFERENCES

1. Duke, D.J. and Harrison, M.D. Abstract Interaction Objects. Computer Graphics Forum.
12, 3 (1993), pp. 25-36.

2. Paternò, F. A Theory of User-Interaction Objects. Journal of Visual Languages and
Computing. 5, 3 (1994), pp. 227-249.

3. Paternò, F. and Faconti, G.P. On the LOTOS use to describe graphical interaction in .
Cambridge University Press, 1992. pp. 155-173.

4. Palanque, P. Modélisation par Objets Coopératifs Interactifs d'interfaces homme-machine
dirigées par l'utilisateur. PhD Université de Toulouse I, Toulouse, 1992, 320 p.

5. Brun, P. XTL: a temporal logic for the formal development of interactive systems in
Formal Methods for Human-Computer Interaction, edited by P. Palanque and F. Paternò.
Springer-Verlag, 1997. pp. 121-139.

6. Abrial, J.-R. The B Book: Assigning Programs to Meanings. Cambridge University Press,
1996, 779 p.

7. ClearSy. Atelier B - version 3.5, 1997.
8. Aït-Ameur, Y., Girard, P. and Jambon, F. Using the B formal approach for incremental

specification design of interactive systems in Engineering for Human-Computer
Interaction, edited by S. Chatty and P. Dewan. Kluwer Academic Publishers, 1998. Vol.
22, pp. 91-108.

9. Bass, l., Pellegrino, R., Reed, S., Sheppard, S. and Szezur, M. The Arch Model : Seeheim
revisited, in Proc. User Interface Developper's Workshop 1991).

10.Jambon, F., Girard, P. and Aït-Ameur, Y. Interactive System Safety and Usability
enforced with the development process, in Proc. Engineering for Human-Computer
Interaction (EHCI'01) (Toronto, Canada, May 11-13, 2001), PREceedings, pp. 61-76.

